
Sound Automation of Magic Wands

Thibault Dardinier1(B) , Gaurav Parthasarathy1, Noé Weeks2,
Peter Müller1 , and Alexander J. Summers3

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{thibault.dardinier,gaurav.parthasarathy,peter.mueller}@inf.ethz.ch

2 École Normale Supérieure, Paris, France
noe.weeks@ens.psl.eu

3 University of British Columbia, Vancouver, Canada
alex.summers@ubc.ca

Abstract. The magic wand −∗ (also called separating implication) is a
separation logic connective commonly used to specify properties of par-
tial data structures, for instance during iterative traversals. A footprint
of a magic wand formula A−∗B is a state that, combined with any state
in which A holds, yields a state in which B holds. The key challenge
of proving a magic wand (also called packaging a wand) is to find such
a footprint. Existing package algorithms either have a high annotation
overhead or, as we show in this paper, are unsound.

We present a formal framework that precisely characterises a wide
design space of possible package algorithms applicable to a large class of
separation logics. We prove in Isabelle/HOL that our formal framework
is sound and complete, and use it to develop a novel package algorithm
that offers competitive automation and is sound. Moreover, we present
a novel, restricted definition of wands and prove in Isabelle/HOL that it
is possible to soundly combine fractions of such wands, which is not the
case for arbitrary wands. We have implemented our techniques for the
Viper language, and demonstrate that they are effective in practice.

1 Introduction

Separation logic [38] (SL hereafter) is a program logic that has been widely
used to prove complex properties of heap-manipulating programs. The two main
logical connectives that enable such reasoning are the separating conjunction ∗
and the separating implication (more commonly known as the magic wand) −∗, in
combination with resource assertions which represent e.g. exclusive ownership of
(and permission to access) particular heap locations. The separating conjunction
expresses that two assertions prescribe ownership of disjoint parts of the heap,
useful, for instance, to reason about aliasing or race conditions. More precisely,
the assertion A ∗ B holds in a program state σ if and only if σ can be split into
two compatible program states σA and σB such that A and B hold in σA and σB ,
respectively. In SL, heaps of program states are partial maps from locations to
values; their domains represent heap locations exclusively owned. Two program
states are compatible if (the domains of) their heaps are disjoint.
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 130–151, 2022.
https://doi.org/10.1007/978-3-031-13188-2_7

https://doi.org/10.5281/zenodo.6526611
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_7&domain=pdf
http://orcid.org/0000-0003-2719-4856
http://orcid.org/0000-0001-7001-2566
http://orcid.org/0000-0001-5554-9381
https://doi.org/10.1007/978-3-031-13188-2_7

Sound Automation of Magic Wands 131

Intuitively, a magic wand A−∗B can be used to express the difference between
the heap locations that B and A provide permission to access. The magic wand
is useful, for instance, to specify partial data structures, where B specifies the
entire data structure and A specifies a part that is missing [33,41]. A −∗ B holds
in a state σw, if and only if for any program state σA in which A holds and that
is compatible with σw, B holds in the state obtained by combining the heaps of
σA and σw. Thus, if A ∗ (A −∗ B) holds in a state, then so does B, analogously
to the modus ponens inference rule in propositional logic.

The magic wand has been shown to enable or greatly simplify proofs in many
different cases [1,9,20,21,28,33,41,42]. For instance, Yang [42] uses the magic
wand to prove the Schorr-Waite graph marking algorithm. Dodds et al. [20]
employ the wand to specify synchronisation barriers for deterministic parallelism.
Examples using magic wands to specify partial data structures include tracking
ongoing traversals of a data structure [33,41], where the left-hand side of the
wand specifies the part of the data structure yet to be traversed, or for specify-
ing protocols that enforce orderly modification of data structures [21,25,28] (e.g.
the protocol governing Java iterators). More recently, wands have been used for
formal reasoning about borrowed references in the Rust programming language,
which employs an ownership type system to ensure memory safety [1]. Magic
wands concisely represent the remainder of a data structure from which a bor-
rowed reference was taken, as well as reflecting back modifications to the part
accessible via the reference. For example, consider a struct Point (represented by
a SL predicate Point) with two fields x and y of type i32 (represented by the SL
predicate i32). A Rust method that takes as input a Point p and returns a borrow
of its field x is specified with the postcondition int32(x) ∗ (int32(x) −∗ Point(p)),
thus enabling the caller to regain ownership of the entire data structure Point(p).

The complexity of SL proofs has given rise to a variety of automatic SL veri-
fiers that reduce the required proof effort. Given the usefulness of magic wands, it
is important that such verifiers also provide automatic support for wands. How-
ever, reasoning about a magic wand requires reasoning about all states in which
the left-hand side holds, which is challenging. It has been shown that a separa-
tion logic even without the separating conjunction (but with the magic wand) is
as expressive as a variant of second-order logic and, thus, undecidable [6].

Two different approaches [3,39] that provide partially-automated support are
implemented in the verifiers Viper [34] and VerCors [2]. However, the approach
implemented in VerCors [3] incurs significant annotation overhead, and the app-
roach in Viper [39] suffers from a fundamental, previously undiscovered flaw that
renders the approach unsound. Both approaches require user-provided package
operations to direct the verifier’s proof search. Packaging a wand A−∗B expresses
that the verifier should prove and subsequently record A−∗B. To package A−∗B
the verifier must split the current state into two compatible states σ′ and σw

such that A −∗ B holds in σw. We call σw a footprint of the wand. After success-
fully packaging a wand, the verifier must disallow changes to σw to preserve the
wand’s validity: the verifier packages the footprint into the wand.

132 T. Dardinier et al.

The key challenge for supporting magic wands in automatic verifiers is to
define a package algorithm that packages a wand. In VerCors’s package algo-
rithm [3], a user must manually specify a footprint for the wand and the algo-
rithm checks whether the wand holds in the specified footprint. This leads to a
lot of annotation overhead. Viper’s current package algorithm [39] reduces this
overhead significantly by automatically inferring a suitable footprint. Unfortu-
nately, as we show in this paper, Viper’s current algorithm has a fundamental
flaw that causes the algorithm to infer an incorrect footprint in certain cases,
which may lead to unsound reasoning. We will explain the fundamental flaw
in Sect. 2; it illustrates the subtlety of supporting this important connective.

Approach and Contributions. In this paper, we present a formal foundation
for sound package algorithms, and we implement a novel such algorithm based on
these foundations. Our algorithm requires the same annotation overhead as the
prior, flawed Viper algorithm, which is (to our knowledge) the most automatic
existing approach. We introduce a formal framework expressed via a novel package
logic that defines the design space for package algorithms. The soundness of a pack-
age algorithm can be justified by showing that the algorithm finds a proof in our
package logic. The design space for package algorithms is large since there are var-
ious aspects that affect how one expresses the algorithm including (1) which foot-
print an algorithm infers or checks (there are often multiple options, see Sect. 3),
(2) the state model (which differs between different SL verifiers), and (3) restricted
definitions of wands (for instance, to ensure each wand has a unique minimal foot-
print). Our package logic deals with (1) by capturing all sound derivations for the
same wand. To deal with (2) and (3), our logic is parametric along multiple dimen-
sions. For instance, the state model can be any separation algebra to support dif-
ferent SL extensions (e.g. fractional permissions [4]).

Our logic also supports parameters to restrict the allowed footprints for
wands in systematic ways. Such restrictions are useful, for instance, in a logic
supporting fractional permissions. Fractional permissions permit splitting own-
ership/resources into shared fragments which typically permit read access to
the underlying data. However, as we show in Sect. 4, fractional parts of general
magic wands cannot always be soundly recombined. Existing solutions for other
connectives impose side conditions to enable sound recombinations [29], which
are often hard to check automatically. We instead introduce a novel restriction
of magic wands to avoid such side conditions and develop a corresponding sec-
ond package algorithm again based on the formal framework provided by our
package logic. We make the following contributions:

– We formalise a package logic that can be used as a basis for a wide range
of package algorithms (Sect. 3). The logic has multiple parameters including:
a separation algebra to model the states and a parameter to restrict the
definition of a wand in a systematic way. We formally prove the logic sound
and complete for any instantiation of the parameters in Isabelle/HOL [13].

– We develop a novel, restricted definition of a wand (Sect. 4) and prove in
Isabelle/HOL that this wand can always be recombined [14].

Sound Automation of Magic Wands 133

– We implement sound package algorithms for both the standard and the
restricted wand in the Viper verifier and justify their soundness directly via
our package logic (Sect. 5). We evaluate both algorithms on the Viper test
suite. Our evaluation shows that (1) our algorithms perform similarly well to
prior work and correctly reject examples where prior work is unsound, and
(2) our restricted wand definition is expressive enough for most examples.

Our Isabelle formalisation and the implementation of our new package algorithm
are publicly available [13–15]. Further details are available in our accompanying
technical report (TR hereafter) [16].

2 Background and Motivation

In this section, we present the necessary background for this paper. We use
implicit dynamic frames [40] to represent SL assertions, since both existing auto-
matic verifiers that support wands (VerCors and Viper) are based on it. There
is a known strong correspondence between SL and implicit dynamic frames [36].

2.1 Implicit Dynamic Frames

Just like SL assertions, implicit dynamic frames (IDF hereafter) assertions spec-
ify not only value information, but also permissions to heap locations that
are allowed to be accessed. To justify dereferencing a heap location, the cor-
responding permission is required, ensuring memory safety. IDF assertions spec-
ify permissions to locations and value information separately. An assertion
acc(x.val) (an accessibility predicate) denotes permission to the heap location
x.val, while x.val = v expresses that x.val contains value v. The separating
conjunction in IDF enforces disjointness (formally: acts multiplicatively) with
respect to resource assertions such as accessibility predicates; in particular, if
acc(x.val) ∗ acc(y.val) holds in a state, then x and y must be different (analo-
gously to SL).

The main difference between IDF and SL is that SL does not allow general
heap-dependent expressions such as x.val = v or x.left.right [40] to be specified
separately from the permissions to the heap locations they depend on. The IDF
assertion acc(x.val)∗x.val = v must be expressed in SL via the points-to assertion
x.val �→ v, which also conveys exclusive permission to the location x.val. IDF
supports heap dependent expressions within self-framing assertions: those which
require permissions to all the heap locations on whose values they depend (e.g.
acc(x.val) ∗ x.val = v is self-framing but x.val = v is not) [40].

2.2 A Typical Example Using Magic Wands

Figure 1 shows a variation of an example from the VerifyThis competition [22].
The method leftLeaf iteratively computes the leftmost leaf of a binary tree
(package and apply operations, shown in blue, should be ignored for now). The

134 T. Dardinier et al.

Fig. 1. The code on the left finds the leftmost leaf of a binary tree and includes speci-
fications to prove memory safety. The predicate describing the permissions of a tree is
defined on the right. The loop invariant uses a wand to summarise the permissions of
the input tree excluding the tree not yet traversed. The blue operations are ghost oper-
ations to guide the verifier; we omit those specific to predicates. The package requires
further hints in existing approaches, see App. J of the TR [16]. (Color figure online)

pre- and postconditions of leftLeaf are both Tree(x), which is a predicate instance
used to specify all permissions to the fields of the tree rooted at x (the recursive
definition of this predicate is on the right of Fig. 1). Proving this specification
amounts to proving that leftLeaf is memory-safe and that the permissions to
the input tree are preserved, enabling further calls on the same tree.

The key challenge when verifying leftLeaf is specifying an appropriate loop
invariant. The loop invariant must track the permissions to the subtree rooted at
y that still needs to be traversed, since otherwise dereferencing y.left in the loop
body is not allowed. Additionally, the invariant must track all of the remaining
permissions in the input tree rooted at x (the permissions to the nodes already
traversed and others unreachable from y), since otherwise the postcondition can-
not be satisfied. The former can be easily expressed with Tree(y). The latter can
be elegantly achieved with a magic wand Tree(y)−∗ Tree(x). This wand promises
Tree(x) if one combines the wand with Tree(y). That is, the wand represents
(at least) the difference between the permissions making up the two trees. Using
SL’s modus-ponens-like inference rule (directed by the apply operation on line 13,
explained next), one can show that the loop invariant entails the postcondition.

2.3 Wand Ghost Operations

Automatic SL verifiers such as GRASShopper [37], VeriFast [24], VerCors, and
Viper generally represent permissions owned by a program state in two ways: by
recording predicate instances (such as Tree(x) in Fig. 1) and direct permissions
to heap locations. Magic wand instances provide a third way to represent per-
missions and are recorded analogously. Verifiers that support them require two

Sound Automation of Magic Wands 135

wand-specific ghost operations, which instruct the verifiers when to prove a wand
and when to apply a recorded wand instance using SL’s modus-ponens-like rule.

A package ghost operation expresses that a verifier should prove a new wand
instance in the current state and report an error if the proof attempt fails. To
prove a new wand instance, the verifier must split the current state into two
states σ′ and σw such that the wand holds in the footprint state σw; on success,
permissions in the footprint are effectively exchanged for the resulting magic
wand instance. We call a procedure that selects a footprint by splitting the
current state a package algorithm. On lines 5 and 10 of Fig. 1, new wands are
packaged to establish and preserve the invariant, respectively.

The apply operation applies a wand A−∗B using SL’s modus-ponens-like rule
if the verifier records a wand instance of A−∗B and A holds in the current state
(and otherwise fails), exchanging these for the assertion B. The apply operation
is directly justified by the wand’s semantics: Combining a wand’s footprint with
any state in which A holds is guaranteed to yield a state in which B holds. For
the apply operation on line 13 of Fig. 1, the verifier removes the applied wand
instance and Tree(y), in exchange for the predicate instance Tree(x).

2.4 The Footprint Inference Attempt (FIA)

Package algorithms differ in how a footprint for the specified magic wand is
selected. In VerCors [3], the user must manually provide the footprint and the
algorithm checks whether the specified footprint is correct. In Viper’s current
approach [39], a footprint is inferred. We explain and compare to the latter
approach since it is the more automatic of the two; hereafter, we refer to its
package algorithm as the Footprint Inference Attempt (FIA). Inferring a correct
footprint is challenging due the complexity of the wand connective. In particular,
we have discovered that, in certain cases, the FIA infers incorrect footprints,
leading to unsound reasoning1. The goal of this subsection is to understand the
FIA’s key ideas, which our solution will build on, and why it is unsound.

In general, there may be multiple valid footprints for a magic wand A −∗ B.
The FIA attempts to infer a footprint which is as close as possible to the differ-
ence between the permissions required by B and A, taking as few permissions
as possible while aiming for a footprint compatible with A (so that the resulting
wand can be later applied) [39]. That is, the FIA includes only permissions in
the footprint it infers that are specified by B and not guaranteed by A.

For awandA−∗B, the FIA constructs an arbitrary stateσA that satisfies A (rep-
resenting σA symbolically). Then, the FIA tries to construct a state σB in which B
holds by taking permissions (and copying corresponding heap values) from σA if
possible and the current state otherwise. If this algorithm succeeds, the (implicit)
inferred footprint consists of the permissions thatwere taken from the current state.
The FIA constructs σB by iterating over the permissions and logical constraints
in B. For each permission, the FIA checks whether σA owns the permission. If so,

1 This unsoundness might not be observable in restricted logics, but it is in Viper (see
App. B of the TR [16]) and the rich logics supported by existing verification tools.

136 T. Dardinier et al.

the FIA adds the permission to σB and removes the permission from σA. Other-
wise, the FIA removes the permission from the current state or fails if the current
state does not have the permission. For each logical constraint, the FIA checks that
the constraint holds in σB as constructed so far. We show an example of the FIA
correctly packaging a wand in App. A of the TR [16].

Unsoundness of the FIA. We have discovered that for some wands A−∗B, the
FIA determines an incorrect footprint for the magic wand. This unsoundness can
arise when the FIA performs a case split on the content of the arbitrary state
σA satisfying A. In such situations, the FIA infers a footprint for each case
separately, making use of properties that hold in that case. For certain wands,
this leads to different footprints being selected for each case, while none of the
inferred footprints can be used to justify B in all cases, i.e. for all states σA that
satisfy A. As a result, the packaged wand does not hold in any of the inferred
footprints, which can make verification unsound, as we illustrate below.

The wand w := acc(x.f)∗(x.f = y∨x.f = z)−∗acc(x.f)∗acc(x.f.g) illustrates
the problem. For this wand, every state σA satisfying the left-hand side must have
permission to x.f. However x.f may either point to y or z. If x.f points to y in σA,
then to justify the right-hand side’s second conjunct, the footprint must contain
permission to y.g. Analogously, if x.f points to z in σA, then the footprint must
contain permission to z.g. The wand’s semantics requires a footprint to justify
the wand’s right-hand side for all states in which the left-hand side holds, and
thus, a correct footprint must be able to justify both cases. Hence, the footprint
must have permission to both y.g and z.g. However, the FIA’s inferred footprint
is in effect the disjunction of these two permissions.

Packaging the above wand w using the FIA leads to unsound reasoning. After
the incorrect package described above in a statewith permission to x.f, y.g, and z.g,
the assertion acc(x.f)∗(acc(y.g)∨acc(z.g))∗w can be proved since theFIA removes
permission to either y.g or z.g from the current state, but not both. However, this
assertion does not actually hold!According to the semantics ofwands, w’s footprint
must include permission to x.f or permission to both y.g and z.g, which implies
that the assertion acc(x.f) ∗ (acc(y.g) ∨ acc(z.g)) ∗ w is equivalent to false.

The unsoundness of the FIA shows the subtlety and challenge of developing
sound package algorithms. Algorithms that soundly infer a single footprint for all
states in which the wand’s left-hand side holds must be more involved than the
FIA. Ensuring their soundness requires a formal framework to construct them and
justify their correctness. We introduce such a framework in the next section.

3 A Logical Framework for Packaging Wands

In this section, we present a new logical framework that defines the design space
for (sound) package algorithms. The core of this framework is our package logic,
which defines the space of potential algorithmic choices of a footprint for a par-
ticular magic wand. Successfully packaging a wand in a given state is (as we will
show) equivalent to finding a derivation in our package logic, and any actual

Sound Automation of Magic Wands 137

package algorithm must correspond to a proof search in our logic (if it is sound).
In particular, we provide soundness (Theorem 1) and completeness (Theorem 2)
results for our logic. We define a specific package algorithm with this logic at its
foundation, inspired by the FIA package algorithm [39] (described in Sect. 2.4)
but amending its unsoundness, resulting in (to the best of our knowledge) the
first sound and relatively automatic package algorithm.

All definitions and results in this section have been fully mechanised [13] in
Isabelle/HOL. Our mechanised definitions are parametric with the underlying
verification logic in various senses: the underlying separation algebra is a param-
eter, the syntax of assertions is defined in a way which allows simple extension
with different base cases and connectives, and the semantics of magic wands itself
can be restricted if only particular kinds of footprint are desired in practice. As a
specific example of the latter parameter, in Sect. 4 we define a novel restriction of
magic wand footprints which guarantees better properties in combination with
certain usages of fractional permissions; this is seamlessly supported by the gen-
eral package logic presented here. Nonetheless, to simplify the exposition of this
section, we will assume that any magic wand footprint satisfying the connective’s
standard semantics is an acceptable result.

3.1 Footprint Selection Strategies

As we explained in Sect. 1, there is a wide design space for package algorithms; in
particular, many potential strategies for finding a magic wand’s footprint exist
and none is clearly optimal. Recall that a footprint is a state, and thus consists
of permissions to certain heap locations as well as storing their corresponding
values; for simplicity we identify a footprint by the permissions it contains.

For example, consider the following magic wand (using fractional permissions)
acc(x.b, 1/2) −∗ acc(x.b, 1/2) ∗ (x.b ⇒ acc(x.f)). Suppose this magic wand is
to be packaged in a state where full permissions to both x.b and x.f are held,
and the value of x.b is currently false. Two valid potential footprints are:

1. Full permission to x.f. This is sufficient to guarantee the right-hand side will
hold regardless of the value that x.b has by the time the wand is applied.

2. Half permission to x.b. By including this permission, the fact that x.b is
currently false is also included, and thus permission to x.f is not needed.

There is no clear reason to prefer one choice over the other: different package
algorithms (or manual choices) might choose either. Our package logic allows
either choice along with any of many less optimal choices, such as taking both
permissions. On the other hand, as motivated earlier in Sect. 3.1, our package
logic must (and does) enforce that a single valid footprint is chosen for a wand
that works for each and every potential state satisfying its left-hand side.

3.2 Package Logic: Preliminaries

To capture different state models and flavours of separation logic, our package
logic is parameterised by a separation algebra. For space reasons, we present here

138 T. Dardinier et al.

a simplified overview of this algebra, but all definitions (including our assertion
semantics) are given in App. D of the TR [16] and have been mechanised. We
consider a separation algebra [8,19] where Σ is the set of states, ⊕ : Σ ×Σ → Σ
is a partial operation that is commutative and associative, and e ∈ Σ, which
corresponds to the empty state, is a neutral element for ⊕. We write 	 for the
induced partial order of the resulting partial commutative monoid, and σ1#σ2

iff σ1⊕σ2 is defined (i.e. σ1 and σ2 are compatible). Finally, if σ2 	 σ1, we define
the subtraction σ2
 σ1 to be the 	-largest state σr such that σ2 = σ1 ⊕ σr.

We define our package logic for an assertion language with the following gram-
mar: A = A∗A | B⇒A | B, where A ranges over assertions and B over semantic
assertions. To allow our package logic to be applied to a variety of underlying
assertion logics, we distinguish only the two most-relevant connectives: the sepa-
rating conjunction and an implication (for expressing conditional assertions). To
support additional constructs of the assertion logic, the third type of assertion
we consider is a semantic assertion, i.e. a function from Σ to Booleans. This
third type can be instantiated to represent logical assertions that do not match
the first two cases. In particular, assertions such as x.f = 5, acc(x.f), abstract
predicates (such as Tree(x)) or magic wands can be represented as semantic
assertions. This core assertion language can also be easily extended with native
support for e.g. the logical conjunction and disjunction connectives; we explain
in App. E of the TR [16] how to extend the rules of the logic accordingly.

3.3 The Package Logic

We define our package logic to prescribe the design space of algorithms for decid-
ing how, in an initial state σ0, to select a valid footprint (or fail) for a magic wand
A−∗B. The aim is to infer states σw and σ1 that partition σ0 (i.e. σ0 = σ1 ⊕σw)
such that σw is a valid footprint for A−∗B (when combined with any compatible
state satisfying A, the resulting state satisfies B). In particular, all permissions
(and logical facts) required by the assertion B must either come from the foot-
print or be guaranteed to be provided by any compatible state satisfying A.

Recall from Sect. 2.4 that the mistake underlying the FIA approach ultimately
resulted from allowing multiple different footprints to be selected conditionally on
a state satisfying A, rather than a single footprint which works for all such states.
Our package logic addresses this concern by defining judgements in terms of the
set of all states satisfying A; whenever any of these tracked states is insufficient to
provide a permission required by B, our logic will force this permission to be added
in general to the wand’s footprint (taken from the current state).

A witness set S is a set of pairs of states (σA, σB); conceptually, the first
represents the state available for trying to prove B in addition to the current
state; this is initially a state satisfying the wand’s left-hand side A. The second
represents the state assembled (so-far) to attempt to satisfy the right-hand side
B. We write S1 for the set of first elements of all pairs in a witness set S. A
context Δ is a pair (σ, S) of a state and a witness set; here, σ represents the (as-
yet unused remainder of the) current state in which the wand is being packaged.

Sound Automation of Magic Wands 139

The basic idea behind a derivation in our logic is to show how to assemble
a witness set in which all second elements are states satisfying B, via some
combinations of: (1) moving a part of the first element of a pair in the witness set
into the second, and (2) moving a part of the outer state σ into all first elements
of the pairs (this becomes a part of the wand’s footprint). The actual judgements
of the logic are a little more complex, to correctly record any hypotheses (called
path-conditions) that result from deconstructing conditional assertions in B.

Configurations and Reductions. A configuration represents a current objec-
tive in our package logic: the part of the wand’s right-hand side still to be satisfied
as well as the current state of a footprint computation. A configuration is a triple
〈B, pc, (σ, S)〉, where B is an assertion, pc is a path condition (a function from
Σ to Booleans), and (σ, S) is a context. Conceptually, B is the assertion still to
be satisfied, pc represents hypotheses we are currently working under, and the
context (σ, S) tracks the current state and witness set, as described above.

A reduction is a judgement 〈B, pc, (σ0, S0)〉 � (σ1, S1), representing the
achievement of the objective described via the configuration on the left, resulting in
the final context on the right; σ1 is the new version of the outer state (and becomes
the new current state after the package operation); whatever was removed from the
initial outer state is implicitly the selected footprint state σw. If a reduction is deriv-
able in our package logic, this footprint σw guarantees that for all (σA, σB) ∈ S0,
if (σA ⊕ σB)#σw, then σA ⊕ σw satisfies pc ⇒ B. The condition (σA ⊕ σB)#σw

ensures that the pair (σA, σB) actually corresponds to a state in which the wand
can be applied given the chosen footprint σw, as we explain later. The package logic
defines the steps an algorithm may take to achieve this goal.

We represent packaging a wand A −∗ B in state σ0 by the derivation of a
reduction 〈B, λσ.
, (σ0, {(σA, e) | σA |= A})〉 � (σ1, S1), for some state σ1 and
witness set S1. The path condition is initially true (we are not yet under any
hypotheses). The initial witness set contains all pairs of a state σA that satisfies
A and the empty state e, to which a successful reduction will add permissions
in order to satisfy B2. An actual algorithm need not explicitly compute this
(possibly infinite) set, but can instead track it symbolically. If the algorithm
finds a derivation of this reduction, it has proven that the difference between σ0

and σ1 is a valid footprint of the wand A−∗B, since the logic is sound (Theorem 1
below).

Rules. Figure 2 presents the four rules of our logic, defining (via derivable reduc-
tions) how a configuration can be reduced to a context. There is a rule for each
type of assertion B: Implication for an implication, Star for a separating conjunc-
tion, and Atom for a semantic assertion. The logic also includes the rule Extract,
which represents a choice to extract permissions from the outer state and adds

2 If B is intuitionistic, this can be simplified to only the �-minimal states that satisfy
A. B is intuitionistic [38] iff, if B holds in a state σ, then B holds in any state σ′

such that σ′ � σ. In intuitionistic SL or in IDF, all assertions are intuitionistic.

140 T. Dardinier et al.

Fig. 2. Rules of the package logic.

them to all pairs of states in the witness set. In the following, we informally write
reducing an assertion to refer to the process of deriving (in the logic) that the
relevant configuration containing this assertion reduces to some context.

To reduce an implication B ⇒ A, the rule Implication conjoins the hypothesis
B with the previous path condition, leaving A to be reduced. Informally, this
expresses that satisfying pc ⇒ (b ⇒ A) is equivalent to satisfying (pc ∧ b) ⇒ A.

For a separating conjunction A1 ∗ A2, the Star rule expresses that both A1

and A2 must be reduced, in order to reduce A1 ∗ A2; permissions used in the
reduction of the first conjunct must not be used again, which is reflected by the
threading-through of the intermediate context Δ1.3

The Atom rule specifies how to prove that all states in S1 (where S is the wit-
ness set) satisfy the assertion pc ⇒ B. To understand the premises, consider a pair
(σA, σB) ∈ S. If σA does not satisfy the path condition, i.e. ¬pc(σA), then σA does
not have to justify B, and thus the pair (σA, σB) is left unchanged; this case cor-
responds to the set S⊥. Conversely, if σA satisfies the path condition, i.e. pc(σA),
then σA must satisfy B, and the corresponding permissions must be transferred
from σA to σB. Since some assertions may be satisfied in different ways, such as dis-
junctions, the algorithm has a choice in how to satisfy B, which might be different
for each pair (σA, σB). This choice is represented by choice(σA, σB), which must
satisfy B and be smaller or equal to σA. We update the witness set by transferring
choice(σA, σB) from σA to σB. This second case corresponds to the set S�. Note
that the Atom rule can be applied only if σA satisfies B, for all pairs (σA, σB) ∈ S
such that pc(σA). If not, a package algorithm must either first extract more per-
missions from the outer state with the Extract rule, or fail.

The Extract rule (applicable at any step of a derivation), expresses that we
can extract permissions (the state4 σw) from the outer state σ0, and combine

3 The order in the premises is unimportant since A1 ∗ A2 and A2 ∗ A1 are equivalent.
4 We explain formally in App. D of the TR [16] the notion of a stable state, which is

a technicality of our general state model; in standard SL, all states are stable.

Sound Automation of Magic Wands 141

them with the first element of each pair of states in the witness set. Note that
(σA, σB) is removed from the witness set if σA⊕σB is not compatible with σw. In
such cases, adding σw to σA would create a pair in the witness set representing
a state in which the wand cannot be applied. Consequently, there is no need to
establish the right-hand side of the wand for this pair and our logic correspond-
ingly removes it. Finally, the rule requires that we reduce the assertion A in the
new context.

A package algorithm’s strategy is mostly reflected by how it uses the Extract
rule. To package acc(x.b, 1/2) −∗ acc(x.b, 1/2) ∗ (x.b ⇒ acc(x.f)) from Sect. 3.1
one algorithm might use this rule to extract permission to x.f; another might
use it to extract permission to x.b (if x.b had value false in the original state).

Example of a Derivation. Let us now illustrate how these rules can be used
to package the wand from Sect. 3.1, w := acc(x.f)∗(x.f = y∨x.f = z)−∗acc(x.f)∗
acc(x.f.g). We omit the path condition since it is always the trivial condition
(λσ.
). Assume that the outer state σ0 is the addition of σyz, a state that
contains permission to y.g and z.g, and σ1. S0 := {(σA, e) | σA ∈ Σ ∧ σA |=
acc(x.f) ∗ (x.f = y ∨ x.f = z)} is the initial witness set. We show below a part
of a proof that 〈acc(x.f) * acc(x.f.g), (σ0, S0)〉 � (σ1, S3) is correct, and thus
that σyz is a correct footprint of the wand w (since σ0 = σ1 ⊕ σyz):

. . .
Atom〈acc(x.f), (σ0, S0)〉 � (σ0, S1)

. . .
Atom〈acc(x.f.g), (σ1, S2)〉 � (σ1, S3) †

Extract〈acc(x.f.g), (σ0, S1)〉 � (σ1, S3)
Star〈acc(x.f) * acc(x.f.g), (σ0, S0)〉 � (σ1, S3)

This derivation, which reflects the package algorithm that we will describe
in Sect. 3.5, can be read from bottom to top and from left to right. Using the
rule Star , we split the assertion into its two conjuncts, acc(x.f) (on the left) and
acc(x.f.g) (on the right). We then handle acc(x.f) using the rule Atom. acc(x.f)

holds in the first element of each pair of S0, since any state that satisfies the
wand’s left-hand side owns x.f. Therefore, we use the rule Atom with a choice
function that always chooses the relevant state with exactly full permission to x.f.
S1 is the updated witness set where this permission to x.f has been transferred
from the first to the second element of each pair of states. Next, we handle
acc(x.f.g). We cannot do this directly using the rule Atom from S1. We know
that, for each (σA, σB) ∈ S1, x.f.g evaluated in σA is either y or z, but σA owns
neither y.g nor z.g. So, we transfer the permissions to both y.g and z.g from
the outer state σ0 to all states of S1

1 , using the rule Extract , which results in
the context (σ1, S2); † represents the three other premises of the rule, namely
σ0 = σyz ⊕ σ1, stable(σyz), and S2’s definition. Finally, we apply the rule Atom
to prove 〈acc(x.f.g), (σ1, S2)〉 � (σ1, S3), where the choice function chooses for
each pair the corresponding state that contains full permission to x.f.g.

142 T. Dardinier et al.

3.4 Soundness and Completeness

We write � 〈B, pc,Δ〉 � Δ′ to express that a reduction can be derived in the
logic. As explained above, the goal of a package algorithm is to find a derivation of
〈B, λ_.
, (σ, {(σA, e) | σA ∈ SA})〉 � (σ′, S′). If it succeeds, then the difference
between σ′ and σ is a valid footprint of A −∗ B, since our package logic is sound.
In particular, we have proven the following soundness result in Isabelle/HOL:

Theorem 1 Soundness. Let B be a well-formed5 assertion. If

1. the set SA contains all states that satisfy A. i.e. ∀σA. σA |= A ⇒ σA ∈ SA,
2. � 〈B, λ_.
, (σ, {(σA, e) | σA ∈ SA})〉 � (σ′, S′), and
3. at least one of the following conditions holds:

(a) B is intuitionistic
(b) For all (σA, σB) ∈ S′, σA contains no permission (i.e. σA ⊕ σA = σA)

then there exists a stable state σw s.t. σ = σ′ ⊕ σw and σw is a footprint of
A −∗ B.

The third premise shows that, in an intuitionistic SL or in IDF, the corre-
spondence between a derivation in the logic and a valid footprint of a wand is
straightforward (case (a)). However, in classical SL, one must additionally check
that all permissions in the witness set have been consumed (case (b)).

We have also proved in Isabelle/HOL that our package logic is complete, i.e.
any valid footprint can be computed via a derivation in our package logic:

Theorem 2 Completeness. Let B be a well-formed (see footnote 5) assertion.
If σw is a stable footprint of A−∗B, and σ = σ′ ⊕σw, then there exists a witness
set S′ such that � 〈B, λ_.
, (σ, {(σA, e) | σA ∈ SA})〉 � (σ′, S′).

3.5 A Sound Package Algorithm

We now describe an automatic package algorithm that corresponds to a proof
search strategy in our package logic, and which is thus sound. To convey the
main ideas, consider packaging a wand of the shape A −∗ B1 ∗ . . . ∗ Bn.6 Our
algorithm traverses the assertion B1 ∗ . . . ∗Bn from left to right, similarly to the
FIA approach; this traversal is justified by repeated applications of the rule Star.
Assume at some point during this traversal that the current context is (σ0, S).
When we encounter the assertion Bi, we have two possible cases:

1. All states σA ∈ S1 satisfy Bi, which means that the permissions (or values)
required by Bi are provided by the left-hand side of the wand. In this case,
for each pair (σA, σB) ∈ S, we transfer permissions (and the corresponding
values) to satisfy Bi from σA to σB, using the rule Atom. Note that the
transferred permissions might be different for each pair (σA, σB). This gives
us a new witness set S′, while the outer state σ0 is left unchanged. We must
then handle the next assertion Bi+1 in the context (σ0, S

′).
5 We formally define well-formedness in App. D of the TR [16]. Intuitively, a well-formed

assertion roughly corresponds to a self-framing assertion as defined in Sect. 2.1.
6 In App. I of the TR [16], we also show how our package algorithm handles implications.

Sound Automation of Magic Wands 143

2. There is at least one pair (σA, σB) ∈ S such that Bi does not hold in σA.
In this case, the algorithm fails if combining the permissions (and values)
contained in the outer state with each σA ∈ S1 is not sufficient to satisfy Bi.
Otherwise, we apply the rule Extract to transfer permissions from the outer
state σ0 to each state σA in S1 such that Bi holds in σA. This gives us a new
context (σ′

0, S
′). We can now apply the first case with the context (σ′

0, S
′).

4 Using the Logic with Combinable Wands

Extending SL with fractional permissions [4] is well-known to be useful for rea-
soning about heap-manipulating concurrent programs with shared state. In this
setting, permission amounts are generalised to fractions 0 ≤ p ≤ 1. Reading a
heap location is permitted if p > 0, and writing if p = 1, which permits con-
current reads and ensures exclusive writes. The assertion acc(x.f, p) holds in a
state that has at least p permission to x.f. A permission amount p+ q to a heap
location x.f can be split into a permission amount p and a permission amount q,
i.e. acc(x.f, p + q) |= acc(x.f, p) * acc(x.f, q), and these two permissions can
be recombined, i.e. acc(x.f, p) * acc(x.f, q) |= acc(x.f, p + q).

This concept has been generalised [5,7,17,23,29] to fractional assertions Ap,
representing a fraction p of A. Ap holds in a state σ iff there exists a state σA in
which A holds and σ is obtained from σA by multiplying all permission amounts
held by p [7,29]; in this case, we write σ = p · σA. For example, acc(x.f)p ≡
acc(x.f, p), and Tree(x)p (where Tree is the predicate defined in Fig. 1) expresses
p permission to all nodes of the tree rooted in x.

Using fractional assertions, one might specify a function find, which searches
a binary tree and yields a subtree whose root contains key key, as follows [7]:
{ Tree(x)p } find(x, key) { λret. (Tree(ret) ∗ (Tree(ret) −∗ Tree(x)))p }, in which
ret corresponds to the return value of find. This postcondition is similar to
the loop invariant in Fig. 1, except that it needs only a fraction p of Tree(x). A
number of automatic SL verifiers, such as Caper [18], Chalice [31], VerCors [2],
VeriFast [24], and Viper [34], support fractional assertions in some form.

Combinable Assertions. While it is always possible to split an assertion Ap+q

into Ap∗Aq, recombining Ap∗Aq into Ap+q is sound only under some conditions,
for example [29] if A is precise (in the usual SL sense [38]). We say that A
is combinable iff the entailment Ap ∗ Aq |= Ap+q holds for any two positive
fractions p and q such that p + q ≤ 1. As an example, acc(x.f) is combinable,
but acc(x.f)∨ acc(x.g) is not because a state containing half permission to both
x.f and x.g satisfies (acc(x.f) ∨ acc(x.g))0.5 ∗ (acc(x.f) ∨ acc(x.g))0.5, but not
acc(x.f)∨acc(x.g). Combinable assertions are particularly useful to reason about
concurrent programs, for instance, to combine the postconditions of parallel
branches when they terminate [7].

However, a magic wand is in general not combinable, as we show below. This
is problematic for SL verifiers; they cannot soundly combine wands, nor pred-
icates that could possibly contain wands in their bodies. One way to prevent

144 T. Dardinier et al.

the latter is to forbid magic wands in predicate bodies entirely, but this limits
the common usage of predicates to abstract over general assertions in specifi-
cations [35]. Another solution is to disallow combining fractional instances of a
predicate if its body contains a wand, which means requiring additional annota-
tions to “taint” such predicates transitively. This is overly restrictive for wands
which are actually combinable and complicates reasoning about abstract predi-
cate families [35].

To address this issue, we propose a novel restriction of the wand, called
combinable wand (we use standard wand to refer to the usual, unrestricted con-
nective). Unlike standard wands in general, a combinable wand is always combin-
able if its right-hand side is combinable. Thus, by only using combinable wands
instead of standard wands, all assertions in logics such as those employed by Ver-
Cors and Viper can be made combinable without any of the other aforementioned
restrictions regarding predicates. Section 5 shows that the restriction combinable
wands impose is sufficiently weak for practical purposes. Finally, footprints of
combinable wands can be automatically inferred by package algorithms built on
our package logic. All results in this section have been proven in Isabelle/HOL.

Standard Wands are Not Combinable in General. Even if B is combin-
able, the standard wand A −∗ B is, in general, not. As an example, the wand
w := acc(x.f, 1/2) −∗ acc(x.g) is not combinable, because w0.5 ∗ w0.5 �|= w. To
see this, consider two states σf and σg, containing full permissions to only x.f

and x.g, respectively. Both states are valid footprints of w, i.e. σf |= w (because
σf is incompatible with all states that satisfy the left-hand side) and σg |= w
(because σg entails the right-hand side). Thus, by definition, 0.5 · σf |= w0.5 and
0.5 · σg |= w0.5. However, 0.5 · σf ⊕ 0.5 · σg, i.e. a state with half permission to
both x.f and x.g, is not a valid footprint of w, and thus w0.5 ∗ w0.5 �|= w.

Intuitively, w is not combinable because one of its footprints, σf , is incom-
patible with the left-hand side of the wand, but becomes compatible when the
footprint is scaled down to a fraction. After scaling, the wand no longer holds
trivially, and the footprint does not necessarily establish the right-hand side.

To make this intuition more precise, we introduce the notion of scalable foot-
prints. For a state σ, we define scaled(σ) to be the set of copies of σ multiplied
by any fraction 0 < α ≤ 1, i.e. scaled(σ) := {α · σ | 0 < α ≤ 1}. A footprint σw

is scalable w.r.t. a state σA iff either (1) σA is compatible with all states from
scaled(σw), or (2) σA is compatible with no state in scaled(σw). A footprint
is scalable for a wand A −∗ B iff it is scalable w.r.t. all states that satisfy A.
Intuitively, this means that the footprint does not “jump” between satisfying the
wand trivially and having to satisfy the right-hand side. In the above example,
σg is a scalable footprint for w, but σf is not.

Making Wands Combinable. The previous paragraphs show that, even if B
is combinable, the standard wand A−∗B is in general not combinable because it
can be satisfied by non-scalable footprints. Therefore, we define a novel restricted
interpretation for wands that forces footprints to be scalable, in the following

Sound Automation of Magic Wands 145

sense. The restricted interpretation of a wand accepts all scalable footprints, and
transforms non-scalable footprints before checking whether they actually satisfy
the wand. We call a wand with this restricted interpretation a combinable wand,
and write A −∗c B to differentiate it from the standard wand A −∗ B.

For standard wands, any state σw is a footprint of A−∗B iff, for all states σA

that satisfy A, σA#σw ⇒ σA ⊕ σw |= B. We obtain the definition of combinable
wands by replacing σw with a (possibly smaller) state R(σA, σw) that is scalable
w.r.t. σA. R(σA, σw) is defined as σw if no state in scaled(σw) is compatible with
any σA; in that case, condition (2) of scalable footprints holds for R(σA, σw) w.r.t.
σA. Otherwise, R(σA, σw) is obtained by removing just enough permissions from
σw to ensure that all states in scaled(R(σA, σw)) are compatible with σA, which
ensures that condition (1) holds for R(σA, σw) w.r.t. σA.

To formally define R(σA, σw), we fix a concrete separation algebra (formally
defined in App. G of the TR [16]), whose states are pairs (π, h) of a permission
mask π, which maps heap locations to fractional permissions, and a partial heap
h, which maps heap locations to values.

Definition 1. Let (πA, hA) and (πw, hw) be two states, and let π′
w be the per-

mission mask such that ∀l. π′
w(l) = min(πw(l), 1 − πA(l)). Then

R((πA, hA), (πw, hw)) =

{
(πw, hw) if ∀σ ∈ scaled((πw, hw)).¬(πA, hA)#σ

(π′
w, hw) otherwise

The combinable wand A −∗c B is then interpreted as follows:

σw |= A −∗c B ⇐⇒ (∀σA. σA |= A ∧ σA#R(σA, σw) =⇒ σA ⊕ R(σA, σw) |= B)

The following theorem (proved in Isabelle/HOL) shows some key properties
of combinable wands.

Theorem 3. Let B be an intuitionistic assertion.

1. If B is combinable, then A −∗c B is combinable.
2. A −∗c B |= A −∗ B.
3. If A is a binary assertion, then A −∗c B and A −∗ B are equivalent.

Property 1 expresses that combinable wands constructed from combinable
assertions are combinable, which enables verification methodologies underlying
tools such as VerCors and Viper to support flexible combinations of wands and
predicates (as motivated at the start of this section). Property 2 implies that
A∗(A−∗cB) |= B, that is, combinable wands can be applied like standard wands.
Property 3 states that combinable wands pose no restrictions if the left-hand side
is binary, that is, if it can be expressed without fractional permissions (formally
defined in App. G of the TR [16]). For example, the predicate Tree(x) from Fig. 1
is binary, which implies that the wands Tree(y)−∗c Tree(x) and Tree(y)−∗ Tree(x)

are equivalent. This property is an important reason for why combinable wands
are expressive enough for practical purposes, as we further evidence in Sect. 5.

146 T. Dardinier et al.

Table 1. Verification results on our 56 benchmarks with the FIA, our algorithm for
standard wands (S-Alg), and for combinable wands (C-Alg). For each algorithm, we
report the number of correct verification results, false negatives, and false positives.

Algorithm Expected result Incorrectly verified Spurious errors

FIA 55 1 0
S-Alg 51 0 5
C-Alg 48 0 8

Footprints of combinable wands can be automatically inferred by algorithms
built on our package logic. We explain (along with examples) in App. H of the
TR [16] how to lift the package logic presented in Sect. 3 to handle alternative def-
initions of allowable footprints such as the restrictions imposed by Definition 1.

5 Evaluation

We have implemented package algorithms for the standard wands and combin-
able wands in a custom branch of Viper’s [34] verification condition generator
(VCG). Both are based on the package logic described in Sect. 3, adapted to the
fractional permission setting. Both algorithms automate the proof search strat-
egy outlined in Sect. 3.5. Viper’s VCG translates Viper programs to Boogie [32]
programs. It uses a total-heap semantics of IDF [36], where Viper states include
a heap and a permission mask (tracking fractional permission amounts). The
heap and mask are represented in Boogie as maps; we also represent witness sets
as Boogie maps.

We evaluate our implementations of the package algorithms on Viper’s test
suite and compare them to Viper’s implementation of the FIA as presented in
Sect. 2.4. Our key findings are that our algorithms (1) enable the verification
of almost all correct package operations. (2) correctly report package operations
that are supposed to fail (in contrast to the FIA), and (3) have an acceptable
performance overhead compared to the FIA. Moreover, interpreting wands as
combinable wands as explained in Sect. 4 has only a minor effect on the results,
but correctly rejects attempts to package a non-combinable wand. This finding
suggests that verifiers could improve their expressiveness by allowing flexible
combinations of wands and predicates with only a minor completeness penalty.

For our evaluation, we considered all 85 files in the test suite for Viper’s
VCG with at least one package operation. From these 85 files, we removed 29
files containing features that our implementation does not yet support. 28 of
these 29 files require proof scripts to guide the footprint inference, which are
orthogonal to the concerns of this paper (see App. J of the TR [16] for details).

Table 1 gives an overview of our results. These confirm that our algorithms
for standard and combinable wands (S-Alg and C-Alg) do not produce false neg-
atives, that is, are sound. In contrast, the FIA does verify an incorrect program
(which is similar to the example in Sect. 2.4). While this is only a single unsound

Sound Automation of Magic Wands 147

example, it is worth emphasing that (a) it comes from the pre-existing test suite
of the tool itself, (b) the unsoundness was not known of until our work, and (c)
soundness issues in a program verifier are critical to address; we show how to
achieve this.

Compared with the FIA, our implementation reports a handful of false posi-
tives (spurious errors). For S-Alg, 3 out of 5 false positives are caused by missing
features of our implementation (such as remembering a subset of the permissions
that are inside predicate instances when manipulating predicates); these features
could be straightforwardly added in the future. The other 2 false positives are
caused by S-Alg’s strategy. In one, the only potential footprint prevents the wand
from ever being applied; although technically a false positive, it seems useful to
reject the wand and alert the user. The other case is due to a coarse-grained
heuristic applied by S-Alg that can be improved.

C-Alg reports the expected result in 48 benchmarks. Importantly, it correctly
rejects one wand that indeed does not hold as a combinable wand. 5 of the 8
false positives are identical to those for S-Alg. In the other three benchmarks,
the wands still do hold as combinable wands, but further extensions to C-Alg are
required to handle them due to technical challenges regarding predicate instances.
Once these extensions have been implemented, C-Alg will be as precise as S-Alg,
indicating that comparable program verifiers could switch to combinable wands
to simply enable sound, flexible combinations with predicates.

To evaluate performance, we ran each of the three implementations 5 times
on each of the 56 benchmarks on a Lenovo T480 with 32 GB of RAM and a i7-
8550U 1.8 GhZ CPU, running on Windows 10. We removed the slowest and fastest
time, and then took the mean of the remaining 3 runs. The FIA takes between 1
and 11 seconds per benchmark. On average, S-Alg is 21% slower than the FIA. For
46 of the 56 examples, the increase is less than 30%, and for 3 examples S-Alg is
between a factor 2 and 3.4 slower. The overhead is most likely due to the increased
complexity of our algorithms, which track more states explicitly and require more
quantified axioms in the Boogie encoding. C-Alg is on average 10% slower than
S-Alg. We consider the performance overhead of our algorithms to be acceptable,
especially since wands occur much more frequently in our benchmarks than in aver-
age Viper projects, as judged by existing tests and examples. More representative
projects will, thus, incur a much smaller slow-down.

6 Related Work

VerCors [2] and Viper [34] are to the best of our knowledge the only automatic
SL verifiers that support magic wands. Both employ package and apply ghost oper-
ations. VerCors’ package algorithm requires a user to manually specify a foot-
print whereas Viper infers footprints using the FIA, which is unsound as we show
in Sect. 2.4. Our package algorithm is as automatic as the FIA but is sound.

Lee and Park [30] develop a sound and complete proof system for SL including
the magic wand. Moreover, they derive a decision procedure from their complete-
ness proof for propositional SL. However, more expressive versions of SL (that

148 T. Dardinier et al.

include e.g. predicates and quantifiers) are undecidable [6] and so this decision
procedure cannot be directly applied in the logics employed by program verifiers.

Chang et al. [11] define a shape analysis that derives magic wands A −∗
B of a restricted form (A and B cannot contain general imprecise assertions);
our package logic does not impose such restrictions, which rule out some useful
kinds of wands. For example, A may be a data structure with a read-only part
expressed via existentially-quantified fractional permissions or A may contain the
necessary permission to invoke a method, which may be an arbitrary assertion.
In follow-up work, Chang and Rival [10] present a restricted “inductive” magic
wand. Footprints of inductive wands are expressed via a finite unrolling of an
inductive predicate defining B until the permissions in A are revealed. Such
wands are useful to reason about data structures with back-pointers such as
doubly-linked lists.

Iris [26] provides a custom proof mode [27] for interactive SL proofs in
Coq [12]. Separation logics expressed in Iris support wands and are more expres-
sive than those of automatic SL verifiers at the cost of requiring more user
guidance. Packaging a wand in the proof mode requires manually specifying a
footprint and proving that the footprint is correct. While tactics can be used in
principle to automate parts of this process, there are no specific tactics to infer
footprints.

Fractional assertions have been used in various forms [5,7,17,23,29]. Le and
Hobor [29] allow combining two fractional assertions Ap and Aq only if A is
precise in the SL sense (i.e. A describes the contents of the heaps in which
it holds precisely). To avoid requiring A to be precise, Brotherston et al. [7]
introduce nominal labels for assertions. If an assertion is split into two fractional
assertions, then the same fresh label can be associated with both parts to indicate
that they were split from the same assertion.

Two fractional assertions with the same label can be combined. However,
this solution has not been implemented and does not deal with packaging wands.
Our solution also avoids requiring that an assertion is precise and allows com-
bining assertions even if they were not split from the same assertion. Instead of
introducing labels, we introduce a light restriction that ensures that wands are
always combinable. As a result, assertions containing combinable wands but no
other potentially imprecise connectives (such as disjunction) are combinable. In
particular, all assertions employed in verifiers such as VerCors and Viper can be
made combinable thanks to our work.

7 Conclusion

We presented a package logic that precisely characterises sound package algo-
rithms for automated reasoning about magic wands. Based on this logic, we
developed a novel package algorithm that is inspired by an existing approach,
but is sound. Moreover, we identified a sufficient criterion for wands to be com-
binable, such that they can be used flexibly in logics with fractional permissions,
and presented a package algorithm for combinable wands. We implemented our

Sound Automation of Magic Wands 149

solutions in Viper and demonstrated their practical usefulness. The soundness
and completeness of our package logic, as well as key properties of combinable
wands are all proved in Isabelle/HOL. As future work, we plan to extend the
implementation of the two package algorithms described in Sect. 5 by porting
various features of the pre-existing FIA implementation. Moreover, we will use
our package logic to develop another algorithm for Viper’s symbolic-execution
verifier.

Acknowledgement. This work was partially funded by the Swiss National Science
Foundation (SNSF) under Grant No. 197065.

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. In: OOPSLA (2019)

2. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

3. Blom, S., Huisman, M.: Witnessing the elimination of magic wands. Int. J. Softw.
Tools Technol. Transfer 17(6), 757–781 (2015). https://doi.org/10.1007/s10009-
015-0372-3

4. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5_4

5. Boyland, J.T.: Semantics of fractional permissions with nesting. TOPLAS 32(6),
1–33 (2010)

6. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput. 211,
106–137 (2012)

7. Brotherston, J., Costa, D., Hobor, A., Wickerson, J.: Reasoning over permissions
regions in concurrent separation logic. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12225, pp. 203–224. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53291-8_13

8. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS (2007)

9. Cao, Q., Wang, S., Hobor, A., Appel, A.W.: Proof pearl: magic wand as frame
(2019). https://arxiv.org/abs/1909.08789

10. Chang, B.E., Rival, X.: Relational inductive shape analysis. In: POPL (2008)
11. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant

checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_24

12. Coq Development Team, T.: The Coq Reference Manual, version 8.10 (2019). Avail-
able electronically at http://coq.inria.fr/documentation

13. Dardinier, T.: Formalization of a framework for the sound automation of magic
wands. AFP, May 2022. https://isa-afp.org/entries/Package_logic.html

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-030-53291-8_13
https://doi.org/10.1007/978-3-030-53291-8_13
https://arxiv.org/abs/1909.08789
https://doi.org/10.1007/978-3-540-74061-2_24
http://coq.inria.fr/documentation
https://isa-afp.org/entries/Package_logic.html

150 T. Dardinier et al.

14. Dardinier, T.: A restricted definition of the magic wand to soundly combine frac-
tions of a wand. AFP, May 2022. https://isa-afp.org/entries/Combinable_Wands.
html

15. Dardinier, T., Parthasarathy, G., Weeks, N., Müller, P., Summers, A.J.: Sound
automation of magic wands (artifact) (2022). https://doi.org/10.5281/zenodo.
6526611

16. Dardinier, T., Parthasarathy, G., Weeks, N., Summers, A.J., Müller, P.: Sound
automation of magic wands (extended version) (2022). https://arxiv.org/abs/2205.
11325

17. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2_24

18. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1_16

19. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9_13

20. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: POPL (2011)

21. Haack, C., Hurlin, C.: Resource usage protocols for iterators. JOT 8(4), 55–83
(2009)

22. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012 - a program verification
competition. STTT 17(6), 647–657 (2015)

23. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL (2011)

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: NFM
(2011)

25. Jensen, J., Birkedal, L., Sestoft, P.: Modular verification of linked lists with views
via separation logic. JOT 10, 1–20 (2011)

26. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
JFP 28, e20 (2018)

27. Krebbers, R., et al.: MoSeL: a general, extensible modal framework for interactive
proofs in separation logic. In: ICFP (2018)

28. Krishnaswami, N.R.: Reasoning about iterators with separation logic. In: SAVCBS
(2006)

29. Le, X.-B., Hobor, A.: Logical reasoning for disjoint permissions. In: Ahmed, A.
(ed.) ESOP 2018. LNCS, vol. 10801, pp. 385–414. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1_14

30. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: POPL
(2014)

31. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03829-7_7

32. Leino, K.R.M.: This is Boogie 2, June 2008. https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

https://isa-afp.org/entries/Combinable_Wands.html
https://isa-afp.org/entries/Combinable_Wands.html
https://doi.org/10.5281/zenodo.6526611
https://doi.org/10.5281/zenodo.6526611
https://arxiv.org/abs/2205.11325
https://arxiv.org/abs/2205.11325
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-319-89884-1_14
https://doi.org/10.1007/978-3-319-89884-1_14
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Sound Automation of Magic Wands 151

33. Maeda, T., Sato, H., Yonezawa, A.: Extended alias type system using separating
implication. In: TLDI (2011)

34. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

35. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
36. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and

implicit dynamic frames. Log. Methods Comput. Sci. 8(3:01), 1–54 (2012). https://
doi.org/10.1007/978-3-642-35182-2_8

37. Piskac, R., Wies, T., Zufferey, D.: GRASShopper–complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8_9

38. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS (2002)

39. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an auto-
matic verifier. In: ECOOP (2015)

40. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: ECOOP (2009)

41. Tuerk, T.: Local reasoning about while-loops. In: VS-Theory (2010)
42. Yang, H.: An example of local reasoning in bi pointer logic: the Schorr-Waite graph

marking algorithm. In: SPACE (2001)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-35182-2_8
https://doi.org/10.1007/978-3-642-35182-2_8
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
http://creativecommons.org/licenses/by/4.0/

	Sound Automation of Magic Wands
	1 Introduction
	2 Background and Motivation
	2.1 Implicit Dynamic Frames
	2.2 A Typical Example Using Magic Wands
	2.3 Wand Ghost Operations
	2.4 The Footprint Inference Attempt (FIA)

	3 A Logical Framework for Packaging Wands
	3.1 Footprint Selection Strategies
	3.2 Package Logic: Preliminaries
	3.3 The Package Logic
	3.4 Soundness and Completeness
	3.5 A Sound Package Algorithm

	4 Using the Logic with Combinable Wands
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

