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Abstract

Ownership is a powerful concept to structure the object store and to control
aliasing and modifications of objects. This paper presents an ownership type system
for a Java-like programming language with generic types. Like our earlier Universe
type system, Generic Universe Types enforce the owner-as-modifier discipline. This
discipline does not restrict aliasing, but requires modifications of an object to be
initiated by its owner. This allows owner objects to control state changes of owned
objects, for instance, to maintain invariants. Generic Universe Types require a small
annotation overhead and provide strong static guarantees. They are the first type
system that combines the owner-as-modifier discipline with type genericity.
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1 Introduction

The concept of object ownership allows programmers to structure the object store hierar-
chically and to control aliasing and access between objects. Ownership has been applied
successfully to various problems, for instance, program verification [19, 21, 22], thread
synchronization [6, 16], memory management [2, 7], and representation independence [3].

Existing ownership models share fundamental concepts: Each object has at most one
owner object. The set of all objects with the same owner is called a context. The root
context is the set of objects with no owner. The ownership relation is a tree order.

However, existing models differ in the restrictions they enforce. The original ownership
types [10] and their descendants [5, 8, 9, 26] restrict aliasing and enforce the owner-as-
dominator discipline: All reference chains from an object in the root context to an object
o in a different context go through o’s owner. This severe restriction of aliasing is nec-
essary for some of the applications of ownership, for instance, memory management and
representation independence.

However, for applications such as program verification, restricting aliasing is not nec-
essary. Instead, it suffices to enforce the owner-as-modifier discipline: An object o may be
referenced by any other object, but reference chains that do not pass through o’s owner
must not be used to modify o. This allows owner objects to control state changes of
owned objects and thus maintain invariants. The owner-as-modifier discipline has been in-
spired by Flexible Alias Protection [24]. It is enforced by the Universe type system [12], in
Spec#’s dynamic ownership model [19], and Effective Ownership Types [20]. The owner-
as-modifier discipline imposes weaker restrictions than the owner-as-dominator discipline,
which allows it to handle common implementations where objects are shared between ob-
jects, such as collections with iterators, shared buffers, or the Flyweight pattern [12, 23].
Some implementations can be slightly adapted to satisfy the owner-as-modifier discipline,
for example an iterator can delegate modifications to the corresponding collection which
owns the internal representation.

Although ownership type systems have covered all features of Java-like languages (in-
cluding for example exceptions, inner classes, and static class members) there are only
three proposals of ownership type systems that support generic types. SafeJava [5] sup-
ports type parameters and ownership parameters independently, but does not integrate
both forms of parametricity. This leads to significant annotation overhead. Ownership
Domains [1] combine type parameters and domain parameters into a single parameter
space and thereby reduce the annotation overhead. However, their formalization does not
cover type parameters. Ownership Generic Java (OGJ) [26] allows programmers to attach
ownership information through type parameters. For instance, a collection of Book objects
can be typed as “my collection of library books”, expressing that the collection object
belongs to the current this object, whereas the Book objects in the collection belong to
an object “library”. OGJ enforces the owner-as-dominator discipline. It piggybacks own-
ership information on type parameters. In particular, each class C has a type parameter
to encode the owner of a C object. This encoding allows OGJ to use a slight adaptation
of the normal Java type rules to also check ownership, which makes the formalization very
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Figure 1: Object structure of a map from ID to Data objects. The map is represented
by Node objects. The iterator has a direct reference to a node. Objects, references, and
contexts are depicted by rectangles, arrows, and ellipses, respectively. Owner objects sit
atop the context of objects they own. Arrows are labeled with the name of the variable
that stores the reference. Dashed arrows depict references that cross context boundaries
without going through the owner. Such references must not be used to modify the state of
the referenced objects.

elegant.

However, OGJ cannot be easily adapted to enforce the owner-as-modifier discipline.
For example, OGJ would forbid a reference from the iterator (object 6) in Fig. 1 to a
node (object 5) of the map (object 3), because the reference bypasses the node’s owner.
However, such references are necessary, and are legal in the owner-as-modifier discipline.
A type system can permit such references in two ways.

First, if the iterator contained a field theMap that references the associated map object,
then path-dependent types [1, 5] can express that the current field of the iterator points to
a Node object that is owned by theMap. Unfortunately, path-dependent types require the
fields on the path (here, theMap) to be final, which is too restrictive for many applications.

Second, one can loosen up the static ownership information by allowing certain refer-
ences to point to objects in any context [12]. Subtyping allows values with specific own-
ership information to be assigned to “any” variables, and downcasts with runtime checks
can be used to recover specific ownership information from such variables. In OGJ, this
subtype relation between any-types and other types would require covariant subtyping, for
instance, that Node<This> is a subtype of Node<Any>, which is not supported in Java (or
C#). Therefore, piggybacking ownership on the standard Java type system is not possible
in the presence of “any”.

In this paper, we present Generic Universe Types (GUT), an ownership type system for
a programming language with generic types similar to Java 5 and C# 2.0. GUT enforces the
owner-as-modifier discipline using an any ownership modifier (analogous to the readonly

modifier in non-generic Universe types [12]). Our type system supports type parameters
for classes and methods. The annotation overhead for programmers is as low as in OGJ,
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although the presence of any makes the type rules more involved. A particularly interesting
aspect of our work is how generics and ownership can be combined in the presence of an
any modifier, in particular, how a restricted form of ownership covariance can be permitted
without runtime checks.

Outline Sec. 2 of this paper illustrates the main concepts of Generic Universe Types
by an example. Secs. 3 and 4 present the type rules and the runtime model of GUT,
respectively. Sec. 5 presents the properties of GUT and Sec. 6 their proofs, mainly type
safety and the owner-as-modifier property. Finally, Sec. 7 concludes.

2 Main Concepts

In this section, we explain the main concepts of Generic Universe Types (GUT) informally
by an example. Class Map (Fig. 2) implements a generic map from keys to values. Key-
value pairs are stored in singly-linked Node objects. Class Node extends the superclass
MapNode (both Fig. 3), which is used by the iterator (classes Iter and IterImpl in Fig. 4).
The main method of class Client (Fig. 5) builds up the map structure shown in Fig. 1.
For simplicity, we omit access modifiers from all examples.

Ownership Modifiers A type in GUT is either a type variable or consists of an own-
ership modifier, a class name, and possibly type arguments. The ownership modifier ex-
presses object ownership relative to the current receiver object this1. Programs may
contain the ownership modifiers peer, rep, and any. peer expresses that an object has
the same owner as the this object, rep expresses that an object is owned by this, and
any expresses that an object may have any owner. any types are supertypes of the rep

and peer types with the same class and type arguments because they convey less specific
ownership information.

The use of ownership modifiers is illustrated by class Map (Fig. 2). A Map object owns its
Node objects since they form the internal representation of the map and should, therefore,
be protected from unwanted modifications. This ownership relation is expressed by the
rep modifier of Map’s field first, which points to the first node of the map.

The owner-as-modifier discipline is enforced by disallowing modifications of objects
through any references. That is, an expression of an any type may be used as receiver of
field reads and calls to side-effect free (pure) methods, but not of field updates or calls
to non-pure methods. To check this property, we require side-effect free methods to be
annotated with the keyword pure.

Viewpoint Adaptation Since ownership modifiers express ownership relative to this,
they have to be adapted when this “viewpoint” changes. Consider Node’s inherited method
init (Fig. 3). After substituting the type variable X, the third parameter has type peer

1We ignore static methods in this paper, but an extension is possible [21].
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lass Map<K, V> {rep Node<K, V> first;void put(K key, V value) {rep Node<K, V> newfirst = new rep Node<K, V>();

newfirst.init(key, value, first);

first = newfirst;

}pure V get(K key) {peer Iter<K, V> i = iterator();while (i.hasNext()) {if (i.getKey().equals(key)) return i.getValue();

i.next();

}return null;
}pure peer Iter<K, V> iterator() {peer IterImpl<K, V, rep Node<K, V> > res;

res = new peer IterImpl<K, V, rep Node<K, V> >();

res.setCurrent(first);return res;

}pure peer IterImpl<K, V, rep Node<K, V> > altIterator() {

/* same implementation as method iterator() above */

}

}

Figure 2: An implementation of a generic map. Map objects own their Node objects, as
indicated by the rep modifier in all occurrences of class Node. Method altIterator is for
illustration purposes only.
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K key; V value; X next;void init(K k, V v, X n) { key = k; value = v; next = n; }

}lass Node<K, V> extends MapNode<K, V, peer Node<K, V> > {}

Figure 3: Nodes form the internal representation of maps. Class MapNode implements nodes
for singly-linked lists. Using a type variable for the type of next is useful to implement
iterators. The subclass Node instantiates MapNode’s type parameter X to implement a list
of nodes with the same owner.

Node<K,V>. The peer modifier expresses that the parameter object must have the same
owner as the receiver of the method. On the other hand, Map’s method put calls init on a
rep Node receiver, that is, an object that is owned by this. Therefore, the third parameter
of the call to init also has to be owned by this. This means that from this particular
call’s viewpoint, the third parameter needs a rep modifier, although it is declared with a
peer modifier. In the type system, this viewpoint adaptation is done by combining the type
of the receiver of a call (here, rep Node<K,V>) with the type of the formal parameter (here,
peer Node<K,V>). This combination yields the argument type from the caller’s point of
view (here, rep Node<K,V>).

Viewpoint adaptation and the owner-as-modifier discipline provide encapsulation of
internal representation objects. Assume that class Map by mistake leaked a reference to an
internal node, for instance, by making first public or by providing a method that returns
the node. By viewpoint adaptation of the node type, rep Node<K,V>, clients of the map
can only obtain an any reference to the node and, thus, the owner-as-modifier discipline
guarantees that clients cannot directly modify the node structure. This allows the map to
maintain invariants over the node, for instance, that the node structure is acyclic.

Type Parameters Ownership modifiers are also used in actual type arguments. For
instance, Map’s method iterator instantiates IterImpl with the type arguments K, V, and
rep Node<K,V>. Thus, local variable res has type peer IterImpl<K,V,rep Node<K,V>>,
which has two ownership modifiers. The main modifier peer expresses that the IterImpl

object has the same owner as this, whereas the argument modifier rep expresses that
the Node objects used by the iterator are owned by this. It is important to understand
that this argument modifier again expresses ownership relative to the current this object
(here, the Map object), and not relative to the instance of the generic class that contains
the argument modifier (here, the IterImpl object res).

Type variables have upper bounds, which default to any Object. In a class C, the
ownership modifiers of an upper bound express ownership relative to the C instance this.
However, when C’s type variables are instantiated, the modifiers of the actual type argu-
ments are relative to the receiver of the method that contains the instantiation. Therefore,



8 / 54 2 MAIN CONCEPTSinterfae Iter<K, V> {pure K getKey();pure V getValue();pure boolean hasNext();void next();

}lass IterImpl<K, V, X extends any MapNode<K, V, X>>implements Iter<K, V> {

X current;void setCurrent(X c) { current = c; }pure K getKey() { return current.key; }pure V getValue() { return current.value; }pure boolean hasNext() { return current != null; }void next() { current = current.next; }

}

Figure 4: Class IterImpl implements iterators over MapNode structures. The precise node
type is passed as type parameter. The upper bound allows methods to access a node’s
fields. Interface Iter hides IterImpl’s third type parameter from clients.

checking the conformance of a type argument to its upper bound requires a viewpoint adap-
tation. For instance, to check the instantiation peer IterImpl<K,V,rep Node<K,V>> in
class Map, we adapt the upper bound of IterImpl’s type variable X (any MapNode<K,V,X>)
from viewpoint peer IterImpl<K,V,rep Node<K,V>> to the viewpoint this. With the
appropriate substitutions, this adaptation yields any MapNode<K,V,rep Node<K,V>>. The
actual type argument rep Node<K,V> is a subtype of the adapted upper bound. Therefore,
the instantiation is correct. The rep modifier in the type argument and the adapted upper
bound reflects correctly that the current node of this particular iterator is owned by this.

Type variables are not subject to the viewpoint adaptation that is performed for non-
variable types. When type variables are used, for instance, in field declarations, the own-
ership information they carry stays implicit and does, therefore, not have to be adapted.
The substitution of type variables by their actual type arguments happens in the scope
in which the type variables were instantiated. Therefore, the viewpoint is the same as for
the instantiation, and no viewpoint adaptation is required. For instance, the call expres-
sion iter.getKey() in method main (Fig. 5) has type rep ID, because the result type
of getKey() is the type variable K, which gets substituted by the first type argument of
iter’s type, rep ID.

Thus, even though an IterImpl object does not know the owner of the keys and values
(due to the implicit any upper bound for K and V), clients of the iterator can recover the
exact ownership information from the type arguments. This illustrates that Generic Uni-
verse Types provide strong static guarantees similar to those of owner-parametric systems
[10], even in the presence of any types. The corresponding implementation in non-generic



Formalization of Generic Universe Types 9 / 54lass ID { /* ... */ }lass Data { /* ... */ }lass Client {void main(any Data value) {rep Map<rep ID, any Data> map =new rep Map<rep ID, any Data>();

map.put(new rep ID(), value);rep Iter<rep ID, any Data> iter = map.iterator();rep ID id = iter.getKey();

}

}

Figure 5: Main program for our example. The execution of method main creates the object
structure in Fig. 1.

Universe types requires a downcast from the any type to a rep type and the corresponding
runtime check [12].

Limited Covariance and Viewpoint Adaptation of Type Arguments Subtyp-
ing with covariant type arguments is in general not statically type safe. For instance, if
List<String> were a subtype of List<Object>, then clients that view a string list through
type List<Object> could store Object instances in the string list, which breaks type
safety. The same problem occurs for the ownership information encoded in types. If peer
IterImpl<K,V,rep Node<K,V>> were a subtype of peer IterImpl<K,V,any Node<K,V>>,
then clients that view the iterator through the latter type could use method setCurrent

(Fig. 4) to set the iterator to a Node object with an arbitrary owner, even though the
iterator requires a specific owner. The covariance problem can be prevented by disallow-
ing covariant type arguments (like in Java and C#), by runtime checks, or by elaborate
syntactic support [13].

However, the owner-as-modifier discipline supports a limited form of covariance with-
out any additional checks. Covariance is permitted if the main modifier of the supertype
is any. For example, peer IterImpl<K,V,rep Node<K,V>> is an admissible subtype of
any IterImpl<K,V,any Node<K,V>>. This is safe because the owner-as-modifier disci-
pline prevents mutations of objects referenced through any references. In particular, it is
not possible to set the iterator to an any Node object, which prevents the unsoundness
illustrated above.

Besides subtyping, GUT provides another way to view objects through different types,
namely viewpoint adaptation. If the adaptation of a type argument yields an any type,
the same unsoundness as through covariance could occur. Therefore, when a viewpoint
adaptation changes an ownership modifier of a type argument to any, it also changes the
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main modifier to any.
This behavior is illustrated by method main of class Client in Fig. 5. Assume that main

calls altIterator() instead of iterator(). As illustrated by Fig. 1, the most precise type
for the call expression map.altIterator() would be rep IterImpl<rep ID, any Data,

any Node<rep ID, any Data>> because the IterImpl object is owned by the Client

object this (hence, the main modifier rep), but the nodes referenced by the iterator are
neither owned by this nor peers of this (hence, any Node). However, this viewpoint
adaptation would change an argument modifier of altIterator’s result type from rep

to any. This would allow method main to use method setCurrent to set the iterator
to an any Node object and is, thus, not type safe. The correct viewpoint adaptation
yields any IterImpl<rep ID, any Data, any Node<rep ID, any Data>>. This type is
safe, because it prevents the main method from mutating the iterator, in particular, from
calling the non-pure method setCurrent.

Since next is also non-pure, main must not call iter.next() either, which renders
IterImpl objects useless outside the associated Map object. To solve this issue, we provide
interface Iter, which does not expose the type of internal nodes to clients. The call
map.iterator() has type rep Iter<rep ID, any Data>, which does allow main to call
iter.next(). Nevertheless, the type variable X for the type of current in class IterImpl
is useful to improve static type safety. Since the current node is neither a rep nor a peer

of the iterator, the only alternative to a type variable is an any type. However, an any

type would not capture the relationship between an iterator and the associated list. In
particular, it would allow clients to use setCurrent to set the iterator to a node of an
arbitrary map.

3 Static Checking

In this section, we formalize the compile time aspects of GUT. We define the syntax of
the programming language, formalize viewpoint adaptation, define subtyping and well-
formedness conditions, and present the type rules.

3.1 Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and C# 2.0 includ-
ing classes and inheritance, instance fields, dynamically-bound methods, and the usual
operations on objects (allocation, field read, field update, casts). For simplicity, we omit
several features of Java and C# such as interfaces, exceptions, constructors, static fields
and methods, inner classes, primitive types and the corresponding expressions, and all
statements for control flow. We do not expect that any of these features is difficult to han-
dle (see for instance [5, 11, 21]). The language we use is similar to Featherweight Generic
Java [15]. We added field updates because the treatment of side effects is essential for
ownership type systems and especially the owner-as-modifier discipline.

Fig. 6 summarizes the syntax of our language and our naming conventions for variables.
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We assume that all identifiers of a program are globally unique except for this as well
as method and parameter names of overridden methods. This can be achieved easily by
preceding each identifier with the class or method name of its declaration (but we omit
this prefix in our examples).

The superscript s distinguishes the sorts for static checking from corresponding sorts
used to describe the runtime behavior, but is omitted whenever the context determines
whether we refer to static or dynamic entities.

T denotes a sequence of Ts. In such a sequence, we denote the i-th element by Ti. We
sometimes use sequences of tuples S = X T as maps and use a function-like notation to
access an element S(Xi) = Ti. A sequence T can be empty. The empty sequence is denoted
by ǫ.

A program (P ∈ Program) consists of a sequence of classes, the identifier of a main class
(C ∈ ClassId), and a main expression (e ∈ Expr). A program is executed by creating an
instance o of C and then evaluating e with o as this object. We assume that we always
have access to the current program P, and keep P implicit in the notations. Each class
(Cls ∈ Class) has a class identifier, type variables with upper bounds, a superclass with
type arguments, a list of field declarations, and a list of method declarations. FieldId is
the sort of field identifiers f. Like in Java, each class directly or transitively extends the
predefined class Object.

A type (sT ∈ sType) is either a non-variable type or a type variable identifier (X ∈
TVarId). A non-variable type (sN ∈ sNType) consists of an ownership modifier, a class
identifier, and a sequence of type arguments.

An ownership modifier (u ∈ OM) can be peeru, repu, or anyu, as well as the modifier
thisu, which is used solely as main modifier for the type of this. The modifier thisu may
not appear in programs, but is used by the type system to distinguish accesses through
this from other accesses. We omit the subscript u if it is clear from context that we mean
an ownership modifier.

A method (mt ∈ Meth) consists of the method type variables with their upper bounds,
the purity annotation, the return type, the method identifier (m ∈ MethId), the formal
method parameters (x ∈ ParId) with their types, and an expression as body. The result of
evaluating the expression is returned by the method. ParId includes the implicit method
parameter this.

To be able to enforce the owner-as-modifier discipline, we have to distinguish statically
between side-effect free (pure) methods and methods that potentially have side effects.
Pure methods are marked by the keyword pure. In our syntax, we mark all other methods
by nonpure, although we omit this keyword in our examples. To focus on the essentials of
the type system, we do not include purity checks, but they can be added easily [21].

An expression (e ∈ Expr) can be the null literal, method parameter access, field read,
field update, method call, object creation, and cast.

Type checking is performed in a type environment (sΓ ∈ sEnv), which maps the type
variables of the enclosing class and method to their upper bounds and method parameters
to their types. Since the domains of these mappings are disjoint, we overload the notation,
where sΓ(X) refers to the upper bound of type variable X, and sΓ(x) refers to the type of
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P ∈ Program ::= Cls C e

Cls ∈ Class ::= class C<X sN> extends C<sT> { f sT; mt }
sT ∈ sType ::= sN | X
sN ∈ sNType ::= u C<sT>
u ∈ OM ::= peeru | repu | anyu | thisu

mt ∈ Meth ::= <X sN> w sT m(x sT) { return e }
w ∈ Purity ::= pure | nonpure
e ∈ Expr ::= null | x | e.f | e.f=e | e.m<sT>(e) | new sN | (sT) e

sΓ ∈ sEnv ::= X sN; x sT

Figure 6: Syntax and type environments.

method parameter x.

3.2 Viewpoint Adaptation

Since ownership modifiers express ownership relative to an object, they have to be adapted
whenever the viewpoint changes. In the type rules, we need to adapt a type T from a
viewpoint that is described by another type T′ to the viewpoint this. In the following,
we omit the phrase “to the viewpoint this”. To perform the viewpoint adaptation, we
define an overloaded operator ⊲ to: (1) Adapt an ownership modifier from a viewpoint
that is described by another ownership modifier; (2) Adapt a type from a viewpoint that
is described by an ownership modifier; (3) Adapt a type from a viewpoint that is described
by another type.

Adapting an Ownership Modifier w.r.t. an Ownership Modifier We explain view-
point adaptation using a field access e1.f. Analogous adaptations occur for method param-
eters and results as well as upper bounds of type parameters. Let u be the main modifier
of e1’s type, which expresses ownership relative to this. Let u′ be the main modifier of
f’s type, which expresses ownership relative to the object that contains f. Then relative
to this, the type of the field access e1.f has main modifier u⊲u′.

⊲ :: OM× OM → OM

this⊲u′ = u′ u⊲this = u

peer⊲peer = peer rep⊲peer = rep

u⊲u′ = any otherwise

The field access e1.f illustrates the motivation for this definition: (1) Accesses through
this (that is, e1 is the variable this) do not require a viewpoint adaptation since the
ownership modifier of the field is already relative to this. (2) In the formalization of
subtyping (see ST-1) we combine an ownership modifier u with thisu. Again, this does
not require a viewpoint adaptation.
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(3) If the main modifiers of both e1 and f are peer, then the object referenced by e1

has the same owner as this and the object referenced by e1.f has the same owner as e1

and, thus, the same owner as this. Consequently, the main modifier of e1.f is also peer.
(4) If the main modifier of e1 is rep and the main modifier of f is peer, then the main
modifier of e1.f is rep, because the object referenced by e1 is owned by this and the
object referenced by e1.f has the same owner as e1, that is, this. (5) In all other cases,
we cannot determine statically that the object referenced by e1.f has the same owner as
this or is owned by this. Therefore, in these cases the main modifier of e1.f is any.

Adapting a Type w.r.t. an Ownership Modifier As explained in Sec. 2, type vari-
ables are not subject to viewpoint adaptation. For non-variable types, we determine the
adapted main modifier using the auxiliary function⊲m below and adapt the type arguments
recursively:

⊲ :: OM× sType → sType

u⊲X = X

u⊲N = (u⊲mN) C<u⊲T> where N = u′ C<T>

The adapted main modifier is determined by u ⊲ u′, except for unsafe (covariance-like)
viewpoint adaptations, as described in Sec. 2, in which case it is any. Unsafe adaptations
occur if at least one of N’s type arguments contains the modifier rep, u′ is peer, and u is
rep or peer. This leads to the following definition:

⊲m :: OM× sNType → OM

u⊲mu
′ C<T> =

{

any if (u = rep ∨ u = peer) ∧ u′ = peer ∧ rep ∈ T

u⊲u′ otherwise

The notation u ∈ T expresses that at least one type Ti or its (transitive) type arguments
contain ownership modifier u.

Adapting a Type w.r.t. a Type We adapt a type T from the viewpoint described by
another type, u C<T>:

⊲ :: sNType× sType → sType

u C<T>⊲T = (u⊲T)[T/X] where X = dom(C)

The operator⊲adapts the ownership modifiers of T and then substitutes the type arguments
T for the type variables X of C. This substitution is denoted by [T/X]. Since the type
arguments already are relative to this, they are not subject to viewpoint adaptation.
Therefore, the substitution of type variables happens after the viewpoint adaptation of
T’s ownership modifiers. For a declaration class C<X > . . ., dom(C) denotes C’s type
variables X.

Note that the first parameter is a non-variable type, because concrete ownership infor-
mation u is needed to adapt the viewpoint and the actual type arguments T are needed to
substitute the type variables X. In the type rules, subsumption will be used to replace type
variables by their upper bounds and thereby obtain a concrete type as first argument of⊲.
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Example The hypothetical call map.altIterator() in main (Fig. 5) illustrates the most
interesting viewpoint adaptation, which we discussed in Sec. 2. The type of this call is
the adaptation of peer IterImpl<K,V,rep Node<K,V>> (the return type of altIterator)
from rep Map<rep ID,any Data> (the type of the receiver expression). According to the
above definition, we first adapt the return type from the viewpoint of the receiver type,
rep, and then substitute type variables.

The type arguments of the adapted type are obtained by applying viewpoint adaptation
recursively to the type arguments. The type variables K and V are not affected by the
adaptation. For the third type argument, rep ⊲ rep Node<K,V> yields any Node<K,V>

because rep ⊲ rep=any, and again because the type variables K and V are not subject
to viewpoint adaptation. Note that here, an ownership modifier of a type argument is
promoted from rep to any. Therefore, to avoid unsafe covariance-like adaptations, the
main modifier of the adapted type must be any. This is, indeed, the case, as the main
modifier is determined by rep⊲m peer IterImpl<K,V,rep Node<K,V>>, which yields any.

So far, the adaptation yields any IterImpl<K,V,any Node<K,V>>. Now we substitute
the type variables K and V by the instantiations given in the receiver type, rep ID and any

Data, and obtain the type of the call:
any IterImpl<rep ID, any Data, any Node<rep ID,any Data>>

3.3 Subclassing and Subtyping

We use the term subclassing to refer to the relation on classes as declared in a program by
the extends keyword, irrespective of main modifiers. Subtyping takes main modifiers into
account.

Subclassing The subclass relation ⊑ is defined on instantiated classes, which are de-
noted by C<T>. The subclass relation is the smallest relation satisfying the rules in
Fig. 7. Each un-instantiated class is a subclass of the class it extends (SC-1). The form
class C<X N> extends C′<T′> { f T; m }, or a prefix thereof, expresses that the pro-
gram contains such a class declaration. Subclassing is reflexive (SC-2) and transitive
(SC-3). Subclassing is preserved by substitution of type arguments for type variables (SC-
4). Note that such substitutions may lead to ill-formed types, for instance, when the
upper bound of a substituted type variable is not respected. We prevent such types by
well-formedness rules, presented in Fig. 9.

Subtyping The subtype relation <: is defined on types. The judgment Γ ⊢ T <: T′

expresses that type T is a subtype of type T′ in type environment Γ. The environment
is needed since types may contain type variables. The rules for this subtyping judgment
are presented in Fig. 8. Two types with the same main modifier are subtypes if the
corresponding classes are subclasses. Ownership modifiers in the extends clause (T′) are
relative to the instance of class C, whereas the modifiers in a type are relative to this.
Therefore, T′ has to be adapted from the viewpoint of the C instance to this (ST-1). Since



Formalization of Generic Universe Types 15 / 54

SC-1
class C<X > extends C′<T′>

C<X> ⊑ C′<T′>
SC-2

C<T> ⊑ C<T>

SC-3

C<T> ⊑ C′′<T′′>
C′′<T′′> ⊑ C′<T′>

C<T> ⊑ C′<T′>
SC-4

C<T> ⊑ C′<T′>

C<T[T′′/X′′]> ⊑ C′<T′[T′′/X′′]>

Figure 7: Rules for subclassing.

ST-1
C<T> ⊑ C′<T′>

Γ ⊢ u C<T> <: u⊲(thisu C′<T′>)
ST-2

Γ ⊢ thisu C<T> <: peer C<T>

ST-3

Γ ⊢ T <: T′′

Γ ⊢ T′′ <: T′

Γ ⊢ T <: T′
ST-4

Γ ⊢ X <: Γ(X)
ST-5

T <:a T
′

Γ ⊢ T <: T′

TA-1
T <:a T

TA-2
T <:a T′

u C<T> <:a any C<T′>

Figure 8: Rules for subtyping and limited covariance.

both thisu and peer express that an object has the same owner as this, a type with main
modifier thisu is a subtype of the corresponding type with main modifier peer (ST-2).
This rule allows us to treat this as an object of a peer type. Subtyping is transitive
(ST-3). A type variable is a subtype of its upper bound in the type environment (ST-4).
Two types are subtypes, if they obey the limited covariance described in Sec. 2 (ST-5).
Covariant subtyping is expressed by the relation <:a . Covariant subtyping is reflexive
(TA-1). A supertype may have more general type arguments than the subtype if the main
modifier of the supertype is any (TA-2). Note that the sequences T and T′ in rule TA-2
can be empty, which allows one to derive, for instance, peer Object <:a any Object.
Reflexivity of <: follows from TA-1 and ST-5.

In our example, using rule TA-1 for K and V, and rule TA-2 we obtain rep Node<K,V>

<:a any Node<K,V>. Rules TA-2 and ST-5 allow us to derive
peer IterImpl<K,V,rep Node<K,V>> <: any IterImpl<K,V,any Node<K,V>>,

which is an example for limited covariance. Note that it is not possible to derive
peer IterImpl<K,V,rep Node<K,V>> <: peer IterImpl<K,V,any Node<K,V>>;

that would be unsafe covariant subtyping as discussed in Sec. 2.

3.4 Lookup Functions

In this subsection, we define the functions to look up the type of a field or the signature
of a method.
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Field Lookup The function sfType(C, f) yields the type of field f as declared in class C.
The result is undefined if f is not declared in C. Since identifiers are assumed to be globally
unique, there is only one declaration for each field identifier.

SFT
class C< > extends < > { . . . T f . . . ; }

sfType(C, f) = T

The function fields(C) yields the identifiers of all fields that are declared in or inherited by
class C.

SF-1
fields(Object) = ǫ

SF-2
class C< > extends C′< > { T f; }

fields(C) = f ◦ fields(C′)

Method Lookup The function mType(C, m) yields the signature of method m as declared
in class C. The result is undefined if m is not declared in C. We do not allow overloading of
methods; therefore, the method identifier is sufficient to uniquely identify a method.

SMT
class C< > extends < > { ; . . . <Xm Nb> w Tr m(x Tp) . . . }

mType(C, m) = <Xm Nb> w Tr m(x Tp)

3.5 Well-Formedness

In this subsection, we define well-formedness of types, methods, classes, programs, and
type environments. The well-formedness rules are summarized in Fig. 9 and explained in
the following.

Well-Formed Types The judgment Γ ⊢ T ok expresses that type T is well-formed in
type environment Γ. Type variables are well-formed, if they are contained in the type
environment (WFT-1). A non-variable type u C<T> is well-formed if its type arguments T
are well-formed and for each type parameter the actual type argument is a subtype of the
upper bound, adapted from the viewpoint u C<T> (WFT-2). The viewpoint adaptation is
necessary because the type arguments describe ownership relative to the this object where
u C<T> is used, whereas the upper bounds are relative to the object of type u C<T>.

Well-Formed Methods The judgment mt ok in C<X N> expresses that method mt is
well-formed in a class C with type parameters X N. According to rule WFM-1, mt is well-
formed if: (1) the return type, the upper bounds of mt’s type variables, and mt’s parameter
types are well-formed in the type environment that maps mt’s and C’s type variables to
their upper bounds as well as this and the explicit method parameters to their types. The
type of this is the enclosing class, C<X>, with main modifier thisu; (2) the method body,
expression e, is well-typed with mt’s return type; (3) mt respects the rules for overriding,
see below; (4) if mt is pure then the only ownership modifier that occurs in a parameter
type or the upper bound of a method type variable is any. Also, pure methods may only
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WFT-1
X ∈ dom(Γ)

Γ ⊢ X ok
WFT-2

class C< N> . . .
Γ ⊢ T ok Γ ⊢ T <: ((u C<T>)⊲N)

Γ ⊢ u C<T> ok

WFM-1

Γ = Xm Nb, X N; this (thisu C<X>), x Tp

Γ ⊢ Tr, Nb, Tp ok Γ ⊢ e : Tr override(C, m)
w = pure ⇒ (Tp = any⊲Tp ∧ free(Tp) ⊆ Xm ∧ Nb = any⊲Nb)

<Xm Nb> w Tr m(x Tp) { return e } ok in C<X N>

WFM-2

∀ class C′<X′ N′> : C<X> ⊑ C′<T′> ∧ dom(C) = X ⇒

mType(C′, m) is undefined ∨ mType(C, m) = mType(C′, m)[T′/X′]

override(C, m)

WFC

X N; ⊢ N, T, (thisu C′<T′>) ok
mt ok in C<X N> rep /∈ N

class C<X N> extends C′<T′> { f T; mt } ok

WFP

Cls ok
class C<> . . . ∈ Cls

ǫ; this (thisu C<>) ⊢ e : N

Cls, C, e ok
SWFE

Γ = X N, X′ N′ ; this (thisu C<X>), x T

class C<X N> . . . Γ ⊢ N, N′, T ok

Γ ok

Figure 9: Well-formedness rules.

use method type variables in parameter types. We will motivate the fourth requirement
when we explain the type rule for method calls.

Method m respects the rules for overriding if it does not override a method or if all
overridden methods have the identical signatures after substituting type variables of the
superclasses by the instantiations given in the subclass (WFM-2). For simplicity, we require
that overrides do not change the purity of a method, although overriding non-pure methods
by pure methods would be safe.

Well-Formed Classes The judgement Cls ok expresses that class declaration Cls is
well-formed. According to rule WFC, this is the case if: (1) the upper bounds of Cls’s type
variables, the types of Cls’s fields, and the instantiation of the superclass are well-formed
in the type environment that maps Cls’s type variables to their upper bounds; (2) Cls’s
methods are well-formed; (3) Cls’s upper bounds do not contain the rep modifier.

Note that Cls’s upper bounds express ownership relative to the current Cls instance.
If such an upper bound contains a rep modifier, clients of Cls cannot instantiate Cls.
The ownership modifiers of an actual type argument are relative to the client’s viewpoint.
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From this viewpoint, none of the modifiers peer, rep, or any expresses that an object
is owned by the Cls instance. Therefore, we forbid upper bounds with rep modifiers by
Requirement (3).

Well-Formed Programs The judgment P ok expresses that program P is well-formed.
According to rule WFP, this holds if all classes in P are well-formed, the main class C is
a non-generic class in P, and the main expression e is well-typed in an environment with
this as an instance of C. We omit checks for valid appearances of the ownership modifier
thisu. As explained earlier, thisu must not occur in the program.

Well-Formed Type Environments The judgement Γ ok expresses that type environ-
ment Γ is well-formed. According to rule SWFE, this is the case if all upper bounds of
type variables and the types of method parameters are well-formed. Moreover, this must
be mapped to a non-variable type with main modifier thisu and an uninstantiated class.

3.6 Type Rules

We are now ready to present the type rules (Fig. 10). The judgment Γ ⊢ e : T expresses
that expression e is well-typed with type T in environment Γ. Our type rules implicitly
require types to be well-formed, that is, a type rule is applicable only if all types involved
in the rule are well-formed in the respective environment.

An expression of type T can also be typed with T’s supertypes (GT-Subs). The type of
method parameters (including this) is determined by a lookup in the type environment
(GT-Var). The null-reference can have any type other than a thisu type (GT-Null).
Objects must be created in a specific context. Therefore only non-variable types with an
ownership modifier other than anyu are allowed for object creations (GT-New). The rule
for casts (GT-Cast) is straightforward; it could be strengthened to prevent more cast errors
statically, but we omit this check since it is not strictly needed.

As explained in detail in Sec. 3.2, the type of a field access is determined by adapting
the declared type of the field from the viewpoint described by the type of the receiver
(GT-Read). If this type is a type variable, subsumption is used to go to its upper bound
because fType is defined on class identifiers. Subsumption is also used for inherited fields to
ensure that f is actually declared in C0. (Recall that fType(C0, f) is undefined otherwise.)

For a field update, the right-hand side expression must be typable as the viewpoint
adapted field type, which is also the type of the whole field update expression (GT-Write).
The rule is analogous to field read, but has two additional requirements. First, the main
modifier u0 of the type of the receiver expression must not be any. With the owner-
as-modifier discipline, a method must not update fields of objects in arbitrary contexts.
Second, the requirement rp(u0,

sT1) enforces that f is updated through receiver this if
its declared type contains a rep modifier. In that case, the viewpoint adaptation N0⊲

sT1

yields an any type, but it is obviously unsafe to update f with an object with an arbitrary
owner. It is convenient to define rp for sequences of types. The definition uses the fact
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GT-Subs

Γ ⊢ e : T
Γ ⊢ T <: T′

Γ ⊢ e : T′
GT-Var

x ∈ dom(Γ)

Γ ⊢ x : Γ(x)
GT-Null

T 6= thisu < >

Γ ⊢ null : T

GT-New
N 6= anyu < >

Γ ⊢ new N : N
GT-Cast

Γ ⊢ e0 : T0

Γ ⊢ (T) e0 : T

GT-Read
Γ ⊢ e0 : N0 N0 = C0< >

Γ ⊢ e0.f : N0⊲fType(C0, f)
GT-Write

Γ ⊢ e0 : N0 N0 = u0 C0< >
T1 = fType(C0, f)
Γ ⊢ e2 : N0⊲T1

u0 6= any rp(u0, T1)

Γ ⊢ e0.f=e2 : N0⊲T1

GT-Invk

Γ ⊢ e0 : N0 N0 = u0 C0< >
mType(C0, m) = <Xm Nb> w Tr m(x Tp)

Γ ⊢ T <: (N0⊲Nb)[T/Xm] Γ ⊢ e2 : (N0⊲Tp)[T/Xm]
(u0 =any ⇒ w=pure) rp(u0, Tp ◦ Nb)

Γ ⊢ e0.m<T>(e2) : (N0⊲Tr)[T/Xm]

Figure 10: Type rules.

that the ownership modifier thisu is only used for the type of this:

rp :: OM× sType → bool
rp(u, T) = u = thisu ∨ (∀i : rep /∈ Ti)

The rule for method calls (GT-Invk) is in many ways similar to field reads (for result pass-
ing) and updates (for argument passing). The method signature is determined using the
receiver type N0 and subsumption. The type of the invocation expression is determined by
viewpoint adaptation of the return type Tr from the receiver type N0. Modulo subsumption,
the actual method parameters must have the formal parameter types, adapted from N0 and
with actual type arguments T substituted for the method’s type variables Xm. For instance,
in the call first.init(key, value, first) in method put (Fig. 2), the adapted third
formal parameter type is rep Node<K,V>⊲ peer Node<K,V>. This adaptation yields rep

Node<K,V>, which is also the type of the third actual method argument.
To enforce the owner-as-modifier discipline, only pure methods may be called on re-

ceivers with main modifier any. This requirement prevents method main (Fig. 5) from
calling iter.next() as discussed in Sec. 2. For a call on a receiver with main modifier
any, the viewpoint-adapted formal parameter type contains only the modifier any. Con-
sequently, arguments with arbitrary owners can be passed. For this to be type safe, pure
methods must not expect arguments with specific owners. This is enforced by rule WFM-1
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h ∈ Heap = Addr → Obj

ι ∈ Addr = Address | nulla

o ∈ Obj = rT, Fs
rT ∈ rType = ιo C<rT>
Fs ∈ Fields = FieldId → Addr

ιo ∈ OwnerAddr = ι | anya
rΓ ∈ rEnv = X rT; x ι

Figure 11: Definitions for the heap model.

(Fig. 9). Finally, if the receiver is different from this, then neither the formal parameter
types nor the upper bounds of the method’s type variables must contain rep.

4 Runtime Model

In this section, we explain the runtime model of Generic Universe Types. We present the
heap model, the runtime type information, well-formedness conditions, and an operational
semantics.

4.1 Heap Model

Fig. 11 defines our model of the heap. The prefix r distinguishes sorts of the runtime model
from their static counterparts.

A heap (h ∈ Heap) maps addresses to objects. An address (ι ∈ Addr) can be the special
null-reference nulla. An object (o ∈ Obj) consist of its runtime type and a mapping from
field identifiers to the addresses stored in the fields.

The runtime type (rT ∈ rType) of an object o consists of the address of o’s owner
object, of o’s class, and of runtime types for the type arguments of this class. We store the
runtime type arguments including the associated ownership information explicitly in the
heap because this information is needed in the runtime checks for casts. In that respect,
our runtime model is similar to that of the .NET CLR [17]. The owner address of objects in
the root context is nulla. The special owner address anya is used when the corresponding
static type has the anyu modifier. Consider for instance an execution of method main

(Fig. 5), where the address of this is 1. The runtime type of the object stored in map is
1 Map<1 ID, anya Data>. For simplicity we drop the subscript o from ιo whenever it is
clear from context whether we refer to an Addr or an OwnerAddr.

The first component of a runtime environment (rΓ ∈ rEnv) maps method type variables
to their runtime types. The second component is the stack, which maps method parameters
to the addresses they store.
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Operations on Heaps and Objects Updating a field f of the object at address ι in
heap h with an address ι′ is denoted by h[ι.f := ι′]. owner(h, ι) yields the owner address
of the object at address ι in heap h, whereas owners(h, ι) yields the set of all transitive
owners of that object.

·[·.· := ·] :: Heap× Addr× FieldId× Addr → Heap

h[ι.f := ι′] = h[ι 7→ (h(ι)↓1, h(ι)↓2 [f 7→ ι′])]

owner :: Heap× Addr → OwnerAddr

owner(h, ι) = h(ι)↓1↓1

owners :: Heap× Addr → P(OwnerAddr)
owner(h, ι) ∈ owners(h, ι)
ι′ ∈ owners(h, ι) ∧ ι′ 6= nulla ⇒ owner(h, ι′) ∈ owners(h, ι)

We use projection↓i to select the i-th component of a tuple, for instance, the runtime type
and field mapping of an object.

Subtyping on Runtime Types Judgment h, ι ⊢ rT <: rT′ expresses that the runtime
type rT is a subtype of rT′ from the viewpoint of address ι. The viewpoint, ι, is required
in order to give meaning to the ownership modifier rep. Subtyping for runtime types is
defined in Fig. 12. Subtyping is transitive (RT-3), and allows owner-invariant (RT-1) and
covariant subtyping (RT-2).

Rule RTL introduces owner-invariant subtyping <:l and defines how subtyping fol-
lows subclassing if (1) the runtime types have the same owner address ι′, (2) in the type
arguments, the ownership modifiers thisu and peer are substituted by the owner address
ι′ of the runtime types (we use the same owner address for both modifiers since they both
express ownership by the owner of this), (3) rep is substituted by the viewpoint address
ι, (4) anyu is substituted by anya, (5) the type variables X of the subclass C are substi-
tuted consistently by rT, and (6) either the owner of ι is ι′ or rep does not appear in the
instantiation of the superclass. This ensures that the substitution of ι for rep-modifiers is
meaningful. Note that in a well-formed program, thisu never occurs in a type argument;
nevertheless we include the substitution for consistency. Rule RTL gives the most concrete
runtime type deducible from static subclassing.

As for subtyping for static types, we have limited covariance for runtime types. Covari-
ant subtyping is expressed by the relation <:a . The rules for limited covariance, RTA-1
and RTA-2, are analogous to the rules TA-1 and TA-2 for static types (Fig. 8). Reflex-
ivity of <: follows from RTA-1 and RT-2. We use h, rΓ ⊢ rT <: rT′ as shorthand for
h, rΓ(this) ⊢ rT <: rT′.

The judgment h ⊢ ι : rT′ expresses that in heap h, the address ι has type rT′. The type
of ι is determined by the type of the object at ι and the subtype relation (RTH-1). The
null reference can have any type (RTH-2).

In Sec. 3.3, we have derived Node<K,V> ⊑ Link<peer Node<K,V>>. By rules RTL and
RT-1, we get for instance: h, ι ⊢ ι′ Node<rT1,

rT2> <: ι′ Link<ι′ Node<rT1,
rT2>>.
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RT-1
h, ι ⊢ rT <:l

rT′

h, ι ⊢ rT <: rT′
RT-2

rT <:a
rT′

h, ι ⊢ rT <: rT′
RT-3

h, ι ⊢ rT <: rT′′

h, ι ⊢ rT′′ <: rT′

h, ι ⊢ rT <: rT′

RTL
C<X> ⊑ C′<sT> dom(C) = X owner(h, ι) = ι′ ∨ rep /∈ sT

h, ι ⊢ ι′ C<rT> <:l ι′ C′<sT[ι′/thisu, ι
′/peer, ι/rep, anya/anyu,

rT/X]>

RTA-1
rT <:a

rT
RTA-2

rT <:a rT′

ι′ C<rT> <:a anya C<rT′>
RTH-1

h(ι) = rT,
h, ι ⊢ rT <: rT′

h ⊢ ι : rT′

RTH-2
h ⊢ nulla : rT′

RTS

h ⊢ ι : dyn(sT, h, rΓ)
sT = thisu < > ⇒ ι = rΓ(this)

h, rΓ ⊢ ι : sT

Figure 12: Rules for subtyping on runtime types.

Finally, the judgment h, rΓ ⊢ ι : sT expresses that in heap h and runtime environment
rΓ, the address ι has a runtime type that corresponds to the static type sT (see below for
the definition of dyn) and that the main modifier thisu is used solely for the type of this
(RTS).

From Static Types to Runtime Types Static types and runtime types are related by
the following dynamization function, which is defined by rule DYN:

dyn :: sType× Heap× rEnv → rType

DYN

rΓ = X′ rT′; this ι, h, ι ⊢ h(ι)↓1 <:l ι′ C<rT>
dom(C) = X free(sT) ⊆ X ◦ X′

dyn(sT, h, rΓ) = sT[ι′/this, ι′/peer, ι/rep, anya/anyu,
rT/X, rT′/X′]

This function maps a static type sT to the corresponding runtime type. The viewpoint is
described by a heap h and a runtime environment rΓ. In sT, dyn substitutes rep by the
address of the this object (ι), peer and thisu by the owner of ι (ι′), and anyu by anya. It
also substitutes all type variables in sT by the instantiations given in ι′ C<rT>, a supertype
of ι’s runtime type, or in the runtime environment. The substitutions performed by dyn
are analogous to the ones in rule RTL (Fig. 12), which also involves mapping static types
to runtime types. We do not use dyn in RTL to avoid that the definitions of <: and dyn
are mutually recursive.

Note that the outcome of dyn depends on finding ι′ C<rT>, an appropriate supertype
of the runtime type of the this object ι, which contains substitutions for all type variables
not mapped by the environment (free(sT) yields the free type variables in sT). Thus, one
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may wonder whether there is more than one such appropriate superclass. However, because
type variables are globally unique, if the free variables of sT are in the domain of a class
then they are not in the domain of any other class. To obtain the most precise ownership
information we use the owner-invariant runtime subtype relation <:l defined in rule RTL.

To illustrate dynamization, consider an execution of put (Fig. 2), in an environment
rΓ whose this object has address 3 and a heap h where address 3 has runtime type
1 Map<1 ID, anya Data> (see Fig. 1). We determine the runtime type of the object created
by new rep Node<K,V>. The dynamization of the type of the new object w.r.t. h and rΓ

is dyn(rep Node<K,V>, h, rΓ), which yields 3 Node<1 ID, anya Data>. This runtime type
correctly reflects that the new object is owned by this (owner address 3) and has the same
type arguments as the runtime type of this.

It is convenient to define the following overloaded version of dyn:

dyn(sT, h, ι) = dyn(sT, h, (ǫ; this ι))

4.2 Lookup Functions

In this subsection, we define the functions to look up the runtime type of a field or the
body of a method.

Field Lookup The runtime type of a field f is essentially the dynamization of its static
type. The function rfType(h, ι, f) yields the runtime type of f in an object at address ι in
heap h. In the following definition, C is the runtime class of ι, and C ′ is the superclass of
C which contains the definition of f.

RFT
h(ι)↓1= C< > C< > ⊑ C′< >

rfType(h, ι, f) = dyn(sfType(C′, f), h, ι)

Method Lookup The function mBody(C, m) yields a tuple consisting of m’s body expres-
sion as well as the identifiers of its formal parameters and type variables. This is trivial if
m is declared in C (RMT-1). Otherwise, m is looked up in C’s superclass C′ (RMT-2).

RMT-1
class C< > extends < > { ; . . . <X > m(x ) { return e } . . . }

mBody(C, m) = (e, x, X)

RMT-2
class C< > extends C′< > { no method m }

mBody(C, m) = mBody(C′, m)

4.3 Well-Formedness

In this subsection, we define well-formedness of runtime types, heaps, and runtime envi-
ronments.
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Well-Formed Runtime Types The judgment h, ι ⊢ ι′ C<rT> ok expresses that run-
time type ι′ C<rT> is well-formed for viewpoint address ι in heap h. According to rule
WFRT, the owner address ι′ must be the address of an object in the heap h or one of the
special owners nulla and anya. All type arguments must also be well-formed types. A
runtime type must have a type argument for each type variable of its class. Each runtime
type argument must be a subtype of the dynamization of the type variable’s upper bound.
We use h, rΓ ⊢ rT ok as shorthand for h, rΓ(this) ⊢ rT ok

WFRT

ι′ ∈ dom(h) ∪ {nulla, anya} h, ι ⊢ rT ok

class C< sN> . . . h, ι ⊢ rT <: dyn(sN, h, ι)

h, ι ⊢ ι′ C<rT> ok

Well-Formed Heaps A heap h is well-formed, denoted by h ok, if and only if the nulla

address is not mapped to an object, the runtime types of all objects are well-formed, the
root owner nulla is in the set of owners of all objects, and all addresses stored in fields are
well-typed (WFH). By mandating that all objects are (transitively) owned by nulla and
because each runtime type has one unique owner address, we ensure that ownership is a
tree structure.

WFH

nulla /∈ dom(h) ∀ι : h, ι ⊢ h(ι)↓1 ok ∧ nulla ∈ owners(h, ι)
∀ι, f : h(ι)↓2= Fs ∧ rfType(h, ι, f) = rT =⇒ h ⊢ Fs(f) : rT)

h ok

Well-Formed Runtime Environments The judgment h ⊢ rΓ : sΓ expresses that run-
time environment rΓ is well-formed w.r.t. a well-formed heap h and a well-formed static
type environment sΓ. This is the case if and only if: (1) rΓ maps all method type variables
X that are contained in sΓ to well-formed runtime types rT, which are subtypes of the dy-
namizations of the corresponding upper bounds sN; (2) rΓ maps this to an address ι. The
object at address ι is well-typed with the static type of this, thisu C<X′>. (3) rΓ maps
the formal parameters x that are contained in sΓ to addresses ι′. The objects at addresses
ι′ are well-typed with the static types of x, sT′.

WFRE

rΓ = X rT; this ι, x ι′
sΓ = X sN, X′ ; this (thisu C<X′>), x sT′

h ok sΓ ok ι 6= nulla

h, rΓ ⊢ rT ok h, rΓ ⊢ rT <: dyn(sN, h, rΓ)
h, rΓ ⊢ ι : thisu C<X′> h, rΓ ⊢ ι′ : sT′

h ⊢ rΓ : sΓ

4.4 Operational Semantics

We describe the execution of programs by a big-step operational semantics. The transition
h, rΓ, e  h′, ι expresses that the evaluation of an expression e in heap h and runtime
environment rΓ results in address ι and successor heap h′. A program with main class C

is executed by evaluating the main expression in a heap h0 that contains exactly one C
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OS-Var
h, rΓ, x h, rΓ(x)

OS-Null
h, rΓ, null h, nulla

OS-New

ι /∈ dom(h) ι 6= nulla
rT = dyn(sN, h, rΓ) = C< >

Fs(fields(C)) = nulla

h′ = h[ι 7→ (rT, Fs)]

h, rΓ, new sN h′, ι
OS-Cast

h, rΓ, e0  h′, ι
h′, rΓ ⊢ ι : sT

h, rΓ, (sT) e0  h′, ι

OS-Read

h, rΓ, e0  h′, ι0
ι0 6= nulla

ι = h′(ι0)↓2 (f)

h, rΓ, e0.f h′, ι
OS-Upd

h, rΓ, e0  h0, ι0
ι0 6= nulla

h0,
rΓ, e2  h2, ι

h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2  h′, ι

OS-Invk

h, rΓ, e0  h0, ι0 ι0 6= nulla h0,
rΓ, e2  h2, ι2

h0(ι0)↓1= C0< > mBody(C0, m) = (e1, x, X)
rT = dyn(sT, h, rΓ) rΓ′ = X rT ; this ι0, x ι2 h2,

rΓ′, e1  h′, ι

h, rΓ, e0.m<sT>(e2) h′, ι

Figure 13: Operational semantics.

instance in the root context where all fields f = fields(C) are initialized to nulla (h0 =
{ι 7→ (nulla C<>, f nulla)}) and a runtime environment rΓ0 that maps this to this C

instance (rΓ0 = ǫ;this ι). The rules for evaluating expressions are presented in Fig. 13
and explained in the following.

Parameters, including this, are evaluated by looking up the stored address in the
stack, which is part of the runtime environment rΓ (OS-Var). The null expression always
evaluates to the nulla address (OS-Null). For cast expressions, we evaluate the expression
e0 and check that the resulting address is well-typed with the static type given in the cast
expression w.r.t. the current environment (OS-Cast). Object creation picks a fresh address,
allocates an object of the appropriate type, and initializes its fields to nulla (OS-New).
fields(C) yields all fields declared in or inherited by C.

For field reads (OS-Read) we evaluate the receiver expression and then look up the field
in the heap, provided that the receiver is non-null. For the update of a field f, we evaluate
the receiver expression to address ι0 and the right-hand side expression to address ι, and
update the heap h2, which is denoted by h2[ι0.f := ι] (OS-Upd). Note that the limited
covariance of Generic Universe Types does not require a runtime ownership check for field
updates.

For method calls (OS-Invk) we evaluate the receiver expression and actual method
arguments in the usual order. The class of the receiver object is used to look up the
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method body. Its expression is then evaluated in the runtime environment that maps m’s
type variables to actual type arguments as well as m’s formal method parameters (including
this) to the actual method arguments. The resulting heap and address are the result of
the call. Note that method invocations do not need any runtime type checks or purity
checks.

5 Properties

5.1 Adaptation from a Viewpoint

The following lemma expresses that viewpoint adaptation from a viewpoint to this is
correct. Consider the this object of a runtime environment rΓ and two objects o1 and o2.
If from the viewpoint this, o1 has the static type sN, and from viewpoint o1, o2 has the
static type sT, then from the viewpoint this, o2 has the static type sT adapted from sN,
sN⊲sT. The following lemma expresses this property using the addresses ι1 and ι2 of the
objects o1 and o2, respectively.

Lemma 5.1 (Adaptation from a Viewpoint).

h, rΓ ⊢ ι1 : sN, ι1 6= nulla

h, rΓ′ ⊢ ι2 : sT

free(sT) ⊆ dom(sN) ◦ X
rΓ′ = X dyn(sT, h, rΓ); this ι1,















⇒ h, rΓ ⊢ ι2 : (sN⊲sT)[sT/X]

This lemma justifies the type rule GT-Read. The proof runs by induction on the shape
of static type sT. The base case deals with type variables and non-generic types. The
induction step considers generic types, assuming that the lemma holds for the actual type
arguments. Each of the cases is done by a case distinction on the main modifiers of sN and
sT.

5.2 Adaptation to a Viewpoint

The following lemma is the converse of Lemma 5.1. It expresses that viewpoint adaptation
from this to an object o1 is correct. If from the viewpoint this, o1 has the static type
sN and o2 has the static type sN⊲sT, then from viewpoint o1, o2 has the static type sT.
The lemma requires that the adaptation of sT does not change ownership modifiers in sT

from non-any to any, because the lost ownership information cannot be recovered. Such a
change occurs if sN’s main modifier is any or if sT contains rep and is not accessed through
this (see definition of rp, Sec. 3.6).
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Lemma 5.2 (Adaptation to a Viewpoint).

h, rΓ ⊢ ι1 : sN, ι1 6= nulla

h, rΓ ⊢ ι2 : (sN⊲sT)[sT/X]
sN = u < >, u 6= any, rp(u, sT)
free(sT) ⊆ dom(sN) ◦ X, sT 6= thisu < >
rΓ′ = X dyn(sT, h, rΓ); this ι1,























⇒ h, rΓ′ ⊢ ι2 : sT

This lemma justifies the type rule GT-Upd and the requirements for the types of the
parameters in GT-Invk. The proof is analogous to the proof for Lemma 5.1.

5.3 Type Safety

Type safety of Generic Universe Types is expressed by the following theorem. If a well-
typed expression e is evaluated in a well-formed environment (including a well-formed
heap), then the resulting environment is well-formed and the result of e’s evaluation has
the type that is the dynamization of e’s static type.

Theorem 5.3 (Type Safety).

h ⊢ rΓ : sΓ
sΓ ⊢ e : sT

h, rΓ, e h′, ι







⇒

{

h′ ⊢ rΓ : sΓ

h′, rΓ ⊢ ι : sT

The proof of Theorem 5.3 runs by rule induction on the operational semantics. Lemma 5.1
is used to prove field read and method results, whereas Lemma 5.2 is used to prove field
updates and method parameter passing.

We omit a proof of progress since this property is not affected by adding ownership to
a Java-like language. The basic proof can easily be adapted from FGJ [15]. Extensions
to include field updates and casts have also been done before [14, 4]. Only the additional
check of the ownership information in a cast is different from these previous approaches;
its treatment is analogous to a standard Java cast.

5.4 Owner-as-Modifier

The enforcement of the owner-as-modifier discipline is expressed by the following theorem.
The evaluation of a well-typed expression e in a well-formed environment modifies only
those objects that are (transitively) owned by the owner of this.

Theorem 5.4 (Owner-as-Modifier).

h ⊢ rΓ : sΓ
sΓ ⊢ e : sT

h, rΓ, e h′,







⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′(ι)↓2 (f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

where owner(h, ι) denotes the direct owner of the object at address ι in heap h, and
owners(h, ι) denotes the set of all (transitive) owners of this object.
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The proof of Theorem 5.4 runs by rule induction on the operational semantics. The
interesting cases are field update and calls of non-pure methods. In both cases, the type
rules (Fig. 10) enforce that the receiver expression does not have the main modifier any.
That is, the receiver object is owned by this or the owner of this.

For the proof of Theorem 5.4 we assume that pure methods do not modify objects that
exist in the prestate of the call:

Assumption 5.5 (Pure Methods).

h ⊢ rΓ : sΓ
sΓ ⊢ e0.m<sT>(e2) : sT

h, rΓ, e0.m<sT>(e2) h′,
sΓ ⊢ e0 : C0< >
mType(C0, m) = < > pure m( )























⇒

{

∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′(ι)↓2 (f)

In this paper we do not describe how this is enforced in the program. A simple but
conservative approach forbids all object creations, field updates, and calls of methods that
are not pure [21]. The above definition also allows weaker forms of purity that allow object
creations [12] and also approaches that allow the modification of newly created objects
[27].

5.5 Adaptation from a Viewpoint Auxiliary Lemma

The following lemma is used in the proof of the two viewpoint adaptation lemmas. This
lemma is basically the same as Lemma 5.1, but is more suitable for a proof by induction.

Lemma 5.6 (Adaptation from a Viewpoint Auxiliary Lemma).

h, rΓ ⊢ ι1 : sN, ι1 6= nulla

free(sT) ⊆ dom(sN) ◦ X
rΓ′ = X dyn(sT, h, rΓ); this ι1,







⇒ dyn(sT, h, rΓ′) <:a dyn((sN⊲sT)[sT/X], h, rΓ)

The proof runs by induction on the shape of sT.

5.6 Adaptation to a Viewpoint Auxiliary Lemma

The following lemma is used in the proof of the two viewpoint adaptation lemmas. This
lemma is basically the same as Lemma 5.2, but is more suitable for a proof by induction.

Lemma 5.7 (Adaptation to a Viewpoint Auxiliary Lemma).

h, rΓ ⊢ ι1 : sN, ι1 6= nulla
sN = u < >, u 6= any, rp(u, sT)
free(sT) ⊆ dom(sN) ◦ X
rΓ′ = X dyn(sT, h, rΓ); this ι1,















⇒ dyn((sN⊲sT)[sT/X], h, rΓ) = dyn(sT, h, rΓ′)

The proof runs by induction on the shape of sT.
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5.7 Well-formedness of Dynamization

If we have a well-formed static type sT in a well-formed environment sΓ and we have
corresponding well-formed heap h and runtime environment rΓ, then we know that the
dynamization of the static type will result in a well-formed runtime type.

Lemma 5.8 (Well-formedness of Dynamization).

h ⊢ rΓ : sΓ
sΓ ⊢ sT ok

}

⇒ h, rΓ ⊢ dyn(sT, h, rΓ) ok

This lemma is needed for object creation and method calls, where static types are
dynamized and then used by the operational semantics. The proof runs by induction on
the derivation of well-formed static types.

5.8 Evaluation Preserves Types

The evaluation of any expression does not change the runtime types of existing objects.

Lemma 5.9 (Evaluation Preserves Types).
If h, rΓ, e h′, ι′, then

• ι ∈ dom(h) ⇒ h(ι)↓1= h′(ι)↓1.

• dyn(sT, h, rΓ) is defined ⇒ dyn(sT, h, rΓ) = dyn(sT, h′, rΓ).

The proof is a case analysis of all expressions.

5.9 Runtime Meaning of Ownership Modifiers

The following lemma connects the meaning of the static ownership modifiers and the
runtime owner. For thisu and peer references, the owner of the referenced object is the
owner of the current object. For rep references, the owner of the referenced object is the
current object. From anyu references, we do not gain any information about the runtime
ownership.

Lemma 5.10 (Runtime Meaning of Ownership Modifiers).
If h ⊢ ι : dyn(sT,h, rΓ) and ι 6= nulla, then

1. sT = thisu < > ⇒ owner(h, ι) = owner(h, rΓ(this))
2. sT = peer < > ⇒ owner(h, ι) = owner(h, rΓ(this))
3. sT = rep < > ⇒ owner(h, ι) = rΓ(this)

The proof is a case analysis and the application of the definition of dyn.
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5.10 Generation Lemma

The following generation lemma allows us to draw conclusions on the possible derivation
of the typing. We know that some expression e has a type sT in an environment sΓ. Then
there is a unique shape of the expression by which we can determine which type rule has
been used to derive the type sT. This gives us information about all the conditions that
must hold for this expression.

Lemma 5.11 (Generation Lemma).
If sΓ ⊢ e : sT then the following hold:

1. e ≡ x ⇒ x ∈ dom(Γ) ∧ Γ ⊢ Γ(x) <: sT

2. e ≡ null ⇒ sT 6= thisu < >
3. e ≡ new sN ⇒ sN 6= anyu < > ∧ Γ ⊢ sN <: sT

4. e ≡ (sT′) e0 ⇒ Γ ⊢ e0 : sT0 ∧ Γ ⊢ sT′ <: sT

5. e ≡ e0.f ⇒ sΓ ⊢ e0 : sN0 ∧ sN0 = C0< > ∧
sΓ ⊢ sN0⊲fType(C0, f) <: sT

6. e ≡ e0.f=e2 ⇒
sΓ ⊢ e0 : sN0 ∧ sN0 = u0 C0< > ∧ sT1 = fType(C0, f) ∧
sΓ ⊢ e2 : sN0⊲

sT1 ∧ u0 6= any ∧ rp(u0,
sT1) ∧

sΓ ⊢ sN0⊲
sT1 <: sT

7. e ≡ e0.m<sT>(e2) ⇒
sΓ ⊢ e0 : sN0 ∧ sN0 = u0 C0< > ∧
mType(C0, m) = <Xm

sNb> w sTr m(x sTp) ∧
sΓ ⊢ sT <: (sN0⊲

sNb)[sT/Xm] ∧
sΓ ⊢ e2 : (sN0⊲

sTp)[sT/Xm] ∧
(u0 =any ⇒ w=pure) ∧ rp(u0, sTp ◦ sNb) ∧
sΓ ⊢ (sN0⊲

sTr)[sT/Xm] <: sT

The proof of Lemma 5.11 runs by rule induction on the shape of the expression e. There
are always two type rules that could apply to an expression: the rule for the particular kind
of expression and the subsumption rule. From the particular rule we get all the conditions
that are checked for this kind of expression; subsumption allows one to go to an arbitrary
supertype of this type.

5.11 Unique Evaluation Lemma

The following lemma expresses that the evaluation of expressions is unique, i.e., that if an
expression is evaluated multiple times in the same heap and runtime environment, then
the only difference in the resulting heap and address is the renaming of addresses.

Lemma 5.12 (Unique Evaluation Lemma).

h, rΓ, e h′, ι
h, rΓ, e h′′, ι′

}

⇒ h′ = h′′ ∧ ι = ι′ up to renaming of addresses

The proof of Lemma 5.12 runs by rule induction on the shape of the expression e. The
only non-determinism comes from rule OS-New, which does not uniquely determine the
address of the new object.
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6 Proofs

6.1 Proof of Theorem 5.3 — Type Safety

Our type safety theorem is:

1. h ⊢ rΓ : sΓ

2. sΓ ⊢ e : sT

3. h, rΓ, e h′, ι







=⇒







I. h′ ⊢ rΓ : sΓ

II. h′ ⊢ ι : dyn(sT, h, rΓ)
III. sT = thisu < > ⇒ ι = rΓ(this)

We prove this by induction on the shape of the derivation tree of 3.
Note that we split the original conclusion h′, rΓ ⊢ ι : sT into the two parts II and III

according to the definition of RTS (see Fig. 12).

Case 1: e ≡ x

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ x : sT 3. h, rΓ, x h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

x ∈ dom(sΓ) sΓ ⊢ x : sΓ(x) sΓ ⊢ sΓ(x) <: sT

From 3. and the operational semantics we know:

h, rΓ, x h, rΓ(x)

Therefore, we have that

h′ = h ι = rΓ(x)

• Part I: h′ ⊢ rΓ : sΓ

We have 1. and h = h′.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

From Part I we know that the environments conform. We know from the operational
semantics that the ι is from the runtime environment. Therefore we know from
the definition of well-formed runtime environment (WFRE, Page 24), that h′ ⊢ ι :
dyn(sΓ(x), h, rΓ) holds. We also know that sΓ ⊢ sΓ(x) <: sT and from this arrive at
II.

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

The static type only has the this ownership modifier, if we read the this variable.
Then we know from the operational semantics and Part II that the variable we read
is rΓ(this).
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Case 2: e ≡ null

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ null : sT 3. h, rΓ, null h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sT 6= thisu < >

From 3. and the operational semantics we know:

h, rΓ, null h, nulla

Therefore, we have that

h′ = h ι = nulla

• Part I: h′ ⊢ rΓ : sΓ

We have 1. and h = h′.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

We know from the operational semantics that ι = nulla. Rule RTH-2 allows us to
assign any runtime type to nulla.

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

We know from the type rules that sT 6= thisu < >.

Case 3: e ≡ e0.f

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.f : sT 3. h, rΓ, e0.f h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = C0< >

sΓ ⊢ e0.f : sN0⊲fType(C0, f) Γ ⊢ sN0⊲fType(C0, f) <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h′, ι0 ι0 6= nulla

ι = h′(ι0)↓2 (f) h, rΓ, e0.f h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h′, ι0







=⇒







I0. h′ ⊢ rΓ : sΓ

II0. h′ ⊢ ι0 : dyn(sN0, h,
rΓ)

III0.
sN0 = thisu < > ⇒ ι0 = rΓ(this)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
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• Part I: h′ ⊢ rΓ : sΓ

From I0.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

We know from II0 that h′ ⊢ ι0 : dyn(sN0, h,
rΓ).

From the well-formed heap judgement from Part I, we can deduce that h′ ⊢ ι :
rfType(h′, ι0, f). The definition of rfType and the type rules give us
h′ ⊢ ι : dyn(fType(C0, f), h

′, ι0).

Now we can apply Lemma 5.1 to arrive at h′ ⊢ ι : dyn(sN0⊲fType(C0, f), h,
rΓ). From

this and sΓ ⊢ sN0⊲fType(C0, f) <: sT we arrive at the conclusion.

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

The declared type of a field can never have thisu as main modifier. The type sT is
a supertype of the result of applying⊲ to this field type and can therefore also never
have thisu as main modifier.

Case 4: e ≡ e0.f=e2

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.f=e2 : sT 3. h, rΓ, e0.f=e2  h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = u0 C0< >

sT1 = sfType(C0, f)
sΓ ⊢ e2 : sN0⊲

sT1

u0 6= any rp(u0,
sT1)

sΓ ⊢ e0.f=e2 : sN0⊲
sT1

sΓ ⊢ sN0⊲
sT1 <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h0, ι0 ι0 6= nulla

h0,
rΓ, e2  h2, ι h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2  h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h0, ι0







=⇒







I0. h0 ⊢
rΓ : sΓ

II0. h0 ⊢ ι0 : dyn(sN0, h,
rΓ)

III0.
sN0 = thisu < > ⇒ ι0 = rΓ(this)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
We apply the induction hypothesis to e2:

12. h0 ⊢
rΓ : sΓ

22.
sΓ ⊢ e2 : sN0⊲

sT1

32. h0,
rΓ, e2  h2, ι







=⇒







I2. h2 ⊢
rΓ : sΓ

II2. h2 ⊢ ι : dyn(sN0⊲
sT1, h0,

rΓ)
III2.

sN0⊲
sT1 = thisu < > ⇒ ι = rΓ(this)

12. corresponds to I0. 22. is from the type rules and 32. is from the operational semantics.
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• Part I: h′ ⊢ rΓ : sΓ

From I2. we have h2 ⊢
rΓ : sΓ. We have h′ = h2[ι0.f := ι].

Because only the field value is changed (and Lemma 5.9 in general) we know that
the typing of the environments is still correct.

What has to be shown is that h′ ok. From I2. we have h2 ok. We have h′ = h2[ι0.f :=
ι].

From the definition of well-formed heap, we see that it remains to show that h′ ⊢ ι :
rfType(h′, ι0, f). Let us give a name to the runtime type of the target and to the class
of that object: rT0 = h′(ι0)↓1= CR< >. From the definition of rfType(h′, ι0, f) and
from the type rules we get:

sT1 = sfType(C0, f) type rules
CR ⊑ C0 from II0., RTH-1, RTL, RT-1, dyn.
rfType(h′, ι0, f) = dyn(sT1, h

′, ι0) definition rfType

It remains to show that h′ ⊢ ι : dyn(sT1, h
′, ι0).

We have: II0. h0 ⊢ ι0 : dyn(sN0, h,
rΓ) and II2. h2 ⊢ ι : dyn(sN0⊲

sT1, h0,
rΓ). Because

of Lemma 5.9 both of these also apply to h′ instead of h0, h, or h2. Together with 1.
and what we have from the type rules, this allows us to apply Lemma 5.2 to arrive
at our conclusion.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

We first show that h′ ⊢ ι : dyn(sN0⊲
sT1, h,

rΓ) and then use sΓ ⊢ sN0⊲
sT1 <: sT to

arrive at the conclusion.

Because of Lemma 5.9 the result from II2., which uses h2, also applies to h′. Thus,
we have: h′ ⊢ ι : dyn(sN0⊲

sT1, h0,
rΓ). We already have 1., the well-formedness of

the runtime environment. We know that evaluation preserves types and know that
dyn only uses the runtime type of the current object in the environment. Therefore,
the judgement still holds if the second argument of dyn is h instead of h0. We thus
arrive at h′ ⊢ ι : dyn(sN0⊲

sT1, h,
rΓ).

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

We have sΓ ⊢ sN0⊲
sT1 <: sT; sT1 is the declared field type and can not have thisu

as main modifier. Therefore, also the result of the combination can not have the
thisu main modifier. Finally, also no supertype thereof can have the thisu main
modifier.

Case 5: e ≡ e0.m<sT>(e2)

For simplicity, we assume there is only one method argument.
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We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.m<sT>(e2) : sT 3. h, rΓ, e0.m<sT>(e2) h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = u0 C0S< >

mType(C0S, m) = <Xm
sNbS> w sTrS m(x sTpS)

sΓ ⊢ sT <: (sN0⊲
sNbS)[sT/Xm] sΓ ⊢ e2 : (sN0⊲

sTpS)[sT/Xm]
u0 =any ⇒ w=pure rp(u0, sTpS ◦ sNbS)
sΓ ⊢ e0.m<sT>(e2) : (sN0⊲

sTrS)[sT/Xm] sΓ ⊢ (sN0⊲
sTrS)[sT/Xm] <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h0, ι0 ι0 6= nulla h0,
rΓ, e2  h2, ι2

h0(ι0)↓1= C0R< > mBody(C0R, m) = (e1, x, Xm)
rT = dyn(sT, h, rΓ) rΓ′ = Xm

rT ; this ι0, x ι2
h2,

rΓ′, e1  h′, ι h, rΓ, e0.m<sT>(e2) h′, ι

For a method call, we have to distinguish three different classes for the receiver type.

Statically, we know that the receiver has class C0S<XS sNS> and we have the signature
mType(C0S, m) = <Xm

sNbS> w sTrS m(x sTpS).

At runtime, the receiver object ι0 has class C0R<XR sNR> and we have the signature
mType(C0R, m) = <Xm

sNbR> w sTrR m(x sTpR) and the method body mBody(C0R, m) =
(e1, x, Xm).

The third class to consider is the class C0C<XC sNC> which contains the most concrete
implementation of the method. Here we have the signature
mType(C0C , m) = <Xm

sNbC> w sTrC m(x sTpC) and the method body mBody(C0C , m) =
(e1, x, Xm). This class is important, because we take the method body from this class and
execute it. Note that the method body returned for class C0R is the same as the one for
C0C .

The three classes are in the following subclass relationship, disregarding the concrete
type arguments: C0R ⊑ C0C ⊑ C0S.

We use the subscripts R, C, and S to distinguish the level we are talking about. Note
that the name of the method type variables and method parameters are the same on all
three levels.

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h0, ι0







=⇒







I0. h0 ⊢
rΓ : sΓ

II0. h0 ⊢ ι0 : dyn(sN0, h,
rΓ)

III0.
sN0 = thisu < > ⇒ ι0 = rΓ(this)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
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We apply the induction hypothesis to e2 (we call sTa = (sN0⊲
sTpS)[sT/Xm]):

12. h0 ⊢
rΓ : sΓ

22.
sΓ ⊢ e2 : sTa

32. h0,
rΓ, e2  h2, ι2







=⇒







I2. h2 ⊢
rΓ : sΓ

II2. h2 ⊢ ι2 : dyn(sTa, h0,
rΓ)

III2.
sTa = thisu < > ⇒ ι2 = rΓ(this)

12. is I0. 22. is from the type rules and 32. is from the operational semantics.
Finally, we apply the induction hypothesis to e1:

11. h2 ⊢
rΓ′ : sΓC

21.
sΓC ⊢ e1 : sTrC

31. h2,
rΓ′, e1  h′, ι







=⇒







I1. h′ ⊢ rΓ′ : sΓC

II1. h′ ⊢ ι : dyn(sTrC , h2,
rΓ′)

III1.
sTrC = thisu < > ⇒ ι = rΓ′(this)

31. is from the operational semantics. The other two requirements need more work and
are developed next.

As static environment we use sΓC the environment that was used for checking the
well-formedness of method m (see rule WFM-1).

• Requirement 21.
sΓC ⊢ e1 : sTrC

We know that the program was type checked; especially, WFM-1 was used to check
well-formedness of the method in class C0C . The environment that was used is sΓC =
Xm

sNbC , XC
sNC ; this (thisu C0C<XC>), x sTpC . This environment was used to check

that the method body can be typed with the declared return type sΓC ⊢ e1 : sTrC .

• Requirement 11. h2 ⊢
rΓ′ : sΓC

From the semantics we have rΓ′ = Xm
rT ; this ι0, x ι2.

For WFRE we have to show:

h2 ok sΓC ok ι0 6= null

h2,
rΓ′ ⊢ rT ok h2,

rΓ′ ⊢ rT <: dyn(sNbC , h2, rΓ′)
h2,

rΓ′ ⊢ ι0 : thisu C0C<XC> h2,
rΓ′ ⊢ ι2 : sTpC

These follow from I2., II0., II2., the knowledge we have from the type checks and the
operational semantics, and corresponding applications of the viewpoint adaptation
lemma.

Now we are ready to prove the different subparts of the lemma:

• Part I: h′ ⊢ rΓ : sΓ

We get h′ ok from I1.

We had I2. h2 ⊢ rΓ : sΓ. The evaluation of e1 does not change the runtime types in
the heap, see Lemma 5.9. So the environments are still well formed.
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• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

We show that h′ ⊢ ι : dyn((sN0 ⊲
sTrS)[sT/Xm], h, rΓ) and then use sΓ ⊢ (sN0 ⊲

sTrS)[sT/Xm] <: sT to arrive at our conclusion.

Above we have shown II1. h
′ ⊢ ι : dyn(sTrC , h2,

rΓ′). We also have shown II0. h0 ⊢
ι0 : dyn(sN0, h,

rΓ).

Now we are ready to use Lemma 5.1 to arrive at h′ ⊢ ι : dyn((sN0⊲
sTrC)[sT/Xm], h, rΓ).

The assumptions of this lemma correspond exactly to the information we just derived.

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

We have (sN0⊲
sTrS)[sT/Xm] <: sT. sTrS is the declared return type and can not have

thisu as main modifier. Therefore, also the result of the combination cannot have
the thisu main modifier. Finally, also the supertype sT cannot contain thisu.

Case 6: e ≡ new sN

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ new sN : sT 3. h, rΓ, new sN h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ new sN : sN sN 6= anyu < > sΓ ⊢ sN <: sT

From 3. and the operational semantics we know:

ι /∈ dom(h) ι 6= nulla
rT = dyn(sN, h, rΓ) = C< >

Fs(fields(C)) = nulla h′ = h[ι 7→ (rT, Fs)] h, rΓ, new sN h′, ι

• Part I: h′ ⊢ rΓ : sΓ

We have h′ = h[ι 7→ (rT, Fs)], where ι is a fresh address. This update can not
influence the existing environments, which are well-formed according to 1. But we
have to show that h′ ok.

We extend the heap with an additional object; we therefore have to show that the
runtime type of the new object rT is well-formed, that the newly added address is
not nulla, and that all field values are well-typed (see WFH, Page 24).

We have to ensure that for the newly added address ι the runtime type is well-
formed: h′, ι ⊢ h′(ι)↓1 ok. From the operational semantics and the definition of dyn
we know that h′(ι) ↓1=

rT = dyn(sN, h, rΓ) From the type rules we know that sN is
a well-formed type (implicit in all type rules) and we know from 1. that the types
in the static and runtime environments are all well-formed. This allows us to apply
Lemma 5.8 to show the well-formedness of rT.

From the operational semantics we know that ι 6= nulla.



38 / 54 6 PROOFS

From the definition of well-formed heap and RTH-2 we see, that an object whose
fields are all initialized to nulla is valid in any heap.

From 1. and these observation we can conclude that I. holds.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

From the operational semantics we know that h′(ι) = rT = dyn(sN, h, rΓ). We also
have sΓ ⊢ sN <: sT and can therefore arrive at our conclusion.

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

The syntax of the language forbids that the main modifier of the static type in a new
expression can be thisu. Therefore, also a supertype sT can not have thisu as main
modifier.

Case 7: e ≡ (sT′) e0

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ (sT′) e0 : sT 3. h, rΓ, (sT′) e0  h′, ι

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sT0
sΓ ⊢ (sT′) e0 : sT′ sΓ ⊢ sT′ <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h′, ι h′, rΓ ⊢ ι : sT′ h, rΓ, (sT′) e0  h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sT0

30. h, rΓ, e0  h′, ι







=⇒







I0. h′ ⊢ rΓ : sΓ

II0. h′ ⊢ ι : dyn(sT0, h,
rΓ)

III0.
sT0 = thisu < > ⇒ ι = rΓ(this)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.

• Part I: h′ ⊢ rΓ : sΓ

From I0.

• Part II: h′ ⊢ ι : dyn(sT, h, rΓ)

From the operational semantic we have: h′, rΓ ⊢ ι : sT′ which ensures h′ ⊢ ι :
dyn(sT′, h, rΓ).

We also have h ⊢ rΓ : sΓ and sΓ ⊢ sT′ <: sT which allows us to arrive at h′ ⊢ ι :
dyn(sT, h, rΓ).

• Part III: sT=thisu < > ⇒ ι = rΓ(this)

The syntax of the language forbids that the main modifier of the static type in a cast
expression can be thisu. Therefore, also the supertype sT cannot contain thisu.
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6.2 Proof of Theorem 5.4 — Owner-as-Modifier

The Owner-as-Modifier theorem is:

1. h ⊢ rΓ : sΓ

2. sΓ ⊢ e : sT

3. h, rΓ, e h′,







⇒







∀ι ∈ dom(h), f :
I. h(ι)↓2 (f) = h′ ↓2 (f) ∨
II. owner(h, rΓ(this)) ∈ owners(h, ι)

We prove this by induction on the shape of the derivation tree of 3.

Case 1: e ≡ x

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ x : sT 3. h, rΓ, x h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

x ∈ dom(sΓ) sΓ ⊢ x : sΓ(x) sΓ ⊢ sΓ(x) <: sT

From 3. and the operational semantics we know:

h, rΓ, x h, rΓ(x)

The heap does not change, so I. holds.

Case 2: e ≡ null

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ null : sT 3. h, rΓ, null h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

sT 6= thisu < >

From 3. and the operational semantics we know:

h, rΓ, null h, nulla

The heap does not change, so I. holds.
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Case 3: e ≡ e0.f

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.f : sT 3. h, rΓ, e0.f h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = C0< >

sΓ ⊢ e0.f : sN0⊲fType(C0, f)
sΓ ⊢ sN0⊲fType(C0, f) <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h′, ι0 ι0 6= nulla

ι = h′(ι0)↓2 (f) h, rΓ, e0.f h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h′,







=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
This is already the final heap, so I. holds.

Case 4: e ≡ e0.f=e2

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.f=e2 : sT 3. h, rΓ, e0.f=e2  h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = u0 C0< >

sT1 = sfType(C0, f)
sΓ ⊢ e2 : sN0⊲

sT1

u0 6= any rp(u0,
sT1)

sΓ ⊢ e0.f=e2 : sN0⊲
sT1

sΓ ⊢ sN0⊲
sT1 <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h0, ι0 ι0 6= nulla

h0,
rΓ, e2  h2, ι h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2  h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h0,







=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h0 ↓2 (f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)
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10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
We apply the induction hypothesis to e2:

10. h0 ⊢
rΓ : sΓ

20.
sΓ ⊢ e2 : sN0⊲

sT1

30. h0,
rΓ, e2  h2,







=⇒







∀ι ∈ dom(h0), f :
h0(ι)↓2 (f) = h2 ↓2 (f) ∨
owner(h0,

rΓ(this)) ∈ owners(h0, ι)

10. corresponds to 1. in which we can change h to h0. 20. is from the type rules and 30. is
from the operational semantics.

To receive at the final heap we have to consider h′ = h2[ι0.f := ι]. In general, this will
change the value of the field f of object ι0 and I. might not hold. Therefore, we need to
show that owner(h, rΓ(this)) ∈ owners(h2, ι0). As a shorthand we use ιT = rΓ(this).

From the type rules we know that u0 6= any, i.e. the ownership modifier is either thisu,
peer, or rep. From the proof of Theorem 5.3 we know that h0 ⊢ ι0 : dyn(sN0, h,

rΓ). From
the operational semantics we know that ι0 6= nulla. Therefore we can apply Lemma 5.10
to gain knowledge of the runtime owners:

1. sN0 = thisu < > ⇒ owner(h0, ι0) = owner(h0, ιT )

2. sN0 = peer < > ⇒ owner(h0, ι0) = owner(h0, ιT )

3. sN0 = rep < > ⇒ owner(h0, ι0) = ιT

The owner of ι0 is either ιT , or the owner of ιT . Therefore, owner(h, ιT ) ∈ owners(h2, ι0)
holds.

Case 5: e ≡ e0.m<sT>(e2)

For simplicity, we assume there is only one method argument and formal parameter.
We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ e0.m<sT>(e2) : sT 3. h, rΓ, e0.m<sT>(e2) h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sN0
sN0 = u0 C0S< >

mType(C0S, m) = <Xm
sNbS> w sTrS m(x sTpS)

sΓ ⊢ sT <: (sN0⊲
sNbS)[sT/Xm] sΓ ⊢ e2 : (sN0⊲

sTpS)[sT/Xm]
u0 =any ⇒ w=pure rp(u0, sTpS ◦ sNbS)
sΓ ⊢ e0.m<sT>(e2) : (sN0⊲

sTrS)[sT/Xm] sΓ ⊢ (sN0⊲
sTrS)[sT/Xm] <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h0, ι0 ι0 6= nulla h0,
rΓ, e2  h2, ι2

h0(ι0)↓1= C0R< > mBody(C0R, m) = (e1, x, Xm)
rT = dyn(sT, h, rΓ) rΓ′ = Xm

rT ; this ι0, x ι2
h2,

rΓ′, e1  h′, ι h, rΓ, e0.m<sT>(e2) h′, ι
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We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sN0

30. h, rΓ, e0  h0,







=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h0 ↓2 (f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
We apply the induction hypothesis to e2:

10. h0 ⊢
rΓ : sΓ

20.
sΓ ⊢ e2 :

30. h0,
rΓ, e2  h2,







=⇒







∀ι ∈ dom(h0), f :
h0(ι)↓2 (f) = h2 ↓2 (f) ∨
owner(h0,

rΓ(this)) ∈ owners(h0, ι)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
If the method that is called is pure, we know from Assumption 5.5 that the method

does not change existing objects in the heap and therefore I. holds.
If the method is not pure, we apply the induction hypothesis to e1:

10. h2 ⊢
rΓ′ : sΓ′

20.
sΓ′ ⊢ e1 :

30. h2,
rΓ′, e1  h′,







=⇒







∀ι ∈ dom(h2), f :
h2(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h2,

rΓ′(this)) ∈ owners(h2, ι)

We use the runtime environment rΓ′ constructed in the operational semantics and the static
environment sΓ′ that was used to type-check the body of the method. 10. and 20. were
previously shown in the proof of the soundness Theorem 5.3 (see Page 34 for details). 30.
is from the operational semantics.

From the type rules we know that if the method is not pure then u0 6= any, i.e. the
ownership modifier is either thisu, peer, or rep. From the proof of Theorem 5.3 we know
that h0 ⊢ ι0 : dyn(sN0, h,

rΓ). From the operational semantics we know that ι0 6= nulla.
Therefore we can apply Lemma 5.10 to gain knowledge of the runtime owners:

1. sN0 = thisu < > ⇒ owner(h0, ι0) = owner(h0,
rΓ(this))

2. sN0 = peer < > ⇒ owner(h0, ι0) = owner(h0,
rΓ(this))

3. sN0 = rep < > ⇒ owner(h0, ι0) = rΓ(this)

That is, the owner of ι0 is either rΓ(this), or the owner of rΓ(this). Therefore,
owner(h, rΓ(this)) ∈ owners(h2, ι0) holds.

Case 6: e ≡ new sT′

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ new sN : sT 3. h, rΓ, new sN h′,
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From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ new sN : sN sN 6= anyu < > sΓ ⊢ sN <: sT

From 3. and the operational semantics we know:

ι /∈ dom(h) ι 6= nulla
rT = dyn(sN, h, rΓ)

rT = C< > Fs(fields(C)) = nulla h′ = h[ι 7→ (rT, Fs)]
h, rΓ, new sN h′, ι

We add an additional object to the heap and do not modify any existing objects. Therefore
I. holds.

Case 7: e ≡ (sT′) e0

We have the assumptions of the theorem:

1. h ⊢ rΓ : sΓ 2. sΓ ⊢ (sT′) e0 : sT 3. h, rΓ, (sT′) e0  h′,

From 2., the type rules, and the Generation Lemma 5.11 we get:

sΓ ⊢ e0 : sT0
sΓ ⊢ (sT′) e0 : sT′ sΓ ⊢ sT′ <: sT

From 3. and the operational semantics we know:

h, rΓ, e0  h′, ι h′ ⊢ ι : dyn(sT′, h, rΓ) h, rΓ, (sT′) e0  h′, ι

We apply the induction hypothesis to e0:

10. h ⊢ rΓ : sΓ

20.
sΓ ⊢ e0 : sT0

30. h, rΓ, e0  h′,







=⇒







∀ι ∈ dom(h), f :
h(ι)↓2 (f) = h′ ↓2 (f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

10. corresponds to 1. 20. is from the type rules and 30. is from the operational semantics.
This is already the final heap and we are done.

6.3 Proof of Lemma 5.7 — Adaptation to a Viewpoint Auxiliary
Lemma

We want to prove:

1. h, rΓ ⊢ ι1 : sN

2. ι1 6= nulla

3. sN = uN < >
4. uN 6= anyu

5. rp(uN , sT)
6. rΓ′ = X dyn(sT, h, rΓ); this ι1,
7. free(sT) ⊆ dom(sN) ◦ X







































⇒ dyn((sN⊲sT)[sT/X], h, rΓ) = dyn(sT, h, rΓ′)
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For the proofs of the adaptation lemmas we assume that the type variables in rΓ and rΓ′

are disjunct, that is, that the type variables that can appear in sN are different from the
type variables that can appear in sT. This could be the case in a recursive method call.
However, this is not a restriction on the expressive power, as we can apply the following
renaming:

XT 6∈ free(sN)

dyn(((sN[XT /Xm])⊲sT)[sTm/Xm][Xm/XT ], h, rΓ)

The proof runs by induction on the shape of sT:

• Case 1: sT = Xj ∈ X

sN⊲sT = sN⊲Xj = Xj, because X and dom(sN) are distinct sets of type variables.

(sN⊲sT)[sT/X] = Xj[sT/X] = sTj the j-th element of the list of types.

dyn((sN⊲sT)[sT/X], h, rΓ) = dyn(sTj, h, rΓ) = rΓ′(Xj) from 6.

dyn(sT, h, rΓ′) = dyn(Xj, h, rΓ′) = rΓ′(Xj) from 6.

• Case 2: sT = X
j
N ∈ dom(sN)

sN⊲sT = sN⊲X
j
N = sT

j
N the j-th type argument of sN.

(sN⊲sT)[sT/X] = sT
j
N [sT/X] = sT

j
N , because of the assumption that X do not appear

in sN.

dyn(sTj
N , h, rΓ) = rT

j
N give a name.

dyn(sN, h, rΓ) = ι C<rTN> defined because of 1.

dyn(Xj
N , h, rΓ′) = rT

j
N because of 1. and 6.

• Case 3: sT = u C

u′ = uN⊲u where uN = sN↓1.

sN⊲sT = u′ C from the definition of⊲.

(sN⊲sT)[sT/X] = u′ C because there are no substitutions left.

We now do a case analysis on the ownership combination:

– Case 3a: u′ = thisu ∨ u′ = peer

We can have the following four cases:

1. uN = thisu ∧ u = thisu ⇒ u′ = thisu

2. uN = thisu ∧ u = peer ⇒ u′ = peer

3. uN = peer ∧ u = thisu ⇒ u′ = peer

4. uN = peer ∧ u = peer ⇒ u′ = peer
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dyn(u′ C, h, rΓ) = h(rΓ(this))↓1↓1 C from the definition DYN for a thisu or
peer modifier.

dyn(u C, h, rΓ′) = h(rΓ′(this))↓1↓1 C = h(ι1)↓1↓1 C from the definition DYN
for a thisu or peer modifier and from 6.

From 1., RTS, dyn, and RTH-1 we know that
h, rΓ ⊢ ι1 : sN ⇒ h, ι1 ⊢ h(ι1)↓1 <: dyn(sN, h, rΓ)

We know that uN is either peer or thisu. Therefore the main modifier of the
runtime type that is the result of dyn(sN, h, rΓ) is h(rΓ(this))↓1↓1

Therefore we have that h(ι1)↓1↓1= h(rΓ(this))↓1↓1 and thus the results of the
two dynamizations are the same.

– Case 3b: u′ = rep

We can have the following two cases:

1. uN = thisu ∧ u = rep ⇒ u′ = rep

2. uN = rep ∧ (u = peer ∨ u = thisu) ⇒ u′ = rep

dyn(u′ C, h, rΓ) = rΓ(this) C

∗ Case 3b1: uN = thisu ∧ u = rep ⇒ u′ = rep

dyn(u C, h, rΓ′) = rΓ′(this) C = ι1 C from DYN and 6.
From 1. and RTS we get that ι1 = rΓ(this) because uN = thisu.
Therefore both sides match.

∗ Case 3b2: uN = rep ∧ (u = peer ∨ u = thisu) ⇒ u′ = rep

dyn(u C, h, rΓ′) = h(rΓ′(this))↓1↓1 C = h(ι1)↓1↓1 C from DYN and 6.
From 1., RTS, dyn, and RTH-1 we know that
h, rΓ ⊢ ι1 : sN ⇒ h, ι1 ⊢ h(ι1)↓1 <: dyn(sN, h, rΓ)
We know that uN is rep. Therefore the main modifier of the runtime type
that is the result of dyn(sN, h, rΓ) is rΓ(this).
Therefore we have that h(ι1)↓1↓1=

rΓ(this) and thus the results of the two
dynamizations are the same.

– Case 3c: u′ = anyu

∗ Case 3c1: uN = anyu

Is forbidden by 4.

∗ Case 3c2: u = anyu

dyn(anyu C, h, rΓ) = anya C = dyn(anyu C, h, rΓ′)

∗ Case 3c3: (uN = rep ∨ un = peer) ∧ u = peer ∧ rep ∈ sT

rep ∈ sT forbidden by rp(uN , sT).

∗ Case 3c4: (uN = peer ∧ u = rep) ∨ (uN = rep ∧ u = rep)
Forbidden by rp(uN , sT).
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• Case 4: sT = u C<sT>

Let us first give names to the result of the application of dyn:
dyn(sT, h, rΓ′) = ι′′ C<rT′′>
dyn((sN⊲sT)[sT/X], h, rΓ) = ι′′′ C<rT′′′>

The same analysis as case 3. before results in ι′′ = ι′′′.

Now we apply the induction hypothesis to the sT and use 1., 2., 3., 4., 5., 6. and the
fact that free(sT) ⊆ dom(sN) ◦ X ⇒ free(sT) ⊆ dom(sN) ◦ X.

Therefore we have that ι′′ = ι′′′ and rT′′ = rT′′′.

6.4 Proof of Lemma 5.6 — Adaptation from a Viewpoint Aux-

iliary Lemma

We want to prove:

1. h, rΓ ⊢ ι1 : sN

2. ι1 6= nulla

3. rΓ′ = X dyn(sT, h, rΓ); this ι1,
4. free(sT) ⊆ dom(sN) ◦ X















⇒ dyn(sT, h, rΓ′) <:a dyn((sN⊲sT)[sT/X], h, rΓ)

The proof runs by induction on the shape of sT:

• Case 1: sT = Xj ∈ X

sN⊲sT = sN⊲Xj = Xj, because X and dom(sN) are distinct sets of type variables.

(sN⊲sT)[sT/X] = Xj[sT/X] = sTj the j-th element of the list of types.

dyn(sT, h, rΓ′) = dyn(Xj, h, rΓ′) = rΓ′(Xj) definition of dyn. rΓ′(Xj) = dyn(sTj, h, rΓ)
from 3.

dyn((sN⊲sT)[sT/X], h, rΓ) = dyn(sTj, h, rΓ)

• Case 2: sT = X
j
N ∈ dom(sN)

sN⊲sT = sN⊲X
j
N = sT

j
N the j-th type argument of sN.

(sN⊲sT)[sT/X] = sT
j
N [sT/X] = sT

j
N , because of the assumption that X do not appear

in sN.

dyn(sN, h, rΓ) = ι C<rTN> defined because of 1, give the runtime type a name.

dyn(sTj
N , h, rΓ) = rT

j
N definition dyn and 1.

dyn(Xj
N , h, rΓ′) = rT

j
N because of 1., 2., and DYN.

• Case 3: sT = u C

u′ = uN⊲u where uN = sN↓1.

sN⊲sT = u′ C from the definition of⊲.



Formalization of Generic Universe Types 47 / 54

(sN⊲sT)[sT/X] = u′ C because there are no substitutions left.

We now do a case analysis on the ownership combination:

– Case 3a: u′ = thisu ∨ u′ = peer

We can have the following four cases:

1. uN = thisu ∧ u = thisu ⇒ u′ = thisu

2. uN = thisu ∧ u = peer ⇒ u′ = peer

3. uN = peer ∧ u = thisu ⇒ u′ = peer

4. uN = peer ∧ u = peer ⇒ u′ = peer

dyn(u′ C, h, rΓ) = h(rΓ(this))↓1↓1 C from the definition DYN for a thisu or
peer modifier.

dyn(u C, h, rΓ′) = h(rΓ′(this))↓1↓1 C = h(ι1)↓1↓1 C from the definition DYN
for a thisu or peer modifier and from 3.

From 1., 2., RTS, dyn, and RTH-1 we know that
h, rΓ ⊢ ι1 : sN ⇒ h, ι1 ⊢ h(ι1)↓1 <: dyn(sN, h, rΓ)

We know that uN is either peer or thisu. Therefore the main modifier of the
runtime type that is the result of dyn(sN, h, rΓ) is h(rΓ(this))↓1↓1

Therefore we have that h(ι1)↓1↓1= h(rΓ(this))↓1↓1 and thus the results of the
two dynamizations are the same.

– Case 3b: u′ = rep

We can have the following two cases:

1. uN = thisu ∧ u = rep ⇒ u′ = rep

2. uN = rep ∧ (u = peer ∨ u = thisu) ⇒ u′ = rep

dyn(u′ C, h, rΓ) = rΓ(this) C

∗ Case 3b1: uN = thisu ∧ u = rep ⇒ u′ = rep

dyn(u C, h, rΓ′) = rΓ′(this) C = ι1 C from DYN and 3.
From 1. and RTS we get that ι1 = rΓ(this) because uN = thisu.
Therefore both sides match.

∗ Case 3b2: uN = rep ∧ (u = peer ∨ u = thisu) ⇒ u′ = rep

dyn(u C, h, rΓ′) = h(rΓ′(this))↓1↓1 C = h(ι1)↓1↓1 C from DYN and 6.
From 1., 2., RTS, dyn, and RTH-1 we know that
h, rΓ ⊢ ι1 : sN ⇒ h, ι1 ⊢ h(ι1)↓1 <: dyn(sN, h, rΓ)
We know that uN is rep. Therefore the main modifier of the runtime type
that is the result of dyn(sN, h, rΓ) is rΓ(this).
Therefore we have that h(ι1)↓1↓1=

rΓ(this) and thus the results of the two
dynamizations are the same.

– Case 3c: u′ = anyu

dyn(u′ C, h, rΓ) = anya C
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∗ Case 3c1: uN = anyu

dyn(sT, h, rΓ′) = ι C for some ι. By rule RTA-2 we get that ι C <:a anya C.

∗ Case 3c2: u = anyu

dyn(anyu C, h, rΓ) = anya C = dyn(anyu C, h, rΓ′)

∗ Case 3c3: (uN = rep ∨ un = peer) ∧ u = peer ∧ rep ∈ sT

dyn(sT, h, rΓ′) = ι C for some ι. By rule RTA-2 we get that ι C <:a anya C.

∗ Case 3c4: (uN = peer ∧ u = rep) ∨ (uN = rep ∧ u = rep)
dyn(sT, h, rΓ′) = ι C for some ι. By rule RTA-2 we get that ι C <:a anya C.

• Case 4: sT = u C<sT>

Let us first give names to the result of the application of dyn:
dyn(sT, h, rΓ′) = ι′′ C<rT′′>
dyn((sN⊲sT)[sT/X], h, rΓ) = ι′′′ C<rT′′′>

The same analysis as case 3. before results in ι′′ = ι′′′.

Now we apply the induction hypothesis to the sT and use 1., 2., 3. and the fact that
free(sT) ⊆ dom(sN) ◦ X ⇒ free(sT) ⊆ dom(sN) ◦ X.

Therefore we have that ι′′ = ι′′′ and rT′′ <:a rT′′′.

6.5 Proof of Lemma 5.2 — Adaptation to a Viewpoint

We want to prove:

1. h, rΓ ⊢ ι1 : sN

2. h, rΓ ⊢ ι2 : (sN⊲sT)[sT/X]
3. ι1 6= nulla

4. sN = u < >
5. u 6= any

6. rp(u, sT)
7. sT 6= thisu < >
8. free(sT) ⊆ dom(sN) ◦ X
9. rΓ′ = X dyn(sT, h, rΓ); this ι1,























































⇒ h, rΓ′ ⊢ ι2 : sT

We can directly apply Lemma 5.7, because we have the same assumptions.
Therefore we have dyn((sN⊲sT)[sT/X], h, rΓ) = dyn(sT, h, rΓ′).

From RTS we know that for h, rΓ′ ⊢ ι2 : sT we need to show two things:

I. h ⊢ ι2 : dyn(sT, h, rΓ′)

II. sT = thisu < > ⇒ ι2 = rΓ′(this)
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• Part I:

From 2. and RTS we know that h ⊢ ι2 : dyn((sN⊲sT)[sT/X], h, rΓ). We have shown
above that the dyn is equivalent to h ⊢ ι2 : dyn(sT, h, rΓ′).

• Part II:

This case is forbidden by 7.

6.6 Proof of Lemma 5.1 — Adaptation from a Viewpoint

We want to prove:

1. h, rΓ ⊢ ι1 : sN

2. h, rΓ′ ⊢ ι2 : sT

3. ι1 6= nulla

4. free(sT) ⊆ dom(sN) ◦ X
5. rΓ′ = X dyn(sT, h, rΓ); this ι1,























⇒ h, rΓ ⊢ ι2 : (sN⊲sT)[sT/X]

We can apply Lemma 5.6 to arrive at dyn(sT, h, rΓ′) <:a dyn((sN⊲sT)[sT/X], h, rΓ)
From RTS we know that for h, rΓ ⊢ ι2 : (sN⊲sT)[sT/X] we need to show two things:

I. h ⊢ ι2 : dyn((sN⊲sT)[sT/X], h, rΓ)

II. (sN⊲sT)[sT/X] = thisu < > ⇒ ι2 = rΓ(this)

• Part I:

From 2. and RTS we know that h ⊢ ι2 : dyn(sT, h, rΓ′). We have shown above that
dyn(sT, h, rΓ′) <:a dyn((sN⊲sT)[sT/X], h, rΓ). Therefore by RT-2 and RT-3 we reach
h ⊢ ι2 : dyn((sN⊲sT)[sT/X], h, rΓ).

• Part II:

The premise can never be fulfilled. The type combination followed by the substitution
can not result in a type that has thisu as main modifier.

Together this allows us to arrive at the conclusion.

6.7 Proof of Lemma 5.9 — Evaluation Preserves Types

If h, rΓ, e h′, ι′, then

• ι ∈ dom(h) ⇒ h(ι)↓1= h′(ι)↓1.

• dyn(sT, h, rΓ) is defined ⇒ dyn(sT, h, rΓ) = dyn(sT, h′, rΓ).

A simple case analysis of all expressions shows that only the values of fields are updated
in a heap. The runtime type of objects is never changed.

The second part follows directly from the first, because dyn only takes the runtime type
from the heap and does not depend on the field values.
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6.8 Proof of Lemma 5.10 — Runtime Meaning of Ownership
Modifiers

If h ⊢ ι : dyn(sT,h, rΓ) and ι 6= nulla, then

1. sT = thisu < > ⇒ owner(h, ι) = owner(h, rΓ(this))
2. sT = peer < > ⇒ owner(h, ι) = owner(h, rΓ(this))
3. sT = rep < > ⇒ owner(h, ι) = rΓ(this)

• Case 1: sT=thisu < >
dyn(sT,h, rΓ) replaces thisu by h(rΓ(this))↓1↓1, that is, the owner of rΓ(this).

• Case 2: sT=peer < >
dyn(sT,h, rΓ) replaces peer by h(rΓ(this))↓1↓1, that is, the owner of rΓ(this).

• Case 3: sT=rep < >
dyn(sT,h, rΓ) replaces rep by rΓ(this).

6.9 Proof of Lemma 5.11 — Generation Lemma

If sΓ ⊢ e : sT then the following hold:

1. e ≡ x ⇒ x ∈ dom(Γ) ∧ Γ ⊢ Γ(x) <: sT

2. e ≡ null ⇒ sT 6= thisu < >
3. e ≡ new sN ⇒ sN 6= anyu < > ∧ Γ ⊢ sN <: sT

4. e ≡ (sT′) e0 ⇒ Γ ⊢ e0 : sT0 ∧ Γ ⊢ sT′ <: sT

5. e ≡ e0.f ⇒ sΓ ⊢ e0 : sN0 ∧ sN0 = C0< > ∧
sΓ ⊢ sN0⊲fType(C0, f) <: sT

6. e ≡ e0.f=e2 ⇒
sΓ ⊢ e0 : sN0 ∧ sN0 = u0 C0< > ∧ sT1 = fType(C0, f) ∧
sΓ ⊢ e2 : sN0⊲

sT1 ∧ u0 6= any ∧ rp(u0,
sT1) ∧

sΓ ⊢ sN0⊲
sT1 <: sT

7. e ≡ e0.m<sT>(e2) ⇒
sΓ ⊢ e0 : sN0 ∧ sN0 = u0 C0< > ∧
mType(C0, m) = <Xm

sNb> w sTr m(x sTp) ∧
sΓ ⊢ sT <: (sN0⊲

sNb)[sT/Xm] ∧
sΓ ⊢ e2 : (sN0⊲

sTp)[sT/Xm] ∧
(u0 =any ⇒ w=pure) ∧ rp(u0, sTp ◦ sNb) ∧
sΓ ⊢ (sN0⊲

sTr)[sT/Xm] <: sT

The proof of Lemma 5.11 runs by rule induction on the shape of the expression e. There
are always two type rules that could apply to an expression: the rule for the particular kind
of expression and the subsumption rule. From the particular rule we get all the conditions
that are checked for this kind of expression; subsumption allows one to go to an arbitrary
supertype of this type.
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6.10 Proof of Lemma 5.12 — Unique Evaluation Lemma

h, rΓ, e h′, ι
h, rΓ, e h′′, ι′

}

⇒ h′ = h′′ ∧ ι = ι′ up to renaming of addresses

The proof of Lemma 5.12 runs by rule induction on the shape of the expression e. The
only non-determinism comes from rule OS-New, which does not uniquely determine the
address of the new object. This information from OS-New can be used to build a mapping
between the two executions of the expressions.

7 Conclusions

We presented Generic Universe Types, an ownership type system for Java-like languages
with generic types. Our type system permits arbitrary references through any types,
but controls modifications of objects, that is, enforces the owner-as-modifier discipline.
This allows us to handle interesting implementations beyond simple aggregate objects, for
instance, shared buffers [12]. We show how any types and generics can be combined in a
type safe way using limited covariance and viewpoint adaptation.

Generic Universe Types require little annotation overhead for programmers. As we
have shown for non-generic Universe Types [12], this overhead can be further reduced by
appropriate defaults. The default ownership modifier is generally peer, but the modifier of
upper bounds, exceptions, and immutable types (such as String) defaults to any. These
defaults make the conversion from Java 5 to Generic Universe Types simple.

The type checker and runtime support for Generic Universe Types are implemented in
the JML tool suite [18].

As future work, we plan to use Generic Universe Types for program verification, ex-
tending our earlier work [21, 22]. One of the interesting challenges there is to relax the
restrictions on any types, for instance, to allow field updates and calls of non-pure methods
on receivers whose type is a type variable with an any upper bound. We are also working
on path-dependent Universe Types to support more fine-grained information about object
ownership [25], and to extend our inference tools for non-generic Universe Types to Generic
Universe Types.
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[23] S. Nägeli. Ownership in design patterns. Master’s thesis, ETH Zurich, 2006. sct.

inf.ethz.ch/projects/student docs/Stefan Naegeli.

[24] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In E. Jul, editor,
European Conference on Object-Oriented Programming (ECOOP), volume 1445 of
LNCS. Springer-Verlag, 1998.
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