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Abstract. Abstraction is essential in the formal specification of pro-
grams. A common way of writing abstract specifications is to specify im-
plementations in terms of basic mathematical structures. Specification
languages like JML offer so-called model classes that provide interfaces
to such structures. One way to reason about specifications that make use
of model classes is to map model classes directly to structures provided
by the theorem prover used for verification. Crucial to the soundness
of this technique is the existence of a semantic correspondence between
the model class and the related structure. In this paper, we present a
formal framework based on theory interpretation for proving this corre-
spondence. The framework provides a systematic way of determining the
necessary proof obligations and justifies the soundness of the approach.

1 Introduction

Abstraction is essential in the formal specification of programs because it allows
one to write specifications in an implementation-independent way, which is in-
dispensable for information hiding. Furthermore, abstraction facilitates the read-
ability and maintainability of specifications. A common way of writing abstract
specifications is to specify implementations in terms of well-known mathemati-
cal structures, such as sets and relations. This technique is applied, for instance,
in VDM [10], Larch [8], and OCL [19]. While these approaches describe the
mathematical structures in a language that is different from the underlying pro-
gramming language, another approach is that of the Java Modeling Language
(JML) [13], which simplifies the development of specifications by describing the
structures through model classes [2]. Model classes are immutable and are used
only for specification purposes. They provide object-oriented interfaces for es-
sential mathematical structures through their side-effect free (pure) methods.

Specifications can be written in an abstract way by expressing properties in
terms of model classes and their operations. Fig. 1 shows a class SingletonSet
specified in JML using the model class JMLObjectSet (presented in Fig. 2), which
represents a mathematical set of objects. To use the model class, we declare the
public specification-only model field set. The field represents the abstraction of
an instance of type SingletonSet as specified by the private represents clause:
a singleton set containing the object referenced by the private field value. Given
model field set and JMLObjectSet’s public pure method has, which checks



class SingletonSet {

private Object value;

//@ public model JMLObjectSet _set;

//@ private represents _set <- new JMLObjectSet(value);

//@ ensures _set.has(o);

public void setValue(Object o)

{ value = o; }

} // other constructors and methods are omitted for brevity

Fig. 1. Specifying class SingletonSet using model class JMLObjectSet. JML annota-
tion comments start with an at-sign (@).

for set membership, one can specify SingletonSet’s setValue method in an
abstract way, in particular, without referring to the private field value.

While model classes provide a powerful means for writing abstract specifi-
cations, they pose a problem for static verification: program verifiers have to
encode specification expressions in the logic of the underlying theorem prover,
in particular, calls to the pure methods of model classes.

Previous work proposes to map model classes and their methods directly
to structures and function symbols provided by the theories of the underlying
theorem prover [1, 11, 12, 4]. Calls to model-class methods are encoded as ap-
plications of these function symbols. For instance, if JMLObjectSet’s method
has is mapped to symbol ’∈’ denoting set membership of a particular structure,
then every call to has is encoded as an application of ’∈’. Such an encoding leads
to proof obligations that are handled well by theorem provers, which typically
provide theories with numerous theorems for elementary structures.

Crucial to the soundness of this technique is to ensure that the mapping is
faithful, that is, the semantics of related model classes and structures match.
However, previous work mostly discusses the mapping of method signatures,
but ignores their contracts. With this approach, for instance, the meaning of
method has is given by the definition of symbol ’∈’ of the given theory, and
not by the contract of has. This is problematic if there is a mismatch between
the contract and the semantics of the operation given by the theorem prover:
(1) program verifiers might produce results that come unexpected for one who
relies on the contract, (2) results may vary between different theorem provers,
which define certain operations slightly differently, and (3) the result of runtime
assertion checking might differ from that of static verification if the model-class
implementation used by the checker is based on contracts.

Our previous work takes the contracts of model classes into account and
describes the main ideas behind an approach that checks if the mapping of a
model class to a mathematical structure is faithful [4]. In this paper, we present
a formal framework for checking the faithfulness of mappings. This framework
defines precisely the proof obligations needed to show faithfulness and guarantees
soundness. Our framework applies the concept of theory interpretation [22, 24,



5], which allows one to compare the “strength” of two theories, T and T ′, whose
language (i.e., set of nonlogical symbols) possibly differ. A theory interpretation
of T in T ′ is based on a syntactic notion, a standard translation Φ between the
terms and formulas of T and T ′. Φ is a standard interpretation of T in T ′ if Φ(φ)
is a theorem of T ′ for each theorem φ of T . A theorem important for our purposes
is that if there is a standard interpretation of T in T ′, and T ′ is consistent, then
T is consistent.

Our approach applies the concept of theory interpretation in three stages. In
the first stage, we specify the mapping of a model class to an existing theory of
the underlying theorem prover. In the second stage, we attempt to formally prove
that the specified mapping of a model class defines a standard interpretation of
the theory formed by the specification of the model class in the theory of the
corresponding structure. If the proof attempt succeeds then consistency of the
model-class specification is guaranteed. Although consistency is only relative to
the consistency of the target theory, theorem provers are unlikely to contain
inconsistent theories. We will refer to this stage as the consistency proof.

In the third stage, we attempt to “reverse” the specified mapping and attempt
to prove that the reverse mapping defines a standard interpretation of the target
theory in the specification of the model class. If the proof attempt succeeds then
completeness of the model-class specification is guaranteed. Again, completeness
is only relative to the corresponding theory, but theorem provers typically define
theories with rich sets of properties. In contrast to our earlier work, we define a
condition that ensures the existence of a suitable reverse mapping. We will refer
to the third stage as the completeness proof.

We have presented the main idea of faithfulness proofs earlier [4]. However,
the precise conditions that are necessary to ensure soundness are subtle, and our
previous work did not contain a soundness argument. The advantage of building
our approach on the well-studied concept of theory interpretation is that the
correctness of our approach is guaranteed by the correctness of the concept. In
particular, theory interpretation takes the universes of structures into account,
which is crucial for the soundness of the mapping of model classes [3] and is not
present in previous work.

Although we use JML as specification language and Isabelle [18] as theorem
prover in this paper, the presented approach is applicable to any combination of
specification language and theorem prover, for instance, Eiffel [17] and PVS [20].

Outline. The next section introduces a model class that will serve as running ex-
ample and the specification means for mapping model classes. Sections 3, 4, and
5 present the formal details of faithfulness proofs: the way universe predicates
are defined, the consistency proof, and the completeness proof. In Sec. 6, we
discuss related work and conclude. We refer the reader to the PhD dissertation
of Darvas [3] for a case study of the presented approach, an extension to map-
pings whose target structure is defined inductively, and practical considerations
for the case when related model classes and structures do not match perfectly.



//@ mapped_to("Isabelle", "HOL/Set", "α set");

/*@ immutable pure @*/ public class JMLObjectSet {

//@ mapped_to("Isabelle", "{}");

public JMLObjectSet() { ... }

//@ mapped_to("Isabelle", "insert e {}");

public JMLObjectSet(Object e) { ... }

//@ mapped_to("Isabelle", "elem : this");

public boolean has(Object elem) { ... }

//@ mapped_to("Isabelle", "this = s2");

public boolean equals(Object s2) { ... }

/*@ ensures (\forall Object e;

\result.has(e) == (this.has(e) || e == elem)); @*/

//@ mapped_to("Isabelle", "insert elem this");

public JMLObjectSet insert(Object elem) { ... }

//@ mapped_to("Isabelle", "this - (insert elem {})");

public JMLObjectSet remove(Object elem) { ... }

//@ mapped_to("Isabelle", "this Un s2");

public JMLObjectSet union(JMLObjectSet s2) { ... }

//@ mapped_to("Isabelle", "this - s2");

public JMLObjectSet difference(JMLObjectSet s2) { ... }

}

Fig. 2. Signatures and mappings of JMLObjectSet’s constructors and methods that we
consider in this paper. Implementations are omitted.

2 Encoding of Model Classes

Model Class JMLObjectSet. The class is part of JML’s model library and
encodes sets of objects: it provides the usual operations of mathematical sets;
equality over the set-elements is based on Java’s reference equality (“==”). Fig. 2
presents those constructors and methods that are discussed in the sequel.

The class is specified to be pure (meaning that all instance methods are pure)
and immutable. It is specified by invariants and method specifications. The in-
variants of model classes are special in that they do not restrict the state space of
model-class instances as invariants usually do. Instead, they give equational laws
about their operations, thus they play a similar role as method specifications.
Therefore, for brevity, we omit the handling of invariants here, but see [3].

A sample method specification is given in Fig. 2 for method insert. The
proposed mapping of the class and its operations to one of Isabelle’s set struc-
tures is given by mapped to clauses that we introduce below.



Specifying the Mapping. In the first stage of a faithfulness proof, one specifies
the mapping of the model class at hand. In our previous work [4], we introduced
the mapped to clause for this purpose. The mapping of a model class is specified
by a mapped to clause attached to the class. The first argument of the clause
specifies the target theorem prover, the second the target theory, and the third
the specific type (if any) in the theory to which the model class is mapped.
Similarly, a method can be mapped to a term of the target theory of a given
theorem prover by a mapped to clause attached to it. The term must be well-
typed and may only mention logical and nonlogical symbols of the target theory
and parameters (including the explicit receiver) of the specified constructor or
method. Only one clause per target theorem prover may be specified both for a
model class and for a method.

For instance, in Fig. 2 class JMLObjectSet is mapped to type α set in the
HOL/Set theory of Isabelle; and method has is mapped to the term elem : this,
meaning that the method corresponds to Isabelle’s set membership operator “:”.

We permit one to write arbitrarily complex terms in mapped to clauses, which
allows us to support model methods with functionality that is not directly pro-
vided by the target prover. This flexibility is necessary to handle, for example,
JMLObjectSet’s remove method, which removes a single element of a set. Theory
HOL/Set does not provide a corresponding operation but provides set difference,
which allows one to express the meaning of method remove.

As different theorem provers provide different theories with different symbols
and semantics, we allow mappings to multiple provers. Thus, the faithfulness
proof has to be carried out in every target prover specified in mapped to clauses.

Contexts and Auxiliary Functions. The contexts in which the consistency
and the completeness proofs are carried out are not the same. The context of the
former is that of the target theory T , for instance, Isabelle’s HOL/Set theory. The
context of the latter will be denoted by M̂ , which is the logical encoding of model
class M ’s specification. The encoding allows one to carry out the completeness
proof in a formal system, like Isabelle or PVS [20]. Note that merely analysing
the encoded specification in context M̂ would not be sufficient for the sound use
of the mapped to clause for verification purposes, because only consistency of
the specification could be shown; its semantic correspondence to target theory
T could not be justified.

We introduce function γ that encodes JML specification expressions in con-
text M̂ . The function takes a JML expression and yields a first-order term or
formula (denoted by FOL) in M̂ . Its signature is γ: Expr → FOL

M̂
. Note that

γ takes no argument for the state. This is because instances of model classes be-
have like mathematical values rather than heap-allocated objects. The definition
of the function for a small but representative subset of JML is the following [3]:

γ(E � F ) , γ(E) Tr(�) γ(F ), if � ∈ {&&, ||, ==>, ==, !=, +, -, /, %}
γ(v) , v

γ(!E) , ¬ γ(E)

γ(E.m(F)) , m̂(γ(E), γ(F ))

γ(new C(E)) , Ĉ(γ(E))

γ((\forall T x. E)) , ∀ x. γ(E)

γ((\exists T x. E)) , ∃ x. γ(E)



An application of a binary JML operator � is encoded by an application of
the corresponding operator in the underlying logic yielded by function Tr to the
encoding the two operands. Tr is a function that maps the binary operators of
JML to their equivalents in first-order logic (i.e., ∧, ∨, ⇒, =, 6=, etc.). Calls to
methods and constructors are encoded by applications of uninterpreted function
symbols. We will use the convention that a method m is encoded by symbol m̂.
Note that the encoding of old-expressions (used in postconditions to refer to
values in the pre-state of the specified method) is not given. This is because
old-expressions are not meaningful in model-class specifications.

Next, we introduce function ν. A standard translation Φ of T in T ′ is a pair
(U , ν), where U is a closed unary predicate, the universe predicate, and ν is
a function that maps all nonlogical symbols of T to a λ-expression of T ′ [5].
Given U and ν, the translation of terms and formulas of T can be defined in a
straightforward way [5].

Following this notation, we use function ν to map methods and constructors
to λ-functions of the target theory. As mapped to clauses contain exactly that
information, function ν essentially captures the content of these clauses. For
instance, in model class JMLObjectSet we have:1

ν(remove) ≡ λ{ this, elem. this − (insert elem {}) }
The purpose of the universe predicate and the way it is specified in model

classes is described in the next section.

3 Specifying the Universe

When relating two theories, it is possible that the set of possible elements (the
universe) of the source and the target theory differ. In such cases, the scope of
quantifiers and, therefore, the semantics of quantified formulas possibly differs
in the two theories. The concept of theory interpretation solves this problem
by introducing the unary universe predicate U , which yields true if and only if
its argument denotes an element of the target structure that is meant to be in
the scope of quantifiers, and thereby, in the scope of translation Φ. Given the
universe predicate, translation Φ “relativizes” quantifiers:

Φ(∀x. φ) , ∀x. U(x) ⇒ Φ(φ) and Φ(∃x. φ) , ∃x. U(x) ∧ Φ(φ)
The dissertation of Darvas [3, Example 9.1] demonstrates the need for rela-

tivization in the context of mapping model classes to mathematical theories.
To allow users to specify the set of operations that should form the universe

predicate of a model class, we introduce the constructing modifier that may
be attached to constructors and methods. The universe predicate is the same for
the consistency and for the completeness proofs, only the context in which the
predicate is expressed differs: When proving consistency, the context is that of
the target theory T ; when proving completeness, the context is M̂ . Accordingly,
we will denote the predicates by UT and U

M̂
.

1 As a second argument, ν should take the name of the target theorem prover. For
simplicity, we omit this argument as the target prover will be Isabelle in the sequel.



Given a model class M with l methods and constructors marked with modifier
constructing, the resulting universe predicate is a disjunction with l disjuncts.
The disjunct of the universe predicate U

M̂
(x) for a constructing method m

with one implicit and n explicit parameters, and precondition P is:

∃ s, e1, . . . , en. U
M̂

(s) ∧ U
M̂

(e1) ∧ . . . ∧ U
M̂

(ek) ∧
γ(P ) ∧ êquals(x, m̂(s, e1, . . . , en))

where k ≤ n and where we assume for simplicity that parameters e1, . . . , ek are
of the enclosing type, while the others are not. The construction of predicate UT

is analogous in the context of T :

∃ s, e1, . . . , en. UT (s) ∧ UT (e1) ∧ . . . ∧ UT (ek) ∧
ΦM (P ) ∧ ΦM (x.equals(s.m(e1, . . . , en)))

where ΦM is the translation function between JML expressions and the target
context. The function is precisely defined in the next section.

The treatment of constructors is analogous. As an example, if the parameter-
less constructor and method insert of model class JMLObjectSet are marked
as constructing then we get the following universe predicates:

U
M̂

(x) , êquals(x, ̂JMLObjectSet()) ∨ (∃ s, e. U
M̂

(s) ∧ êquals(x, însert(s, e)))

UT (x) , x = {} ∨ (∃ s, e. UT (s) ∧ x = (insert e s))

If no method is marked as constructing then the universe predicate is true.
This is the case when the source and the target universe is the same.

4 Proving Consistency of a Model Class

In the second stage of the faithfulness proof, we prove consistency of the map-
ping: we show that there is a standard interpretation of M ’s theory in theory
T . To do so, first we define the translation of JML expressions in the context
of T based on mapped to clauses. The resulting translation function will be de-
noted by ΦM . Second, we attempt to prove that ΦM is a standard interpretation.

Definition of ΦM . The function takes a JML expression and yields a term
or formula in the target context. Its signature is ΦM : Expr → FOLT and its
definition is presented in Fig. 3. For simplicity, the definition for method and
constructor calls, for keyword \result, and for keyword this in the postcon-
dition of constructors is presented for methods with one explicit parameter p.
Note that terms ν(m)(this, p) and ν(C)(p) denote the terms that are defined by
the mapped to clause of the corresponding method and constructor.

Proving that ΦM is a Standard Interpretation. To prove that translation
function ΦM is a standard interpretation of M ’s theory in theory T , we need to
prove that three sufficient obligations hold [5].



ΦM (E � F ) , ΦM (E) Tr(�) ΦM (F ), if � ∈ {&&, ||, ==>, ==, !=, +, -, /, %}
ΦM (!E) , ¬ΦM (E)

ΦM (E.m(F)) , ν(m)(ΦM (E), ΦM (F ))

ΦM (new C(E)) , ν(C)(ΦM (E))

ΦM (\result) , ν(m)(this, p), where m is the enclosing method

ΦM (this) , ν(C)(p) , if this occurs in the postcondition of constructor C

ΦM (v) , v , if v is a parameter or literal other than \result and this in
postconditions of constructors

ΦM ((\forallT x. E)) , ∀ x. UT (x) ⇒ ΦM (E)

ΦM ((\existsT x. E)) , ∃ x. UT (x) ∧ ΦM (E)

where the shaded parts are added only if the quantified
variable is of a model type.

Fig. 3. Definition of translation ΦM .

Axiom Obligation. The obligation requires that the translation of every axiom of
M is a theorem of T . The “axioms” of a model class are its method specifications.
Their translation is straightforward, only the free variables have to be bound by
universal quantifiers since these quantifications are implicit in method specifica-
tions. The specification of a method of class C with one explicit parameter p of
type T , precondition P , and postcondition Q is translated to:

ΦM ((\forall C this. (\forall T p. P ==> Q)))
which is equivalent to:

∀ this, p. (UT (this) ⇒ ( UT (p) ⇒ ΦM (P ==> Q) )),

where the shaded part is only added if p is of a model type. The formulas are
turned into lemmas and have to be proved in the target theory.

Universe Nonemptiness Obligation. The obligation requires that the universe
of the translation is nonempty: ∃x. UT (x). This is usually trivial to prove.
For instance, for class JMLObjectSet, picking {} for x trivially discharges the
obligation for the universe predicate presented on the preceding page.

Function Symbol Obligation. The obligation requires that for each symbol f of
the source theory, the interpretation of f is a function whose restriction to the
universe takes values in the universe. When applying the obligation to meth-
ods of model classes, the only difference is that preconditions have to be taken
into account. We have to prove for each model-class method m with n explicit
parameters and precondition P that the following holds in the target theory:

∀ t, x1, . . . , xn. UT (t) ⇒ UT (x1) ⇒ . . . ⇒ UT (xk) ⇒
ΦM (P (t, x1, . . . , xn)) ⇒ UT (ΦM (t.m(x1, . . . , xn)))

(1)

where k ≤ n and where we assume that x1, . . . , xk are of model types, while the
others are not. The proof obligations for constructors are analogous.



The second stage of the faithfulness proof is successfully completed if the
three obligations can be proven. Based on the concept of theory interpretation,
we can then conclude that the specification of the model class at hand is consis-
tent provided that the target theory is consistent.

Having proved consistency of the specification of a model class ensures that
it can be safely used for reasoning about client code. However, the consistency
proof does not ensure that specified mapped to clauses can be used for verifica-
tion purposes [4]. Assume method m of a model class was mapped to symbol
f , which was specified to possess properties that m did not. The verification of
specifications that rely on m may lead to results that are not justified by the
model-class specifications because, after having mapped method m to symbol
f , the method would be endowed with all the additional properties that f pos-
sessed. The results may also diverge between different theorem provers, which
define certain operations slightly differently. Furthermore, the results of runtime
assertion checking might diverge from the results of static verification if the
model class implementation used by the runtime assertion checker is based on
the model class contract.

To fix this issue, we need to show that method m indeed possesses all endowed
properties. Thus, proving completeness of a model class with respect to a theory
does not just show that the specification of the class is strong enough relative
to the theory, but is crucial for the sound use of mapped to clauses during the
verification of client code.

5 Proving Completeness of a Model Class

In the third stage of the faithfulness proof, we prove completeness of the map-
ping, that is, we show that there is a standard interpretation of theory T in M ’s
theory. To do so, first we define function ΦS that translates terms and formulas
of the target theory in the context of the model class. Second, we attempt to
prove that ΦS is a standard interpretation.

Issues of Reverse Mappings. The mapped to clauses provide the basis for
the translation of JML expressions to terms and formulas of the target context.
However, for the completeness proof, we need a translation in the other direction.
In the following, we show that translation ΦS may not be an arbitrary translation
for which we can show that it is a standard interpretation. The translation should
be one that is derived from the mapping prescribed by mapped to clauses. That
is, we need a way to reverse the specified mapping, which is not trivial.

Assume that in the above example not only m, but another method n was
mapped to symbol f . When proving completeness of the mapping, we would
need to show that not only m, but also n possesses all properties that f has.
Otherwise, n might be endowed with properties that it does not possess when
the method is mapped to f .

For instance, consider symbol insert of theory HOL/Set, which is mapped to
both by method insert and by the one-argument constructor of model class



JMLObjectSet. Therefore, the translation of a formula that contains an applica-
tion of the symbol should consider mapping the symbol both to the method and
to the constructor. Although this seems to be doable by defining ΦS such that all
possible reverse mappings of a symbol must be taken into account, clearly, such a
translation would not be standard anymore (as ν would not be a function). Fur-
thermore, since ν(JMLObjectSet(e))(e) ≡ insert e {},2 the translation of the
general term insert x Y to the constructor is only valid under the condition that
Y corresponds to the empty set. This condition would need to be added to the
translated formula, again showing that the translation would not be standard.
Consequently, the concept of theory interpretation would not apply.

Moreover, the problem is not merely that the resulting reverse translation
would not be standard: the conditions under which certain mappings are valid
may alter the semantics and satisfiability of the original formula. It is well-
known that a condition over a universally bound variable has to be added as the
premise of an implication, otherwise the condition has to be added as a conjunct.
However, if a condition contains both an existentially and a universally quantified
variable then the condition can be added neither as a premise, nor as a conjunct.

To sum up, the general reversal of translation ΦM would not be standard,
would considerably change the structure of translated formulas, and (in certain
cases) would alter the semantics of translated formulas. Thus, it would be dif-
ficult to reason that the resulting translation is indeed the one we are looking for.

Our Pragmatic Approach. To resolve the problem, we take a pragmatic ap-
proach and pose a requirement on the user-defined mappings. In practice, the
requirement typically does not constrain the way model classes may be written
and mapped, but it ensures that the “reverse” translation of ΦM is a standard
translation and can be easily derived from ΦM .

Besides the requirement, a number of proof obligations will be posed on the
operations of the model class at hand. In the remainder of this section, we for-
malize the requirement, the translation ΦS , and the necessary proof obligations.

Requirement. The requirement we pose on specified mapped to clauses is that
each symbol of the target theory T should be mapped to by at least one model
method unconditionally. Formally:

For each n-ary function and predicate symbol f of T and variables
x1, . . . , xn there is at least one method m or constructor C, and
expressions e1, . . . , ek with free variables x1, . . . , xn such that either
ΦM (e1.m(e2, . . . , ek)) = f(x1, . . . , xn) or
ΦM (new C(e1, e2, . . . , ek)) = f(x1, . . . , xn) holds. (2)

Although the requirement does not hold for arbitrary mappings, it typically
holds for model classes. Conditional mappings are typically needed when a model
2 We will write JMLObjectSet(e) to refer to the one-argument constructor even when

only a method or constructor name is expected, like the argument of function ν.



ΦS(V ar) , V ar

ΦS(f(t1, . . . , tn)) ,





γ(e1.m(e2, . . . , ek)), if there is a method m and

expressions e1, . . . , ek such that:

ΦM (e1.m(e2, . . . , ek)) = f(t1, . . . , tn)

γ(new C(e1, e2, . . . , ek)), if there is a constructor C and

expressions e1, . . . , ek such that:

ΦM (new C(e1, e2, . . . , ek)) = f(t1, . . . , tn)

ΦS(t1 = t2)) , ΦS(t1) = ΦS(t2), if t1 and t2 are not of model type;
otherwise handled the same way as predicate symbols

ΦS(¬φ) , ¬ΦS(φ) ΦS(true) , true ΦS(false) , false

ΦS(φ1 ◦ φ2) , ΦS(φ1) ◦ ΦS(φ2), if ◦ ∈ {∧,∨,⇒}
ΦS(∀x. φ) , ∀x. UM̂ (x) ⇒ ΦS(φ) ΦS(∃x. φ) , ∃x. UM̂ (x) ∧ ΦS(φ)

where the shaded parts are added only if the quantified
variable is of the type to which the model class was mapped.

Fig. 4. Definition of translation ΦS .

class offers methods that are redundant in the sense that they are equivalent
to some compound expression consisting of calls to more basic methods. For
instance, method remove is equivalent to set difference with a singleton set as
second argument. Such methods make the use of model classes more convenient,
whereas mathematical structures typically avoid this redundancy.

The requirement would not hold, for instance, if class JMLObjectSet provided
method remove, but not method difference.

Definition of ΦS. The reverse translation ΦS is a transformer between terms
and formulas of context T and M̂ . Its signature is ΦS : FOLT → FOL

M̂
. Given

requirement (2), it can be easily defined. The definition of translation ΦS for
the standard syntax of first-order logic is presented in Fig. 4. Translation ΦS

is identical to translation Φ described in the literature [22, 5], except that the
translation of function and predicate symbols is not based on function ν but on
the reversal of translation ΦM , as expressed by the condition.

If there are multiple methods or constructors that satisfy the condition then
any of them can be selected since their equivalence has to be formally proven,
as we will see below.

Note that the translation of operator “=” is different if the operands are of
model types and if they are of some other type. In the former case, the definition
over function and predicate symbols apply: to which model method the operator
is mapped depends on the user-specified mapping. In practice, it is typically (but
not necessarily) the equals method.

If the operands are not of model type, then “=” is translated to “=” (or
the equivalent symbol of the target prover). Although this is in line with the
definition of function Φ, it might not be the desired translation: one might want



to define equality over the elements of a model class by the equals method of
the specific element type at hand, and not by reference equality. For brevity, we
omit this issue here and refer to the dissertation of Darvas [3] for a solution.

Proof Obligations. The requirement on mappings prescribes that there should
be at least one unconditional mapping for each symbol of T . However, it does
not rule out methods with mappings that can be reversed only conditionally,
such as the reverse mapping of symbol insert to the one-argument constructor.
Therefore, what remains to be shown is that the functionalities of methods that
are mapped to the same symbol of T are equivalent provided that the condition
(if any) under which their mapping can be reversed holds.

For instance, we need to prove that the functionality of a call to the one-
argument constructor JMLObjectSet(e) is equivalent with that of method insert
provided that the receiver object of the method denotes the empty set.

This kind of proof obligations can be formalized as follows. Assume that for
some symbol f , method m fulfills requirement (2). Then for each method n that
is also mapped to symbol f (even if n also fulfills the requirement), we have to
show that the following holds in context M̂ :

∀x1, . . . , xp, y1, . . . , yq.

ΦS(t1m = t1n) ∧ . . . ∧ ΦS(tkm = tkn) ⇒ m̂(x1, . . . , xp)
eq
= n̂(y1, . . . , yq)

where (1) symbol
eq
= denotes operator “=” if the operands are not of model type,

otherwise an application of the hat-function to which symbol “=” is translated
by ΦS (i.e., typically function êquals); and (2) the tim = tin equalities are derived
by applying translation function ΦM on methods m and n, and taking pairwise
the i-th arguments of the resulting function applications. Formally:

ΦM (x1.m(x2, . . . , xp)) = f(t1m, . . . , tkm)
ΦM (y1.n(y2, . . . , yq)) = f(t1n, . . . , tkn)

Proving that ΦS is a Standard Interpretation. It remains to prove that
ΦS is a standard interpretation. The procedure is the same as for translation
ΦM : we have to show that the three sufficient obligations hold for the standard
translation ΦS .

First, the context and theory in which the obligations are to be proven needs
to be constructed. As noted above, the context is denoted by M̂ , and the theory
is formed by the axiom system that is extracted from the specification of model
class M . In the sequel, we will call this theory the model theory and assume that
method signatures in M only refer to the enclosing type and type Object. In
practice, this is typically the case for methods and constructors that correspond
to the operations of the mathematical structure that M represents.

The model theory is obtained in three simple steps for a model class M :

1. Two new types are declared: Object and M .
2. Each method m of M is turned into a function symbol m̂ and its signature

is declared based on m’s signature using the two newly declared types.



3. Each method specification of M is turned into an axiom. For the specification
of method m with parameter p, precondition P , and postcondition Q, the
axiom is: ∀ this, p. γ(P ==> Q[this.m(p)/\result]).
For a constructor C, the substitution to perform on Q is C(p)/this.

Once the model theory is created, we have to show that the formulas that
correspond to the three sufficient obligations for ΦS are theorems of the model
theory. The obligations are analogous to those of the consistency proof. To prove
the axiom obligation, we have to show that for every axiom and definition φ of
T , formula ΦS(φ) is a theorem of the model theory.

The universe nonemptiness obligation requires one to prove that universe
U

M̂
is nonempty: ∃x. U

M̂
(x). As for the consistency proof, the obligation is

typically trivially provable. The function symbol obligation is analogous to the
corresponding obligation (1) on page 8 for the consistency proof. Predicate P
corresponds to the domain restriction (if any) of the function at hand.

The third stage of the faithfulness proof is successfully completed if the three
obligations can be proven. Based on the concept of theory interpretation, we
can then conclude that all theorems of the target theory follow from the speci-
fication of the model class. That is, the specification is complete relative to the
target theory. As discussed before, completeness allows a program verifier to
prove properties in the target theory without creating results that cannot be ex-
plained by the model class specification. Moreover, failing to prove completeness
typically indicates that the model-class specification is not complete. By adding
the missing cases, the quality of the model-class specification improves.

6 Related Work and Conclusion

The concept of theory interpretation has already been used for formal pro-
gram development. For instance, Levy applied theory interpretation to formally
show the correctness of compiler implementations [14]; the work of Maibaum
et al. (e.g., [15]) and the Specware tool [23] applies the concept together with
other formal machinery for the construction of formal specifications and their
refinement into programs; and the theorem prover Ergo applies the concept to
maximize theory reuse [9].

The idea of using function symbols that are understood by the back-end the-
orem prover directly on the specification level is already present in ESC/Java [7],
which uses such function symbols instead of pure-method calls in specifications.
However, the meaning of the symbols is hidden on the specification level, and
the tool does not give support for showing consistency of their definitions.

Similarly, Caduceus [6] allows one to declare predicates that can be defined
or axiomatized either on the source level or in the back-end prover [16]. However,
there is no consistency proof for the user-provided definitions and axioms.

Schoeller et al. developed a model library for Eiffel [21]. They address the
faithfulness issue by equipping methods of model classes with specifications that



directly correspond to axioms and theorems taken from mathematical textbooks.
A shortcoming of this approach is that the resulting model library has to follow
exactly the structure of the mimicked theory. This limits the design decisions
one can make when composing the model library and it is unclear how one
can support multiple theorem provers. Our approach allows more flexibility by
allowing mapped to clauses to contain arbitrary terms of the target context.

Charles [1] proposes the introduction of the native keyword to JML with
the meaning that methods marked as native introduce uninterpreted function
symbols that can be defined on the level of the underlying theorem prover.
Furthermore, the native keyword may also be attached to classes meaning that
such classes get mapped to corresponding data types of the underlying prover.

Charles’ approach differs from ours in two ways. First, our approach ensures
faithfulness of the mapping. There is no attempt to do so in the work of Charles.
Second, mapped to clauses allow one to specify the mapping on the specification
language level. Furthermore, properties of model classes are specified in JML,
which typically provides easier understanding (for programmers) of the semantics
than definitions given directly on the level of a theorem prover.

Leavens et al. [12] identify the problem of specifying model classes as a re-
search challenge. They propose two possible solution approaches that are related
to our work and summarize the open problems for both of them. One approach
considers automatic translations between model classes and mathematical struc-
tures, and the authors argue why such translations are difficult. We deal with
these problems by specifying the mapping manually and proving faithfulness of
the mapping. The other approach is similar to the work by Schoeller and Charles.

Conclusion. We presented a formal framework for faithfulness proofs based on
theory interpretation. Proving faithfulness of model classes ensures consistency
of model class specifications, prevents unexpected results from program verifiers,
and also improves the overall quality of model class specifications.
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6. Filliâtre, J.C., Hubert, T., Marché, C.: The Caduceus verification tool for C pro-
grams (2007), tutorial and Reference Manual

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI. vol. 37, pp. 234–245. ACM Press
(2002)

8. Guttag, J.V., Horning, J.J.: Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science, Springer (1993)

9. Hamilton, N., Nickson, R., Traynor, O., Utting, M.: Interpretation and instanti-
ation of theories for reasoning about formal specifications. In: ACSC, Australian
Computer Science Communications 19. pp. 37–45 (1997)

10. Jones, C.B.: Systematic software development using VDM. Prentice Hall (1986)
11. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML

accommodates both runtime assertion checking and formal verification. Science of
Computer Programming 55(1–3), 185–205 (2005)

12. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing 19(2), 159–
189 (2007)

13. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Be-
havioral Specifications of Businesses and Systems. pp. 175–188. Kluwer Academic
Publishers (1999)

14. Levy, B.: An Approach to Compiler Correctness Using Interpretation Between
Theories. Ph.D. thesis, University of California, Los Angeles (1986)

15. Maibaum, T.S.E., Veloso, P.A.S., Sadler, M.R.: A theory of abstract data types
for program development: bridging the gap? In: TAPSOFT. pp. 214–230. Springer-
Verlag (1985)
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