
Doctoral Thesis ETH No. 18522

Universe Types
Topology, Encapsulation,

Genericity, and Tools

A dissertation submitted to the

Swiss Federal Institute of Technology Zurich
(ETH Zurich, Switzerland)

for the degree of

Doctor of Sciences

presented by

Werner Michael Dietl

Diplom-Ingenieur, Universität Salzburg

born December 7th , 1976

citizen of Austria

accepted on the recommendation of

Prof. Dr. Peter Müller, examiner

Prof. Dr. Michael D. Ernst, co-examiner

Prof. Dr. Martin Odersky, co-examiner

2009

ii

Acknowledgments

Absolutely Fabulous!

(TV Show & Pet Shop Boys song)

While writing these acknowledgments I realize, again, how many people contributed to making
this thesis possible and the experience absolutely fabulous.

Without a doubt, the most influential person over the past years has been Peter Müller. He
not only supervised this thesis, but also acted as my academic role model. His way of interacting
with colleagues, students, administrators, and his family will always remain something to aspire
to.
All the members of the Chair of Programming Methodology made sure that we had an

inspiring and friendly work environment and also social activities. I thank Ádám D., Joseph R.,
Arsenii R., Hermann L., and Martin N. for the many years we spent together and am glad that
I met Cédric F., Pietro F., Ioannis K., Laura K., and Alex S. before leaving the group.

I thank Bertrand Meyer for welcoming us into his larger group and the interesting discussions
I had with him and members of his group.

Probably my biggest influence outside of ETH comes from Sophia Drossopoulou. She always
forced me to try harder, simplify the formalizations, and make better examples. I am also
grateful for the visits to Imperial College that she enabled and for her enormous hospitality
every time.
I thank my co-examiners Mike Ernst and Martin Odersky for their time, feedback, and

questions. Mike, also, for providing me with a new academic home.
My interest and involvement with JML is in large parts due to the help and numerous

discussions with Gary Leavens. His continued investment into JML and building the JML
community is very inspiring.
I am thankful for the many discussions and learning experiences with all my co-authors.

During my thesis work, besides Sophia and Peter, I was inspired by Arnd Poetzsch-Heffter,
Dave Cunningham, Adrian Francalanza, Alex Summers, and Nick Cameron. Thanks also to
Ganesh group in Salzburg that started my academic endeavors and continued to provide an
alternative view during the PhD: my supervisor Andreas Uhl, my co-authors Michael Brachtl
and Peter Meerwald, and Dominik Engel and Rade Kutil for the camaraderie.
I am deeply indebted to all students I supervised in semester and master projects (listed

in reverse chronological order): Phokham N., Manfred S., Timur E., Mathias O., Robin Z.,
Andreas F., Martin K., Dominique S., Annetta S., Ovidio M., Paolo B., Matthias N., Marco B.,
Stefan N., David G., Nathalie K., Marco M., Dirk W., Frank L., Alex S., Thomas H., Daniel S.,
and Yann M. Each one of you provided your own insights and taught me something new. I also
wish to thank all students from lectures and exercise sessions that made teaching interesting
and fun.

Particular thanks are due to the newlywed Katja Abrahams and Hermann Lehner, who

iii

Acknowledgments

listened to many rants of mine and always were there to cheer me up. All the best with the
baby!
After more than a month without it, I start to miss my regular coffee group, consisting of

Ruth B., Franziska H., Sandra H., Peter K., Denise S., Marlies W., and Jutta Z. Its members
provided the perfect mix of information and entertainment.
I would like to thank Claudia and Andrew P. for making every meeting special, Gabi and

Stefan H. for teaching me British humor, Susanne and Luca P. for the good times, Stephanie
B. for interesting lunches, Christoph W. for funny dinners, Ruth B. for making me do some
exercises, Wolfgang K. for listening, Tobias B., Thomas J., Stefan A. for Sylt and the time
since then, Peter M. for the dinners on short notice in Salzburg, Mark M. and Dave C. for the
Californian spirit, and Claudio S. for the dinners and vacations spent together.
Thanks also go to my family for letting me roam the world: my mother Maria, brother

Stephan, and sister Inge. My aunt Lucia and uncle Werner for showing me Vienna and helping
in so many ways. Also, thanks to Hermine, Hedi, and Toni. In memories are my father Odo
and my grandmother Grete.

I am deeply thankful to J. P. for all the help, the good food, the explorations of Switzerland,
and for always having a smile for me.

Last, but not least, thanks to all the artists, musicians, free software developers, cooks, and
everybody else that makes my work and personal life easier and more enjoyable.

iv

Contents

Acknowledgments iii

Contents v

Abstract ix

Zusammenfassung xi

1 Introduction 1
1.1 Aliasing in Object-Oriented Languages . 1
1.2 Object Ownership . 2
1.3 Generic Universe Types . 2
1.4 Summary and Contributions . 3

2 Generic Universe Types 5
2.1 Main Concepts . 5

2.1.1 Ownership Modifiers . 5
2.1.2 Viewpoint Adaptation . 7
2.1.3 Type Parameters . 8
2.1.4 The lost and any Modifiers and Limited Covariance 10
2.1.5 Runtime Representation . 11

2.2 Programming Language Syntax and Semantics 12
2.2.1 Programming Language . 12
2.2.2 Runtime Model . 15
2.2.3 Static Types, Runtime Types, and Values 17
2.2.4 Operational Semantics . 22

2.3 Topological System . 24
2.3.1 Viewpoint Adaptation . 24
2.3.2 Static Ordering Relations . 27
2.3.3 Static Well Formedness . 30
2.3.4 Runtime Well Formedness . 36
2.3.5 Properties of the Topological System . 39

2.4 Encapsulation System . 41
2.4.1 Encapsulated Expression . 41
2.4.2 Pure Expression . 42
2.4.3 Encapsulated Method Declaration . 42
2.4.4 Encapsulated Class and Program Declaration 43
2.4.5 Examples . 43
2.4.6 Properties of the Encapsulation System 45

2.5 Discussion . 45

v

Contents

2.5.1 Reasonable Programs . 45
2.5.2 Erasure and Expansion of Type Arguments 57
2.5.3 Arrays . 58
2.5.4 Exceptions . 59
2.5.5 Static Fields . 60
2.5.6 Static Methods . 62
2.5.7 Map Example . 63

2.6 Related Work . 68
2.6.1 Ownership Type Systems . 68
2.6.2 Universe Type System . 71
2.6.3 Read-only References and Immutability 75
2.6.4 Object-Oriented Verification . 76

3 Tool Support 77
3.1 Type Checkers . 77

3.1.1 MultiJava and JML . 77
3.1.2 Other Compilers and Languages . 79
3.1.3 Experience . 80

3.2 Universe Type Inference . 80
3.2.1 Default Ownership Modifiers . 81
3.2.2 Universe Type Inference . 82
3.2.3 Related Work . 83

4 Future Work 85
4.1 Formalization . 85
4.2 Expressiveness . 86
4.3 Ownership Inference . 87
4.4 Tool Support . 87

5 Conclusion 89

A Properties and Proofs 91
A.1 Properties . 91

A.1.1 Viewpoint Adaptation . 91
A.1.2 Well-formedness Properties . 93
A.1.3 Ordering Relations . 97
A.1.4 Runtime Behavior . 100
A.1.5 Technicalities . 102
A.1.6 Properties that do not Hold . 104

A.2 Proofs . 106
A.2.1 Main Results . 106
A.2.2 Viewpoint Adaptation . 123
A.2.3 Well-formedness Properties . 129
A.2.4 Ordering Relations . 135
A.2.5 Runtime Behavior . 140
A.2.6 Progress . 141
A.2.7 Method Type Variables and Recursion 142

B Ott Formalization 145

vi

Contents

B.1 Complete Grammar . 145
B.2 Complete Definitions . 165

Bibliography 177

List of Figures 189

List of Definitions 191

List of Theorems and Lemmas 193

Curriculum Vitae 195

vii

Contents

viii

Abstract

We present Generic Universe Types, a sound, lightweight ownership type system for type-generic
object-oriented programming languages, which cleanly separates the ownership topology from
the owner-as-modifier encapsulation discipline and is supported by a comprehensive set of tools.

Mutable references give object-oriented programming languages the power to build complex
object structures and to efficiently modify them. However, this power comes at the cost of
aliasing: two or more references to the same object can exist, and the modifications performed
through one reference are visible through all other references. In main-stream object-oriented
languages, like Java and C], objects and references build a complicated mesh and there is no
support to structure the heap. Visibility modifiers (such as private and protected in Java)
only deal with information hiding, for example, ensuring that a field is only accessible from
within its declaring class. However, the object referenced by that field might still be aliased
and modified by other objects at runtime. There is no support to encapsulate object structures
and to ensure that objects at runtime are only accessed in a controlled fashion.
Aliasing and the unstructured nature of the heap lead to problems with, for example,

understanding the behavior of a program, adapting a consistent locking discipline to ensure
correct concurrent behavior, exchanging the implementation of an interface, and the formal
verification of properties.

The concept of object ownership has been proposed as a mechanism to structure the heap
hierarchically and to provide encapsulation of object structures. Each object is assigned at
most one other object as its owning object, and restrictions are enforced on the references.
Ownership type systems provide static type annotations to enforce an ownership topology and
encapsulation.

For maintaining invariants, the existence of aliases is no problem, as long as these aliases are
not used to modify the internal representation of a different object. We call this encapsulation
system the owner-as-modifier discipline, because it guarantees that the owner object is always in
control of modifications. The Universe type system is a lightweight ownership type system that
enforces the owner-as-modifier discipline and supports the modular verification of object-oriented
programs.

We define Generic Universe Types (GUT), a combination of type genericity with Universe
types. GUT subsumes the previous non-generic Universe type system and cleanly separates the
topology from the encapsulation system. We give a complete formalization of the GUT system
and prove it sound.
Usually, ownership type systems entangle the enforcement of the ownership topology with

the enforcement of an encapsulation system; that is, the structuring of the heap and the
restrictions on the use of references are enforced together. In this thesis, we cleanly separate the
ownership topology from the encapsulation system, giving a cleaner formalization and allowing
the separate reuse.

ix

Abstract

Finally, we discuss the integration of a Generic Universe Types checker into the Java Modeling
Language (JML) compiler suite, the support for Java 7 (JSR 308) annotations, and Scala
compiler plug-ins. We also illustrate the automatic inference of ownership modifiers using a
static and a runtime approach.

x

Zusammenfassung

Wir präsentieren Generic Universe Types, ein typsicheres, leichtgewichtiges Ownership-Typ-
system für typ-generische objektorientierte Programmiersprachen, welches die Ownership-Topo-
logie klar von der Owner-as-Modifier Kapselungsdisziplin trennt und von einer umfassenden
Menge an Werkzeugen unterstützt wird.

Veränderbare Referenzen geben objektorientierten Programmiersprachen die Ausdrucks-
stärke, komplexe Objektstrukturen aufzubauen und sie effizient zu modifizieren. Für diese
Ausdrucksstärke nimmt man jedoch Aliasing in kauf: zwei oder mehr Referenzen die das selbe
Objekt referenzieren. Modifikationen die durch eine Referenz ausgeführt werden sind auch
durch alle anderen Referenzen sichtbar. In geläufigen objektorientierten Programmiersprachen,
wie Java und C], bilden Objekte und Referenzen ein komplexes Netzwerk und es gibt keine
Unterstützung, um den Speicher zu strukturieren. Die Zugriffsmodifikatoren (wie zum Beispiel
private und protected in Java) stellen nur das Geheimnisprinzip sicher, zum Beispiel, dass
auf ein Feld nur innerhalb seiner deklarierenden Klasse zugegriffen werden kann. Jedoch kann
das vom Feld referenzierte Objekt zur Laufzeit trotzdem mehrfach referenziert werden und
über einen Alias modifiziert werden. Es gibt keine Unterstützung der Datenkapselung und
keinen Mechanismus um sicherzustellen, dass Objekte zur Laufzeit nur in einer kontrollierten
Art benutzt werden.

Aliasing und der unstrukturierte Speicher führen zu einigen Problemen, zum Beispiel beim
Programmverständnis, beim Verwenden einer konsistenten Sperrdisziplin für Monitore um
korrektes paralleles Verhalten sicherzustellen, beim Austauschen der Implementierung einer
Schnittstelle und bei der formalen Verifikation von Programmeigenschaften.

Das Konzept der Object Ownership wurde als Mechanismus vorgeschlagen, um den Speicher
hierarchisch zu strukturieren und um Datenkapselung für Objektstrukturen sicherzustellen.
Jedes Objekt gehört zu maximal einem anderen Objekt und Beschränkungen auf die möglichen
Referenzen werden eingehalten. Ownership-Typsysteme verwenden statische Typannotationen
um eine Ownership-Topologie und Datenkapselung sicherzustellen.
Für den Erhalt von Invarianten sind verschiedene Referenzen auf das selbe Objekt kein

Problem, solange ein Alias nicht zum Verändern der internen Repräsentation eines anderen
Objekts verwendet wird. Wir bezeichnen diese Datenkapselungseigenschaft als die Owner-
as-Modifier-Disziplin, weil sie sicherstellt, dass der Besitzer eines Objekts Veränderungen
am Objekt kontrollieren kann. Das Universe Typsystem ist ein leichtgewichtiges Owernship-
Typsystem das die Owner-as-Modifier-Disziplin erzwingt und dadurch die modulare Verifikation
von objektorientierten Programmen ermöglicht.

Wir definieren Generic Universe Types (GUT), eine Kombination von Typgenerizität mit dem
Universe Typsystem. GUT subsumiert das nicht-generische Universe Typsystem und trennt die
Ownership-Topologie klar von der Datenkapselung. Wir geben eine komplette Formalisierung
von GUT und zeigen die Fehlerfreiheit.

Normalerweise vermischen Ownership-Typsysteme das Sicherstellen einer Ownership-Topo-
logie und der Datenkapselung, das heisst, die Strukturierung des Speichers und die Verwendung

xi

Zusammenfassung

von Referenzen werden gemeinsam beschränkt. In dieser Doktorarbeit trennen wir diese beiden
Konzepte konsequent und bekommen dadurch eine klarere Formalisierung und können die
Komponenten getrennt wiederverwenden.
Schlussendlich diskutieren wir die Integration von Generic Universe Types in den Kompiler

der Java Modellierungssprache JML, die Unterstützung von Java 7 (JSR 308) Annotationen
und die Verwendung von Erweiterungen für den Scala Übersetzer. Wir illustrieren auch wie
Ownership Annotationen automatisch inferiert werden können und präsentieren dafür einen
statischen und einen dynamischen Ansatz.

xii

Chapter 1

Introduction

1.1 Aliasing in Object-Oriented Languages

This thesis is set in the context of imperative object-oriented languages in the style of Java [86],
C] [101], and Eiffel [129]. Object-oriented programming languages use mutable objects and
references to efficiently model the state of a program. A reference to an object can be used to
change the state of the object, either directly by field updates or through method calls.
Individual objects model only a small part of a larger system. The interaction of multiple

objects is used to model abstractions. For example, a list can be written as an object that
manages a linked sequence of node objects. To add an element to the list, one can directly
modify the list header and prepend an additional node. Clients of the list should not know or
care about its internal representation.
The power and ease of references comes at a severe cost: aliasing, the possibility that the

same object is referenced multiple times [129, 5]. Modifications performed through one reference
are visible to the holders of aliases, but such changes may be unexpected.
Visibility modifiers (like private in Java) deal only with information hiding, for example,

ensuring that a field is accessible only from within its declaring class. However, the object
referenced by that field might still be aliased and modified by other objects at runtime.

It is easy to accidentally create aliases to supposedly encapsulated objects, by either leaking
a reference to the internal representation or capturing an external object and using it as if it
were a representation object.

The programmer has to take great care to avoid accidental leaking or capturing of references.
There is no support to encapsulate object structures and ensure that objects at runtime are
accessed only in a controlled fashion. The “Secure Coding Guide” from Sun [183], for example,
suggests in guideline 2-1 to “Create a copy of mutable inputs and outputs”. Creating copies
solves the problem of aliasing, but is an easy-to-forget operation, causes performance overhead,
and results in the loss of object identities.

The unstructured nature of the heap leads to many problems, ranging from difficulty with
program understanding for programmers; to concurrency errors, like deadlocks from locking
the same object twice and race conditions by modifying one object through different aliases;
to difficulties for the modular, formal verification of programs. The problems with aliasing in
imperative and object-oriented languages have long been recognized [98].

In this thesis, we are particularly interested in the modular verification of program properties.
For example, assume that we want to keep track of how many elements are in a list and add an
integer field length to store the current length. We want to maintain the invariant that the
number of nodes in the list is equal to the value of the length field. The programmer correctly
adapts the implementation of the list to keep the length current. However, this is not enough.
If a reference to a node can escape from the list abstraction, then modifications of the node can
break the invariant of the list, without the list having the possibility to establish the invariant.

1

Chapter 1 Introduction

For example, a subtype of the list could leak a reference to the representation. Again, the
information hiding features of programming languages are not enough to allow the (re-)use of
classes within an abstraction and at the same time forbid the misuse from outside.

1.2 Object Ownership
The concept of object ownership allows programmers to structure the object store hierarchically
and to control aliasing and access between objects. Ownership has been applied successfully to
various problems, for instance, program verification [69, 116, 135, 142], thread synchronization
[24, 103], memory management [12, 27], and representation independence [13].

Existing ownership models share a fundamental topology: Each object has at most one owner
object. The set of all objects with the same owner is called a context. The root context is the
set of objects with no owner. The ownership relation is a tree order.
However, existing models differ in the encapsulation system they enforce. The original

ownership types [48] and their descendants [23, 45, 46, 162] restrict aliasing and enforce the
owner-as-dominator discipline: All reference chains from an object in the root context to an
object o in a different context go through o’s owner. This severe restriction of aliasing is
necessary for some of the applications of ownership, for instance, memory management and
representation independence.

For applications such as program verification, restricting aliasing is not necessary. Instead, it
suffices to enforce the owner-as-modifier discipline: An object o may be referenced by any other
object, but reference chains that do not pass through o’s owner must not be used to modify o.
This allows owner objects to control state changes of owned objects and thus maintain invariants.
The owner-as-modifier discipline has been inspired by Flexible Alias Protection [150]. It is
enforced by the Universe type system [63, 55], in Spec]’s dynamic ownership model [116, 17], and
Effective Ownership Types [122]. The owner-as-modifier discipline imposes weaker restrictions
than the owner-as-dominator discipline, which allows it to handle common implementations
where objects are shared between objects, such as collections with iterators, shared buffers,
or the Flyweight pattern [63, 145]. Some implementations can be slightly adapted to satisfy
the owner-as-modifier discipline, for example an iterator can delegate modifications to the
corresponding collection which owns the internal representation.
The difference between the owner-as-dominator and the owner-as-modifier discipline is

illustrated in Fig. 1.1. References that cross context boundaries without going through the
owner are always forbidden in the owner-as-dominator system. They are allowed in the
owner-as-modifier discipline, but may not be used to modify the referenced object.

1.3 Generic Universe Types
In this thesis, we present Generic Universe Types, an ownership type system for a programming
language with generic types similar to Java 5 and C] 2.0. Our work builds on our previous
combination of Universe Types with generic types [60], but distinguishes itself from our and
other previous work by (1) cleanly separating the topological system from the encapsulation
system, (2) enforcing the owner-as-modifier discipline, (3) formally integrating type parameters
and ownership, and (4) a simple language design building on Universe Types.

The topological system ensures that the hierarchical structure of the object store is enforced
and the separate encapsulation system enforces additional rules to ensure the owner-as-modifier
discipline or some other set of encapsulation rules. Cleanly separating the ownership topology
from the encapsulation system improves the formalization and presentation of ownership

2

1.4 Summary and Contributions

root

1: Client

4: ID

3: Map

5: Node

2: Data

value

map

n firstkey

key
value

Figure 1.1: Object structure of a map from ID to Data objects. The map is represented by
Node objects. The client has a direct reference to a node. Objects, references, and
contexts are depicted by rectangles, arrows, and dashed rectangles, respectively.
Owner objects sit atop the context of objects they own. Arrows are labeled with the
name of the variable that stores the reference. Dashed arrows depict references that
cross context boundaries without going through the owner. They are permitted
by the owner-as-modifier discipline, but not by owner-as-dominator. If the owner-
as-modifier discipline is enforced, such references must not be used to modify the
state of the referenced objects. The source code for this example will be shown in
Figs. 2.1, 2.2, and 2.3.

type systems. For some applications of ownership, e.g., concurrency [56], the topological
structure is sufficient and no encapsulation system needs to be enforced. Also Spec]’s dynamic
ownership model [116] could use our topological system and use logic to enforce a more flexible
encapsulation system.
Enforcing only the topological system already provides strong guarantees. Suppose there

was a second map object in Fig. 1.1. The topological system guarantees that the first field of
a map will only reference node objects that belong to its representation. Mixing nodes from
different maps is prevented.

1.4 Summary and Contributions
The rest of this thesis is organized as follows.

Chapter 2 is the technical core of the thesis. We introduce Generic Universe Types (GUT)
using an example and then develop a complete formalization of GUT by defining the program-
ming language and operational semantics, the topological type system, and an encapsulation
system. We state properties of the formalization and, in particular, give the soundness theorem.
Finally, we discuss interesting examples and related work.

We previously published the material on non-generic Universe types [62, 67, 63, 66, 115, 55, 34]
and a first version of Generic Universe Types [59, 61, 60]; an additional paper on the current
version of GUT is under development.

Chapter 3 presents the tool support for GUT, in particular, Sec. 3.1 discusses the type
checkers that support GUT and preliminary results about type inference for GUT are presented
in Sec. 3.2. First results about the compiler implementation and inference tools were published
[68, 65, 64].
Chapter 4 presents future work and Chapter 5 concludes.
Finally, App. A gives the detailed properties and proofs. We formalize GUT using Ott

3

Chapter 1 Introduction

[176], a system that provides support for defining languages by having a simple input language,
sort-checking input, and producing LATEX and theorem prover output. We include the complete
Ott formalization of Generic Universe Types in App. B.

4

Chapter 2

Generic Universe Types

This chapter presents Generic Universe Types, our extension of the Universe type system to
generic types.

Sec. 2.1 illustrates the main concepts of Generic Universe Types by examples. Sec. 2.2 defines
the programming language, the runtime system, and the operational semantics. The topological
system is given in Sec. 2.3, and Sec. 2.4 presents the encapsulation system that builds on top of
the topological system. In Sec. 2.5, we discuss further examples, and, finally, Sec. 2.6 discusses
related work.
Technical details are relegated to the appendix. App. A.1 presents additional properties

of GUT that are needed in the proofs, and App. A.2 contains the proofs of the properties.
App. B.1 gives the complete grammar with all functions that are used in the formalization. In
the main part, we omit the definition of helper functions, e.g., definitions that lift operations
from single elements to sequences of elements. See App. B.2 for the complete set of definitions.

2.1 Main Concepts

In this section, we explain the main concepts of Generic Universe Types (GUT) informally by
two examples: a generic map and an implementation of the decorator pattern.
Class Map (Fig. 2.1) implements a generic map from keys to values. Key-value pairs are

stored in singly-linked Node objects (Fig. 2.2). The main method of class Client (Fig. 2.3)
builds up the map structure shown in Fig. 1.1. In the second example, class Decorator can be
used to decorate arbitrary objects (Fig. 2.4) as shown in class Demo (Fig. 2.5). For simplicity,
we omit access modifiers from all examples.

2.1.1 Ownership Modifiers

A type in GUT is either a type variable or consists of an ownership modifier, a class name, and
possibly type arguments. The ownership modifier expresses object ownership relative to the
current receiver object this1. Programs may contain the ownership modifiers peer, rep, and
any. These have the following meanings:

• peer expresses that an object has the same owner as the this object, that is, that the
current object and the referenced object share the same owner and are therefore in the
same context.

• rep expresses that an object is owned by this, that is, the current object is the owner of
the referenced object.

1We ignore static fields and methods here, but an extension is possible; see Secs. 2.5.5 and 2.5.6.

5

Chapter 2 Generic Universe Types

class Map<K, V> {
rep Node<K, V> first;

void put(K key, V value) {
rep Node<K, V> newfirst = new rep Node<K, V>();
newfirst.init(key, value, first);
first = newfirst;

}

pure V get(any Object key) {
rep Node<K, V> n = getNode(key);
return n != null ? n.value : null;

}

pure rep Node<K, V> getNode(any Object key) {
rep Node<K, V> n = first;
while (n != null) {

if (n.key.equals(key)) return n;
n = n.next;

}
return null;

}
}

Figure 2.1: An implementation of a generic map. Map objects own their Node objects, as
indicated by the rep modifier in all occurrences of class Node.

• any expresses that an object may have an arbitrary owner. The any modifier is a “don’t
care” modifier and expresses that the ownership of the referenced object is deliberately
unspecified for this reference; any types therefore are supertypes of the rep and peer
types with the same class and type arguments, as any types convey less specific ownership
information.

The use of ownership modifiers is illustrated by class Map (Fig. 2.1). A Map object owns its
Node objects since they form the internal representation of the map. This ownership relation is
expressed by the rep modifier of Map’s field first, which points to the first node of the map.
Internally, the type system uses two additional ownership modifiers, self and lost:

• self is only used as the modifier for the current object this and distinguishes the current
object from other objects that have the same owner. Therefore, a type with the self
modifier is a subtype of a type with the peer modifier with the same class and type
arguments. The use of a separate self modifier highlights the special role that the current
object plays in ownership systems and simplifies the overall system by removing special
cases for accesses on this.

• lost signifies that the ownership information cannot be expressed statically with one
of the other ownership modifiers. It is a “don’t know” modifier that indicates that
ownership information was “lost” in the type checking process; in contrast to the any
modifier, concrete ownership information might be needed for the reference. lost types
are subtypes of corresponding any types, because we want to be able to use any references
to refer to arbitrary objects, including objects with lost ownership; on the other hand,

6

2.1 Main Concepts

class Node<K, V> {
K key; V value;
peer Node<K, V> next;

void init(K k, V v, peer Node<K, V> n) { key = k; value = v; next = n; }
}

Figure 2.2: Nodes form the internal representation of maps. Class Node implements nodes for
singly-linked lists of keys and values.

lost types are supertypes of the corresponding peer and rep types, because lost types
provide less detailed information.

Our encapsulation system enforces the owner-as-modifier discipline by restricting modifications
of objects to self, peer, and rep receivers. That is, an expression of a lost or an any type
may be used as receiver of field reads and calls to side-effect free (pure) methods, but not of
field updates or calls to non-pure methods. To check this property, the encapsulation system
requires side-effect free methods to be annotated with the keyword pure. This distinction
between pure and non-pure methods is not relevant for the topological system.

2.1.2 Viewpoint Adaptation
Since ownership modifiers express ownership relative to this, they have to be adapted when
this “viewpoint” changes. Consider Node’s method init (Fig. 2.2). The third parameter has
type peer Node<K,V> and is used to initialize the next field. The peer modifier expresses that
the parameter object must have the same owner as the receiver of the method. On the other
hand, Map’s method put calls init on a rep Node receiver, that is, an object that is owned by
this. Therefore, the third parameter of the call to init also has to be owned by this. This
means that from this particular call’s viewpoint, the third parameter needs a rep modifier,
although it is declared with a peer modifier. In the type system, this viewpoint adaptation is
done by combining the type of the receiver of a call (here, rep Node<K,V>) with the type of
the formal parameter (here, peer Node<K,V>). This combination yields the argument type
from the caller’s point of view (here, rep Node<K,V>).

Viewpoint adaptation results in lost ownership information if the ownership is not expressible
from the new viewpoint. For instance imagine there was a field access map.first in Fig. 2.3;
the viewpoint adaptation of the field type, rep Node<K,V>, yields a lost type because there is
no ownership modifier to more precisely express a reference into the representation of object
map. As a consequence, soundness of the topological system requires that methods cannot
directly modify a rep field of an object other than this.
However, if only the topological system is enforced, a reference containing lost or arbitrary

ownership information can still be used as receiver. Consider the main program in Fig. 2.3.
Local variable n stores a reference into the representation of another object, because method
getNode returns a reference to the internal nodes of the peer map. The update n.key is valid,
as it preserves the topology of the heap. We have full knowledge of the type of the field after
viewpoint adaptation, and no ownership information is lost. On the other hand, the update
of field next has to be forbidden. After the viewpoint adaptation, the type of the left-hand
side contains a lost ownership modifier and, therefore, the heap topology cannot be ensured
statically.

Viewpoint adaptation and the owner-as-modifier discipline provide encapsulation of internal
representation objects. Again, let us consider method getNode from class Map. By viewpoint

7

Chapter 2 Generic Universe Types

adaptation of the return type, rep Node<K,V>, clients of the map can only obtain a lost
reference to the nodes. The owner-as-modifier discipline requires a self, peer, or rep receiver
type for modifications and, thus, guarantees that clients cannot directly modify the node
structure. This allows the map to maintain invariants over the nodes, for instance, that the
node structure is acyclic.

2.1.3 Type Parameters

Ownership modifiers are also used in actual type arguments. For instance, Client’s method
main instantiates Map with the type arguments rep ID and any Data. Thus, field map has type
peer Map<rep ID, any Data>, which has three ownership modifiers. The main modifier peer
expresses that the Map object has the same owner as this, whereas the argument modifiers rep
and any express ownership of the keys and values relative to the this object, in this case that
the keys are ID objects owned by this and that the values are Data objects in an arbitrary
context. It is important to understand that the argument modifiers again expresses ownership
relative to the current this object (here, the Client object), and not relative to the instance
of the generic class that contains the argument modifier (here, the Map object map).

Type variables are not subject to the viewpoint adaptation that is performed for non-variable
types. When type variables are used, for instance, in field declarations, the ownership information
they carry stays implicit and does, therefore, not have to be adapted. The substitution of type
variables by their actual type arguments happens in the scope in which the type variables were
instantiated. Therefore, the viewpoint is the same as for the instantiation, and no viewpoint
adaptation is required. For instance, imagine there was a field read n.key in method main
(Fig. 2.3). The declared type of the field is the type variable K. Reading the field through the
n reference substitutes the type variable by the actual type argument rep ID, and does not
perform a viewpoint adaptation.
Thus, even though the Map class does not know the owner of the keys and values (due to

the implicit any upper bound for K and V, see below), clients of the map can recover the exact
ownership information from the type arguments. This illustrates that Generic Universe Types
provide strong static guarantees similar to those of owner-parametric systems [48], even in
the presence of any types. The corresponding implementation in non-generic Universe Types
requires a downcast from the any type to a rep type and the corresponding runtime check [63].

Type variables have upper bounds, which default to any Object. In a class C , the ownership
modifiers of an upper bound express ownership relative to the C instance this. However, when
C ’s type variables are instantiated, the modifiers of the actual type arguments are relative to
the receiver of the method that contains the instantiation. Therefore, checking the conformance
of a type argument to its upper bound requires a viewpoint adaptation. Equally, method type
variables have upper bounds that are relative to the current instance of the declaring class.

As an example, consider the implementation of the decorator pattern presented in Figs. 2.4
and 2.5. Class Decorator (Fig. 2.4) can be used to decorate arbitrary objects with a type
provided as method type variable O. The upper bound of O has the type peer Decoration<V>.
Method decorateList decorates a list of elements. Class Demo (Fig. 2.5) presents a use of
the decorator: the call of method decorate is type correct, because the upper bound for type
variable O after viewpoint adaptation is rep Decoration<rep Data>, which is a supertype of
the actual type argument, rep MyDecoration. This subtype relation can be derived from the
superclass declaration of class MyDecoration and adapting to a rep viewpoint.

8

2.1 Main Concepts

class ID { /* ... */ }
class Data { /* ... */ }

class Client {
peer Map<rep ID, any Data> map;

void main() {
map = new peer Map<rep ID, any Data>();
peer Data value = new peer Data();
rep ID key = new rep ID();
map.put(key, value);

any Node<rep ID, any Data> n = map.getNode(key);
n.key = new rep ID(); // OK
n.next = new rep Node<rep ID, any Data>(); // Error

}
}

Figure 2.3: Main program for our map example. The execution of method main creates the
object structure in Fig. 1.1.

class Decoration<V> {
void set(V val) {}

}

class Decorator {
<V, O extends peer Decoration<V>>
O decorate(V in) {
O res = new O();
res.set(in);
return res;

}

<V, O extends peer Decoration<V>>
peer List<O> decorateList(any List<V> inlist) {

peer List<O> res = new peer List<O>();
for(V in : inlist) {
res.add(decorate<V, O>(in));

}
return res;

}
}

Figure 2.4: A decorator for arbitrary objects. As shown in method decorate, type variables
with peer or rep upper bounds can be instantiated.

9

Chapter 2 Generic Universe Types

class MyDecoration extends Decoration<peer Data> {
peer Data f;

void set(peer Data d) { f = d; }
}

class Demo {
void main() {

rep Data d = new rep Data();
rep MyDecoration dd =

new rep Decorator().decorate<rep Data, rep MyDecoration>(d);
}

}

Figure 2.5: Class MyDecoration decorates peer Data objects and is then used by class Demo.

class ClientUser {
void useMap(peer Client client) {
client.map.put(new rep ID(), new peer MyData()); // Error

}
}

Figure 2.6: Viewpoint adaptation of the map results in lost ownership.

2.1.4 The lost and any Modifiers and Limited Covariance

There is a fundamental difference between a generic type that uses an arbitrary owner as type
argument and a generic type that uses an unknown owner as type argument.
For example, the map from Fig. 2.3 has type peer Map<rep ID, any Data> and specifies

that the map object has the same owner as the current object, that the keys are ID objects
owned by the current object, and that the values are Data objects that have arbitrary owners.
The type specifies that an arbitrary owner is allowed for the values and that it is legal to use
peers, reps, or objects with any other kind of ownership.
The adaptation of a type argument might yield a lost type, signifying that ownership

information could not be expressed from the new viewpoint, as illustrated in Fig. 2.6. The
type of the field access client.map is peer Map<lost ID, any Data>. We can statically still
express that the map object itself is in the same context as the current object and we still
know that the values are in an arbitrary context. But from this new viewpoint, we cannot
express that the keys have to be owned by the client instance client; there is no specific
ownership modifier for this relation and therefore the lost modifier is used. It would not be
type safe to allow the call of method put on the receiver of this type. The signature for method
put after viewpoint adaptation contains lost and the topological system cannot express the
precise ownership required for the first argument. On the other hand, the signature of method
get does not contain lost and can still be called. Note that methods get and getNode use
any Object as parameter types and not the type variable K. Using the upper bound of a type
variable instead of the type variable allows us to call a method even if the actual type argument
loses ownership information. This is particularly useful for pure methods that do not modify
the heap. Note that the same design is used in the Java 5 interface java.util.List, e.g.,
by methods contains, indexOf, and remove. These methods use Object as parameter type
instead of the corresponding type variable, which allows them to be called on receivers that
contain wildcards and, thus, increases the applicability of these methods.

10

2.1 Main Concepts

class Cast {
void m(any Object obj) {

peer Map<rep ID, any Data> map = (peer Map<rep ID, any Data>) obj;
map.put(new rep ID(), new peer Data());

}
}

Figure 2.7: Demonstration of a cast.

Subtyping with covariant type arguments is in general not statically type safe. For instance,
if List<String> were a subtype of List<Object>, then clients that view a string list through
type List<Object> could store Object instances in the string list, which breaks type safety.
The same problem occurs for the ownership information encoded in types. If peer Map<rep
ID, any Data> were a subtype of peer Map<any ID, any Data>, then clients that view the
map through the latter type could use method put (Fig. 2.1) to add a new Node object where
the key has an arbitrary owner, even though the map instance requires a specific owner. The
covariance problem can be prevented by disallowing covariant type arguments (like in Java and
C]), using use-site or declaration-site variance annotations (i.e., wildcards as found in Java or
variance annotations as found in Scala [153]), by runtime checks (as done for arrays in Java),
or by elaborate syntactic support [70].
Our topological system supports a limited form of covariance without requiring additional

checks. Covariance is permitted if the corresponding modifier of the supertype is lost. For ex-
ample, peer Map<rep ID, any Data> is a subtype of peer Map<lost ID, any Data>. This
is safe because the topological system already prevents updates of variables that contain lost.
In particular, it is not possible to call method put, because the signature after substitution
contains lost, which prevents the unsound addition of an arbitrary object illustrated above.

2.1.5 Runtime Representation
We store the ownership information and the runtime type arguments including their associated
ownership information explicitly in the heap because this information is needed in the runtime
checks for casts and for instantiating type variables. In this respect, our runtime model is
similar to that of the .NET CLR [107], where runtime information about generics is present
and “new constraints” can be used to allow the instantiation of type variables.

For example, method m in Fig. 2.7 takes an object with an arbitrary owner as argument and
uses a cast to retrieve ownership information for the main modifier of the map reference and
also for the type arguments. To check this cast at runtime, the object needs to store a reference
to its owner and the ownership and type information for the type arguments.
Storing the ownership information at runtime also enables us to create instances of type

variables if the main modifier of the corresponding upper bound is peer or rep. In our language,
every class can be instantiated using a uniform new expression, which initializes all fields to
null. Type variables with any as upper bound cannot be instantiated, as we could not ensure
that the actual type argument provides concrete ownership information, which is necessary
for the correct placement in the ownership topology. In the implementation of the decorator
pattern, presented in Figs. 2.4 and 2.5, we want to instantiate the type variable O; its upper
bound is peer (rep would also be possible, but would limit the possible callers of the method)
and we therefore know that the new object will have the same owner as the current object.

There are alternatives to storing the genericity information at runtime: erasure of genericity
as found in Java 5 and expansion of generic class declarations as found in C++ templates. It is

11

Chapter 2 Generic Universe Types

possible to erase a GUT program into a Universe Types program without generics [55], using
casts. The interpretation of casts and type arguments is the same: both are from the viewpoint
of the current object. Therefore, the casts inserted into the erased program use the same types
that are used as type arguments. In contrast, expanding the type arguments into the declaring
class does not work in general, as the viewpoint for the type argument and the expanded type
differ and a viewpoint adaptation is not always possible. See Sec. 2.5.2 for an example.

This concludes our informal introduction to Generic Universe Types. In the next section we
present the programming language and semantics on which we build.

2.2 Programming Language Syntax and Semantics
In this section, we define the syntax and operational semantics of the programming language.
It presents a standard model for a class-based object-oriented language that is independent of
the topological and the encapsulation system, which will be presented in Secs. 2.3 and 2.4.

2.2.1 Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and C] 2.0 including
classes and inheritance, instance fields, dynamically-bound methods, and the usual operations
on objects (allocation, field read, field update, casts). For simplicity, we omit several features of
Java and C] such as interfaces, enum types, exceptions, constructors, static fields and methods,
inner classes, primitive types and the corresponding expressions, and all statements for control
flow. We do not expect that any of these features is difficult to handle (see for instance
[23, 62, 115, 135]). The language we use is similar to Featherweight Generic Java [99]. We
added field updates because the treatment of side effects is essential for ownership type systems
and especially the owner-as-modifier discipline.
Fig. 2.8 summarizes the syntax of our language and our naming conventions for variables.

We assume that all identifiers of a program are globally unique except for this as well as
method and parameter names of overridden methods. This can be achieved easily by preceding
each identifier with the class or method name of its declaration (but we omit this prefix in our
examples).
The superscript s distinguishes the sorts for static checking from the corresponding sorts

used to describe the runtime behavior.
A sequence of A’s is denoted as A. In such a sequence, we denote the i-th element by Ai. We

denote sequences of a certain length k by Ak. A sequence A can be empty; the empty sequence
is denoted by ∅. We use sequences of “maplets” S = a 7→ b as maps and use a function-like
notation to access an element S(ai) = bi. We use dom to denote the domain of a sequence of
maplets, e.g., dom(S) = a. We present definitions that lift operations from single elements to
sequences of elements and trivial helper functions in App. B.2.

A program P consists of a sequence of classes Cls, the identifier of a main class C , and a main
expression e. A program is executed by creating an instance o of C and then evaluating e with
o as this object. We assume that we always have access to the current program P, and keep P
implicit in the notations. Each class Cls has a class identifier, type variables with upper bounds,
a superclass with type arguments, a sequence of field declarations, and a sequence of method
declarations. f is used for field identifiers. Like in Java, each class directly or transitively
extends the predefined class Object.

A method declaration md consists of the purity annotation, the method type variables with
their upper bounds, the return type, the method identifier m, the formal method parameters

12

2.2 Programming Language Syntax and Semantics

P ::= Cls, C , e
Cls ::= class Cid<TP> extends C<sT> { fd md }
C ::= Cid | Object

TP ::= X extends sN
fd ::= sT f ;

md ::= p <TP> sT m(mpd) { e }
p ::= pure | impure

mpd ::= sT pid
e ::= null | x | new sT() | e.f | e0.f = e1 |

e0 .m < sT > (e) | (sT) e
sT ::= sN | X
sN ::= u C<sT>
u ::= self | peer | rep | lost | any
x ::= pid | this

pid parameter identifier
f field identifier

m method identifier
X type variable identifier

Cid class identifier

Figure 2.8: Syntax of our programming language.

pid with their types, and an expression as body. The result of evaluating the expression is
returned by the method. Method parameters x include the explicit method parameters pid and
the implicit method parameter this.
To be able to enforce the owner-as-modifier discipline, we have to distinguish statically

between side-effect free (pure) methods and methods that potentially have side effects. Pure
methods are marked by the keyword pure. In our syntax, we mark all other methods by
impure, although we omit this keyword in our examples. Method purity is not relevant for the
discussions in the current section and for the topological system presented in Sec. 2.3; it will be
used by the encapsulation system in Sec. 2.4.
An expression e can be the null literal, a method parameter access, object creation, field

read, field update, method call, or cast.
A type sT is either a non-variable type or a type variable identifier X . A non-variable type

sN consists of an ownership modifier, a class identifier, and a sequence of type arguments.
An ownership modifier u can be self, peer, rep, lost, or any. Note that we restrict the

use of self and lost in the formalization only as much as is needed for the soundness of the
system. For example, we allow the use of lost in the declared field type, even though such a
field can never be assigned a value. In Sec. 2.5.1 we discuss rules for programmers that prevent
useless programs without removing significant expressiveness.

The following subsections define subclassing and look-up functions that make accessing
different parts of the program simpler.

2.2.1.1 Subclassing

We use the term subclassing (symbol v) to refer to the reflexive and transitive relation on classes
declared in a program by the extends keyword, irrespective of main modifiers. It is defined on
instantiated classes C<sT>, which are denoted by sCT . The subclass relation is the smallest
relation satisfying the rules in Def. 2.2.1. Each class that is instantiated with its type variables

13

Chapter 2 Generic Universe Types

is a subclass of the class and type arguments it is declared to extend (sc1). Subclassing is
reflexive (sc2) and transitive (sc3). In all three rules, the subclass is the class instantiated
with its declared type variables whereas the superclass is instantiated with type arguments that
depend on the relationship between sub- and superclass; this makes substitutions in later rules
simpler. The substitution of the type arguments sT for the type variables X in sT is denoted
by sT

[
sT/X

]
. For the substitution to be defined, the two sequences have to have the same

length.

Definition 2.2.1 (Subclassing)
sCT v sCT ′ subclassing

class Cid<Xk extends _> extends C ′<sT> { _ _ } ∈P
Cid<Xk> v C ′<sT>

sc1

class C<Xk extends _> . . . ∈ P
C<Xk> v C<Xk>

sc2

C<X> v C1<sT 1>
C1<X1> v C ′<sT ′>

C<X> v C ′<sT ′
[
sT 1/X1

]
>

sc3

Consider the declaration of class MyDecoration in Fig. 2.5. Using rule sc1 we can derive
MyDecoration v Decoration<peer Data>.

2.2.1.2 Field Type Look-up

Function FType is used to look up the declared type of a field in a class. Note that the function
is defined only if the field is declared in the given class; superclasses are not considered. Class
Object has no fields and therefore the function is undefined in this case.

Definition 2.2.2 (Field Type Look-up)

FType(C , f) = sT look up field f in class C

class Cid<_> extends _<_> { _ sT f ; _ _ } ∈P
FType(Cid, f) = sT

sftc_def

In the above definition, the part _ sT f ; _ _ is read as “some sequence of field declarations,
then a field declaration with static type sT and identifier f , followed by another sequence of
field declarations, and finally an arbitrary sequence of method declarations.”

2.2.1.3 Method Signature Look-up

The look-up of a method signature in a class works like field look-up and yields the method
signature of a method with the given name in class C :

Definition 2.2.3 (Method Signature Look-up)

MSig(C ,m) = mso look up signature of method m in class C

class Cid<_> extends _<_> { _ _ ms { e } _ } ∈P
MName(ms) = m

MSig(Cid,m) = ms smsc_def

MName yields the method name of a method signature. Note that we do not support method
overloading, so the method name is sufficient to uniquely identify a method. In the definition
of MSig we use mso as result to signify an optional method signature. In the definition of the

14

2.2 Programming Language Syntax and Semantics

h ::= (ι 7→ o)
ι Address
oι ::= ι | anya | roota
v ::= ι | nulla
o ::=

(
rT , fv

)
rT ::= oι C<rT>
fv ::= f 7→ v

rΓ ::=
{
X 7→ rT ; x 7→ v

}
Figure 2.9: Definitions for the runtime model.

method overriding rules (presented in Def. 2.3.17), we need to explicitly distinguish between an
undefined method signature (using the notation None) and a defined method signature ms.

Like in FGJ [99], in a method signature _ <Xl extends sNl> sT m(sTq pid) the method type
variables Xl are bound in the types sNl , sT , and sTq and α-convertible signatures are equivalent.

2.2.1.4 Class Domain Look-up

The domain of a class is the sequence of type variables that it declares. The predefined class
Object does not declare any type variables.

Definition 2.2.4 (Class Domain Look-up)

ClassDom(C) = X look up type variables of class C

class Cid<Xk extends _> extends _<_> { _ _ } ∈P
ClassDom(Cid) = Xk

scd_nvar

ClassDom(Object) = ∅ scd_object

2.2.1.5 Upper Bounds Look-up

The bounds of a class is the sequence of upper bounds of the type variables that the class
declares.

Definition 2.2.5 (Upper Bounds Look-up)

ClassBnds(C) = sN look up bounds of class C

class Cid<Xk extends sNk> extends _<_> { _ _ } ∈P
ClassBnds(Cid) = sNk

scbc_nvar

ClassBnds(Object) = ∅ scbc_object

2.2.2 Runtime Model
Fig. 2.9 defines our model of the runtime system. The prefix r distinguishes sorts of the runtime
model from their static counterparts.

A heap h maps addresses to objects. An address ι is an element of a countable, infinite set of
addresses. The domain of a heap h, written dom(h), is the set of all addresses that are mapped
to an object in the heap h. A value v can be an address ι or the special null-address nulla. An
object o consists of its runtime type and a mapping from field identifiers to the values stored in

15

Chapter 2 Generic Universe Types

the fields. The notations h(ι)↓1 and h(ι)↓2 are used to access the first and second component
of the object at address ι in heap h.
The runtime type rT of an object o consists of o’s owner address, of o’s class, and of the

runtime types for the type arguments of this class. An owner address oι can be the address ι
of the owning object, the root owner roota, or the anya owner. The owner address of objects
in the root context is roota. The special owner address anya is used when the corresponding
static type has the any modifier. Consider for instance an execution of method main (Fig. 2.3),
where the address of this is 1 and the owner of 1 is roota. The runtime type of the object
stored in map is roota Map<1 ID, anya Data>.

The first component of a runtime environment rΓ maps method type variables to their runtime
types. The second component is the current stack frame, which maps method parameters to the
values they store. Since the domains of these mappings are disjoint, we overload the notation
and use rΓ(X) to access the runtime type for type variable X and rΓ(x) to access the value for
method parameter x.
The following subsections again define various functions to simplify the notation.

2.2.2.1 Heap Operations

Our heap model is very simple: we can create an empty heap ∅ and can add to or update in an
existing heap h a mapping from address ι to an object o, written as h + (ι 7→ o). If address ι
is already mapped to an object, this mapping is overwritten. We use the shorthand notation
h(ι.f) for reading field f of the object at address ι, i.e., h(ι)↓2 (f).
For convenience we provide two additional operations, that can be modeled on top of the

basic operations: (1) creation of a new object and (2) updating a field value in a heap.
(1) For the addition of an object o as a new object to heap h, resulting in a new heap h′ and

address ι, we use the notation h + o = (h′, ι). We ensure that ι is a fresh address and that the
only modification to the heap is the addition of the new object.

Definition 2.2.6 (Object Addition)

h + o = (h′, ι) add object o to heap h resulting in heap h′ and fresh address ι

ι /∈dom(h) h′= h + (ι 7→ o)
h + o = (h′, ι) hnew_def

(2) We write h[ι.f = v] = h′ for the update of field f of the object at address ι in heap h to
the new value v, resulting in new heap h′. We ensure that the new field value is valid, i.e., v is
either nulla or the address of an object in the heap. We also ensure that there already is an
object at address ι and that the field identifier f is already in the set of fields of the object,
because we do not want to add fields that would not be defined in the corresponding class. In
the set of field values fv, we overwrite the existing mapping for f to arrive at fv′ and update the
heap with the object that consists of the old runtime type and the new field values fv′. Note
that we only change the field value of the single object at address ι and in particular that the
runtime types in the heap remain unchanged.

Definition 2.2.7 (Field Update)

h[ι.f = v] = h′ field update in heap

v= nulla ∨ (v= ι′ ∧ ι′ ∈ dom(h))
h(ι) =

(
rT , fv

)
f ∈ dom

(
fv
)

fv′= fv[f 7→ v]
h′= h +

(
ι 7→

(
rT , fv′

))
h[ι.f = v] = h′ hup_def

16

2.2 Programming Language Syntax and Semantics

2.2.2.2 Runtime Method Signature and Body Look-up

The following function is used to look up the method signature for an object at a particular
address. The type-to-value assignment judgment (Def. 2.2.13) determines a class C , a superclass
of the runtime class of ι, for which the static method signature function MSig yields a method
signature. All overriding methods have the same method name and the overriding rule
(Def. 2.3.17) ensures that the different signatures are consistent. MSig(P, h, ι,m) yields an
arbitrary possible signature, not necessarily the one declared in the smallest supertype of the
runtime class of ι; as the different signatures are consistent, this suffices. Note that we do not
support method overloading, so the method name is sufficient to uniquely identify a method.

Definition 2.2.8 (Runtime Method Signature Look-up)

MSig(h, ι,m) = mso look up method signature of method m at ι

h ` ι : _ C<_> MSig(C ,m) = ms
MSig(h, ι,m) = ms rms_def

At runtime, we need the ability to look up the implementation of a method that is declared
in the smallest supertype of the runtime type of the receiver. We first define a look-up function
that determines the method body e from the smallest superclass of class C that implements
method m.

Definition 2.2.9 (Static Method Body Look-up)

MBody(C ,m) = e look up most-concrete body of m in class C or a superclass

class Cid<_> extends _<_> { _ _ ms { e } _ } ∈P
MName(ms) = m

MBody(Cid,m) = e smbc_found

class Cid<_> extends C1<_> { _ msn { en } } ∈P
MName(msn) 6=m MBody(C1,m) = e

MBody(Cid,m) = e smbc_inh

The following function uses the most concrete runtime type of the object at address ι to
determine the corresponding method body.

Definition 2.2.10 (Runtime Method Body Look-up)

MBody(h, ι,m) = e look up most-concrete body of method m at ι

h(ι)↓1 =_ C<_> MBody(C ,m) = e
MBody(h, ι,m) = e rmb_def

2.2.3 Static Types, Runtime Types, and Values

In this subsection, we discuss two functions that convert static types to corresponding runtime
types, the subtyping of runtime types, and what runtime and static types can be assigned to a
value. The discussion gives precise semantics to the static types, in particular the meaning of
the ownership modifiers.

17

Chapter 2 Generic Universe Types

2.2.3.1 Simple Dynamization of Static Types

We need to put static and runtime types into a relation, e.g., when we evaluate an object
creation, we need to convert the static type from the expression into the corresponding runtime
type that is stored with the newly created object.
We define two dynamization functions: first, a simple dynamization function sdyn that

puts strong requirements on the static types that it can convert to runtime types; second,
a more general dynamization function dyn that is less restrictive. Defining two distinct
dynamization functions allows us to avoid a cyclic dependency between runtime subtyping and
the dynamization of static types. To determine runtime subtypes we need to dynamize the
instantiation of a superclass into a runtime type and, in general, to determine the dynamization
of a static type we need to find a runtime supertype of the type of the current object. We use
sdyn only to dynamize static types where we do not need runtime subtyping to determine the
runtime type and use dyn in the general case where we can use runtime subtyping.

The simple dynamization function sdyn (Def. 2.2.11) relates a sequence of static types to a
corresponding sequence of runtime types. The dynamization is relative to a heap, a viewpoint
object ι, a runtime type rT , and substitutions for lost ownership modifiers. This simple version
of the dynamization uses only the type information available from its arguments and does not
determine additional runtime types from the heap. It is used only to convert static types that
appear in the upper bounds declaration and the superclass instantiation of a class.

To be defined, the sdyn function requires consistency between its arguments. A peer modifier
in a static type expresses that the referenced object has the same owner as the current object,
which is the owner oι of the runtime type rT . If the owner oι of the runtime type is not the anya
address, then we use that owner for the substitution of peer. However, if oι is the anya address,
we cannot simply substitute peer by anya. In this case we use an address oι1 that is either an
address in the heap or the root owner to substitute peer modifiers. If a rep modifier appears
in the static type, we need to ensure that the substitution for rep and for peer are consistent,
i.e., that the owner of the object that is used to substitute rep is the owner address that is
used to substitute peer. owner(h, ι) yields the owner address of the object at address ι in heap
h. Note that the viewpoint address ι is used only if the static types contain a rep modifier. If
there is no rep modifier, the viewpoint address is ignored, and ι can be an arbitrary address
that is not necessarily in the domain of the heap h.

Definition 2.2.11 (Simple Dynamization of Static Types)

sdyn
(
sT , h, ι, rT , oι

)
= rT simple dynamization of types sT

oι′ ∈dom(h) ∪ {roota} oι 6= anya =⇒ oι′= oι
ClassDom(C) = X rep∈ sT =⇒ owner(h, ι) = oι′
sT
[
oι′ / peer , ι / rep , anya / any , rT /X , oιi / lost

]
= rT ′

sdyn
(
sT , h, ι, oι C<rT>, oιi

)
= rT

′ sdyn

We use the notation sT
[
oι / u , rT /X

]
for the substitution of owner address oι for occurrences

of ownership modifier u and of runtime types rT for type variables X in the static type sT .
The substitution yields a runtime type if all ownership modifiers and type variables in sT are
replaced by their runtime counterparts, i.e., owner addresses and runtime types. In the above
definition, this might not be the case if the self modifier or type variables that are not declared
in class C appear in sT . Also, the lost modifiers are substituted by the corresponding owners
from the sequence oι. The number of lost modifiers in sT has to correspond to the length of oι

18

2.2 Programming Language Syntax and Semantics

class C<X extends rep Data, Y extends any Object> {}
class D<Z extends peer Object> extends C<rep Data, Z> {}

h = (1 7→ (roota Client,_), 2 7→ (1 D<1 Object>,_))

Figure 2.10: Example program and heap.

and the i-th occurrence of lost is substituted by the i-th owner in oι. If the lengths do not
match, the substitution is undefined. Our type system applies sdyn only within its domain.

As a simple example, using the decorator from Fig. 2.5, let us consider a heap
h = (1 7→ (roota Client,_), 2 7→ (roota MyDecoration,_)).

Then
sdyn(peer Data, h, 2, roota MyDecoration, ∅)

results in roota Data.

A more complicated example is given in Fig. 2.10. We can deduce that
sdyn(rep Data, h, 2, 1 D<1 Object>, ∅) = 2 Data

and
sdyn(Z, h, 2, 1 D<1 Object>, ∅) = 1 Object.

However,
sdyn(X, h, 2, 1 D<1 Object>, ∅)

is not defined. Type variable X is defined in a supertype of the given runtime type. sdyn
does not apply subtyping to find a correct substitution for type variables that are defined in
supertypes. The more complicated dyn is used for such purposes.

2.2.3.2 Subtyping of Runtime Types

Subtyping of runtime types follows subclassing (see Def. 2.2.1). The owner of the supertype oι′
either is the same as the owner of the subtype or anya. The static superclass instantiation sT
is converted into the runtime types rT ′ using the runtime subtype oι C<rT> as argument to
sdyn. This ensures that type variables in sT are substituted by the runtime type arguments rT
that are used in the subtype. There is no variance in the type arguments of a runtime type.

Definition 2.2.12 (Runtime Subtyping)

h ` rT <: rT ′ type rT is a subtype of rT ′

C<X> v C ′<sT> oι′ ∈ {oι , anya}
sdyn

(
sT , h, _, oι C<rT>, oι

)
= rT

′

h ` oι C<rT> <: oι′ C ′<rT ′>
rt_def

Note how an arbitrary address is used as viewpoint object for sdyn. A rep modifier in sT can
be substituted with an arbitrary address that creates a consistent result (note that sdyn checks
for consistency between the viewpoint address and the owner of the runtime type oι). Also note
that there is no equivalent to the lost modifier at runtime and that the substitution for lost
modifiers oι can be chosen arbitrarily. This reflects the interpretation of lost as an existential
modifier that is substituted by whichever owner address fits the current context. The definition
of a well-formed class in the topological system (see Def. 2.3.14) enforces that subclassing never
introduces lost in the instantiation of a superclass.

19

Chapter 2 Generic Universe Types

For the decorator example (Fig. 2.5) we deduced in Sec. 2.2.1.1 that MyDecoration v
Decoration<peer Data>. In the previous subsection we deduced the result of applying sdyn
to peer Data. Combining these results we can deduce

h ` roota MyDecoration <: roota Decoration<roota Data>
and

h ` roota MyDecoration <: anya Decoration<roota Data>.

For the example from Fig. 2.10, we can use subclassing rule sc1 to deduce D<Z> v C<rep
Data, Z>. Using the results of the application of sdyn from the previous subsection, we can
deduce

h ` 1 D<1 Object> <: 1 C<2 Data, 1 Object>. Instead of address 2, any other address in
the heap whose owner is address 1 could be chosen by the subtyping judgment.
We also have

h ` 1 D<1 Object> <: anya D<1 Object>.
What supertypes of anya D<1 Object> exist? We can deduce

h ` anya D<1 Object> <: anya C<2 Data, 1 Object>.
But note that instead of address 2 any other address in the heap h could be chosen. sdyn
can choose an arbitrary viewpoint address, and because there are no peer modifiers in the
superclass instantiation, the only restriction is that the owner look-up in the heap is defined.

2.2.3.3 Assigning a Runtime Type to a Value

To assign a runtime type rT to an address ι, we determine the most concrete runtime type rT 1
from the heap and check whether rT 1 is a runtime subtype of rT . An arbitrary runtime type
can be assigned to the nulla value.

Definition 2.2.13 (Assigning a Runtime Type to a Value)

h ` v : rT runtime type rT assignable to value v

h(ι)↓1 = rT 1 h ` rT 1 <: rT
h ` ι : rT rtt_addr

h ` nulla : rT rtt_null

In the decorator example, we can deduce
h ` 2 : roota MyDecoration

and
h ` 2 : roota Decoration<roota Data>.

For the example from Fig. 2.10, we can deduce
h ` 2 : 1 D<1 Object>

and
h ` 2 : 1 C<2 Data, 1 Object>.

2.2.3.4 Dynamization of a Static Type

This version of the dynamization function is applicable in a more general setting than the
simple dynamization function sdyn introduced before. A static type is converted into a runtime
type, using a heap, a runtime environment, and substitutions for lost modifiers. dyn builds on
runtime subtyping, and therefore on sdyn, to determine all necessary type information. This
allows dyn to find the runtime equivalents to types that use type variables that are declared in
a superclass of the type of the current object—types which cannot be dynamized using sdyn.

20

2.2 Programming Language Syntax and Semantics

Function dyn is given in Def. 2.2.14. We determine the runtime supertype with class C
that can be assigned to the current object ι, for which the domain of class C together with
the method type variables from the runtime environment define all type variables that appear
in the static type. If such a type does not exist, then the dynamization is not defined. The
topological type rules (which will be presented in Sec. 2.3) ensure that dyn is never used on
such a static type.
The owner oι of the current object has to be another object in the heap or the root owner

roota. We need an owner address other than anya for the substitution of peer and self
modifiers and prevent that the runtime type-to-value judgment uses anya in the type by the
constraint on the value of oι. For a well-formed heap (which will be defined in Def. 2.3.24), we
know that the owner of each object in the heap is not anya and we can determine such an oι.
Note that the runtime type arguments are invariant and that we do not need an additional
constraint to ensure that the rT are the most precise types possible.

We use a substitution that is very similar to the one from the simple dynamization to convert
the static type sT into the corresponding runtime type rT ′. The owner oι is used to substitute
self and peer modifiers, the current object ι is used to substitute rep modifiers, the class type
variables are substituted by the runtime types rT we determined from the heap for the current
object, the method type variables are substituted by the runtime types rT l from the runtime
environment, and the lost modifiers are substituted by the corresponding owners from the
sequence oι. At runtime we do not distinguish between self and peer modifiers and substitute
both with oι. In Def. 2.2.15 we separately check for uses of self as main modifier.

Definition 2.2.14 (Dynamization of a Static Type)

dyn(sT, h, rΓ , oι) = rT dynamization of static type (relative to rΓ)

rΓ =
{
Xl 7→ rT l ; this 7→ ι, _

}
h ` ι : oι C<rT>

oι∈ dom(h) ∪ {roota} ClassDom(C) = X
sT
[
oι / self , oι / peer , ι / rep , anya / any , rT /X , rT l /Xl , oιi / lost

]
= rT ′

dyn(sT, h, rΓ , oιi) = rT ′
dyne

Note that the outcome of dyn depends on finding oι C<rT>, an appropriate supertype of the
runtime type of the current object ι, which contains substitutions for all type variables not
mapped by the environment. Thus, one may wonder whether there is more than one such
appropriate superclass. However, because type variables are globally unique, if the free variables
of sT are in the domain of a class then they are not in the domain of any other class.

In the Decorator example, using an rΓ where rΓ(this) = 1, we can deduce that
dyn(peer MyDecoration, h, rΓ , ∅) = roota MyDecoration

and
dyn(peer Decoration<peer Data>, h, rΓ , ∅) =

roota Decoration<roota Data>.

Using the example from Fig. 2.10, and again an rΓ where rΓ(this) = 1, we can deduce
dyn(rep D<rep Object>, h, rΓ , ∅) = 1 D<1 Object>

and
dyn(rep C<lost Data, rep Object>, h, rΓ , 2) = 1 C<2 Data, 1 Object>.

Earlier, we explained that
sdyn(X, h, 2, 1 D<1 Object>, ∅)

is not defined. Let us now consider rΓ ′(this) = 2 and dyn(X, h, rΓ ′, ∅). Above, we deduced
h ` 2 : 1 C<2 Data, 1 Object>

21

Chapter 2 Generic Universe Types

and class C defines a type variable X. Therefore, we have that
dyn(X, h, rΓ ′, ∅) = 2 Data.

2.2.3.5 Assigning a Static Type to a Value

To assign a static type to a value, we convert the static type into a runtime type, using the
provided heap and runtime environment, and check whether this runtime type can be assigned
to the value. If the main modifier of the static type is self we also have to ensure that the
value corresponds to the current object in the runtime environment. Note that we use an
arbitrary substitution oι for lost modifiers that might appear in the static type. This expresses
the meaning of lost as existential quantifier that chooses a suitable owner to fulfill the runtime
type-to-value judgment.

Definition 2.2.15 (Assigning a Static Type to a Value (relative to rΓ))

h, rΓ ` v : sT static type sT assignable to value v (relative to rΓ)

dyn(sT, h, rΓ , oι) = rT h ` v : rT
sT = self _<_> =⇒ v= rΓ(this)

h, rΓ ` v : sT rtste_def

For the well-formed heap judgment (which will be defined in Def. 2.3.24) it is convenient
to define a second version of this judgment that only takes the address of the current object
instead of a complete runtime environment.

Definition 2.2.16 (Assigning a Static Type to a Value (relative to ι))

h, ι ` v : sT static type sT assignable to value v (relative to ι)

rΓ = {∅ ; this 7→ ι}
h, rΓ ` v : sT

h, ι ` v : sT rtsta_def

For the Decorator example, using the previous results, we can now deduce
h, 1 ` 2 : peer MyDecoration

and
h, 1 ` 2 : peer Decoration<peer Data>.

Finally, combining all the results we deduced for the example from Fig. 2.10 we can deduce
h, 1 ` 2 : rep D<rep Object>

and
h, 1 ` 2 : rep C<lost Data, rep Object>.

Note that there is no ownership modifier that could be used instead of lost and that would
fulfill the judgment, because there is no modifier to express that an object is the representation
of an object other than this.

2.2.4 Operational Semantics
We describe program execution by a big-step operational semantics for expressions and programs.

2.2.4.1 Evaluation of an Expression

The transition rΓ ` h, e h′, v expresses that the evaluation of an expression e in heap h
and runtime environment rΓ results in value v and successor heap h′. The rules for evaluating
expressions are presented and explained in the following.

22

2.2 Programming Language Syntax and Semantics

Definition 2.2.17 (Evaluation of an Expression)

rΓ ` h, e h′, v big-step operational semantics

rΓ ` h, null h, nulla
os_null

rΓ(x) = v
rΓ ` h, x h, v os_var

dyn(sT, h, rΓ , ∅) = rT ClassOf(rT) = C(
∀f ∈ fields(C) . fv(f) = nulla

)
h +

(
rT , fv

)
= (h′, ι)

rΓ ` h, new sT() h′, ι os_new

rΓ ` h, e h′, v
h′, rΓ ` v : sT

rΓ ` h, (sT) e h′, v os_cast

rΓ ` h, e0 h′, ι0
h′(ι0.f) = v

rΓ ` h, e0.f h′, v os_read

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v
h1[ι0.f = v] = h′

rΓ ` h, e0.f = e1 h′, v os_write

rΓ ` h, e0 h0, ι0
rΓ ` h0, eq h1, vq

MBody(h0, ι0,m) = e MSig(h0, ι0,m) = _ <Xl extends _> _ m(_ pid)
dyn
(
sTl , h, rΓ , ∅

)
= rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ vq

}
rΓ ′ ` h1, e h′, v

rΓ ` h, e0 . m < sTl > (eq) h′, v
os_call

The null expression always evaluates to the nulla value (os_null). Parameters, including
this, are evaluated by looking up the stored value in the stack frame, which is part of the
runtime environment rΓ (os_var). Object creation determines the runtime type for the object
from the static type using the heap h and the runtime environment rΓ , and initializes all field
values to nulla. (ClassOf(rT) yields the class of the runtime type rT ; note that sT could be a
type variable and cannot be used to determine the class. fields(C) yields all fields declared in
or inherited by C .) We construct the new object using this runtime type and the field values
and add it to the original heap h, resulting in an updated heap h′ and the address ι of the
new object in the new heap (os_new). For cast expressions, we evaluate the expression e and
check that the resulting value is well-typed with the static type given in the cast expression
w.r.t. the current environment (os_cast).

For field reads (os_read), we evaluate the receiver expression e0 and then look up the field
in the heap. We require that the receiver expression evaluates to an address ι0 and not to the
nulla value. For the update of a field f , we evaluate the receiver expression e0 to address ι0
and the right-hand side expression to value v, and update the heap h1 with the new field value
(os_write).

For method calls (os_call), we evaluate the receiver expression e0 and actual method
arguments eq in the usual order. The receiver object is used to look up the most concrete
method body and the method signature (from which we extract the names of the method type
variables Xl and the parameter names pid used to construct the new runtime environment rΓ ′;
the static types in the method signature are irrelevant here). The method body expression
e is then evaluated in the runtime environment that maps m’s type variables to actual type
arguments as well as m’s formal method parameters (including this) to the actual method
arguments. (Note that the method type arguments are dynamized using an empty substitution
for lost modifiers, which forbids occurrences of lost in the type arguments; our type rules
enforce this constraint and, therefore, ensure that the dynamization is defined.) The resulting
heap and address are the result of the call.

23

Chapter 2 Generic Universe Types

2.2.4.2 Evaluation of a Program

A program with main class C is executed by evaluating the main expression e in a heap h0
that contains exactly one C instance in the root context where all fields of C are initialized to
nulla and a runtime environment rΓ0 that maps this to this C instance.

Definition 2.2.18 (Evaluation of a Program)

` P h, v big-step operational semantics of a program

∀f ∈ fields(C) . fv(f) = nulla
∅+

(
roota C< >, fv

)
= (h0, ι0)

rΓ0 = {∅ ; this 7→ ι0} rΓ0 ` h0, e h, v
` Cls, C , e h, v

osp_def

In the example from Sec. 2.1, we would have the classes from Figs. 2.1, 2.2, and 2.3 as the
sequence of classes, use class identifier Client as main class, and the expression this.main()
as the main expression.

This concludes our discussion of the programming language syntax and semantics. The
following section presents the topological system of GUT.

2.3 Topological System
In this section, we formalize the topological system of GUT. We first formalize viewpoint
adaptation and define the ordering of ownership modifiers and subtyping. We then present the
static well-formedness conditions, including the type rules, and the runtime well-formedness
conditions. We conclude this section by discussing the properties of the topological system,
most importantly type safety.
Note that the formalization presents the rules that are necessary for type safety; it allows

programs which are not meaningful for programmers to write, e.g., it allows the declared field
type to contain the lost ownership modifier, even though such a field can never be updated.
This design choice keeps the formalization minimal and highlights what is necessary for type
safety. In Sec. 2.5.1 we discuss additional constraints that are not needed for soundness, but
restrict the programs to a reasonable subset.

Type checking is performed in a type environment sΓ , which maps the type variables of the
enclosing class and method to their upper bounds and method parameters to their types:

sΓ ::=
{
X 7→ sN ; x 7→ sT

}
Again, we overload the notation, where sΓ(X) refers to the upper bound of type variable X ,

and sΓ(x) refers to the type of method parameter x.
Note that the static environment stores the upper bounds for class and method type variables

in its first component; the runtime environment only needs to store the actual type arguments
for the method type variables as the arguments for the class type variables are stored in the
heap.

2.3.1 Viewpoint Adaptation

Since ownership modifiers express ownership relative to an object, they have to be adapted
whenever the viewpoint changes. In the type rules, we need to adapt a type sT from a viewpoint

24

2.3 Topological System

that is described by another type sT ′ to the viewpoint this. In the following, we omit the
phrase “to the viewpoint this”. To perform the viewpoint adaptation, we define an overloaded
operator B to: (1) Adapt an ownership modifier from a viewpoint that is described by another
ownership modifier; (2) Adapt a type from a viewpoint that is described by an ownership
modifier; (3) Adapt a type from a viewpoint that is described by another type.

2.3.1.1 Adapting an Ownership Modifier w.r.t. an Ownership Modifier

We explain viewpoint adaptation using a field access e1.f . Analogous adaptations occur for
method parameters and results as well as upper bounds of type parameters. Let u be the main
modifier of e1’s type, which expresses ownership relative to this. Let u′ be the main modifier
of f ’s type, which expresses ownership relative to the object that contains f . Then relative to
this, the type of the field access e1.f has main modifier u B u′.

Definition 2.3.1 (Adapting Ownership Modifiers)

u B u′ = u′′ combining two ownership modifiers

self B u = u ucu_self
peer B peer = peer

ucu_peer

rep B peer = rep
ucu_rep u B any = any

ucu_any

otherwise
u B u′ = lost

ucu_lost

The field access e1.f illustrates the motivation for this definition:

1. Accesses through the current object this (that is, e1 is the variable this) do not require
a viewpoint adaptation since the ownership modifier of the field is already relative to
this. The self modifier is used to distinguish accesses through this from other accesses.

2. If the main modifiers of both e1 and f are peer, then the object referenced by e1 has the
same owner as this and the object referenced by e1.f has the same owner as e1 and,
thus, the same owner as this. Consequently, the main modifier of e1.f is also peer.

3. If the main modifier of e1 is rep and the main modifier of f is peer, then the main
modifier of e1.f is rep, because the object referenced by e1 is owned by this and the
object referenced by e1.f has the same owner as e1, that is, this.

4. If the object referenced by f can have an arbitrary owner, then also the object referenced
by e1.f can have an arbitrary owner, regardless of the owner of e1. That is, if the main
modifier of f is any, then also the main modifier of e1.f is any, regardless of the modifier
of e1.

5. In all other cases, we cannot determine statically that the object referenced by e1.f has
the same owner as this, is owned by this, or that it can be an object with an arbitrary
owner. Therefore, in these cases the main modifier of e1.f is lost.

2.3.1.2 Adapting a Type w.r.t. an Ownership Modifier

As explained in Sec. 2.1, type variables are not subject to viewpoint adaptation. For non-variable
types, we determine the adapted main modifier and adapt the type arguments recursively:

25

Chapter 2 Generic Universe Types

Definition 2.3.2 (Adapting a Type w.r.t. an Ownership Modifier)

u B sT = sT ′ ownership modifier - type adaptation

u B X = X uct_var

u B u′ = u′′

u B sT = sT
′

u B u′ C<sT> = u′′ C<sT
′
>

uct_nvar

2.3.1.3 Adapting a Type w.r.t. a Type

We adapt a type sT from the viewpoint described by another type, u C<sT>:

Definition 2.3.3 (Adapting a Type w.r.t. a Type)

sN B sT = sT ′ type - type combination

u B sT = sT1
sT1
[
sT/X

]
= sT ′ ClassDom(C) = X

u C<sT> B sT = sT ′
tct_def

The operator B adapts the ownership modifiers of sT and substitutes the type arguments sT
for the type variables X of C . Since the type arguments already are relative to this, they are
not subject to viewpoint adaptation. Therefore, the substitution of type variables happens
after the viewpoint adaptation of sT ’s ownership modifiers.

Note that the first parameter is a non-variable type, because concrete ownership information
u is needed to adapt the viewpoint and the actual type arguments sT are needed to substitute
the type variables X. In the type rules, subsumption will be used to replace type variables by
their upper bounds and thereby obtain a concrete type as first argument of B. The adaptation
is undefined, if the look-up of the domain of class C is undefined, i.e., C is not a valid class
name in the program, or if the number of type arguments does not correspond to the number
of type variables.

As an example, consider the call map.getNode(key) in Fig. 2.3. The receiver map has type
peer Map<rep ID, any Data>. The return type of the method is rep Node<K, V>. This type
is first adapted from the viewpoint peer, resulting in the type lost Node<K, V>; then the
substitution of the type arguments for the type variables results in the type lost Node<rep
ID, any Data>.

If the order of the viewpoint adaptation and the substitution were the other way around, we
would first substitute rep Data for K and any Data for V, resulting in rep Node<rep ID, any
Data>. Then, adapting this type from the viewpoint peer would result in lost Node<lost ID,
any Data>. This order of operations would not correctly represent the ownership information
of the first type argument.

It is convenient to define look-up functions that determine the declared type(s) of a field,
method signature, or upper bound, and adapt it from the viewpoint given by a type. These
functions are defined in the following subsections.

2.3.1.4 Adapted Field Type Look-up

To look up the viewpoint-adapted type of a field, we look up the declared type of the field and
apply viewpoint adaptation. ClassOf(sN) yields the class of the non-variable type sN . The
FType function is again only defined if the field is declared in the class of the given type.

26

2.3 Topological System

Definition 2.3.4 (Adapted Field Type Look-up)

FType(sN, f) = sT look up field f in type sN

FType(ClassOf(sN) , f) = sT1
sN B sT1 = sT

FType(sN, f) = sT
sftn_def

2.3.1.5 Adapted Method Signature Look-up

To look up the viewpoint-adapted method signature, we look up the signature in the class of
the type and then viewpoint adapt the upper bounds, the return type, and the parameter types.
The method type arguments sTl are substituted for the method type variables Xl in all types.

Definition 2.3.5 (Adapted Method Signature Look-up)

MSig
(
sN,m, sT

)
= mso m in sN with method type arguments sT substituted

MSig(ClassOf(sN) ,m) = p <Xl extends sNl> sT m(sT ′q pid)(
sN B sNl

) [
sTl/Xl

]
= sN ′l (sN B sT)

[
sTl/Xl

]
= sT ′(

sN B sT ′q
) [
sTl/Xl

]
= sT ′′q

MSig
(
sN,m, sTl

)
= p <Xl extends sN ′l > sT ′ m(sT ′′q pid)

smsn_def

Note that we have to perform capture-avoiding substitutions, that is, free type variables in
sN must not be captured by the Xl . If necessary, the Xl can be α-renamed in the declared
method signature.

2.3.1.6 Adapted Upper Bounds Look-up

The bounds of a type are the upper bounds of the class of the type after viewpoint adaptation.

Definition 2.3.6 (Adapted Upper Bounds Look-up)

ClassBnds(sN) = sN look up bounds of type sN

ClassBnds(ClassOf(sN)) = sN1
sN B sN1 = sN

ClassBnds(sN) = sN
scbn_def

2.3.2 Static Ordering Relations

We first define an ordering relation <:u for ownership modifiers. Recall the definition of
subclassing (symbol v) from Def. 2.2.1, which is the reflexive and transitive relation on classes
declared in a program. Building on the ordering of ownership modifiers and subclassing we
define subtyping (symbol <:), which additionally takes main modifiers into account.

2.3.2.1 Ordering of Ownership Modifiers

The ordering of ownership modifiers <:u relates more concrete modifiers below less concrete
modifiers. Both self and peer express that an object has the same owner as this, where self
is only used for the object this and is therefore more specific than peer (omo_tp). Both
peer and rep are more specific than lost (omo_pl and omo_rl). All ownership modifiers
are below any (omo_ua) and the ordering of ownership modifiers is reflexive (omo_refl).

27

Chapter 2 Generic Universe Types

Definition 2.3.7 (Ordering of Ownership Modifiers)

u <:u u′ ordering of ownership modifiers

self <:u peer
omo_tp

peer <:u lost
omo_pl

rep <:u lost
omo_rl u <:u any

omo_ua

u <:u u omo_refl

Note that the ordering of ownership modifiers is not transitive, as self <:u lost is not
included; this could be added, but only transitivity of subtyping is needed.

2.3.2.2 Static Subtyping

The subtype relation <: is defined on static types. The judgment sΓ ` sT <: sT ′ expresses
that type sT is a subtype of type sT ′ in type environment sΓ . The environment is needed since
static types may contain type variables. The rules for this subtyping judgment are presented in
Def. 2.3.8 below.

Two types with the same main modifier are subtypes if the corresponding classes are subclasses.
Ownership modifiers in the superclass instantiation (sT 1) are relative to the instance of class C,
whereas the modifiers in a type are relative to this. In particular, from the subclass relation
C<X> v C ′<sT 1> we cannot simply derive sΓ ` u C<X> <: u C ′<sT 1>. Instead, sT 1 has to
be adapted from the viewpoint of the C instance to this (st1). For types with the same class,
according to st2, the main modifiers have to follow the ordering of ownership modifiers and
the type arguments have to follow the type argument subtyping <:l, explained below. A type
variable is a subtype of itself and of its upper bound in the type environment (st3). Subtyping
is transitive (st4).

Definition 2.3.8 (Static Subtyping)
sΓ ` sT <: sT ′ static subtyping

C<X> v C ′<sT 1>
u C<sT> B sT 1 = sT

′

sΓ ` u C<sT> <: u C ′<sT ′>
st1

u <:u u′ ` sT <:l sT
′

sΓ ` u C<sT> <: u′ C<sT
′
>

st2

sT = X ∨ sΓ(X) = sT
sΓ ` X <: sT st3

sΓ ` sT <: sT1
sΓ ` sT1 <: sT ′
sΓ ` sT <: sT ′ st4

Reflexivity of non-variable types can be deduced from the reflexivity of ownership modifier
ordering, type argument subtyping, and rule st2. For type variables, rule st3 gives reflexivity.

The type any Object is at the root of the type hierarchy. Every other type is a subtype of it.

In Sec. 2.2.1.1 we derived
MyDecoration v Decoration<peer Data>.

Using rule st1 we can derive the two subtype relationships
rep MyDecoration <: rep Decoration<rep Data>

and
any MyDecoration <: any Decoration<lost Data>.

Notice that in the second example, we cannot give concrete ownership information for the type
argument in the supertype, because we do not know the location of the object and cannot
express the relationship between the object and the type argument from an arbitrary viewpoint.

28

2.3 Topological System

any L<lost C>

lost L<lost C>

peer L<lost C> rep L<lost C>

any L<peer C>

lost L<peer C>

peer L<peer C> rep L<peer C>

any L<rep C>

lost L<rep C>

peer L<rep C> rep L<rep C>

any L<any C>

lost L<any C>

peer L<any C> rep L<any C>

Figure 2.11: Static subtyping illustrated on an example. The dashed lines are only used to
make the paths clearer, they have the same meaning as the solid lines. Gray types
contain lost and cannot be supertypes for strict subtyping (Def. 2.3.10).

By rule st2 we can derive rep MyDecoration <: any MyDecoration.

We illustrate rule st3 using the method call res.set(in) from class Decorator (Fig. 2.4).
The variable res has the type variable O as its type. To type check the method call, we need a
concrete class to look up the method signature for method set. We use rule st3 to go from
the type variable O to its upper bound peer Decoration<V> and can then successfully type
check the call.

Type Argument Subtyping. We use type argument subtyping (symbol <:l) only for
subtyping in type argument positions. Two non-variable type arguments either have the same
main modifier or the supertype has the lost main modifier. The type arguments can recursively
vary by the type argument relation. A type variable is only a type argument subtype of itself.

Definition 2.3.9 (Type Argument Subtyping)

` sT <:l sT ′ type argument subtyping

u′ ∈ {u , lost}
` sT <:l sT

′

` u C<sT> <:l u′ C<sT
′
>

ast1 ` X <:l X ast2

This relation allows us to abstract away ownership information in type arguments. Note that
we do not use the same subtyping relation that is used on “top-level” types. It would not be type
safe to allow peer List<peer Data> as a subtype of peer List<any Object>, as the latter
type allows storing objects of an arbitrary ownership and class information whereas the former
is restricted to Data objects that share the same owner as the current object. Also note that
we impose restrictions on the uses of types that contain the lost modifier. Nevertheless, this
abstraction is helpful, as it allows us to reference and modify objects with partially unknown
ownership.

Consider the following class declaration:

class L<X extends any Object> { ...}

Fig. 2.11 shows the relation between instantiations of class L. Note that an arbitrary sΓ can be
used, as we do not consider type variables here.

29

Chapter 2 Generic Universe Types

As another example, consider the code from Fig. 2.10. We can derive the subclass relation
D<Z> v C<rep Data, Z> and the subtype relation sΓ ` self D<Z> <: self C<rep Data,
Z>. However, deriving sΓ ` peer D<Z> <: peer C<rep Data, Z> is not possible, because it
would interpret the instantiation of type variable X as representation of the current object, even
though it is meant to be the representation of the D object. The correct subtype relation is
sΓ ` peer D<Z> <: peer C<lost Data, Z>.

Strict Subtyping. In certain judgments it is convenient to express that a type sT is a
subtype of type sT ′ and that sT ′ does not contain the lost ownership modifier. We define a
strict subtyping judgment to express this.

Definition 2.3.10 (Strict Subtyping)
sΓ ` sT <:s sT ′ strict static subtyping

sΓ ` sT <: sT ′
lost /∈ sT ′

sΓ ` sT <:s sT ′
sstdef

In Fig. 2.11, types that contain lost are marked with a gray background. These types cannot
appear as a strict supertype. For the example in Fig. 2.10, peer D<Z> is a subtype, but not a
strict subtype of peer C<lost Data, Z>.

2.3.3 Static Well Formedness

This subsection defines well-formedness judgments for the static system, including the topological
type rules.

2.3.3.1 Well-formed Static Type

The judgment sΓ ` sT OK expresses that type sT is well formed in type environment sΓ .
Type variables are well formed, if they are contained in the type environment (wft_var).
Well-formedness of the upper bounds is checked by the well-formed static environment judgment
(Def. 2.3.18 on page 36) that checks well-formedness of the types in the environment. A non-
variable type u C<sT> is well formed (wft_nvar) if its type arguments sT are well formed,
do not contain self (denoted by self /∈ sT), and each actual type argument is a subtype of
the upper bound adapted to the current viewpoint.

Definition 2.3.11 (Well-formed Static Type)
sΓ ` sT OK well-formed static type

X ∈ sΓ
sΓ ` X OK wft_var

sΓ ` sT OK self /∈ sT
ClassBnds

(
u C<sT>

)
= sN sΓ ` sT <: sN

sΓ ` u C<sT> OK
wft_nvar

We restrict the self modifier to the main modifier of a non-variable type. Allowing the use
of self in a type argument position would complicate the runtime system, without adding
expressiveness.
Note how the look-up of the upper bounds can result in lost ownership information. This

well-formed type judgment is intentionally weak and forbids only what is needed for the

30

2.3 Topological System

soundness of the system; this simplifies the formalization, but complicates the proofs. It allows
static types that will never reference a valid object at runtime and could therefore be forbidden
without limiting the expressiveness of the system and providing earlier detection of likely errors.
See Sec. 2.5.1 for a more restrictive definition, further discussion, and examples.

As an example, consider class C from Fig. 2.10:

class C<X extends rep Data, Y extends any Object> {}

The type peer C<peer Data, peer Object> is well formed. The viewpoint-adapted upper
bound of type variable X is lost Data, which is a supertype of peer Data. However, this type
will never reference an object at runtime, because the ownership of the type argument is not
consistent with the upper bound, and the type system forbids the creation of such objects as
we explain next.

2.3.3.2 Strictly Well-formed Static Type

To guarantee well-formedness of the heap, we also define a stricter form of well-formed types
that is used for types that can be used for object creations.

A type variable is strictly well formed if it is contained in the type environment (swft_var).
We do not need to put additional constraints on the upper bound of the type variable. A
non-variable type is strictly well formed if its type arguments are also strictly well formed, the
modifiers self and lost do not appear in the type, and the type arguments are strict subtypes
of the adapted upper bounds (swft_nvar).

Definition 2.3.12 (Strictly Well-formed Static Type)
sΓ ` sT strictly OK strictly well-formed static type

X ∈ sΓ
sΓ ` X strictly OK swft_var

sΓ ` sT strictly OK {self , lost} /∈ u C<sT>
ClassBnds

(
u C<sT>

)
= sN sΓ ` sT <:s sN

sΓ ` u C<sT> strictly OK
swft_nvar

The use of strict subtyping ensures that lost does not appear in the viewpoint-adapted
upper bounds and, thus, that no ownership information was lost by the viewpoint adaptation.

Continuing the example from above, the type peer C<peer Data, peer Object> is not
strictly well formed. The viewpoint-adapted upper bound of type variable X contains lost and
therefore the type cannot be used in new expressions. This ensures that a well-formed heap
will never contain such an ill-formed object.

We do need both non-strict and strict well-formed type judgments to allow flexible access to
objects with lost ownership information. We will present an example after the topological type
rules.

2.3.3.3 Topological Type Rules

We are now ready to present the topological type rules. The judgment sΓ ` e : sT expresses
that expression e is well typed with type sT in environment sΓ . The definition also uses the
strict typing judgment sΓ ` e :s sT to expresses that expression e is well typed with type
sT in environment sΓ and that sT does not contain lost ownership modifiers; this definition
simplifies the type rules tr_write and tr_call.

31

Chapter 2 Generic Universe Types

Definition 2.3.13 (Topological Type Rules)
sΓ ` e : sT expression typing

sΓ ` e : sT1
sΓ ` sT1 <: sT
sΓ ` sT OK

sΓ ` e : sT tr_subsum

self /∈ sT
sΓ ` sT OK

sΓ ` null : sT tr_null
sΓ(x) = sT
sΓ ` x : sT tr_var

sΓ ` sT strictly OK
om(sT, sΓ) ∈ {peer , rep}

sΓ ` new sT() : sT tr_new

sΓ ` e : _
sΓ ` sT OK

sΓ ` (sT) e : sT tr_cast

sΓ ` e0 : sN0
FType(sN0, f) = sT

sΓ ` e0.f : sT tr_read

sΓ ` e0 : sN0 FType(sN0, f) = sT
sΓ ` e1 :s sT

sΓ ` e0.f = e1 : sT tr_write

sΓ ` e0 : sN0
sΓ ` sTl strictly OK

MSig
(
sN0,m, sTl

)
= _ <Xl extends sNl> sT m(sT ′q pid)

sΓ ` eq :s sT ′q sΓ ` sTl <:s sNl

sΓ ` e0 . m < sTl > (eq) : sT
tr_call

sΓ ` e :s sT strict expression typing

sΓ ` e : sT
lost /∈ sT

sΓ ` e :s sT
str_def

An expression of type sT1 can also be typed with sT1’s well-formed supertypes (tr_subsum).
The null-reference can have any well-formed type that does not contain the self modifier
(tr_null). The type of method parameters (including this) is determined by a look-up in
the type environment (tr_var). Objects must be created in a specific context. Therefore,
only types with main modifiers peer and rep are allowed for object creations. Also, the type
must be a strictly well-formed static type (tr_new). Function om yields the main ownership
modifier of a non-variable type and the main ownership modifier of the upper bound of a type
variable.

The rule for casts (tr_cast) is straightforward; it could be strengthened to prevent more
cast errors statically, but we omit these checks since they are not strictly needed.
As explained in Sec. 2.3.1, the type of a field access is determined by adapting the declared

type of the field from the viewpoint described by the type of the receiver (tr_read). If the
receiver type is a type variable, subsumption is used to determine its upper bound, because
FType is defined on non-variable types only. Subsumption is also used for inherited fields to
ensure that f is actually declared in sN0.

For a field update, the right-hand side expression must be typable as the viewpoint-adapted
field type, which is also the type of the whole field update expression (tr_write). The rule is
analogous to field read, but has the additional requirement that the adapted field type does
not contain lost, which is enforced by using strict expression typing. In this case, we cannot
enforce statically that the right-hand side has the required owner, and therefore have to forbid
the update.

The rule for method calls (tr_call) is in many ways similar to field reads (for result passing)
and updates (for argument passing). The method signature is determined using the receiver
type sN0 and the actual type arguments sTl substituted for the method’s type variables Xl .
Again, subsumption is used to find a type for the receiver that declares the method. The type
of the invocation expression is determined by the return type sT . The method type arguments
must be subtypes of the upper bounds and, modulo subsumption, the actual method argument

32

2.3 Topological System

expressions eq must have the formal parameter types. For these checks to be precise, we have
to forbid lost in the upper bounds and the parameter types, which is achieved by using strict
subtyping and strict expression typing, respectively. Note that the return type may contain
lost.

The method type arguments must be strictly well-formed types. Like the static type that is
used in an object creation, the static types that are supplied as method type arguments are
dynamized to the corresponding runtime types. They are used in the operational semantics
to construct the runtime environment. We need to show that the method type arguments are
well formed from the viewpoint of the receiver and therefore need to enforce strict well-formed
types as method type arguments.

Note that the topological type system treats pure and non-pure methods identically. For type
soundness we always need to forbid method calls where the viewpoint-adapted upper bounds
or parameter types contain lost. The purity information is only used for the encapsulation
system, which is presented in Sec. 2.4.

Deterministic object creation. We forbid to create objects that contain the lost modifier,
statically by enforcing that lost is not contained in the type and at runtime by using dyn with
an empty substitution for lost. Also, the any modifier is forbidden as main modifier of the
static type. A design alternative would be to allow the creation of types that contain lost
anywhere in the type and any also as main modifier and then at runtime choose an arbitrary
owner that fulfills the constraints imposed by the upper bounds. Even though this is not a
soundness issue, we prefer the more stringent rules that ensure deterministic behavior of object
creation.

We ensure that all subexpressions are well formed, not strictly well formed, to allow flexible
access to objects with lost ownership information. Imagine that class C from Fig. 2.10 has a
field f of type Y. The type peer D<peer Object> is both non-strictly and strictly well formed.
Imagine a variable x of type peer D<peer Object> and a field read x.f. By rule tr_read
we need to use subsumption to find the supertype that declares field f. This supertype is
peer C<lost Data, peer Object>, because from the current viewpoint we cannot express
the ownership of type argument X. This type is not strictly well formed, because it contains
lost in a type argument and also in an upper bound. However, we can still consider this type
well formed and can determine peer Object as type of the field access. Similarly, an update of
field f would be valid. If we required strict well-formedness for all static types, we would lose
this significant expressiveness. However, see Sec. 2.5.1 for meaningful further restrictions.

2.3.3.4 Well-formed Class Declaration

The judgment Cls OK expresses that class declaration Cls is well formed. According to rule
wfc_def, this is the case if: (1) the upper bounds of Cls’s type variables are well formed
in the type environment that maps Cls’s type variables to their upper bounds; (2) the self
modifier is not used in Cls’s upper bounds; (3) the type arguments to the superclass are strictly
well formed and they are strict subtypes of the upper bounds of the superclass; (4) Cls’s fields
are well formed; and (5) Cls’s methods are well formed.

33

Chapter 2 Generic Universe Types

Definition 2.3.14 (Well-formed Class Declaration)

Cls OK well-formed class declaration

sΓ =
{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

}
sΓ ` sNk OK self /∈ sNk

sΓ ` sT strictly OK ClassBnds
(
self C<sT>

)
= sN

′ sΓ ` sT <:s sN
′

sΓ ` fd OK sΓ ,Cid ` md OK
class Cid<Xk extends sNk> extends C<sT> { fd md } OK

wfc_def

class Object {} OK wfc_object

This definition allows the use of lost modifiers in the declaration of the upper bounds of
type variables. However, note that such a class can never be instantiated (type rule TR_NEW
requires a strictly well-formed type) and also never subclassed (because the instantiation of
a superclass does not allow lost in the upper bounds). Again, this is not a soundness issue;
more stringent checks and examples are discussed in Sec. 2.5.1.

The self modifier has the special meaning of referring only to the current object. Using the
self modifier in an upper bound type would result in the undesired situation that the supertype
of the corresponding type variable contains the self modifier, even though the type variable
obviously does not contain the self modifier. For the soundness of the static-type-to-value
judgment (see Def. 2.2.15) this has to be forbidden.

In Fig. 2.10, we introduced class C with a type variable X that has rep Data as upper bound.
Class C can never be instantiated, because the viewpoint-adapted upper bound always results
in lost ownership information. However, the subclass D can be instantiated. We therefore
consider class C well formed, even though the class can never be instantiated.

2.3.3.5 Well-formed Field Declaration

Field declarations are well formed if their corresponding types are well formed.

Definition 2.3.15 (Well-formed Field Declaration)
sΓ ` sT f ; OK well-formed field declaration

sΓ ` sT OK
sΓ ` sT f ; OK wffd_def

For soundness, the field types only need to be well formed; they do not need to be strictly
well formed. However, we again refer to Sec. 2.5.1 for useful restrictions.

2.3.3.6 Well-formed Method Declaration

The judgment sΓ ,C ` md OK expresses that method md is well formed in type environment sΓ
and class C . A method declaration md is well formed if: (1) the return type, the upper bounds
of md’s type variables, and md’s parameter types are well formed in the type environment
that maps md’s and sΓ ’s type variables to their upper bounds as well as this and the explicit
method parameters to their types. The type of this is the enclosing class instantiated with its
type variables, C<X ′k>, with main modifier self; (2) the upper bounds must not contain the
self modifier; (3) the method body, expression e, is well typed with md’s return type; and
(4) md respects the rules for overriding, see below.

34

2.3 Topological System

Definition 2.3.16 (Well-formed Method Declaration)
sΓ ,C ` md OK well-formed method declaration

sΓ =
{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}
sΓ ′ ` sNl ,

sT , sTq OK self /∈ sNl
sΓ ′ ` e : sT C<X ′k> ` m OK

sΓ ,C ` _ <Xl extends sNl> sT m(sTq pid) { e } OK
wfmd_def

We allow lost in the parameter types and the upper bounds of the method type variables;
such a method is never callable, as the type rule for method calls tr_call forbids the occurrence
of lost in these types. See Sec. 2.5.1 for a discussion. Also note that self is forbidden only in
the upper bound types, but is allowed as main modifier of the return and parameter types. A
method with self as main modifier of a parameter type is only callable on receiver this; self
as main modifier of the return type will result in lost, if the method is not called on receiver
this.

Method m respects the rules for overriding if it does not override a method or if all overridden
methods have the identical signatures after substituting type variables of the superclasses by the
instantiations given in the subclass (the notation ms′[sT/X ′] is used to apply the substitution
to the upper bounds, the return type, and the parameter types in the method signature ms′).
Consistent renaming of method type variable identifiers and parameter identifiers is allowed.
For simplicity, we require that overrides do not change the purity of a method, although

overriding non-pure methods by pure methods would be safe for the encapsulation system
in Sec. 2.4. Moreover, parameter and return types are invariant, although contravariant
respectively covariant changes could be allowed [55].

Definition 2.3.17 (Method Overriding)
sCT ` m OK method overriding OK

∀C ′<X ′>. ∀ sT .
(
C<X> v C ′<sT> =⇒ C<X>,C ′<sT , X ′> ` m OK

)
C<X> ` m OK

ovr_def

sCT ,C<sT , X> ` m OK method overriding OK auxiliary

MSig(C ,m) = ms MSig(C ′,m) = ms′o

ms′o= None ∨
(
ms′o= ms′ ∧ ms′[sT/X ′] = ms

)
C<X>,C ′<sT , X ′> ` m OK

ovra_def

The requirement is expressed by two rules. Rule ovra_def determines the method signatures
in classes C and C ′. The method signature in the superclass must either be undefined, signified
by the value None, or must be identical after substitution of the type arguments and possibly
renaming of method type variables and parameter identifiers. Rule ovr_def quantifies over
all superclass instantiations and checks that the methods are consistent using rule ovra_def.

2.3.3.7 Well-formed Type Environment

The judgment sΓ OK expresses that type environment sΓ is well formed. This is the case if all
upper bounds of type variables and the types of method parameters are well formed and self
does not appear in the upper bounds. Moreover, this must be mapped to a non-variable type
with main modifier self and using the declared type variables of the class as type arguments.

35

Chapter 2 Generic Universe Types

Definition 2.3.18 (Well-formed Type Environment)
sΓ OK well-formed static environment

sΓ =
{
Xk 7→ sNk , X ′l 7→ sN ′l ; this 7→ self C<Xk> , pid 7→ sTq

}
ClassDom(C) = Xk ClassBnds(C) = sNk
sΓ ` sTq , sNk , sN ′l OK self /∈ sNk , sN ′l

sΓ OK swfe_def

Note that self C<Xk> is well formed, because we check that class C is instantiated with its
type variables, i.e., ClassDom(C) = Xk .

2.3.3.8 Well-formed Program Declaration

The judgment ` P OK expresses that program P is well formed. This holds if all classes in
P are well formed, the main class C is a non-generic class in P, the main expression e is well
typed in an environment with this as an instance of class C , and where subclassing does not
contain cycles.

Definition 2.3.19 (Well-formed Program Declaration)

` P OK well-formed program

Clsi OK
{∅ ; this 7→ self C< >} ` self C< > OK
{∅ ; this 7→ self C< >} ` e : _
∀C ′,C ′′. ((C ′<_> v C ′′<_> ∧ C ′′<_> v C ′<_>) =⇒ C ′= C ′′)

` Clsi , C , e OK
wfp_def

2.3.4 Runtime Well Formedness
This subsection defines the well-formedness conditions of the runtime system.

2.3.4.1 Runtime Field Type Look-up

It is convenient to look up the declared type of a field for an object. We determine the supertype
that can be assigned to the object at address ι, whose class C declares the field f . Note that
there is at most one such class in which the field can be declared.

Definition 2.3.20 (Runtime Field Type Look-up)

FType(h, ι, f) = sT look up type of field in heap

h ` ι : _ C<_> FType(C , f) = sT

FType(h, ι, f) = sT
rft_def

2.3.4.2 Runtime Upper Bounds Look-up

To look up the runtime types of the upper bounds of a runtime type rT from the viewpoint ι,
we first determine the static upper bound types and then use simple dynamization to determine
the runtime types.

Definition 2.3.21 (Runtime Upper Bounds Look-up)

ClassBnds(h, ι, rT , oι) = rT upper bounds of type rT from viewpoint ι

ClassBnds(ClassOf(rT)) = sN sdyn
(
sN, h, ι, rT , oι

)
= rT

ClassBnds(h, ι, rT , oι) = rT
rcb_def

36

2.3 Topological System

We provide a sequence of owner addresses oι that is used to substitute lost modifiers that
might appear in the static upper bounds look-up.

The simple dynamization requires that self does not appear in the static type and that all
type variables can be substituted by the runtime type; this is always the case for a well-formed
class (see Def. 2.3.14).

2.3.4.3 Strictly Well-formed Runtime Type

By h, ι ` oι C<rT> strictly OK we denote that the runtime type oι C<rT> is strictly well
formed in heap h with viewpoint address ι. The owner oι has to be an address in the heap or
one of the special addresses anya or roota. The type arguments have to be strictly well formed
and must be runtime subtypes of the corresponding upper bounds.

Definition 2.3.22 (Strictly Well-formed Runtime Type)

h, ι ` rT strictly OK strictly well-formed runtime type rT

oι∈ dom(h) ∪ {anya , roota} ClassBnds
(
h, ι, oι C<rT k>, ∅

)
= rT ′k

h, _ ` rT k strictly OK h ` rT k <: rT ′k
h, ι ` oι C<rT k> strictly OK

swfrt_def

We call this judgment strictly well-formed runtime type because conceptually it corresponds
to the strictly well-formed static type judgment. We did not find a need to define a weak form
of well-formed runtime type.

This judgment uses a viewpoint address to express that the runtime type is well formed for a
specific viewpoint address ι. The address ι is used to determine the runtime upper bound types.
If the declared upper bounds contain the rep modifier, then ι will be used in the runtime upper
bounds. This ensures that the rep upper bound is interpreted correctly. It is interesting to
note that a class with a rep upper bound can never be instantiated, only a subclass of it could
be instantiated. We never need to check strict runtime well formedness of such a type and in
our uses the viewpoint address ι can be arbitrary.

The type arguments are also checked to be strictly well formed, but we use different viewpoint
addresses ι. The type arguments are types that were potentially created in a different viewpoint,
e.g., they are the result of substituting type arguments for a type variable. Using different
viewpoints for the different type arguments allows for each type argument to be relative to a
different point of instantiation.
Note that we use an empty sequence of substitutions for lost modifiers in ClassBnds. This

forbids occurrences of lost in the declared upper bounds of a class. Our type rules ensure
that we never use strictly well-formed runtime types for classes that use lost in upper bounds,
because all corresponding static types are checked for strict well formedness.

2.3.4.4 Well-formed Address

An address ι is well formed in a heap h, denoted by h ` ι OK, if the runtime type of the object
in the heap is strictly well formed, the root owner roota is in the set of transitive owners of
the object (owners(h, ι) yields the set containing the owner address for ι, owner(h, ι), and all
the transitive owners), and for all the fields that are declared in the corresponding class, the
field type can be assigned to the field value. By mandating that all objects are (transitively)
owned by roota and because each runtime type has one unique owner address, we ensure that
ownership is a tree structure.

37

Chapter 2 Generic Universe Types

Definition 2.3.23 (Well-formed Address)

h ` ι OK well-formed address

h(ι)↓1 =_ C<_> h, ι ` h(ι)↓1 strictly OK roota ∈ owners(h, ι)
∀f ∈ fields(C) . ∃ sT. (FType(h, ι, f) = sT ∧ h, ι ` h(ι.f) : sT)

h ` ι OK wfa_def

This definition allows a field type with the self main modifier. The address is well formed,
if the corresponding field value is the same address again. Also, field types can contain lost
modifiers and can reference objects of a suitable type, because the static-type-to-value judgment
chooses suitable owner addresses. However, the static type rules forbid that such fields are used
in an update and therefore a well-formed program will never create such a heap.

2.3.4.5 Well-formed Heap

A heap h is well formed, denoted by h OK, if all the addresses in the heap are well formed.

Definition 2.3.24 (Well-formed Heap)

h OK well-formed heap
∀ι ∈ dom(h) . h ` ι OK

h OK wfh_def

2.3.4.6 Well-formed Environments

We need to express that the runtime information consisting of a heap h and a runtime
environment rΓ are consistent with the static environment sΓ , written as h, rΓ : sΓ OK.

Definition 2.3.25 (Well-formed Environments)

h, rΓ : sΓ OK runtime and static environments correspond

rΓ =
{
Xl 7→ rT l ; this 7→ ι , pid 7→ vq

}
sΓ =

{
Xl 7→ sNl , X ′k 7→ _ ; this 7→ self C<X ′k> , pid 7→ sTq

}
h OK sΓ OK h, ι ` rT l strictly OK

dyn
(
sNl , h, rΓ , ∅

)
= rT ′l h ` rT l <: rT ′l

h, rΓ ` ι : self C<X ′k> h, rΓ ` vq : sTq

h, rΓ : sΓ OK wfrse_def

The runtime environment only contains the method type variables Xl with their runtime
type arguments rT l , whereas the static environment contains the method type variables Xl and
the class type variables X ′k with their respective static upper bound types. The type of the
current object this has to match with the class type variables X ′k and the type of this must
be assignable to the current object ι. The formal parameter types sTq must be assignable to
the argument values vq .
The method type arguments rT l must be strictly well-formed runtime types and must be

subtypes of the dynamization of the corresponding upper bounds. Note that the static upper
bounds of the method type variables sNl are dynamized using dyn, because the sNl can contain
other method type variables which need a runtime environment rΓ for dynamization and could
also come from a supertype of the runtime type of the current object ι; sdyn would not be
defined for such upper bounds. Note that we do not need to ensure that the ownership structure
induced by the method type arguments and method arguments is correct, in particular, we
do not need to ensure that roota is contained, as we do in Def. 2.3.24. We ensure that all

38

2.3 Topological System

addresses are contained in the heap and therefore ensure the well formedness of the ownership
structure using Def. 2.3.24.

Also, an empty substitution for lost modifiers is used; our type rules ensure that the upper
bounds of method type variables do not contain lost modifiers (see tr_call, Def. 2.3.13; note
that a well-formed method might contain lost modifiers in upper bounds and parameter types,
but such a method will never be callable and therefore we never need to show a correspondence
between the static and runtime environments).

The heap h and the static environment sΓ have to be well formed according to their respective
well-formedness judgments, see Def. 2.3.24 and Def. 2.3.18.

2.3.5 Properties of the Topological System
This final subsection presents the main properties of the topological system and outlines their
proofs. Additional properties can be found in App. A.1 and the detailed proofs are in Sec. A.2
on page 106.

2.3.5.1 Type Safety

Type safety of Generic Universe Types in particular ensures that the static ownership information
is correctly reflected in the runtime system, which is expressed by the following theorem. If
a well-typed expression e is evaluated in a well-formed environment (including a well-formed
heap), then the resulting heap is well formed and e’s static type can be assigned to the result
of e’s evaluation.

Theorem 2.3.26 (Type Safety)

` P OK h, rΓ : sΓ OK
sΓ ` e : sT
rΓ ` h, e h′, v

 =⇒
{

h′, rΓ : sΓ OK
h′, rΓ ` v : sT

The proof of Theorem 2.3.26 runs by rule induction on the operational semantics. Lemma 2.3.28
is used to prove field reads and method results, whereas Lemma 2.3.29 is used to prove field
updates and method argument passing.
We omit a proof of progress since this property is not affected by adding ownership to a

Java-like language. The basic proof can easily be adapted from FGJ [99]. Extensions to include
field updates and casts have also been done before [20, 80]. Only the additional check of the
ownership information in a cast is different from these previous approaches; its treatment is
analogous to a standard Java cast.

2.3.5.2 Validation and Creation of a New Viewpoint

The following judgment is convenient for the formulation of the viewpoint adaptation lemmas.
It checks that all type variables that appear in the static type sT are either from the class of sN
or from the method type variables Xl . Also, in some static environment, sN needs to be well
formed. This ensures that all type variables are substituted and therefore that the type after
substitution of the class and method type variables is consistent with the new environment.
Note that the types sN and sT are not part of the new viewpoint rΓ ′, but for brevity we want
to include the check of this common side-condition here. The judgment determines the runtime
types rT l for the method type arguments using the original environment rΓ and an empty
substitution for lost modifiers. The new viewpoint rΓ ′ is constructed using the method type
arguments, the new current object ι, and arbitrary method arguments.

39

Chapter 2 Generic Universe Types

Definition 2.3.27 (Validate and Create a New Viewpoint)

h, rΓ ` sN, sT ;
(
sT/X, ι

)
= rΓ ′ validate and create new viewpoint rΓ ′

sΓ ` sN OK ClassDom(ClassOf(sN)) = X free(sT) ⊆ X , Xl
dyn
(
sTl , h, rΓ , ∅

)
= rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
h, rΓ ` sN, sT ;

(
sTl/Xl , ι

)
= rΓ ′

nvp_def

2.3.5.3 Adaptation from a Viewpoint

The following lemma expresses that viewpoint adaptation from a viewpoint to this is correct.
Consider the this object of a runtime environment rΓ and two objects o1 and o2. If from
the viewpoint this, o1 has the static type sN , and from viewpoint o1, o2 has the static type
sT , then from the viewpoint this, o2 has the static type sT adapted from sN , sN B sT . The
following lemma expresses this property using the address ι and value v of the objects o1 and
o2, respectively. (Note that v can be the nulla value, because every static type (that does not
contain self) can be assigned to the nulla value.)

Lemma 2.3.28 (Adaptation from a Viewpoint)

h, rΓ ` ι : sN
h, rΓ ′ ` v : sT
h, rΓ ` sN, sT ;

(
sT/X, ι

)
= rΓ ′

 =⇒ ∃sT ′. (sN B sT)
[
sT/X

]
= sT ′ ∧

h, rΓ ` v : sT ′

This lemma justifies the type rule tr_read and the method result in tr_call. Note how we
can choose suitable substitutions for lost modifiers in the static types, i.e., the static type after
viewpoint adaptation might contain more lost ownership information and suitable runtime
types are chosen. The proof runs by induction on the shape of static type sT .

2.3.5.4 Adaptation to a Viewpoint

The following lemma is the converse of Lemma 2.3.28. It expresses that viewpoint adaptation
from this to an object o1 is correct. If from the viewpoint this, o1 has the static type sN
and o2 has the static type sN B sT , then from viewpoint o1, o2 has the static type sT . The
lemma requires that the adaptation of sT from viewpoint sN does not contain lost ownership
modifiers, because the lost ownership information cannot be recovered.

Lemma 2.3.29 (Adaptation to a Viewpoint)

h, rΓ ` ι : sN
(sN B sT)

[
sT/X

]
= sT ′ lost /∈ sT ′

h, rΓ ` v : sT ′
h, rΓ ` sN, sT ;

(
sT/X, ι

)
= rΓ ′

 =⇒ h, rΓ ′ ` v : sT

This lemma justifies the type rule tr_write and the requirements for the types of the
parameters in tr_call. The proof again runs by induction on the shape of static type sT .

This concludes our discussion of the topological system. In summary, we presented the static
and dynamic semantics of the topological system and proved type safety. The next section
presents an encapsulation system that builds on top of the topological system.

40

2.4 Encapsulation System

2.4 Encapsulation System

On top of the topological system that we defined in the previous section, we now define an
encapsulation system that enforces the owner-as-modifier discipline. Encapsulation is first
defined for expressions and then for methods, classes, and programs. We conclude this section
by stating the owner-as-modifier property formally and outlining its proof; the detailed proof
can be found in Sec. A.2 on page 119.
The owner-as-modifier discipline allows an object o to be referenced from anywhere, but

reference chains that do not pass through o’s owner must not be used to modify o. This allows
owner objects to control state changes of owned objects and supports program verification
[69, 142, 116, 135]. It is also enforced in Spec]’s dynamic ownership model [116] and Effective
Ownership Types [122]. Note that all references, in particular also method parameters and
local variables, are subjected to the same restrictions and cannot be used to circumvent the
owner-as-modifier discipline.

2.4.1 Encapsulated Expression

The judgment sΓ ` e enc, given below, expresses that expression e is an encapsulated expression,
that is, it is a topologically well-typed expression that constrains the possible field updates and
method calls.

Definition 2.4.1 (Encapsulated Expression)

sΓ ` e enc encapsulated expression

sΓ ` null : _
sΓ ` null enc e_null

sΓ ` x : _
sΓ ` x enc e_var

sΓ ` new sT() : _
sΓ ` new sT() enc e_new

sΓ ` (sT) e : _
sΓ ` e enc

sΓ ` (sT) e enc e_cast

sΓ ` e0.f : _
sΓ ` e0 enc

sΓ ` e0.f enc e_read

sΓ ` e0.f = e1 : _
sΓ ` e0 : sN0

sΓ ` e0 enc sΓ ` e1 enc
om(sN0) ∈ {self , peer , rep}

sΓ ` e0.f = e1 enc e_write

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 : sN0

sΓ ` e0 enc sΓ ` e enc
om(sN0) ∈ {self , peer , rep} ∨ MSig

(
sN0,m, sT

)
= pure <_> _ m(_)

sΓ ` e0 . m < sT > (e) enc
e_call

To enforce the owner-as-modifier discipline, the update of fields of objects in arbitrary contexts
must be forbidden. Therefore, field updates are only allowed if the main modifier of the receiver
type is self, peer, or rep (e_write). For a method call, either the main modifier of the
receiver type is self, peer, or rep, or the called method is pure (e_call). Pure methods can
be called on arbitrary receivers, because they do not modify existing objects.

The encapsulation judgment prevents method main (Fig. 2.3) from updating field key of the
object referenced by n, because the main modifier of n is any. The update would preserve the
topology, but violate the owner-as-modifier discipline, because the object referenced by n is in
a statically unknown context.

41

Chapter 2 Generic Universe Types

2.4.2 Pure Expression
To focus on the essentials of the type system, we under-specify what we mean with a pure
expression. All we need for the proof of the owner-as-modifier property (Theorem 2.4.7 given
later) is expressed in the following assumption: pure expressions do not modify objects that
exist in the prestate of the expression evaluation; formally:

Assumption 2.4.2 (Pure Expression)

h, rΓ : sΓ OK
sΓ ` e : _
sΓ ` e pure
rΓ ` h, e h′, _

 =⇒ ∀ι ∈ dom(h) , f ∈ h(ι)↓2 . h(ι.f) = h′(ι.f)

As an example that satisfies this assumption we give a strict definition of pure expressions [63].
This definition forbids all field updates, and calls to non-pure methods.

Definition 2.4.3 (Strictly Pure Expression)
sΓ ` e strictly pure strictly pure expression

sΓ ` null : _
sΓ ` null strictly pure sp_null

sΓ ` x : _
sΓ ` x strictly pure sp_var

sΓ ` new sT() : _
sΓ ` new sT() strictly pure sp_new

sΓ ` (sT) e : _
sΓ ` e strictly pure

sΓ ` (sT) e strictly pure sp_cast

sΓ ` e0.f : _
sΓ ` e0 strictly pure

sΓ ` e0.f strictly pure sp_read

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 : sN0

sΓ ` e0 strictly pure sΓ ` e strictly pure
MSig

(
sN0,m, sT

)
= pure <_> _ m(_)

sΓ ` e0 . m < sT > (e) strictly pure
sp_call

Also approaches that allow the modification of newly created objects [168] fulfill this assumption.

2.4.3 Encapsulated Method Declaration
For an encapsulated method, we require that for a pure method the method body is a pure
expression and that for a non-pure method the method body is an encapsulated expression.

Definition 2.4.4 (Encapsulated Method Declaration)
sΓ ,C ` md enc encapsulated method declaration

sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } OK
sΓ =

{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}(
p = pure =⇒ sΓ ′ ` e pure

) (
p = impure =⇒ sΓ ′ ` e enc

)
sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } enc

emd_def

The first requirement checks that the method is a topologically well-formed method. We then
determine the static environments sΓ and sΓ ′ that we need to check the method body expression.
The construction of these environments corresponds to the topological well-formed method
judgment (Def. 2.3.16). Finally, a pure method is required to have an expression as method
body that fulfills our assumption of a pure expression (Assumption 2.4.2) and a non-pure
method needs a method body that fulfills the encapsulated expression judgment (Def. 2.4.1).

42

2.4 Encapsulation System

2.4.4 Encapsulated Class and Program Declaration
The final two judgments define encapsulated class, Cls enc, and encapsulated program, ` P enc.
They simply propagate the checks to the lower levels.

Definition 2.4.5 (Encapsulated Class Declaration)

Cls enc encapsulated class declaration

class Cid<Xk extends sNk> extends C<sT> { fd md } OK
sΓ =

{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

} sΓ ,Cid ` md enc
class Cid<Xk extends sNk> extends C<sT> { fd md } enc

ec_def

class Object {} enc ec_object

A class declaration is correctly encapsulated, if it fulfills the topological rules of well formedness
and all methods are encapsulated in the corresponding environment sΓ (the construction of sΓ
again corresponds to the construction of the topological judgment, this time from Def. 2.3.14).
Class Object is always correctly encapsulated.

Definition 2.4.6 (Encapsulated Program Declaration)

` P enc encapsulated program

` Cls, C , e OK
Clsk enc
{∅ ; this 7→ self C< >} ` e enc

` Cls, C , e enc
ep_def

A program is encapsulated, if the program is topologically well formed, all classes are correctly
encapsulated, and the main expression is correctly encapsulated.

2.4.5 Examples

2.4.5.1 Purity Examples

Consider the following examples about method purity. Method getData below is pure, in both
the weak (Assumption 2.4.2) and strict definitions (Def. 2.4.3):

class C {
rep Data f;

pure rep Data getData() {
return f;

}
}

The method simply returns a reference to the internal state and does not modify any state.
On the other hand, consider:

class D {
pure rep Data computeData() {

rep Data x = new rep Data();
x.addInfo(...);
return x;

}
}

43

Chapter 2 Generic Universe Types

assuming some non-pure method addInfo in class Data. Method computeData is pure according
to the weak definition of purity from Assumption 2.4.2, because it does not modify objects
that exist in the pre-state of the method call. It creates a new object, modifies only this new
object, and finally returns it. However, the strict definition from Def. 2.4.3 forbids method
computeData, because all non-pure method calls are forbidden.
Finally, the following method is non-pure by both definitions:

class E {
rep Data f;
rep Data cachedData() {

if(f==null) {
f = new rep Data();
f.addInfo(...);

}
return f;

}
}

The modification of field f violates both purity definitions. However, caching and lazy initializa-
tion are common in query methods. The current research on observational purity [54, 146, 18]
tries to remedy this problem, but the relation to the owner-as-modifier discipline has not been
investigated yet.

2.4.5.2 Encapsulation Examples

The following examples illustrate the encapsulation judgments. The code fragment below is
well encapsulated:

peer Data dp = ...;
dp.addInfo(...);
dp.count = 4;

rep Data dr = ...;
dr.addInfo(...);

any Data da = ...;
any Info ia = da.getInfo();
int count = da.count;

Calls of the non-pure method addInfo are on receivers with a peer or rep type; also, the field
update is on a receiver with a peer type. We have no static knowledge of the ownership of da;
therefore, only the pure method getInfo can be called on it and the field can only be read.

Note that the encapsulation judgment is concerned only with the main modifier of the receiver
type. For example, consider:

peer List<any Data> pla = new peer List<any Data>();
pla.add(new peer Data());

This code is well encapsulated. We know that the list referenced by pla has the same owner as
the current object and the current object can therefore modify the object referenced by pla.
We have no static knowledge of the ownership of the type arguments, but this is not needed to
enforce the owner-as-modifier discipline.

Static types always represent static approximations of the runtime behavior. Consider:

44

2.5 Discussion

any Data d;
if (...) {
d = new rep Data();

} else {
d = new peer Data();

}
d.addInfo(...);

This code is not well encapsulated. At runtime, variable d will always reference an object that
is either owned by the current object or by the owner of the current object. However, the
static type loses this ownership information and the encapsulation system rejects the call to
the non-pure method addInfo. The code must be rewritten to retain the static knowledge.

2.4.6 Properties of the Encapsulation System

The owner-as-modifier discipline is expressed by the following theorem. The evaluation of an
encapsulated expression e in an encapsulated program P and a well-formed environment can
only modify those objects that are (transitively) owned by the owner of this.

Theorem 2.4.7 (Owner-as-Modifier)

` P enc
sΓ ` e enc
h, rΓ : sΓ OK
rΓ ` h, e h′, _

 =⇒
∀ι∈ dom(h) . ∀f ∈ dom(h(ι)↓2) .

h(ι.f) = h′(ι.f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

The proof of Theorem 2.4.7 runs by rule induction on the operational semantics. The interesting
cases are field updates and calls of non-pure methods. In both cases, the encapsulation rules
enforce that the receiver expression does not have the main modifier lost or any. That is, the
receiver object is owned by this or the owner of this. The case for pure method calls relies
only on Assumption 2.4.2 and not on a more restrictive definition of purity.

2.5 Discussion

This section discusses interesting aspects of the formalization in more detail and compares the
previous formalization of GUT [60] with our current work using an example. To distinguish
the two systems, we call the system from [60] GUT1 and the current formalization GUT2.

2.5.1 Reasonable Programs

2.5.1.1 Motivation

The goal of our formalization of Generic Universe Types is to impose the minimal set of
restrictions necessary for soundness. This highlights the necessity of each restriction and makes
the formalization elegant, but on the other hand makes the proofs more involved and allows
programs which are sound, but not meaningful for programmers to write.
For instance, we define a well-formed static type judgment (Def. 2.3.11) and a strictly well-

formed static type judgment (Def. 2.3.12). Using only the strict judgment would be overly
restrictive, as it would forbid the appearance of lost in the types of subexpressions. Consider
the following example:

45

Chapter 2 Generic Universe Types

class L<X extends peer Object> {
X getFirst() {...}

}
class C {

peer L<peer D> f;
}
class E {

void m(any C p) {
any D x = p.f.getFirst();

}
}

The type of field f is strictly well formed; however, the type of the field access p.f is not
strictly well formed, because the type after viewpoint adaptation is lost L<lost D> and the
upper bound after viewpoint adaptation contains lost. However, we can consider the type well
formed and we can call method getFirst, because it does not contain lost in the parameter
types. If we were to always enforce strict well-formedness, we would forbid all access to objects
where we only have partial knowledge of the ownership.

On the other hand, our well-formed type judgment only considers type soundness and does
allow types which are not meaningful for a programmer to write. For example, consider this
code:

class C<X extends rep D> {
void add(X p) {...}

}
class E {

void m(peer C<peer D> p) {
p.add(new peer D());

}
}

The type of parameter p is well formed, but not strictly well formed, because the viewpoint
adapted upper bound of class C contains lost. This example is sound, because there will never
be a call of method m with an argument other than nulla. It would be useful to warn the
programmer that such programs are sound, but probably not what was intended.

In work on non-generic Universe Types [55], the syntax forbids the use of self and lost by
the programmer and only allows these two modifier in derivations. However, in the generic case
this restriction is not enough. In the example above, the type of parameter p does not contain
self or lost, but still is not meaningful. In the generic system we need a stronger check that
also ensures that the viewpoint adapted upper bounds are meaningful.

As an aside, let us consider a similar issue with wildcards in Java 5. The bound of a wildcard
can be a supertype of the declared bound of the corresponding type variable. Consider this
example:

class A {}
class B extends A {}

class C<X extends B> {}

class D {
C<? extends A> f;

}

46

2.5 Discussion

This is a valid Java 5 program and field f will always reference an object that fulfills the
intersection of the declared bound and the wildcard bound.
Now consider this slight extension:

class A {}
class B extends A {

void crash() { }
}

class C<X extends B, Y extends X> {
void m(Y y) { y.crash(); }

}

public class D {
void foo(C<? extends A, A> p) {
p.m(new A());

}
}

Also this program type-checks as valid Java 5 using Sun javac 1.5 and 1.6. However, if method
foo could be called with an instance of class C as argument, we would receive a “Message Not
Understood” exception, as the argument to method m is an instance of class A, which does not
provide method crash. However, method foo can never be called with an argument other than
nulla, because whenever an instance of class C is created, the declared bound is checked and
the parameter type is not a creatable type.
In work on non-generic Universe Types [34], we compared the lost and any ownership

modifiers to existential quantification in a parametric ownership type system and showed their
equivalence. It will be interesting further work to see how wildcards can be combined with
Generic Universe Types.

In the following subsections, we will discuss interesting examples, illustrate the soundness of
the weak rules, and motivate how stricter rules would aid programmers. We then present our
“reasonable” judgments, which still allow meaningful programs but forbid unreasonable cases.

2.5.1.2 Examples

Use of self in declared types. We allow the self modifier to be used in field and method
parameter types; however, such fields can only be updated on this and such methods are only
callable on this and the right-hand side, respectively the argument in the method call, has to
be the this object. The return type of a method could use self and the method would still
be callable on something other than this, but the viewpoint-adapted return type would be
lost, if the receiver is not this.
In the proof of soundness we need to show that, if a value can be typed with self, it

corresponds to the current object in the runtime environment. Because of subsumption, we need
Lemma A.1.21 to show that if we showed the absence of self in a subtype, also the supertype
does not contain self. Also, in Def. 2.3.25 there is no way to ensure that a type argument is
actually a subtype of a self upper bound, as there is no object that can be compared with the
current object. We would need to make the runtime model more complicated to support this
and decided to stay with the current runtime model.
The use of self in the superclass instantiation and in object creations is forbidden by the

strict well-formedness check of the type. Finally, the type of a cast could use self; such a use
of self can be replaced with a comparison against the current object this.

47

Chapter 2 Generic Universe Types

In conclusion, for programmers the possibility to use self in a program does not add a lot
of expressiveness. We will therefore forbid all explicit uses of self in reasonable programs.
This will also make it possible to simplify the “assigning a static type to a value” judgment
(Def. 2.2.15) by not checking whether the object is the current object this, which would simplify
casts.

Use of rep in declared upper bounds. A class C ’s upper bounds express ownership
relative to the current C instance. If such an upper bound contains a rep modifier, clients of
C cannot instantiate C . The ownership modifiers of an actual type argument are relative to
the client’s viewpoint. From this viewpoint, none of the ownership modifiers expresses that an
object is owned by the C instance. We do not forbid a class from having a rep modifier in an
upper bound, but ensure that when instantiating an object, the upper bounds do not contain
lost. It is still possible to have subclasses of classes with rep in an upper bound. This allows
class C from Fig. 2.10 and class D is a valid subclass. Class C will never be usable in an object
creation expression and a corresponding warning could be issued for the class declaration.
In GUT1 we had to forbid classes with upper bounds that contain a rep modifier, because

there was no possibility to distinguish between an upper bound that was declared to be any
and one that is any after viewpoint adaptation. In GUT2 we make the handling of this case
more flexible and uniform and allow rep in upper bounds.

Use of rep in superclass instantiations. A superclass can be instantiated with rep types,
but the use of such classes is limited, as clients of the class can only refer to the superclass with
lost type arguments. For example, consider the decorator pattern introduced in Fig. 2.4 and
the following decoration class:

class MyDecoration implements Decoration<rep Data> {
rep Data f;
void set(rep Data d) {
f = d;

}
}

We consider this class well formed, but it cannot be used together with class Decorator.
Type variable O of method decorate in class Decorator has peer Decoration<V> as upper
bound. A peer MyDecoration is only a subtype of peer Decoration<lost Data>, therefore
mandating that type variable V has type lost Data. However, the type rules forbid method
calls with type arguments that contain lost ownership modifiers.

Forbidding the use of rep in superclass instantiations would also forbid valid uses; therefore,
we do not constrain this case further.

Superclass instantiations are strictly well formed. The instantiation of a superclass
can only use strictly well-formed types as type arguments. There are two places where static
types are dynamized into corresponding runtime types, object creation and the method type
arguments in a method call. In both places we need to ensure that the resulting runtime type
is a strictly well-formed runtime type and therefore need to make sure that the corresponding
static type is strictly well formed.

The instantiation of the superclass needs to use strictly well-formed type arguments because
a method in the superclass could use the type variable in an object creation or as a method type
argument. For example, assume that we would not check for strictly well formed superclass
instantiation and consider the following code:

48

2.5 Discussion

class L<Z extends rep Object> {}

class B<X extends peer Object> {
X f;
X foo() {

this.f = new X();
return this.f;

}
}
class C extends B<peer L<peer Object>> {}

class D {
peer C x = new peer C();
peer L<peer Object> o = x.foo();

}

The type peer L<peer Object> is well formed, but not strictly well formed, because the upper
bound after viewpoint adaptation contains lost. In class D we could instantiate an instance of
class C, because peer C is a strictly well-formed type. Then the call x.foo would create a new
object that would not respect the upper bound of type variable Z of class L. Ensuring that the
superclass instantiation uses strictly well-formed type arguments forbids class C and prevents
this problem.

The same issue arises with method type arguments. Consider this example:

class C {
<Y extends peer Object> Y bar() {

return new Y();
}

}

class D {
peer C x = new peer C();
peer L<peer Object> o = x.bar<peer L<peer Object>>();

}

If we would not check for strict well-formedness of the method type arguments, we would
consider the above code well formed, but it would result in an ill-formed heap. By enforcing
strict well-formedness of the method type arguments we prevent this problem.

The topological system already enforces strict well-formedness and we therefore do not need
additional checks for this case.

Use of lost in declared types. The well-formed class and method rules allow most declared
types to contain lost. However, if a declared type contains lost, the type after viewpoint
adaptation also contains lost (see Lemma A.1.4). Therefore:

Object creation of non-variable type: the type has to be strictly well-formed, which checks
for lost in the type and in the viewpoint-adapted upper bounds. Therefore, a class with
lost in an upper bound can never be instantiated.

Superclass instantiations: the well-formed class judgment (Def. 2.3.14) checks that the type
arguments to the superclass are strict subtypes of their respective upper bounds, and
thereby that the upper bounds do not contain lost. Therefore, a class with lost in an
upper bound can never be subclassed.

49

Chapter 2 Generic Universe Types

Field updates: the viewpoint-adapted field type must not contain lost. Therefore, a field with
lost in its declared type can never be updated and will always be nulla.

Method calls: the method type arguments, the viewpoint-adapted upper bounds of the method
type variables, and the viewpoint-adapted parameter types must not contain lost.
Therefore, a method with lost in any of these declared types can never be called.

The only places where lost could be used in a type is in a cast, in a method return type,
and for local variables. Therefore, we only allow the use of lost in these types and provide
additional checks to ensure that all declared types are reasonable.

Note that Def. 2.3.25 and Def. 2.3.22 use dyn with an empty substitution for lost when upper
bounds are dynamized. The static checks ensure that there is no lost in the corresponding
types.

Expressiveness without lost ownership. How can we declare a class, method, or field
that references some arbitrary kind of List, regardless of the ownership of the type argument?
In GUT1 the type any List<any Object> can be used. As explained in Sec. 2.3.8, the type
any List<lost Object> is the most general List type in GUT2, but as this most general
type contains lost, we cannot use it as a declared type and still instantiate the class, call the
method, or update the field. Consider the following class that can be parameterized by an
arbitrary List:

class List<X extends any Object> {
X get();
void add(X p);

}

class C<Y extends any List<lost Object>> {
Y store;

void init(Y p) {
store = p;

}

peer List<lost Object> sort() { ok; }
void addElem(Object o) {
store.add(o); // forbidden

}
}

Then types like

peer C<peer List<peer Data>> f;
peer C<any List<rep Data>> g;

could be used to manage different kinds of lists. However, as the upper bound of C contains
lost we can never create instances of class C. For upper bounds of class and method type
variables and method parameter and return types, one can simply introduce another type
variable that varies over the element type:

class C<Z extends any Object, Y extends any List<Z>> {
...

}

50

2.5 Discussion

which is the same approach as one would use in a Java 5 program. Then the types for references
f and g from above can be expressed as:

peer C<peer Data, peer List<peer Data>> f;
peer C<rep Data, any List<rep Data>> g;

and corresponding instances of class C are creatable.
This is a workable solution, but it introduces an extra, redundant type variable. Moreover,

for a field type we cannot introduce a separate type variable to vary over the element type.
The solution to both issues in Java 5 is to use a wildcard as element type in field and method
parameter and return types.
We think that there are three possible solutions to this for Generic Universe Types:

1. Use-site variance: wildcards as found in Java 5:

any List<? extends any Object> l;

The wildcard abstracts away the concrete ownership of the list elements. Unlike lost, a
wildcard can be used in a method signature and field type and the method is still callable
and the field still updatable. However, the uses of a type that uses wildcards are limited
by the upper or lower bound of the wildcard.

2. Declaration site variance: as found, e.g., in Scala:

class List<+X extends any Object> {...}

The uses of type variable X within the class declaration are checked to conform to its
variance annotation. This again allows us to abstract from unknown ownership information
in a class declaration and eases the use of the class by clients.

3. Additional some ownership modifier: the problem with using lost is that one cannot
distinguish between the loss of ownership that results from viewpoint adaptation and
intended covariance that is declared in the field or parameter type. A new modifier
some could be introduced that basically behaves like an upper bounded wildcard that
only varies over the ownership information. Viewpoint adaptation changes an ownership
modifier to lost, when a concrete main modifier is needed.
For example we could imagine:

class C {
any List<some Data> l;

void m(any C o) {
o.l = new peer List<peer Data>(); // OK
int x = o.l.length(); // OK
any Data h = o.l.head(); // OK
o.l.add(new peer Data()); // Error: capture

}
}

The use of some in the type of l allows us to distinguish between a deliberate abstraction
over ownership and the inadvertent loss of ownership by viewpoint adaptation. We can
update field l and query information from the referenced object, but cannot modify it.

51

Chapter 2 Generic Universe Types

However, in all three solutions one still needs the lost modifier to distinguish the loss of
ownership by viewpoint adaptation from intended variance. For example, consider this class:

class E {
peer List<rep Data> l;

}

and a reference x of type peer E. The type of x.l is peer List<lost Data>; it would not be
sound to use peer List<? extends any Data> or peer List<some Data> as the type of x.l,
as we could update the field l without respecting the declared field type. If only declaration
site variance is supported, the field access would be illegal, if class List is not using the correct
variance annotation, even though save read access would be possible using lost.

In GUT2 we leave the exploration of these options as future work. lost is used as internal
modifier for derived types to highlight the loss of ownership information that might occur in
viewpoint adaptation and to cleanly separate the topological system from the encapsulation
system.

Method overriding. The method overriding rule (Def. 2.3.17) ensures that the method
selected at runtime is compatible with the method arguments.
As an example, consider the following classes:

class Super<X> {
void m(X p) {
}

}

class Sub1 extends Super<peer Data> {
void m(peer Data p) { ... }

}

class Sub2 extends Super<rep Data> {
void m(rep Data p) { ... }

}

class Sub3 extends Super<rep Data> {
void m(peer Data p) { ... }

}

According to Def. 2.3.17, classes Sub1 and Sub2 correctly override method m, as the method
parameter is consistent with the instantiation of the superclass. On the other hand, Sub3 does
not use the correct parameter type and is rejected.
It is important to note the relation between subtyping and method selection. In the above

example, we can derive peer Sub1 <: peer Super<peer Data>. The look-up of the method
signature in the supertype is consistent with the signature in the subtype and any call that
typechecks on the supertype will also typecheck on the subtype. We also have any Sub1 <: any
Super<lost Data>; for both the sub- and the supertype, the method signature look-up yields
lost Data as parameter type and the method call rule (tr_call in Def. 2.3.13) forbids an
invocation of the method. It is important that any Sub1 <: any Super<peer Data> does not
hold; otherwise, we could provide a peer reference as argument to a call on the supertype, even
though the object referenced at runtime does not expect a peer argument. For class Sub2, we
can deduce peer Sub2 <: peer Super<lost Data> and again, the method signatures look-up
for sub- and supertype match.

52

2.5 Discussion

Pure methods. Pure methods are intended to be callable on any object to query their state,
e.g., in specifications. If a pure method uses a type variable as parameter type, the type might
use lost as type argument (e.g., as the result of viewpoint adaptation) and the method would
not be callable any more. Also, non-variable types that change under viewpoint adaptation
with any would not be callable on an arbitrary receiver.

The soundness of GUT1 depended on requiring that pure methods use only any in their
signature, because this system could not distinguish between loss of ownership information from
viewpoint adaptation and a declared type that only uses any. In GUT2 the topological system
enforces the constraints that are needed for soundness, regardless of whether the method is
pure or non-pure. If the method parameter types or upper bounds after viewpoint adaptation
contain lost, the call has to be forbidden. However, the goal of the encapsulation system is to
use pure methods as queries that can be used on any receiver type. Therefore, additional checks
on pure methods can ensure that no ownership information is lost under viewpoint adaptation.
For example, consider:

class C<X extends any Data> {
pure boolean foo(X p) {...}
pure boolean bar(peer Object p) {...}

}

any C<lost Data> x = ...;
if(x.foo(blub)) ... // illegal, signature contains lost
if(x.bar(blub)) ... // illegal, signature contains lost

The topological system considers class C well formed and forbidds both calls on receiver x,
because the viewpoint adapted parameter type contains lost. The example is more flexible, if
it is rewritten as:

class C<X extends any Data> {
pure boolean foo(any Data p) {...}
pure boolean bar(any Object p) {...}

}

any C<lost Data> x = ...;
if(x.foo(blub)) ... // ok
if(x.bar(blub)) ... // ok

That is, appearances of type variables in the signature of pure methods are replaced by
(supertypes of) their upper bounds and non-variable types do not change under viewpoint
adaptation, i.e., they only use the any modifier.

2.5.1.3 Reasonable Well-formedness Judgments

In the following we discuss judgments that check the static types in a program to be reasonable,
i.e., that forbid more types than Def. 2.3.11, but are more flexible than Def. 2.3.12. As these
judgments are only used to reject unreasonable programs, we do not prove properties of these
judgments. Possible properties that could be investigated are 1.) no useful types, which could
reference well-formed objects at runtime, are forbidden, 2.) all unreasonable types are forbidden,
i.e., if a type is reasonable, it can reference a well-formed object. We first present a judgment
that checks a static type to be reasonable and then judgments to propagate the checks to
methods, classes, and programs.

53

Chapter 2 Generic Universe Types

Reasonable Static Type. Consider this code:

class C<X extends rep Data> { }

class D {
peer C<peer Data> foo() {...}
peer C<lost Data> bar() {...}

}

Both return types are well formed according to Def. 2.3.11. The simplest solution to deciding
what a reasonable type is, would be to use the strict well-formedness judgment (Def. 2.3.12) on
all declared types in a program. This would forbid both return types above. In the following,
we define a reasonable type judgment that forbids the return type of foo, but allows the return
type of bar. The return type of foo, peer C<peer Data> is unreasonable, because no object
of this type can ever exist. On the other hand, the return type of bar, peer C<peer Data>, is
reasonable, because there exists an object that can be referenced by this type. However, because
such reasonable types might still contain lost ownership information, they are not usable in all
positions. We separately forbid the use of lost in method parameter types and upper bounds,
class upper bounds, and types in casts. One of the three solutions discussed above (wildcards,
variance annotations, or a some ownership modifier) needs to be used additionally to make
types usable in all positions. In our example, we could imagine:

class E {
void blub(peer C<? extends any Data> p) {...}
void blob(peer C<some Data> q) {...}

}

as valid method signatures; the signature of blub allows a subclass of Data with arbitrary
ownership as type argument, whereas blob allows only Data instances with arbitrary ownership
as type argument.

The judgment sΓ ` sT prg OK expresses that type sT is a reasonable type in type environment
sΓ . Type variables are reasonable, if they are contained in the type environment (pwft_var).
A non-variable type u C<sTk> is reasonable (pwft_nvar) if its type arguments sTk are
reasonable, each type argument is a subtype of the corresponding upper bound, using the
well-formed type argument judgment (see Def. 2.5.2 below), and the type does not contain
self.

Definition 2.5.1 (Reasonable Static Type)
sΓ ` sT prg OK reasonable static type

X ∈ sΓ
sΓ ` X prg OK pwft_var

sΓ ` sT prg OK self /∈ u C<sT>
ClassBnds(C) = sN u C<sT> B sN = sN

′

sΓ , u C<sT> ` sT <: sN, sN ′

sΓ ` u C<sT> prg OK
pwft_nvar

A type argument sT of non-variable type u C<sT> is valid with regard to the un-adapted upper
bound sN and the upper bound after viewpoint adaptation sN ′, written as
sΓ , u C<sT> ` sT <: sN, sN ′.

The viewpoint adaptation is necessary because the type arguments describe ownership relative
to the this object where u C<sT> is used, whereas the upper bounds are relative to the object

54

2.5 Discussion

of type u C<sT>. The type argument sT has to be a subtype of the viewpoint adapted upper
bound sN ′ and we construct a static environment sΓ ′, which uses the type variables and upper
bounds of class C . Finally, the judgment has to show that there exists a type sT0, which after
viewpoint adaptation from u C<sT> equals to sT and is a subtype of the declared upper bound
sN .

Definition 2.5.2 (Reasonable Static Type Argument)
sΓ , sN ′′ ` sT <: sN, sN ′ reasonable static type argument

sΓ ` sT <: sN ′
ClassDom(C) = Xk ClassBnds(C) = sNk

sΓ ′=
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
∃ sT0.

(
u C<sT> B sT0 = sT ∧ sΓ ′ ` sT0 <: sN

)
sΓ , u C<sT> ` sT <: sN, sN ′

pwfta_def

Given class C from before:

class C<X extends rep Data> { }

Type peer C<peer Data> is not reasonable, because there is no type sT0 that after adaptation
from peer C<peer Data> equals to peer Data which is a subtype of the declared upper bound
rep Data. On the other hand, peer C<lost Data> is reasonable, because there exists the type
rep Data, which is a subtype of the declared upper bound and after viewpoint adaptation is
equal to lost Data.

Why do we need to check for subtyping twice, once for the type argument and the viewpoint-
adapted upper bound and once with type sT0 and the declared upper bound? Consider this
use of class C:

class D<Y extends peer Object> {
peer C<Y> f;

}

We can find a type sT0 that is a subtype of the declared upper bound: the type variable X; it is
by definition a subtype of the upper bound and after viewpoint adaptation with peer C<Y> it
equals to Y. However, the viewpoint adapted upper bound for class C is lost Data and Y is
not a subtype of lost Data. Therefore, without both checks we would not ensure that types
are correct.

Other Reasonable Well-formedness Conditions. The definitions for classes, fields, meth-
ods, and programs check all occurrences of types literally used in the program to conform to
the reasonable type judgment and to forbid lost, if its use would restrict the applicability of
the method.
A class is reasonable, if it is well formed, the types used as upper bounds of the class type

variables are reasonable types and do not use lost, and the field and method declarations are
reasonable.

Definition 2.5.3 (Reasonable Class Declaration)

Cls prg OK reasonable class declaration

class Cid<Xk extends sNk> extends C<sT> { fd md } OK
sΓ =

{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

}
sΓ ` sNk prg OK lost /∈ sNk

sΓ ` fd prg OK sΓ ,Cid ` md prg OK
class Cid<Xk extends sNk> extends C<sT> { fd md } prg OK

pc_def

55

Chapter 2 Generic Universe Types

class Object {} prg OK pc_object

Note that the instantiation of the superclass is checked to use strictly well-formed types by the
topological judgment.
A field declaration is reasonable, if the field type is reasonable and lost is not contained in

the type.
Definition 2.5.4 (Reasonable Field Declaration)

sΓ ` sT f ; prg OK reasonable field declaration

sΓ ` sT prg OK lost /∈ sT
sΓ ` sT f ; prg OK pfd_def

A method declaration is reasonable, if the types used as upper bounds of the method type
variables, the return type, and the parameter types are all reasonable types, lost is not
contained in the method upper bounds and parameter types, and the method body is reasonable
in a corresponding new environment sΓ ′.

Definition 2.5.5 (Reasonable Method Declaration)
sΓ ,C ` md prg OK reasonable method declaration

sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } OK
sΓ =

{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}
sΓ ′ ` sNl ,

sT , sTq prg OK lost /∈ sNl , sTq
sΓ ′ ` e prg OK

p = pure =⇒
(
free
(
sNl , sTq

)
⊆ ∅ ∧ any B sNl , sTq = sNl , sTq

)
sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } prg OK

pmd_def

Pure methods must not use type variables in parameter types and method upper bounds, and
these types must not change by viewpoint adaptation with any. This ensures that pure methods
are callable on any receiver type.

In expressions, note that the type in an object creation and the method type arguments are
already checked to be strictly well formed by the topological judgment. The only remaining
explicit type written by the programmer is the type of a cast expression, which is checked to be
reasonable; we do allow lost in the type of a cast. The types of subexpressions are not checked
to be reasonable, as the this expression might introduce self as a valid type or viewpoint
adaptation might introduce lost in a type. Subsumption will be used to assign such types to
peer or any references, respectively.

Definition 2.5.6 (Reasonable Expression)
sΓ ` e prg OK reasonable expression

sΓ ` null : _
sΓ ` null prg OK pe_null

sΓ ` x : _
sΓ ` x prg OK pe_var

sΓ ` new sT() : _
sΓ ` new sT() prg OK pe_new

sΓ ` (sT) e : _
sΓ ` e prg OK sΓ ` sT prg OK

sΓ ` (sT) e prg OK pe_cast
sΓ ` e0.f : _
sΓ ` e0 prg OK

sΓ ` e0.f prg OK pe_read

sΓ ` e0.f = e1 : _
sΓ ` e0 prg OK sΓ ` e1 prg OK

sΓ ` e0.f = e1 prg OK pe_write

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 prg OK sΓ ` e prg OK

sΓ ` e0 . m < sT > (e) prg OK
pe_call

56

2.5 Discussion

class Stack<X extends any Object> {
void push(X p) {...}
X pop() {...}

}

class C {
void m() {

peer Stack<rep Data> x = new peer Stack<rep Data>();
x.push(new rep Data());
rep Data y = x.pop();

}
}

Figure 2.12: A simple stack and client.

class Stack {
void push(any Object p) {...}
any Object pop() {...}

}

class C {
void m() {

peer Stack x = new peer Stack();
x.push(new rep Data());
rep Data y = (rep Data) x.pop();

}
}

Figure 2.13: Erasure of the stack from Fig. 2.12 to a non-generic Universe Types program.

Finally, a program is reasonable, if all classes and the main expression are reasonable.

Definition 2.5.7 (Reasonable Program)

` P prg OK reasonable program

` Clsi , C , e OK
Clsi prg OK
{∅ ; this 7→ self C<∅>} ` e prg OK

` Clsi , C , e prg OK
pp_def

This concludes our discussion of reasonable programs. We expect these checks to support
the programmer in writing meaningful programs without limiting the expressiveness of GUT.

2.5.2 Erasure and Expansion of Type Arguments
It is possible to erase a GUT program into a Universe Types program without generics [55],
using casts. The interpretation of casts and type arguments is the same: both are from the
viewpoint of the current object. Therefore, the casts inserted into the erased program use the
same types that are used as type arguments. The simple example from Fig. 2.12 can be erased
to the UT program in Fig. 2.13.
However, we cannot translate a GUT program into a UT program by “expansion”, i.e.,

generating a new class for each type where the type arguments are substituted for the type
variables. In our example, this expansion would produce the code in Fig. 2.14.

57

Chapter 2 Generic Universe Types

class StackrepData {
void push(rep Data p) {...}
rep Data pop() {...}

}

class C {
void m() {

peer StackrepData x = new peer StackrepData();
x.push(new rep Data()); // error
rep Data y = x.pop(); // error

}
}

Figure 2.14: The stack from Fig. 2.12 after “expansion” of the type argument.

This does not work, because the declared types will be adapted from the type of the receiver
to the current viewpoint. In the above example, this viewpoint adaptation will result in
lost ownership information, which will forbid the call of method push and return less precise
information for the result of pop. For some combinations of receiver and parameter types this
expansion is possible, but in general, as illustrated by the example above, such an expansion is
not possible.
We could adapt the runtime model to be closer to Java: keeping the runtime type variables

in the environment and in the heap is not done in Java. If we forbid creation of type variables
and casts with type arguments, as is done in Java, they are not needed. We could still store
the main owner in the heap, in order for downcasts from any to rep or peer to be checked at
runtime.

2.5.3 Arrays

Early work on the UTS did not treat arrays. In languages like Java, arrays are also objects and
therefore also need ownership modifiers. For the integration of the UTS into JML [63] we also
discussed how arrays are handled and later formalized the approach [108, 115].

An array of reference type always has two ownership modifiers, the first for the array object
itself and the second for the elements. Both modifiers express ownership relative to the receiver
object and both modifiers can be any of the ownership modifiers. For example, the type rep
any Object[] says that the array object itself is owned by the receiver object, but the elements
are in an arbitrary ownership context. A peer rep Object[] type says that the array object
has the same owner as the receiver object and that the array elements are owned by the receiver
object.
All array objects in a multi-dimensional array of a reference type are in the same context,

which is determined by the first ownership modifier. For example, if an instance field, f, has
type rep peer Object[][], then f and f[3] are both owned by the receiver and f[3][1] has
the same owner as the receiver object.
For one-dimensional arrays of primitive types, the second ownership modifier is omitted.

Primitive types are not owned and do not take an ownership modifier. A one-dimensional array
of primitive types is one object that needs to specify ownership information. For example,
the type any int[] expresses that the array object can belong to any context. A rep int[]
references an array object that is owned by the receiver object and that manages int values.
Multi-dimensional arrays of primitive types have two ownership modifiers, the first for the

array objects at higher levels and the second for the one-dimensional array at the “lowest” level.

58

2.5 Discussion

All array objects in a multidimensional array, except the array objects at the lowest level, are
in the same context, which is determined by the first ownership modifier.
For example, if an instance field, g, has type rep peer int[][][], then:

• g references a rep peer int[][][] array object that is owned by the receiver and the
array manages rep peer int[][] references.

• g[3] references a rep peer int[][] array object that is owned by the receiver and the
array manages peer int[] references.

• g[3][1] references a peer int[] array object that has the same owner as the receiver
and the array manages int values.

• g[3][1][0] is an int value.

Note how the first modifier changes when going from a two- or more-dimensional array of a
primitive type to a one-dimensional array of a primitive type.
Also note that java.lang.Object is a supertype of arrays, in particular also of arrays of

primitive type. A peer int[] can be assigned to a peer Object reference. Then a rep peer
Object[][] type behaves consistently with the rep peer int[][][] type.

Following the convention in Java, array types support covariant subtyping that needs runtime
checks on write accesses. For example, a peer rep Object[] is a subtype of a peer any
Object[] and when an element is inserted it needs to be checked that it is owned by the
receiver object. Note how in Generic Universe Types no runtime checks are needed for the
limited covariance that we support for generic types.
Our handling of arrays differs from our earlier interpretation [63]. Previously, the second

ownership modifier was relative to the referenced array object, not relative to the current
object. During our work on Generic Universe Types we decided to uniformly treat all ownership
modifiers relative to the current object. This change makes the interpretation of the ownership
modifiers in the array type peer rep Object[] equivalent to the modifiers in peer List<rep
Object> and also allows previously forbidden combinations, i.e., the use of rep as second
ownership modifier.
In a formalization of the Universe type system that includes arrays [108], we extend the

syntax to allow a separate ownership modifier for each array dimension and show the soundness
of this system. The simple syntax with two ownership modifiers can be expanded to the syntax
with an ownership modifier for each dimension. Our experience so far suggests that the use of
two modifiers is sufficient in many cases; allowing both kinds of array annotations might be an
option.

2.5.4 Exceptions

The handling of exceptions in ownership type systems poses several problems [62]. The exception
object might reference application objects, i.e., to reference with which object an exception
occurred. The object that creates an exception and the object that will eventually handle the
exception might be in different contexts.

We discuss and compare the expressiveness, applicability, and implementation complexity of
four possible ways to handle exceptions in ownership type systems [62]: 1) clone the exception
object whenever it needs to cross a context boundary; 2) transfer the exception object to the
context of the handling object; 3) only use global exceptions; or 4) use any references to the
exception object.

59

Chapter 2 Generic Universe Types

Consider the code from Fig. 2.15. An object of class Person in Fig. 2.15 owns its Car object.
Car objects refer to a global object representing the manufacturer’s company.
Note that for ownership systems that enforce the owner-as-dominator discipline a reference

into the representation of a different object is forbidden. Therefore, either the exception object
is cloned or transferred to the handling context, creating overhead and limiting the use of
exceptions, or the exception object is created in the root context, again limiting the use of
references to application objects. All three cases cannot efficiently handle the example in
Fig. 2.15, as a direct reference to the Engine is forbidden in owner-as-dominator systems.

In the Universe type system we use any references to propagate exceptions. This comes with
no additional runtime overhead, because the objects do not need to be transfered or cloned to
the handling context. It also allows the sharing of application objects, because any references
can cross context boundaries. This allows the exception object to reference the Engine with a
peer type. From the point of view of the exception handler in class Person, the access to the
Engine is limited to an any reference.

If the owner-as-modifier discipline is enforced, then the modification of exception objects in
exception handlers is forbidden, as they are in an unknown context. Such exception handlers
should be rewritten to use exception chaining, that is, create a new exception object locally
that contains a reference to the original exception.

Java 5 forbids the use of generics for exceptions. Therefore, we do not need to revisit the
handling of generics for Generic Universe Types and can continue to use any as modifier for
exceptions.

2.5.5 Static Fields

Our discussion so far focused on instance fields and methods and assumed that a current object
this is always available. However, an extension to handle static fields and methods is possible
[135, 115].

Static fields exist per class, not per instance. A private static field can be accessed from any
instance of the class, independent of the location of the instance in the ownership tree. The
only statically safe ownership modifier for static fields is therefore any, as it expresses exactly
that the referenced object can be in an arbitrary context. The use of peer and rep is forbidden,
as we do not treat the class object as a separate object in the ownership tree.
Consider this example:

class Global {
public static any Data global;

static {
global = new peer Data();

}
}

The static field global provides some global information. It can be accessed as usual as
Global.global. Note that also updates of the field are allowed, e.g., as the field is public, any
object could execute Global.global = ... to modify it. If possible the field should be private
and proper information hiding should be applied.
Additional modifiers could be added to the Universe type system to allow a more flexible

handling of global data [91]. However, the handling of static fields for modular verification is
unclear. Recent work suggests possible refinements [182].

60

2.5 Discussion

class Person {
rep Car mycar;

void drive() {
try {

...
mycar.start();
...

} catch(any CarException ce) {
any Object e = ce.getOrigin();
...

}
}

}

class Engine {
void start() throws any CarException {

...
throw new peer CarException(this);
...

}
}

class Car {
rep Engine engine;
any Company manufacturer;

void start() throws any CarException {
...
engine.start();
...

}
}

class CarException extends Exception {
peer Object origin;
...

}

Figure 2.15: A Person object owns its Car object. Method Person.drive starts the person’s
car. A CarException is thrown if there is a problem. Such exceptions store a
reference to the origin of the exception.

61

Chapter 2 Generic Universe Types

2.5.6 Static Methods

A static method declaration cannot use the rep modifier in the method signature or implemen-
tation, as there is no current object available during execution. The any modifier is interpreted
as usual as referring to an object in an arbitrary context.

The interpretation of peermodifiers is slightly adapted: instead of meaning that the referenced
object has the same owner as the current object, it is interpreted as being in the same context as
the calling context, where the calling context depends on the call of the static method. Assume
a static method m in class C. If the method is called as peer C.m(), then the calling context of
the static method is the current calling context, if the calling method is static, or the context
that contains the this object, if the calling method is an instance method. If the method
is called as rep C.m(), then the calling context is the context owned by the current object
this; note that this is only possible in an instance method. A call of the form any C.m() is
forbidden, as it would not set a calling context.

The use of static methods allows us to express examples in which the context of the returned
object should depend on the calling context. Consider the following code:

class Element {
any String val;
private Element(any String arg) { val = arg; }

static peer Element createA() {
return new peer Element("A");

}
static peer Element createB() {

return new peer Element("B");
}

}

class User {
void m() {

peer Element pe = peer Element.createA();
rep Element re = rep Element.createB();

}
}

This use is very similar to having additional constructors, but if one requires multiple constructors
that take the same parameter types, using different static construction methods is an alternative.

The next example presents a class Collections that provides sorting features similar to
java.util.Collections:

class Collections {
static void sortInPlace(peer List inout) {

// somehow sort elements of inout
}

static peer List sort(any List in) {
peer List out = new peer List(in.size());
// set all elements of out to the elements of in
peer Collections.sort(out);
return out;

}
}

62

2.5 Discussion

class ListUser {
void m() {

rep List unsrt = ...;
rep Collections.sortInPlace(unsrt);
any List al = ...;
peer List sorted = peer Collections.sort(al);

}
}

Method sortInPlace requires that the argument is in the calling context and can then modify
the referenced collection directly. Alternatively, method sort can sort a list in an arbitrary
context. It first creates a local duplicate of the input list and then sorts this list; of course,
some other, more direct, sorting from in into out might be implemented.

Our interpretation of static methods gives us the possibility to delegate the creation of objects
to a different class. For more general patterns, e.g., the factory method pattern, ownership
transfer is necessary [143].

2.5.7 Map Example

In the following we discuss the main differences between GUT1 [60] and our current work on
GUT2 by an example. The example is basically the same as the one used in GUT1 with minor
modifications and also similar to the example in Sec. 2.1.

GUT1 used the Bm function to recursively check whether the main modifier of a type needs to
be changed to any to prevent the possible unsoundness of a covariant type argument adaptation.
This change relied on the fact that the owner-as-modifier discipline is always enforced to ensure
type soundness. In GUT2 we use the lost modifier to express that ownership information was
lost locally and do not need to change other ownership modifiers. We can now cleanly separate
the topological system from the owner-as-modifier discipline.

Class Map (Fig. 2.16) implements a generic map from keys to values. Key-value pairs are
stored in singly-linked Node objects, where class Node extends the superclass MapNode (both
Fig. 2.17). In contrast to Fig. 2.2, we parameterize class MapNode by the key, the value, and
the location of the next node and class Node instantiates MapNode with peer Node<K, V> as
corresponding argument. This ensures that the maps are owned by the same object and allows
an elegant iterator implementation, which we discuss later.
Class Client (Fig. 2.18) stores two references to map objects: mapr, to a map in the same

context that manages keys that are of type rep ID and values of type any Data; the other
field, mapa, to a map in an arbitrary context that manages keys that are of type any ID and
values of type any Data.

Now consider the example code using GUT1 that is shown in Fig. 2.19. In Appl1, the ownership
of the first type argument of c.mapr cannot be expressed from the current viewpoint, because
it is neither owned by the current object nor shares the same owner with the current object. In
GUT1 the viewpoint adaptation of peer Map<rep ID, any Data> from the viewpoint peer
Client needs to be any Map<any ID, any Data>. The only available ownership modifier
for ID is any and because of the covariant change in a type argument, the main modifier of
the enclosing type also has to be changed to any. The enforcement of the owner-as-modifier
discipline ensures that the reference can only be used to read information and the covariant
change in the type argument does not impact type soundness. We are still able to call pure
functions on mmapr, but cannot call the non-pure deleteX methods.

63

Chapter 2 Generic Universe Types

class Map<K, V> {
rep Node<K, V> first;

void put(K key, V value) {
rep Node<K, V> newfirst = new rep Node<K, V>();
newfirst.init(key, value, first);
first = newfirst;

}

pure V get(any Object key)
{ /* omitted */ return null; }

void deleteK(K key) { /* omitted */ }
void deleteV(V val) { /* omitted */ }

pure peer Iter<K, V> getIter() {
peer IterImpl<K, V, rep Node<K, V>> it =

new peer IterImpl<K, V, rep Node<K, V>>();
it.setCurrent(first);
return it;

}
}

Figure 2.16: Map implementation.

class MapNode<K, V,
X extends any MapNode<K, V, X> > {

K key; V value; X next;

void init(K k, V v, X n)
{ key = k; value = v; next = n; }

}

class Node<K, V> extends MapNode<K, V,
peer Node<K, V> > {}

Figure 2.17: MapNode and Node implementations.

class Client {
peer Map<rep ID, any Data> mapr = new peer Map<rep ID, any Data>();
any Map<any ID, any Data> mapa = new peer Map<any ID, any Data>();

}

Figure 2.18: The Client class stores two references to maps.

64

2.5 Discussion

class Appl1 {
void m(peer Client c) {

any Map<any ID, any Data> mmapr = c.mapr; // OK
c.mapr = new peer MapIter<peer ID, any Data>(); // Error: update forbidden
mmapr.get(new peer ID()); // OK: get is pure
mmapr.deleteK(new peer ID()); // Error: deleteK not pure
mmapr.deleteV(new peer Data()); // Error: deleteV not pure

}
}

Figure 2.19: GUT1 example.

class Appl2 {
void m(peer Client c) {

peer Map<lost ID, any Data> mmapr = c.mapr; // OK
c.mapr = new peer MapIter<peer ID, any Data>(); // Error: c.mapr contains lost
mmapr.get(new peer ID()); // topol. and encaps. OK
mmapr.deleteK(new peer ID()); // Error: lost in parameter type
mmapr.deleteV(new peer Data()); // topol. and encaps. OK

any Map<any ID, any Data> mmapa = c.mapa; // OK
c.mapa = new peer MapIter<any ID, any Data>(); // OK
mmapa.get(new peer ID()); // topol. and encaps. OK
mmapa.deleteK(new peer ID()); // topol. OK, not encapsulated
mmapa.deleteV(new peer Data()); // topol. OK, not encapsulated

}
}

Figure 2.20: GUT2 example.

However, in order to preserve soundness, this solution lost ownership information that is
statically available. We statically know that the Client object referenced by c has the same
owner as the current Appl1 object and furthermore know that the Map object referenced by
mapr and the current Client object have the same owner. Therefore, it is statically known
that the current Appl1 object and the Map object referenced by mmapr have the same owner.
We have to change the main modifier of mmapr to any in order to prevent modifications of the
map object (the owner-as-modifier discipline forbids modifications through any references).
Also, in GUT1, separating the topology from the encapsulation discipline is not possible.

From the viewpoint Appl1 the fields c.mapr and c.mapa have the same type any Map<any
ID, any Data>. Updates on c.mapa would be type safe, as the referenced object actually was
created with any as type argument. The GUT1 type system does not distinguish these two
different kinds of Map objects.
Our goal in designing GUT2 was to separate the topology and the encapsulation aspects

cleanly, to improve the expressiveness, and to reduce the loss of ownership information. In GUT2
the adaptation of peer Client and peer Map<rep ID, any Data> results in peer Map<lost
ID, any Data>. We preserve that the Map is peer and express the loss of ownership information
by the new modifier lost. The example code using GUT2 is shown in Fig. 2.20.
The ownership modifier lost is used to express that ownership information regarding this

type might have been lost. In GUT1 we had to change all enclosing ownership modifiers, if
a covariant change happens. A change to lost is local and does not influence the enclosing
modifiers.

65

Chapter 2 Generic Universe Types

How can we now ensure that the covariant change in the type argument does not create a
soundness problem? Instead of relying on the owner-as-modifier discipline we strengthened the
conditions for field updates and method calls. The adaptation of the type of the target of the
field update and of the declared field type must not contain the modifier lost. This ensures
that we can only update a field for which all ownership information is expressible from the
local viewpoint. (Note that no subtyping is applied to the type of the left-hand side, that is,
even though lost is a subtype of any, we only need to forbid updates if the viewpoint-adapted
type contains lost.) This rule again forbids the unsafe update c.mapr = ... (on line 4 in
Fig. 2.20).

Similarly, for a method call we have to ensure that the adaptation of the type of the receiver
with the declared parameter types does not contain lost. However, the combined return type
may contain lost, as this is only used to read information. This rule again forbids the call to
deleteK, as the ownership information for K was lost (line 6 in Fig. 2.20). On the other hand,
we can now allow the call to method deleteV (line 7 in Fig. 2.20). Even though some modifiers
in the type of mmapr are lost, the adaptation with the parameter type, V, does not contain
lost, so it is safe to call deleteV.
In GUT2 we can now also modify c.mapa (line 10 in Fig. 2.20). The type does not contain

lost ownership information and it is therefore type safe to update the field and to call methods
on it. The distinction between the two fields mapr and mapa is now preserved by viewpoint
adaptation. Note that the encapsulation system allows the call of non-pure methods on mapr,
but forbids them on mapa, because the receiver has an unknown owner.
GUT2 further improves the combination of generic types and ownership type systems. The

clean separation of topology and encapsulation system eases the formalization and presentation
of the system, and more static ownership information is preserved.

Iterators. Fig. 2.21 presents an iterator for the map. Note how type variable X is used
to parameterize the iterator with the concrete location of the nodes. Method next is valid,
because in class MapNode field next has type variable X as type. If we were to use the node
implementation from Fig. 2.2, this parameterization would not work and field current would
need to use the type any Node<K, V>, giving us no guarantee about the location of the nodes.
Method getIter in class Map uses rep Node<K, V> as corresponding argument and thereby
ensures that the iterator can only iterate over its representation objects.

Consider the use of the iterator in Fig. 2.22. This class is correct with regard to the topological
system and maintains the encapsulation. Note that the return type of the call itr.getKey() is
lost ID, because the concrete ownership of the keys was lost by viewpoint adaptation. Finally,
consider the similar example in Fig. 2.23. The topology of this example is also well formed,
but the encapsulation system is violated. Method getIter in class Map is pure and we can
therefore receive a reference for a map that is in an unknown context. The calls to isValid,
getKey, and getValue are correctly encapsulated, because these methods are pure. However,
the call ita.next() violates the encapsulation system, because it is a non-pure method call
on a receiver in an unknown context, and is forbidden; such a call would modify an object
in an unknown context and thereby possibly break unknown invariants. One could write an
alternative iterator that can iterate over a map in an unknown context. When this alternative
iterator is in a peer or rep context, the iterator itself can be modified by calling next. However,
note that such an iterator could not modify the map over which it iterates, e.g., a remove
method could not be implemented.

This concludes our discussion of Generic Universe Types and the previous formalization [60].
The next section discusses related work and compares GUT to other ownership type systems.

66

2.5 Discussion

interface Iter<K, V> {
pure K getKey();
pure V getValue();
pure boolean isValid();
void next();

}
class IterImpl<K, V, X extends any MapNode<K, V, X>>
implements Iter<K, V> {
X current;

void setCurrent(X c) { current = c; }
pure K getKey() { return current.key; }
pure V getValue() { return current.value; }
pure boolean isValid() { return current != null; }
void next() { current = current.next; }

}

Figure 2.21: Iterator interface and implementation.

class Appl3 {
void foo(peer Client c) {

peer Map<lost ID, any Data> mmapr = c.mapr;
peer Iter<lost ID, any Data> itr = mmapr.getIter();
while(itr.isValid()) {

// use itr.getKey() and itr.getValue()
itr.next();

}
}

}

Figure 2.22: Application using the iterator; the topology and encapsulation discipline are correct.

class Appl4 {
void bar(peer Client c) {

any Map<any ID, any Data> mmapa = c.mapa;
any Iter<any ID, any Data> ita = mmapa.getIter();
while(ita.isValid()) {

// use itr.getKey() and itr.getValue()
ita.next(); // (1)

}
}

}

Figure 2.23: Application using the iterator; the topology is correct, but the call on line (1)
violates the encapsulation system and is forbidden.

67

Chapter 2 Generic Universe Types

2.6 Related Work

Early work on object-oriented programming already discussed the problems of object aliasing,
for example, see the descriptions of Meyer [128, 129]. Guides to secure programming, for
example for Java [183], also recognize the problems of aliasing.
The “Geneva convention on the treatment of object aliasing” [98] illustrates the problems

and outlines four possible treatments: detection, advertisement, prevention, and control.
The Islands system [97] was the first approach to combat aliasing; however, it has a high

annotation overhead. Balloon types [10, 11] use a type system and static analysis to give strong
encapsulation guarantees. Both severely restrict the expressiveness and forbid many useful
programs.
We structure the rest of this section as follows. In Sec. 2.6.1 we discuss the relation to

other ownership type systems, in Sec. 2.6.2 we give an overview of the work on the Universe
type system, and in Sec. 2.6.3 we discuss type systems that support read-only references and
immutable objects. Finally, in Sec. 2.6.4 we briefly discuss object-oriented verification.

2.6.1 Ownership Type Systems

2.6.1.1 Ownership Types

Flexible alias protection [150] presents a mode system and discusses its use to protect against
the negative effects of aliasing. Clarke et al. [48, 45] developed an ownership type system
for flexible alias protection. It enforces the owner-as-dominator property and uses context
parameters to express role separation and to allow an object, o, to reference objects in ancestor
contexts of the context that contains o. Such references violate neither the owner-as-dominator
nor the owner-as-modifier property. Still, we require references to ancestor contexts to be any
to prevent methods from modifying objects in ancestor contexts because such modifications are
difficult to handle by specification techniques for frame properties [141].
Context parameters allow a fine-grained specification of the ownership relationship. In

contrast, the combination of type parameters and the any modifier allow GUT to choose
between parameterizing the class and using an abstraction of the ownership. The abstract any
types can replace context parameters in many situations, impose less annotation overhead,
and lead to programs that are easier to read and reason about. Using type parameters allows
one to parameterize a class by both, ownership and class information. For many examples
we believe that the type parameters found in GUT will be expressive enough to model the
desired ownership structures. Furthermore, type parameters and any references allow multiple
objects to reference one representation, which is not supported by the owner-as-dominator
model used in ownership types. However, such non-owning references to a representation are
used in common implementations such as iterators or shared data structures.
In ownership types, the static visibility function SV is used to protect rep references from

exposure. However, it forbids all access to representation from non-owners. In contrast, the
viewpoint adaptation function used in GUT (see Sec. 2.3.1) will introduce lost ownership
information if the exact ownership relation cannot be expressed. This still allows limited access
to the representation of other objects. The substitution of context parameters also roughly
corresponds to viewpoint adaptation in Universe types, which adapts ownership information
and replaces type arguments for type parameters. Clarke’s PhD thesis [45] gives a detailed
development of an object calculus with ownership types and proves a containment invariant.
For a detailed comparison of parametric ownership type systems to non-generic Universe

types see Sec. 2.6.2.3 and [34]. Extending this work to GUT is future work.

68

2.6 Related Work

Clarke and Drossopoulou [46] extended the original ownership type system to support
inheritance. Their type system is ownership parametric and enforces the owner-as-dominator
property. Therefore, it suffers from the same problems as the original ownership type system.
Based on their type system, Clarke and Drossopoulou present an effects system and use it to
reason about aliasing and non-interference.
Multiple Ownership for Java-like Objects (MOJO) [37] is an ownership type system that

enforces a more flexible topology, supporting more than one owner per object and path types.
The type system does not enforce an encapsulation topology. The wildcard owner “?” provides
ownership abstraction similar to any references in Universe types. This system is only parametric
in ownership contexts, not in types.

2.6.1.2 SafeJava

SafeJava [23, 26] is very similar to ownership types, but supports a model that is slightly less
restrictive than owner-as-dominator: An object and all associated instances of inner classes can
access a common representation. For instance, iterators can be implemented as inner class of
the collection and, therefore, directly reference the collection’s representation. However, more
general forms of sharing are not supported. SafeJava is more flexible than ownership types, but
the Universe type system is both syntactically simpler and more expressive. SafeJava has been
applied to prevent data races and deadlocks [24, 27].

Boyapati et al. [25] present a space-efficient implementation of downcasts in SafeJava. Their
implementation inspects each class, C, to determine whether downcasts for C objects potentially
require dynamic ownership information. If not, ownership information is not stored for C
objects. “Anonymous owners”, marked as “-” in class declarations, are used to mark owner
parameters that are not used in the class body and do not need runtime representation. This
optimization does not work for the Universe type system, where any references to objects of
any class can be cast to peer or rep references and, therefore, objects of every class potentially
need runtime ownership information.
SafeJava [23] supports type parameters and ownership parameters independently, but does

not integrate both forms of parametricity. This leads to significant annotation overhead. Also,
the combination with type parameterization is not formalized. No implementation is available.

2.6.1.3 Ownership Domains

Ownership domains [7] support a model that is less restrictive than owner-as-dominator.
Contexts can be structured into several domains. Domains can be declared public, which
permits reference chains to objects in the public domain that do not pass through their owner.
Programmers can control whether objects in different domains can reference each other. For
instance, iterators in a public domain of a collection are accessible for clients of the collection.
They can be allowed to reference the representation of the collection stored in another domain.
However, the use of public domains and linking of domains can lead to complex systems [145].

Ownership domains have been used to visualize software architectures [1, 3]. They have also
been encoded in Java 5 annotations [2], however, the limited capabilities of Java 5 annotations
required a complex encoding.
The concept of ownership domains is powerful and allows many forms of sharing. However,

its suitability to support verification of functional correctness properties is unclear. Supporting
verification has been the main motivation behind the Universe type system. Another drawback
of ownership domains is the annotation overhead they impose. Like ownership types, ownership

69

Chapter 2 Generic Universe Types

domains impose the annotation overhead of context parameters; in addition link declarations
are necessary to define the desired sharing of the system.
Ownership Domains [7] combine type parameters and domain parameters into a single

parameter space and thereby reduce the annotation overhead. However, type parameters are
not covered by their formalization. Ownership Domains are integrated in the ArchJava compiler
[6].

2.6.1.4 Systems by Lu and Potter

The Acyclic Region Type System (ARTS) [120] separates the heap into regions and ensures
that reference cycles can only occur within a region. The core language does not use ownership
and provides a strong encapsulation discipline that prohibits common patterns.

Effective ownership types [122] provide effect encapsulation and enforce the owner-as-modifier
discipline. It uses any and unknown modifiers, corresponding to the any and lost modifiers in
our work. However, they always enforce the owner-as-modifier discipline and do not separate
the system into a topology and an encapsulation system.

Variant ownership types [121] support both ownership and accessibility modifiers, allowing a
fine-grained access scheme. Context variance allows to abstract over ownership information.
None of the three systems is type parametric and no implementations are available.

2.6.1.5 Ownership Generic Java

Ownership Generic Java (OGJ) [162, 161] allows programmers to attach ownership information
through type parameters. OGJ enforces the owner-as-dominator discipline. It piggybacks
ownership information on type parameters. In particular, each class C has a type parameter to
encode the owner of a C object. This encoding allows OGJ to use a slight adaptation of the
normal Java type rules to also check ownership, which makes the formalization very elegant.
Similarly to OGJ the Generic Confinement system [163, 161] encodes package-level ownership
on top of a generic type system. WOGJ [38] presents an encoding of ownership on top of a
generic type system that supports wildcards and requires less changes to the underlying type
system than OGJ.
We believe that adapting OGJ to separate the topological system from the encapsulation

system or to support the owner-as-modifier discipline is not easily accomplished. One needs to
loosen up the static ownership information by allowing certain references to point to objects in
any context. In OGJ, the subtype relation between any types and other types would require
covariant subtyping, for instance, that Node<This> is a subtype of Node<Any>. In OGJ there
is no covariant subtyping, because the underlying Java (or C]) type system is non-variant.
Therefore, piggybacking ownership on the standard Java type system is not possible in the
presence of any ownership.
The formalization of OGJ [161] leaves certain points about the handling of upper bounds

unclear. The prototype compiler for OGJ in our experiments accepted many invalid programs.

2.6.1.6 Existential Types

Higher-order functional ownership by Krishnaswami and Aldrich [111] allows the abstraction of
ownership information similar to any references.
Existential owners for ownership types [191] provides a mechanism that allows ownership

types to support some downcasts without requiring a runtime representation of ownership. This
system does not provide the full flexibility of any references.

70

2.6 Related Work

Jo∃ [35, 33] combines the theory on existential types with a parametric ownership type system.
Ownership information is passed as additional type parameters, and existential types can be used
to allow subtype variance. Jo∃deep provides optional enforcement of the owner-as-dominator
discipline. The Jo∃ system provides theoretical underpinnings and builds a theoretically sound
basis. It does not provide a practical language design and no language implementation.
We discussed the relationship between a subset of Jo∃, called Jo∃−, and the non-generic

Universe type system [34], see our discussion in Sec. 2.6.2.3 below. Analyzing the correspondence
between GUT and Jo∃ will provide interesting future work.
A formalization of wildcards [36] uses existential quantification to model Java wildcards. It

could also provide insights into how to model lost and any in future systems.

2.6.1.7 Other Ownership Type Systems

Confined types [22] guarantee that objects of a confined type cannot be referenced in code
declared outside the confining package. Confined types have been designed for the development
of secure systems. They do not support representation encapsulation on the object level.

A confinement system has also been used to ensure correct behavior of Enterprise Java Beans
[49].
Banerjee and Naumann use ownership to prove a representation independence result for

object-oriented programs [13, 14]. Their ownership model requires that for a given pair of
classes C,D, all instances of D are owned by some instance of C. This is clearly too restrictive
for many implementations. For instance, lists are typically used as internal representation by
many classes. Similarly, it is unclear how arrays can be supported by such a model. Banerjee
and Naumann present a static analysis to check whether a program satisfies the ownership
model for a pair of classes C,D.
The work on Simple Loose Ownership Domains and Boxes [170, 171] provide a model

of encapsulation that is based on Ownership Domains [7] but allows “loose” references to
representation domains, abstracting multiple domains with a single type. It was also adapted
to active objects in CoBoxes [172]; a compiler for JCoBox, the realization of CoBoxes for Java,
is available from http://softech.informatik.uni-kl.de/Homepage/JCoBox.

Pedigree types [119] provide additional ownership modifiers that allow a finer description of
ownership relations, similar to path types supported in other systems. They also present an
interesting inference system.
Ownership has received considerable attention for real-time and concurrent applications,

for example, the work on SafeJava [24, 27, 23] mentioned above, scoped types for real-time
applications [12], the use for components and process calculi [96], the use of an ownership
topology for concurrency [56], the use of a dynamic ownership model for concurrency in Spec]
[103], and an ownership system for object race detection [186].
The work on gradual encapsulation and decapsulation [94] in the context of ObjectTeams

[95] provides interesting discussions.

Also the much broader aims of shape, alias, and static analysis in general can be considered
related work and investigating relationships between ownership systems and these more general
approaches will provide interesting future work.

2.6.2 Universe Type System

The original design goals of the Universe type system, according to [137], are:

1. have simple semantics,

71

http://softech.informatik.uni-kl.de/Homepage/JCoBox

Chapter 2 Generic Universe Types

2. be easy to apply,

3. be statically checkable,

4. guarantee an invariant that is strong enough for modular reasoning, and

5. be flexible enough for many useful programming patterns.

These goals were also our guiding principles for the development of Generic Universe Types.

In the following we first discuss different formalizations of the Universe type system, then
discuss the relation to dependent type systems, and finally compare Universe types to parametric
ownership systems that support existential quantification.

2.6.2.1 Formalizations

The Universe type system (UTS) was first introduced by Müller and Poetzsch-Heffter [137, 138].
The early syntax was different to the current syntax and Type Universes were later removed.
These early formalizations already use a “type combinator” to adapt a declared type to a
changed viewpoint. The syntax using the three ownership modifiers peer, rep, and readonly
was first used by Müller and Poetzsch-Heffter [140]. The UTS was used by Müller to develop a
modular verification methodology for object-oriented programs [134, 135].
In [63] we present the integration of the Universe type system into the Java Modeling

Language (JML). We implemented a type checker, runtime checks, and bytecode information
for GUT in the JML tools ; see Chapter 3 for a detailed discussion of the tools that are available
for GUT.

Universe Types with Transfer [143] realize ownership transfer for non-generic Universe types.

All formalizations mentioned above always enforce the owner-as-modifier discipline. For some
applications of ownership, e.g., for concurrency [56], only enforcing the heap topology is enough.
In a master’s project [108] we first developed the separation of the UTS into a topological

system and an encapsulation discipline. We renamed the modifier readonly to any, because
this ownership modifier now signifies only that the object is in an arbitrary ownership context
and not necessarily that it is used only for reading. The any modifier is a “don’t care” modifier,
it expresses that for the annotated reference the ownership of the referenced object is of
no concern. We also introduce a new ownership modifier unknown that signifies that static
ownership information for a reference is not available. In contrast to any, this is a “don’t know”
modifier: from the current viewpoint we cannot express the ownership relation, but the declared
type might have a constraint.
The master’s thesis [108] also provides a type soundness proof in the automatic theorem

prover Isabelle [148]. It defines a Java subset, based on Featherweight Java [99, 81] and Jinja
[109, 110], extends it with Universe modifiers, and shows type soundness. To the best of our
knowledge, this is the first soundness proof of an ownership type system in an automatic
theorem prover.
In recent work, non-generic Universe types were separated into a topological system and an

encapsulation system [55]. We use lost as main modifier to signify that ownership information
cannot be expressed, similarly to the unknown modifier in [108]. Using lost in the non-generic
system allowed the clean separation of the topology and the encapsulation system and simplified
the rules and their presentation. This thesis provides an independent formalization of Generic
Universe Types with the separation into a topological system and an encapsulation system.
The encapsulation system in [55] made the distinction between an encapsulation property

72

2.6 Related Work

and an owner-as-modifier property. In this terminology, our owner-as-modifier Theorem 2.4.7
corresponds to the encapsulation property; a corresponding owner-as-modifier property could
be proved using a small-step semantics or using execution traces.

A previous version of Generic Universe Types [60, 59] always enforces the owner-as-modifier
discipline. A particularly interesting aspect of that version is how generics and ownership
can be combined in the presence of an any modifier, in particular, how a restricted form of
ownership covariance can be permitted without runtime checks. For this ownership covariance
to be safe, the enforcement of the owner-as-modifier discipline and the rules for subtyping and
viewpoint adaptation are tightly coupled. In this current work, we allow ownership covariance
using the lost modifier and thereby cleanly separate viewpoint adaptation and subtyping from
the enforcement of an encapsulation system.
The separation of topology and encapsulation is simplified by distinguishing between a

reference that can refer to an arbitrary object and a reference that points to a specific context,
but where this specific context is not expressible in the type system. We distinguish between
the “don’t care” modifier any that can reference an arbitrary object and the “don’t know”
modifier lost that references an object for which the precise ownership information cannot
be expressed statically. Updates of any variables are always possible, since the owner of their
value is not of interest. Updates of lost variables must be forbidden, since the ownership
information required for type-safe updates is not statically known.

2.6.2.2 Dependent Types

Ownership type systems structure the heap and enforce restrictions on the behavior of a
program. Virtual classes [126, 71, 72] express dependencies between objects. Similar to virtual
methods, a class A can declare a dependent class B by nesting class B within the definition of
A. Virtual classes can be overridden in subclasses, and the runtime type of an object determines
the concrete definition of a virtual class. Recent work [154, 73, 47, 100, 167] formalized and
extended virtual classes. All of these systems have in common that dependency is expressed by
nesting of classes.
Dependent classes [84, 85] are a generalization of virtual class systems that allows one class

to depend on multiple objects. Dependency is expressed by explicit declaration of the depended-
upon objects as class parameters. This allows one to declare dependencies independently of
the nesting of classes, which increases the expressive power and reduces the coupling between
classes. Even more generally, constrained types [152, 41] can express multiple constraints and
is parametric in the constraint system.

Ownership type systems, in particular the Universe type system and Ownership Domains [7],
can be expressed using dependent classes [66]. The ownership structure is made explicit by
adding a dependency on an immutable owner field, similarly to the dynamic encoding presented
in [63]. The ownership modifiers of the UTS can be directly expressed as constraints on this
owner field. Even more fine-grained relationships can be expressed, for example, that an object
is in an unknown context, but in the same context as some other object.
In the dependent classes [84] syntax, we can declare the following class:

class OwnedObject(owner: Object) {}

We can then express the topology of the following simple program that uses Universe types:

class C {...}
class D {

rep C f = new rep C();
}

73

Chapter 2 Generic Universe Types

The field f may reference only C objects that have the current D object as owner. We can
express this in the dependent classes encoding as:

class C(Object owner) extends OwnedObject {...}
class D(Object owner) extends OwnedObject {
C(owner: this) f = new C(owner=this);

}

In the above program, we make explicit that the owner of the referenced C object is the current
this object. Similarly, a peer reference is translated into the constraint that the referenced
object has the same owner as the current object.

2.6.2.3 Parametric Ownership with Existential Types

Parametric ownership types [150, 48, 45, 46, 162] discussed above and the non-generic Universe
type system [63] are two ownership type systems that describe an ownership hierarchy and
statically check that this hierarchy is maintained. They both provide (different) encapsulation
disciplines.

Ownership types can describe fine-grained heap topologies, whereas Universe types are more
flexible and easier to use. No direct encoding of one type system in the other has been possible:
the abstraction provided by any references in the Universe type system could not be modeled
with parametric ownership types.

Recently, parametric ownership has been extended with existential quantification of contexts
[35, 33]. This extension, called Jo∃, provides the possibility to abstract from concrete ownership
information—similarly to any references in Universe types.
We show in [34] that the descriptive parts of the Universe type system [55] and a variant

of Jo∃, which we call Jo∃−, are equivalent. In Jo∃− we use a single owner parameter that
corresponds to the single ownership modifier of the UTS. Note that full Jo∃ allows multiple
owner parameters and is thus more expressive than non-generic Universe types.
We formalize this correspondence as encodings between the two systems. We have proved

that the encodings from Universe types to Jo∃− and from Jo∃− to Universe types are sound;
thus, we have shown that the two systems are equivalent with respect to type checking. As
an intermediate step in the encoding we give an alternative formalization of the UTS which is
closer to the underlying existential types model.
Consider the program P1 using Universe types:

class C {
peer Object f1;
any Object f2;

void m(any C x) {
this.f1 = new peer Object(); // 1: OK
x.f1 = new peer Object(); // 2: error
x.f2 = new peer Object(); // 3: OK

}
}

and the program P2 using Jo∃− types:

class C<owner> {
Object<owner> f1;
∃o. Object<o> f2;

74

2.6 Related Work

void m(∃o. C<o> x) {
this.f1 = new Object<owner>(); // 1: OK
x.f1 = new Object<owner>(); // 2: error
x.f2 = new Object<owner>(); // 3: OK

}
}

These two programs are equivalent, that is, both describe the same topology and type checking
in both systems rejects expression 2.
In P1 the field update x.f1 in expression 2 is forbidden, as the viewpoint adaptation peer

Object from any results in lost Object and lost is forbidden in the adapted field type. On
the other hand, the field update x.f2 in expression 3 is allowed, as any Object from any
results in any Object and the right-hand side is a correct subtype.
In expression 2 of P2, the type of x must be unpacked before it can be used. Therefore,

the field type lookup for field f1 in type C<o1> is performed, where o1 is a fresh context
variable. This lookup gives the type Object<o1>. There is no subtype relationship between
Object<owner> and Object<o1> because their parameters do not match and subtyping of
un-quantified types is invariant.

In expression 3, the lookup for field f2 in type C<o1> results in ∃o. Object<o>, which is a
supertype of Object<owner>, because of the variance of existential types, and the assignment
is allowed.

The investigation of encoding ownership type systems in dependent types and the relationship
between Universe types and a parametric ownership system with existential quantification gave
us valuable insights into these type systems and gave us promising ideas for future research for
combining these systems with GUT.

2.6.3 Read-only References and Immutability

Skoglund [177, 178] as well as Birka and Ernst [21] present type systems for readonly types
that are similar to readonly references when the owner-as-modifier discipline is enforced. Birka
and Ernst’s type system is more flexible than ours as it allows one to exclude certain fields or
objects from the immutable state. Neither Skoglund nor Birka and Ernst combined readonly
types with ownership. The combination with ownership gives more context to decide when a
downcast to a read-write reference is valid.
Our readonly types leave the owner of an object unspecified. Whenever precise information

about the owner is needed, a downcast with a dynamic type check is used. This approach is
similar to soft typing [39, 40], where a compiler does not reject programs that contain potential
type errors, but rather introduces runtime checks around suspect statements. In soft typing,
these runtime checks are added automatically by the compiler whereas we require programmers
to introduce casts manually.
Immutability Generic Java (IGJ) [193] allows the covariant change of type arguments of

readonly and immutable types. The unsoundness of the covariant change is prevented by
forbidding modifications through readonly and immutable types. However, the erased-signature
rule is needed to ensure that overriding methods cannot introduce an unsoundness; this rule also
requires that type variables that appear in the parameter types of pure methods are marked as
non-variant. In contrast, in GUT the loss of ownership information in a covariant argument
change is detected for the method call and we can therefore safely allow more methods.

Unique references and linear types [28, 29, 78, 187] can be used for a very restrictive form of
alias control. For ownership type systems, a weaker form of uniqueness [50, 190] is sufficient to

75

Chapter 2 Generic Universe Types

enable ownership transfer. Universe Types with Transfer [143] realize ownership transfer for
non-generic Universe types.
Ensuring that an object is immutable cannot be checked by the GUT type system. Im-

mutability is present in other type systems (e.g., Javari [185], Jimuva [90], IGJ [193], and Joe3
[155]) and in a dynamic encoding of ownership called frozen objects [117]. Investigating the
combination with Universe types is interesting future work.

2.6.4 Object-Oriented Verification
Work on the formal verification of object-oriented programs is of particular interest to this thesis.
Verification tools for the Java Modeling Language (JML) [30, 32, 43, 44, 53, 79, 102, 104] and
Spec] [17] all have to deal with the problems of aliasing for program verification. Preventing
representation exposure [57] and cross-type aliasing [58] also provide a discussion of aliasing
problems and possible solutions.
A recent technical report provides an overview and comparison of different behavioral

interface specification languages [93]. Specification and verification challenges were also recently
summarized [114]. A framework for verification techniques for object invariants [69] describes
different techniques using seven parameters.
Müller’s thesis [135] provides the basis for the owner-as-modifier discipline that we enforce

in GUT. Ownership was also used to reason about frame properties in JML [141]. Spec]’s
[17] dynamic ownership model [116] (also called the Boogie methodology) for reasoning about
invariants is based on a dynamic ownership encoding similar to the one described in [63]. In
this methodology, any reference can be used to modify an object, provided that all transitive
owners of this object are made mutable by applying a special unpack operation. In practice,
this requirement is typically met by following the owner-as-modifier policy: the owner unpacks
itself before initiating the modification of an owned object. The Boogie methodology supports
ownership transfer. It is future work to investigate how the topological system of GUT can
be used together with the Boogie methodology. Reasoning using ownership [136] is a very
promising approach, but some remaining obstacles need to be overcome.
Lu, Potter, and Xie [123] divide their system into validity invariants and the validity effect

to describe which objects need to be revalidated. The system is based on effective and variant
ownership types [122, 121].
Poetsch-Heffter and Schäfer [159, 160] describe the modular specification of components

based on their boxes type system [170, 171, 172].
Alternative approaches to the formal verification of systems are, for example, separation logic

[166], regional logic [15], and (implicit) dynamic frames [105, 179]. It will be interesting future
work to investigate the relationships between these different approaches and ownership type
systems.

76

Chapter 3

Tool Support

This chapter is split into two parts: Sec. 3.1 discusses type checkers for Generic Universe Types
and Sec. 3.2 discusses defaulting and the automatic inference of ownership modifiers.

3.1 Type Checkers

3.1.1 MultiJava and JML

We integrated Generic Universe Types into the MultiJava compiler [51] on which the JML
compiler [112, 113, 115] is built. In this section, we describe the JML implementation without
distinguishing whether a feature is actually implemented in MultiJava or JML.
The implementation of GUT in the JML compiler is well tested. We provide test cases for

non-generic Universe types [144], the runtime support [174], the bytecode representation [184],
and for Generic Universe Types [127, 194]. In total there are over 400 test cases for the different
aspects of the Universe type system. We also developed a testing tool that helps in managing
the test cases for different compilers [173].
In the rest of this section we use Universe type system to refer to both the generic and

non-generic Universe type system.

3.1.1.1 Backwards Compatibility

The JML compiler recognizes the ownership modifiers any and readonly and treats them as
synonyms.
To be able to use the JML compiler for all Java programs, the Universe type checking can

be controlled in a fine-grained way by command line switches. Users can choose between four
modes of operation: (1) the Universe type system is switched off completely; (2) the ownership
annotations are parsed, but type checking is switched off; (3) Universe type checking is switched
on; (4) Universe type checking is switched on and the necessary runtime checks are generated.
In the context of JML, we always want to enforce the owner-as-modifier discipline to support
the formal verification of the code. Therefore, we do not provide a separate switch to enable or
disable the enforcement of the owner-as-modifier discipline.
With the concrete syntax of ownership modifiers used so far, some standard Java programs

cannot be type-checked with the Universe type system because they use the keywords peer,
rep, readonly, or any as identifiers. To avoid syntactic conflicts with the keywords peer, rep,
readonly, and any, programmers can use an alternative syntax for ownership modifiers, where
the keywords are preceded by a backslash, for example /*@ \peer @*/. Such modifiers are
ignored by the compiler if the Universe type system is switched off (modes 1 and 2). This
version of the modifiers can be used for Java API classes that should be usable either with
or without enabled Universe type system. Finally, it is possible to use peer, rep, readonly,

77

Chapter 3 Tool Support

any, and pure without enclosing comments, as is done in the examples in this thesis. However,
programs with this concise syntax cannot be compiled by standard Java compilers.

3.1.1.2 Bytecode Representation of Ownership Information

To support separate compilation of programs, we store the ownership information in the
bytecode [184]. We support two formats: (1) as custom bytecode annotations, which can store
ownership format in a custom format; (2) as Java 5 annotations, which can be stored in the
bytecode in a standardized format. The advantage of format (1) is that it works for all versions
of Java. Format (2) is only compatible with Java 5 and greater, but has the advantage that the
storage format is standard.

3.1.1.3 Runtime Checks

Like standard Java, the Universe type system requires runtime checks for downcasts and array
updates. Besides the plain Java types, these checks have to compare the ownership information.
Ownership information at runtime is also necessary to evaluate instanceof expressions.
The necessary runtime checks can be expressed as assertions in terms of the ghost field

owner. The JML runtime assertion checker handles ghost fields by adding a normal field to
the declaring class and appropriate get and set methods. However, this approach works only
for ghost fields of classes that are compiled by the JML compiler, which is not the case for
Object. Neither modifying Object’s source code nor patching its class file is an option since
the distribution of a modified version of Object violates the Sun license terms.
We solve this problem by storing ownership information externally in a global hashtable.

This table maps objects to their owner object. For array objects, we also store the ownership
modifier of the element type in the hashtable. This information is used in the runtime checks of
array updates. We use Java’s weak references to ensure that storing a reference in the hashtable
does not affect garbage collection (see [174] for details).
Conceptually the owner field is set by Object’s default constructor, which would take the

owner object as argument. Since we cannot modify the implementation of Object, we add
a new object to the ownership hashtable at two places: (1) before the first statement of the
constructor, which ensures that the ownership information of the new object is available during
the execution of the constructor; (2) after the new expression, which ensures that the new object
is added even if the constructor was not compiled by the JML compiler. With this solution,
it is still possible to create objects that are not added to the ownership hashtable if the new
expression occurs in a class that is not compiled by the JML compiler. As the ownership of
an object is determined by the new expression, if the new expression is not compiled by the
JML compiler, no owner object can be determined. A Java system property is used to control
whether runtime checks for such objects always pass or always fail.

We implemented the runtime checks for downcasts, array updates, and instanceof expres-
sions as additional bytecode instructions generated by the compiler. As future work, we plan
to adapt JML’s runtime assertion checker to map accesses to the owner ghost field to accesses
to the ownership hashtable.
For downcasts and array updates, the result of a failed check can be controlled by Java

system properties. The options range from throwing an exception to only reporting the error
on the console.
The checks for downcasts and instanceof are comparisons of the corresponding entries in

the ownership hashtable. Like Java, the Universe type system has covariant array subtyping (see
Sec. 2.5.3). For instance, rep peer Object[] is a subtype of rep any Object[]. Therefore,

78

3.1 Type Checkers

an array variable with a static any element type could, at runtime, contain an array with peer
element type. Consequently, updating such an array requires a runtime check that the reference
assigned to the array element actually is a peer reference. The ownership hashtable stores the
element ownership modifier of each array. This modifier is used to check whether the owner of
the object on the right-hand side of the update conforms to the element type of the array.

3.1.1.4 Generic Types in JML

MultiJava was developed before Java 5 was available and only supported earlier versions of
Java. A master’s project [42] adapted a draft release of generic types in MultiJava and JML.

We improved the support for Java 5 in a semester project [127]. One big problem was that
the MultiJava and JML compiler could not be executed on a Java 5 virtual machine. Also,
some details about the handling of generic types changed between the draft release handled
by [42] and the final release of Java 5. The semester project also added support for wildcards,
including capture conversion, raw types, and the necessary unchecked warnings.

This support for genericity in MultiJava allowed us to implement Generic Universe Types in
a master’s project [194]. We also improved the runtime checks to support GUT [156].

3.1.1.5 Eclipse Integration

Setting up a MultiJava and JML installation is a quite complex task and difficult for newcomers.
Also, the command line interface is not attractive to developers used to modern Integrated
Development Environments (IDE).
To remedy this situation, we developed a JML plug-in for the Eclipse IDE (see http:

//www.eclipse.org/). This tool was developed as a semester project [19] and later improved,
for example during the master’s thesis [82].
The JML checker, runtime assertion checking (RAC) compiler, and specification tester can

be invoked from within Eclipse and comfortable configuration dialogs can be used to set the
different options. Error messages are parsed and displayed in a separate window and as markers
in the code. Code with RAC and the specification tester can be executed directly from Eclipse.
We also provide code templates that make entering specifications easy. The JML reference
manual [115], the command-line help, and other introductory documents are integrated into
the Eclipse help system.

3.1.2 Other Compilers and Languages

The annotation syntax of Java 5 is not flexible enough to allow type annotations on every
occurrence of a type. The Java Specification Request (JSR) 308 [76] is remedying this problem
and is scheduled to be included in Java 7. With JSR 308 it is possible to annotate all occurrences
of a type. The developers of JSR 308 also provide a framework that simplifies the development
of type checkers [157].

In a semester project [151] we developed a type checker for Generic Universe Types using the
checker framework for JSR 308. Using options to the checker the owner-as-modifier discipline
can be optionally enforced.

The annotation syntax of Scala [153] is very powerful and writing pluggable annotation
processors for the compiler is possible. Using this annotation mechanism we investigated using
finer grained Universe annotations [175]. We also developed an annotation processor for Generic
Universe Types, including runtime checks for casts and instanceofs [180].

79

http://www.eclipse.org/
http://www.eclipse.org/

Chapter 3 Tool Support

The Extended Static Checker for Java version 2 (ESC/Java2) [53] is a tool to find errors
in Java source code that uses JML annotations. In a semester project [188] we extended the
type checker of ESC/Java2 with checks for the Universe type system. As ESC/Java2 does not
support genericity, we could not implement Generic Universe Types in it.
The language Eiffel [129] is popular for the formal development of software. In a semester

project [169] we investigated the advanced features of Eiffel, e.g., expanded types and agents,
and concluded that an adapted version of the Universe type system is possible.

3.1.3 Experience

We successfully use the JML plug-in for Eclipse in courses at ETH Zurich and it is also integrated
into the Mobius Program Verification Environment. It is also the basis for the integration of
the inference tools into Eclipse, which we will discuss later in this chapter.
We compared the expressiveness of the Universe type systems and other type systems [145]

using the popular design patterns [83]. The flexibility of of any references proved to be very
valuable in many design patterns, for example, in the flyweight pattern where the instances can
be shared and protected by the owner-as-modifier discipline.
We also performed a case study on a commercial application [92]; it was possible to apply

ownership encapsulation for the data structures of the application.
Finally, we were also able to use a system inspired by the owner-as-modifier discipline to

enforce the applet isolation for JavaCard systems [139, 67].

The Generic Universe Types checker is integrated into current releases of MultiJava (http:
//www.multijava.org/) and JML (http://www.jmlspecs.org/).

The other tools we developed are available at the website http://www.pm.inf.ethz.ch/
research/universes/tools/.

3.2 Universe Type Inference

Helping software engineers to transition from unannotated programs to code that uses an
ownership type system is a very important task to allow ownership type systems to be used in
everyday programs.
This task is simplified by default modifiers that are used wherever ownership modifiers are

missing. We discuss defaulting in Sec. 3.2.1.
Our defaulting helps in annotating existing programs, but creates a “flat” structure. Usual

type inference is concerned with finding the most general typing for the expressions in a program
and there is a best solution: the most general typing that is valid for the expressions. Inferring
ownership annotations is different: ownership annotations express design intent and there
are multiple different ownership structures that are all correctly typed, but express different
encapsulation properties. For realistic examples, there are many possible annotations and
deciding which annotation is the best one depends on the intended design. Ownership inference
needs to rely on heuristics to find desirable structures and needs to easily allow the developer
to guide the inference.
In Sec. 3.2.2 we discuss static and runtime inference of ownership modifiers that help a

programmer to find a desirable ownership topology. Finally, in Sec. 3.2.3 we discuss related
work.

80

http://www.multijava.org/
http://www.multijava.org/
http://www.jmlspecs.org/
http://www.pm.inf.ethz.ch/research/universes/tools/
http://www.pm.inf.ethz.ch/research/universes/tools/

3.2 Universe Type Inference

3.2.1 Default Ownership Modifiers

If the ownership modifiers are omitted in a type declaration, then a default is used. This default
is normally peer, but there are a few exceptions, described below.
Using peer creates a “flat” ownership structure: all objects are owned by the root object.

Viewpoint adaptation will never result in lost ownership and field updates and non-pure method
calls are possible on peer references. Using peer as the default modifier has the advantage that
most existing Java programs compile without changes.

Local Variables. The ownership modifier of local variable declarations is propagated from
the initializer expression. If no initializer is present, the other defaults are applied.

Immutable Types. The ownership modifier of immutable types defaults to any. As such ob-
jects cannot be modified, their location in the heap is irrelevant. Currently, the set of immutable
types includes only the Java wrapper types for primitive types (e.g., java.lang.Integer and
java.lang.Long), and the classes java.lang.String, java.lang.Class, and java.math.Big-
Integer. An additional class modifier could be introduced to mark immutable types.

Pure Methods. The default modifier for explicit formal parameters to a pure method (but
not for the implicit receiver, this) is any. Pure methods should be callable on any receiver type;
using a modifier other than any would limit the applicability of the method. Pure constructors
use the same defaulting as non-pure methods; as constructors are always called on an object
that is either in the same context or in the representation context, there is no need to use any
as default.

Arrays. If, for a type that is an array of references, one of the two ownership modifiers is
omitted, then the element type is used to determine the meaning of the ownership modifier.
If the element type is a mutable type, then the specified modifier is taken to be the element
modifier, and the array’s modifier defaults to peer. If the element type is an immutable type,
then the specified modifier is taken to be the array modifier, and the element modifier defaults
to any.
For example, the type any Object[] is the same as peer any Object[]. A type rep

Integer[] is the same as rep any Integer[]. Note that if one wants to specify a rep or any
array of mutable references, one is thus forced to use two ownership modifiers, for example,
rep any Object[].
One-dimensional arrays of primitive types default to peer. For multi-dimensional arrays of

primitive types a single ownership modifier is always taken to be the element modifier.

Casts and Instanceof. The type in casts and instanceof expressions is defaulted to the
static type of the sub-expression. This default allows one to test only for Java types, if the
ownership modifiers are irrelevant for the cast.

Exception Handling. The only possible type for throws and catch clauses is any. Missing
ownership modifiers will be interpreted as any; explicit ownership modifiers other than any are
forbidden. Exception handlers might need to be rewritten, if they directly modify an exception
object. Such handlers should be rewritten to use exception chaining, that is, create a new
exception object locally that contains a reference to the original exception.

81

Chapter 3 Tool Support

Upper Bounds. The most consistent rule is to also use the peer ownership modifier for all
missing modifiers in an upper bound.
However, this simplest scheme makes the transition to partially annotated programs harder

by requiring annotations on the upper bounds, in order for the bounds to be flexible for general
use. For class and method upper bounds, any could be used as default for all missing ownership
modifiers. This would allow the more general use of these classes and methods. However,
viewpoint adaptation might now introduce lost and field updates and non-pure method calls
on type variables are then forbidden, if the owner-as-modifier discipline is enforced; therefore
existing programs might no longer compile.
Currently, any is used as default modifier in upper bounds; a compiler option or class

annotation could be introduced that tells the compiler to choose peer as default modifier.

Purity. A separate issue is determining which methods are side-effect free, according to
Assumption 2.4.2. The default annotation is that a method might have side effects, i.e., that it
is non-pure. A purity inference tool [87, 168] enables the inference of side-effect free methods.

Summary. More elaborate propagation of modifiers can further ease the partial annotation
of programs, e.g., local type inference, as found in Scala and other languages, could further
simplify the annotation process.

Using the above defaults allows us to compile most existing Java programs as GUT programs
without changes. They also ease the compilation of partially annotated programs.

Defaulting eases the process of annotating existing source files, but results in a flat ownership
structure; it does not help the programmer in finding desirable annotations that correspond
to a correct topology or encapsulation discipline. We discuss ownership inference in the next
section.

3.2.2 Universe Type Inference

In the following we sketch the approaches to Universe type inference that we investigated so far,
but leave a detailed development as future work. We discuss relevant related work in Sec. 3.2.2.

3.2.2.1 Static Universe Type Inference

Static inference builds a constraint system and uses a SAT solver to find a possible ownership
annotation. A traversal of the abstract syntax tree (AST) determines all the locations for which
Universe modifiers need to be inferred. Then the AST is used to build a boolean formula that
encodes the constraints between the different variables, for example, by recording that the
type of the right-hand side of an assignment has to be a subtype of the type of the left-hand
side. Then a SAT solver is used to find a possible assignment to the variables that satisfies the
constraints. Different assignments to the variables represent different ownership structures. By
assigning different weights, the SAT solver can be instructed to try to infer a more desirable
structure. Static inference has the advantage of covering the whole source code, but has to rely
on heuristics to try to find good ownership structures.

3.2.2.2 Runtime Universe Type Inference

Runtime inference traces program executions and finds ownership structures in the heap. During
a program execution the references between objects are monitored and also the modifications
between the objects are traced. This information is then used to build an Extended Object

82

3.2 Universe Type Inference

Graph that contains the accumulated information of the program execution. A dominator
calculation [5, 118] then produces the first approximation to the topology of the ownership
hierarchy. Then the additional constraints of the owner-as-modifier discipline are used to
structure the object graph. Finally, the ownership hierarchy in the Extended Object Graph is
used to determine Universe modifiers that can be used as annotations in the source code. This
approach gives the deepest ownership hierarchy that is possible for the observed object graph.
However, good code coverage is needed to produce results that are valid for the whole program.

3.2.2.3 Tool Support

We first investigated static inference using a Prolog database [106] and later based the tool on
a SAT solver [147].

The runtime inference uses a Java Virtual Machine Tooling Interface tracing agent to monitor
the execution of programs and then build the Extended Object Graph [124, 16, 65].
The static and runtime inference of Universe modifiers can be combined [82]. The runtime

inference is used to find the deepest possible ownership structure, which is then used as weights
for the static inference, ensuring that we have both, complete code coverage and a deep
ownership structure.
Both tools automatically find possible annotations that the programmer can review and

insert into the source code. Visualization of the inferred ownership structures improves the
understanding of the behavior and structure of a program. These Eclipse GEF plug-ins [19, 130]
are integrated with the static and runtime Universe type inference to visualize the inference
results.
Finally, the implementation of a purity inference tool [87, 168] enables the inference of

side-effect free methods. The static, runtime, and purity inference tools use a common XML
schema for storing their results. A command line tool can be used to insert the annotations
into existing Java sources and integration into Eclipse allows the easy modification of inference
results.

3.2.3 Related Work

Ownership inference is recognized as an important research problem, and there were many
recent contributions. However, recent work has not yet provided a satisfactory solution to infer
ownership type annotations.
Alisdair Wren’s work on inferring ownership [189] provided a theoretical basis for our work

on runtime inference. It developed the idea of the Extended Object Graph and how to use the
dominator as a first approximation of ownership. It builds on ownership types [46, 7, 23, 48]
which uses parametric ownership and enforces the owner-as-dominator discipline. Several
attempts at inferring ownership types [8, 4, 189] showed that the complexity of parametric
ownership type systems makes inference difficult. The number of ownership parameters for
parametric type systems is not fixed and is usually determined by the programmer, as is
the number of type parameters for a class. Trying to automatically infer a good number of
ownership parameters makes their system complex. No implementation is provided.
SafeJava [23] provides intra-procedural type inference and default types to reduce the

annotation overhead. Agarwal and Stoller [4] describe a run-time technique that infers even
more annotations. AliasJava [8] uses a constraint system to infer alias annotations. Another
static analysis for ownership types resulted in a large number of ownership parameters [133]. In
contrast, the simplicity of Universe types makes the mapping to static annotations possible. As

83

Chapter 3 Tool Support

discussed in Sec. 3.2.1 the Universe type system also supports defaulting of ownership modifiers,
allowing existing Java programs to be compiled without changes.

Milanova [131] presents preliminary results for the static inference of Universe Types. The tool
applies the idea of [65] to static alias graphs instead of to runtime object graphs. Abi-Antoun
and Aldrich [3, 1] present how runtime object graphs can be extracted from programs with
ownership domain annotations.
Rayside et al. [165] present a dynamic analysis that infers ownership and sharing, but they

do not map the results back to an ownership type system. Mitchell [132] analyzes the runtime
structure of Java programs and characterizes them by their ownership patterns. The tool
can work with heaps with 29 million objects and creates succinct graphs. The tool does not
distinguish between read and write references and the results are not mapped to an ownership
type system. The work on uniqueness and ownership inference [125] presents a static analysis
to infer these program properties, without mapping the results to a type system. General
type qualifier inference [88] presents relevant work for qualifier inference; however, applied
to ownership, it would not help in the inference of the deepest or most desirable ownership
structure, but infers a solution that satisfies all constraints, possibly a flat structure.

Daikon [74, 75, 77] is a tool to detect likely program invariants from program traces. Invariants
are only enforced at the beginning and end of methods and therefore also snapshots are only
taken at these spots. From these snapshots we cannot infer which references were used for
reading and which were used for writing. Therefore we could not directly use Daikon, but our
runtime inference tool has a similar architecture.
Work on the dynamic inference of abstract types [89] uses the flow of values in a program

execution to infer abstract types. Yan et al. [192] use state machines to map implementation
events to architecture events and thereby deduce architectures. Both approaches do not seem
to be applicable to infer ownership information. Recent work by Poetzsch-Heffter et al. [158]
and Quinonez et al. [164] on inferring ownership, respectively, immutability provide interesting
research directions.

84

Chapter 4

Future Work

We split the future work into four areas: the formalization of the type system in Sec. 4.1, its
expressiveness in Sec. 4.2, the inference of ownership information in Sec. 4.3, and, finally, the
tool support in Sec. 4.4.

4.1 Formalization

In this thesis, we use the tool Ott [176] to ensure that our notation is consistent and that
all operations are defined. We disambiguated the Ott input to enable the generation of the
LATEX code used throughout this dissertation and also to generate Isabelle [148] definitions
for the formalization. The definition of GUT consists of 140 rules and 361 rule clauses and
is disambiguated enough to create LATEX and Isabelle output. However, the proofs that we
present in App. A.2 are done manually, without the support of a mechanical proof checker.

Featherweight Java (FJ) [99] was proven sound in Isabelle [81]; we do not know of a mechanized
proof of Featherweight Generic Java (FGJ). FJ and FGJ are purely functional models of Java.
ClassicJava [80], Middleweight Java [20], and Lightweight Java [181] are two formalizations of
subsets of Java that do model state. Lightweight Java is formalized in Ott and soundness is
proved in Isabelle. However, we did not find a mechanical proof of soundness of an extension of
FGJ with state.

It would be interesting future work to extend a formalization like Lightweight Java to include
type genericity and then model Generic Universe Type on top of this formalization. Our existing
definition in Ott should be a good starting point. An alternative might be to use SASyLF [9],
a proof assistant particularly geared towards proofs in language theory. The advantage would
be that instead of doing proofs in a lower-level proof assistant like Isabelle, the proofs are done
in the same language as the language definition. The input language to SASyLF looks similar
to Ott, and a conversion might be feasible.

Also further analysis using other formalizations is interesting. For example, modeling Generic
Universe Types using parametric ownership type systems that support existential quantification
[35], extending our existing work on non-generic Universe types [34], or expressing GUT using
dependent classes [84] or constrained types [152], following our previous work [66].

Generic Universe Types establish an ownership topology and can enforce the owner-as-
modifier encapsulation discipline. It will be very interesting future work to compare the benefits
and restrictions of ownership type systems like GUT to other systems aimed at the formal
verification of software, namely Spec]’s dynamic ownership model [116, 17], separation logic
[166], regional logic [15], and (implicit) dynamic frames [105, 179].

85

Chapter 4 Future Work

4.2 Expressiveness

The combination of JML and GUT allows us to use the type system to express common
ownership patterns and resort to JML specifications for cases where the type system is not
expressive enough. Using Generic Universe Types allows us to statically check more ownership
situations that previously needed casts. It is interesting future work to find useful ownership
patterns and make them efficiently checkable using a lightweight syntax.

Our work on dependent classes [66] and the comparison with parametric ownership type
systems that support existential quantification [34] sparked our interest in combining these
type systems. The Universe type system is lightweight, requiring less annotation overhead;
dependent classes, constrained types, and parametric ownership require more annotations,
but support finer-grained ownership structures. Creating a hybrid language that provides
lightweight annotations for common ownership patterns, but allows to also use the flexibility of
parametric ownership type systems is challenging future work.

Universe Types with Transfer (UTT) [143] support changes of ownership at runtime. Inves-
tigating the interaction between ownership transfer and type genericity will provide possible
future work.

In this thesis we deal with an ownership system where every object is owned by at most
one other object and where we have a single representation context per object. Multiple
ownership [37] allows one object to have multiple owners and ownership domains [7] support
multiple contexts per object. Encapsulation systems range from simple systems enforcing
the owner-as-dominator or owner-as-modifier disciplines to fine-grained permission systems
that allow the programmer to have a detailed control about the effects of a program. The
investigation of other topological systems and encapsulation disciplines builds interesting future
work.

The expressiveness of ownership type systems also depends on the underlying programming
language. We imagine that adapting the Universe type system to the Bytecode Modeling
Language (BML) [31] will provide interesting experience with low-level languages, whereas
adapting it to the more advanced typing features of languages like Scala [153] will provide
experience with the other end of the abstraction spectrum.

The owner-as-modifier discipline enforces that any references are not used to modify an object.
However, other aliases to the same object may be used for modifications. Implementation
patterns can be used to ensure that an object is immutable, i.e., directly after creating and
initializing an object the only reference to it has to be assigned to a readonly variable, all
read-write references to the object have to be abandoned, and casts involving this object have
to be restricted. Ensuring that an object is immutable cannot be checked by our type system.
Immutability is present in other type systems (e.g., Javari [185], Jimuva [90], IGJ [193], and
Joe3 [155]) and in a dynamic encoding of ownership called frozen objects [117]. The combination
of GUT and immutability presents interesting future work.

Our assumption of method purity in Assumption 2.4.2 forbids all modifications of objects
that exist in the pre-state of a pure method call. For some examples, e.g., caching of results,
this is too strict. The work on observational purity [18, 146, 54] relaxes the definition of
purity and allows the implementation of more patterns. It will be interesting to combine
the work on observational purity with the owner-as-modifier discipline and try to derive an
owner-as-observable-modifier discipline.

86

4.3 Ownership Inference

4.3 Ownership Inference
Type inference for ownership type systems will significantly ease their use. In Sec. 3.2 we
discussed our first investigations of how Universe types can be inferred using a static and a
runtime inference approach. Fully developing these techniques presents interesting future work.

Runtime Inference. Currently, the monitoring of realistic applications is prohibitively
expensive due to the monitoring overhead and memory requirements to build the Extended
Object Graph. The goal is to develop the runtime inference approach to successfully handle
programs of a realistic size with reasonable time and memory requirements.
Current Java Virtual Machines do not preserve generic type information at runtime. It will

be interesting to investigate whether some information from the Extended Object Graph can
still be used to infer the ownership of type arguments.

Static Inference. Our static inference technique represents Universe types and the properties
of a program as boolean formulas. There are different possibilities how to create these formulas
and they influence the time and memory requirements of the inference and the quality of the
results. The goal is to systematically deduce the best boolean representation for the static
inference problem, possibly parameterized by time/memory trade-offs.

Also, currently one large boolean representation is generated for a program. This might have
a negative impact on the time needed by the SAT solver. Different parts of a program can be
known to be independent, for example, the type of a local variable that does not depend on a
parameter or return type. It would be desirable to split the boolean representation into smaller
independent parts that can be solved by the SAT solver, maybe even by parallel instances of
the solver. This would also improve the performance in interactive applications of the program
in an IDE.
The previous version of Generic Universe Types [60] adapted the main modifier of a type

if a covariant change in a type argument occurred. This model proved to also be difficult
to handle for the static inference, where additional constraints need to be introduced [194].
The formalization of GUT presented in this thesis does not create a dependency between the
different ownership modifiers in a type and therefore should be easier to infer statically.

Combining Runtime and Static Inference. Runtime inference needs high code coverage
to produce valid results and static inference can only use heuristics to produce deep ownership
structures. The combination will allow us to get the best of both worlds: deep ownership
structures found from execution traces and perfect coverage from the static inference.

Applying the inference tools to realistic case studies will reveal what inherent ownership
structures exist in software and will allow one to further improve ownership type systems.

4.4 Tool Support
In Chapter 3 we discussed the extensive tool support that exists for the Universe type system.
In this section we want to discuss some possible future developments.

Type Checkers. The current type checker for JML is implemented in the Common JML
tools version 2, which only has limited support for Java 5 features. At the moment, multiple new
implementations for JML are under development, for instance, to adapt it to type genericity [52]

87

Chapter 4 Future Work

and to support modern development environments and compilers. The type checker for Universe
types using JSR 308 [151] might prove to be easily integrated into a new implementation of
JML. The checker for Scala [180] was developed for version 2.6 of the Scala compiler. It needs
to be adapted to newer language and compiler versions.

Inference. We currently have first prototypes for the static and runtime inference of Universe
types. Once the theory is fully developed, developing research prototypes is an important task
and will allow us to perform evaluations on realistic applications.

Visualization. Ownership annotations express design intent about what encapsulation bound-
aries are desired. The runtime and static inference methods provide two approaches to support
the software developer in finding good annotations. Visualizing the inferred ownership structure
will allow the developer to decide whether the solution is correct and adjust it easily. The
current tools provide simple visualizations of the ownership tree that need to be adapted to
support realistic examples.
Work on ownership domains [1, 3] helps visualize the software architecture of a program.

The visualization of the static and runtime inference provides similar results and soundness
could be investigated. Also, how to visualize object structures using ownership can provide
interesting challenges [149].

Annotation Handling. The different inference tools need to communicate with each other
and the software developer in a simple and effective way. We need a format that will be used
as the low-level information interchange format, possibly also across other tools that use Java
annotations.
On top of this, one could provide tools for easy editing and merging of the ownership

information with source code. Possible output formats are Java source code with special
keywords that are only recognized by the Universe type system compiler, as Java source code
using Java Modeling Language stylized comments, the JSR 308 [76] extended annotation syntax,
and separate annotation files supported by some compilers.

Evaluation. Applying the inference techniques to realistic applications will provide insights
into the inference techniques and for ways to improve ownership type systems. Examples for
which the tools cannot determine an ownership structure can have two results: either the
inference method needs to be improved or the ownership type system needs to be extended to
express the ownership structure.

An evaluation will have to range from hand-crafted examples that contain a desired ownership
structure to large case studies of existing software, for example taken from Java benchmarks
like the DaCapo suite or SPECjvm2008.

It will also be interesting to investigate new uses of ownership type systems. For example,
how they can be applied to component models like OSGi or the new Java Module mechanism.

88

Chapter 5

Conclusion

Practical encapsulation of object structures is an important challenge in programming language
research. This thesis contributes to the design and rigorous formalization of ownership type
systems, provides usable implementations, and reports on our experience of their usage.

We present Generic Universe Types (GUT), a lightweight ownership type system that
combines type genericity and ownership. We separate the topological structure from the
enforcement of the owner-as-modifier discipline, allowing for the separate development and
reuse of these parts. The GUT system is rigorously developed and proven sound.

The goal in our formalization is to impose the minimal set of restrictions that are needed to
produce a sound system. We allow the use of the modifiers self and lost in programs and
develop a separate judgment to decide whether a program is reasonable. This minimalistic
approach has the advantage of highlighting the different aspects of the system and the require-
ments needed for soundness. Alternatively, one could decide to use the modifiers self and
lost only internally by forbidding them in the syntax. We chose this approach in our work on
non-generic Universe types [55]. This alternative approach has the advantage that one could
assume basic well-formedness conditions, which would simplify some proofs of GUT.

We support a limited form of covariance, using the lost modifier in type argument positions.
As our formal language does not support local variables, the use of this additional subtyping
relationship is limited. The limited covariance would be unnecessary in a system that supports
variance, e.g., via wildcards or variance annotations.

We developed the type checker and runtime support for Generic Universe Types for JML
and Scala, and developed a type checker using the JSR 308 annotation mechanism and checker
framework. We also enabled the use of JML with Java 5 and integrated JML into the Eclipse
IDE, two measures that make JML more widely usable. In particular, this allowed us to use
GUT in the classroom.

Aliasing is a problem that future developers need to be aware of and thinking about ownership
structures, even without using an ownership type system, helps to understand and structure
code. In classes at ETH Zurich we have had positive experiences from presenting the Universe
type system to students and we supervised many semester and master projects making students
aware of the effects of aliasing and letting them help to work on a solution.

During these projects we also did case studies to evaluate the use of Generic Universe Types
and the tools we developed. We conclude that GUT allows the elegant expression of many
interesting ownership structures.

89

Chapter 5 Conclusion

90

Appendix A

Properties and Proofs

A.1 Properties

This section gives additional lemmas that are needed for the proofs. See Sec. 2.3.5 and Sec. 2.4.6
for the main properties of the topological system and the encapsulation system, respectively.

To simplify the notation, the intended scope of a quantifier is from the point of its introduction
to the end of the formula; for example, the formula ∃x.A ∧ ∃y.B ∧ ∃z.C can be read as
∃x.(A ∧ (∃y.(B ∧ ∃z.C))).

A.1.1 Viewpoint Adaptation

A.1.1.1 Adaptation from a Viewpoint Auxiliary Lemma

For the proof of Lemma 2.3.28 we use the following auxiliary lemma. According to Def. 2.2.15
the static type assignment judgment h, rΓ ` v : sT ′ consists of two parts: the dynamization of
the static type is assignable to the value and if the static type has self as main modifier, the
address corresponds to the current object in the environment. The following lemma is used in
the proof of the first part:

Lemma A.1.1 (Adaptation from a Viewpoint Auxiliary Lemma)

h, rΓ ` ι : sN
h, rΓ ` sN, sT ;

(
sT/X, ι

)
= rΓ ′

}
=⇒

∃oι, rT . dyn
(
sT, h, rΓ ′, oι

)
= rT ∧

∃sT ′. (sN B sT)
[
sT/X

]
= sT ′ ∧

∃oι′, rT ′. dyn
(
sT ′, h, rΓ , oι′

)
= rT ′ ∧

rT = rT ′

This lemma expresses that the dynamizations of the static types sT and sT ′ in the two different
viewpoints result in the same runtime types. Note how we can choose suitable substitutions for
the lost modifier, i.e., the static type after viewpoint adaptation might contain more lost
ownership information.
The proof of Lemma A.1.1 runs by induction on the shape of static type sT . The base case

deals with type variables and non-generic types. The induction step considers generic types,
assuming that the lemma holds for the actual type arguments. Each of the cases is done by a
case distinction on the main modifiers of sN and sT . The proof can be found in Sec. A.2 on
page 123.

A.1.1.2 Adaptation to a Viewpoint Auxiliary Lemma

The proof of Lemma 2.3.29 is analogous to the proof for Lemma 2.3.28 and the static type to
value judgment is again split into two parts. The following auxiliary lemma is used for the first
part:

91

Appendix A Properties and Proofs

Lemma A.1.2 (Adaptation to a Viewpoint Auxiliary Lemma)

h, rΓ ` ι : sN
(sN B sT)

[
sT/X

]
= sT ′

lost /∈ sT ′
h, rΓ ` sN, sT ;

(
sT/X, ι

)
= rΓ ′

 =⇒
∃rT . dyn

(
sT, h, rΓ ′, ∅

)
= rT ∧

∃rT ′. dyn(sT ′, h, rΓ , ∅) = rT ′ ∧
rT = rT ′

This lemma expresses that the dynamization of the static types sT and sT ′
[
sT/X

]
in the two

different viewpoints results in the same runtime types. Note that in this lemma we use empty
substitutions for lost when determining the runtime types (the requirement lost /∈ sT ′ implies
that also lost /∈ sT , see Lemma A.1.4). The proof can be found in Sec. A.2 on page 127.

A.1.1.3 Viewpoint Adaptation and self

If after viewpoint adaptation a type contains self we know that the original type had to
contain self also and that the viewpoint has self as main modifier.
Type sN needs to be well formed, because otherwise sT could be a type variable that is

substituted by the type argument from sN and an ill-formed type could use self as type
argument.

Lemma A.1.3 (Viewpoint Adaptation and self)

sΓ ` sN OK
sN B sT = sT ′

self∈ sT ′

 =⇒
{

self∈ sT
sN = self _<_>

Proof: a simple analysis of viewpoint adaptation. Requiring that sN is well formed ensures
that the type arguments do not contain self. Type sT does not need to be well formed, all we
need is that the viewpoint adaptation is defined.
This lemma is used in the proofs of Lemma 2.3.28 and Lemma 2.3.29.
A simple consequence is that if a type does not contain self, then it will also not contain

self after viewpoint adaptation with a well-formed type sN .

A.1.1.4 Viewpoint Adaptation and lost

If a type does not contain lost after viewpoint adaptation, the type cannot contain lost before
viewpoint adaptation.

Lemma A.1.4 (Viewpoint Adaptation and lost)

sN B sT = sT ′

lost /∈ sT ′
}

=⇒ lost /∈ sT

Proof: a simple analysis of viewpoint adaptation.
Note that in this case we do not need well-formed types.
This lemma is used in the proof of Lemma A.1.2 (see Sec. A.2 on page 127) to show that the

type before viewpoint adaptation cannot contain lost if the type after does not.
A simple consequence is that if a type contains lost before viewpoint adaptation, the type

will also contain lost after viewpoint adaptation.

92

A.1 Properties

A.1.2 Well-formedness Properties

A.1.2.1 Well-formedness and Viewpoint Adaptation

Well-formed types stay well formed after viewpoint adaptation, if certain conditions about the
new viewpoint hold.

Lemma A.1.5 (Well-formedness and Viewpoint Adaptation)

ClassDom(C) = Xk ClassBnds(C) = sNk
sΓ =

{
Xk 7→ sNk , X ′l 7→ sN ′l ; this 7→ self C<Xk>, _

}
sΓ ` sT OK
sΓ ′ ` sN OK ClassOf(sN) = C(
sN B sN ′l

) [
sTl/X ′l

]
= sN ′′l

sΓ ′ ` sTl strictly OK sΓ ′ ` sTl <: sN ′′l
=⇒

∃sT ′. (sN B sT)
[
sTl/X ′l

]
= sT ′ ∧

sΓ ′ ` sT ′ OK

The proof can be found in Sec. A.2 on page 130 and runs by induction on the shape of sT .
This lemma is used to prove Corollary A.1.6, Corollary A.1.7, and Corollary A.1.8.

A.1.2.2 Well-formedness and VP Adaptation for Fields

Field types are well formed after viewpoint adaptation.

Corollary A.1.6 (Well-formedness and VP Adaptation for Fields)

` P OK
FType(C , f) = sT
sΓ ` sN OK ClassOf(sN) = C

 =⇒ ∃sT ′. FType(sN, f) = sT ′ ∧
sΓ ` sT ′ OK

This corollary is a simple application of Lemma A.1.5: from ` P OK we know that the
declared field type sT was checked for well-formedness in a suitable environment (defined in
rule wfc_def, Def. 2.3.14). There are no method type variables and we therefore use empty
sequences for them.

This corollary is used in the soundness proof (Sec. A.2 on page 109 and Sec. A.2 on page 111)
to show that the viewpoint-adapted field types are well formed and in the proof of Lemma A.1.16
to argue that expression types are well formed.

A.1.2.3 Well-formedness and VP Adaptation for Methods

Method signatures are well formed after viewpoint adaptation.

Corollary A.1.7 (Well-formedness and VP Adaptation for Methods)

` P OK
MSig(C ,m) = _ <Xl extends sNl> sT1 m(sT ′q pid)
sΓ ` sN OK ClassOf(sN) = C(
sN B sNl

) [
sTl/Xl

]
= sN ′l

sΓ ` sTl strictly OK sΓ ` sTl <: sN ′l
=⇒

∃sT ′1, sT ′′q . MSig
(
sN,m, sTl

)
= _ <Xl extends sN ′l >

sT ′1 m(sT ′′q pid) ∧
sΓ ` sN ′l , sT ′1 , sT ′′q OK

93

Appendix A Properties and Proofs

This corollary is a simple application of Lemma A.1.5: from ` P OK we know that the method
signature was checked for well-formedness in a suitable environment (defined in rule wfmd_def,
Def. 2.3.16). The conditions for the method type variables are the same as needed for the
lemma. Then the lemma is simply instantiated for the upper bound, return, and parameter
types.
This corollary is used in the soundness proof (Sec. A.2 on page 113) to show that the types

in the viewpoint-adapted method signature are well formed.

A.1.2.4 Well-formedness and VP Adaptation for Class Upper Bounds

Class upper bounds are well formed after viewpoint adaptation.
Corollary A.1.8 (Well-formedness and VP Adaptation for Class Upper Bounds)

` P OK
ClassBnds(C) = sN
sΓ ` sN OK ClassOf(sN) = C

 =⇒ ∃sN ′. ClassBnds(sN) = sN
′ ∧

sΓ ` sN ′ OK

This corollary is a simple application of Lemma A.1.5: from ` P OK we know that the upper
bound types sN were checked for well-formedness in a suitable environment (defined in rule
wfc_def, Def. 2.3.14). There are no method type variables and we therefore use empty
sequences for them.
This corollary is used in Sec. A.2 on page 132 to show that the viewpoint-adapted class

bounds are well formed.

A.1.2.5 Static Well-formedness Implies Dynamization

A well-formed static type can be dynamized into a runtime type. However, this runtime type
might not be strictly well formed, because the substitution for lost might not be consistent
with the upper bounds.

Lemma A.1.9 (Static Well-formedness Implies Dynamization)

1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` sT OK

 =⇒ ∃oι. ∃rT . dyn(sT, h, rΓ , oι) = rT

From 3. we know that the free variables in sT are contained in sΓ . From 2. we know that those
variables are either found in the heap or the runtime environment. From 1. we get general
well-formedness of the program, in particular, that subtyping is well formed. We can choose an
arbitrary substitution for the occurrences of lost in sT and arrive at a runtime type rT .

However, note that this runtime type is not guaranteed to be well formed, as the substitutions
we choose for lost might not fulfill the requirements of the corresponding upper bounds!

This lemma is used to show soundness of the null expression and object creation, where
well-formed static types are assigned to the nulla value.

A.1.2.6 Strict Well-formedness and dyn

A strictly well-formed static type can be turned into a runtime type, without a substitution for
lost. The resulting runtime type is a strictly well-formed runtime type.

Note that an arbitrary viewpoint address for the strict well-formedness of rT can be used; a
strictly well-formed static type does not use rep in an upper bound and therefore at runtime
does not depend on a viewpoint. In particular, the viewpoint address does not need to be in
the domain of the heap h.

94

A.1 Properties

Lemma A.1.10 (Strict Well-formedness) Strict static well-formedness implies dynamization and run-
time well-formedness:

` P OK
h, rΓ : sΓ OK
sΓ ` sT strictly OK

 =⇒ ∃rT . dyn(sT, h, rΓ , ∅) = rT ∧
h, _ ` rT strictly OK

The proof can be found in Sec. A.2 on page 131 and runs by induction on the shape of the
static type sT .

This lemma is used to show soundness of object creations in Sec. A.2 on page 108 and method
calls in Sec. A.2 on page 113.

A.1.2.7 Correct Checking of Class Upper Bounds

The static checks we perform for class type arguments ensure that the corresponding runtime
type arguments are subtypes of their upper bounds.

Lemma A.1.11 (Correct Checking of Class Upper Bounds)

` P OK
h, rΓ : sΓ OK
sΓ ` sN strictly OK
dyn(sN, h, rΓ , ∅) = oι C<rT k>
ClassBnds

(
h, _, oι C<rT k>, ∅

)
= rT ′k

 =⇒ h ` rT k <: rT ′k

The proof can be found in Sec. A.2 on page 132.
This lemma is used to prove Lemma A.1.10 (see Sec. A.2 on page 131).

A.1.2.8 Correct Checking of Method Upper Bounds

The static checks we perform for method type arguments ensure that the corresponding runtime
type arguments are subtypes of the declared upper bounds.

Lemma A.1.12 (Correct Checking of Method Upper Bounds)

` P OK
h, rΓ : sΓ OK
(sN B sT0)

[
sT/X

]
= sT ′

lost /∈ sT ′
sΓ ` sT , sT ′ OK
sΓ ` sT <: sT ′
h, rΓ ` ι : sN
h, rΓ ` sN, sT0;

(
sT/X, ι

)
= rΓ ′

=⇒

∃oι, rT . dyn(sT, h, rΓ , oι) = rT ∧
∃rT ′. dyn

(
sT0, h, rΓ ′, ∅

)
= rT ′ ∧

h ` rT <: rT ′

The proof can be found in Sec. A.2 on page 133 and builds on Lemma A.1.23 and Lemma A.1.2.
This lemma is used to show soundness of method calls in Sec. A.2 on page 113.

A.1.2.9 Properties of Strictly Well-formed Static Types

A strictly well-formed static type does not use rep in the upper bounds of the class. If we know
that the main modifier is any, then we can also exclude peer as modifier in the upper bound.

95

Appendix A Properties and Proofs

Lemma A.1.13 (Properties of Strictly Well-formed Static Types)

sΓ ` u C<sT> strictly OK
ClassBnds(C) = sN

}
=⇒ rep /∈ sN

sΓ ` any C<sT> strictly OK
ClassBnds(C) = sN

}
=⇒ peer /∈ sN

Note that the strictly well-formed static type judgment already forbids lost to appear in the
upper bounds. The appearance of self in upper bounds is forbidden by the well-formed class
declaration judgment.

The proof can be found in Sec. A.2 on page 134 and runs by an analysis of the definitions of
strictly well-formed static type and the class bounds look-up function.
This lemma is used in the proof of Lemma A.1.10 (see Sec. A.2 on page 131).

A.1.2.10 Free Variables

The following two properties describe what type variables can be used in a superclass instantia-
tion and in the upper bounds of a class.
The type variables that can be used in the instantiation of a superclass are a subset of the

type variables of the subclass.
The type variables that can be used in the upper bounds of a class are a subset of the type

variables of the class.

Lemma A.1.14 (Free Variables) in upper bounds and superclass instantiations

` P OK
C<X> v C ′<sT>

}
=⇒ free

(
sT
)
⊆ X

` P OK
ClassDom(C) = X
ClassBnds(C) = sN

 =⇒ free
(
sN
)
⊆ X

The proof can be found in Sec. A.2 on page 134 and runs by an induction on the shape of the
derivation of subclassing relation, respectively a simple analysis of class well-formedness.
This lemma is used in Sec. A.2 on page 138 and Sec. A.2 on page 132 to show that the

applications of sdyn are defined.

A.1.2.11 Strict Well-formedness Implies Well-formedness

A strictly well-formed static type is always also a well-formed static type.

Lemma A.1.15 (Strict Well-formedness Implies Well-formedness)

sΓ ` sT strictly OK =⇒ sΓ ` sT OK

A simple investigation of Def. 2.3.12 and Def. 2.3.11 gives that the checks for strict well-
formedness are stricter than the corresponding checks of the well-formedness check.

96

A.1 Properties

A.1.2.12 Expression Types are Well Formed

If a static type can be assigned to an expression, we know that the type is well formed.

Lemma A.1.16 (Expression Types are Well Formed)

1. ` P OK
2. sΓ OK
3. sΓ ` e : sT

 =⇒ sΓ ` sT OK

This is done by a simple analysis of the derivation tree of 3. The type rules tr_subsum,
tr_null, tr_new, and tr_cast have an explicit check for well formedness of the assigned
type. For tr_var we use the knowledge from 2. to deduce that the assigned type is well
formed. For rules tr_read, tr_write, respectively tr_call we apply Corollary A.1.6
respectively Corollary A.1.7 to deduce that the field type respectively method return type are
well formed.

This lemma is used in the proof of Theorem 2.3.26. In general, the supertype of a well-formed
type is not necessarily also well formed (see Sec. A.1.6.2 for a discussion). In the soundness
proof we need that the type that is assigned to an expression is well formed.

A.1.3 Ordering Relations

This section is a collection of properties about the static and runtime ordering relations.

A.1.3.1 Subclassing: Superclass Instantiation Uses Strictly Well-formed Types

In a subclassing relationship, the instantiation of a superclass uses strictly well-formed types.

Lemma A.1.17 (Subclassing: Strict Superclass Instantiation)

` P OK
C<X> v C ′<sT>

}
=⇒ sΓ ` sT strictly OK

where sΓ =
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
and ClassDom(C) = Xk and X = Xk
and ClassBnds(C) = sNk

The proof can be found in Sec. A.2 on page 135 and runs by an induction on the derivation of
subclassing.
The lemma is used in the proof of Lemma A.1.10.

As a simple corollary we have that the superclass instantiation does not use self:

Corollary A.1.18 (Subclassing does not Introduce self)

` P OK
C<X> v C ′<sT>

}
=⇒ self /∈ sT

This is a simple consequence of Lemma A.1.17 and Def. 2.3.12.
This corollary is used in the proof of Lemma A.1.21 (see Sec. A.2 on page 137).

97

Appendix A Properties and Proofs

A.1.3.2 Subclassing: Superclass Instantiation Uses Subtypes of the Upper Bounds

In a subclassing relationship, the instantiation of a superclass uses types that are subtypes of
the upper bounds.

Lemma A.1.19 (Subclassing: Bounds Respected)

` P OK
C<X> v C ′<sT>
ClassBnds

(
self C ′<sT>

)
= sN

 =⇒ sΓ ` sT <: sN

where sΓ =
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
and ClassDom(C) = Xk and X = Xk
and ClassBnds(C) = sNk

The proof can be found in Sec. A.2 on page 136 and runs by induction on the derivation of
subclassing.
The lemma is used in the proof of Lemma A.1.10.

A.1.3.3 Subclassing: Superclass Instantiation has Upper Bounds without lost

In a subclassing relationship, the upper bounds of the superclass do not contain lost.

Lemma A.1.20 (Subclassing: Bounds do not Contain lost)

` P OK
C<X> v C ′<sT>
C 6=C ′
ClassBnds

(
self C ′<sT>

)
= sN

 =⇒ lost /∈ sN

The proof can be found in Sec. A.2 on page 136 and runs by induction on the derivation of
subclassing.
The lemma is used in the proof of Lemma A.1.10.
Note that the lemma would not hold, if C = C ′ was allowed. The uses of the lemma handle

this case separately. Also note that from Lemma A.1.17 and Lemma A.1.4 we can also conclude
that the declared upper bounds of class C ′ do not contain lost, i.e., ClassBnds(C ′) = sN ′ and
lost /∈ sN ′.

A.1.3.4 Subtyping and self

If the self modifier does not appear in a subtype it can also not appear in a supertype. If
self is the main modifier of the supertype, then it is also the main modifier of a subtype.

Lemma A.1.21 (Subtyping and self)

` P OK
sΓ OK
sΓ ` sT <: sT ′
self /∈ sT

 =⇒ self /∈ sT ′

` P OK
sΓ OK
sΓ ` sT <: sT ′
om(sT ′, sΓ) = self

 =⇒ om(sT, sΓ) = self

98

A.1 Properties

The proof can be found in Sec. A.2 on page 137 and runs by induction on the derivation of
subtyping.
The lemma is used in the soundness proof (Sec. A.2 on page 106), when we need to argue

that applying the subsumption rule cannot introduce self, and in Sec. A.2 on page 139 to
show that sub- and supertype agree on rΓ(this).

A.1.3.5 Static Type Assignment to Values Preserves Subtyping

If a static type can be assigned to a value, also a supertype can be assigned to the value.

Lemma A.1.22 (Static Type Assignment to Values Preserves Subtyping)

` P OK
h, rΓ : sΓ OK
sΓ ` sT , sT ′ OK
sΓ ` sT <: sT ′
h, rΓ ` v : sT

 =⇒ h, rΓ ` v : sT ′

The proof can be found in Sec. A.2 on page 139 and is an application of Lemma A.1.23 and
Lemma A.1.21.
The lemma is used in the proof of Theorem 2.3.26 for the subsumption rule.

A.1.3.6 dyn Preserves Subtyping

For the proof of Lemma A.1.22 we use the following lemma that expresses that if two static
types are subtypes, then their dynamizations with some substitutions for lost results in runtime
subtypes.

Lemma A.1.23 (dyn Preserves Subtyping)

` P OK
h, rΓ : sΓ OK
sΓ ` sT , sT ′ OK
sΓ ` sT <: sT ′

 =⇒
∃oι, rT . dyn(sT, h, rΓ , oι) = rT ∧
∃oι′, rT ′. dyn

(
sT ′, h, rΓ , oι′

)
= rT ′ ∧

h ` rT <: rT ′

The proof can be found in Sec. A.2 on page 138 and is an analysis of static and runtime
subtyping.

A.1.3.7 Static Type Assignment to Values and Substitutions

In the static type assignment judgment (Def. 2.2.15), type variables are replaced by the
corresponding runtime types in rΓ . The corresponding substitutions can also be performed on
the static types and the static type assignment judgment continues to work.

Lemma A.1.24 (Static Type Assignment to Values and Substitutions)

` P OK
h ` rΓ(this) : oι C<rT k>
ClassDom(C) = Xk
dyn

(
sTk , h, rΓ , ∅

)
= rT k

sT
[
sTk/Xk

]
= sT ′

 =⇒ h, rΓ ` v : sT ⇐⇒ h, rΓ ` v : sT ′

99

Appendix A Properties and Proofs

The proof is a simple analysis of Def. 2.2.15 and Def. 2.2.14. The runtime type of this is
used to substitute type variables. If these type variables are substituted by static types, whose
dynamization corresponds to the runtime types, we can also assign that type.

This lemma is used in the proof of method calls in Sec. A.2. Def. 2.3.17 ensures that overriding
methods from superclass and subclass have compatible signatures, i.e., that they only differ by
substitutions of type arguments for type variables. This lemma gives us that, if the static type
of the superclass can be assigned to a value, then we can also assign the type from the subclass,
and vice versa.

A.1.4 Runtime Behavior

A.1.4.1 Runtime Meaning of Ownership Modifiers

The following lemma connects the meaning of the static ownership modifiers and the runtime
owner. It establishes that the intended meaning of ownership modifiers holds.

For self and peer references, the owner of the referenced object is the owner of the current
object. For rep references, the owner of the referenced object is the current object. From lost
and any references, we do not gain any information about the runtime ownership.

Lemma A.1.25 (Runtime Meaning of Ownership Modifiers)

If dyn(sN, h, rΓ , oι) = rT ∧ h ` ι : rT then
om(sN) = self =⇒ owner(h, ι) = owner(h, rΓ(this))
om(sN) = peer =⇒ owner(h, ι) = owner(h, rΓ(this))
om(sN) = rep =⇒ owner(h, ι) = rΓ(this)

The proof is a case analysis and the application of the definition of dyn (Def. 2.2.14) and can
be found in Sec. A.2 on page 141.
The lemma is used in the proof of the owner-as-modifier discipline (Theorem 2.4.7).

A.1.4.2 Equivalence of sdyn and dyn

Under certain conditions we can show that the result of simple dynamization sdyn is equal to
dynamization dyn.

Lemma A.1.26 (Equivalence of sdyn and dyn)

` P OK
h, rΓ : sΓ OK
sΓ ` u C<sT> strictly OK
dyn

(
u C<sT>, h, rΓ , ∅

)
= oι C<rT>

u C<sT> B sT = sT ′

lost /∈ sT ′
sdyn

(
sT, h, ι, oι C<rT>, ∅

)
= rT

=⇒ dyn(sT ′, h, rΓ , ∅) = rT

The proof can be found in Sec. A.2 on page 140 and runs by an induction on the shape of sT .
The lemma is used in Lemma A.1.11 to show that the runtime type used to check the upper

bounds is equal before and after viewpoint adaptation.

A.1.4.3 Evaluation Preserves Runtime Types

The evaluation of an expression preserves the types of the objects in the heap.

100

A.1 Properties

Lemma A.1.27 (Evaluation Preserves Runtime Types)
rΓ ` h, e h′, _ =⇒ (∀ι ∈ dom(h) . h(ι)↓1 = h′(ι)↓1)

The proof is a simple inspection of the operational semantics and gives that the evaluation of
an expression never modifies the runtime types of existing objects.

The lemma is used when we need to adapt the heap that is used in a judgment. In particular,
we have the following properties as simple consequences:

rΓ ` h, e h′, _ =⇒
(∀ι ∈ dom(h) . owners(h, ι) = owners(h′, ι)) ∧
(dyn(sT, h, rΓ , oι) = rT =⇒ dyn(sT, h′, rΓ , oι) = rT) ∧
(h, ι ` rT strictly OK =⇒ h′, ι ` rT strictly OK)

That is, evaluation preserves the owners of objects, the result of dynamization, and the well-
formedness of runtime types. These functions only depend on the available type information
and are therefore not influenced by the evaluation of an expression.

A.1.4.4 dyn is Compositional

The dynamization of a non-variable type can be modeled by composing the dynamization of
the type arguments.

Lemma A.1.28 (dyn is Compositional)

owner(h, rΓ(this)) = oι ∧
u
[
oι / self , oι / peer , rΓ(this) / rep , anya / any , oι′′ / lost

]
= oι′ ∧

dyn(sTk , h, rΓ , oιk) = rT k
⇐⇒

u = lost =⇒ oι=
{
oι′′
}
∪ oιk ∧

u 6= lost =⇒ oι= oιk ∧
dyn

(
u C<sTk>, h, rΓ , oι

)
= oι′ C<rT k>

The proof is a simple investigation of Def. 2.2.14 and gives that dyn applies the same substitution
to the main modifier and to the type arguments. The lemma only needs some work to align
the substitutions for lost modifiers.
The lemma is used in the proofs of Lemma A.1.1 (see Sec. A.2 on page 123), Lemma A.1.2

(see Sec. A.2 on page 127), Lemma A.1.26 (see Sec. A.2 on page 140), and Lemma A.1.23 (see
Sec. A.2 on page 138).

A.1.4.5 Dynamization and lost

If a static type can be dynamized using an empty substitution for lost, we can conclude that
lost is not contained in the static type.

Lemma A.1.29 (Dynamization and lost)

dyn(sT, h, rΓ , ∅) = rT =⇒ lost /∈ sT
sdyn(sT, h, ι, rT , ∅) = rT ′ =⇒ lost /∈ sT

This is a simple consequence of the definitions of the dynamization functions dyn (Def. 2.2.14)
and sdyn (Def. 2.2.11).
It is used in Lemma A.1.2 (see Sec. A.2 on page 127) to deduce that static types, for which

the dynamization with an empty substitution is defined, cannot contain lost.

101

Appendix A Properties and Proofs

A.1.5 Technicalities

A.1.5.1 Encapsulated Programs are Well formed

A program that is well formed by the encapsulation rules is also well formed by the topological
rules.

Lemma A.1.30 (Encapsulated Programs are Well formed)

` P enc =⇒ ` P OK

This follows directly from the definition of encapsulated program.
This lemma is used in the proof of the encapsulation theorem (Sec. A.2 on page 119) to show

that an encapsulated program is also a topologically well-formed program.

A.1.5.2 Encapsulated Expressions are Well typed

An encapsulated expression is also a well-typed expression.

Lemma A.1.31 (Encapsulated Expressions are Well typed)

sΓ ` e enc =⇒ sΓ ` e : _

This follows directly from the definition of encapsulated expression.
This lemma is used in the proof of the encapsulation theorem (Sec. A.2 on page 119) to show

that the topological type rules can be applied to an encapsulated expression.

A.1.5.3 Strict Purity implies Purity

The strict definition of purity (Def. 2.4.3) fulfills the assumption about pure expressions
(Assumption 2.4.2).

Lemma A.1.32 (Strict Purity implies Purity)

sΓ ` e strictly pure =⇒ sΓ ` e pure

The strict definition forbids all field updates and non-pure method calls. Therefore all fields in
the prestate remain unchanged, establishing our assumption of purity.
This lemma was proved to show that strict purity fulfills our assumption of purity. As we

only work with the assumption of purity in the other lemmas and proofs, we do not actually
use this lemma in a proof.

A.1.5.4 Topological Generation Lemma

The following generation lemma allows us to draw conclusions on the possible derivation of the
typing. We know that some expression e has a type sT in an environment sΓ . Then there is a
unique shape of the expression by which we can determine which type rule has been used to
derive the type sT . This gives us information about all the conditions that must hold for this
expression.

102

A.1 Properties

Lemma A.1.33 (Topological Generation Lemma)

If sΓ ` e : sT then the following hold:
1. e = null ⇒ ∃sT0. self /∈ sT0 ∧ sΓ ` sT0 OK ∧ sΓ ` null : sT0 ∧

sΓ ` sT0 <: sT ∧ sΓ ` sT OK
2. e = x ⇒ ∃sT0.

sΓ(x) = sT0 ∧ sΓ ` sT0 <: sT ∧ sΓ ` sT OK
3. e = new sT0() ⇒ sΓ ` sT0 strictly OK ∧ om(sT0,

sΓ) ∈ {peer , rep} ∧
sΓ ` sT0 <: sT ∧ sΓ ` sT OK

4. e = e0.f ⇒ ∃sN0,
sT0.

sΓ ` e0 : sN0 ∧ FType(sN0, f) = sT0 ∧
sΓ ` sT0 <: sT ∧ sΓ ` sT OK

5. e = e0.f = e1 ⇒ ∃sN0,
sT0.

sΓ ` e0 : sN0 ∧ FType(sN0, f) = sT0 ∧
sΓ ` e1 :s sT0 ∧ sΓ ` sT0 <: sT ∧ sΓ ` sT OK

6. e = e0 .m < sTl > (eq) ⇒ ∃sN0,Xl , sNl ,
sT0, sT ′q, pid.

sΓ ` e0 : sN0 ∧ MSig
(
sN0,m, sTl

)
= ms ∧

ms = _ <Xl extends sNl> sT0 m(sT ′q pid) ∧
sΓ ` eq :s sT ′q ∧ sΓ ` sTl <:s sNl ∧
sΓ ` sTl strictly OK ∧ sΓ ` sT0 <: sT ∧ sΓ ` sT OK

7. e = (sT0) e0 ⇒ sΓ ` e : _ ∧ sΓ ` sT0 OK ∧ sΓ ` sT0 <: sT ∧
sΓ ` sT OK

The proof of Lemma A.1.33 runs by induction on the derivation tree of the topological type
rules applied in sΓ ` e : sT . There are always two type rules that could apply to an expression:
the rule for the particular kind of expression and the subsumption rule. From the particular
rule we get all the conditions that are checked for this kind of expression; subsumption allows
one to go to an arbitrary well-formed supertype of this type.

A.1.5.5 Encapsulation Generation Lemma

Similarly, for the encapsulation rules, we can determine from the shape of the expression what
conditions hold:

Lemma A.1.34 (Encapsulation Generation Lemma)

If sΓ ` e enc then the following hold:
1. e = null ⇒ sΓ ` null : _
2. e = x ⇒ sΓ ` x : _
3. e = new sT0() ⇒ sΓ ` new sT0() : _
4. e = e0.f ⇒ sΓ ` e0.f : _ ∧ sΓ ` e0 enc
5. e = e0.f = e1 ⇒ ∃sN0.

sΓ ` e0.f = e1 : _ ∧
sΓ ` e0 : sN0 ∧ sΓ ` e0 enc ∧
sΓ ` e1 enc ∧ om(sN0) ∈ {self , peer , rep}

6. e = e0 .m < sTl > (eq) ⇒ ∃sN0.
sΓ ` e0 .m < sT > (e) : _ ∧

sΓ ` e0 : sN0 ∧ sΓ ` e0 enc ∧ sΓ ` e enc ∧
(om(sN0) ∈ {self , peer , rep} ∨
MSig

(
sN0,m, sT

)
= pure <_> _ m(_))

7. e = (sT0) e0 ⇒ sΓ ` (sT0) e : _ ∧ sΓ ` e enc

The proof of Lemma A.1.34 again runs by induction on the derivation tree of the encapsulation
rules applied in sΓ ` e enc. There is one unique rule that can be applied from which we get all
the conditions that are checked.

A.1.5.6 Operational Semantics Generation Lemma

Finally, from the shape of an expression we can determine the unique rule from the operational
semantics that is used.

103

Appendix A Properties and Proofs

Lemma A.1.35 (Operational Semantics Generation Lemma)

If rΓ ` h, e h′, v then the following hold:
1. e = null ⇒ h′= h ∧ v= nulla
2. e = x ⇒ h′= h ∧ rΓ(x) = v
3. e = new sT0() ⇒ ∃rT ,C , fv. dyn(sT, h, rΓ , ∅) = rT ∧

ClassOf(rT) = C ∧
(
∀f ∈ fields(C) . fv(f) = nulla

)
∧

h +
(
rT , fv

)
= (h′, ι) ∧ v= ι

4. e = e0.f ⇒ ∃ι0. rΓ ` h, e0 h′, ι0 ∧ h′(ι0.f) = v
5. e = e0.f = e1 ⇒ ∃h0, ι0, h1.

rΓ ` h, e0 h0, ι0 ∧
rΓ ` h0, e1 h1, v ∧ h1[ι0.f = v] = h′

6. e = e0 .m < sTl > (eq) ⇒ ∃h0, ι0, h1, vq, e,Xl , pid, rT l .
rΓ ` h, e0 h0, ι0 ∧
rΓ ` h0, eq h1, vq ∧ MBody(h0, ι0,m) = e ∧
MSig(h0, ι0,m) = _ <Xl extends _> _ m(_ pid) ∧
dyn

(
sTl , h, rΓ , ∅

)
= rT l ∧

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ vq

}
∧

rΓ ′ ` h1, e h′, v
7. e = (sT0) e0 ⇒ rΓ ` h, e h′, v ∧ h′, rΓ ` v : sT

The proof of Lemma A.1.35 again runs by induction on the derivation tree of the operational
semantics applied in rΓ ` h, e h′, v. There is one unique rule that can be applied from
which we get all the conditions that are checked.

A.1.5.7 Deterministic Semantics

The evaluation of an expression in a particular runtime environment and heap results in a
unique resulting value and heap, up to the renaming of addresses.

Lemma A.1.36 (Deterministic Semantics)

rΓ ` h, e h′, v
rΓ ` h, e h′′, v′

}
=⇒ v= v′ ∧ h′= h′′ up to renaming of addresses

The proof runs by rule induction on the shape of the expression e. The only non-determinism
comes from rule os_new, which does not uniquely determine the address of the new object.
This information from os_new can be used to build a mapping between the two executions of
the expressions.

A.1.6 Properties that do not Hold
In the following we discuss some properties that do not hold, but have some intuitive appeal,
and illustrate via examples why they do not hold. These are included only as reference.

A.1.6.1 lost in Upper Bounds of Well-formed Types

The intuition that a type, that does not contain lost, also does not use lost in the viewpoint-
adapted upper bounds is wrong.

sΓ ` sN OK
ClassBnds(sN) = sN
lost /∈ sN

 6=⇒ lost /∈ sN

Counterexample:

104

A.1 Properties

class C< X extends peer Object > {}

any C<peer Object> x;

Class C uses peer Object as upper bound. Variable x uses the type any C<peer Object>,
which is well-formed in a suitable environment. However, the viewpoint-adapted upper bound is
lost Object and such a type must not be created. Therefore, strict well-formedness of types has
to separately check for occurrences of lost in the type itself and also in the viewpoint-adapted
upper bounds.

A.1.6.2 Subtyping Preserves Well-formedness

The supertype of a well-formed static type is not always also well formed.

` P OK
sΓ OK
sΓ ` sT OK
sΓ ` sT <: sT ′

 6=⇒
sΓ ` sT ′ OK

Counterexample:

class C< X extends peer Object > {}

peer C<peer Object> <: peer C<lost Object> <: any C<lost Object>
peer C<peer Object> <: any C<peer Object>

Class C again uses peer Object as upper bound. The type peer C<peer Object> is well
formed in a suitable environment. The type peer C<lost Object> is a supertype, however,
it is not well-formed, because lost Object is not a subtype of the viewpoint-adapted upper
bound, which is still peer Object.

However, the two types any C<peer Object> and any C<lost Object> are supertypes that
are well formed; the main modifier any results in a lost modifier in the corresponding upper
bound and the type argument is a subtype thereof.

We did not want to couple the subtyping rules to the well-formedness rules, because to check
well-formedness we also need subtyping. Instead, we strengthened the subsumption rule in
Def. 2.3.13 to ensure that the supertype is well formed.

A.1.6.3 Usage of self

We use the self ownership modifier to distinguish accesses through the current object from
other accesses. However, we do not enforce that self is not used in the program and just
ensure that a reference with the self main modifier references the current object. Therefore,
the following lemma does not hold:

` P OK
sΓ OK
sΓ ` e : self _<_>

 6=⇒ e = this

Not only e = this can have self as main modifier, also declared method parameters x, field
access through this, and also method calls on this, can have self as main modifier, if the
declared field type or method return type uses self as main modifier.
A simple example:

105

Appendix A Properties and Proofs

class C {
self C me;

self C getMe() {
return me;

}

void setMe(self C newme) {
me = newme;

}

void demo() {
this.setMe(this);
me = this.getMe();

}
}

However, as argued in Sec. 2.5.1, allowing the use of self in these positions does not add
significant expressiveness and can be forbidden in programs.

A.2 Proofs
This section presents the proofs of the theorems and lemmas from Sec. 2.3.5, Sec. 2.4.6, and
App. A.1 that were not proved directly with the definition of the lemma.

Note that in the definitions of judgments with a single rule, we use the rule notation, because
it is supported by Ott. However, these judgments with unique rules are read as equivalences,
i.e., if the conclusion holds, we can assume the antecedents.
We expand strict subtyping (Def. 2.3.10) and strict expression typing (Def. 2.3.13) in the

following proofs, i.e., use non-strict subtyping and type rules and check for lost explicitly.

A.2.1 Main Results

A.2.1.1 Proof of Theorem 2.3.26 — Type Safety

We prove:
1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` e : sT
4. rΓ ` h, e h′, v

 =⇒
{
I. h′, rΓ : sΓ OK
II. h′, rΓ ` v : sT

Where it simplifies the proofs, we split II. into the following two subgoals, according to
rtste_def (Def. 2.2.15):

IIa. ∃oι. ∃rT . dyn(sT, h′, rΓ , oι) = rT ∧ h′ ` v : rT
IIb. sT = self _<_> =⇒ rΓ(this) = v

We prove this by rule induction on the operational semantics.

Case 1: e= null
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` null : sT 4. rΓ ` h, null h′, v

106

A.2 Proofs

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exists an sT0 such that:

sΓ ` null : sT0 self /∈ sT0
sΓ ` sT0 OK sΓ ` sT0 <: sT sΓ ` sT OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ ` h, null h, nulla

Therefore, we have that:
h′= h v= nulla

• Part I: h′, rΓ : sΓ OK
Follows directly from 2. and h = h′.

• Part IIa: ∃oι. ∃rT . dyn(sT, h′, rΓ , oι) = rT ∧ h′ ` nulla : rT
We have 1., I., and sΓ ` sT OK and can apply Lemma A.1.9 to arrive at
∃oι. ∃rT . dyn(sT, h′, rΓ , oι) = rT .
We know from the operational semantics that v= nulla and can assign an arbitrary
runtime type to nulla by rule rtt_null from Def. 2.2.13.

• Part IIb: sT = self _<_> =⇒ rΓ(this) = nulla

We know from the type rules that self /∈ sT0. Therefore, also a supertype sT cannot have
self as main modifier according to Lemma A.1.21.

Case 2: e= x
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` x : sT 4. rΓ ` h, x h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exists an sT0 such that:

sΓ(x) = sT0
sΓ ` x : sT0

sΓ ` sT0 <: sT sΓ ` sT OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ(x) = v rΓ ` h, x h, v

Therefore, we have that:
h′= h

• Part I: h′, rΓ : sΓ OK
Follows directly from 2. and h = h′.

107

Appendix A Properties and Proofs

• Part II: h′, rΓ ` v : sT
We want to apply Lemma A.1.22 to arrive at II. From 1. we know that the program is
well formed. From Part I. we know that the static and runtime environments conform.
We know from the operational semantics that the value v is from the runtime environment.
Therefore we know from the definition of well-formed runtime environment (Def. 2.3.25),
that h′, rΓ ` v : sT0 holds, where sT0 is sΓ(x), the static type of the variable. We know
that sT0 is well formed from 2. and that sT is well formed from 3. We also know that
sΓ ` sT0 <: sT and can therefore apply Lemma A.1.22 to arrive at h′, rΓ ` v : sT .

Case 3: e= new sT0()
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` new sT0() : sT 4. rΓ ` h, new sT0() h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exists an sT0 such that:

sΓ ` sT0 strictly OK om(sT0,
sΓ) ∈ {peer , rep} sΓ ` new sT0() : sT0

sΓ ` sT0 <: sT sΓ ` sT OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist rT 0, C , and fv such that:

dyn(sT0, h, rΓ , ∅) = rT 0 ClassOf(rT 0) = C
∀f ∈ fields(C) . fv(f) = nulla h +

(
rT 0, fv

)
= (h′, ι)

v= ι

• Part I: h′, rΓ : sΓ OK
From the operational semantics we know that we only added a new object to the heap
and leave all other runtime types unchanged. Therefore all the judgments concerning rΓ
and sΓ from 2. still hold. What we do have to show is that the new heap is well formed,
i.e., h′ OK.
From the well-formed heap (Def. 2.3.24) and address (Def. 2.3.23) judgments we derive
that we only need to consider the new address ι and that all other addresses in the heap
are still well formed. This means that we have to show three things:
– Ia. h′, ι ` h′(ι)↓1 strictly OK
– Ib. roota ∈ owners(h′, ι)
– Ic. ∀f ∈ fields(C) . ∃ sT ′. (FType(h′, ι, f) = sT ′ ∧ h′, ι ` h′(ι.f) : sT ′)

Note that class C is the class of the runtime type of h′(ι).
The proofs are:
Ia. We know dyn(sT0, h, rΓ , ∅) = rT 0 and that h′(ι)↓1 = rT 0 from the operational

semantics (Def. 2.2.17) and the definition of + (Def. 2.2.6).
We know from the type rules that sΓ ` sT0 strictly OK. We can therefore apply
Lemma A.1.10 with 1. and 2. to arrive at h, ι ` rT 0 strictly OK.

108

A.2 Proofs

We can use h′ instead of h in h, ι ` rT 0 strictly OK because of Lemma A.1.27 (simply
put, adding the additional object does not change the well-formedness judgment).
Note that ι is not in the domain of h. Under the conditions in which we use it, the
runtime well-formedness judgment is correctly applied.

Ib. We have om(sT0,
sΓ) ∈ {peer , rep}. If the type sT0 is a type variable, dyn replaces

it by the runtime type from the environment or the heap. From 2. we know that this
runtime type is well formed and therefore establishes Ib. If sT0 is a non-variable type,
then from the definition of dyn we know that the owner(h′, ι) = oι where oι is either
the address of rΓ(this) or the owner of rΓ(this). Either oι is already roota and we
have Ib. Otherwise there is some ι′ and oι= ι′ for which we have roota ∈ owners(h, ι′)
from the well-formed heap h OK. From owner(h′, ι) = ι′ and roota ∈ owners(h, ι′)
follows roota ∈ owners(h′, ι).

Ic. Recall that class C is the class of the runtime type rT 0. Function fields(C) is defined
exactly to yield all fields that are defined for the class of the created object. Therefore
FType is always defined. The field type sT ′ is a declared field type and from 1.
we therefore know that it is well-formed. Therefore, the dyn in the definition of
Def. 2.2.16 is defined by Lemma A.1.9. Finally, all fields are initially nulla, so the
second part holds trivially.

Note that the check lost /∈ sT0 as part of sΓ ` sT0 strictly OK could be made less strict
by using arbitrary owners in the operational semantics. Also, the main modifier any
could be allowed and an arbitrary owner could be chosen. But this would not give us any
significant flexibility and we do not want to introduce this non-deterministic behavior.

• Part IIa: ∃oι. ∃rT . dyn(sT, h′, rΓ , oι) = rT ∧ h′ ` ι : rT
This directly follows from Lemma A.1.23 with 1., I., sΓ ` sT0 ,

sT OK, and sΓ ` sT0 <: sT .
Note that by Lemma A.1.15 from sΓ ` sT0 strictly OK from the type rules we get
sΓ ` sT0 OK. The lemma directly gives us the first conjunct. The second conjunct follows
from h′(ι)↓1 = rT 0 ∧ h ` rT 0 <: rT (Def. 2.2.13) and is then also directly from the
lemma.

• Part IIb: sT = self _<_> =⇒ rΓ(this) = ι

The type rules forbid that the static type in a new expression contains self, by enforcing
strict well-formedness of the static type sΓ ` sT0 strictly OK. Therefore, also a supertype
sT cannot have self as main modifier according to Lemma A.1.21.

Case 4: e= e0.f
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` e0.f : sT 4. rΓ ` h, e0.f h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exist sN0 and sT1 such that:

sΓ ` e0 : sN0 FType(sN0, f) = sT1
sΓ ` e0.f : sT1

sΓ ` sT1 <: sT

109

Appendix A Properties and Proofs

Using Corollary A.1.6 and Lemma A.1.16 we deduce:
sΓ ` sT1 OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exists an ι0 such that:

rΓ ` h, e0 h′, ι0 h′(ι0.f) = v

We apply the induction hypothesis to e0:

10. ` P OK
20. h, rΓ : sΓ OK
30.

sΓ ` e0 : sN0
40.

rΓ ` h, e0 h′, ι0

 =⇒
{
I0. h′, rΓ : sΓ OK
II0. h′, rΓ ` ι0 : sN0

10. is identical to 1. and 20. is identical to 2. 30. is from the type rules and 40. is from the
operational semantics.

• Part I: h′, rΓ : sΓ OK
Identical to I0.

• Part II: h′, rΓ ` v : sT
We first want to apply Lemma 2.3.28 to derive h′, rΓ ` v : sT1. For this, we use the
following instantiation of the lemma:

11. h′, rΓ ` ι0 : sN0
21. h′, rΓ ′ ` v : sT2
31. dyn(∅, h′, rΓ , ∅) = ∅
41.

rΓ ′= {∅ ; this 7→ ι0, _}
51. ClassDom(ClassOf(sN0)) = X
61. free(sT2) ⊆ X , ∅
71.

sΓ ` sN0 OK

=⇒

{
I1. (sN0 B sT2) [∅/∅] = sT1
II1. h′, rΓ ` v : sT1

Note that sT1 is the viewpoint-adapted field type from the type rules.
We deduce the requirements as follows:

– 11.: we know from II0. that h′, rΓ ` ι0 : sN0.
– From the well-formed heap judgment from Part I above, we can deduce that

FType(h′, ι0, f) = sT2 and h′, ι0 ` v : sT2, that is, that the declared field type sT2
can be assigned to the field value from the viewpoint of the target object. With the
construction of rΓ ′ below, this gives us 21. As the field name is defined in a unique
class and from the type rules, we know that sN0 B sT2 = sT1.

– In field types we do not have method type variables and therefore 31. is not needed
and in 41. we construct the simple runtime environment
rΓ ′= {∅ ; this 7→ ι0, _}.

– 51. and 61.: we have 1. from which we can conclude that sΓ ′ ` sT2 OK, where sΓ ′ is
the static environment in which the field type was checked for well formedness.
From this follows that free(sT2) ⊆ X where ClassDom(ClassOf(sN0)) = X, because
the static type rules use subsumption to find the type sN0 in which the field is
declared.

110

A.2 Proofs

– 71.: from 30. we know that expression e0 is typable as sN0. Using Lemma A.1.16
with 1., 2., and 30. we can deduce that sN0 is well formed.

We now have all the requirements to apply Lemma 2.3.28 to arrive at the desired
h′, rΓ ` v : sT1.

Finally, we have that sΓ ` sT1 <: sT and can apply Lemma A.1.22 to arrive at the
conclusion.

Case 5: e= e0.f = e1
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` e0.f = e1 : sT 4. rΓ ` h, e0.f = e1 h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exist sN0 and sT1 such that:

sΓ ` e0 : sN0 FType(sN0, f) = sT1 lost /∈ sT1
sΓ ` e1 : sT1

sΓ ` e0.f = e1 : sT1
sΓ ` sT1 <: sT

Using Corollary A.1.6 and Lemma A.1.16 we deduce:

sΓ ` sT1 OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist h0, ι0, and h1 such that:

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v h1[ι0.f = v] = h′

We apply the induction hypothesis to e0:

10. ` P OK
20. h, rΓ : sΓ OK
30.

sΓ ` e0 : sN0
40.

rΓ ` h, e0 h0, ι0

 =⇒
{
I0. h0,

rΓ : sΓ OK
II0. h0,

rΓ ` ι0 : sN0

10. is identical to 1. and 20. is identical to 2. 30. is from the type rules and 40. is from the
operational semantics.
We apply the induction hypothesis to e1:

11. ` P OK
21. h0,

rΓ : sΓ OK
31.

sΓ ` e1 : sT1
41.

rΓ ` h0, e1 h1, v

 =⇒
{
I1. h1,

rΓ : sΓ OK
II1. h1,

rΓ ` v : sT1

11. is identical to 1. and 21. is identical to I0. 31. is from the type rules and 41. is from the
operational semantics.

111

Appendix A Properties and Proofs

• Part I: h′, rΓ : sΓ OK
We have that h1[ι0.f = v] = h′. We have h1,

rΓ : sΓ OK from I1.
From the definition of h1[ι0.f = v] = h′ we know that the types in h′ stay unchanged and
therefore all the judgments concerning rΓ and sΓ still hold. What we do have to show is
that the new heap is well formed, i.e., h′ OK.
From the well-formed heap (Def. 2.3.24) and address (Def. 2.3.23) judgments, knowing
that dom(h1) = dom(h′) and that the runtime types in the heap stayed unchanged, the
only thing that needs to be shown is: FType(h′, ι0, f) = sT2 and h′, ι0 ` h′(ι0.f) : sT2,
that is, that the declared type of the field can be assigned to the new value that is stored
in the field.
We want to apply Lemma 2.3.29 to arrive at h′, ι0 ` h′(ι0.f) : sT2. We use the following
instantiation of the lemma:

12. h′, rΓ ` ι0 : sN0
22. (sN0 B sT2) [∅/∅] = sT1
32. lost /∈ sT1
42. h′, rΓ ` v : sT1
52. dyn(∅, h′, rΓ , ∅) = ∅
62.

rΓ ′= {∅ ; this 7→ ι, _}
72. ClassDom(ClassOf(sN0)) = X
82. free(sT2) ⊆ X , ∅
92.

sΓ ` sN0 OK

=⇒ I2. h′, rΓ ′ ` v : sT2

We deduce the requirements as follows:

– 12. and 22.: from the type rules we know FType(sN0, f) = sT1 and from II0. we have
h0,

rΓ ` ι0 : sN0. Therefore FType(h′, ι0, f) = sT2 is defined and sN0 B sT2 = sT1
holds. In a field type we do not have method type variables and therefore we use
empty substitutions.

– 32.: from the type rules we know lost /∈ sT1.
– 42.: we know that h′(ι0.f) = v and from II1. that h1,

rΓ ` v : sT1. We can use h′
instead of h1 by Lemma A.1.27, because changing a field value does not change the
validity of the type assignment.

– 52. and 62.: in a field type we do not have method type variables and therefore
construct the simple runtime environment rΓ ′= {∅ ; this 7→ ι0, _}.

– 72. and 82.: we have 1. from which we can conclude that the field type was checked for
well-formedness, i.e., sΓ ′ ` sT2 OK was checked for a corresponding static environment
sΓ ′. From this follows that free(sT2) ⊆ X where ClassDom(ClassOf(sN0)) = X.

– 92.: from 30. we know that expression e0 is typable as sN0. Using Lemma A.1.16
with 1., 2., and 30. we can deduce that sN0 is well formed.

We now have all the requirements to apply Lemma 2.3.29 to arrive at
h′, rΓ ′ ` v : sT2, which is equivalent to h′, ι0 ` h′(ι0.f) : sT2. Therefore the final heap
h′ is well formed.

• Part II: h′, rΓ ` v : sT
From II1. we have h1,

rΓ ` v : sT1 and from Lemma A.1.27 and the definition of
h1[ι0.f = v] = h′ we get that h′, rΓ ` v : sT1.

112

A.2 Proofs

Finally, we have that sΓ ` sT1 <: sT and can apply Lemma A.1.22 to arrive at the
conclusion.

Case 6: e= e0 . m < sTl > (e1)
For simplicity, we assume there is only one method argument. The extension to multiple

arguments is standard, but tedious.
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` e0 .m < sTl > (e1) : sT
4. rΓ ` h, e0 .m < sTl > (e1) h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exist sN0, Xl , sNl 0, sT10, sT20, and pid such that:

sΓ ` e0 : sN0
sΓ ` sTl strictly OK

MSig
(
sN0,m, sTl

)
= _ <Xl extends sNl 0> sT10 m(sT20 pid)

sΓ ` e1 : sT20
sΓ ` sTl <: sNl 0

lost /∈ sNl 0 ,
sT20

sΓ ` e0 .m < sTl > (e1) : sT10
sΓ ` sT10 <: sT sΓ ` sT OK

Using Corollary A.1.7 and Lemma A.1.16 we deduce:
sΓ ` sNl 0 ,

sT20 ,
sT10 OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist h0, ι0, h1, v1, rT l , and e2 such that:

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v1

MSig(h0, ι0,m) = _ <Xl extends _> _ m(_ pid)
dyn

(
sTl , h, rΓ , ∅

)
= rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ v1

}
MBody(h0, ι0,m) = e2

rΓ ′ ` h1, e2 h′, v

For a method call, we have to distinguish three different classes for the receiver type:

• Statically, we know that the receiver has type sN0 with class C0 and we have the method
signature MSig

(
sN0,m, sTl

)
= _ <Xl extends sNl 0> sT10 m(sT20 pid) after viewpoint

adaptation from the viewpoint sN0 and substitution of the method type arguments sTl .
The un-adapted method signature is
MSig(C0,m) = ms where ms = _ <Xl extends sNl> sT1 m(sT2 pid).

• At runtime, the receiver object ι0 has a runtime type with some class C ′′0 and we have
the signature
MSig(h0, ι0,m) = _ <Xl extends _> _ m(_ pid) and the method body
MBody(h0, ι0,m) = e2.
Note how the runtime method signature look-up (Def. 2.2.8) determines an arbitrary
class that declares method m and returns that signature. The operational semantics only
uses the identifiers of the method type variables and the parameters to build the runtime
environment; the concrete types in the signature are irrelevant.
In contrast, the runtime method body look-up returns the most concrete implementation
of method m.

113

Appendix A Properties and Proofs

• The third class to consider is the class C ′0 which contains the most concrete implementation
of the method. Here we have the signature
MSig(C ′0,m) = ms′ where ms′= _ <Xl extends sN ′l >

sT ′1 m(sT ′2 pid) and the method
body
MBody(C ′0,m) = e2. This class is important, because we take the method body from
this class and execute it. Note that the method body for class C ′′0 is the same as the one
for C ′0.

From the definitions of the look-up functions we know that the three classes are in the
following subclass relationship:

C ′′0 <_> v C ′0<_> C ′0<_> v C0<sT>
for corresponding types sT .
From 1. we know that the program is well formed and therefore we know that the well-

formedness of the methods was checked and, in particular, that the overriding rule Def. 2.3.17
was checked. Therefore the number and name of the method type variables and method
parameters of method m are the same on all three levels and the types on the different levels
only differ by substitution of class type arguments for class type variables. In particular, we
have that ms[sT/X] = ms′, where the sT are the type arguments in the subclassing relationship
between C ′0 and C0 derived above and X are the type variables of class C0.
We apply the induction hypothesis to e0:

10. ` P OK
20. h, rΓ : sΓ OK
30.

sΓ ` e0 : sN0
40.

rΓ ` h, e0 h0, ι0

 =⇒
{
I0. h0,

rΓ : sΓ OK
II0. h0,

rΓ ` ι0 : sN0

10. is identical to 1. and 20. is identical to 2. 30. is from the type rules and 40. is from the
operational semantics.
We apply the induction hypothesis to e1:

11. ` P OK
21. h0,

rΓ : sΓ OK
31.

sΓ ` e1 : sT20
41.

rΓ ` h0, e1 h1, v1

 =⇒
{
I1. h1,

rΓ : sΓ OK
II1. h1,

rΓ ` v1 : sT20

11. is identical to 1. and 21. is identical to I0. 31. is from the type rules and 41. is from the
operational semantics.
We apply the induction hypothesis to e2:

12. ` P OK
22. h1,

rΓ ′ : sΓ ′ OK
32.

sΓ ′ ` e2 : sT ′1
42.

rΓ ′ ` h1, e2 h′, v

 =⇒
{
I2. h′, rΓ ′ : sΓ ′ OK
II2. h′, rΓ ′ ` v : sT ′1

12. is identical to 1. and 42. is from the operational semantics.
Requirements 22. and 32. need a detailed development.

• Requirement 22.: From I1. we know that h1 OK.
In the operational semantics we construct the runtime environment rΓ ′ as follows:

dyn
(
sTl , h, rΓ , ∅

)
= rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ v1

}

114

A.2 Proofs

From ` P OK we know that class C ′0, the class from which we get the method body
expression e2, was type checked using an environment that contains the type variables
from C ′0 and m and maps the parameters to their declared types; that is, we have:
sΓ ′=

{
Xl 7→ sN ′l , X ′k 7→ sN ′k ; this 7→ self C ′0<X ′k> , pid 7→ sT ′2

}
,

where the X ′k are the class type variables of C ′0 and the sN ′l , sN ′k are the corresponding
upper bounds of the method and class type variables.
We have sΓ ′ OK from ` P OK, because from Def. 2.3.14 and Def. 2.3.16 we know that
the corresponding conditions were checked.

What remains to be shown for h1,
rΓ ′ : sΓ ′ OK, according to Def. 2.3.25, is:

1. rΓ ′(this) can be typed with sΓ ′(this),
2. the argument value can be typed with the declared parameter type,
3. the method type arguments are runtime subtypes of the dynamization of their

declared upper bounds, and
4. the method type arguments are well-formed runtime types.

The proofs are:
1. rΓ ′(this) can be typed with sΓ ′(this), that is, h1,

rΓ ′ ` ι0 : self C ′0<X ′k>:
We know that ι0 has class C ′′0 which is a subclass of C ′0. A simple investigation of
Def. 2.2.15 shows that rΓ ′ correctly models the self modifier and the dynamization
goes exactly to a supertype of the runtime type of ι0 to determine all type variables
of C ′0.

2. The argument value can be typed with the declared parameter type, that is, from
the point of view of the receiver, we can assign the declared parameter type of class
C ′0 to the argument value: h1,

rΓ ′ ` v1 : sT ′2.
From II1. we have h1,

rΓ ` v1 : sT20, that is, from the point of view of the caller,
we can assign the viewpoint-adapted parameter type to the argument value. We
want to apply Lemma 2.3.29 to arrive at h1,

rΓ ′ ` v1 : sT2, that is, that from the
point of view of the receiver, we can assign the declared parameter type of class C0
to the argument value. We use the following instantiation of the lemma:

13. h1,
rΓ ` ι0 : sN0

23. (sN0 B sT2)
[
sTl/Xl

]
= sT20

33. lost /∈ sT20
43. h1,

rΓ ` v1 : sT20

53. dyn
(
sTl , h1,

rΓ , ∅
)

= rT l

63.
rΓ ′=

{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ v1

}
73. ClassDom(ClassOf(sN0)) = X
83. free(sT2) ⊆ X , Xl
93.

sΓ ` sN0 OK
=⇒

I3. h1,
rΓ ′ ` v1 : sT2

We deduce the requirements as follows:
– 13.: from II0. we have h0,

rΓ ` ι0 : sN0, by Lemma A.1.27 the judgment also
holds for h1.

115

Appendix A Properties and Proofs

– 23.: from the type rules we know that the method signature look-up was defined,
therefore, this viewpoint adaptation is defined.

– 33.: from the type rules we know lost /∈ sT20.
– 43.: identical to II1.
– 53. and 63.: this corresponds to the construction of the runtime environment in

the operational semantics.
– 73. and 83.: we have 1., from which we can conclude that the declared parameter

type was checked for well formedness, i.e., sΓ ′′ ` sT2 OK was checked for a
corresponding sΓ ′′.

– 93.: from 30. we know that expression e0 is typable as sN0. Using Lemma A.1.16
with 1., 2., and 30. we can deduce that sN0 is well formed.

We now have all the requirements to apply Lemma 2.3.29 to arrive at
h1,

rΓ ′ ` v1 : sT2.
Finally, Lemma A.1.24 ensures that the type assignment also holds for sT ′2, the
declared parameter type in the subclass C ′0.

3. The method type arguments are runtime subtypes of the dynamization of their de-
clared upper bounds, that is, for dyn

(
sN ′l , h1,

rΓ ′, ∅
)

= rT ′l we have h1 ` rT l <: rT ′l .

This is shown by Lemma A.1.12. For each sN from sN ′l and the corresponding sT
from sTl we have:

14. ` P OK
24. h1,

rΓ : sΓ OK
34. (sN0 B sN)

[
sT/X

]
= sT ′

44. lost /∈ sT ′
54.

sΓ ` sT , sT ′ OK
64.

sΓ ` sT <: sT ′
74. h1,

rΓ ` ι0 : sN0

84. h1,
rΓ ` sN0,

sN ;
(
sT/X, ι0

)
= rΓ ′

=⇒
∃oι, rT . I4. dyn(sT, h1,

rΓ , oι) = rT ∧
∃rT ′. II4. dyn

(
sN, h1,

rΓ ′, ∅
)

= rT ′ ∧
III4. h ` rT <: rT ′

We deduce the requirements as follows:
– 14.: identical to 1.
– 24.: identical to I1.
– 34.: from the type rules we know that the method signature look-up was defined,

therefore, this viewpoint adaptation is defined.
– 44.: from the type rules we know that the viewpoint-adapted upper bounds do

not contain lost.
– 54.: from the type rules we know that the method type arguments are strictly

well formed. Therefore, by Lemma A.1.15, they are also well formed. The
viewpoint-adapted upper bounds are well-formed by Lemma A.1.7.

– 64.: from the type rules we know that the method type arguments are subtypes
of the viewpoint-adapted upper bounds.

– 74.: from II0. and Lemma A.1.27.
– 84.: the well-formedness conditions on sN0 and sN are from the type rules. The

116

A.2 Proofs

construction of the new runtime environment rΓ ′ corresponds to the operational
semantics.

In conclusion, this lemma gives us that the type arguments rT l , which were converted
to runtime types in the callers context, are subtypes of the upper bounds rT ′l from
the receivers point of view.

4. The method type arguments are well-formed runtime types:
that is, h1, ι0 ` rT l strictly OK holds.
We apply Lemma A.1.10 to derive this. We have the strict well-formedness of the
method type arguments from the type rules and use the well-formedness of the
program, 1., and the well-formed environments, I1. Well-formedness holds for an
arbitrary address, so also for the particular viewpoint of the receiver.

• Requirement 32.: The program is well formed and therefore the method m in class
C ′0 was checked for well formedness in the environment sΓ ′ defined above. In particular,
the method body expression e2 is type checked against the declared return type of the
method, sT ′1, that is, sΓ ′ ` e2 : sT ′1 is checked.

We now have all requirements to apply the induction hypothesis to e2 and can derive I2. and
II2.

Finally, we can show the two parts of the proof of this case:

• Part I: h′, rΓ : sΓ OK
From I2. we get the well formedness of the new heap h′. The well formedness of the
environments sΓ and rΓ stays unchanged from I1.

• Part II: h′, rΓ ` v : sT
We first want to apply Lemma 2.3.28 to derive h′, rΓ ` v : sT10, that is, that from the
point of view of the caller, the viewpoint-adapted return type can be assigned to the
value. For this, we use the following instantiation of the lemma:

15. h′, rΓ ` ι0 : sN0
25. h′, rΓ ′ ` v : sT1

35. dyn
(
sTl , h′, rΓ , ∅

)
= rT l

45.
rΓ ′=

{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ v1

}
55. ClassDom(ClassOf(sN0)) = X
65. free(sT1) ⊆ X , Xl
75.

sΓ ` sN0 OK
=⇒

I5. (sN0 B sT1)
[
sTl/Xl

]
= sT10

II5. h′, rΓ ` v : sT10

Note that sT10 is the viewpoint-adapted method return type from the type rules.
We deduce the requirements as follows:

– 15.: we know from II0. that h0,
rΓ ` ι0 : sN0. By Lemma A.1.27 this also holds for

h′.

117

Appendix A Properties and Proofs

– 25.: from II2. we have h′, rΓ ′ ` v : sT ′1. sT ′1 is the return type of the overriding
method in class C ′0, a subclass of C0, the static class of the receiver. From the
overriding rules we know that the return type in the subclass is the same as the
one in superclasses, up to substitutions of class type arguments. We can apply
Lemma A.1.24 to arrive at h′, rΓ ′ ` v : sT1, that is, from the point of view of the
receiver, we can assigned the declared return type of the method to the return value.

– 35. and 45. are the construction of the new runtime environment rΓ ′ used in the
operational semantics. We can use heap h′ by Lemma A.1.27.

– 55. and 65.: we have 1. from which we can conclude that sΓ ′ ` sT1 OK, where sΓ ′ is
the static environment in which the declared method return type was checked for
well formedness. From this follows that
free(sT1) ⊆ X , Xl ,
where ClassDom(ClassOf(sN0)) = X, because the static type rules use subsumption
to find the type sN0 in which the method is declared.

– 75.: from 30. we know that expression e0 is typable as sN0. Using Lemma A.1.16
with 1., 2., and 30. we can deduce that sN0 is well formed.

We now have all the requirements to apply Lemma 2.3.28 to arrive at the desired
h′, rΓ ` v : sT10.
Finally, we have that sΓ ` sT10 <: sT and can apply Lemma A.1.22 to arrive at the
conclusion.

Case 7: e= (sT0) e0
We have the assumptions of the theorem:

1. ` P OK 2. h, rΓ : sΓ OK
3. sΓ ` (sT0) e0 : sT 4. rΓ ` h, (sT0) e0 h′, v

From 3., the type rules, and the Topological Generation Lemma A.1.33 we get that there
exists an sT1 such that:

sΓ ` e0 : sT1
sΓ ` sT0 OK sΓ ` (sT0) e : sT0

sΓ ` sT0 <: sT sΓ ` sT OK

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ ` h, e0 h′, v h′, rΓ ` v : sT0

We apply the induction hypothesis to e0:

10. ` P OK
20. h, rΓ : sΓ OK
30.

sΓ ` e0 : sT1
40.

rΓ ` h, e0 h′, v

 =⇒
{
I0. h′, rΓ : sΓ OK
II0. h′, rΓ ` v : sT1

10. is identical to 1. and 20. is identical to 2. 30. is from the type rules and 40. is from the
operational semantics.

• Part I: h′, rΓ : sΓ OK
Identical to I0.

118

A.2 Proofs

• Part II: h′, rΓ ` v : sT
From the operational semantics we have h′, rΓ ` v : sT0. We have the subtype relationship
sΓ ` sT0 <: sT and can apply Lemma A.1.22 to arrive at the conclusion.

A.2.1.2 Proof of Theorem 2.4.7 — Encapsulation

We prove:

1. ` P enc
2. h, rΓ : sΓ OK
3. sΓ ` e enc
4. rΓ ` h, e h′, _

 =⇒
∀ι∈dom(h) . ∀f ∈ dom(h(ι)↓2) .

I. h(ι.f) = h′(ι.f) ∨
II. owner(h, rΓ(this)) ∈ owners(h, ι)

We prove this by rule induction on the operational semantics.

Case 1: e= null
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` null enc 4. rΓ ` h, null h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get:

sΓ ` null : _

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ ` h, null h, nulla

Therefore, we have that:
h′= h v= nulla

The heap is unchanged and I. holds.

Case 2: e= x
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` x enc 4. rΓ ` h, x h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get:

sΓ ` x : _

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ(x) = v rΓ ` h, x h, v

Therefore, we have that:
h′= h

The heap is unchanged and I. holds.

119

Appendix A Properties and Proofs

Case 3: e= new sT0()
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` new sT0() enc 4. rΓ ` h, new sT0() h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get:

sΓ ` new sT0() : _

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist rT , C , and fv such that:

dyn(sT0, h, rΓ , ∅) = rT ClassOf(rT) = C
∀f ∈ fields(C) . fv(f) = nulla h +

(
rT , fv

)
= (h′, ι)

From the definition of h +
(
rT , fv

)
= (h′, ι) we see that h remains unchanged except for the

addition of the new object at ι. Therefore I. holds.

Case 4: e= e0.f
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` e0.f enc 4. rΓ ` h, e0.f h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get:

sΓ ` e0.f : _ sΓ ` e0 enc

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exists an ι0 such that:

rΓ ` h, e0 h′, ι0 h′(ι0.f) = v

We apply the induction hypothesis to e0:

10. ` P enc
20. h, rΓ : sΓ OK
30.

sΓ ` e0 enc
40.

rΓ ` h, e0 h′, _

 =⇒
∀ι∈dom(h) . ∀f ∈ dom(h(ι)↓2) .

I0. h(ι.f) = h′(ι.f) ∨
II0. owner(h, rΓ(this)) ∈ owners(h, ι)

10. is identical to 1. and 20. is identical to 2. 30. is from the encapsulated expression rules
and 40. is from the operational semantics.
I0. and II0. are identical to our goals I. and II.

Case 5: e= e0.f = e1
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` e0.f = e1 enc 4. rΓ ` h, e0.f = e1 h′, _

120

A.2 Proofs

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get that there exists a sN0 such that:

sΓ ` e0.f = e1 : _ sΓ ` e0 : sN0
sΓ ` e0 enc

sΓ ` e1 enc om(sN0) ∈ {self , peer , rep}

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist h0, ι0, and h1 such that:

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v h1[ι0.f = v] = h′

We apply the induction hypothesis to e0:

10. ` P enc
20. h, rΓ : sΓ OK
30.

sΓ ` e0 enc
40.

rΓ ` h, e0 h0, _

 =⇒
∀ι∈dom(h) . ∀f ∈ dom(h(ι)↓2) .

I0. h(ι.f) = h0(ι.f) ∨
II0. owner(h, rΓ(this)) ∈ owners(h, ι)

10. is identical to 1. and 20. is identical to 2. 30. is from the encapsulated expression rules
and 40. is from the operational semantics.
We apply the induction hypothesis to e1:

11. ` P enc
21. h0,

rΓ : sΓ OK
31.

sΓ ` e1 enc
41.

rΓ ` h0, e1 h1, _

 =⇒
∀ι∈dom(h0) . ∀f ∈ dom(h(ι)↓2) .

I1. h0(ι.f) = h1(ι.f) ∨
II1. owner(h0,

rΓ(this)) ∈ owners(h0, ι)

11. is identical to 1., 31. is from the encapsulated expression rules, and 41. is from the
operational semantics. 21. corresponds to 2. and applying Theorem 2.3.26.
The only difference between the final heap h′ and heap h1 is the update of field f of object

ι0. This might change the value and therefore I. might not hold and we have to show that II.
holds.
We have sΓ ` e0 : sN0 from the encapsulated expression rules and rΓ ` h, e0 h0, ι0 from

the operational semantics. We can apply Theorem 2.3.26 to arrive at h0,
rΓ ` ι0 : sN0.

We can now apply Lemma A.1.25 and use om(sN0) ∈ {self , peer , rep} from the encapsu-
lated expression rules to deduce that the owner of ι0 is either rΓ(this) or the owner of rΓ(this),
ensuring II.

Case 6: e= e0 . m < sT > (e1)
For simplicity, we again assume there is only one method argument. The extension to multiple

arguments is standard.
We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` e0 .m < sT > (e1) enc
4. rΓ ` h, e0 .m < sT > (e1) h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get that there exists a sN0 such that:

sΓ ` e0 .m < sT > (e1) : _ sΓ ` e0 : sN0
sΓ ` e0 enc sΓ ` e1 enc
om(sN0) ∈ {self , peer , rep} ∨ MSig

(
sN0,m, sT

)
= pure <_> _ m(_)

121

Appendix A Properties and Proofs

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know that there exist h0, ι0, h1, v1, Xl , pid, rT l , and e2 such that:

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v1

MSig(h0, ι0,m) = _ <Xl extends _> _ m(_ pid)
dyn

(
sTl , h, rΓ , ∅

)
= rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ v1

}
MBody(h0, ι0,m) = e2

rΓ ′ ` h1, e2 h′, v

We apply the induction hypothesis to e0:

10. ` P enc
20. h, rΓ : sΓ OK
30.

sΓ ` e0 enc
40.

rΓ ` h, e0 h0, _

 =⇒
∀ι∈dom(h) . ∀f ∈ dom(h(ι)↓2) .

I0. h(ι.f) = h0(ι.f) ∨
II0. owner(h, rΓ(this)) ∈ owners(h, ι)

10. is identical to 1. and 20. is identical to 2. 30. is from the encapsulated expression rules
and 40. is from the operational semantics.
We apply the induction hypothesis to e1:

11. ` P enc
21. h0,

rΓ : sΓ OK
31.

sΓ ` e1 enc
41.

rΓ ` h0, e1 h1, _

 =⇒
∀ι∈dom(h0) . ∀f ∈ dom(h(ι)↓2) .

I1. h0(ι.f) = h1(ι.f) ∨
II1. owner(h0,

rΓ(this)) ∈ owners(h0, ι)

11. is identical to 1., 31. is from the encapsulated expression rules, and 41. is from the
operational semantics. 21. corresponds to 2. and Theorem 2.3.26.
If the method is pure, it has to satisfy the purity judgment, which by Assumption 2.4.2

means that no fields in the pre-heap changed. Therefore, we are done with this case.
Otherwise, if the method is non-pure, we apply the induction hypothesis to e2:

12. ` P enc
22. h1,

rΓ ′ : sΓ ′ OK
32.

sΓ ′ ` e2 enc
42.

rΓ ′ ` h1, e2 h′, _

 =⇒
∀ι∈dom(h1) . ∀f ∈ dom(h(ι)↓2) .

I2. h1(ι.f) = h′(ι.f) ∨
II2. owner

(
h1,

rΓ ′(this)
)
∈ owners(h1, ι)

For the development of 22. see the development of method calls (page 113) in the proof of
soundness (Theorem 2.3.26). We use the same environments here. 12. is identical to 1. and 42.
is from the operational semantics. From 1. we can conclude that method m was checked to be
a well-encapsulated method. A non-pure method has to satisfy sΓ ′ ` e2 enc, which is 32.
If I2. holds, we are done because the heap remains unchanged.
If II2. holds, we still need to show that

owner
(
h1,

rΓ ′(this)
)
∈ owners(h1, ι)⇒ owner(h1,

rΓ(this)) ∈ owners(h1, ι).
We have sΓ ` e0 : sN0 from the encapsulated expression rules and rΓ ` h, e0 h0, ι0 from

the operational semantics. We apply Theorem 2.3.26 to arrive at
h0,

rΓ ` ι0 : sN0. From the operational semantics we know that rΓ ′(this) = ι0.
We can now apply Lemma A.1.25 and om(sN0) ∈ {self , peer , rep} from the encapsulated

expression rules to deduce that the owner of ι0 is either rΓ(this) or the owner of rΓ(this).
Therefore, owner(h1,

rΓ(this)) ∈ owners(h1, ι) holds.

Case 7: e= (sT0) e0

122

A.2 Proofs

We have the assumptions of the theorem:

1. ` P enc 2. h, rΓ : sΓ OK
3. sΓ ` (sT0) e0 enc 4. rΓ ` h, (sT0) e0 h′, _

From 3., the encapsulated expression rules, and the Encapsulation Generation Lemma A.1.34
we get:

sΓ ` (sT0) e0 : _ sΓ ` e0 enc

From 4., the operational semantics, and the Operational Semantics Generation Lemma A.1.35
we know:

rΓ ` h, e0 h′, v h′, rΓ ` v : sT0

We apply the induction hypothesis to e0:

10. ` P enc
20. h, rΓ : sΓ OK
30.

sΓ ` e0 enc
40.

rΓ ` h, e0 h′, _

 =⇒
∀ι∈dom(h) . ∀f ∈ dom(h(ι)↓2) .

I0. h(ι.f) = h′(ι.f) ∨
II0. owner(h, rΓ(this)) ∈ owners(h, ι)

10. is identical to 1. and 20. is identical to 2. 30. is from the encapsulated expression rules
and 40. is from the operational semantics.
I0. and II0. are identical to our goals I. and II.

A.2.2 Viewpoint Adaptation

A.2.2.1 Proof of Lemma A.1.1 — Adaptation from a Viewpoint Auxiliary Lemma

For the proofs of the adaptation lemmas we can assume that the type variables in rΓ and
rΓ ′ are disjoint, that is, that the type variables that can appear in sN are different from the
type variables that can appear in sT . Consistent renaming of method type variables in method
signature look-ups are applied to avoid capturing from happening. See Sec. A.2.7 for an example
and discussion.

Also note that in the proofs of the viewpoint adaptation lemmas, we expand the definition of
the viewpoint creation judgment (see Def. 2.3.27).
We prove:

1. h, rΓ ` ι : sN
2. dyn

(
sTl , h, rΓ , ∅

)
= rT l

3. rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
4. ClassDom(ClassOf(sN)) = X
5. free(sT) ⊆ X , Xl

=⇒
∃oι, rT . I. dyn

(
sT, h, rΓ ′, oι

)
= rT ∧

∃sT ′, sT ′′. II. sN B sT = sT ′ ∧ sT ′
[
sTl/Xl

]
= sT ′′ ∧

∃oι′, rT ′. III. dyn
(
sT ′′, h, rΓ , oι′

)
= rT ′ ∧

IV. rT = rT ′

Note that in II. we split viewpoint adaptation and substitution into two steps.
Goals I., II., and III. are simple:

123

Appendix A Properties and Proofs

• I. is defined because we know from 5. that all type variables in sT are substituted by
either X or Xl , and from 1., 3., and 4. we know that these variables can be substituted.
We can choose an arbitrary substitution for lost modifiers.

• II. is defined because of 4., as the only condition that needs to hold is that the domain
lookup for the class of the left-hand side is defined.

• III. is defined because we know from 1. that sN can be dynamized and from 2. that
the sTl can be dynamized. The substitution for lost modifiers depends on the previous
substitution, in order to make both runtime types equal.

The proof of IV. runs by induction on the shape of sT ; from 5. we know that we have the
following 4 cases:

Case 1: sT =Xi and Xi ∈Xl
sN B sT = sT ′ is therefore equal to sN B Xi = Xi , because of the assumption that the

X and Xl are distinct sets of type variables and no substitution takes place.
(sN B sT)

[
sTl/Xl

]
= sT ′′ is equal to Xi

[
sTl/Xl

]
= sTi the i-th element of the sequence of

types sTl .
dyn

(
sT, h, rΓ ′, oι

)
= rT corresponds to dyn

(
Xi , h, rΓ ′, oι

)
= rT . From the definition of dyn

we know that rΓ ′(Xi) = rT .
From 2. we have dyn(sTi , h, rΓ , ∅) = rT . So dyn

(
sTi , h, rΓ , oι′

)
= rT follows with oι′= ∅.

Case 2: sT =Xj and Xj ∈X
sN B sT = sT ′ is therefore equal to sN B Xj = sTj , where sTj is the j-th type argument

of sN .
(sN B sT)

[
sTl/Xl

]
= sT ′′ is equal to sTj

[
sTl/Xl

]
= sTj , because of the assumption that

the Xl do not appear in sN .
From 1. we know for some oι′′, oι, and rT that dyn

(
sN, h, rΓ , oι′′

)
= oι C<rT> is defined.

From the definition of dyn and 1. we know that for some oι3 and rT j we have the dynamization
dyn(sTj , h, rΓ , oι3) = rT j , where rT j is the j-th type argument of the rT . As, if the dynamization
of a non-variable type is defined, also the dynamization of the type arguments of that type is
defined.
Because of 1. and the definition of dyn we know that dyn

(
Xl , h, rΓ ′, oι

)
= rT j . We know

that rΓ ′(this) = ι from 3. and can therefore use the knowledge of sN from 1.. Therefore, both
dynamizations result in the same type.

Case 3: sT = u C< >
We name the main modifier of sN as u1, that is om(sN) = u1.
sN B sT = u′ C< > where u1 B u = u′. Because there are no type variables, we also have

(sN B sT)
[
sTl/Xl

]
= u′ C< >.

We make a further case analysis for the possible values of u′.

Case 3a: u′= peer
There are two combinations that result in u′= peer:

1. (u1 = self ∧ u = peer) =⇒ u1 B u = peer and

2. (u1 = peer ∧ u = peer) =⇒ u1 B u = peer.

124

A.2 Proofs

dyn
(
sT, h, rΓ ′, oι

)
= rT is equal to dyn

(
peer C< >, h, rΓ ′, oι

)
= rT . There is no lost in sT

so we can use oι= ∅. From the definition of dyn we know that peer is substituted by the owner
of the current object, i.e., rΓ ′(this) = ι ∧ owner(h, ι) = oι1 and rT = oι1 C< >.

dyn
(
sT ′′, h, rΓ , oι′

)
= rT ′ is equal to dyn

(
peer C< >, h, rΓ , oι′

)
= rT ′. There is no lost in

sT ′ so we can use oι′= ∅. From the definition of dyn we know that peer is substituted by the
owner of the current object, i.e.,
rΓ(this) = ι2 ∧ owner(h, ι2) = oι2 and rT ′= oι2 C< >.
From 1. and our knowledge of u1 we know that we can assign self _<_> or peer _<_> to ι.

Therefore, we know that the owner of ι is the owner of ι2, that is, oι1 = oι2.

Case 3b: u′= rep
There are two combinations that result in u′= rep:

1. (u1 = self ∧ u = rep) =⇒ u1 B u = rep and

2. (u1 = rep ∧ u = peer) =⇒ u1 B u = rep.

dyn
(
sT ′′, h, rΓ , oι′

)
= rT ′ is equal to dyn

(
rep C< >, h, rΓ , oι′

)
= rT ′. There is no lost in

sT ′ so we can use oι′= ∅. From the definition of dyn we know that rep is substituted by the
current object, i.e., rΓ(this) = ι2 and rT ′= ι2 C< >.
We make a further distinction of the two cases:

Case 3b1:. dyn
(
sT, h, rΓ ′, oι

)
= rT is equal to dyn

(
rep C< >, h, rΓ ′, oι

)
= rT . There is no

lost in sT so we can use oι= ∅. From the definition of dyn we know that rep is substituted by
the current object, i.e., rΓ ′(this) = ι and rT = ι C< >.

From 1. we know that we can assign self _<_> to ι. Therefore, we know that the rΓ(this) = ι
and we have that ι= ι2 and therefore that the types are equal.

Case 3b2:. dyn
(
sT, h, rΓ ′, oι

)
= rT is equal to dyn

(
peer C< >, h, rΓ ′, oι

)
= rT . There is no

lost in sT so we can use oι= ∅. From the definition of dyn we know that peer is substituted
by the owner of the current object, i.e.,
rΓ ′(this) = ι ∧ owner(h, ι) = oι1 and rT = oι1 C< >.
From 1. we know that we can assign rep _<_> to ι. Therefore, we know that

rΓ(this) = ι2 ∧ owner(h, ι) = ι2 and that oι1 = ι2 and therefore that the types are equal.

Case 3c: u′= any
For an arbitrary u1 we have u = any =⇒ u1 B u = any.
From the definition of dyn we see that the any ownership modifier is replaced by the anya

address, regardless of environment and heap. Therefore, both dynamizations are the same.

Case 3d: u′= lost
We have that dyn

(
sT, h, rΓ ′, oι

)
= rT for some oι that is either empty or one element long

(in the case where u = lost). We call rT = oι C< >.
Now for dyn

(
sT ′′, h, rΓ , oι′

)
= rT ′ we can simply choose oι′= oι and know from the definition

of dyn that lost will be substituted by oι and we arrive at the same types.

Case 4: sT = u C<sT>

125

Appendix A Properties and Proofs

Let us first give names to the result of the application of dyn:
dyn

(
sT, h, rΓ ′, oι

)
= ι′′ C<rT ′′>

dyn
(
sT ′′, h, rΓ , oι′

)
= ι′′′ C<rT ′′′>

The same analysis as case 3. before results in ι′′= ι′′′.
Now we apply the induction hypothesis to the sT and use 1., 2., 3. and the fact that

free(sT) ⊆ ClassDom(ClassOf(sN)), X implies free(sT) ⊆ ClassDom(ClassOf((sN)), X.
Therefore we have that ι′′= ι′′′ and rT ′′ = rT ′′′.
From Lemma A.1.28 we then know that the runtime types are the same.

A.2.2.2 Proof of Lemma 2.3.28 — Adaptation from a Viewpoint

We prove:

1. h, rΓ ` ι : sN
2. h, rΓ ′ ` v : sT
3. dyn

(
sTl , h, rΓ , ∅

)
= rT l

4. rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
5. ClassDom(ClassOf(sN)) = X
6. free(sT) ⊆ X , Xl
7. sΓ ` sN OK

=⇒ ∃sT ′. I. (sN B sT)

[
sTl/Xl

]
= sT ′ ∧

II. h, rΓ ` v : sT ′

From 5. we know that I. is defined for some sT ′.
Corresponding to Def. 2.2.15 we split II. into the two parts:

IIa. ∃oι′. ∃rT ′. dyn
(
sT ′, h, rΓ , oι′

)
= rT ′ h ` v : rT ′

IIb. sT ′= self _<_> =⇒ v= rΓ(this)

We have 1., 3., 4., 5., and 6. and can therefore apply Lemma A.1.1 to derive:

∃oι, rT . dyn
(
sT, h, rΓ ′, oι

)
= rT ∧

∃sT ′. (sN B sT)
[
sTl/Xl

]
= sT ′ ∧

∃oι′, rT ′. dyn
(
sT ′, h, rΓ , oι′

)
= rT ′ ∧

rT = rT ′

Corresponding to Def. 2.2.15 we split 2. into the two parts:

∃oι, rT . dyn
(
sT, h, rΓ ′, oι

)
= rT h ` v : rT

sT = self _<_> =⇒ v= rΓ ′(this)

We therefore have h ` v : rT and, for a corresponding choice of the oι, that rT = rT ′ and
can therefore conclude IIa.

From Lemma A.1.3 using 7. and I. we know that sT ′= self _<_> can only hold, if also
sT = self _<_> and that sN = self _<_>. Note how the substitution of the sTl has no effect
on the main modifier.
In the case where sT ′= self _<_> we therefore have that rΓ(this) = ι and v= ι and have

IIb.

126

A.2 Proofs

A.2.2.3 Proof of Lemma A.1.2 — Adaptation to a Viewpoint Auxiliary Lemma

We prove:
1. h, rΓ ` ι : sN
2. sN B sT = sT ′ sT ′

[
sTl/Xl

]
= sT ′′

3. lost /∈ sT ′′

4. dyn
(
sTl , h, rΓ , ∅

)
= rT l

5. rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
6. ClassDom(ClassOf(sN)) = X
7. free(sT) ⊆ X , Xl

=⇒
∃rT . I. dyn

(
sT, h, rΓ ′, ∅

)
= rT ∧

∃rT ′. II. dyn(sT ′′, h, rΓ , ∅) = rT ′ ∧
III. rT = rT ′

Note that in 2. we split viewpoint adaptation and substitution into two steps.
The proofs of I. and II. are simple:
• I. is defined because of 1., 5., and 7. we know that all type variables can be substituted
and because of 3. and Lemma A.1.4 we know that lost is not contained in sT and we
can therefore use an empty substitution.

• II. is defined because of 1. and 7. we know that all type variables can be substituted and
because of 4. and Lemma A.1.29 we know that lost is not contained in any of the sTl
and from 3. we know that lost is not introduced into sT ′ and we can therefore use an
empty substitution.

The proof of III. runs by induction on the shape of sT ; from 7. we know that we have the
following 4 cases:

Case 1: sT =Xi and Xi ∈Xl
sN B sT = sT ′ is therefore equal to sN B Xi = Xi , because of the assumption that X

and Xl are distinct sets of type variables and no substitution takes place.
(sN B sT)

[
sTl/Xl

]
= sT ′′ is equal to Xi

[
sTl/Xl

]
= sTi , the i-th element of the sequence

of types sTl .
dyn

(
sT, h, rΓ ′, ∅

)
= rT corresponds to dyn

(
Xi , h, rΓ ′, ∅

)
= rT . From the definition of dyn

we know that rΓ ′(Xi) = rT . From 4. and 5. we know that rT is also dyn(sTi , h, rΓ , ∅) = rT .

Case 2: sT =Xj and Xj ∈X
sN B sT = sT ′ is therefore equal to sN B Xj = sTj , where sTj is the j-th type argument

of sN .
(sN B sT)

[
sTl/Xl

]
= sT ′′ is equal to sTj

[
sTl/Xl

]
= sTj , because of the assumption that

the Xl do not appear in sN .
From 1. we know for some oι′, oι, and rT that dyn

(
sN, h, rΓ , oι′

)
= oι C<rT> is defined.

From the definition of dyn and 1. we know that dyn(sTj , h, rΓ , ∅) = rT j , the j-th type argument
in rT . As, if the dynamization of a non-variable type is defined, also the dynamization of the
type arguments of that type is defined.
Because of 1. and dyn we know that dyn

(
Xl , h, rΓ ′, ∅

)
= rT j We know that rΓ ′(this) is ι

and can therefore use the knowledge of sN . Therefore, both dynamizations result in the same
type.

127

Appendix A Properties and Proofs

Case 3: sT = u C< > We name the main modifier of sN as u1, that is om(sN) = u1.
sN B sT = u′ C< > where u1 B u = u′. Because there are no type variables, we also have

(sN B sT)
[
sTl/Xl

]
= u′ C< >.

We make a further case analysis for the possible values of u′.

Case 3a: u′= peer
There are two combinations that result in u′= peer:

1. (u1 = self ∧ u = peer) =⇒ u1 B u = peer and

2. (u1 = peer ∧ u = peer) =⇒ u1 B u = peer.

dyn
(
sT, h, rΓ ′, ∅

)
= rT is equal to dyn

(
peer C< >, h, rΓ ′, ∅

)
= rT . From the definition of

dyn we know that peer is substituted by the owner of the current object, i.e., rΓ ′(this) = ι,
owner(h, ι) = oι1, and rT = oι1 C< >.

dyn(sT ′′, h, rΓ , ∅) = rT ′ is equal to dyn(peer C< >, h, rΓ , ∅) = rT ′. From the definition of
dyn we know that peer is substituted by the owner of the current object, i.e., rΓ(this) = ι2,
owner(h, ι2) = oι2, and rT ′= oι2 C< >.
From 1. and our knowledge of u1 we know that we can assign self _<_> or peer _<_> to ι.

Therefore, we know that the owner of ι is the owner of ι2, that is, oι1 = oι2.

Case 3b: u′= rep
There are two combinations that result in u′= rep:

1. (u1 = self ∧ u = rep) =⇒ u1 B u = rep and

2. (u1 = rep ∧ u = peer) =⇒ u1 B u = rep.

dyn(sT ′′, h, rΓ , ∅) = rT ′ is equal to dyn(rep C< >, h, rΓ , ∅) = rT ′. From the definition of dyn
we know that rep is substituted by the current object, i.e., rΓ(this) = ι2 and rT ′= ι2 C< >.

We make a further distinction of the two cases:

Case 3b1:. dyn
(
sT, h, rΓ ′, ∅

)
= rT is equal to dyn

(
rep C< >, h, rΓ ′, ∅

)
= rT . From the

definition of dyn we know that rep is substituted by the current object, i.e., rΓ ′(this) = ι and
rT = ι C< >.

From 1. we know that we can assign self _<_> to ι. Therefore, we know that the rΓ(this) = ι
and we have that ι= ι2 and therefore that the types are equal.

Case 3b2:. dyn
(
sT, h, rΓ ′, ∅

)
= rT is equal to dyn

(
peer C< >, h, rΓ ′, ∅

)
= rT . From the

definition of dyn we know that peer is substituted by the owner of the current object, i.e.,
rΓ ′(this) = ι ∧ owner(h, ι) = oι1 and rT = oι1 C< >.
From 1. we know that we can assign rep _<_> to ι. Therefore, we know that

rΓ(this) = ι2 ∧ owner(h, ι) = ι2.
The owner of an address is unique and therefore oι1 = ι2 and the types are equal.

Case 3c: u′= any
For an arbitrary u1 we have u = any =⇒ u1 B u = any.
From the definition of dyn we see that the any ownership modifier is replaced by the anya

address, regardless of environment and heap. Therefore, both dynamizations are the same.

Case 3d: u′= lost

128

A.2 Proofs

This case is forbidden by 3.

Case 4: sT = u C<sT>
Let us first give names to the result of the application of dyn:

dyn
(
sT, h, rΓ ′, ∅

)
= ι′′ C<rT ′′>

dyn(sT ′′, h, rΓ , ∅) = ι′′′ C<rT ′′′>
The same analysis as case 3. before results in ι′′= ι′′′.
Now we apply the induction hypothesis to the sT and use 1., 2., 3. and the fact that

free(sT) ⊆ ClassDom(ClassOf(sN)), X. implies free(sT) ⊆ ClassDom(ClassOf(sN)), X.
Therefore we have that ι′′= ι′′′ and rT ′′ = rT ′′′.
From Lemma A.1.28 we then know that the runtime types are the same.

A.2.2.4 Proof of Lemma 2.3.29 — Adaptation to a Viewpoint

We prove:

1. h, rΓ ` ι : sN
2. (sN B sT)

[
sTl/Xl

]
= sT ′

3. lost /∈ sT ′
4. h, rΓ ` v : sT ′

5. dyn
(
sTl , h, rΓ , ∅

)
= rT l

6. rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
7. ClassDom(ClassOf(sN)) = X
8. free(sT) ⊆ X , Xl
9. sΓ ` sN OK

=⇒ h, rΓ ′ ` v : sT

Corresponding to Def. 2.2.15, we split the goal into the two parts:

I. ∃oι. ∃rT . dyn
(
sT, h, rΓ ′, oι

)
= rT h ` v : rT

II. sT = self _<_> =⇒ v= rΓ ′(this)

We have 1., 2., 3., and 5. to 8. and can therefore apply Lemma A.1.2 to derive the existence
of rT and rT ′ such that:

dyn
(
sT, h, rΓ ′, ∅

)
= rT

dyn
(
sT ′

[
sTl/Xl

]
, h, rΓ , ∅

)
= rT ′

rT = rT ′

In I. we therefore can use oι= ∅ to find rT . From 4. we know that h ` v : rT ′ holds. Because
the two runtime types are equal we therefore directly have h ` v : rT and have I.

From Lemma A.1.3, using 2. and 9., we know that sT ′= self _<_> can only hold, if also
sT = self _<_> and that sN = self _<_>.

Therefore, in the case where sT = self _<_>, we have that rΓ(this) = ι and v= ι and have
II.

A.2.3 Well-formedness Properties

129

Appendix A Properties and Proofs

A.2.3.1 Proof of Lemma A.1.5 — Well-formedness and Viewpoint Adaptation

We prove:

1. ClassDom(C) = Xk ClassBnds(C) = sNk

2. sΓ =
{
Xk 7→ sNk , X ′l 7→ sN ′l ; this 7→ self C<Xk>, _

}
3. sΓ ` sT OK
4. sΓ ′ ` sN OK ClassOf(sN) = C
5.

(
sN B sN ′l

) [
sTl/X ′l

]
= sN ′′l

6. sΓ ′ ` sTl strictly OK
7. sΓ ′ ` sTl <: sN ′′l

=⇒
∃sT ′. I. (sN B sT)

[
sTl/X ′l

]
= sT ′

II. sΓ ′ ` sT ′ OK

Note that free(sT) ⊆ Xk , X ′l is not needed as a separate requirement, it follows directly
from 3.
Conclusion I. is always defined, because of 3. and 4.
The proof of conclusion II. runs by induction on the shape of sT and deriving the requirements

for Def. 2.3.11. Cases 1, 2, and 3 are the base cases and case 4 is the induction step.

Case 1: sT =Xi and Xi ∈Xk
If sT is one of the class type variables, we know from the definition of I. that sT ′= sTi , the

i-th type argument of sN . From 4. and the definition of well-formed type, we know that also
the type arguments are well formed.

Case 2: sT =Xi and Xi ∈X ′l
If sT is one of the method type variables, we know from the definition of I. that sT ′= sTi ,

the i-th method type argument. From 6. we know that the method type arguments are strictly
well formed and therefore, by Lemma A.1.15, also well formed.

Case 3: sT = u C ′< >
If sT is a non-generic type, then the viewpoint adaptation might change the ownership

modifier in sT ′, but the type sT ′ will still be well formed.

Case 4: sT = u C ′<sT ′k>
The shape of sT ′ will be sT ′= u′ C ′<sT ′′k >, i.e. it is also a non-variable type with class C ′.
From 3. and the definition of well-formed static type, we know that sΓ ` sT ′k OK, self /∈ sT ′k ,

and sΓ ` sT ′k <: sN ′′k , where ClassBnds
(
u C ′<sT ′k>

)
= sN ′′k .

With sΓ ` sT ′k OK we can apply the induction hypothesis to the sT ′k to arrive at(
sN B sT ′k

) [
sTl/X ′l

]
= sT ′′k and sΓ ′ ` sT ′′k OK.

We know from 4. that the type arguments of sN and from 6. that the sTl do not contain
self. Together with Lemma A.1.3 this gives us that the sT ′′k do not contain self.

Finally, we know from 3., 4., and 7. that the upper bounds of sT ′ are respected, meeting the
last requirement for sΓ ′ ` sT ′ OK.

130

A.2 Proofs

A.2.3.2 Proof of Lemma A.1.10 — Strict Static Well-formedness implies
Dynamization and Runtime Well-formedness

We prove:

1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` sT strictly OK

 =⇒ ∃rT . I. dyn(sT, h, rΓ , ∅) = rT ∧
II. h, _ ` rT strictly OK

Part I:
from 3. using Lemma A.1.15 we deduce sΓ ` sT OK. With this, 1., and 2. we can use

Lemma A.1.9 to deduce that dyn is defined for some oι. From 3. we know that there are no
lost ownership modifiers in sT and therefore we can use an empty substitution to define I.

Part II:
For the proof of part II. we use an induction on the shape of the static type sT . Cases 1, 2,

and 3 are the base cases and case 4 is the induction step.

Case 1: sT =Xi and Xi is a class type variable
From 2. we know that the heap is well formed and that the static and runtime environments

correspond. Therefore, the Xi will be substituted by the corresponding type argument in the
heap, i.e., the runtime type of rΓ(this) will be used for the substitution.
As the heap is well formed we know that all runtime types in the heap are well formed, in

particular, also all type arguments of the runtime types. If Xi is a type variable of the class of
rΓ(this) we can therefore directly conclude that rT is well formed.
However, the type variable Xi might have been declared in one of the superclasses of the

type of rΓ(this); let us call the class of rΓ(this) class C and the superclass that declares Xi
as C ′. We also know that C ′ is the class of sΓ(this) from 3., because otherwise the Xi would
not be well formed. From 2. and Def. 2.3.25 we know that
h, rΓ ` rΓ(this) : self C ′<X ′>
for the class C with domain X that declares type variable Xi .

Using Def. 2.2.15, Def. 2.2.14, Def. 2.2.13, Def. 2.2.12, and finally Def. 2.2.11 we derive that
the runtime type arguments for C ′ are the dynamization of the type arguments sT from the
subclassing relation C<X> v C ′<sT>. Using Lemma A.1.17, Lemma A.1.19, and Lemma A.1.20
we derive that the sT are strictly well-formed types that do not contain lost and that are
subtypes of the upper bounds of class C ′, in a static environment that maps the type variables
of C to their upper bounds.
Finally, the runtime type of rΓ(this) is used for the simple dynamization of the sT and

from the well-formedness of the type of rΓ(this) and the above we can derive that the runtime
supertype that is used for the substitution of Xi is well formed.

Case 2: sT =Xi and Xi is a method type variable
From 2. we know that the runtime environment is well formed and that the static and

runtime environments correspond. The method type variable Xi will be substituted by the
corresponding runtime type in the runtime environment. From 2. we know that this type is
well formed.

Case 3: sT = u C< > a non-generic class
From 3. we know that the static type is well formed and therefore that the class name is

valid. The ownership modifier u is replaced by one of the addresses determined from the heap

131

Appendix A Properties and Proofs

and runtime environment. By 2. these are well formed and therefore also the runtime type rT
is well formed.

Case 4: sT = u C<sTk> a generic class
From the definition of dyn we know that rT = oι C<rT k>.
In this case, by Def. 2.3.22, we need to show:
1. h, ι ` rT k strictly OK;

2. oι is in the domain of h, roota, or anya;

3. the type arguments are subtypes of their upper bounds.

We apply the induction hypothesis to the sTk . Requirements 1. and 2. are unchanged and
from 3. we know that also the type arguments sTk are strictly well formed. We therefore have
that the dynamization of the type arguments is defined and that h, ι ` rT k strictly OK.
From the definition of dyn we know that oι is either an address in the heap, roota, or anya.

From Lemma A.1.13 and 3. we know that the upper bounds of C do not contain rep. Therefore,
by Def. 2.3.22, we can choose an arbitrary viewpoint address for the well-formedness check.
Also, recursively, the upper bounds of the classes of the type argument cannot contain rep, as
proved in Lemma A.1.13. This allows us to also choose arbitrary viewpoint addresses for the
type arguments.
What remains to be shown for h, ι ` rT strictly OK is that the type arguments rT k are

subtypes of the corresponding runtime upper bounds. This proof is relegated to Lemma A.1.11,
which can be directly applied for this case. The first four requirements correspond to 1., 2., 3.,
and I.; the last requirement just gives a name to the result of ClassBnds. The application of
ClassBnds is defined: we know that the upper bounds of class C do not contain lost from 3.
and can therefore apply sdyn as required.

A.2.3.3 Proof of Lemma A.1.11 — Correct Checking of Class Upper Bounds

We prove:

1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` u C<sTk> strictly OK
4. dyn

(
u C<sTk>, h, rΓ , ∅

)
= oι C<rT k>

5. ClassBnds
(
h, ι, oι C<rT k>, ∅

)
= rT ′k

=⇒ h ` rT k <: rT ′k

From 3., using Def. 2.3.12, we know:

6. sΓ ` sTk strictly OK
7. {self , lost} /∈ u C<sTk>
8. ClassBnds

(
u C<sTk>

)
= sNk

9. lost /∈ sNk
10. sΓ ` sTk <: sNk

From 5., using Def. 2.3.21, we know:

11. ClassBnds(C) = sN ′k
12. sdyn

(
sN ′k , h, ι, oι C<rT k>, ∅

)
= rT ′k

132

A.2 Proofs

Note the relationship between the sNk and sN ′k from Def. 2.3.6: u C<sTk> B sN ′k = sNk . In
particular, how the type arguments sTk are substituted in the declared upper bounds. Similarly,
the sdyn substitutes the runtime type arguments rT k in the declared upper bounds. From
Lemma A.1.14 we deduce that type variables declared by class C are used in these upper
bounds and fulfill this requirement of sdyn. Finally note the relationship between the sTk and
the rT k through the dynamization in 4.
The lemma obviously holds if the sequence of type arguments sTk is empty. Otherwise, we

have to show for each rT ∈ rT k and the corresponding rT ′ ∈ rT ′k that h ` rT <: rT ′.
We proceed in two steps: first, using Lemma A.1.26, we show that rT ′ obtained from sdyn in

12. corresponds to a type obtained using dyn. Secondly, using this result and Lemma A.1.23,
we show that the static subtype relation 10. also holds for the two runtime types, i.e., that
h ` rT <: rT ′ holds.

Part I:
Using 1., 2., 3., 4., 8., 9., and 12. in Lemma A.1.26 we deduce that

10. ` P OK
20. h, rΓ : sΓ OK
30.

sΓ ` u C<sTk> strictly OK
40. dyn

(
u C<sTk>, h, rΓ , ∅

)
= oι C<rT k>

50. u C<sTk> B sN ′k = sNk
60. lost /∈ sNk

70. sdyn
(
sN ′k , h, ι, oι C<rT k>, ∅

)
= rT ′k

=⇒ 13. dyn

(
sNk , h, rΓ , ∅

)
= rT ′k

That is, that the simple dynamization of the declared class upper bounds is equal to the
dynamization of the viewpoint-adapted upper bounds.

Part II:
Using Corollary A.1.8 using 1., 3., and the knowledge that a well-formed class has well-formed

upper bounds, we deduce that sΓ ` sNk OK, that is, that the viewpoint-adapted upper bounds
are well formed in the environment sΓ .

Using this, 1., 2., 6., and 10. with Lemma A.1.23 we can conclude that h ` rT <: rT ′ holds.
Note that from 4. and 9. we know that the lost modifier is not contained in the two static
types and therefore we can use empty substitutions in the dynamizations.

A.2.3.4 Proof of Lemma A.1.12 — Correct Checking of Method Upper Bounds

This lemma is needed to show that the environment in a method call is well formed.
We prove:

1. ` P OK
2. h, rΓ : sΓ OK
3. (sN B sT0)

[
sT/X

]
= sT ′

4. lost /∈ sT ′
5. sΓ ` sT , sT ′ OK
6. sΓ ` sT <: sT ′
7. h, rΓ ` ι : sN
8. h, rΓ ` sN, sT0;

(
sT/X, ι

)
= rΓ ′

=⇒

∃oι, rT . I. dyn(sT, h, rΓ , oι) = rT ∧
∃rT ′. II. dyn

(
sT0, h, rΓ ′, ∅

)
= rT ′ ∧

III. h ` rT <: rT ′

Using 1., 2., 5., and 6. with Lemma A.1.23 we deduce:

133

Appendix A Properties and Proofs

` P OK
h, rΓ : sΓ OK
sΓ ` sT , sT ′ OK
sΓ ` sT <: sT ′

 =⇒
∃oι, rT . dyn(sT, h, rΓ , oι) = rT ∧
∃oι′′, rT ′′. dyn

(
sT ′, h, rΓ , oι′′

)
= rT ′′ ∧

h ` rT <: rT ′′

Using 7., 3., 4., and 8. with Lemma A.1.2 we further deduce:

h, rΓ ` ι : sN
(sN B sT0)

[
sT/X

]
= sT ′

lost /∈ sT ′

h, rΓ ` sN, sT0;
(
sT/X, ι

)
= rΓ ′

 =⇒
∃rT ′. dyn

(
sT0, h, rΓ ′, ∅

)
= rT ′ ∧

∃rT ′′. dyn(sT ′, h, rΓ , ∅) = rT ′′ ∧
rT ′= rT ′′

From these two results we can directly deduce I., II., and III.

A.2.3.5 Proof of Lemma A.1.14 — Free Variables in Upper Bounds and
Superclass Instantiations

We prove:
1. ` P OK
2. C<X> v C ′<sT>

}
=⇒ free

(
sT
)
⊆ X

This is done by an induction on the shape of the derivation of 2.

Case 1: last derivation applied is sc1
From 1. we know that the corresponding class declaration was checked for well formedness.

This includes checking that the type self C ′<sT> is well formed in an environment that only
maps the type variables of C , that is X, to their upper bounds. This ensures that all free
variables in sT are contained in the X.

Case 2: last derivation applied is sc2
In this case sT is equals to X and the conclusion obviously holds.

Case 3: last derivation applied is sc3
In this case we apply the induction hypothesis to the two types separately. The final

substitution replaces all free variables by types that are ensured to fulfill the property.

We want to prove:

1. ` P OK
2. ClassDom(C) = X
3. ClassBnds(C) = sN

 =⇒ free
(
sN
)
⊆ X

From 1. we know that the corresponding class declaration was checked for well formedness.
This includes checking that the types sN are well formed in an environment that only maps the
type variables of C , that is X, to their upper bounds. This ensures that all free variables in sN
are contained in the X.

A.2.3.6 Proof of Lemma A.1.13 — Properties of Strictly Well-formed Static
Types

The first part is
sΓ ` u C<sT> strictly OK
ClassBnds(C) = sN

}
=⇒ rep /∈ sN

134

A.2 Proofs

From the definition of strictly well-formed static type (Def. 2.3.12) we know that u 6= self
and that the viewpoint-adapted upper bounds of C do not contain lost.
If the un-adapted upper bounds contained rep, the adaptation with something other than

self would contain lost. Therefore, we know that rep is not in the un-adapted upper
bounds.

The second part is

sΓ ` any C<sT> strictly OK
ClassBnds(C) = sN

}
=⇒ peer /∈ sN

If we know that the main modifier is any we can conclude that the only ownership modifier
that is used in the un-adapted upper bounds is any, because otherwise viewpoint adaptation
would introduce lost and the type could not be strictly well formed.

Note that the strictly well-formed type judgment recursively checks the type arguments and
therefore we can also deduce the same properties about all the classes that are used in type
arguments. Also note that the self and lost ownership modifiers in the upper bounds are
directly forbidden by the strictly well-formed type judgment.

A.2.4 Ordering Relations

A.2.4.1 Proof of Lemma A.1.17 — Subclassing: Superclass Instantiation Uses
Strictly Well-formed Types

We prove:
1. ` P OK
2. C<X> v C ′<sT>

}
=⇒ sΓ ` sT strictly OK

where sΓ =
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
and ClassDom(C) = Xk and X = Xk
and ClassBnds(C) = sNk

We show for each sT in sT that sΓ ` sT strictly OK. We do this by an induction on the
derivation of 2. (see Def. 2.2.1).

Case 1: sc1
From 1. we know that class C was checked to conform to Def. 2.3.14, which directly checks

for strict well formedness of the type arguments of the superclass instantiation.

Case 2: sc2
This directly follows from 2. and the definition of sΓ .

Case 3: sc3
We have C<X> v C1<sT 1> and C1<X1> v C ′<sT ′> giving C<X> v C ′<sT>, with the

substitution sT = sT ′
[
sT 1/X1

]
.

We apply the induction hypothesis to derive that
sΓ ` sT 1 strictly OK and
sΓ ′ ` sT ′ strictly OK
where sΓ ′ is the environment corresponding to the instantiation of the lemma for C1.

135

Appendix A Properties and Proofs

From Lemma A.1.19 we can deduce that the sT 1 are subtypes of the upper bounds of class
C1. Therefore, the substitution of the sT 1 for the X1 in the sT ′ maintains that the sT are
strictly well formed.

A.2.4.2 Proof of Lemma A.1.19 — Subclassing: Superclass Instantiation Uses
Subtypes of the Upper Bounds

We prove:

1. ` P OK
2. C<X> v C ′<sT>
3. ClassBnds

(
self C ′<sT>

)
= sN

 =⇒ sΓ ` sT <: sN

where sΓ =
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
and ClassDom(C) = Xk and X = Xk
and ClassBnds(C) = sNk

We show for each sT in sT and the corresponding upper bound sN from sN that sΓ ` sT <: sN .
We prove this by an induction on the derivation of 2. (see Def. 2.2.1).

Case 1: sc1
From 1. we know that class C was checked to conform to Def. 2.3.14, which directly checks

for well formedness of the superclass instantiation sΓ ` self C ′<sT> OK. This ensures that
the sT are subtypes of the upper bounds sN .

Case 2: sc2
This directly follows from 2. and the definition of sΓ .

Case 3: sc3
We have C<X> v C1<sT 1> and C1<X1> v C ′<sT ′> giving C<X> v C ′<sT>, with the

substitution sT = sT ′
[
sT 1/X1

]
.

We apply the induction hypothesis to derive that sΓ ` sT 1 <: sN1 and sΓ ′ ` sT ′ <: sN ′

where sΓ ′ is the environment corresponding to the instantiation of the lemma for C1, sN1 are
the upper bounds of type self C1<sT 1>, and sN

′ are the upper bounds of type self C ′<sT ′>.
The substitution of the sT 1 for the X1 in the sT ′ results in sT and that same substitution

is performed in the upper bounds of class C ′. As we are substituting subtypes of the upper
bounds of each type variable, the resulting type is again a subtype of its upper bound.

A.2.4.3 Proof of Lemma A.1.20 — Subclassing: Superclass Instantiation has
Upper Bounds Without lost

We prove:
1. ` P OK
2. C<X> v C ′<sT>
3. C 6=C ′

4. ClassBnds
(
self C ′<sT>

)
= sN

 =⇒ lost /∈ sN

We prove this by an induction on the derivation of 2. (see Def. 2.2.1).

Case 1: sc1

136

A.2 Proofs

From 1. we know that class C was checked to conform to Def. 2.3.14, which uses strict
subtyping to check that the type arguments of the superclass are subtypes of the upper bounds.
This ensures that the upper bounds of C ′ do not contain lost.

Case 2: sc2
Forbidden by 3.

Case 3: sc3
We have C<X> v C1<sT 1> and C1<X1> v C ′<sT ′> giving C<X> v C ′<sT>, with the

substitution sT = sT ′
[
sT 1/X1

]
.

We apply the induction hypothesis to derive that the upper bounds of self C1<sT 1> and
self C ′<sT ′> do not contain lost. The substitution of the sT 1 for the X1 in the sT ′ results
in sT and we get that the upper bounds of self C ′<sT> do not contain lost directly.

A.2.4.4 Proof of Lemma A.1.21 — Subtyping and self

The first part is
1. ` P OK
2. sΓ OK
3. sΓ ` sT <: sT ′
4. self /∈ sT

 =⇒ self /∈ sT ′

We prove this by an induction on the derivation of 3. (see Def. 2.3.8).

Case 1: st1
From Corollary A.1.18 we know that self is not contained in the superclass instantiation.

The viewpoint adaptation and substitution of the type arguments cannot introduce self, as
sT does not contain self.

Case 2: st2
The ordering of ownership modifiers and type argument subtyping cannot introduce self.

Case 3: st3
If sT is a type variable, the supertype is either unchanged or the upper bound from the

environment. The upper bound cannot contain self because of 2.

Case 4: st4
Transitivity does not change the types and can therefore not introduce self in the super-

type.

The second part is

1. ` P OK
2. sΓ OK
3. sΓ ` sT <: sT ′
4. om(sT ′, sΓ) = self

 =⇒ om(sT, sΓ) = self

self can only be the main modifier in a supertype if it was already the main modifier in the
subtype. This directly follows from u <:u u′. If sT is a type variable, then from 2. we know
that the upper bound does not contain self and therefore 4. would not hold. If sT ′ is a type
variable, then sT is the same type variable and neither can contain self.

137

Appendix A Properties and Proofs

A.2.4.5 Proof of Lemma A.1.23 — dyn Preserves Subtyping

We prove:

1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` sT , sT ′ OK
4. sΓ ` sT <: sT ′

 =⇒
∃oι, rT . I. dyn(sT, h, rΓ , oι) = rT ∧

∃oι′, rT ′. II. dyn
(
sT ′, h, rΓ , oι′

)
= rT ′ ∧

III. h ` rT <: rT ′

From 1., 2., and 3. using Lemma A.1.9 we get I. and II. Note that the lengths of oι and oι′

depend on the number of lost modifiers in the respective static types. Also, the choice of oι′

depends on the choice of oι, as consistent substitutions are chosen to ensure III.
If both sT and sT ′ are type variables, we know that they have to be the same (rule st3 in

Def. 2.3.8). Therefore, their dynamizations are also equal and III. follows from the reflexivity
of runtime subtyping.
If sT is a type variable and sT ′ is its upper bound, then from 2. we have that the runtime

types are subtypes.
If sT is a type variable, but sT ′ is a non-variable type, we use the transitivity of both

subtyping relations: sT is a subtype of its upper bound and that upper bound has to be a
subtype of sT ′. On these two parts we can apply the current lemma and then use transitivity
of runtime subtyping to arrive at III.

The interesting case is when both static types are non-variable types; we name their compo-
nents as sT = u C<sT> and sT ′= u′ C ′<sT ′>.
From 4. and the subtyping rules st1 and st2 (see Def. 2.3.8) we then have:

sΓ ` u C<sT> <: u′ C ′<sT ′> C<X> v C ′<sT 1>
u C<sT> B sT 1 = sT 2 u <:u u′
` sT 2 <:l sT

′

From the definition of dyn (see Def. 2.2.14) and I. we know for some oι and rT where
rT = oι C<rT>:

dyn
(
u C<sT>, h, rΓ , oι

)
= oι C<rT>

From the definition of dyn and II. we know for some oι′ and rT ′ where rT ′= oι′ C ′<rT ′>:

dyn
(
u′ C ′<sT ′>, h, rΓ , oι′

)
= oι′ C ′<rT ′>

For III. (h ` oι C<rT> <: oι′ C ′<rT ′>), according to Def. 2.2.12, we have to show that there
exist ι and oι′′ such that:

C<X> v C ′<sT 1> oι′ ∈ {oι , anya}
sdyn

(
sT 1, h, ι, oι C<rT>, oι′′

)
= rT

′

We already obtained the subclassing relationship from the subtype relation 4. Subclassing
between two classes is unique, so the type arguments to C ′ are the same sT 1.
We know that u <:u u′. Therefore, the address substituted for u′ is either the same as the

one used for u (in the cases where they are equal, self and peer, or lost when we can use a
suitable address) or we have that u′= any and we substitute it with oι′= anya.
From Lemma A.1.14 we know that the type variables that are used in sT 1 are a subset of

the X. This ensures that all type variables can be substituted by the type arguments rT .

138

A.2 Proofs

So the last thing that needs to be shown is that we can find an address ι and substitutions
oι′′ such that sdyn

(
sT 1, h, ι, oι C<rT>, oι′′

)
= rT

′. Recall that u C<sT> B sT 1 = sT 2 and
` sT 2 <:l sT

′.
We know that dyn

(
sT
′
, h, rΓ , oι3

)
= rT

′ from II. and Lemma A.1.28, where oι3 is equal to
oι′, possibly without the first element (if u′= lost the first element from oι′ is used to substitute
it and the remaining elements are used for substitutions in the type arguments).

Recall that ` sT 2 <:l sT
′ can either leave the types unchanged or change arbitrary ownership

modifiers to lost. For ownership modifiers that are changed to lost, we can choose a
substitution oι3 that uses the same address as required. In the following we can therefore assume
that sT 2 = sT ′

We continue with an analysis of u C<sT> B sT 1 = sT 2:
• self modifiers in sT 1 cannot happen because of Corollary A.1.18.

• peer modifiers in sT 1 are replaced by sdyn with oι. In sT 2, these modifiers were either
replaced by u (if u is peer or rep) or becomes lost (if u is lost or any). From I. we
know that u is replaced by oι, so we get the same replacement.

• rep modifiers in sT 1, will be rep modifiers in sT ′, if u is self. Then for sdyn we choose
ι= rΓ(this) and dyn will also substitute the corresponding modifiers by rΓ(this).

• any modifiers in sT 1 are not changed by viewpoint adaptation and are replaced by the
anya address by both dynamizations.

• Type variables in sT 1 are replaced by the corresponding type arguments in sT . sdyn
replaces these type variables with the arguments in rT . In dyn these type variables
are replaced by the type arguments in sT and are therefore replaced with the same
dynamizations.

• For any ownership modifier that is changed to lost by viewpoint adaptation we can
select the correct substitution in oι′′ and oι3.

In conclusion, in all cases we can choose appropriate substitutions to ensure that III.
holds.

A.2.4.6 Proof of Lemma A.1.22 — Static Type Assignment to Values Preserves
Subtyping

We prove:
1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` sT , sT ′ OK
4. sΓ ` sT <: sT ′
5. h, rΓ ` v : sT

=⇒ h, rΓ ` v : sT ′

We split h, rΓ ` v : sT ′ into the two parts ∃oι, rT . dyn(sT ′, h, rΓ , oι) = rT ∧ h ` v : rT
and sT ′= self _<_> =⇒ v= rΓ(this) according to Def. 2.2.15.
The first part follows from Lemma A.1.23, which we can instantiate using 1., 2., 3., and 4,

combined with 5. which gives us the information about the type of v.
The second part follows from 5. and Lemma A.1.21. The supertype can only contain self,

if also the subtype contains self. Therefore, from 4. we know that rΓ(this) = v holds for
supertype and subtype if the supertype contains self.

139

Appendix A Properties and Proofs

A.2.5 Runtime Behavior

A.2.5.1 Proof of Lemma A.1.26 — Equivalence of sdyn and dyn

We prove:

1. ` P OK
2. h, rΓ : sΓ OK
3. sΓ ` u C<sT> strictly OK
4. dyn

(
u C<sT>, h, rΓ , ∅

)
= oι C<rT>

5. u C<sT> B sT = sT ′

6. lost /∈ sT ′

7. sdyn
(
sT, h, ι, oι C<rT>, ∅

)
= rT

=⇒ I. dyn(sT ′, h, rΓ , ∅) = rT

We prove this lemma by an induction on the shape of sT . Cases 1, 2, and 3 are the base
cases and case 4 is the induction step.

Case 1: sT =Xi a class type variable of class C
If sT is one of the class type variables of class C , we know from the definition of 7. that rT

is rT i , the i-th type argument of rT .
The viewpoint adaptation 5. substitutes Xi by sTi , the i-th type argument of sT . From the

definition of 4. we know that the dynamization I. results in the same rT i .

Case 2: sT =Xi a method type variable
sT cannot be a method type variable because 7. would not be defined.

Case 3: sT = u′ C ′< >
If sT is a non-generic type, then we perform a case distinction for the result of 5. Let us call

sT ′= u′′ C ′< > where u B u′ = u′′.
We can distinguish 5 cases:
• u = self and u = lost: forbidden by 3.

• u = peer and u′= peer, resulting in u′′= peer: From 4. we know that peer is dynamized
to oι and therefore I. uses the same oι.

• u = rep and u′= peer, resulting in u′′= rep: From 4. we know that rep is dynamized to
oι and therefore I. uses the same oι.

• u′= any, resulting in u′′= any: The any modifier in both 7. and I. is substituted by anya.

• All other cases result in u′′= lost, which is forbidden by 6.

Case 4: sT = u′ C ′<sT ′>
We apply the induction hypothesis to the sT ′: Requirements 1. to 4. are unchanged, the

viewpoint adaptation 5. is defined for the sT ′ and we know that lost is not contained for the
whole type and therefore also not for the type arguments; finally, 7. also applies to the type
arguments as sdyn performs the same substitution on the type arguments.

We perform the same case analysis as in case 3 for the main modifier u′ resulting in equality
of the owner address.
Finally, we know that dyn is compositional from Lemma A.1.28 and can therefore combine

the owner address and type arguments to deduce I.

140

A.2 Proofs

A.2.5.2 Proof of Lemma A.1.25 — Runtime Meaning of Ownership Modifiers

We prove:

If dyn(sN, h, rΓ , oι) = rT ∧ h ` ι : rT then
om(sN) = self ⇒ owner(h, ι) = owner(h, rΓ(this))
om(sN) = peer ⇒ owner(h, ι) = owner(h, rΓ(this))
om(sN) = rep ⇒ owner(h, ι) = rΓ(this)

The proof is a case analysis and the application of the definition of dyn (see Def. 2.2.14):

Case 1: om(sN) = self
dyn(sN, h, rΓ , oι) = rT replaces self by owner(h, rΓ(this)), that is, the owner of rΓ(this).

Case 2: om(sN) = peer
dyn(sN, h, rΓ , oι) = rT replaces peer by owner(h, rΓ(this)), that is, the owner of rΓ(this).

Case 3: om(sN) = rep
dyn(sN, h, rΓ , oι) = rT replaces rep by rΓ(this).

Note that we do not need to require a well-formed heap, because all three cases are conse-
quences of the definition of dyn.

A.2.6 Progress

We omit a proof of progress since this property is not affected by adding ownership to a Java-like
language. The basic proof can easily be adapted from FGJ; extensions to include field updates
and casts have also been done before, for example in ClassicJava [80] and MiddleWeightJava
[20].

An investigation of the operational semantics shows that there are only three expressions that
deal with ownership at runtime. We present an informal argument why they preserve progress:

Case 3: e= new sT()
The operational semantics creates the runtime type from the static type using dyn without a

substitution for lost. The type rules ensure that the static type is strictly well formed and
forbid that the type includes lost. Therefore, the dynamization of the static type is defined.

A strictly well-formed static type also does not contain lost in its upper bounds. Therefore,
in a method call we can be sure that the upper bounds of the class type variables of the receiver
object can be dynamized without a substitution for lost in h, rΓ ′ : sΓ ′ OK.

Case 6: e= e0 . m < sT > (e1)
The method type arguments are dynamized with an empty substitution for lost. Again, the

type rules ensure that the static type is strictly well formed and does not contain lost.
The type rules ensure that the viewpoint-adapted upper bounds of the method do not contain

lost and therefore also the un-adapted upper bounds do not contain lost. This allows us to
construct h, rΓ ′ : sΓ ′ OK with an empty substitution for lost.

Case 7: e= (sT0) e0
The type rules ensure well formedness of the cast type. The static type-to-value assignment

judgment finds a substitution that substitutes all occurrences of lost.

Additional lemmas like the following could be proved easily:

141

Appendix A Properties and Proofs

Lemma A.2.1 (Evaluation Results in a Valid Address or nulla)

rΓ ` h, e h′, v
v= ι

}
=⇒ ι∈dom(h′)

A.2.7 Method Type Variables and Recursion
For the proofs of the adaptation lemmas we can assume that the type variables in rΓ and rΓ ′
are disjoint, that is, that the type variables that can appear in sN are different from the type
variables that can appear in sT . Consistent renaming of method type variables in method
signature look-ups are applied to avoid capturing from happening.

Consider the following recursive method call:

class C<Xc> {
<Xm> void m(Xc p1, Xm p2) {

rep C<peer D<Xm>> o = new ...;
o.m<rep D<Xm>>(p1, p2);

}
}

In the method call o.m consider the type for parameter p1. If the method signature does not
avoid capturing, we would perform

(rep C<peer D<Xm>>B Xc)[rep D<Xm>/Xm] = peer D<rep D<Xm>>

which would substitute the Xm from the receiver type by the method type argument of the
recursive call, which is not the intended interpretation. With capture-avoiding renaming, we
derive peer D<Xm> as the type for parameter p1, correctly leaving the substitution of the Xm to
the calling environment.

Putting GUT aside for a moment, consider the following Java 5 program:

class D<Z> {}
class E {}

class C<Xc> {
<Xm> void m(Xc pxc, Xm pxm) {

C< D<Xm> > o = new C< D<Xm> >();
o.m(new D<Xm>(), new E()); // A
o.m(new D<E>(), new E()); // B

}
}

Looking at Featherweight Generic Java FGJ [99], we derive that line "A" should be valid
and line "B" should be forbidden. The method lookup function mtype has to perform a
capture-avoiding substitution to determine the signature of "m", that is

mtype(m, C<D<Xm>>) = < Xm’ > (D<Xm>, Xm’)→ void

Then substituting the method type argument E results in a method that expects as subtype
of D<Xm> as first argument and of E as second argument.
However, trying the example with different versions of javac gives a type checking error for

line "A" and allows line "B".
Now consider this Java 5 program:

142

A.2 Proofs

class D<Z> {
Z f;

}
class E {}
class F {}

class C<Xc> {
Xc dirty;

<Xm> D<Xm> m(Xc pxc, Xm pxm, boolean rec) {
System.out.println("this: " + this + " pxc: " + pxc + " pxm: " + pxm);

dirty = pxc;
C< D<Xm> > cdm = new C< D<Xm> >();
if(rec) {

// A
// does not type-check in javac
// type checks in gcj and ecj, and runs without producing exceptions
D<Xm> dm = new D<Xm>();
dm.f = pxm;
cdm.m(dm, new E(), false);

// B
// does not type-check in gcj and ecj
// type checks in javac, and produces a cast exception
D<E> de = new D<E>();
de.f = new E();
cdm.m(de, new E(), false);

}
return cdm.dirty;

}
}

public class MTVDemo {
public static void main(String[] args) {

C< D<F> > cdf = new C< D<F> >();

D<F> df;
df = cdf.m(new D<F>(), new F(), true);

// if B is compiled with javac, this statement produces:
// Exception in thread "main" java.lang.ClassCastException:
// E cannot be cast to F
F x = df.f;

System.out.println("x: " + x);
}

}

This program does not use casts and compiles in javac without a warning, but generates
a ClassCastException when executed. The example exploits a heap pollution that was not
caught by javac.

We observed this behavior with JDK versions 1.5.0_15, 1.6.0_11 and OpenJDK 1.7 build 57.
On the other hand, gcj (GNU compiler for Java) version 4.3.2 and ecj (Eclipse compiler for

143

Appendix A Properties and Proofs

Java) version 3.3.1 allow line "A" and forbid line "B".
We could not find a discussion of how exactly substitutions are performed and how capturing

is avoided in the Java Language Specification version 3 [86]. We filed a bug with javac (see
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6838943).

144

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6838943

Appendix B

Ott Formalization

B.1 Complete Grammar
We use the tool Ott [176] to formalize Generic Universe Types and used the generated LATEX
code throughout this document. The definition consists of 140 rules and 361 rule clauses and is
disambiguated enough to also produce Isabelle [148] definitions.
We define the following Ott meta-variables:

k index variable for class type variables and arguments
l index variable for method type variables and arguments
q index variable for method parameters and arguments
i, j index variables as arbitrary elements
n index variable as upper limit
f field identifier
mid method identifier
pid parameter identifier
X type variable identifier
Cid derived class identifier
RAId raw address identifier
We use the following naming convention: “identifier” is used for some undetermined set, e.g.,

the parameter identifiers pid are some unspecified set of values. “names” also contain some
special values, e.g., the parameter names x also contains this. If there is no difference, the
“Id” is left off in the short version, e.g., X is used for type variable identifiers and there are no
special values.

Variables that are used in the conclusions, usually use primed names. Additional variables in
the requirements might use numbered names.

Note that sometimes Ott required the addition of primes to keep differently indexed variables
separate; for example, in tr_call there are sTl and sT ′q and we need to use a prime to keep
Ott happy. Also note that the index variable (l and q in the above example) appears next to
the indexed element and again next to the overbar.
The option versions are only used to make un-definedness more explicit at the moment.

However, in Isabelle we will need this distinction. The only place where we actually use un-
definedness is in the rule for method overriding. We also used different symbols if a comparison
involves an optional element, for example, from the method overriding rule, when we write
MSig(C ′,m) =o ms′o the result of method signature look-up is an optional method signature
and we assign the result to an optional type; when we write MSig(C ,m) =o ms the result of
method signature look-up is still an optional method signature, but we also require that it
actually is a concrete method signature.

145

Appendix B Ott Formalization

te
rm

in
al

s
::= |

cl
as
s

ke
yw

or
d:

cl
as
s
de

cl
ar
at
io
n

|
ex
te
nd
s

ke
yw

or
d:

su
pe

r
ty
pe

de
cl
ar
at
io
n

|
ne
w

ke
yw

or
d:

ob
je
ct

cr
ea
tio

n
|

th
is

ke
yw

or
d:

cu
rr
en
t
ob

je
ct

|
nu
ll

ke
yw

or
d:

nu
ll
va
lu
e

|
pu
re

ke
yw

or
d:

pu
re

m
et
ho

d
|

im
pu
re

ke
yw

or
d:

no
n-
pu

re
m
et
ho

d
|

<
sy
nt
ax

:
st
ar
t
ge
ne

ric
s

|
>

sy
nt
ax

:
en

d
ge
ne

ric
s

|
{

sy
nt
ax

:
st
ar
t
bl
oc
k

|
}

sy
nt
ax

:
en

d
bl
oc
k

|
(

sy
nt
ax

:
st
ar
t
pa

ra
m
et
er
s

|
)

sy
nt
ax

:
en

d
pa

ra
m
et
er
s

|
;

sy
nt
ax

:
se
pa

ra
to
r

|
.

sy
nt
ax

:
se
le
ct
or

|
=

sy
nt
ax

:
as
sig

nm
en
t

|
Ob
je
ct

na
m
e
of

ro
ot

cl
as
s

|
∈

co
nt
ai
nm

en
t
ju
dg

em
en
t

|
/∈

no
n-
co
nt
ai
nm

en
t
jd
ug

em
en
t

|
`

sin
gl
e
el
em

en
t
ju
dg

em
en
t

|
`

m
ul
tip

le
el
em

en
t
ju
dg

em
en
t

|
:

se
pa

ra
to
r

|
: s

st
ric

t
se
pa

ra
to
r

|
7→

m
ap

s-
to

|
O

K
w
el
l-f
or
m
ed

ne
ss

ju
dg

em
en
t

|
st

ric
tly

O
K

st
ric

t
w
el
l-f
or
m
ed

ne
ss

ju
dg

em
en
t

|
pu

re
pu

rit
y
ju
dg

em
en
t

|
st

ric
tly

pu
re

st
ric

t
pu

rit
y
ju
dg

em
en
t

146

B.1 Complete Grammar

|
en

c
en

ca
ps
ul
at
io
n
ju
dg

em
en
t

|
pr

g
O

K
pr
og

ra
m
m
er

w
el
l-f
or
m
ed

ne
ss

ju
dg

em
en
t

|
v

su
bc

la
ss
in
g

|
<

:
su
bt
yp

in
g
of

sin
gl
e
ty
pe

|
<

: u
or
de

rin
g
of

ow
ne

rs
hi
p
m
od

ifi
er
s

|
<

: l
ar
gu

m
en
t
or
de

rin
g

|
<

: s
st
ric

t
or
de

rin
g

|
<

: i
in
va
ria

nt
or
de

rin
g

|
=

al
ia
s

|
6=

no
t
al
ia
s

|
=

m
ul
tip

le
al
ia
s

|
=
o

op
tio

n
al
ia
s

|
6=
o

op
tio

n
no

t
al
ia
s

|
=
o

op
tio

na
l,
m
ul
tip

le
al
ia
s

|
⊆

su
bs
et

re
la
tio

n
|
∪

ap
pe

nd
tw

o
lis
ts

|
∨

lo
gi
ca
lo

r
|
∧

lo
gi
ca
la

nd
|

A
N

D
to
p-
le
ve
ll
og

ic
al

an
d

|
=⇒

lo
gi
ca
li
m
pl
ic
at
io
n

|
nu
ll
a

sp
ec
ia
ln

ul
la

dd
re
ss

|
an
y a

sp
ec
ia
la

ny
ad

dr
es
s

|
ro
ot
a

sp
ec
ia
lr

oo
t
ad

dr
es
s

|
lo
st
a

sp
ec
ia
ll
os
t
ad

dr
es
s

fo
rm

ul
a

::=
fo
rm

ul
as

|
ot

he
rw

ise
no

ne
of

th
e
pr
ev
io
us

ru
le
s
ap

pl
ie
d

|
ju

dg
em

en
t

ju
dg

em
en
t

|
fo

rm
ul

a 1
,

..
,

fo
rm

ul
a k

se
qu

en
ce

147

Appendix B Ott Formalization

|
(f
or

m
ul

a)
br
ac
ke
te
d

|
!fo

rm
ul

a
ne

ga
tio

n
|

fo
rm

ul
a
∨

fo
rm

ul
a′

lo
gi
ca
lo

r
|

fo
rm

ul
a
∧

fo
rm

ul
a′

lo
gi
ca
la

nd
|

fo
rm

ul
a

fo
rm

ul
a′

to
p-
le
ve
ll
og

ic
al

an
d

|
fo

rm
ul

a
=⇒

fo
rm

ul
a′

im
pl
ie
s

|
s f
m
l

st
at
ic

fo
rm

ul
as

|
r f
m
l

ru
nt
im

e
fo
rm

ul
as

C
::=

cl
as
s
na

m
e

|
C
id

de
riv

ed
cl
as
s
id
en
tifi

er
|

Ob
je
ct

na
m
e
of

ba
se

cl
as
s

|
_

M
so
m
e
cl
as
s
na

m
e

|
C

la
ss

O
f(
s N

)
M

cl
as
s
of

a
st
at
ic

no
n-
va
ria

bl
e
ty
pe

|
C

la
ss

O
f(
r
T

)
M

cl
as
s
of

a
ru
nt
im

e
ty
pe

u
::=

ow
ne

rs
hi
p
m
od

ifi
er

|
se
lf

cu
rr
en
t
ob

je
ct

|
pe
er

sa
m
e
co
nt
ex
t

|
re
p

re
pr
es
en
ta
tio

n
co
nt
ex
t

|
an
y

an
y
co
nt
ex
t

|
lo
st

lo
st

co
nt
ex
t

|
_

M
so
m
e
ow

ne
rs
hi
p
m
od

ifi
er

|
om

(s N
)

M
ow

ne
rs
hi
p
m
od

ifi
er

of
no

n-
va
ria

bl
e
ty
pe

|
om

(s
T
,s
Γ

)
M

ow
ne

rs
hi
p
m
od

ifi
er

of
st
at
ic

ty
pe

u
::=

ow
ne

rs
hi
p
m
od

ifi
er
s

|
u 1
,
..
,
u n

ow
ne

rs
hi
p
m
od

ifi
er

lis
t

|
{u
}

M
no

ta
tio

n

148

B.1 Complete Grammar

s
C
T

::=
cl
as
s
ty
pe

|
C
<s
T
>

ge
ne

ric
cl
as
s
ty
pe

s
T

::=
st
at
ic

ty
pe

|
s N

no
n-
va
ria

bl
e
ty
pe

|
X

ty
pe

va
ria

bl
e

|
_

M
so
m
e
ty
pe

|
s
T
[s T/

X
]

M
su
bs
tit

ut
io
n
of
s
T

fo
r
X

in
s
T

s
T

::=
st
at
ic

ty
pe

s
|

s
T

1
,
..
,
s
T

n
st
at
ic

ty
pe

lis
t

|
s
T

1,
s
T

2
tw

o
st
at
ic

ty
pe

lis
ts

|
s N

no
n-
va
ria

bl
e
ty
pe

lis
t

|
X

va
ria

bl
e
ty
pe

lis
t

|
∅

no
st
at
ic

ty
pe

s
|

_
M

so
m
e
st
at
ic

ty
pe

s
|

s
T
′[s T

/X
] M

su
bs
tit

ut
io
n
of
s
T

fo
r
X

in
ea
ch

ty
pe

in
s
T
′

s
T
o

::=
st
at
ic

ty
pe

op
tio

n
|

s
T

lif
te
d
st
at
ic

ty
pe

|
s N
o

no
n-
va
ria

bl
e
ty
pe

op
tio

n
|

s Γ
(x

)
M

lo
ok

up
pa

ra
m
et
er

ty
pe

s
T
o

::=
st
at
ic

ty
pe

s
op

tio
n

|
s
T

lif
te
d
st
at
ic

ty
pe

s

s N
::=

no
n-
va
ria

bl
e
ty
pe

|
u

C
<s
T
>

de
fin

iti
on

|
_

M
so
m
e
no

n-
va
ria

bl
e
ty
pe

149

Appendix B Ott Formalization

s N
::=

no
n-
va
ria

bl
e
ty
pe

s
|

s N
on

e
no

n-
va
ria

bl
e
ty
pe

|
s N

1
,
..
,
s N

n
no

n-
va
ria

bl
e
ty
pe

lis
t

|
∅

no
no

n-
va
ria

bl
e
ty
pe

s
|

_
M

so
m
e
no

n-
va
ria

bl
e
ty
pe

s

s N
o

::=
no

n-
va
ria

bl
e
ty
pe

op
tio

n
|

s N
lif
te
d
no

n-
va
ria

bl
e
ty
pe

|
s Γ

(X
)

M
lo
ok

up
up

pe
r
bo

un
d
of

ty
pe

va
ria

bl
e

s N
o

::=
no

n-
va
ria

bl
e
ty
pe

s
op

tio
n

|
s N

lif
te
d
no

n-
va
ria

bl
e
ty
pe

s

X
::=

ty
pe

va
ria

bl
es

|
X

on
e
ty
pe

va
ria

bl
e

|
X

1
,
..
,
X

n
ty
pe

va
ria

bl
e
lis
t

|
∅

no
ty
pe

va
ria

bl
es

|
_

M
so
m
e
ty
pe

va
ria

bl
es

|
fr

ee
(s T)

M
ty
pe

va
ria

bl
es

in
s
T

X
o

::=
ty
pe

va
ria

bl
es

op
tio

n
|

X
lif
te
d
ty
pe

va
ria

bl
es

P
::=

pr
og

ra
m

|
C
ls
,

C
,

e

C
ls

::=
cl
as
s
de

cl
ar
at
io
n

|
cl
as
s

C
lsH

d
{

fd
m

d
}

cl
as
s
de

cl
ar
at
io
n

|
cl
as
s
Ob
je
ct

{}
de

cl
ar
at
io
n
of

ba
se

cl
as
s

150

B.1 Complete Grammar

C
ls

::=
cl
as
s
de

cl
ar
at
io
ns

|
C
ls

1
..

C
ls

n
cl
as
s
de

cl
ar
at
io
n
lis
t

C
lsH

d
::=

cl
as
s
he

ad
er

|
C
id
< T

P
>
ex
te
nd
s

C
<s
T
>

ge
ne

ric
cl
as
s
he

ad
er

de
cl
ar
at
io
n

T
P

::=
ty
pe

pa
ra
m
et
er
s

|
X

ex
te
nd
s
s N

ty
pe

va
ria

bl
e

X
ha

s
up

pe
r
bo

un
d
s N

|
T
P

1
,
..
,
T
P

k
ty
pe

pa
ra
m
et
er

lis
t

|
_

M
so
m
e
un

sp
ec
ifi
ed

ty
pe

pa
ra
m
et
er
s

fd
::=

fie
ld

de
cl
ar
at
io
ns

|
s
T

f;
ty
pe
s
T

an
d
fie

ld
na

m
e

f
|

fd
1
..

fd
n

fie
ld

de
cl
ar
at
io
n
lis
t

|
_

M
so
m
e
fie

ld
de

cl
ar
at
io
ns

f
::=

lis
t
of

fie
ld

id
en
tifi

er
s

|
f 1
..

f n
fie

ld
id
en
tifi

er
lis
t

|
fie

ld
s(

C
)

M
re
cu

rs
iv
e
fie

ld
s
lo
ok

-u
p

e
::=

ex
pr
es
sio

n
|

nu
ll

nu
ll
ex
pr
es
sio

n
|

x
va
ria

bl
e
re
ad

|
ne
w
s
T
()

ob
je
ct

co
ns
tr
uc

tio
n

|
e.

f
fie

ld
re
ad

|
e 0
.f

=
e 1

fie
ld

w
rit

e
|

e 0
.
m
<
s
T
>
(
e
)

m
et
ho

d
ca
ll

|
(s
T
)

e
ca
st

151

Appendix B Ott Formalization

e o
::=

ex
pr
es
sio

n
op

tio
n

|
e

lif
te
d
ex
pr
es
sio

n

e
::=

ex
pr
es
sio

ns
|

e 1
,
..
,
e k

lis
t
of

ex
pr
es
sio

ns
|
∅

em
pt
y
lis
t

m
d

::=
m
et
ho

d
de

cl
ar
at
io
n

|
m

s
{

e
}

m
et
ho

d
sig

na
tu
re

an
d
m
et
ho

d
bo

dy

m
d

::=
m
et
ho

d
de

cl
ar
at
io
ns

|
m

d
m
et
ho

d
de

cl
ar
at
io
n

|
m

d 1
..

m
d n

m
et
ho

d
de

cl
ar
at
io
n
lis
t

|
_

M
so
m
e
m
et
ho

d
de

cl
ar
at
io
ns

m
s

::=
m
et
ho

d
sig

na
tu
re

|
p
<T

P
>
s
T

m
(m

pd
)

m
et
ho

d
sig

na
tu
re

de
fin

iti
on

|
m

s[
s
T
/X

]
M

su
bs
tit

ut
io
n
of
s
T

fo
r
X

in
m

s

m
s o

::=
m
et
ho

d
sig

na
tu
re

op
tio

n
|

m
s

lif
te
d
m
et
ho

d
sig

na
tu
re

|
N
on

e
no

m
et
ho

d
sig

na
tu
re

de
fin

ed

p
::=

m
et
ho

d
pu

rit
y
m
od

ifi
er
s

|
pu
re

sid
e-
eff

ec
t
fr
ee

|
im
pu
re

sid
e
eff

ec
ts

po
ss
ib
le

|
_

M
so
m
e
pu

rit
y
m
od

ifi
er

m
::=

m
et
ho

d
na

m
e

152

B.1 Complete Grammar

|
m

id
m
et
ho

d
id
en
tifi

er
|

M
N

am
e(

m
s)

M
ex
tr
ac
t
m
et
ho

d
na

m
e
fr
om

sig
na

tu
re

m
pd

::=
m
et
ho

d
pa

ra
m
et
er

de
cl
ar
at
io
ns

|
s
T

pi
d

ty
pe

an
d
pa

ra
m
et
er

na
m
e

|
m

pd
1
,
..
,
m

pd
q

lis
t

|
_

M
so
m
e
m
et
ho

d
pa

ra
m
et
er

de
cl
ar
at
io
ns

x
::=

pa
ra
m
et
er

na
m
e

|
pi

d
pa

ra
m
et
er

id
en
tifi

er
|

th
is

na
m
e
of

cu
rr
en
t
ob

je
ct

s Γ
::=

st
at
ic

en
vi
ro
nm

en
t

|
{s
γ

;
s
δ}

co
m
po

sit
io
n

s
γ
e

::=
st
at
ic

ty
pe

en
vi
ro
nm

en
t
en
tr
y

|
X
7→
s N

ty
pe

va
ria

bl
e

X
ha

s
up

pe
r
bo

un
d
s N

s
γ

::=
st
at
ic

ty
pe

en
vi
ro
nm

en
t

|
s
γ
e
1
,
..
,
s
γ
e
n

m
ap

pi
ng

lis
t

|
∅

em
pt
y
ty
pe

en
vi
ro
nm

en
t

s
δ p

::=
st
at
ic

va
ria

bl
e
pa

ra
m
et
er

en
vi
ro
nm

en
t

|
pi

d
7→
s
T

va
ria

bl
e

pi
d
ha

s
st
at
ic

ty
pe
s
T

s
δ t

::=
st
at
ic

va
ria

bl
e
en
vi
ro
nm

en
t
fo
r
th
is

|
th
is
7→
s N

va
ria

bl
e
th
is

ha
s
st
at
ic

ty
pe
s N

s
δ

::=
st
at
ic

va
ria

bl
e
en
vi
ro
nm

en
t

153

Appendix B Ott Formalization

|
s
δ t

m
ap

pi
ng

fo
r
th
is

|
s
δ t
,_

m
ap

pi
ng

fo
r
th
is

an
d
so
m
e
ot
he

rs
|

s
δ t
,
s
δ p

1
,
..
,
s
δ p

q
m
ap

pi
ng

s
lis
t

s f
m
l

::=
st
at
ic

fo
rm

ul
as

|
s
T

=
s
T
′

ty
pe

al
ia
s

|
s
T
o

=
o
s
T

ty
pe

op
tio

n
al
ia
s

|
s
T
6=
s
T
′

ty
pe

no
t
al
ia
s

|
s
T

=
s
T
′

ty
pe

s
al
ia
s

|
X
⊆
X
′

ty
pe

va
ria

bl
es
X

su
bs
et

of
X
′

|
s
T
∈
s
T

ty
pe
s
T

co
nt
ai
ne

d
in

lis
t
s
T

|
C

=
C
′

cl
as
s
na

m
e
al
ia
s

|
C
6=

C
′

cl
as
s
na

m
e
no

t
al
ia
s

|
s Γ

=
s Γ
′

st
at
ic

en
vi
ro
nm

en
t
al
ia
s

|
m

s=
m

s′
m
et
ho

d
sig

na
tu
re

al
ia
s

|
m
s o

=
o
m
s′ o

m
et
ho

d
sig

na
tu
re

op
tio

n
al
ia
s

|
m

=
m
′

m
et
ho

d
na

m
e
al
ia
s

|
m
6=

m
′

m
et
ho

d
na

m
e
no

t
al
ia
s

|
e=

e′
ex
pr
es
sio

n
al
ia
s

|
C
ls
∈

P
cl
as
s
de

fin
iti
on

in
pr
og

ra
m

|
cl
as
s

C
<T

P
>
..
.
∈

P
pa

rt
ia
lc

la
ss

de
fin

iti
on

in
pr
og

ra
m

|
X
∈

s Γ
ty
pe

va
ria

bl
e
in

st
at
ic

en
vi
ro
nm

en
t

|
x
∈

s Γ
pa

ra
m
et
er

in
st
at
ic

en
vi
ro
nm

en
t

|
u

=
u′

ow
ne

rs
hi
p
m
od

ifi
er

al
ia
s

|
u
6=

u′
ow

ne
rs
hi
p
m
od

ifi
er

no
t
al
ia
s

|
u
∈
s
T

ow
ne

rs
hi
p
m
od

ifi
er
s
in

ty
pe

s
(ig

no
re
s
X
s)

|
u
/∈
s
T

ow
ne

rs
hi
p
m
od

ifi
er
s
no

t
in

ty
pe

s
(ig

no
re
s
X
s)

|
u
∈
u

ow
ne

rs
hi
p
m
od

ifi
er

in
se
t
of

ow
ne

rs
hi
p
m
od

ifi
er
s

|
p

=
p′

pu
rit

y
al
ia
s

154

B.1 Complete Grammar

|
∀f
∈
f
.
fo

rm
ul

a
fo
r
al
lf

in
f
ho

ld
s

fo
rm

ul
a

|
∀i
∈
{1
..
.k
}.

fo
rm

ul
a

fo
r
al
li

in
{1

..
.k
}
ho

ld
s

fo
rm

ul
a

|
∃
s
T
.
fo

rm
ul

a
ex
ist

s
s
T

su
ch

th
at

fo
rm

ul
a

|
∀
s
T
.
fo

rm
ul

a
fo
r
al
ls
T

ho
ld
s

fo
rm

ul
a

|
∀s

C
T
.
fo

rm
ul

a
fo
r
al
ls

C
T

ho
ld
s

fo
rm

ul
a

|
∀C

,C
′ .

fo
rm

ul
a

fo
r
al
lC

an
d

C
′
ho

ld
s

fo
rm

ul
a

ι
::=

ad
dr
es
s
id
en
tifi

er
|

R
A

Id
ra
w

ad
dr
es
s
id
en
tifi

er
|

r Γ
(t
hi
s)

M
cu

rr
en
tly

ac
tiv

e
ob

je
ct

lo
ok

-u
p

|
_

M
so
m
e
ad

dr
es
s
id
en
tifi

er

ι
::=

ad
dr
es
s
id
en
tifi

er
s

|
ι 1
,
..
,
ι n

ad
dr
es
s
id
en
tifi

er
lis
t

|
∅

em
pt
y
lis
t

|
_

M
so
m
e
ad

dr
es
s
id
en
tifi

er
lis
t

|
do

m
(h

)
M

do
m
ai
n
of

he
ap

v
::=

va
lu
e

|
ι

ad
dr
es
s
id
en
tifi

er
|

nu
ll
a

nu
ll
va
lu
e

|
_

M
so
m
e
va
lu
e

v o
::=

va
lu
e
op

tio
n

|
v

lif
te
d
va
lu
e

|
h(
ι.

f)
M

fie
ld

va
lu
e
lo
ok

-u
p

|
r Γ

(x
)

M
ar
gu

m
en
t
va
lu
e
lo
ok

-u
p

|
fv

(f
)

M
fie

ld
va
lu
e
lo
ok

-u
p

155

Appendix B Ott Formalization

v
::=

va
lu
es

|
v 1
,
..
,
v n

va
lu
e
lis
t

|
∅

em
pt
y
lis
t

o ι
::=

ow
ne

r
ad

re
ss

|
ι

ad
dr
es
s
of

th
e
ow

ne
r

|
ro
ot
a

ro
ot

ow
ne

r
|

an
y a

sp
ec
ia
la

ny
ad

dr
es
s

|
_

M
so
m
e
ow

ne
r
ad

dr
es
s

o ι
o

::=
ow

ne
r
ad

re
ss

op
tio

n
|

o ι
lif
te
d
ow

ne
r
ad

dr
es
s

|
ow

ne
r(

h,
ι)

M
lo
ok

up
ow

ne
r
in

he
ap

|
u

[σ
]

M
su
bs
tit

ut
e

u
us
in
g
σ

o ι
::=

ow
ne

r
ad

dr
es
se
s

|
o ι

1
,
..
,
o ι

n
ow

ne
r
ad

dr
es
s
lis
t

|
o ι

1
∪
..
∪
o ι

n
un

io
n
of

ow
ne

r
ad

dr
es
s
lis
ts

|
ι

lis
t
of

ad
dr
es
s
id
en
tifi

er
s

|
∅

em
pt
y
lis
t

|
_

M
so
m
e
lis
t
of

ow
ne

r
ad

dr
es
se
s

|
{o
ι}

no
ta
tio

n

o ι
o

::=
ow

ne
r
ad

dr
es
se
s
op

tio
n

|
o ι

lif
te
d
ow

ne
r
ad

dr
es
se
s

|
ow

ne
rs

(h
,ι

)
M

lo
ok

up
tr
an

sit
iv
e
ow

ne
rs

in
he

ap

o ι
::=

lis
t
of

ow
ne

r
ad

dr
es
s
id
en
tifi

er
s

|
o ι

1
;
..
;
o ι

n
ow

ne
r
ad

dr
es
s
id
en
tifi

er
s
lis
t

156

B.1 Complete Grammar

σ
e

::=
ru
nt
im

e
su
bs
tit

ut
io
n

|
o ι
/
u

su
bs
tit

ut
e
o ι
fo
r

u
|

r
T
/
X

su
bs
tit

ut
e
r
T

fo
r
X

σ
::=

ru
nt
im

e
su
bs
tit

ut
io
ns

|
σ
e
1
,
..
,
σ
e
n

lis
t
of

su
bs
tit

ut
io
ns

r
T

::=
ru
nt
im

e
ty
pe

|
o ι

C
<r
T
>

de
fin

iti
on

r
T
o

::=
ru
nt
im

e
ty
pe

op
tio

n
|

r
T

lif
te
d
ru
nt
im

e
ty
pe

|
h(
ι)
↓ 1

M
lo
ok

up
ty
pe

in
he

ap
|

r Γ
(X

)
M

lo
ok

up
ru
nt
im

e
ty
pe

of
ty
pe

va
ria

bl
e

r
T

::=
ru
nt
im

e
ty
pe

s
|

r
T

1
,
..
,
r
T

n
ru
nt
im

e
ty
pe

lis
t

|
∅

no
ru
nt
im

e
ty
pe

s
|

_
M

so
m
e
ru
nt
im

e
ty
pe

s

r
T
o

::=
ru
nt
im

e
ty
pe

s
op

tio
n

|
r
T

lif
te
d
ru
nt
im

e
ty
pe

s
|

s
T

[σ
]

M
ap

pl
y
su
bs
tit

ut
io
ns
σ
to
s
T

fv
::=

fie
ld

va
lu
es

|
f
7→

v
fie

ld
f
ha

s
va
lu
e
v

|
fv

1
,
..
,
fv

n
fie

ld
va
lu
e
lis
t

|
_

M
so
m
e
fie

ld
va
lu
es

|
h(
ι)
↓ 2

M
lo
ok

up
fie

ld
va
lu
es

in
he

ap

157

Appendix B Ott Formalization

|
fv

[f
7→
v
]

M
up

da
te

ex
ist

in
g
fie

ld
f
to
v

o
::=

ob
je
ct

|
(r T,

fv
)

ru
nt
im

e
ty
pe
r
T

an
d
fie

ld
va
lu
es

fv

o o
::=

ob
je
ct

op
tio

n
|

o
lif
te
d
ob

je
ct

|
h(
ι)

M
lo
ok

up
ob

je
ct

in
he

ap

he
::=

he
ap

en
tr
y

|
(ι
7→

o)
ad

dr
es
s
ι
m
ap

s
to

ob
je
ct

o

h
::=

he
ap

|
∅

em
pt
y
he

ap
|

h
+

he
ad

d
he

to
h,

ov
er
w
rit

in
g
ex
ist

in
g
m
ap

pi
ng

s

r Γ
::=

ru
nt
im

e
en
vi
ro
nm

en
t

|
{r
γ

;
r
δ}

co
m
po

sit
io
n

r
γ

::=
ru
nt
im

e
ty
pe

en
vi
ro
nm

en
t

|
X
7→
r
T

ty
pe

va
ria

bl
e

X
ha

s
ru
nt
im

e
ty
pe
r
T

|
r
γ

1
,
..
,
r
γ

n
lis
t
of

m
ap

pi
ng

s
|
∅

em
pt
y
ty
pe

en
vi
ro
nm

en
t

r
δ p

::=
ru
nt
im

e
va
ria

bl
e
en
vi
ro
nm

en
t
pa

ra
m
et
er

en
tr
y

|
pi

d
7→
v

va
ria

bl
e

pi
d
ha

s
va
lu
e
v

r
δ t

::=
ru
nt
im

e
va
ria

bl
e
en
vi
ro
nm

en
t
en
tr
y
fo
r
th
is

|
th
is
7→
ι

va
ria

bl
e
th
is

ha
s
ad

dr
es
s
ι

158

B.1 Complete Grammar

r
δ

::=
ru
nt
im

e
va
ria

bl
e
en
vi
ro
nm

en
t

|
r
δ t

m
ap

pi
ng

fo
r
th
is

|
r
δ t
,_

m
ap

pi
ng

fo
r
th
is

an
d
so
m
e
ot
he

rs
|

r
δ t
,
r
δ p

1
,
..
,
r
δ p

q
m
ap

pi
ng

s
lis
t

r f
m
l

::=
ru
nt
im

e
fo
rm

ul
as

|
h

=
h′

he
ap

al
ia
s

|
r
T

=
r
T
′

ru
nt
im

e
ty
pe

al
ia
s

|
r
T
o

=
o
r
T
′ o

ty
pe

op
tio

n
al
ia
s

|
r
T

=
r
T
′

ru
nt
im

e
ty
pe

s
al
ia
s

|
r
T
o

=
o
r
T
′

ru
nt
im

e
ty
pe

s
op

tio
n
al
ia
s

|
r
T
∈
r
T

ty
pe
r
T

co
nt
ai
ne

d
in

lis
t
r
T

|
v

=
v
′

va
lu
e
al
ia
s

|
v
6=
v
′

va
lu
e
no

t
al
ia
s

|
v o

=
o
v
′ o

va
lu
e
op

tio
n
al
ia
s

|
v o
6=
o
v
′ o

va
lu
e
op

tio
n
no

t
al
ia
s

|
ι
∈
ι

ad
dr
es
s
in

ad
dr
es
se
s

|
ι
6=
ι′

ad
dr
es
se
s
no

t
al
ia
se
d

|
ι
/∈
ι

ad
dr
es
s
no

t
in

ad
dr
es
se
s

|
o ι

=
o ι
′

ow
ne

r
ad

dr
es
s
al
ia
s

|
o ι
o

=
o
o ι
o
′

ow
ne

r
ad

dr
es
s
op

tio
n
al
ia
s

|
o ι
6=
o ι
′

ow
ne

r
ad

dr
es
s
no

t
al
ia
s

|
o ι

=
o ι
′

ow
ne

r
ad

dr
es
se
s
al
ia
s

|
o ι

=
o ι
′

ow
ne

r
ad

dr
es
se
s
al
ia
s

|
o ι
o

=
o
o ι
′ o

ow
ne

r
ad

dr
es
se
s
op

tio
n
al
ia
s

|
o ι
o
∈
o ι
o

ow
ne

r
ad

dr
es
s
in

ow
ne

r
ad

dr
es
se
s

|
o ι
o
⊆
o ι
′

ow
ne

rs
op

tio
n
o ι
o
co
nt
ai
ne

d
in
o ι
′

|
o

=
o′

ob
je
ct

al
ia
s

|
o o

=
o
o′

ob
je
ct

op
tio

n
al
ia
s

159

Appendix B Ott Formalization

|
r Γ

=
r Γ
′

ru
nt
im

e
en
vi
ro
nm

en
t
al
ia
s

|
fv

=
fv
′

fie
ld
s
al
ia
s

|
X
∈

r Γ
ty
pe

va
ria

bl
e
in

ru
nt
im

e
en
vi
ro
nm

en
t

|
x
∈

r Γ
pa

ra
m
et
er

in
ru
nt
im

e
en
vi
ro
nm

en
t

|
f
∈

do
m
(fv
)

fie
ld

id
en
tifi

er
f
co
nt
ai
ne

d
in

do
m
ai
n
of

fv
|
∀r
T
.
fo

rm
ul

a
fo
r
al
lr
T

ho
ld
s

fo
rm

ul
a

|
∀o
ι
∈
o ι
.
fo

rm
ul

a
fo
r
al
lo
ι
in
o ι
ho

ld
s

fo
rm

ul
a

|
∀ι
∈
ι,

f
∈

fv
.
fo

rm
ul

a
fo
r
al
lι

in
ι
an

d
fie

ld
f
in

fv
ho

ld
s

fo
rm

ul
a

|
∀ι
∈
P

(o ι
).

fo
rm

ul
a

fo
r
al
lι

fr
om

o ι
ho

ld
s

fo
rm

ul
a

|
∀f
∈

fv
.
fo

rm
ul

a
fo
r
al
lf

in
fv

ho
ld
s

fo
rm

ul
a

st
_

he
lp
er

s
::= |

FT
yp

e(
C
,f

)
=
o
s
T
o

lo
ok

up
fie

ld
f
in

cl
as
s

C
|

FT
yp

e(
s N
,f

)
=
o
s
T
o

lo
ok

up
fie

ld
f
in

ty
pe
s N

|
M

Si
g(

C
,m

)
=
o
m
s o

lo
ok

up
sig

na
tu
re

of
m
et
ho

d
m

in
cl
as
s

C
|

M
Si

g(s N,
m
,s
T
) =

o
m
s o

m
in
s N

w
ith

m
et
ho

d
ty
pe

ar
gu

m
en
ts
s
T

su
bs
tit

ut
ed

|
C

la
ss

D
om

(C
)

=
o
X
o

lo
ok

up
ty
pe

va
ria

bl
es

of
cl
as
s

C
|

C
la

ss
B

nd
s(

C
)

=
o
s N
o

lo
ok

up
bo

un
ds

of
cl
as
s

C
|

C
la

ss
B

nd
s(
s N

)
=
o
s N
o

lo
ok

up
bo

un
ds

of
ty
pe
s N

uc
om

bd
ef

::= |
u
B

u′
=

u′
′

co
m
bi
ni
ng

tw
o
ow

ne
rs
hi
p
m
od

ifi
er
s

|
u
B
s
T

=
s
T
′

ow
ne

rs
hi
p
m
od

ifi
er

-t
yp

e
co
m
bi
na

tio
n

|
u
B
s
T

=
s
T
′

ow
ne

rs
hi
p
m
od

ifi
er

-t
yp

es
co
m
bi
na

tio
n

tc
om

bd
ef

::= |
s N
B
s
T

=
o
s
T
′ o

ty
pe

-t
yp

e
co
m
bi
na

tio
n

|
s N
B
s
T

=
o
s
T
′ o

ty
pe

-t
yp

es
co
m
bi
na

tio
n

|
(s N

B
s
T
)[s T

′ /
X
′] =

o
s
T
′′ o

ty
pe

-t
yp

es
co
m
bi
na

tio
n
an

d
su
bs
tit

ut
io
n

160

B.1 Complete Grammar

st
su

bx
in

g
::= |

u
<

: u
u′

or
de

rin
g
of

ow
ne

rs
hi
p
m
od

ifi
er
s

|
s
C
T
v
s
C
T
′

su
bc

la
ss
in
g

|
s Γ
`
s
T
<

:
s
T
′

st
at
ic

su
bt
yp

in
g

|
`
s
T
<

: l
s
T
′

ty
pe

ar
gu

m
en
t
su
bt
yp

in
g

|
s Γ
`
s
T
<

: s
s
T
′

st
ric

t
st
at
ic

su
bt
yp

in
g

|
`
s
T
<

: l
s
T
′

ty
pe

ar
gu

m
en
t
su
bt
yp

in
gs

|
s Γ
`
s
T
<

:
s
T
′

st
at
ic

su
bt
yp

in
gs

|
s Γ
`
s
T
<

: s
s
T
′

st
ric

t
st
at
ic

su
bt
yp

in
gs

ty
pe

ru
le
s

::= |
s Γ
`

e
:s
T

ex
pr
es
sio

n
ty
pi
ng

|
s Γ
`
e

:s
T

ex
pr
es
sio

n
ty
pi
ng

s
|

s Γ
`

e
: s
s
T

st
ric

t
ex
pr
es
sio

n
ty
pi
ng

|
s Γ
`
e

: s
s
T

st
ric

t
ex
pr
es
sio

n
ty
pi
ng

s

wf
st

at
ic

::= |
s Γ
`
s
T

O
K

w
el
l-f
or
m
ed

st
at
ic

ty
pe

|
s Γ
`
s
T

O
K

w
el
l-f
or
m
ed

st
at
ic

ty
pe

s
|

s Γ
`
s
T

st
ric

tly
O

K
st
ric

tly
w
el
l-f
or
m
ed

st
at
ic

ty
pe

|
s Γ
`
s
T

st
ric

tly
O

K
st
ric

tly
w
el
l-f
or
m
ed

st
at
ic

ty
pe

s
|

C
ls

O
K

w
el
l-f
or
m
ed

cl
as
s
de

cl
ar
at
io
n

|
s Γ
`
s
T

f;
O

K
w
el
l-f
or
m
ed

fie
ld

de
cl
ar
at
io
n

|
s Γ
`

fd
O

K
w
el
l-f
or
m
ed

fie
ld

de
cl
ar
at
io
ns

|
s Γ
,C
`

m
d

O
K

w
el
l-f
or
m
ed

m
et
ho

d
de

cl
ar
at
io
n

|
s Γ
,C
`

m
d

O
K

w
el
l-f
or
m
ed

m
et
ho

d
de

cl
ar
at
io
ns

|
s
C
T
`

m
O

K
m
et
ho

d
ov
er
rid

in
g
O
K

|
s
C
T
,C

<s
T
,
X
>
`

m
O

K
m
et
ho

d
ov
er
rid

in
g
O
K

au
xi
lia

ry
|

s Γ
O

K
w
el
l-f
or
m
ed

st
at
ic

en
vi
ro
nm

en
t

161

Appendix B Ott Formalization

|
`

P
O

K
w
el
l-f
or
m
ed

pr
og

ra
m

en
ca

ps
ul

at
io

n
::= |

s Γ
`

e
en

c
en

ca
ps
ul
at
ed

ex
pr
es
sio

n
|

s Γ
`
e

en
c

en
ca
ps
ul
at
ed

ex
pr
es
sio

ns
|

s Γ
,C
`

m
d

en
c

en
ca
ps
ul
at
ed

m
et
ho

d
de

cl
ar
at
io
n

|
s Γ
,C
`

m
d

en
c

en
ca
ps
ul
at
ed

m
et
ho

d
de

cl
ar
at
io
ns

|
C
ls

en
c

en
ca
ps
ul
at
ed

cl
as
s
de

cl
ar
at
io
n

|
`

P
en

c
en

ca
ps
ul
at
ed

pr
og

ra
m

pu
ri

ty
::= |

s Γ
`

e
pu

re
pu

re
ex
pr
es
sio

n
|

s Γ
`

e
st

ric
tly

pu
re

st
ric

tly
pu

re
ex
pr
es
sio

n
|

s Γ
`
e

st
ric

tly
pu

re
pu

re
ex
pr
es
sio

ns

pr
go

k
::= |

s Γ
`
s
T

pr
g

O
K

re
as
on

ab
le

st
at
ic

ty
pe

|
s Γ
,s
N
′′
`
s
T
<

:s
N
,s
N
′

re
as
on

ab
le

st
at
ic

ty
pe

ar
gu

m
en
t

|
s Γ
,s
N
′′
`
s
T
<

:s
N
,s
N
′

re
as
on

ab
le

st
at
ic

ty
pe

ar
gu

m
en
ts

|
s Γ
`
s
T

pr
g

O
K

re
as
on

ab
le

st
at
ic

ty
pe

s
|

C
ls

pr
g

O
K

re
as
on

ab
le

cl
as
s
de

cl
ar
at
io
n

|
s Γ
`
s
T

f;
pr

g
O

K
re
as
on

ab
le

fie
ld

de
cl
ar
at
io
n

|
s Γ
`

fd
pr

g
O

K
re
as
on

ab
le

fie
ld

de
cl
ar
at
io
ns

|
s Γ
,C
`

m
d

pr
g

O
K

re
as
on

ab
le

m
et
ho

d
de

cl
ar
at
io
n

|
s Γ
,C
`

m
d

pr
g

O
K

re
as
on

ab
le

m
et
ho

d
de

cl
ar
at
io
ns

|
`

P
pr

g
O

K
re
as
on

ab
le

pr
og

ra
m

|
s Γ
`

e
pr

g
O

K
re
as
on

ab
le

ex
pr
es
sio

n
|

s Γ
`
e

pr
g

O
K

re
as
on

ab
le

ex
pr
es
sio

ns

162

B.1 Complete Grammar

rt
_

he
lp
er

s
::= |

h
+

o
=

(h
′ ,
ι)

ad
d
ob

je
ct

o
to

he
ap

h
re
su
lti
ng

in
he

ap
h′

an
d
fr
es
h
ad

dr
es
s
ι

|
h[
ι.

f
=
v
]

=
o

h′
fie

ld
up

da
te

in
he

ap
|

FT
yp

e(
h,
ι,

f)
=
o
s
T
o

lo
ok

up
ty
pe

of
fie

ld
in

he
ap

|
M

Si
g(

h,
ι,

m
)

=
o
m
s o

lo
ok

up
m
et
ho

d
sig

na
tu
re

of
m
et
ho

d
m

at
ι

|
M

B
od

y(
C
,m

)
=
o
e o

lo
ok

up
m
os
t-
co
nc

re
te

bo
dy

of
m

in
cl
as
s

C
or

a
su
pe

rc
la
ss

|
M

B
od

y(
h,
ι,

m
)

=
o
e o

lo
ok

up
m
os
t-
co
nc

re
te

bo
dy

of
m
et
ho

d
m

at
ι

|
sd

yn
(s T,

h,
ι,
r
T
,o
ι) =

o
r
T

sim
pl
e
dy

na
m
iz
at
io
n
of

ty
pe

s
s
T

|
C

la
ss

B
nd

s(
h,
ι,
r
T
,o
ι)

=
o
r
T

up
pe

r
bo

un
ds

of
ty
pe
r
T

fr
om

vi
ew

po
in
t
ι

rt
su

bx
in

g
::= |

h
`
r
T
<

:
r
T
′

ty
pe
r
T

is
a
su
bt
yp

e
of
r
T
′

|
h
`
r
T
<

:
r
T
′

ru
nt
im

e
su
bt
yp

in
gs

|
h
`
v o

:
r
T

ru
nt
im

e
ty
pe
r
T

as
sig

na
bl
e
to

va
lu
e
v o

|
h,

r Γ
`
v

:
s
T

st
at
ic

ty
pe
s
T

as
sig

na
bl
e
to

va
lu
e
v
(r
el
at
iv
e
to

r Γ
)

|
h,

r Γ
`
v

:
s
T

st
at
ic

ty
pe

s
s
T

as
sig

na
bl
e
to

va
lu
es
v
(r
el
at
iv
e
to

r Γ
)

|
h,
ι
`
v o

:
s
T

st
at
ic

ty
pe
s
T

as
sig

na
bl
e
to

va
lu
e
v o

(r
el
at
iv
e
to
ι)

|
dy

n(
s
T
,h
,r

Γ
,o
ι)

=
o
r
T
o

dy
na

m
iz
at
io
n
of

st
at
ic

ty
pe

(r
el
at
iv
e
to

r Γ
)

|
dy

n(s T,
h,

r Γ
,o
ι) =

o
r
T
o

dy
na

m
iz
at
io
n
of

st
at
ic

ty
pe

s
(r
el
at
iv
e
to

r Γ
)

|
h,

r Γ
`
s N
,s
T

;(s T/
X
,ι
) =

o
r Γ
′

va
lid

at
e
an

d
cr
ea
te

ne
w

vi
ew

po
in
t

r Γ
′

se
m

an
tic

s
::= |

r Γ
`

h,
e

h′
,v

bi
g-
st
ep

op
er
at
io
na

ls
em

an
tic

s
|

r Γ
`

h,
e

h′
,v

se
qu

en
tia

lb
ig
-s
te
p
op

er
at
io
na

ls
em

an
tic

s
|
`

P

h,
v

bi
g-
st
ep

op
er
at
io
na

ls
em

an
tic

s
of

a
pr
og

ra
m

wf
ru

nt
im

e
::= |

h,
ι
`
r
T
o

st
ric

tly
O

K
st
ric

tly
w
el
l-f
or
m
ed

ru
nt
im

e
ty
pe
r
T
o

|
h,

ι
`
r
T

st
ric

tly
O

K
st
ric

tly
w
el
l-f
or
m
ed

ru
nt
im

e
ty
pe

s

163

Appendix B Ott Formalization

|
h,

ι
`
r
T

st
ric

tly
O

K
st
ric

tly
w
el
l-f
or
m
ed

ru
nt
im

e
ty
pe

s
|

h
`
ι

O
K

w
el
l-f
or
m
ed

ad
dr
es
s

|
h

O
K

w
el
l-f
or
m
ed

he
ap

|
h,

r Γ
:s Γ

O
K

ru
nt
im

e
an

d
st
at
ic

en
vi
ro
nm

en
ts

co
rr
es
po

nd

164

B.2 Complete Definitions

B.2 Complete Definitions

FType(C , f) =o sTo look up field f in class C

class Cid<_> extends _<_> { _ sT f ; _ _ } ∈P
FType(Cid, f) =o sT

sftc_def

FType(sN, f) =o sTo look up field f in type sN

FType(ClassOf(sN) , f) =o sT1
sN B sT1 =o sT

FType(sN, f) =o sT
sftn_def

MSig(C ,m) =o mso look up signature of method m in class C

class Cid<_> extends _<_> { _ _ ms { e } _ } ∈P
MName(ms) = m

MSig(Cid,m) =o ms smsc_def

MSig
(
sN,m, sT

)
=o mso m in sN with method type arguments sT substituted

MSig(ClassOf(sN) ,m) =o p <Xl extends sNl> sT m(sT ′q pid)(
sN B sNl

) [
sTl/Xl

]
=o sN ′l (sN B sT)

[
sTl/Xl

]
=o sT ′(

sN B sT ′q
) [
sTl/Xl

]
=o sT ′′q

MSig
(
sN,m, sTl

)
=o p <Xl extends sN ′l > sT ′ m(sT ′′q pid)

smsn_def

ClassDom(C) =o Xo look up type variables of class C

class Cid<Xk extends _> extends _<_> { _ _ } ∈P
ClassDom(Cid) =o Xk

scd_nvar

ClassDom(Object) =o ∅
scd_object

ClassBnds(C) =o sNo look up bounds of class C

class Cid<Xk extends sNk> extends _<_> { _ _ } ∈P
ClassBnds(Cid) =o sNk

scbc_nvar

ClassBnds(Object) =o ∅
scbc_object

ClassBnds(sN) =o sNo look up bounds of type sN

ClassBnds(ClassOf(sN)) =o sN1
sN B sN1 =o sN

ClassBnds(sN) =o sN
scbn_def

u B u′ = u′′ combining two ownership modifiers

self B u = u ucu_self

peer B peer = peer
ucu_peer

rep B peer = rep
ucu_rep

165

Appendix B Ott Formalization

u B any = any
ucu_any

otherwise
u B u′ = lost

ucu_lost

u B sT = sT ′ ownership modifier - type combination

u B X = X uct_var

u B u′ = u′′

u B sT = sT
′

u B u′ C<sT> = u′′ C<sT
′
>

uct_nvar

u B sT = sT
′ ownership modifier - types combination

u B sTk = sT ′k

u B sTk = sT ′k
ucts_def

sN B sT =o sT ′o type - type combination

u B sT = sT1
sT1
[
sT/X

]
= sT ′ ClassDom(C) =o X

u C<sT> B sT =o sT ′
tct_def

sN B sT =o sT
′
o type - types combination

sN B sTk =o sT ′k
sN B sTk =o sT ′k

tcts_def

(
sN B sT

) [
sT
′
/X
′
]

=o sT
′′
o type - types combination and substitution

sN B sT =o sT 1

sT 1

[
sT
′
/X
′
]

= sT ′′(
sN B sT

) [
sT
′
/X
′
]

=o sT
′′

tctssubsts_def

u <:u u′ ordering of ownership modifiers

self <:u peer
omo_tp

peer <:u lost
omo_pl

rep <:u lost
omo_rl

u <:u any
omo_ua

u <:u u omo_refl

sCT v sCT ′ subclassing

class Cid<Xk extends _> extends C ′<sT> { _ _ } ∈P
Cid<Xk> v C ′<sT>

sc1

class C<Xk extends _> . . . ∈ P
C<Xk> v C<Xk>

sc2

166

B.2 Complete Definitions

C<X> v C1<sT 1>
C1<X1> v C ′<sT ′>

C<X> v C ′<sT ′
[
sT 1/X1

]
>

sc3

sΓ ` sT <: sT ′ static subtyping

C<X> v C ′<sT 1>
u C<sT> B sT 1 =o sT

′

sΓ ` u C<sT> <: u C ′<sT ′>
st1

u <:u u′ ` sT <:l sT
′

sΓ ` u C<sT> <: u′ C<sT
′
>

st2

sT = X ∨ sΓ(X) =o sT
sΓ ` X <: sT st3

sΓ ` sT <: sT1
sΓ ` sT1 <: sT ′
sΓ ` sT <: sT ′ st4

` sT <:l sT ′ type argument subtyping

u′ ∈ {u , lost}
` sT <:l sT

′

` u C<sT> <:l u′ C<sT
′
>

ast1

` X <:l X ast2

sΓ ` sT <:s sT ′ strict static subtyping

sΓ ` sT <: sT ′
lost /∈ sT ′

sΓ ` sT <:s sT ′
sstdef

` sT <:l sT
′ type argument subtypings

` sTk <:l sT ′k
` sTk <:l sT ′k

asts_def

sΓ ` sT <: sT ′ static subtypings

sΓ ` sTk <: sT ′k
sΓ ` sTk <: sT ′k

sts_def

sΓ ` sT <:s sT
′ strict static subtypings

sΓ ` sTk <:s sT ′k
sΓ ` sTk <:s sT ′k

ssts_def

sΓ ` e : sT expression typing
sΓ ` e : sT1
sΓ ` sT1 <: sT
sΓ ` sT OK

sΓ ` e : sT tr_subsum

self /∈ sT
sΓ ` sT OK

sΓ ` null : sT tr_null

167

Appendix B Ott Formalization

sΓ(x) =o sT
sΓ ` x : sT tr_var

sΓ ` sT strictly OK
om(sT, sΓ) ∈ {peer , rep}

sΓ ` new sT() : sT tr_new
sΓ ` e0 : sN0
FType(sN0, f) =o sT

sΓ ` e0.f : sT tr_read

sΓ ` e0 : sN0 FType(sN0, f) =o sT
sΓ ` e1 :s sT

sΓ ` e0.f = e1 : sT tr_write

sΓ ` e0 : sN0
sΓ ` sTl strictly OK

MSig
(
sN0,m, sTl

)
=o _ <Xl extends sNl> sT m(sT ′q pid)

sΓ ` eq :s sT ′q sΓ ` sTl <:s sNl

sΓ ` e0 . m < sTl > (eq) : sT
tr_call

sΓ ` e : _
sΓ ` sT OK

sΓ ` (sT) e : sT tr_cast

sΓ ` e : sT expression typings

sΓ ` ek : sTk

sΓ ` ek : sTk
trm_def

sΓ ` e :s sT strict expression typing

sΓ ` e : sT
lost /∈ sT

sΓ ` e :s sT
str_def

sΓ ` e :s sT strict expression typings

sΓ ` ek :s sTk

sΓ ` ek :s sTk
strm_def

sΓ ` sT OK well-formed static type

X ∈ sΓ
sΓ ` X OK wft_var

sΓ ` sT OK self /∈ sT
ClassBnds

(
u C<sT>

)
=o sN sΓ ` sT <: sN

sΓ ` u C<sT> OK
wft_nvar

sΓ ` sT OK well-formed static types

sΓ ` sTk OK
sΓ ` sTk OK

wfts_def

sΓ ` sT strictly OK strictly well-formed static type

X ∈ sΓ
sΓ ` X strictly OK swft_var

sΓ ` sT strictly OK {self , lost} /∈ u C<sT>
ClassBnds

(
u C<sT>

)
=o sN sΓ ` sT <:s sN

sΓ ` u C<sT> strictly OK
swft_nvar

168

B.2 Complete Definitions

sΓ ` sT strictly OK strictly well-formed static types

sΓ ` sTk strictly OK
sΓ ` sTk strictly OK

swfts_def

Cls OK well-formed class declaration

sΓ =
{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

}
sΓ ` sNk OK self /∈ sNk

sΓ ` sT strictly OK ClassBnds
(
self C<sT>

)
=o sN

′ sΓ ` sT <:s sN
′

sΓ ` fd OK sΓ ,Cid ` md OK
class Cid<Xk extends sNk> extends C<sT> { fd md } OK

wfc_def

class Object {} OK wfc_object

sΓ ` sT f ; OK well-formed field declaration

sΓ ` sT OK
sΓ ` sT f ; OK wffd_def

sΓ ` fd OK well-formed field declarations

sΓ ` sTi fi; OK
sΓ ` sTi fi; OK

wffds_def

sΓ ,C ` md OK well-formed method declaration

sΓ =
{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}
sΓ ′ ` sNl ,

sT , sTq OK self /∈ sNl
sΓ ′ ` e : sT C<X ′k> ` m OK

sΓ ,C ` _ <Xl extends sNl> sT m(sTq pid) { e } OK
wfmd_def

sΓ ,C ` md OK well-formed method declarations

sΓ ,C ` mdk OK
sΓ ,C ` mdk OK

wfmds_def

sCT ` m OK method overriding OK

∀C ′<X ′>. ∀ sT .
(
C<X> v C ′<sT> =⇒ C<X>,C ′<sT , X ′> ` m OK

)
C<X> ` m OK

ovr_def

sCT ,C<sT , X> ` m OK method overriding OK auxiliary

MSig(C ,m) =o ms MSig(C ′,m) =o ms′o
ms′o=oNone ∨

(
ms′o=oms′ ∧ ms′[sT/X ′] = ms

)
C<X>,C ′<sT , X ′> ` m OK

ovra_def

sΓ OK well-formed static environment

sΓ =
{
Xk 7→ sNk , X ′l 7→ sN ′l ; this 7→ self C<Xk> , pid 7→ sTq

}
ClassDom(C) =o Xk ClassBnds(C) =o sNk

sΓ ` sTq , sNk , sN ′l OK self /∈ sNk , sN ′l
sΓ OK swfe_def

169

Appendix B Ott Formalization

` P OK well-formed program

Clsi OK
{∅ ; this 7→ self C< >} ` self C< > OK
{∅ ; this 7→ self C< >} ` e : _
∀C ′,C ′′. ((C ′<_> v C ′′<_> ∧ C ′′<_> v C ′<_>) =⇒ C ′= C ′′)

` Clsi , C , e OK
wfp_def

sΓ ` e enc encapsulated expression

sΓ ` null : _
sΓ ` null enc e_null

sΓ ` x : _
sΓ ` x enc e_var

sΓ ` new sT() : _
sΓ ` new sT() enc e_new

sΓ ` e0.f : _
sΓ ` e0 enc

sΓ ` e0.f enc e_read

sΓ ` e0.f = e1 : _
sΓ ` e0 : sN0

sΓ ` e0 enc sΓ ` e1 enc
om(sN0) ∈ {self , peer , rep}

sΓ ` e0.f = e1 enc e_write

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 : sN0

sΓ ` e0 enc sΓ ` e enc
om(sN0) ∈ {self , peer , rep} ∨ MSig

(
sN0,m, sT

)
=o pure <_> _ m(_)

sΓ ` e0 . m < sT > (e) enc
e_call

sΓ ` (sT) e : _
sΓ ` e enc

sΓ ` (sT) e enc e_cast

sΓ ` e enc encapsulated expressions

sΓ ` ek enc
sΓ ` ek enc em_def

sΓ ,C ` md enc encapsulated method declaration

sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } OK
sΓ =

{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}(
p = pure =⇒ sΓ ′ ` e pure

) (
p = impure =⇒ sΓ ′ ` e enc

)
sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } enc

emd_def

sΓ ,C ` md enc encapsulated method declarations

sΓ ,C ` md i enc
sΓ ,C ` md i enc

emds_def

Cls enc encapsulated class declaration

class Cid<Xk extends sNk> extends C<sT> { fd md } OK
sΓ =

{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

} sΓ ,Cid ` md enc
class Cid<Xk extends sNk> extends C<sT> { fd md } enc

ec_def

170

B.2 Complete Definitions

class Object {} enc ec_object

` P enc encapsulated program

` Cls, C , e OK
Clsk enc
{∅ ; this 7→ self C< >} ` e enc

` Cls, C , e enc
ep_def

sΓ ` e pure pure expression sΓ ` e strictly pure strictly pure expression

sΓ ` null : _
sΓ ` null strictly pure sp_null

sΓ ` x : _
sΓ ` x strictly pure sp_var

sΓ ` new sT() : _
sΓ ` new sT() strictly pure sp_new

sΓ ` e0.f : _
sΓ ` e0 strictly pure

sΓ ` e0.f strictly pure sp_read

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 : sN0

sΓ ` e0 strictly pure sΓ ` e strictly pure
MSig

(
sN0,m, sT

)
=o pure <_> _ m(_)

sΓ ` e0 . m < sT > (e) strictly pure
sp_call

sΓ ` (sT) e : _
sΓ ` e strictly pure

sΓ ` (sT) e strictly pure sp_cast

sΓ ` e strictly pure pure expressions

sΓ ` ek strictly pure
sΓ ` ek strictly pure pm_def

sΓ ` sT prg OK reasonable static type

X ∈ sΓ
sΓ ` X prg OK pwft_var

sΓ ` sT prg OK self /∈ u C<sT>
ClassBnds(C) =o sN u C<sT> B sN =o sN

′

sΓ , u C<sT> ` sT <: sN, sN ′

sΓ ` u C<sT> prg OK
pwft_nvar

sΓ , sN ′′ ` sT <: sN, sN ′ reasonable static type argument

sΓ ` sT <: sN ′
ClassDom(C) =o Xk ClassBnds(C) =o sNk

sΓ ′=
{
Xk 7→ sNk ; this 7→ self C<Xk>, _

}
∃ sT0.

(
u C<sT> B sT0 =o sT ∧ sΓ ′ ` sT0 <: sN

)
sΓ , u C<sT> ` sT <: sN, sN ′

pwfta_def

sΓ , sN ′′ ` sT <: sN, sN ′ reasonable static type arguments

171

Appendix B Ott Formalization

sΓ , sN ′′ ` sTk <: sNk , sN ′k
sΓ , sN ′′ ` sTk <: sNk , sN ′k

pwftas_def

sΓ ` sT prg OK reasonable static types

sΓ ` sTk prg OK
sΓ ` sTk prg OK

pts_def

Cls prg OK reasonable class declaration

class Cid<Xk extends sNk> extends C<sT> { fd md } OK
sΓ =

{
Xk 7→ sNk ; this 7→ self Cid<Xk>, _

}
sΓ ` sNk prg OK lost /∈ sNk

sΓ ` fd prg OK sΓ ,Cid ` md prg OK
class Cid<Xk extends sNk> extends C<sT> { fd md } prg OK

pc_def

class Object {} prg OK pc_object

sΓ ` sT f ; prg OK reasonable field declaration

sΓ ` sT prg OK lost /∈ sT
sΓ ` sT f ; prg OK pfd_def

sΓ ` fd prg OK reasonable field declarations

sΓ ` sTi fi; prg OK
sΓ ` sTi fi; prg OK

pfds_def

sΓ ,C ` md prg OK reasonable method declaration

sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } OK
sΓ =

{
X ′k 7→ sN ′k ; this 7→ self C<X ′k>, _

}
sΓ ′=

{
X ′k 7→ sN ′k , Xl 7→ sNl ; this 7→ self C<X ′k> , pid 7→ sTq

}
sΓ ′ ` sNl ,

sT , sTq prg OK lost /∈ sNl , sTq
sΓ ′ ` e prg OK

p = pure =⇒
(
free
(
sNl , sTq

)
⊆ ∅ ∧ any B sNl , sTq = sNl , sTq

)
sΓ ,C ` p <Xl extends sNl> sT m(sTq pid) { e } prg OK

pmd_def

sΓ ,C ` md prg OK reasonable method declarations

sΓ ,C ` md i prg OK
sΓ ,C ` md i prg OK

pmds_def

` P prg OK reasonable program

` Clsi , C , e OK
Clsi prg OK
{∅ ; this 7→ self C<∅>} ` e prg OK

` Clsi , C , e prg OK
pp_def

sΓ ` e prg OK reasonable expression

sΓ ` null : _
sΓ ` null prg OK pe_null

172

B.2 Complete Definitions

sΓ ` x : _
sΓ ` x prg OK pe_var

sΓ ` new sT() : _
sΓ ` new sT() prg OK pe_new

sΓ ` e0.f : _
sΓ ` e0 prg OK

sΓ ` e0.f prg OK pe_read

sΓ ` e0.f = e1 : _
sΓ ` e0 prg OK sΓ ` e1 prg OK

sΓ ` e0.f = e1 prg OK pe_write

sΓ ` e0 . m < sT > (e) : _
sΓ ` e0 prg OK sΓ ` e prg OK

sΓ ` e0 . m < sT > (e) prg OK
pe_call

sΓ ` (sT) e : _
sΓ ` e prg OK sΓ ` sT prg OK

sΓ ` (sT) e prg OK pe_cast

sΓ ` e prg OK reasonable expressions

sΓ ` ei prg OK
sΓ ` ei prg OK pem_def

h + o = (h′, ι) add object o to heap h resulting in heap h′ and fresh address ι

ι /∈ dom(h) h′= h + (ι 7→ o)
h + o = (h′, ι) hnew_def

h[ι.f = v] =o h′ field update in heap

v= nulla ∨ (v= ι′ ∧ ι′ ∈dom(h))
h(ι) =o

(
rT , fv

)
f ∈ dom

(
fv
)

fv′= fv[f 7→ v]
h′= h +

(
ι 7→

(
rT , fv′

))
h[ι.f = v] =o h′ hup_def

FType(h, ι, f) =o sTo look up type of field in heap

h ` ι : _ C<_> FType(C , f) =o sT
FType(h, ι, f) =o sT

rft_def

MSig(h, ι,m) =o mso look up method signature of method m at ι

h ` ι : _ C<_> MSig(C ,m) =o ms
MSig(h, ι,m) =o ms rms_def

MBody(C ,m) =o eo look up most-concrete body of m in class C or a superclass

class Cid<_> extends _<_> { _ _ ms { e } _ } ∈P
MName(ms) = m

MBody(Cid,m) =o e smbc_found

class Cid<_> extends C1<_> { _ msn { en } } ∈P
MName(msn) 6=m MBody(C1,m) =o e

MBody(Cid,m) =o e smbc_inh

173

Appendix B Ott Formalization

MBody(h, ι,m) =o eo look up most-concrete body of method m at ι

h(ι)↓1 =o_ C<_> MBody(C ,m) =o e
MBody(h, ι,m) =o e rmb_def

sdyn
(
sT , h, ι, rT , oι

)
=o rT simple dynamization of types sT

oι′ ∈ dom(h) ∪ {roota} oι 6= anya =⇒ oι′= oι
ClassDom(C) =o X rep∈ sT =⇒ owner(h, ι) =o oι′
sT
[
oι′ / peer , ι / rep , anya / any , rT /X , oιi / lost

]
=o rT

′

sdyn
(
sT , h, ι, oι C<rT>, oιi

)
=o rT

′ sdyn

ClassBnds(h, ι, rT , oι) =o rT upper bounds of type rT from viewpoint ι

ClassBnds(ClassOf(rT)) =o sN sdyn
(
sN, h, ι, rT , oι

)
=o rT

ClassBnds(h, ι, rT , oι) =o rT
rcb_def

h ` rT <: rT ′ type rT is a subtype of rT ′

C<X> v C ′<sT> oι′ ∈ {oι , anya}
sdyn

(
sT , h, _, oι C<rT>, oι

)
=o rT

′

h ` oι C<rT> <: oι′ C ′<rT ′>
rt_def

h ` rT <: rT ′ runtime subtypings

h ` rT i <: rT ′i
h ` rT i <: rT ′i

rts_def

h ` vo : rT runtime type rT assignable to value vo

h(ι)↓1 =o rT 1 h ` rT 1 <: rT
h ` ι : rT rtt_addr

h ` nulla : rT rtt_null

h, rΓ ` v : sT static type sT assignable to value v (relative to rΓ)

dyn(sT, h, rΓ , oι) =o rT h ` v : rT
sT = self _<_> =⇒ v= rΓ(this)

h, rΓ ` v : sT rtste_def

h, rΓ ` v : sT static types sT assignable to values v (relative to rΓ)

h, rΓ ` vi : sTi

h, rΓ ` vi : sTi
rtstse_def

h, ι ` vo : sT static type sT assignable to value vo (relative to ι)

rΓ = {∅ ; this 7→ ι}
h, rΓ ` v : sT

h, ι ` v : sT rtsta_def

dyn(sT, h, rΓ , oι) =o rTo dynamization of static type (relative to rΓ)

174

B.2 Complete Definitions

rΓ =
{
Xl 7→ rT l ; this 7→ ι, _

}
h ` ι : oι C<rT>

oι∈dom(h) ∪ {roota} ClassDom(C) =o X
sT
[
oι / self , oι / peer , ι / rep , anya / any , rT /X , rT l /Xl , oιi / lost

]
=o rT ′

dyn(sT, h, rΓ , oιi) =o rT ′
dyne

dyn
(
sT , h, rΓ , oι

)
=o rT o dynamization of static types (relative to rΓ)

dyn(sT1, h, rΓ , oι1) =o rT 1 , .. , dyn(sTn , h, rΓ , oιn) =o rT n

dyn(sT1 , .. , sTn , h, rΓ , oι1 ; .. ; oιn) =o rT 1 , .. , rT n
dynse_def

h, rΓ ` sN, sT ;
(
sT/X, ι

)
=o rΓ ′ validate and create new viewpoint rΓ ′

sΓ ` sN OK ClassDom(ClassOf(sN)) =o X free(sT) ⊆ X , Xl
dyn
(
sTl , h, rΓ , ∅

)
=o rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι, _

}
h, rΓ ` sN, sT ;

(
sTl/Xl , ι

)
=o rΓ ′

nvp_def

rΓ ` h, e h′, v big-step operational semantics

rΓ ` h, null h, nulla
os_null

rΓ(x) =o v
rΓ ` h, x h, v os_var

dyn(sT, h, rΓ , ∅) =o rT ClassOf(rT) = C(
∀f ∈ fields(C) . fv(f) =o nulla

)
h +

(
rT , fv

)
= (h′, ι)

rΓ ` h, new sT() h′, ι os_new

rΓ ` h, e0 h′, ι0
h′(ι0.f) =o v

rΓ ` h, e0.f h′, v os_read

rΓ ` h, e0 h0, ι0
rΓ ` h0, e1 h1, v
h1[ι0.f = v] =o h′

rΓ ` h, e0.f = e1 h′, v os_write

rΓ ` h, e0 h0, ι0
rΓ ` h0, eq h1, vq

MBody(h0, ι0,m) =o e MSig(h0, ι0,m) =o _ <Xl extends _> _ m(_ pid)
dyn
(
sTl , h, rΓ , ∅

)
=o rT l

rΓ ′=
{
Xl 7→ rT l ; this 7→ ι0 , pid 7→ vq

}
rΓ ′ ` h1, e h′, v

rΓ ` h, e0 . m < sTl > (eq) h′, v
os_call

rΓ ` h, e h′, v
h′, rΓ ` v : sT

rΓ ` h, (sT) e h′, v os_cast

rΓ ` h, e h′, v sequential big-step operational semantics

rΓ ` h, e h0, v
rΓ ` h0, ei h′, vi

rΓ ` h, e , ei h′, v , vi
oss_def

rΓ ` h, ∅ h, ∅ oss_empty

` P h, v big-step operational semantics of a program

∀f ∈ fields(C) . fv(f) =o nulla
∅+

(
roota C< >, fv

)
= (h0, ι0)

rΓ0 = {∅ ; this 7→ ι0} rΓ0 ` h0, e h, v
` Cls, C , e h, v

osp_def

175

Appendix B Ott Formalization

h, ι ` rTo strictly OK strictly well-formed runtime type rTo

oι∈ dom(h) ∪ {anya , roota} ClassBnds
(
h, ι, oι C<rT k>, ∅

)
=o rT ′k

h, _ ` rT k strictly OK h ` rT k <: rT ′k
h, ι ` oι C<rT k> strictly OK

swfrt_def

h, ι ` rT strictly OK strictly well-formed runtime types

h, ι ` rT i strictly OK
h, ι ` rT i strictly OK

swfrtso_def

h, ι ` rT strictly OK strictly well-formed runtime types

h, ιi ` rT i strictly OK
h, ιi ` rT i strictly OK

swfrts_def

h ` ι OK well-formed address

h(ι)↓1 =o_ C<_> h, ι ` h(ι)↓1 strictly OK roota ∈ owners(h, ι)
∀f ∈ fields(C) . ∃ sT. (FType(h, ι, f) =o sT ∧ h, ι ` h(ι.f) : sT)

h ` ι OK wfa_def

h OK well-formed heap

∀ι ∈ dom(h) . h ` ι OK
h OK wfh_def

h, rΓ : sΓ OK runtime and static environments correspond

rΓ =
{
Xl 7→ rT l ; this 7→ ι , pid 7→ vq

}
sΓ =

{
Xl 7→ sNl , X ′k 7→ _ ; this 7→ self C<X ′k> , pid 7→ sTq

}
h OK sΓ OK h, ι ` rT l strictly OK

dyn
(
sNl , h, rΓ , ∅

)
=o rT ′l h ` rT l <: rT ′l

h, rΓ ` ι : self C<X ′k> h, rΓ ` vq : sTq

h, rΓ : sΓ OK wfrse_def

176

Bibliography
[1] M. Abi-Antoun and J. Aldrich. Compile-time views of execution structure based on ownership. In

International Workshop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO), 2007.

[2] M. Abi-Antoun and J. Aldrich. Ownership domains in the real world. In International Workshop
on Aliasing, Confinement and Ownership in object-oriented programming (IWACO), 2007.

[3] M. Abi-Antoun and J. Aldrich. Static extraction of sound hierarchical runtime object graphs. In
Types in Language Design and Implementation (TLDI), 2009.

[4] R. Agarwal and S. D. Stoller. Type inference for parameterized race-free Java. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 2937 of LNCS, pages 149–160.
Springer-Verlag, 2004.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools,
Second Edition. Addison-Wesley, 2007.

[6] J. Aldrich. Using Types to Enforce Architectural Structure. PhD thesis, University of Washington,
2003.

[7] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mechanism. In
European Conference on Object-Oriented Programming (ECOOP), volume 3086 of LNCS, pages
1–25. Springer-Verlag, 2004.

[8] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program understanding. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 311–330.
ACM Press, 2002.

[9] J. Aldrich, R. J. Simmons, and K. Shin. SASyLF: An educational proof assistant for language
theory. In Functional and Declarative Programming in Education, 2008.

[10] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In European Conference
on Object-Oriented Programming (ECOOP), volume 1241 of LNCS, pages 32–59. Springer-Verlag,
1997.

[11] P. S. Almeida. Control of Object Sharing in Programming Languages. PhD thesis, Imperial College
London, 1998.

[12] C. Andrea, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao. Scoped types and aspects for
real-time systems. In European Conference on Object-Oriented Programming (ECOOP), volume
4067 of LNCS, pages 124–147. Springer-Verlag, 2006.

[13] A. Banerjee and D. A. Naumann. Representation independence, confinement, and access control.
In Principles of Programming Languages (POPL), pages 166–177. ACM Press, 2002.

[14] A. Banerjee and D. A. Naumann. Ownership confinement ensures representation independence for
object-oriented programs. Technical Report 2004-14, Stevens Institute of Technology, 2004.

[15] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning about global
invariants. In European Conference on Object-Oriented Programming (ECOOP), volume 5142 of
LNCS, pages 387–411. Springer-Verlag, 2008.

[16] M. Bär. Practical runtime Universe type inference. Master’s thesis, Department of Computer
Science, ETH Zurich, 2006.

177

BIBLIOGRAPHY

[17] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of Object Technology (JOT), 3(6):27–56, 2004.

[18] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure: Useful abstractions in
specification. In Formal Techniques for Java-like Programs (FTfJP), pages 51–60, 2004.

[19] P. Bazzi. Integration of Universe type system tools into Eclipse. Semester project, Department of
Computer Science, ETH Zurich, 2006.

[20] G. M. Bierman, M. J. Parkinson, and A. M. Pitts. An imperative core calculus for Java and Java
with effects. Technical Report 563, University of Cambridge Computer Laboratory, 2003.

[21] A. Birka and M. D. Ernst. A practical type system and language for reference immutability. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). ACM Press,
2004.

[22] B. Bokowski and J. Vitek. Confined types. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 82–96. ACM Press, 1999.

[23] C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis, MIT, 2004.

[24] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data
races and deadlocks. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 211–230. ACM Press, 2002.

[25] C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership types. In International
Workshop on Aliasing, Confinement and Ownership in object-oriented programming (IWACO),
2003.

[26] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Principles of
Programming Languages (POPL), pages 213–223. ACM Press, 2003.

[27] C. Boyapati, A. Salcianu, W. Beebee Jr., and M. Rinard. Ownership types for safe region-based
memory management in real-time Java. In Programming language design and implementation
(PLDI), pages 324–337. ACM Press, 2003.

[28] J. Boyland. Alias burying: Unique variables without destructive reads. Software—Practice and
Experience, 31(6):533–553, 2001.

[29] J. Boyland, J. Noble, and W. Retert. Capabilities for aliasing: A generalisation of uniqueness and
read-only. In European Conference on Object-Oriented Programming (ECOOP), volume 2072 of
LNCS, pages 2–27. Springer-Verlag, 2001.

[30] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications. In Formal Methods for Industrial Critical Systems
(FMICS), volume 80 of Electronic Notes in Theoretical Computer Science (ENTCS), pages 73–89.
Elsevier, 2003.

[31] L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral interface
specification language for Java bytecode. In Fundamental Approaches to Software Engineering
(FASE), 2007.

[32] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented approach. In
Formal Methods (FME), volume 2805 of LNCS, pages 422–439. Springer-Verlag, 2003.

[33] N. Cameron. Existential Types for Variance — Java Wildcards and Ownership Types. PhD thesis,
Imperial College London, 2009.

[34] N. Cameron and W. Dietl. Comparing Universes and Existential Ownership Types. In International
Workshop on Aliasing, Confinement and Ownership in object-oriented programming (IWACO),
2009.

[35] N. Cameron and S. Drossopoulou. Existential Quantification for Variant Ownership. In European
Symposium on Programming Languages and Systems (ESOP), 2009.

178

BIBLIOGRAPHY

[36] N. Cameron, S. Drossopoulou, and E. Ernst. A model for Java with wildcards. In European
Conference on Object-Oriented Programming (ECOOP), volume 5142 of LNCS, pages 2–26.
Springer-Verlag, 2008.

[37] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple ownership. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 441–460. ACM Press,
2007.

[38] N. Cameron and J. Noble. OGJ Gone Wild. In International Workshop on Aliasing, Confinement
and Ownership in object-oriented programming (IWACO), 2009.

[39] R. Cartwright and M. Fagan. Soft typing. In Programming Language Design and Implementation
(PLDI), pages 278–292. ACM Press, 1991.

[40] R. Cartwright and M. Felleisen. Program verification through soft typing. ACM Computing
Surveys, 28(2):349–351, 1996.

[41] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 519–538. ACM Press,
2005.

[42] T. Chen. Extending MultiJava with generics. Master’s thesis, Iowa State University, 2004.

[43] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD thesis, Iowa State
University, 2003.

[44] Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java Modeling Language (JML).
In Software Engineering Research and Practice (SERP), pages 322–328. CSREA Press, 2002.

[45] D. G. Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales,
2001.

[46] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
292–310. ACM Press, 2002.

[47] D. G. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A simple virtual class calculus.
In Aspect-Oriented Software Development (AOSD), 2007.

[48] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). ACM Press,
1998.

[49] D. G. Clarke, M. Richmond, and J. Noble. Saving the world from bad beans: deployment-time
confinement checking. In Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA), pages 374–387. ACM Press, 2003.

[50] D. G. Clarke and T. Wrigstad. External uniqueness is unique enough. In European Conference on
Object-Oriented Programming (ECOOP), volume 2743 of LNCS, pages 176–200. Springer-Verlag,
2003.

[51] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers. MultiJava: Design rationale, com-
piler implementation, and applications. Transactions on Programming Languages and Systems
(TOPLAS), 28(3), 2006.

[52] D. R. Cok. Adapting JML to generic types and Java 1.6. In Specification and Verification of
Component-Based Systems (SAVCBS), pages 27–34, 2008.

[53] D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Construction and Analysis
of Safe, Secure and Interoperable Smart devices (CASSIS), volume 3362 of LNCS, pages 108–128.
Springer-Verlag, 2004.

179

BIBLIOGRAPHY

[54] D. R. Cok and G. T. Leavens. Extensions of the theory of observational purity and a practical
design for JML. In Specification and Verification of Component-Based Systems (SAVCBS), pages
43–50, 2008.

[55] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers.
Universe types for topology and encapsulation. In Formal Methods for Components and Objects
(FMCO), volume 5382 of LNCS, pages 72–112. Springer-Verlag, 2008.

[56] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race Safety. In Verification
and Analysis of Multi-threaded Java-like Programs (VAMP), pages 20–51, 2007.

[57] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. SRC Research Report
156, Digital Systems Research Center, 1998.

[58] K. K. Dhara and G. T. Leavens. Preventing cross-type aliasing for more practical reasoning.
Technical Report Nr. 01-02a, Department of Computer Science, Iowa State University, 2001.

[59] W. Dietl, S. Drossopoulou, and P. Müller. Formalization of Generic Universe Types. Technical
Report 532, Department of Computer Science, ETH Zurich, 2006.

[60] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In European Conference on
Object-Oriented Programming (ECOOP), volume 4609 of LNCS, pages 28–53. Springer-Verlag,
2007.

[61] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In International Workshop on
Foundations and Developments of Object-Oriented Languages (FOOL/WOOD), 2007.

[62] W. Dietl and P. Müller. Exceptions in ownership type systems. In Formal Techniques for Java-like
Programs (FTfJP), pages 49–54, 2004.

[63] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology
(JOT), 4(8):5–32, 2005.

[64] W. Dietl and P. Müller. 2007 State of the Universe Address. In International Workshop on
Aliasing, Confinement and Ownership in object-oriented programming (IWACO), 2007.

[65] W. Dietl and P. Müller. Runtime Universe type inference. In International Workshop on Aliasing,
Confinement and Ownership in object-oriented programming (IWACO), 2007.

[66] W. Dietl and P. Müller. Ownership type systems and dependent classes. In Foundations of
Object-Oriented Languages (FOOL), 2008.

[67] W. Dietl, P. Müller, and A. Poetzsch-Heffter. A type system for checking applet isolation in Java
Card. In Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS),
volume 3362 of LNCS, pages 129–150. Springer-Verlag, 2004.

[68] W. Dietl, P. Müller, and D. Schregenberger. Universe Type System — Quick-Reference. 2008.

[69] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified framework for verification
techniques for object invariants. In European Conference on Object-Oriented Programming
(ECOOP), volume 5142 of LNCS, pages 412–437. Springer-Verlag, 2008.

[70] B. Emir, A. J. Kennedy, C. Russo, and D. Yu. Variance and generalized constraints for C] generics.
In European Conference on Object-Oriented Programming (ECOOP), volume 4067 of LNCS, pages
279–303. Springer-Verlag, 2006.

[71] E. Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic
Inheritance. PhD thesis, Department of Computer Science, University of Aarhus, Århus, Denmark,
1999.

[72] E. Ernst. Family polymorphism. In European Conference on Object-Oriented Programming
(ECOOP), volume 2072 of LNCS, pages 303–326. Springer-Verlag, 2001.

[73] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus. In Principles of programming
languages (POPL), pages 270–282. ACM Press, 2006.

180

BIBLIOGRAPHY

[74] M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, University of
Washington, Department of Computer Science and Engineering, 2000.

[75] M. D. Ernst. Static and dynamic analysis: Synergy and duality. In Workshop on Dynamic Analysis
(WODA), pages 24–27, 2003.

[76] M. D. Ernst. Type annotations specification (JSR 308). http://types.cs.washington.edu/
jsr308/, 2008.

[77] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao.
The Daikon system for dynamic detection of likely invariants. Science of Computer Programming,
69(1–3):35–45, 2007.

[78] M. Fähndrich and R. DeLine. Adoption and focus: practical linear types for imperative program-
ming. In Programming Language Design and Implementation (PLDI), pages 13–24. ACM Press,
2002.

[79] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Programming Language Design and Implementation (PLDI), pages 234–245.
ACM Press, 2002.

[80] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics for classes
and mixins. In Formal Syntax and Semantics of Java, volume 1523 of LNCS, pages 241–269.
Springer-Verlag, 1999.

[81] J. N. Foster and D. Vytiniotis. A theory of Featherweight Java in Isabelle/HOL. In G. Klein,
T. Nipkow, and L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net, 2006.

[82] A. Fürer. Combining runtime and static Universe type inference. Master’s thesis, Department of
Computer Science, ETH Zurich, 2007.

[83] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley, 1995.

[84] V. Gasiunas, M. Mezini, and K. Ostermann. Dependent classes. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 133–152. ACM Press, 2007.

[85] V. Gasiunas, M. Mezini, and K. Ostermann. vcn - a calculus for multidimensional virtual classes,
2007. www.st.informatik.tu-darmstadt.de/static/pages/projects/mvc/index.html.

[86] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison-Wesley,
third edition, 2005.

[87] D. Graf. Implementing purity and side effect analysis for Java programs. Semester project,
Department of Computer Science, ETH Zurich, 2006.

[88] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 321–336. ACM Press,
2007.

[89] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic inference of abstract types. In
International Symposium on Software Testing and Analysis (ISSTA), pages 255–265. ACM Press,
2006.

[90] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like language. In
Programming Languages and Systems, volume 4421 of LNCS, pages 347–362. Springer-Verlag,
2007.

[91] T. Hächler. Static fields in the Universe type system. Semester project, only available in German,
Department of Computer Science, ETH Zurich, 2004.

[92] T. Hächler. Applying the Universe type system to an industrial application. Master’s thesis,
Department of Computer Science, ETH Zurich, 2005.

181

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/
http://afp.sf.net
www.st.informatik.tu-darmstadt.de/static/pages/projects/mvc/index.html

BIBLIOGRAPHY

[93] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. Behavioral interface
specification languages. Technical Report CS-TR-09-01, School of EECS, University of Central
Florida, 2009.

[94] S. Herrmann. Gradual encapsulation. Journal of Object Technology (JOT), 7(9):47–68, 2008.

[95] S. Herrmann, C. Hundt, and M. Mosconi. ObjectTeams/Java language definition version 1.2
(OTJLD). http://www.objectteams.org/def/1.2/, 2009.

[96] D. Hirschkoff, T. Hirschowitz, D. Pous, A. Schmitt, and J.-B. Stefani. Component-oriented
programming with sharing: Containment is not ownership. In Generative Programming and
Component Engineering, volume 3676 of LNCS, pages 389–404. Springer-Verlag, 2005.

[97] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 271–285. ACM Press, 1991.

[98] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. The Geneva convention on the
treatment of object aliasing. OOPS Messenger, Report on ECOOP’91 workshop W3, 3(2):11–16,
1992.

[99] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java
and GJ. Transactions on Programming Languages and Systems (TOPLAS), 23(3):396–450, 2001.

[100] A. Igarashi and M. Viroli. Variant path types for scalable extensibility. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 113–132. ACM Press,
2007.

[101] ISO/IEC standard 23270:2006. Programming language C]. http://standards.iso.org/ittf/
PubliclyAvailableStandards/index.html, 2006.

[102] B. Jacobs. Weakest precondition reasoning for Java programs with JML annotations. Journal of
Logic and Algebraic Programming, 58:61–88, 2004.

[103] B. Jacobs, F. Piessens, K. R. M. Leino, and W. Schulte. Safe concurrency for aggregate objects
with invariants. In Software Engineering and Formal Methods (SEFM), pages 137–147. IEEE
Computer Society, 2005.

[104] B. Jacobs and E. Poll. A logic for the Java modeling language JML. In Fundamental Approaches
to Software Engineering (FASE), volume 2029 of LNCS, pages 284–299. Springer-Verlag, 2001.

[105] I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without restrictions.
In Formal Methods (FM), 2006.

[106] N. Kellenberger. Static Universe type inference. Master’s thesis, Department of Computer Science,
ETH Zurich, 2005.

[107] A. Kennedy and D. Syme. Design and Implementation of Generics for the .NET Common Language
Runtime. In Programming Language Design and Implementation (PLDI), pages 1–12. ACM Press,
2001.

[108] M. Klebermaß. An Isabelle formalization of the Universe type system. Master’s thesis, Technical
University Munich and ETH Zurich, 2007.

[109] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine and
compiler. Technical Report 0400001T.1, National ICT Australia, 2004. http://www4.informatik.
tu-muenchen.de/~nipkow/pubs/Jinja/.

[110] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine and
compiler. Transactions on Programming Languages and Systems (TOPLAS), 28(4):619–695, 2006.

[111] N. Krishnaswami and J. Aldrich. Permission-based ownership: encapsulating state in higher-order
typed languages. In Programming language design and implementation (PLDI), pages 96–106.
ACM Press, 2005.

182

http://www.objectteams.org/def/1.2/
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Jinja/
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Jinja/

BIBLIOGRAPHY

[112] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design. In Behavioral
Specifications of Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999.

[113] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06-rev27, Iowa State University, Department
of Computer Science, 2004.

[114] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Formal Aspects of Computing, 19(2):159–189, 2007.

[115] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, P. Chalin,
D. M. Zimmerman, and W. Dietl. JML reference manual. 2008.

[116] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In European Conference on
Object-Oriented Programming (ECOOP), volume 3086 of LNCS, pages 491–516. Springer-Verlag,
2004.

[117] K. R. M. Leino, P. Müller, and A. Wallenburg. Flexible immutability with frozen objects. In
Verified Software: Theories, Tools, and Experiments (VSTTE), volume 5295 of LNCS, pages
192–208. Springer-Verlag, 2008.

[118] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. Transactions
on Programming Languages and Systems (TOPLAS), 1(1):121–141, 1979.

[119] Y. D. Liu and S. Smith. Pedigree types. In International Workshop on Aliasing, Confinement and
Ownership in object-oriented programming (IWACO), 2008.

[120] Y. Lu and J. Potter. A type system for reachability and acyclicity. In European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of LNCS, pages 479–503. Springer-Verlag,
2005.

[121] Y. Lu and J. Potter. On ownership and accessibility. In European Conference on Object-Oriented
Programming (ECOOP), volume 4067 of LNCS, pages 99–123. Springer-Verlag, 2006.

[122] Y. Lu and J. Potter. Protecting representation with effect encapsulation. In Principles of
programming languages (POPL), pages 359–371. ACM Press, 2006.

[123] Y. Lu, J. Potter, and J. Xue. Validity invariants and effects. In European Conference on
Object-Oriented Programming (ECOOP), volume 4609 of LNCS, pages 202–226. Springer-Verlag,
2007.

[124] F. Lyner. Runtime Universe type inference. Master’s thesis, Department of Computer Science,
ETH Zurich, 2005.

[125] K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 423–440. ACM Press,
2007.

[126] O. L. Madsen and B. Møller-Pedersen. Virtual classes: a powerful mechanism in object-oriented
programming. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
ACM Press, 1989.

[127] O. Mallo. MultiJava, JML, and generics. Semester project, Department of Computer Science,
ETH Zurich, 2006.

[128] B. Meyer. Object-Oriented Software Construction. Prentice Hall, first edition, 1988.

[129] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition, 1997.

[130] M. Meyer. Interaction with ownership graphs. Semester project, Department of Computer Science,
ETH Zurich, 2005.

[131] A. Milanova. Static inference of Universe Types. In International Workshop on Aliasing, Confine-
ment and Ownership in object-oriented programming (IWACO), 2008.

183

BIBLIOGRAPHY

[132] N. Mitchell. The runtime structure of object ownership. In European Conference on Object-Oriented
Programming (ECOOP), volume 4067 of LNCS, pages 74–98. Springer-Verlag, 2006.

[133] S. E. Moelius and A. L. Souter. An object ownership inference algorithm and its application.
In Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS), pages
6.1–6.9, 2004.

[134] P. Müller. Modular Specification and Verification of Object-Oriented Programs. PhD thesis,
Fernuniversität Hagen, 2001.

[135] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of
LNCS. Springer-Verlag, 2002.

[136] P. Müller. Reasoning about object structures using ownership. In Verified Software: Theories,
Tools, Experiments (VSTTE), volume 4171 of LNCS, pages 93–104. Springer-Verlag, 2007.

[137] P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling representation exposure.
In Programming Languages and Fundamentals of Programming, pages 131–140. Fernuniversität
Hagen, 1999. Technical Report 263.

[138] P. Müller and A. Poetzsch-Heffter. A type system for controlling representation exposure in Java.
In Formal Techniques for Java Programs (FTfJP). Technical Report 269, Fernuniversität Hagen,
2000.

[139] P. Müller and A. Poetzsch-Heffter. A type system for checking applet isolation in Java Card. In
Formal Techniques for Java Programs, 2001.

[140] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control.
Technical Report 279, Fernuniversität Hagen, 2001.

[141] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of frame properties in
JML. Concurrency and Computation: Practice and Experience, 15:117–154, 2003.

[142] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

[143] P. Müller and A. Rudich. Ownership transfer in Universe Types. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 461–478. ACM Press, 2007.

[144] Y. Müller. Testcases for the Universe type system compiler. Project assistant, Summer 2004.

[145] S. Nägeli. Ownership in design patterns. Master’s thesis, Department of Computer Science, ETH
Zurich, 2006.

[146] D. A. Naumann. Observational purity and encapsulation. Theoretical Computer Science, 376:205–
224, 2007.

[147] M. Niklaus. Static Universe type inference using a SAT-solver. Master’s thesis, Department of
Computer Science, ETH Zurich, 2006.

[148] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[149] J. Noble. Visualising objects: Abstraction, encapsulation, aliasing, and ownership. In Software
Visualization, volume 2269 of LNCS, pages 607–610. Springer-Verlag, 2002.

[150] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In European Conference on
Object-Oriented Programming (ECOOP), volume 1445 of LNCS. Springer-Verlag, 1998.

[151] P. Nonava. A Universe type checker using JSR 308. Semester project, Department of Computer
Science, ETH Zurich, 2009.

[152] N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff. Constrained types for object-oriented
languages. In Object-oriented Programming Systems Languages, and Applications (OOPSLA),
pages 457–474. ACM Press, 2008.

184

BIBLIOGRAPHY

[153] M. Odersky. The Scala Language Specification, Version 2.7. Programming Methods Laboratory,
EPFL, Switzerland, 2008.

[154] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects with dependent
types. In European Conference on Object-Oriented Programming (ECOOP), volume 2743 of LNCS,
pages 201–224. Springer-Verlag, 2003.

[155] J. Östlund, T. Wrigstad, D. G. Clarke, and B. Åkerblom. Ownership, uniqueness, and immutability.
In Objects, Components, Models and Patterns, volume 11 of Lecture Notes in Business Information
Processing, pages 178–197. Springer-Verlag, 2008.

[156] M. Ottiger. Runtime support for generics and transfer in Universe types. Master’s thesis,
Department of Computer Science, ETH Zurich, 2007.

[157] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst. Practical pluggable types
for Java. In International Symposium on Software Testing and Analysis (ISSTA), pages 201–212,
2008.

[158] A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer. Infering ownership types for encapsulated
object-oriented program components. In Program Analysis and Compilation, Theory and Practice,
volume 4444 of LNCS, pages 120–144. Springer-Verlag, 2007.

[159] A. Poetzsch-Heffter and J. Schäfer. Modular specification of encapsulated object-oriented compo-
nents. In Formal Methods for Components and Objects, volume 4111 of LNCS, pages 313–341.
Springer-Verlag, 2006.

[160] A. Poetzsch-Heffter and J. Schäfer. A representation-independent behavioral semantics for object-
oriented components. In Formal Methods for Open Object-Based Distributed Systems, volume 4468
of LNCS, pages 157–173. Springer-Verlag, 2007.

[161] A. Potanin. Generic Ownership: A Practical Approach to Ownership and Confinement in Object-
Oriented Programming Languages. PhD thesis, Victoria University of Wellington, 2007.

[162] A. Potanin, J. Noble, D. G. Clarke, and R. Biddle. Generic ownership for generic Java. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 311–324.
ACM Press, 2006.

[163] A. Potanin, J. Noble, D. G. Clarke, and Biddle R. Featherweight generic confinement. In
Foundations of Object-Oriented Languages (FOOL), 2004.

[164] J. Quinonez, M. S. Tschantz, and M. D. Ernst. Inference of reference immutability. In European
Conference on Object-Oriented Programming (ECOOP), volume 5142 of LNCS, pages 616–641.
Springer-Verlag, 2008.

[165] D. Rayside, L. Mendel, and D. Jackson. A dynamic analysis for revealing object ownership and
sharing. In Workshop on Dynamic Analysis (WODA), pages 57–64. ACM Press, 2006.

[166] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. Logic in Computer
Science, page 55, 2002.

[167] C. Saito, A. Igarashi, and M. Viroli. Lightweight family polymorphism. Journal of Functional
Programming, 18:285–331, 2007.

[168] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 3385 of LNCS, pages 199–215.
Springer-Verlag, 2005.

[169] A. Schaad. Universe type system for Eiffel. Semester project, Department of Computer Science,
ETH Zurich, 2006.

[170] J. Schäfer and A. Poetzsch-Heffter. A parameterized type system for simple loose ownership
domains. Journal of Object Technology (JOT), 6(5):71–100, 2007.

185

BIBLIOGRAPHY

[171] J. Schäfer and A. Poetzsch-Heffter. CoBoxes: Unifying active objects and structured heaps. In
Formal Methods for Open Object-Based Distributed Systems, volume 5051 of LNCS, pages 201–219.
Springer-Verlag, 2008.

[172] J. Schäfer, M. Reitz, J.-M. Gaillourdet, and A. Poetzsch-Heffter. Linking programs to architectures:
An object-oriented hierarchical software model based on boxes. In The Common Component
Modeling Example, volume 5153 of LNCS, pages 238–266. Springer-Verlag, 2008.

[173] D. Schneider. Testing tool for compilers. Semester project, Department of Computer Science,
ETH Zurich, 2007.

[174] D. Schregenberger. Runtime checks for the Universe type system. Semester project, Department
of Computer Science, ETH Zurich, 2004.

[175] D. Schregenberger. Universe type system for Scala. Master’s thesis, Department of Computer
Science, ETH Zurich, 2007.

[176] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott: effective
tool support for the working semanticist. In International Conference on Functional Programming
(ICFP), pages 1–12. ACM Press, 2007.

[177] M. Skoglund. Sharing objects by read-only references. In Algebraic Methodology and Software
Technology (AMAST), volume 2422 of LNCS, pages 457–472. Springer-Verlag, 2002.

[178] M. Skoglund. Investigating Object-Oriented Encapsulation in Theory and Practice. Licentiate
thesis, Stockholm University/Royal Institute of Technology, 2003.

[179] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic frames and
separation logic. In European Conference on Object-Oriented Programming (ECOOP), LNCS,
pages 148–172. Springer-Verlag, 2009.

[180] M. Stock. Implementing a Universe type checker in Scala. Master’s thesis, Department of Computer
Science, ETH Zurich, 2008.

[181] R. Strniša and M. Parkinson. Lightweight Java. http://www.cl.cam.ac.uk/research/pls/
javasem/lj/, 2009.

[182] A. J. Summers, S. Drossopoulou, and P. Müller. Universe-type-based verification techniques for
mutable static fields and methods. Journal of Object Technology (JOT), 8(4):85–125, 2009.

[183] Sun Developer Network. Secure coding guidelines for the Java programming language, version 2.0.
http://java.sun.com/security/seccodeguide.html.

[184] A. Suzuki. Bytecode support for the Universe type system and compiler. Semester project,
Department of Computer Science, ETH Zurich, 2005.

[185] M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 211–230. ACM Press, 2005.

[186] C. von Praun and T. R. Gross. Object race detection. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 70–82. ACM Press, 2001.

[187] P. Wadler. Linear types can change the world! In M. Broy and C. B. Jones, editors, Programming
Concepts and Methods (PROCOMET), 1990.

[188] D. Wellenzohn. Implementation of a Universe type checker in ESC/Java2. Semester project,
Department of Computer Science, ETH Zurich, 2005.

[189] A. Wren. Inferring ownership. Master’s thesis, Department of Computing, Imperial College, 2003.

[190] T. Wrigstad. Ownership-Based Alias Management. PhD thesis, Royal Institute of Technology,
Sweden, 2006.

[191] T. Wrigstad and D. G. Clarke. Existential owners for ownership types. Journal of Object Technology,
6(4):141–159, 2007.

186

http://www.cl.cam.ac.uk/research/pls/javasem/lj/
http://www.cl.cam.ac.uk/research/pls/javasem/lj/
http://java.sun.com/security/seccodeguide.html

BIBLIOGRAPHY

[192] H. Yan, D. Garlan, B. R. Schmerl, J. Aldrich, and R. Kazman. Discotect: A system for discovering
architectures from running systems. In International Conference on Software Engineering (ICSE),
pages 470–479, 2004.

[193] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D. Ernst. Object and reference
immutability using Java generics. In European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE), 2007.

[194] R. Züger. Generic Universe Types in JML. Master’s thesis, Department of Computer Science,
ETH Zurich, 2007.

187

BIBLIOGRAPHY

188

List of Figures

1.1 Object structure of a map from ID to Data objects. 3

2.1 Implementation of a generic map. 6
2.2 Nodes form the internal representation of maps. 7
2.3 Main program for our map example. 9
2.4 A decorator for arbitrary objects. 9
2.5 A decorator demonstration. 10
2.6 Viewpoint adaptation of the map results in lost ownership. 10
2.7 Demonstration of a cast. 11
2.8 Syntax of our programming language. 13
2.9 Definitions for the runtime model. 15
2.10 Example program and heap. 19
2.11 Static subtyping illustrated on an example. 29
2.12 A simple stack and client. 57
2.13 Erasure of the stack to a non-generic UTS program. 57
2.14 The stack after “expansion” of the type argument. 58
2.15 Exceptions in ownership systems. 61
2.16 Map implementation. 64
2.17 MapNode and Node implementations. 64
2.18 The Client class stores two references to maps. 64
2.19 GUT1 example. 65
2.20 GUT2 example. 65
2.21 Iterator interface and implementation. 67
2.22 First application using the iterator. 67
2.23 Second application using the iterator. 67

189

List of Figures

190

List of Definitions

Definition 2.2.1 Subclassing . 14
Definition 2.2.2 Field Type Look-up . 14
Definition 2.2.3 Method Signature Look-up . 14
Definition 2.2.4 Class Domain Look-up . 15
Definition 2.2.5 Upper Bounds Look-up . 15
Definition 2.2.6 Object Addition . 16
Definition 2.2.7 Field Update . 16
Definition 2.2.8 Runtime Method Signature Look-up 17
Definition 2.2.9 Static Method Body Look-up . 17
Definition 2.2.10 Runtime Method Body Look-up . 17
Definition 2.2.11 Simple Dynamization of Static Types 18
Definition 2.2.12 Runtime Subtyping . 19
Definition 2.2.13 Assigning a Runtime Type to a Value 20
Definition 2.2.14 Dynamization of a Static Type . 21
Definition 2.2.15 Assigning a Static Type to a Value (relative to rΓ) 22
Definition 2.2.16 Assigning a Static Type to a Value (relative to ι) 22
Definition 2.2.17 Evaluation of an Expression . 23
Definition 2.2.18 Evaluation of a Program . 24
Definition 2.3.1 Adapting Ownership Modifiers . 25
Definition 2.3.2 Adapting a Type w.r.t. an Ownership Modifier 26
Definition 2.3.3 Adapting a Type w.r.t. a Type . 26
Definition 2.3.4 Adapted Field Type Look-up . 27
Definition 2.3.5 Adapted Method Signature Look-up 27
Definition 2.3.6 Adapted Upper Bounds Look-up . 27
Definition 2.3.7 Ordering of Ownership Modifiers . 28
Definition 2.3.8 Static Subtyping . 28
Definition 2.3.9 Type Argument Subtyping . 29
Definition 2.3.10 Strict Subtyping . 30
Definition 2.3.11 Well-formed Static Type . 30
Definition 2.3.12 Strictly Well-formed Static Type . 31
Definition 2.3.13 Topological Type Rules . 32
Definition 2.3.14 Well-formed Class Declaration . 33
Definition 2.3.15 Well-formed Field Declaration . 34
Definition 2.3.16 Well-formed Method Declaration . 35
Definition 2.3.17 Method Overriding . 35
Definition 2.3.18 Well-formed Type Environment . 36
Definition 2.3.19 Well-formed Program Declaration . 36
Definition 2.3.20 Runtime Field Type Look-up . 36
Definition 2.3.21 Runtime Upper Bounds Look-up . 36
Definition 2.3.22 Strictly Well-formed Runtime Type . 37
Definition 2.3.23 Well-formed Address . 38

191

List of Definitions

Definition 2.3.24 Well-formed Heap . 38
Definition 2.3.25 Well-formed Environments . 38
Definition 2.3.27 Validate and Create a New Viewpoint 40
Definition 2.4.1 Encapsulated Expression . 41
Definition 2.4.3 Strictly Pure Expression . 42
Definition 2.4.4 Encapsulated Method Declaration . 42
Definition 2.4.5 Encapsulated Class Declaration . 43
Definition 2.4.6 Encapsulated Program Declaration . 43
Definition 2.5.1 Reasonable Static Type . 54
Definition 2.5.2 Reasonable Static Type Argument . 55
Definition 2.5.3 Reasonable Class Declaration . 55
Definition 2.5.4 Reasonable Field Declaration . 56
Definition 2.5.5 Reasonable Method Declaration . 56
Definition 2.5.6 Reasonable Expression . 56
Definition 2.5.7 Reasonable Program . 57

192

List of Theorems and Lemmas

Theorem 2.3.26 Type Safety . 39
Theorem 2.4.7 Owner-as-Modifier . 45
Lemma 2.3.28 Adaptation from a Viewpoint . 40
Lemma 2.3.29 Adaptation to a Viewpoint . 40
Lemma A.1.1 Adaptation from a Viewpoint Auxiliary Lemma 91
Lemma A.1.2 Adaptation to a Viewpoint Auxiliary Lemma 92
Lemma A.1.3 Viewpoint Adaptation and self . 92
Lemma A.1.4 Viewpoint Adaptation and lost . 92
Lemma A.1.5 Well-formedness and Viewpoint Adaptation 93
Lemma A.1.9 Static Well-formedness Implies Dynamization 94
Lemma A.1.10 Strict Well-formedness . 95
Lemma A.1.11 Correct Checking of Class Upper Bounds 95
Lemma A.1.12 Correct Checking of Method Upper Bounds 95
Lemma A.1.13 Properties of Strictly Well-formed Static Types 96
Lemma A.1.14 Free Variables . 96
Lemma A.1.15 Strict Well-formedness Implies Well-formedness 96
Lemma A.1.16 Expression Types are Well Formed . 97
Lemma A.1.17 Subclassing: Strict Superclass Instantiation 97
Lemma A.1.19 Subclassing: Bounds Respected . 98
Lemma A.1.20 Subclassing: Bounds do not Contain lost 98
Lemma A.1.21 Subtyping and self . 98
Lemma A.1.22 Static Type Assignment to Values Preserves Subtyping 99
Lemma A.1.23 dyn Preserves Subtyping . 99
Lemma A.1.24 Static Type Assignment to Values and Substitutions 99
Lemma A.1.25 Runtime Meaning of Ownership Modifiers 100
Lemma A.1.26 Equivalence of sdyn and dyn . 100
Lemma A.1.27 Evaluation Preserves Runtime Types . 101
Lemma A.1.28 dyn is Compositional . 101
Lemma A.1.29 Dynamization and lost . 101
Lemma A.1.30 Encapsulated Programs are Well formed 102
Lemma A.1.31 Encapsulated Expressions are Well typed 102
Lemma A.1.32 Strict Purity implies Purity . 102
Lemma A.1.33 Topological Generation Lemma . 103
Lemma A.1.34 Encapsulation Generation Lemma . 103
Lemma A.1.35 Operational Semantics Generation Lemma 104
Lemma A.1.36 Deterministic Semantics . 104
Lemma A.2.1 Evaluation Results in a Valid Address or nulla 142
Assumption 2.4.2 Pure Expression . 42
Corollary A.1.6 Well-formedness and VP Adaptation for Fields 93
Corollary A.1.7 Well-formedness and VP Adaptation for Methods 93
Corollary A.1.8 Well-formedness and VP Adaptation for Class Upper Bounds 94

193

List of Theorems and Lemmas

Corollary A.1.18 Subclassing does not Introduce self 97

194

Werner M. Dietl wdietl@gmail.com
http://google.com/profiles/wdietl

Degrees
01/2003: Diplom-Ingenieur, Salzburg University, Austria.

Passed both diploma examinations with distinction.
08/2000: Master of Science in Computer Science

Bowling Green State University, OH, USA. Passed with 4.00 GPA.

Education
09/2003 – 07/2009: Doctoral Student

Swiss Federal Institute of Technology ETH Zurich, Switzerland.
PhD program under the supervision of Prof. Peter Müller at the Chair of Programming
Methodology (until 08/2008 known as the Software Component Technology Group at
the Chair of Software Engineering of Prof. Bertrand Meyer).

10/2001 – 01/2003: Study of Applied Computer Science and Business
Salzburg University, Austria.

08/1999 – 08/2000: Exchange Year
Bowling Green State University, OH, USA.

10/1996 – 08/1999: Study of Applied Computer Science and Business
Salzburg University, Austria.

1991 – 1996: Polytechnical School for Electronics and Computer Science
HTBLA Salzburg, Austria. Passed with distinction.

Employment
11/2009 – Present: Post-Doctoral Research Associate

University of Washington, Seattle, WA, USA.
09/2003 – 10/2009: Research and Teaching Assistant

Swiss Federal Institute of Technology ETH Zurich, Switzerland.
02/2003 – 08/2003: Research Assistant, Salzburg University, Austria.
10/2000 – 07/2001: Software Engineer, Synapta Corporation, Palo Alto, CA, USA.
08/1999 – 08/2000: Research Assistant, Bowling Green State University, OH, USA.
11/1997 – 09/2000: Software Engineer, SBS Software Ges.m.b.H., Austria.
Fall 1997 & 1998: Tutor, Non-procedural Programming, Salzburg University, Austria.
07/1997 – 09/1997: Software Engineer, Siemens AG, Austria.
Summer 1993 & 1995: Student internships at local companies.

Awards and Honors
06/2009: Fellowship for Prospective Researchers from the Swiss NSF.
03/2008: IDEA League Short-Term Research Grant from ETH Zurich.
09/2004: Excellent Diploma Thesis Award from the Austrian Computer Society OCG.
07/1999: Excellence Scholarship from Salzburg University.
06/1999: Travel Grant from the joint-study program, Salzburg University.
02/1999: Bonus for suggested improvement from Siemens AG, Austria.
12/1995: Grant for Students from the Austrian Federal Economic Chamber Salzburg.

Last updated: December 1st , 2009

End of Document

196

	Acknowledgments
	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Aliasing in Object-Oriented Languages
	1.2 Object Ownership
	1.3 Generic Universe Types
	1.4 Summary and Contributions

	2 Generic Universe Types
	2.1 Main Concepts
	2.1.1 Ownership Modifiers
	2.1.2 Viewpoint Adaptation
	2.1.3 Type Parameters
	2.1.4 The lost and any Modifiers and Limited Covariance
	2.1.5 Runtime Representation

	2.2 Programming Language Syntax and Semantics
	2.2.1 Programming Language
	2.2.2 Runtime Model
	2.2.3 Static Types, Runtime Types, and Values
	2.2.4 Operational Semantics

	2.3 Topological System
	2.3.1 Viewpoint Adaptation
	2.3.2 Static Ordering Relations
	2.3.3 Static Well Formedness
	2.3.4 Runtime Well Formedness
	2.3.5 Properties of the Topological System

	2.4 Encapsulation System
	2.4.1 Encapsulated Expression
	2.4.2 Pure Expression
	2.4.3 Encapsulated Method Declaration
	2.4.4 Encapsulated Class and Program Declaration
	2.4.5 Examples
	2.4.6 Properties of the Encapsulation System

	2.5 Discussion
	2.5.1 Reasonable Programs
	2.5.2 Erasure and Expansion of Type Arguments
	2.5.3 Arrays
	2.5.4 Exceptions
	2.5.5 Static Fields
	2.5.6 Static Methods
	2.5.7 Map Example

	2.6 Related Work
	2.6.1 Ownership Type Systems
	2.6.2 Universe Type System
	2.6.3 Read-only References and Immutability
	2.6.4 Object-Oriented Verification

	3 Tool Support
	3.1 Type Checkers
	3.1.1 MultiJava and JML
	3.1.2 Other Compilers and Languages
	3.1.3 Experience

	3.2 Universe Type Inference
	3.2.1 Default Ownership Modifiers
	3.2.2 Universe Type Inference
	3.2.3 Related Work

	4 Future Work
	4.1 Formalization
	4.2 Expressiveness
	4.3 Ownership Inference
	4.4 Tool Support

	5 Conclusion
	A Properties and Proofs
	A.1 Properties
	A.1.1 Viewpoint Adaptation
	A.1.2 Well-formedness Properties
	A.1.3 Ordering Relations
	A.1.4 Runtime Behavior
	A.1.5 Technicalities
	A.1.6 Properties that do not Hold

	A.2 Proofs
	A.2.1 Main Results
	A.2.2 Viewpoint Adaptation
	A.2.3 Well-formedness Properties
	A.2.4 Ordering Relations
	A.2.5 Runtime Behavior
	A.2.6 Progress
	A.2.7 Method Type Variables and Recursion

	B Ott Formalization
	B.1 Complete Grammar
	B.2 Complete Definitions

	Bibliography
	List of Figures
	List of Definitions
	List of Theorems and Lemmas
	Curriculum Vitae

