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Abstract

This report describes a formal encoding of the most important JML specification constructs to
first-order logic. While the translation gives a general way of handling these constructs, the report is
based on the underlying programming logic and theorem prover of the Jive system.

1 Introduction

Our group, together with the Softwaretechnik group at TU Kaiserslautern, work on the development of
Jive, the Java Interactive Verification Environment [24]. The tool enables users to interactively prove
properties of Diet Java Card (DJC) programs annotated with Java Modeling Language (JML) specifica-
tions [17]. DJC is a subset of Java Card, providing all important object-oriented features like inheritance
and dynamic binding of methods. JML is a behavioral interface specification language specifically tailored
to Java. Its main purpose is to be easily comprehensible by Java programmers and at the same time be
capable of rigorously specifying various aspects of programs.

The development of specification languages showed that while the bridging of declarative specifica-
tion languages (e.g. VDM, Z) to verification tools is relatively easy and well-understood, they require
considerable learning effort from non-expert users.

Another approach is to keep the specification language as close to the programming language as pos-
sible, thus enabling programmers to easily specify their own programs. While this makes such languages
(e.g. Eiffel, Spec#, JML) practical, the bridging to a verification tool is more subtle since the gap between
a programming and a specification language is very wide.

Though many aspects of such specification languages are well-understood for the research community,
there is still a considerable amount of research work going on to clarify certain issues and to assign them
proper formal semantics.

In this report we give translations for the most basic constructs of JML: the constructs that are
classified as JML Level 0 elements by the community [18, Sec. 2.9.1]. The translation we describe here
defines the way proof obligations, in the form of Hoare-triples, are generated from JML specifications in
Jive.

The report is organized as follows. Section 2 gives a short introduction to JML Level 0, the subset of
JML that we handle in this report. Section 3 describes the elements of the underlying programming logic
of Jive that are relevant for the understanding of this report. Section 4 gives the translation of all JML
Level 0 elements that Jive supports. Finally, we list related work and issues that we plan to address in
the future.

2 JML Level 0

In this section we give a brief overview of all elements of JML Level 0 and refer the reader to [18] for a
full account—Section 2.9.1 contains the exact description of the different language levels.
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JML modifiers

JML Level 0 extends Java’s set of modifiers with spec public, spec protected, nullable, instance,
model, ghost, and helper.

The first two modifiers allow members to appear in specifications in which otherwise they would be
forbidden to appear due to their declared Java visibility. For instance, a private field may appear in a
public postcondition if and only if the field has the additional JML modifier spec public.

The semantics of JML does not, by default, allow declared fields, method parameters, and return
values of reference type to be null. To allow them to take the null value, one has to use the nullable
modifier in field declarations and method signatures.

The instance modifier is used to declare that a ghost or model member is not static but bound to
instances. For example, a model field of an interface can be declared to be an instance field. Without
the modifier the field would be a static member according to Java.

The model modifier can be used at field declarations. Model fields are fields that are only used for
specification purposes. They are treated as ordinary fields, but they cannot occur in implementations.
Their values are not looked up from the heap, but are determined by the values of other (concrete or
model) fields, as specified by the represents clause attached to a given model field.

The ghost modifier can be used at field declarations. Ghost fields are similar to model fields in
that they can only be used for specification purposes. However, their values can be implicitly set in
implementations by the use of JML’s set statements.

In the rest of this report we will refer to ordinary fields as concrete fields and to model and ghost
fields as abstract fields.

Private methods and constructors can be declared with the helper modifier. Such methods and
constructors are allowed to violate declared invariants.

Type specifications

Type specifications are specifications that are declared on the type level. In JML Level 0 these are object
invariants, represents clauses for model fields, initially clauses, and \TYPE specifications.

Object invariants specify the consistent states of objects. In JML, they specify properties that
must hold in all visible states, that is, in all pre- and post-states of method executions [28]. This invariant
semantics is called the visible state semantics. Level 0 only supports instance invariants (i.e. no static
invariants). Invariants of supertypes are inherited by subtypes.

The relation between the value of a model field and the values of other (possibly abstract) fields is
determined by the represents clause. JML Level 0 only allows the functional form of the clause, meaning
that the mapping has to be a function, in contrast to a relation.

An initially clause allows one to specify properties about the initial values of fields. That means,
non-helper constructors must establish the predicate given in the clause.

JML provides the special type specification \TYPE which represents the kind of all Java types [18].
It can be used, for instance, to declare fields whose value is a Java type.

Method specifications

Method behavior is specified by the use of preconditions, postconditions, exceptional postconditions, and
assignable clauses. The precondition (requires clause) of a method specifies what must hold when calling
the method. The postcondition (ensures clause) specifies what must hold if and when it terminates.
The exceptional postcondition consists of two clauses: (1) the signals only clause specifies what type of
exceptions may be thrown by the method; (2) the signals clause specifies what must hold at the point
when a certain type of exception is thrown. The assignable clause of a method specifies which locations
the method may modify. All other variables have to remain unchanged.
Overriding methods inherit all visible method behavior specifications given in supertypes.
Specification cases. JML provides different kinds of specification cases of which the most general one
is the heavyweight behavior specifications case. It may contain all five clauses mentioned above. The
other specification cases are either just syntactic sugars or define different default values for omitted
specification clauses.
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Data groups. In order to specify assignable clauses in a modular way, data groups [21] can be used in
JML. They allow one to gather concrete and abstract fields into a set. When a model field is declared, a
data group with the same name is created and the declared model field is always member of that data
group. In JML Level 0, additional members can be added by so-called static inclusion using the in clause
[21]. For instance, assume color is a data group, then the field declaration “int RGB in color;” means
that field RGB is a member of the data group.

Data groups are used in assignable clauses: a data group appearing in an assignable clause specifies
that the method in hand may modify the elements of the data group. In the example above, if color
appears in the assignable clause of a method, it means that the method may modify the RGB field of the
this-object.

JML expressions

JML’s expression syntax extends Java’s side-effect free expression syntax. The most important extensions
are additional logical connectives (e.g. implication, equivalence), quantifiers, the “\old” construct used
to refer to values in pre-states, and the “\result” construct which refers to the return value of non-void
methods. An important restriction of JML Level 0 is that methods and constructors are not allowed to
be called from within specification expressions.

The list of JML Level 0 expressions that are handled by our translation and Jive is given in Section 4.4.

JML statements and annotation statements

For verification systems the handling of loops require a loop invariant. Loop invariants are typically given
by the programmer or by the user of the verification system. The former case is supported by JML: using
the maintaining keyword a loop invariant can be attached to loops.

The assert statement requires the given predicate to hold, while the assume statement specifies that
the given predicate holds. Ghost fields can be assigned to via set statements, in the form “set g = 5;”
where g is a ghost field.

Specification library

JML supports specifications to be placed in .spec files. This is useful when the specified compilation
unit is only available in binary form or the source file is not to be modified. For instance, the specification
of the Java API library is given in .spec files. This allows one to verify programs that contain calls to
the API or other library code.

Universe modifiers

JML allows one to specify ownership of objects [8]. JML implements the Universe type system [27, 11].
JML Level 0 supports the two modifiers rep and peer. A field f declared with the rep modifier in object
o means that f is either null or the object referred to by f is owned by o. A peer modifier would mean
that f is either null or o and the object referred to by f have the same owner object.

3 Logical Background of Jive

To formalize properties of the object store, we use the store model of Poetzsch-Heffter and Müller’s
program logic [30]. It is formalized in multi-sorted first order logic with recursive datatypes.

Types and Values. Java’s types and values are modeled by the sorts Type and Value, respectively. Sort
Type contains primitive types, the type of the null reference, and class types. The reflexive, transitive
subtype relation is denoted by � . A Value is a value of a primitive type, the null reference, or a reference
to an object. The function typeof : Value → Type yields the type of a value.
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Object States. Object states are modeled via locations (instance variables). For each field of its class,
an object has a location. Depending on whether the field is concrete or abstract, the location is a concrete
or an abstract location, respectively. The sort FieldId is the sort of unique field identifiers of a program.
The function loc(X, f) yields the location of the object referenced by X for field f , or undefined if the
object does not have a location for f . Conversely, obj (L) yields a reference to the object a location L
belongs to. For brevity, we write X.f for loc(X, f) in the following.

loc : Value × FieldId → Location obj : Location → Value

Since the properties of these functions are not needed in this report, we refer the reader to [30] for
their axiomatization.

Object Stores. Object stores are modeled by an abstract data type with main sort Store and operations
to read and update locations, to create new objects, and to test whether an object is allocated. Poetzsch-
Heffter and Müller present these functions and their axiomatization in [30].

In this paper, we need the following store operations: OS〈T 〉 yields the object store that is obtained
from OS by allocating a new object of class T . new(OS, T ) yields a reference to this object. OS(L)
denotes the value held by location L in store OS. alive(X,OS) yields true if and only if object X is
allocated in OS. Values of primitive types are allocated in all stores. The sort ClassId is the sort of
unique class identifiers of a program.

〈 〉 : Store × ClassId → Store new : Store × ClassId → Value
( ) : Store × Location → Value alive : Value × Store → Bool

The constant symbol $ of sort Store is used to refer to the current object store in formulas. It can be
considered as a global variable.

Logic of Jive. Jive implements a Hoare-style logic [31] which is based on the store model sketched
above. The details of the logic is not relevant for this report. Here we only introduce the special variables
of the logic that our translation uses too [12].

The logical variable χ tracks the status of the method being verified. The variable can take two values:
normal in case of normal termination of the method or exc in case an exception has been thrown. The
program variable excV holds the reference to the exception object that was thrown. Otherwise, its value
may be undefined.

The program variable resV holds the return value of the method in hand. Its value may be undefined
in a state where the method did not return yet.

Work-flow of Jive. To give a better understanding of how the store model and the logic of Jive work
together we sketch the way one works with Jive.

First the program and its specification is typechecked by the JML compiler. Then proof obligations,
in the form of Hoare-triples, are generated and passed to the program prover component. Furthermore,
program dependent theories are generated that provide information, for instance, on type relations and
attribute declarations to the back-end theorem provers.

The program prover component implements a partial-correctness Hoare-style logic which formalizes
the axiomatic semantics of DJC. Typically, a proof obligation is proved in two steps. First, all DJC pro-
gram constructs are eliminated interactively, but possibly fully automatically with the help of strategies.
After this step, the result is a program independent first-order formula. Next, this formula is passed
to one of the back-end theorem provers: the interactive Isabelle [29], or the fully automated Simplify
[10]. The proof attempt for both provers is supported by the program dependent and program indepen-
dent theories. While the former is generated on-the-fly, the latter comes with the Jive distribution and
formalizes the programming logic of Jive.

4 Translation of JML Level 0 elements

This section describes the translation of the elements of JML Level 0 introduced in Section 2. It also
lists the elements that are not supported by this translation, and thus by Jive.
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Throughout this report we use the γ function which translates valid JML expressions into terms of the
underlying logic of Jive. The function is described in more details in Section 4.4. For the moment,
the reader can assume that the function translates expressions to first-order terms conforming to the
programming logic described in Section 3.

4.1 Translating JML modifiers

There is no translation performed on modifiers spec public and spec protected. Jive builds on top
of the JML compiler which performs the visibility checks of specifications including these two modifiers.

In Jive, if a field f is declared in type T without the nullable modifier then the predicate this.f 6= null
is conjoined to the invariant of the class (see Section 4.2.1). A method parameter p without the nullable
modifier results in the predicate p 6= null conjoined to the precondition of the method. A return value
without the modifier yields the predicate resV 6= null conjoined to the postcondition of the method (see
Section 4.3.1).

Jive does not support static members, which (among others) prohibits the declaration of fields in
interfaces as they are implicitly static members according to Java. However, Jive supports the instance
modifier which means that ghost and model members may be declared in interfaces.

Model fields are important means for providing abstract specifications. Clients do not have to (and
should not) know about the internal implementation details when writing or reading JML specifications
of a type. The two main issues about model fields are: how to encode their represents clauses and
how to handle them in assignable clauses. These points are described in Section 4.2.2 and Section 4.3,
respectively.

Ghost fields are very similar to concrete fields as their values are read from the store and explicitly
set by JML’s set statement. Thus, our translation handles ghost fields as concrete ones and turns each
set statement into plain assignment statements.

The handling of the helper modifier is discussed in Section 4.2.1.

4.2 Translating type specifications

4.2.1 Translating invariants

In general, invariants are added to pre- and postconditions of methods. There are two exceptions: (a) for
constructors the invariant of the object in hand is only added to postconditions; (b) for helper methods
and constructors invariants are added neither to preconditions nor to postconditions.

Formalization of invariants

In Jive, invariants are formalized using three kinds of functions.

For each type, Ti, of the program there is a function, InvTi
, declared with signature V alue → Store →

Bool . Function InvTi(X,OS) yields true if and only if the declared invariant of Ti holds for the Ti-object
X in store OS. It is defined as follows:

InvTi
(X,OS) = typeof (X) � Ti ⇒ γ(ITi

)[OS/$, X/this]

where ITi denotes the specified invariant of type Ti. Note that if X is not subtype of Ti, the function
yields trivially true.

Another function, INV, is declared to conjoin the InvTi
functions. Its signature is Store → Bool and

INV(OS) yields true if and only if every object that is alive in store OS fulfills its declared and inherited
invariants.

INV(OS) = ∀ X:V alue. alive(X,OS) ∧ X 6= null ⇒
∧

InvTi(X,OS)

Note that this formula enforces inheritance of invariants since the right-hand side of the implication
conjoins the InvTi

functions of all types of the program at hand. Thus, every object X of its actual type
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T has to satisfy the invariants declared in T and inherited from supertypes of T . As mentioned above,
for all other types Ti that are not supertypes of T , the InvTi functions yield true.

For the handling of constructors a third function, INVC, is declared with signature Store → Value →
Bool . It is very similar to INV but exempts the object given as parameter from satisfying its invariants:

INVC(OS, Y ) = ∀ X:V alue. X 6= Y ∧ alive(X,OS) ∧ X 6= null ⇒
∧

InvTi(X,OS)

Generated proof obligations

These declared functions are used in proof obligations. When generating Hoare-triples for non-helper
methods, formula INV($) is conjoined to pre- and postconditions. For methods and constructors declared
with helper modifier, none of the functions are conjoined to pre- or postconditions.

init methods. As DJC, the input language of Jive, only allows default constructors, a workaround
is needed to mimic non-default constructors: right after a new T -object is created using the default
constructor, the special initT method need be called on the new object to initialize it.

These init methods are treated in a special way by the proof obligation generator: INVC($, this) is
conjoined to their precondition which prevents assuming that the invariant of the newly created object
holds before being initialized. To the postcondition INV($) is conjoined requiring the initialized object
to satisfy its invariant. Furthermore, the following conjunct is added to the precondition of init methods:

(∀ loc:Location. $(L) 6= this) ∧ (∀ f :Field. $(this.f) = init(typeof (f))) ∧ parami 6= this

which expresses that (1) no location references the this-object, (2) fields of the this-object hold their
initial values and that (3) the parameters of the init method, if any, do not reference the this-object.
This conjunct expresses properties one can assume when entering a constructor and is needed in order
to verify INV($) in the postcondition of the method.

However, it must be noted that it is the users responsibility to use init methods appropriately, for
instance, not to pass the newly created object as parameter, which would invalidate assumption (3).
This could possibly lead to unsoundness. We are planning to extend DJC with non-default constructors,
which would eliminate this problem in Jive.

4.2.2 Translating represents clauses

Model fields can only occur in specifications and their values are determined by represents clauses. These
clauses give the relation between the value of a model field and the values of ordinary fields and other
model fields.

In Jive, represents clauses are turned into axioms. Assume the following JML code in class T:
model int m;
represents m <− expr;

where expr is an arbitrary expression of type int. The corresponding axiom that is generated in Jive is
the following:

OBJ 6= null ∧ alive(OBJ,OS) ∧ typeof (OBJ) � T ⇒ OS(OBJ.m) = γ(expr)[OBJ/this,OS/$]

where OBJ is of sort Value, and OS is of sort Store. The axiom establishes the relationship expressed by
the represents clause for allocated T -objects.

Currently Jive does not ensure soundness of the generated axioms. There are mainly two ways the
axioms can introduce unsoundness

1. A program can contain multiple represents clauses for the same model field. These clauses can
contradict each other, for instance, one clause specifying the value of this.m to be 5 and an other
clause (e.g. in a subtype) specifying it to be 10. The corresponding two axioms that would be
generated lead to unsoundness as 5 = 10, and thus false can be derived from them.
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behavior
requires P;
ensures Q;
signals only ET1, ...,ETn;
signals (ETj e) R;
assignable loc1, ..., locn;

T m(S p) { ... }

Figure 1: General form of a heavyweight behavior specification case.

To avoid multiple axioms to contradict each other, one could restrict specifications to contain only
one represents clause per model field. Since JML Level 0 only allows the functional form of the
clause, this restriction seem to cause problems only in the case of data refinement in subtypes.

To avoid unsoundness stemming from an unsatisfiable represents clause (e.g. m <− m + 1), one
can require the proof of the existence of a possible value (a witness) that satisfies the represent
clause specified for a given model field. This kind of solution has been applied to model fields [22]
and method calls in specifications [9].

2. The represents clause of a model field is typically well-defined only in case the invariant of the
object at hand holds [22]. A technique based on the Boogie methodology [2] that ensures that
the values of model fields are consistent with their specified represents clauses is described in [22].
However, the Boogie methodology is not based on the visible state semantics. We are not aware of
a technique that solves this problem in the visible state semantics.

4.2.3 Translating initially clauses

In general, the predicate of the initially clause must be established by all constructors that are subtypes
of the enclosing type. Since Jive uses the special init methods instead of non-default constructors, the
predicate of the clause need be added to the postconditions of the init methods of the enclosing type and
subtypes. Initially clauses are currently not supported, mainly because it is not a frequently used feature
of JML.

4.2.4 \TYPE type specification

The \TYPE type specification is not supported by Jive. This is due to the underlying logic of Jive in
which Values and Types are two distinct sorts. Thus, for instance, a field declared with \TYPE would
need to yield a Type when accessed. However, the logic of Jive encodes field accesses as yielding Values.

4.3 Translating method specifications

4.3.1 Translation of method specification clauses

The most general method behavior specification construct of JML is the heavyweight behavior specifi-
cation case. This construct may contain preconditions, postconditions, exceptional postconditions and
assignable clauses.

It is sufficient to give the translation of this kind of specification case as the other specification cases
are either just syntactic sugars (the heavyweight normal and exceptional behavior specification cases) or
mean just different default values for omitted clauses (the lightweight specification case) [32]. At the end
of this subsection we discuss how these other specification cases are handled.
The general form of the heavyweight behavior specification case is shown on Figure 1, where

• P, Q, and R are boolean JML expressions,

• ETi are subtypes of type Exception,
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• ETj is a subtype of type Exception and e is an object of type ETj. If R does not contain e then it
can be omitted from the clause,

• loci are concrete or abstract locations.

The translation of behavior specification cases yields Hoare-triples as described below.

Precondition. The precondition P is translated by the γ function and the resulting logical formula is
conjoined to the precondition of the Hoare-triple.

Postcondition. The postcondition Q is translated by the γ function and the resulting logical formula
is conjoined to the postcondition of the Hoare-triple. However, since the specified postcondition has to
hold only in case the method terminated normally, the conjoined formula is χ = normal ⇒ γ(Q).

Exceptional postcondition. The exceptional postcondition R is translated by the γ function and the
resulting logical formula is conjoined to the postcondition of the Hoare-triple. However, the exceptional
postcondition has to hold only in case the method terminated abruptly and the type of the exception is
subtype of the specified type. Thus, the conjoined formula is

χ = exc ⇒ (typeof (excV ) � ETj ⇒ γ(R)[excV/e]).

Signals-only clause. The signals only clause specifies what type of exceptions the method is allowed
to throw. This is expressed by the following formula conjoined to the postcondition:

χ = exc ⇒ (typeof (excV ) � ET1 ∨ . . . ∨ typeof (excV ) � ETn)

Assignable clause. The assignable clause of a method defines a set of locations. The locations can
be both concrete and abstract. As already mentioned in Section 2, model fields can appear in assignable
clauses with the semantics that any concrete or abstract field that is element of the data group corre-
sponding to the model field may be modified.

The standard technique to encode this semantics is to calculate the downward closure on the set
of concrete and abstract locations listed in the assignable clause [21]. The downward closure of the
assignable clause yields the set of all locations that may be modified by the method. It is calculated by
recursively adding all fields to the set that are elements of a data group that is already an element of the
set. The downward closure applied to a set of locations, L, is denoted by δ(L).

The semantics of JML does not allow locations that are not mentioned in the assignable clause to be
modified even temporarily.

Assignable clause in Jive. In Jive, the handling of assignable clauses differ in two ways from that
of JML’s semantics.

• our translation allows temporary modifications of locations that are not listed in the clause. This
means that our translation only requires values of locations not listed in the clause to be the same
in pre- and post-states. This is due to the lack of some kind of throughout modality in the logic.

• our translation applies a more liberal semantics: fields of objects that are not peers to the receiver
object may be modified without being mentioned in the assignable clause. This liberal semantics
is explained as follows. (1) The representation of the receiver object and any other objects should
not be of concern to other objects, thus they should not be concerned about changes in the rep-
resentation either. (2) The modification of a field, for instance, in the receiver object might cause
the modification of a model field in an object that is “higher up” in the ownership hierarchy. This
can happen if the model field depends on the field of the object, that is, the field is mentioned in
the represents clause of the model field. However, tracking such dependencies is very difficult and
requires complicated techniques to handle in a sound way [20, 26]. Our approach is to use a simple
over-approximation. If one needs stronger guarantees then stronger postconditions need be written.
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{INV($) ∧ γ(P) ∧ $ = S ∧ M = δ({loc1, ..., locn}) ∧ p 6= null}
m(S p)

{INV($) ∧ (χ = normal ⇒ γ(Q)) ∧
χ = exc ⇒ (typeof (excV ) � ET1 ∨ . . . ∨ typeof (excV ) � ETn) ∧
(χ = exc ⇒ (typeof (excV ) � ETj ⇒ γ(R)[excV/e])) ∧
∀ loc:Location. (loc ∈ M ∨ ¬alive(obj(loc), S) ∨

$(this.owner) 6= $(obj(loc).owner) ∨ $(loc) = S(loc))

Figure 2: Hoare-triple corresponding to the general form of behavior specification case shown on Figure 1.

The translation of assignable clauses has two components. First, the formula

S = $ ∧ M = δ({loc1, ..., locn})

is conjoined to the precondition of the triple, where the first conjunct saves the pre-store in the logical
variable S, and the latter saves the set of modifiable locations in the logical variable M .
Second, the formula

∀ loc:Location. (loc ∈ M ∨ ¬alive(obj(loc), S) ∨
$(this.owner) 6= $(obj(loc).owner) ∨ $(loc) = S(loc))

is conjoined to the postcondition of the triple, which expresses that a locations is either (1) member of the
set of modifiable locations, or (2) the object corresponding to the location did not exist in the pre-state,
or (3) the object corresponding to the location is not peer of the receiver object, or (4) the value of the
locations is unchanged.

Jive currently only uses ownership type information (using the rep annotation) for this slightly
modified assignable clause semantics. The consistency of the ownership structure must be enforced either
by a type system or by proof obligations to make the above semantics useful. Currently Jive does not
enforce the consistency either way. We plan to use the Universe type system in the near future which is
integrated into the JML compiler [11].

Putting it all together. Putting these items all together, the general form of behavior specification
cases shown on Figure 1 translates to the Hoare-triple shown on Figure 2.1

4.3.2 Translation of multiple clauses, defaults, and sugars

In this section we show how multiple specification clauses, defaults, and sugars are treated by our trans-
lation. The explanations (e.g. “second conjunct of the precondition”) refer to the triple on Figure 2.

Multiple specification clauses

In case of multiple requires clauses
requires P1;

...
requires Pn;

the specification expressions Pi are simply conjoined in the second conjunct of the precondition: γ(P1) ∧
. . . ∧ γ(Pn). Multiple ensures clauses are handled analogously. In case of multiple signals clauses

signals (E1 e1) R1;
...

signals (Ek ek) Rk;

the fourth conjunct of the postcondition is of the form

1Reminder: conjunct p 6= null is added to the precondition because method parameters are non-null by default.
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χ = exc ⇒ ((typeof (excV ) � E1 ⇒ γ(R1)[excV/e1]) ∧ . . . ∧ (typeof (excV ) � Ek ⇒ γ(Rk)[excV/ek]))

This means

• nothing has to be proven on the post-state if the type of the exception that was thrown is not in
subtype relation with any of the types Ei,

• if the type of the exception that was thrown is in subtype relation with multiple types Ei then
multiple Ri postconditions have to be proven.

Multiple behavior specification cases of a method lead to multiple proof obligations.
The generated triples of a method m in type C only contains the specifications declared for m in type

C. Inheritance of non-private method specifications (i.e. behavioral subtyping) is enforced by the logic
of Jive [31].

Defaults for behavior and lightweight specifications.

JML does not specify the defaults for omitted specification clauses of lightweight specification cases. On
the other hand, heavyweight specification cases have fixed defaults. Our translation assigns these defaults
to omitted clauses of lightweight specification cases.
Here we give these defaults and describe how they modify the generated proof obligations:

• an omitted requires clause means an implicit “requires true;” clause. That is, the second conjunct
can be omitted from the precondition.

• an omitted ensures clause means an implicit “ensures true;” clause. That is, the second conjunct
can be omitted from the postcondition.

• an omitted signals only clause defaults to the declared throws clause of the method. If the
throws clause is empty then the method is not allowed to throw any type of exception, i.e. it is
equivalent to a normal behavior specification case (see below).

• an omitted signals clause means an implicit “signals (Exception) true;” clause, i.e. the method
is considered to be correct in case it throws any exception. This means that the fourth conjunct
can be omitted from the postcondition.

• an omitted assignable clause means an implicit “assignable \everything;” clause. This means
that the set of modifiable locations M does not have to be created in the precondition (fourth
conjunct) and the fifth conjunct can be omitted from the postcondition.

Desugaring normal and exceptional behavior.

• a normal behavior specification case is syntactic sugar for a behavior specification case to which
the “signals (Exception) false;” clause is added. This can be expressed by conjoining “χ 6= exc”
as the fourth conjunct in postconditions.

• an exceptional behavior specification case is syntactic sugar for a behavior specification case to
which clause “ensures false;” is added. This can be expressed by conjoining “χ 6= normal” as the
second conjunct in postconditions.

Desugaring purity.

To specify that a method may not modify any pre-exisiting locations, the “assignable \nothing” clause
can be used.2 In this case there is no need to use logical variable M . Thus, the fourth conjunct can be
omitted from the precondition and the fifth conjunct of the postcondition simplifies to

∀ loc:Location. alive(obj(loc), S) ⇒ $(loc) = S(loc).

Note that this translation reflects weak purity, that is, locations of objects that do not exist in the
pre-state might be modified freely.

2This can be specified by the pure annotation too, but it is not part of JML Level 0.

10



4.4 Translating JML expressions

The expressions that can be used in JML predicates are an extension of the side-effect free Java ex-
pressions. Note that in Level 0 calls to pure methods and constructors are disallowed in specification
expressions.

In this section we first look at the translation of Java expressions. In particular, we discuss how Jive
handles abrupt termination of expressions. Then we give the translation of expressions that JML Level
0 adds to the Java expression syntax.

4.4.1 Java expressions

Most of the expressions that may appear in JML specifications can be translated to first-order logic
formulas in a straight-forward way. However, there are some cases where the translation is not obvious.

Abrupt termination and underspecification

Since JML extends the side-effect free expression syntax of Java, predicates may throw exceptions. In
this case, according to the semantics of JML, an arbitrary value of the normal return type may be picked.
Our aim is to model this in Jive.

Our approach is to leave such expressions underspecified following the approach described in [15].
That is, in case an expression would throw an exception we leave its value underspecified—the expression
has a value, but we do not know which. Note that this approach allows us to use a two-valued logic and
theorem-prover.

In preconditions this means that the predicate which is left underspecified cannot be used as knowl-
edge assumed. However, this does not mean that such a predicate would doom the whole precondition
underspecified or the whole proof obligation unprovable. As an example, consider the following triple:

{this.f = 0 ∧ null.f = 0} skip {this.f = 0}

The expression null.f throws an exception at runtime. The programming logic of Jive presented in Sec-
tion 3 yields an undefined value for the expression. However, after applying the Hoare-rule for statement
skip (the empty statement), the resulting formula to prove is

this.f = 0 ∧ null.f = 0 ⇒ this.f = 0

which is provable independently of the truth value of null.f .
In postconditions this means that the predicate which is left underspecified cannot be proved. Again,

this does not mean that the postcondition is underspecified or the triple is unprovable. Similarly to the
previous example, the triple

{this.f = 0} skip {this.f = 0 ∨ null.f = 0}

remains provable.
In Jive, a specification expression might terminate abruptly due to: (1) a field access o.f when o is

null, (2) a division or modulo by zero, (3) a cast (T )E when the type of expression E is not (sub)type
of T .

Note that the input language of Jive does not support arrays, thus no abrupt termination due to
array accesses need be handled.
Here we describe how we render the above three cases to an underspecified value.

Field access. Due to the underlying programming logic of Jive, an attempt to access field o.f when
o is null leads to an underspecified value.

Division and modulo by zero. Currently Jive translates the division and modulo operators directly
to Isabelle’s corresponding div and mod operators. This is not in line with the semantics of Java. For
instance, Isabelle’s div operator yields zero in case the divisor is zero while in Java an exception would
be thrown.

11



A faithful formalization of Java’s arithmetic semantics is given in [33, 34]. A future version of Jive
might build upon that work in order to handle arithmetic formulas according to the semantics of Java
(including e.g. arithmetic overflows).

Casts. In the Isabelle prelude we generate an Isabelle function declaration with signature:

cast : Value × Type → Value

where the two parameters are the expression being cast and the type of the cast expression. The definition
of the function leaves the cast underspecified in case it would throw an exception, otherwise the cast results
in the original cast expression. This can be given (as a conservative extension) in Isabelle:

typeof (X) � T ⇒ cast(X, T ) = X

Then, a cast expression (e1) e2 is turned into the Isabelle function application cast(γ(e2), γ(e1)).

Basic operators

We list the Java operators whose translation is not straight-forward.
Logical operators. The & and | operators can be translated to logical ∧ and ∨ when used in specifications.
This is due to the semantics of JML in case of underspecified values. For instance, “false & o.f” yields
false, even if the field access causes abrupt termination. The same holds for “o.f & false” as in JML it
is equivalent to the previous predicate.

In specifications one often makes use of the lazy evaluation of the conditional-and (&&) and conditional-
or (‖) operators, thereby preventing abrupt termination of specification expressions [19]. For instance,
consider the precondition “o!=null && o.f==10”. These operators can also be turned into the logical
∧ and ∨ operators. The reason is again the semantics of JML: (1) an underspecified value does not
doom the whole predicate to an underspecified truth value; (2) predicates “o!=null && o.f==10” and
“o.f==10 && o!=null” are equivalent.
Conditional operator. The general form of the conditional-operator is “eb ? e1 : e2”, where eb is a boolean
expression and in case it evaluates to true then e1 gives the resulting value, otherwise e2. This can be
directly mapped to Isabelle’s predefined if-then-else construct: if γ(eb) then γ(e1) else γ(e2).
For the Simplify integration, a new term has been introduced which is defined in the straight-forward
way.
Instanceof operator. The instanceof operator of the general form, ref instanceof T , can be expressed in
our programming logic as typeof (ref) � ct(T ), in case T is a concrete type (function ct is explained in
Section 4.4.2).

4.4.2 JML extensions to the Java expression syntax

Here we give a list of JML specification expression elements that our translation handles.

• JML allows one to write informal specifications. The meaning of such specifications is not deter-
mined by JML. Following [7], Jive considers them to always hold.

• JML introduces ==> and <== for logical implication, and <==> and <=!=> for equivalence and
inequivalence. They are translated in the straight-forward way.

• JML allows one to write universally and existentially quantified expressions. The syntax of the
former is as follows:

(\forall T1 t1,. . ., Tn tn ; e1 ; e2)

The quantification ranges over all potential values of the variables declared which satisfy the range
predicate e1. If and only if all these values satisfy predicate e2, the whole expression yields true.
This can be translated by the following pattern:

∀ t1:T1, . . . , tn:Tn. (γ(e1) ⇒ γ(e2)).

The construct and the handling of existential quantification (with keyword \exists) is analogous.
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• \fresh(x) asserts in post-states that x is non-null and that the object bound to identifier x was
not allocated in the pre-state. The argument(s) can be any reference type. This is expressed by
the formula:

$(x) 6= null ∧ ¬alive(obj(x), S) ∧ alive(obj(x), $),

where S is a logical variable for the store in the pre-state.

• an \old construct can occur in expressions of ensures and signals clauses. Our translation takes
the whole expression inside the construct and creates a fresh logical variable for it which then can
be used in the postcondition.
For example, the postcondition “a==\old(x.f)” would be translated by conjoining term V = $(x.f)
to the precondition and term a = V to the postcondition, where V is a fresh logical variable.
In JML, if formal parameters occur in ensures or signals clauses without the usage of \old, they
still implicitly refer to pre-values, thus such implicit occurrences of pre-values have to be discovered
and logical variables have to be created.

• \result refers to the resulting value of a non-void method. It is simply translated to Jive’s dedicated
program variable, resV.

• \typeof returns the most specific dynamic type of an expression. In Jive, function typeof is defined
for this purpose.

• <: denotes the (reflexive) subtype relation. In Jive, function � is defined for this purpose.

• \type is used to introduce type literals into expression contexts. Jive has three different functions
for this purpose: at, ct, and it. Their usage depends on whether the type given as parameter is an
abstract, concrete or interface type, respectively. For instance the JML expressions

\typeof(myObj) <: \type(Account)

would be translated to

typeof (myObj) � ct(Account)

in case type Account is a concrete type.

• JML allows one to use the “*” wildcard character to refer to all fields of an object (e.g. “o.*”) or
all elements of an array (e.g. “arr[*]”). It is mostly used in assignable clauses.

Jive currently does not support this, mostly because (at the time of writing) the JML compiler
itself does not fully support its usage.

4.5 Handling of JML statements and annotation statements

Jive requires user-specified invariants for loops. At the time of writing, users of Jive are always prompted
for a loop invariant even if the JML specification contained a maintaining clause. While this is surely
inconvenient, it is important to note that loop invariants often contain terms which are not expressible
on the JML level. For instance, aliveness information.

Jive does not support assert and assume statements, however, they do not pose conceptual diffi-
culties. We are planning to support these statements in the near future.

As mentioned in Section 4.1, set statements are simply turned into DJC assignments, since ghost
fields are handled as concrete fields.

4.6 Specification library

Jive supports specification-only types. Such types can have specifications without any provided imple-
mentation. This is useful for instance to provide specification for API types which allows one to reason
about programs that call methods of the API.

Such specification-only types are placed in .spec files in a dedicated directory. Jive comes with a
small set of specified API types, for instance, Object and Exception. But users can freely add other
specification-only types to the directory.
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The Hoare-triple generation mechanism for such specification-only types is the same as for other types.
However, the generated triples are assumed to hold and thus need not be proven—due to this property
we call them closed triples. Closed triples can be used for the verification of other triples.

4.7 Universes modifiers

Currently Jive makes only use of the rep modifier and only for the relaxed semantics of assignable
clauses. That is, fields declared with the rep modifier may be modified even if they are not mentioned
in the assignable clause. The exact formalization of this semantics was given in Section 4.3.

Note that the JML compiler had to be slightly modified to enable this relaxed semantics. Otherwise the
purity analysis performed by the compiler would complain about undeclared modifications of locations.
Furthermore, due to this very limited use of Universe modifiers the compiler need be launched so that it
would only parse, but not check them.

For a future version of Jive we plan to use the full power of the Universe type system to support
modular verification based on the relevant object invariant semantics [28].

4.8 Features not supported by Jive

We give a summary of JML Level 0 constructs that are currently not supported by Jive.

• Jive currently does not take loop invariants specified on the JML level into account. Loop invariants
have to be provided during the use of Jive when the tool prompts the user for a loop invariant.

• DJC, the input language of Jive, does not support arrays. Thus, \nonnullelements expressions
are not supported.

• the translation of initially clauses is not implemented.

• the translation of fresh expressions is not implemented.

• \TYPE type specifications are not implemented.

• the “*” wildcard to refer to all fields of a target object is not translated.

• assert and assume statements are not implemented.

5 Related work

Although there are many verification tools for object-oriented languages, to our knowledge, the literature
contains very few descriptions of translations like ours: from some specification language to the underlying
logic of a verification tool. However, this is probably due to the relative simplicity of the translation of
the basic specification elements. Descriptions of translations in the literature are related to the LOOP,
the KeY, and the Krakatoa tools.

The LOOP compiler [4] translates sequential Java programs and JML specifications into PVS or
Isabelle theories using a denotational semantics [16]. The use of denotational semantics makes proof
obligations look fundamentally different from ours and we believe less intuitive too.

In case of abrupt termination or non-termination of specification expressions, the compiler renders
preconditions to true and postconditions to false [5]. This means that nothing can be assumed and
nothing can be proved in pre- and postconditions, respectively. This solution is stricter than ours, which
allows one to assume/prove parts of pre- and postconditions that do not terminate abruptly.

Breunesse and Poll [6] describes the handling of model fields in LOOP. They propose two solutions.
Their first solution uses existential quantification to ensure that the representation relation of a model
field is satisfiable. The second solution transforms model fields into pure methods. This solution requires
a sound encoding for methods which Breunesse and Poll do not address.

The KeY tool [1] verifies Java Card code against its OCL (Object Constraint Language, part of the
UML standard) specification attached to the corresponding UML class diagram. The translation of OCL
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specifications into first-order logic is described in [3]. Besides OCL, KeY supports the verification of JML
specifications too. A semi-formal description of their translation is given in [13].

The Krakatoa tool verifies Java Card programs annotated with JML specifications. It translates the
program and its specification to the Why language [14]. A rudimentary description of this translation is
given in [23].

6 Future work

This report described the translation of the basic JML constructs that are currently supported by Jive.
Here we sketch our development plans for later versions of the tool.

Modularity. Currently JML does not support the modular verification of Java programs. For instance,
as described in Section 4.2.1, postconditions typically conjoin the predicate INV($) which means that all
object invariants need be proven for every method.

In the future we plan to apply means of modular specification and verification. There are different
approaches that could be used:

• Our group developed an ownership programming model and an ownership type system [27] for a
subset of Java. Approaches that are based on a type system have the great advantage that they
are automatically and mostly statically checkable, but on the other hand are typically not flexible
enough to handle real-world programs. Based on such a model, a modular verification technique of
invariants is possible [28].

• Other methodologies (e.g. the Boogie methodology [2]) offer more flexibility, but cannot be checked
statically and require certain properties to be verified. Still they have the advantage that proof
obligations are usually much simpler than what classical techniques yield.

It requires future research to see what approach or what combinations of different approaches fit the
Jive tool best.

Model classes. The JML distribution contains a library of model classes. These classes provide math-
ematical models for data types such as sequences or sets and are used for specification-only purposes.
Currently our handling of model classes relies on their specifications. This approach might be unsound if
the specifications are not consistent and may lead to unprovable proof obligations, for instance, if model
methods are specified in a mutually recursive way.

Thus, we plan to translate the JML library into a program-independent Isabelle theory containing
abstract data types. In the first step, the translation would still be based on the specification of model
classes, thus, well-definedness would still not be ensured. However, in a next step, users could refine
the data types by eliminating ill-defined specifications. A first step of inspecting the feasibility of this
approach is presented in [25].

Visibility of specifications. As mentioned in Section 4.2.1, visibility of invariants is not taken into
account, for instance, private invariants are also conjoined to INV(OS). Thus, a private invariant of some
type C is assumed to hold in pre-states and is to be proven to hold in post-states for methods residing in
types other than C too. A solution we might want to consider is the splitting of the program invariant
into several formulas representing the invariant of different visibility levels and contexts as proposed in
[26, Section 3.1.1.1].

One source of unsoundness of the tool is that one might use the private specifications of a method
m in type C when proving the method body of a method n in a type other than C. In the current
implementation this breach of visibility is only present in case m is a static method or the call of m is a
super-call.
We do not know of any other tool that handles these cases correctly.

Wider JML support. We are planing to support a wider range of JML constructs in future versions
of Jive. In particular, we are interested in the support of method calls in specifications [9] and the full
integration of the Universe type system [11].
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