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Ownership is a powerful concept to structure the object store and to control aliasing and modifications of
objects. This article presents an ownership type system for a Java-like programming language with generic
types.

Like our earlier Universe type system, Generic Universe Types structure the heap hierarchically. In
contrast to earlier work, we separate the enforcement of an ownership topology from an encapsulation
system. The topological system uses an existential modifier to express that no ownership information is
available statically. On top of the topological system, we build an encapsulation system that enforces the
owner-as-modifier discipline. This discipline does not restrict aliasing, but requires modifications of an object
to be initiated by its owner. This allows owner objects to control state changes of owned objects—for instance,
to maintain invariants. Separating the topological system from the encapsulation system allows for a cleaner
formalization, separation of concerns, and simpler reuse of the individual systems in different contexts.
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1. INTRODUCTION

The concept of object ownership allows programmers to structure the object store
hierarchically and to control aliasing and access between objects. Ownership has
been applied successfully to various problems—for instance, program verification
[Drossopoulou et al. 2008; Leino and Müller 2004; Müller 2002; Müller et al. 2006];
thread synchronization [Boyapati et al. 2002; Jacobs et al. 2005]; memory management
[Andrea et al. 2006; Boyapati et al. 2003]; and representation independence [Banerjee
and Naumann 2002].
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Most ownership models share a fundamental topology, whereby each object has at
most one owner object. The set of all objects with the same owner is called a context.
The root context is the set of objects with no owner. The ownership relation is a tree
order.

However, existing models differ in the encapsulation system they enforce. The origi-
nal ownership types [Clarke et al. 1998] and their descendants [Boyapati 2004; Clarke
2001; Clarke and Drossopoulou 2002; Potanin et al. 2006] restrict aliasing and enforce
the owner-as-dominator discipline: All reference chains from an object in the root con-
text to an object o in a different context go through o ’s owner. In the original ownership
types and Clarke’s thesis [Clarke 2001], this restriction applies to references stored
in fields as well as to references stored in local variables. This severe restriction of
aliasing is necessary for some of the applications of ownership, for instance, memory
management [Boyapati 2004; Boyapati et al. 2003] and representation independence
[Banerjee and Naumann 2002]. Various variants of ownership types enforce a weaker
form of the owner-as-dominator discipline by allowing certain references to bypass own-
ers, for instance, references in some local variables [Aldrich et al. 2002] or references
from inner-class objects [Boyapati 2004].

For some other applications such as program verification, restricting aliasing is not
necessary. Instead, it suffices to restrict the set of references which can be used to
modify an object and to enforce the owner-as-modifier discipline: An object o may be
referenced by any other object, but reference chains that do not pass through o ’s owner
must not be used to modify o. Analogously to the original ownership types, reference
chains may include references stored in fields as well as in local variables. This allows
owner objects to control state changes of owned objects and thus maintain invariants.
The owner-as-modifier discipline was inspired by Flexible Alias Protection [Noble et al.
1998]. Variations of it are enforced by the Universe type system [Dietl and Müller 2005;
Cunningham et al. 2008]; in Spec�’s dynamic ownership model [Leino and Müller 2004];
and Effective Ownership Types [Lu and Potter 2006b].

By restricting modifications rather than the existence of references, the owner-
as-modifier discipline supports common implementations where objects are shared
between objects, such as collections with iterators, shared buffers, or the Fly-
weight pattern [Dietl and Müller 2005; Nägeli 2006]. Some implementations can be
slightly adapted to satisfy the owner-as-modifier discipline, for example an iterator
can delegate modifications to the corresponding collection which owns the internal
representation.

According to the above definition (formalized in our recent work on nongeneric
Universe types [Cunningham et al. 2008]), owner-as-modifier imposes strictly weaker
restrictions than the owner-as-dominator discipline of the original ownership types.
However, in this article, as in our earlier work on Universe types, we use a slightly
more restrictive definition of owner-as-modifier, which forbids some modifications that
owner-as-dominator allows, namely, modifications of objects in ancestor contexts of the
context containing the current receiver. For illustration, consider the objects in Fig-
ure 1, in a UML-like notation, which describe a simple representation of a map. In
this object graph, the reference from the Node instance 5 to the Data instance 2 could
be used for modifications in the owner-as-dominator discipline and the above defini-
tion of the owner-as-modifier discipline; however, the owner-as-modifier discipline we
enforce in this article forbids modifications through such references. Therefore, the
encapsulation guarantee from Generic Universe Types is not comparable to the owner-
as-dominator discipline, in the sense that neither implies the other one, even though
for most practical examples the owner-as-modifier discipline provides the weaker guar-
antees. We also do not consider the relaxations (for instance, regarding local variables
and inner-class objects) that have been used in variations of ownership types. The main
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Fig. 1. Object structure of a map from ID to Data objects. The map is represented by Node objects. The client
has a direct reference to a node. Objects, references, and contexts are depicted by rectangles, arrows, and
dashed rectangles, respectively. Owner objects sit atop the context of objects they own. Arrows are labeled
with the name of the variable that stores the reference. Dashed arrows depict references that cross context
boundaries without going through the owner. If the owner-as-modifier discipline is enforced, such references
must not be used to modify the state of the referenced objects. The source code for this example is shown in
Figures 2, 3, and 4.

choice, however, is in the intended application domain, with the owner-as-dominator
and owner-as-modifier disciplines geared towards different applications.

Because Universe types have very simple annotations, they are, in some cases, unable
to express all necessary ownership information for programs to type-check. Rather than
make such programs type-incorrect, we introduce casts into the language. For this
reason, we also represent the ownership structure at runtime. In contrast, original
ownership types and their descendants rely exclusively on static checks.

Although ownership type systems have covered all features of Java-like languages
(including, for example, exceptions, inner classes, and static class members) there are
only a few proposals of ownership type systems that support generic types. The goal of
the combination is, for example, to type a collection of Book objects as “my collection of
library books,” expressing that the collection object belongs to the current this object,
whereas the Book objects in the collection belong to an object “library”.

SafeJava [Boyapati 2004] supports type parameters and ownership parameters inde-
pendently, but does not integrate both forms of parametricity. This leads to significant
annotation overhead. Ownership Domains [Aldrich and Chambers 2004] combine type
parameters and domain parameters into a single parameter space, and thereby reduce
the annotation overhead. However, type parameters are not covered by their formal-
ization. Ownership Generic Java (OGJ) [Potanin et al. 2006] allows programmers to
attach ownership information through type parameters. OGJ piggybacks ownership
information on type parameters—in particular, each class C has a type parameter
to encode the owner of a C object. OGJ enforces the owner-as-dominator discipline.
A later extension combines OGJ with immutability [Zibin et al. 2010]. Jo∃ [Cameron
and Drossopoulou 2009; Cameron 2009] combines the theory on existential types with
a parametric ownership type system. Ownership information is passed as additional
type parameters, and existential types can be used to allow subtype variance. Jo∃deep
provides optional enforcement of the owner-as-dominator discipline.

In this article, we present Generic Universe Types (GUT), an ownership type system
for a programming language with generic types similar to Java 5 and C� 2.0. A key
feature of GUT is that it separates the ownership topology from the encapsulation
system. Cleanly separating the ownership topology from the encapsulation system
improves the formalization and presentation of ownership type systems and increases
their flexibility.

The topological system describes and enforces the hierarchical ownership structure
of the object store that we described above, but does not impose any restrictions on
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references or operations; any object can reference and access any other object in the
heap. Imposing restrictions is the task of the separate encapsulation system, which is
built on top of the topological system. The encapsulation system of GUT enforces the
owner-as-modifier discipline; but it is possible to define other encapsulation systems.
For instance, we could use Spec�’s verification-based encapsulation system [Leino and
Müller 2004] on top of our topological system.

Enforcing only the topological system already provides strong guarantees. Suppose
there was a second map object in Figure 1. The topological system guarantees that the
first fields of the two maps will reference two different node objects. Mixing nodes from
different maps is prevented. Even without an encapsulation system, this guarantee is
sufficient for some applications of ownership—for instance, to show the absence of
data races [Cunningham et al. 2007] or to prove termination [Ádám et al. 2007]. The
encapsulation discipline additionally ensures that the owner-as-modifier discipline is
adhered to. For example, reference n from the client (object 1) to the node (object 5)
cannot be used to modify object 5, and reference value from the node (object 5) to the
data (object 2) cannot be used to modify object 2, as these references bypass the owners
of the referenced objects. The topological system alone permits these modifications, and
we could design alternative encapsulation systems that would permit them as well (for
instance, the owner-as-dominator discipline would allow object 5 to modify object 2
through the value reference).

The separation of topology and encapsulation is simplified by distinguishing between
a reference that can refer to an arbitrary object and a reference that points to a specific
context, but where this specific context is not expressible in the type system. We dis-
tinguish between the “don’t care” modifier any that can reference an arbitrary object
and the “don’t know” modifier lost that references an object for which the precise own-
ership information cannot be expressed statically. Updates of any variables are always
possible, since the owner of their value is not of interest. Updates of lost variables
must be forbidden, since the ownership information required for type-safe updates is
not statically known.

The idea of separating topological information from further guarantees is not new.
In the following systems, the topological properties are described through one set of
annotations, while further annotations restrict accesses between objects [Aldrich and
Chambers 2004; Lu and Potter 2006a]; or restrict the write effects [Lu and Potter
2006b]; or restrict invalidation of invariants [Lu et al. 2007]. Our work is novel, in
that it is the first to separate the topological aspects from the encapsulation aspects
in the setting of Generic Universe Types. Furthermore, while in the aforementioned
works the extra guarantees can only be given through extra type annotations, in our
work, the extra guarantees (i.e., the encapsulation system) do not require additional
annotations; they are simply enforced through a stronger version of the type system.

Contributions and Comparison to our Earlier Work. Our work on Generic Universe
Types makes the following contributions: (1) a formal integration of type parameters
and ownership; (2) a clean separation of the topological system from the encapsu-
lation system; (3) more static ownership information; (4) a formalization using Ott
[Sewell et al. 2007], a system that provides support for defining languages by hav-
ing a simple input language, sort-checking input, and producing LATEX output (we did
not use Ott’s theorem prover output, however); and (5) a type checker implemented
in the Checker Framework [Papi et al. 2008; Ernst 2008]. The Ott formalization and
the type checker implementation are available from http://www.cs.washington.edu/
homes/wmdietl/ownership/.

In order to be able to separate the topological system from the encapsulation sys-
tem, we adopted the modifier lost, which we had introduced in our earlier work on
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nongeneric Universe Types [Cunningham et al. 2008], into the Generic Universe Types
work. Since the presence of the lost modifier is pervasive in the type system and the
generic type system is much more powerful than the nongeneric one, this adoption re-
quired a complete revisit and rethinking of our original Generic Universe Types work
[Dietl et al. 2007], an extension of the definition of dynamization, and the introduction
of the new concepts of strict subtypes and strict well-formedness. The lost modifier
allows us to support ownership covariance in a way that retains more static knowledge
about the ownership topology than the original Generic Universe Types. The additional
static ownership information allows us to express examples that were previously not
typable. Our current work makes GUT formally cleaner and more expressive. See
Section 6.2 for a more detailed comparison to our previous work.

Outline. Section 2 of this article illustrates the main concepts of Generic Universe
Types by examples. Section 3 defines the programming language, the runtime sys-
tem, and the operational semantics, without specifying how the ownership topology
or encapsulation discipline are enforced. The topological system is given in Section 4,
and Section 5 presents the encapsulation system that builds on top of the topological
system. In Section 6 we discuss related work, and, finally, Section 7 concludes.

An electronic appendix available in the ACM Digital Library accompanies this article.
Appendix A presents additional properties of GUT that are needed in the proofs, and

Appendix B contains the proofs of the properties.

2. MAIN CONCEPTS

In this section we explain the main concepts of Generic Universe Types (GUT) infor-
mally by two examples: a generic map and an implementation of the decorator pattern.
We chose these examples for clarity and to illustrate the main concepts of our system.
A realistic map implementation would, for instance, use hash tables; however, such an
implementation would exhibit the same distinction between internal nodes and the ex-
ternal data elements as in our example. This section focuses on the topological system
of GUT, which will be discussed in detail in Section 4. We highlight the impact of the
encapsulation system in key places; it will be discussed in turn in Section 5.

Class Map (Figure 2) implements a generic map from keys to values. Key-value pairs
are stored in singly-linked Node objects (Figure 3). The main method of class Client
(Figure 4) builds up the map structure shown in Figure 1. In the second example, class
Decorator can be used to decorate arbitrary objects (Figure 5) as shown in class Demo
(Figure 6). For simplicity, we omit access modifiers from all examples.

2.1. Ownership Modifiers

A type in GUT is either a type variable or consists of an ownership modifier, a class
name, and possibly type arguments. The ownership modifier expresses object ownership
relative to the current receiver object this.1 Programs may contain the ownership
modifiers peer, rep, and any, which have the following meanings.

—peer expresses that an object has the same owner as the this object; that is, that the
current object and the referenced object share the same owner and are therefore in
the same context.

—rep expresses that an object is owned by this; that is, the current object is the owner
of the referenced object.

—any expresses that an object may have an arbitrary owner. The any modifier is a
“don’t care” modifier and expresses that the ownership of the referenced object is
deliberately unspecified for this reference; any types, therefore, are supertypes of the

1We ignore static fields and methods here, but an extension is possible [Dietl 2009].
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Fig. 2. An implementation of a generic map. Map objects own their Node objects, as indicated by the rep
modifier in all occurrences of class Node.

Fig. 3. Nodes form the internal representation of maps. Class Node implements nodes for singly-linked lists
of keys and values.

Fig. 4. Main program for our map example. The execution of method main creates the object structure in
Figure 1.
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rep and peer types with the same class and type arguments, as any types convey less
specific ownership information.

The use of ownership modifiers is illustrated by the class Map (Figure 2). A Map object
owns its Node objects, since they form the internal representation of the map. This
ownership relation is expressed by the rep modifier of Map’s field first, which points
to the first node of the map.

Internally, the type system uses two additional ownership modifiers, self and lost.

—self is only used as the modifier for the current object this and distinguishes the
current object from other objects that have the same owner. Therefore, a type with
the self modifier is a subtype of a type with the peer modifier with the same class
and type arguments. The use of a separate self modifier highlights the special role
that the current object plays in ownership systems and simplifies the overall system
by removing special cases for accesses on this.

—lost signifies that the ownership information cannot be expressed statically with
one of the other ownership modifiers. It is a “don’t know” modifier that indicates
that ownership information was “lost” in the type-checking process; in contrast to
the any modifier, concrete ownership information might be needed for the reference.
lost types are subtypes of corresponding any types, since we want to be able to use
any references to refer to arbitrary objects, including objects with lost ownership; on
the other hand, lost types are supertypes of the corresponding peer and rep types,
since lost types provide less detailed information.

Our encapsulation system enforces the owner-as-modifier discipline by restricting
modifications of objects to self, peer, and rep receivers. That is, an expression of a
lost or an any type may be used as receiver of field reads and calls to side-effect-free
(pure) methods, but not of field updates or calls to nonpure methods. To check this
property, the encapsulation system requires side-effect-free methods to be annotated
with the keyword pure. This distinction between pure and nonpure methods is not
relevant for the topological system.

2.2. Viewpoint Adaptation

Since ownership modifiers express ownership relative to this, they have to be adapted
when this “viewpoint” changes. Consider Node’s method init (Figure 3). The third
parameter has type peer Node<K,V> and is used to initialize the next field. The peer
modifier expresses that the parameter object must have the same owner as the receiver
of the method. On the other hand, Map’s method put calls init on a rep Node receiver,
that is, an object that is owned by this. Therefore, the third parameter of the call to init
also has to be owned by this, which means that from this particular call’s viewpoint,
the third parameter needs a rep modifier, although it is declared with a peer modifier.
In the type system, this viewpoint adaptation is done by combining the type of the
receiver of a call (here, rep Node<K,V>) with the type of the formal parameter (here,
peer Node<K,V>). This combination yields the argument type from the caller’s point of
view (here, rep Node<K,V>).

Viewpoint adaptation results in lost ownership information if the ownership is not
expressible from the new viewpoint. For instance, imagine there was a field access
map.first in Figure 4; the viewpoint adaptation of the field type, rep Node<K,V>, yields
a lost type because there is no ownership modifier to more precisely express a reference
into the representation of object map. As a consequence, soundness of the topological
system requires that methods cannot directly modify a rep field of an object other than
this.
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If only the topological system is enforced, a reference containing lost or arbitrary
ownership information can still be used as the receiver of field updates and modifying
method calls. Consider the main program in Figure 4. Local variable n stores a
reference into the representation of another object, since method getNode returns
a reference to the internal nodes of the peer map. The update of n.key is valid, as
it preserves the topology of the heap. We have full knowledge of the type of the
field after viewpoint adaptation, and no ownership information is lost. On the other
hand, the update of n.next has to be forbidden. After the viewpoint adaptation, the
type of the left-hand side is lost Node<rep ID, any Data>; this type contains a lost
ownership modifier and, therefore, the heap topology cannot be ensured statically. If
the owner-as-modifier discipline is also enforced, the receiver type of field updates and
modifying method calls needs to have a self, peer, or rep modifier. In the example from
Figure 4, the update of n.key is illegal in the owner-as-modifier discipline because it
would modify an object in a statically-unknown context; thus, the modification might
bypass the owner of the modified object.

Viewpoint adaptation and the owner-as-modifier discipline provide encapsulation of
internal representation objects. Again, let us consider method getNode from class Map.
By viewpoint adaptation of the return type, rep Node<K,V>, clients of the map can only
obtain a lost reference to the nodes. The owner-as-modifier discipline requires a self,
peer, or rep receiver type for modifications, and thus, guarantees that clients cannot
directly modify the node structure. This allows the map to maintain invariants over
the nodes, for instance, that the node structure is acyclic.

2.3. Type Parameters

Ownership modifiers are also used in actual type arguments—for instance, Client’s
method main instantiates Mapwith the type arguments rep ID and any Data. Thus, field
map has type peer Map<rep ID, any Data>, which has three ownership modifiers. The
main modifier peer expresses that the Map object has the same owner as this, whereas
the argument modifiers rep and any express ownership of the keys and values relative
to the this object, in this case that the keys are ID objects owned by this and that the
values are Data objects in an arbitrary context. It is important to understand that the
argument modifiers again express ownership relative to the current this object (here,
the Client object), and not relative to the instance of the generic class that contains
the argument modifier (here, the Map object map).

Type variables are not subject to the viewpoint adaptation that is performed for
non-variable types. When type variables are used, for instance, in field declarations,
the ownership information they carry stays implicit, and hence does not have to be
adapted. The substitution of type variables by their actual type arguments happens in
the scope in which the type variables were instantiated. Therefore, the viewpoint is the
same as for the instantiation, and no viewpoint adaptation is required. For instance,
imagine there was a field read n.key in method main (Figure 4). The declared type of
the field is the type variable K. Reading the field through the n reference substitutes the
type variable by the actual type argument rep ID, and does not perform a viewpoint
adaptation.

Thus, even though the Map class does not know the owner of the keys and values (due
to the implicit any upper bound for K and V, see below), clients of the map can recover the
exact ownership information from the type arguments. This illustrates that Generic
Universe Types provide strong static guarantees similar to those of owner-parametric
systems [Clarke et al. 1998], even in the presence of any types. The corresponding
implementation in nongeneric Universe Types requires a downcast from the any type
to a rep type and the corresponding runtime check [Dietl and Müller 2005]. As in Java,
the implementation of a generic class is checked against the declared upper bounds
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Fig. 5. A decorator for arbitrary objects. As shown in method decorate, type variables with peer or rep
upper bounds can be instantiated.

Fig. 6. Class MyDecoration decorates peer Data objects and is then used by class Demo.

of type parameters. In GUT, the upper bounds as well as the actual type arguments
specify ownership relative to the current object. In the example from Figure 4, the keys
are references into the representation of the current Client object. The Map and Node
classes, however, are type-checked against the upper bound of the keys, which defaults
to any. Therefore, the map does not get privileged access to the representation of the
client object.

Type variables have upper bounds, which default to any Object. In a class C , the
ownership modifiers of an upper bound express ownership relative to the C instance
this. However, when C ’s type variables are instantiated, the modifiers of the actual
type arguments are relative to the receiver of the method that contains the instan-
tiation. Therefore, checking the conformance of a type argument to its upper bound
requires a viewpoint adaptation. Equally, method type variables have upper bounds
that are relative to the current instance of the declaring class.

As an example, consider the implementation of the decorator pattern presented
in Figures 5 and 6. Class Decorator (Figure 5) can be used to decorate arbitrary
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Fig. 7. Viewpoint adaptation of the map results in lost ownership.

objects with a type provided as method type variable O. The upper bound of O has
the type peer Decoration<V>. Method decorateList decorates a list of elements. Class
Demo (Figure 6) presents a use of the decorator: the call of method decorate is type-
correct, because the upper bound for type variable O after viewpoint adaptation is
rep Decoration<rep Data>, which is a supertype of the actual type argument, rep
MyDecoration. This subtype relation can be derived from the superclass declaration of
class MyDecoration and adapting to a rep viewpoint.

In all our examples, for clarity, we provide explicit method type arguments. Java
implements method type argument inference, which is extensible to the inference of
GUT annotations. Similarly, the new Java 7 diamond syntax should be extensible to
also infer GUT annotations.

2.4. The lost and any Modifiers and Limited Covariance

There is a fundamental difference between a generic type that uses an arbitrary owner
as type argument and a generic type that uses an unknown owner as type argument.

For example, the map from Figure 4 has type peer Map<rep ID, any Data> and
specifies that: the map object has the same owner as the current object; the keys are ID
objects owned by the current object, and the values are Data objects that have arbitrary
owners. The type specifies that an arbitrary owner is allowed for the values and that
it is legal to use peers, reps, or objects with any other kind of ownership.

The adaptation of a type argument might yield a lost type, signifying that ownership
information could not be expressed from the new viewpoint, as illustrated in Figure 7.
The type of the field access client.map is peer Map<lost ID, any Data>. We can stati-
cally still express that the map object itself is in the same context as the current object,
and we still know that the values are in an arbitrary context. But from this new view-
point, we cannot express that the keys have to be owned by the client instance client;
there is no specific ownership modifier for this relation, and therefore the lost modifier
is used. It would not be type-safe to allow the call of method put on the receiver of this
type. The signature for method put after viewpoint adaptation contains lost, and the
topological system cannot express the precise ownership required for the first argu-
ment. On the other hand, the signature of method get does not contain lost and can
still be called. Note that methods get and getNode use any Object as parameter types
and not the type variable K. Using the upper bound of a type variable instead of the type
variable allows us to call a method, even if the actual type argument loses ownership
information. This is particularly useful for pure methods that do not modify the heap.
Note that the same design is used in the Java 5 interface java.util.List, for example,
by methods contains, indexOf, and remove. These methods use Object as parameter
type instead of the corresponding type variable, which allows them to be called on
receivers that contain wildcards, and thus increases the applicability of these methods.

Subtyping with covariant type arguments is in general not statically type-safe. For
instance, if List<String> were a subtype of List<Object>, then clients that view a
string list through type List<Object> could store Object instances in the string list,
which breaks type safety. The same problem occurs for the ownership information
encoded in types. If peer Map<rep ID, any Data> were a subtype of peer Map<any ID,
any Data>, then clients that view the map through the latter type could use method
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Fig. 8. Demonstration of a cast.

put (Figure 2) to add a new Node object where the key has an arbitrary owner, even
though the map instance requires a specific owner. The covariance problem can be
prevented by disallowing covariant type arguments (as in Java and C�), using use-site
or declaration-site variance annotations (i.e., wildcards as found in Java or variance
annotations as found in Scala [Odersky 2008]), by runtime checks (as done for arrays
in Java), or by elaborate syntactic support [Emir et al. 2006].

Our topological system supports a limited form of covariance without requiring ad-
ditional checks. Covariance is permitted if the corresponding modifier of the supertype
is lost. For example, peer Map<rep ID, any Data> is a subtype of peer Map<lost ID,
any Data>. This is safe because the topological system already prevents updates of
variables that contain lost. In particular, it is not possible to call method put because
the signature after substitution contains lost, which prevents the unsound addition
of an arbitrary object shown above.

2.5. Runtime Representation

We store the ownership information and the runtime type arguments, including their
associated ownership information, explicitly in the heap because this information is
needed in the runtime checks for casts and for instantiating type variables. In this
respect, our runtime model is similar to that of the .NET CLR [Kennedy and Syme
2001], where runtime information about generics is present and “new constraints” can
be used to allow the instantiation of type variables.

For example, method m in Figure 8 takes an object with an arbitrary owner as
argument and uses a cast to retrieve ownership information for the main modifier of
the map reference and also for the type arguments. To check this cast at runtime, the
object needs to store a reference to its owner and the ownership and type information
for the type arguments.

Storing the ownership information at runtime also enables us to create instances
of type variables if the main modifier of the corresponding upper bound is peer or
rep. In our language, every class can be instantiated using a uniform new expression,
which initializes all fields to null. Type variables with any as upper bound cannot be
instantiated, as we could not ensure that the actual type argument provides concrete
ownership information, which is necessary for the correct placement in the ownership
topology. In the implementation of the decorator pattern, presented in Figures 5 and
6, we want to instantiate the type variable O; its upper bound is peer (rep would also
be possible, but would limit the possible callers of the method), and we therefore know
that the new object will have the same owner as the current object.

There are alternatives to storing the genericity information at runtime: erasure of
genericity as found in Java 5 and expansion of generic class declarations as found in
C++ templates. It is possible to erase a GUT program into a Universe Types program
without generics [Cunningham et al. 2008], using casts. The interpretation of casts
and type arguments is the same: both are from the viewpoint of the current object.
Therefore, the casts inserted into the erased program use the same types that are used
as type arguments. In contrast, expanding the type arguments into the declaring class
does not work in general, as the viewpoint for the type argument and the expanded
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Fig. 9. Syntax of our programming language.

type differ and a viewpoint adaptation is not always possible; see Section 6.2 for an
example.

This concludes our informal introduction to Generic Universe Types. In the next
section we present the programming language and semantics on which we build.

3. PROGRAMMING LANGUAGE SYNTAX AND SEMANTICS

In this section we define the syntax and operational semantics of the programming
language. It presents a standard model for a class-based object-oriented language that
is independent of the topological and the encapsulation system, which is presented
in Sections 4 and 5. Alternative systems to enforce a topology or encapsulation dis-
cipline, for example using dynamic ownership, could be built for this programming
language.

3.1. Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and C� 2.0 in-
cluding classes and inheritance, instance fields, dynamically-bound methods, and the
usual operations on objects (allocation, field read, field update, casts). For simplicity,
we omit several features of Java and C�, such as interfaces, enum types, exceptions,
constructors, static fields and methods, inner classes, primitive types and the corre-
sponding expressions, and all statements for control flow. We do not expect that any
of these features is difficult to handle (see, e.g., Boyapati [2004], Dietl and Müller
[2004], Leavens et al. [2008], and Müller [2002]). The language we use is similar to
Featherweight Generic Java [Igarashi et al. 2001]. We added field updates because the
treatment of side effects is essential for ownership type systems, and especially the
owner-as-modifier discipline.

Figure 9 summarizes the syntax of our language and our naming conventions for
variables. We assume that all identifiers of a program are globally unique, except
for this, as well as method and parameter names of overridden methods. This can
be achieved easily by preceding each identifier with the class or method name of its
declaration (but we omit this prefix in our examples).
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The superscript s distinguishes the sorts for static-checking from the corresponding
sorts used to describe the runtime behavior.

A sequence of A’s is denoted as A. In such a sequence, we denote the ith element by
Ai. We denote sequences of a certain length k by Ak. A sequence A can be empty; the
empty sequence is denoted by ∅. We use sequences of “maplets” S = a �→ b as maps
and use a function-like notation to access an element S(ai) = bi. We use dom to denote
the domain of a sequence of maplets, for example, dom(S) = a.

A program P consists of a sequence of classes Cls, the identifier of a main class
C , and a main expression e. A program is executed by creating an instance o of C
and then evaluating e with o as this object. We assume that we always have access
to the current program P , and keep P implicit in the notation. Each class Cls has a
class identifier, type variables with upper bounds, a superclass with type arguments,
a sequence of field declarations, and a sequence of method declarations. f is used for
field identifiers. As in Java, each class directly or transitively extends the predefined
class Object.

A method declaration md consists of the purity annotation, the method type variables
with their upper bounds, the return type, the method identifier m, the formal method
parameters pid with their types, and an expression as body. The result of evaluating
the expression is returned by the method. Method parameters x include the explicit
method parameters pid and the implicit method parameter this.

To be able to enforce the owner-as-modifier discipline, we have to distinguish stat-
ically between side-effect-free (pure) methods and methods that potentially have
side effects. Pure methods are marked by the keyword pure. In our syntax, we
mark all other methods by impure, although we omit this keyword in our exam-
ples. Method purity is not relevant for the discussions in the current section and
for the topological system in Section 4; it will be used by the encapsulation system in
Section 5.

An expression e can be the null literal, a method parameter access, object creation,
field read, field update, method call, or cast.

A type sT is either a nonvariable type or a type variable identifier X . A non-variable
type sN consists of an ownership modifier, a class identifier, and a sequence of type
arguments.

An ownership modifier u can be self, peer, rep, lost, or any. Note that we restrict the
use of self and lost in the formalization only as much as is needed for the soundness
of the system. For example, we allow the use of lost in the declared field type, even
though such a field can never be assigned a value.

The following sections define subclassing and look-up functions that make accessing
different parts of the program simpler.

3.1.1. Subclassing. We use the term subclassing (symbol �) to refer to the reflexive
and transitive relations on classes declared in a program by the extends keyword,
irrespective of main modifiers. It is defined on instantiated classes C<sT >, which are
denoted sCT . The subclass relation is the smallest relation satisfying the rules in
Definition 3.1. Each class that is instantiated with its type variables is a subclass of
the class and type arguments it is declared to extend (SC1). Subclassing is reflexive
(SC2) and transitive (SC3). In all three rules, the subclass is the class instantiated
with its declared type variables, whereas the superclass is instantiated with type
arguments that depend on the relationship between sub- and superclass; this makes
substitutions in later rules simpler. The substitution of the type arguments sT for the
type variables X in sT is denoted sT [sT /X ]. For the substitution to be defined, the two
sequences have to have the same length.
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Definition 3.1 (Subclassing).

sCT � sCT ′ subclassing

class Cid<Xk extends > extends C ′<sT > { } ∈P

Cid<Xk> � C ′<sT >
SC1

class C<Xk extends > . . . ∈ P

C<Xk> � C<Xk>
SC2

C<X> � C1<sT 1>

C1<X1> � C ′<sT
′
>

C<X> � C ′<sT
′
[sT 1/X1]>

SC3

Consider the declaration of class MyDecoration in Figure 6. Using rule SC1, we can
derive MyDecoration � Decoration<peer Data>.

3.1.2. Field Type Look-up. Function FType is used to look up the declared type of a field
in a class. Note that the function is only defined if the field is declared in the given
class; superclasses are not considered. Class Object has no fields, and therefore the
function is undefined in this case.

Definition 3.2 (Field Type Look-up).

FType (C , f ) = sT look up field f in class C

class Cid< > extends < > { sT f ; } ∈P

FType(Cid, f ) = sT
SFTC DEF

In the preceding definition, the part sT f ; is read as “some sequence of field
declarations, then a field declaration with static type sT and identifier f , followed by
another sequence of field declarations, and finally an arbitrary sequence of method
declarations.”

3.1.3. Method Signature Look-up. The look-up of a method signature in a class works like
field look-up and yields the method signature of a method with the given name in class
C .

Definition 3.3 (Method Signature Look-up).

MSig(C ,m) = mso look up signature of method m in class C

class Cid< > extends < > { ms { e } } ∈P
MName(ms)=m

MSig(Cid,m) = ms
SMSC DEF

MName yields the method name of a method signature. Note that we do not support
method overloading, so the method name is sufficient to uniquely identify a method. In
the definition of MSig we use mso as a result to signify an optional method signature. In
the definition of the method overriding rules (in Definition 4.17), we need to explicitly
distinguish between an undefined method signature (using the notation None) and a
defined method signature ms.

As in FGJ [Igarashi et al. 2001], in a method signature
<Xl extends sNl> sT m(sTq pid)

the method type variables Xl are bound in the types sNl , sT , and sTq and α-convertible
signatures are equivalent.

3.1.4. Class Domain Look-up. The domain of a class is the sequence of type variables
that it declares. The predefined class Object does not declare any type variables.
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Fig. 10. Definitions for the runtime model.

Definition 3.4 (Class Domain Look-up).

ClassDom(C ) = X look up type variables of class C

class Cid<Xk extends > extends < > { } ∈P

ClassDom(Cid) = Xk

SCD NVAR

ClassDom(Object) = ∅ SCD OBJECT

3.1.5. Upper Bounds Look-up. The bounds of a class is the sequence of upper bounds of
the type variables that the class declares.

Definition 3.5 (Upper Bounds Look-up).

ClassBnds(C ) = sN look up bounds of class C

class Cid<Xk extends sNk> extends < > { } ∈P

ClassBnds(Cid) = sNk

SCBC NVAR

ClassBnds(Object) = ∅ SCBC OBJECT

3.2. Runtime Model

Figure 10 defines our model of the runtime system. The prefix r distinguishes sorts of
the runtime model from their static counterparts.

A heap h maps addresses to objects. An address ι is an element of a countable, infinite
set of addresses. The domain of a heap h, written dom(h), is the set of all addresses
that are mapped to an object in the heap h. A value v can be an address ι or the special
null-address nulla. An object o consists of its runtime type and a mapping from field
identifiers to the values stored in the fields. The notation h(ι)↓1 and h(ι)↓2 is used to
access the first and second component of the object at address ι in heap h.

The runtime type rT of an object o consists of o ’s owner address, o ’s class, and of
the runtime types for the type arguments of this class. An owner address oι can be the
address ι of the owning object, the root owner roota, or the anya owner. The owner
address of objects in the root context is roota. The special owner address anya is used
when the corresponding static type has the any modifier. Consider for instance an
execution of method main (Figure 4), where the address of this is 1 and the owner of 1
is roota. The runtime type of the object stored in map is roota Map<1 ID, anya Data>.

The first component of a runtime environment rΓ maps method type variables to
their runtime types. The second component is the current stack frame, which maps
method parameters to the values they store. Since the domains of these mappings are
disjoint, we overload the notation and use rΓ(X ) to access the runtime type for type
variable X and rΓ(x ) to access the value for method parameter x.

The following sections again define various functions to simplify the notation.
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3.2.1. Heap Operations. Our heap model is very simple: we can create an empty heap
∅ and add to or update in an existing heap h a mapping from address ι to an object
o, written as h + (ι �→ o). If address ι is already mapped to an object, this mapping is
overwritten. We use the shorthand notation h(ι.f ) for reading field f of the object at
address ι, that is, h(ι)↓2 (f ).

For convenience, we provide two additional operations, which can be modeled on top
of the basic operations: (1) creation of a new object and (2) updating a field value in a
heap.

(1) For the addition of an object o as a new object to heap h, resulting in a new heap
h ′ and address ι, we use the notation h +o = (h ′, ι). We ensure that ι is a fresh address
and that the only modification to the heap is the addition of the new object.

Definition 3.6 (Object Addition).

h + o = (
h ′, ι

)
add object o to heap h resulting in heap h ′ and fresh address ι

ι /∈ dom(h) h ′=h + (ι �→ o)
h + o = (h ′, ι)

HNEW DEF

(2) We write h[ι.f = v] = h ′ for the update of field f of the object at address ι in heap
h to the new value v, resulting in new heap h ′. We ensure that the new field value is
valid, that is, v is either nulla or the address of an object in the heap. We also ensure
that there is already an object at address ι and that the field identifier f is already
in the set of fields of the object, since we do not want to add fields that would not be
defined in the corresponding class. In the set of field values fv , we overwrite the existing
mapping for f to arrive at fv

′
and update the heap with the object that consists of the

old runtime type and the new field values fv
′
. Note that we only change the field value

of the single object at address ι, and in particular that the runtime types in the heap
remain unchanged.

Definition 3.7 (Field Update).

h[ι.f = v] = h ′ field update in heap

v=nulla ∨ (v=ι′ ∧ ι′ ∈ dom(h))
h(ι)=(rT , fv ) f ∈ dom(fv ) fv

′
=fv [f �→ v]

h ′=h + (ι �→ (rT , fv
′
))

h[ι.f = v] = h ′ HUP DEF

3.2.2. Runtime Method Signature and Body Look-up. The following function is used to look
up the method signature for an object at a particular address. The type-to-value as-
signment judgment (Definition 3.13) determines a class C , a superclass of the runtime
class of ι, for which the static method signature function MSig yields a method sig-
nature. All overriding methods have the same method name and the overriding rule
(Definition 4.17) ensures that the different signatures are consistent. MSig(P , h, ι,m)
yields an arbitrary possible signature, not necessarily the one declared in the smallest
supertype of the runtime class of ι—as the different signatures are consistent, this suf-
fices. Note that we do not support method overloading, so the method name is sufficient
to uniquely identify a method.
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Definition 3.8 (Runtime Method Signature Look-up).

MSig(h, ι,m) = mso look up method signature of method m at ι

h � ι : C< > MSig(C ,m) = ms

MSig(h, ι,m) = ms
RMS DEF

At runtime, we need the ability to look up the implementation of a method that is
declared in the smallest supertype of the runtime type of the receiver. We first define
a look-up function that determines the method body e from the smallest superclass of
class C that implements method m.

Definition 3.9 (Static Method Body Look-up).

MBody(C ,m) = e look up most-concrete body of m in class C or a superclass

class Cid< > extends < > { ms { e } } ∈P
MName(ms) = m

MBody(Cid,m) = e
SMBC FOUND

class Cid< > extends C1< > { msn { en } } ∈P

MName(msn ) 
= m MBody(C1,m) = e

MBody(Cid,m) = e
SMBC INH

The following function uses the most concrete runtime type of the object at address ι
to determine the corresponding method body.

Definition 3.10 (Runtime Method Body Look-up).

MBody(h, ι,m) = e look up most-concrete body of method m at ι

h(ι)↓1 = C< > MBody(C ,m) = e

MBody(h, ι,m) = e
RMB DEF

3.3. Static Types, Runtime Types, and Values

In this section we discuss two functions that convert static types to corresponding
runtime types, the subtyping of runtime types, and what runtime and static types can
be assigned to a value. The discussion gives precise semantics to the static types, in
particular the meaning of the ownership modifiers.

3.3.1. Simple Dynamization of Static Types. We need to put static and runtime types into
a relation, for example, when we evaluate an object creation, we need to convert the
static type from the expression into the corresponding runtime type that is stored with
the newly created object.

We define two dynamization functions: first, a simple dynamization function, sdyn,
which puts strong requirements on the static types that it can convert to runtime
types; second, a more general dynamization function, dyn, which is less restrictive.
Defining two distinct dynamization functions allows us to avoid a cyclic dependency
between runtime subtyping and the dynamization of static types. To determine runtime
subtypes, we need to dynamize the instantiation of a superclass into a runtime type,
and, in general, to determine the dynamization of a static type, we need to find a
runtime supertype of the type of the current object. We use sdyn only to dynamize
static types where we do not need runtime subtyping to determine the runtime type
and use dyn in the general case where we can use runtime subtyping.

The simple dynamization function sdyn (Definition 3.11) relates a sequence of static
types to a corresponding sequence of runtime types. The dynamization is relative to
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a heap, a viewpoint object ι, a runtime type rT , and substitutions for lost ownership
modifiers. The viewpoint object is needed to dynamize types with a rep modifier; the
heap is used to look up the owner of the viewpoint object in order to dynamize types with
a peer modifier. This simple version of the dynamization uses only the type information
available from its arguments and does not determine additional runtime types from
the heap. Its sole purpose is to convert static types that appear in the upper bounds
declaration and the superclass instantiation of a class.

To be defined, the sdyn function requires consistency between its arguments. A peer
modifier in a static type expresses that the referenced object has the same owner as
the current object, which is the owner oι of the runtime type rT . If the owner oι of the
runtime type is not the anya address, then we use that owner for the substitution of
peer. However, if oι is the anya address, we cannot simply substitute peer by anya. In
this case we use an address oι1 that is either an address in the heap or the root owner to
substitute peer modifiers. If a rep modifier appears in the static type, we need to ensure
that the substitution for rep and for peer are consistent, that is, that the owner of the
object that is used to substitute rep is the owner address that is used to substitute
peer. owner(h, ι) yields the owner address of the object at address ι in heap h. Note that
the viewpoint address ι is only used if the static types contain a rep modifier. If there
is no rep modifier, the viewpoint address is ignored, and ι can be an arbitrary address
that is not necessarily in the domain of the heap h.

Definition 3.11 (Simple Dynamization of Static Types).

sdyn(sT , h, ι, rT , oι) = rT simple dynamization of types sT

oι′ ∈ dom(h) ∪ {roota} oι 
= anya =⇒ oι′ = oι

ClassDom(C ) = X rep∈ sT =⇒ owner(h, ι) = oι′
sT [oι′/peer, ι/rep, anya/any, rT /X, oιi/lost] = rT

′

sdyn(sT , h, ι, oι C< rT >, oιi ) = rT
′ SDYN

We use the notation sT [oι/u, rT /X] for the substitution of owner address oι for occur-
rences of ownership modifier u and of runtime types rT for type variables X in the
static type sT . The substitution yields a runtime type if all ownership modifiers and
type variables in sT are replaced by their runtime counterparts, that is, owner ad-
dresses and runtime types. In the above definition, this might not be the case if the
self modifier or type variables that are not declared in class C appear in sT . Also,
the lost modifiers are substituted by the corresponding owners from the sequence
oι. The number of lost modifiers in sT has to correspond to the length of oι and the
ith occurrence of lost is substituted by the ith owner in oι. If the lengths do not
match, the substitution is undefined. Our type system only applies sdyn within its
domain.

As a first example, Figure 11 gives a simple heap, using the decorator from Figure 6.
Then, sdyn(peer Data, h, 2, roota MyDecoration,∅) results in roota Data.

A more complicated example is given in Figure 12. We can deduce that
sdyn(rep Data, h, 2, 1 D<1 Object>,∅) = 2 Data

and
sdyn(Z, h, 2, 1 D<1 Object>,∅) = 1 Object.

However,
sdyn(X, h, 2, 1 D<1 Object>,∅)

is not defined. Type variable X is defined in a supertype of the given runtime type.
sdyn does not apply subtyping to find a correct substitution for type variables that are
defined in supertypes. The more complicated dyn is used for such purposes.
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Fig. 11. Example heap for the program from Figure 6.

Fig. 12. Example program and heap.

3.3.2. Subtyping of Runtime Types. Subtyping of runtime types follows subclassing (see
Definition 3.1). The owner of the supertype oι′ is either the same as the owner of the
subtype or anya. The static superclass instantiation sT is converted into the runtime
types rT

′
using the runtime subtype oι C< rT > as argument to sdyn. This ensures that

type variables in sT are substituted by the runtime type arguments rT that are used
in the subtype. There is no variance in the type arguments of a runtime type.

Definition 3.12 (Runtime Subtyping).

h � rT <: rT ′ type rT is a subtype of rT ′

C<X> � C ′< sT > oι′ ∈{oι, anya}
sdyn(sT , h, , oι C< rT >, oι) = rT

′

h � oι C< rT > <: oι′ C ′< rT
′
>

RT DEF

Note how an arbitrary address is used as a viewpoint object for sdyn. A rep modifier
in sT can be substituted with an arbitrary address that creates a consistent result
(note that sdyn checks for consistency between the viewpoint address and the owner of
the runtime type oι). Also note that there is no equivalent to the lostmodifier at runtime
and that the substitution for lost modifiers oι can be chosen arbitrarily. This reflects the
interpretation of lost as an existential modifier that is substituted by whichever owner
address fits the current context. The definition of a well-formed class in the topological
system (see Definition 4.14) enforces that subclassing never introduces lost in the
instantiation of a superclass.

For the decorator example (Figures 6, and 11) we deduced in Section 3.1.1 that
MyDecoration� Decoration<peer Data>. In the previous section, we deduced the result
of applying sdyn to peer Data. Combining these results we can deduce

h � roota MyDecoration <: roota Decoration<roota Data>
and

h � roota MyDecoration <: anya Decoration<roota Data>.

For the example in Figure 12, we can use subclassing rule SC1 to deduce D<Z> � C<rep
Data, Z>. Using the results of the application of sdyn from the previous section, we
can deduce that

h � 1 D<1 Object> <: 1 C<2 Data, 1 Object>. Instead of address 2, any other ad-
dress in the heap whose owner is address 1 could be chosen by the subtyping judgment.
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We also have
h � 1 D<1 Object> <: anya D<1 Object>.

What supertypes of anya D<1 Object> exist? We can deduce that
h � anya D<1 Object> <: anya C<2 Data, 1 Object>.

But note that, instead of address 2, any other address in the heap h could be chosen.
sdyn can choose an arbitrary viewpoint address, and since there are no peer modifiers
in the superclass instantiation, the only restriction is that the owner look-up in the
heap is defined.

3.3.3. Assigning a Runtime Type to a Value. To assign a runtime type rT to an address ι,
we determine the most concrete runtime type rT 1 from the heap and check whether
rT 1 is a runtime subtype of rT . An arbitrary runtime type can be assigned to the nulla
value.

Definition 3.13 (Assigning a Runtime Type to a Value).

h � v : rT runtime type rT assignable to value v

h(ι)↓1 =rT 1 h � rT 1 <: rT
h � ι : rT

RTT ADDR

h � nulla : rT
RTT NULL

In the decorator example (Figure 11), we can deduce that
h � 2 : roota MyDecoration

and
h � 2 : roota Decoration<roota Data>.

For the example from Figure 12, we can deduce that
h � 2 : 1 D<1 Object>

and
h � 2 : 1 C<2 Data, 1 Object>.

3.3.4. Dynamization of a Static Type. This version of the dynamization function is appli-
cable in a more general setting than the simple dynamization function sdyn introduced
before. A static type is converted into a runtime type by using a heap, a runtime en-
vironment, and substitutions for lost modifiers. The runtime environment replaces
the viewpoint argument of sdyn; the current receiver is extracted from the runtime
environment and used as viewpoint object. dyn builds on runtime subtyping, and
therefore on sdyn, to determine all necessary type information. This allows dyn to
find the runtime equivalents to types which use type variables that are declared in a
superclass of the type of the current object—types which cannot be dynamized using
sdyn.

Function dyn is given in Definition 3.14. We determine the runtime supertype with
class C that can be assigned to the current object ι, for which the domain of class
C together with the method type variables from the runtime environment define all
type variables that appear in the static type. If such a type does not exist, then the
dynamization is not defined. The topological type rules (presented in Section 4) ensure
that dyn is never used on such a static type.

The owner oι of the current object has to be another object in the heap or the root
owner roota. We need an owner address other than anya for the substitution of peer
and self modifiers and prevent the runtime type-to-value judgment from using anya
in the type by the constraint on the value of oι. For a well-formed heap (defined in
Definition 4.24), we know that the owner of each object in the heap is not anya and that
we can determine such an oι. Note that the runtime type arguments are invariant, and
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that we do not need an additional constraint to ensure that the rT are the most precise
types possible.

We use a substitution that is very similar to the one from the simple dynamization
to convert the static type sT into the corresponding runtime type rT ′. The owner oι
is used to substitute self and peer modifiers, the current object ι is used to substi-
tute rep modifiers, the class type variables are substituted by the runtime types rT
we determined from the heap for the current object, the method type variables are
substituted by the runtime types rT l from the runtime environment, and the lost
modifiers are substituted by the corresponding owners from the sequence oι. At run-
time, we do not distinguish between self and peer modifiers, and substitute both with
oι. In Definition 3.15 we separately check for uses of self as the main modifier.

Definition 3.14 (Dynamization of a Static Type).

dyn(sT , h, rΓ, oι) = rT dynamization of static type (relative to rΓ )

rΓ={Xl �→ rT l ; this �→ ι, } h � ι : oι C< rT >
oι∈ dom(h) ∪ {roota} ClassDom(C ) = X

sT [oι/self, oι/peer, ι/rep, anya/any, rT /X, rT l/Xl , oιi/lost] = rT ′

dyn(sT , h, rΓ, oιi ) = rT ′ DYNE

Note that the outcome of dyn depends on finding oι C<rT >, an appropriate supertype
of the runtime type of the current object ι, which contains substitutions for all type
variables not mapped by the environment. Thus, we may wonder whether there is more
than one such appropriate superclass. However, because type variables are globally
unique, if the free variables of sT are in the domain of a class, then they are not in the
domain of any other class.

In the decorator example (Figure 11), using an rΓ where rΓ (this) = 1, we can deduce
that

dyn(peer MyDecoration, h, rΓ,∅) = roota MyDecoration
and

dyn(peer Decoration<peer Data>, h, rΓ,∅) =
roota Decoration<roota Data>.

Using the example from Figure 12, and again rΓ where rΓ (this) = 1, we can deduce
dyn(rep D<rep Object>, h, rΓ,∅) = 1 D<1 Object>

and
dyn(rep C<lost Data, rep Object>, h, rΓ, 2) = 1 C<2 Data, 1 Object>.

Earlier, we explained that
sdyn(X, h, 2, 1 D<1 Object>,∅)

is not defined. Let us now consider rΓ ′(this) = 2 and dyn(X, h, rΓ ′,∅). Above, we deduced
that

h � 2 : 1 C<2 Data, 1 Object>
and class C defines a type variable X. Therefore, we have that

dyn(X, h, rΓ ′,∅) = 2 Data.

3.3.5. Assigning a Static Type to a Value. To assign a static type to a value, we convert the
static type into a runtime type, using the heap and runtime environment provided, and
check whether this runtime type can be assigned to the value. If the main modifier of
the static type is self, we also have to ensure that the value corresponds to the current
object in the runtime environment. Note that we use an arbitrary substitution oι for
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lost modifiers which might appear in the static type. This expresses the meaning of
lost as an existential quantifier that chooses a suitable owner to fulfill the runtime
type-to-value judgment.

Definition 3.15 (Assigning a Static Type to a Value (relative to rΓ )).

h, rΓ � v : sT static type sT assignable to value v (relative to rΓ )

dyn
(sT , h, rΓ, oι

)
= rT h � v : rT

sT = self < > =⇒ v = rΓ (this)
h, rΓ � v : sT

RTSTE DEF

For the well-formed heap judgment (defined in Definition 4.24), it is convenient to
define a second version of this judgment which only takes the address of the current
object instead of a complete runtime environment.

Definition 3.16 (Assigning a Static Type to a Value (relative to ι)).

h, ι � v : sT static type sT assignable to value v (relative to ι)

rΓ= {∅ ; this �→ ι}
h, rΓ � v : sT

h, ι � v : sT
RTSTA DEF

For the decorator example (Figure 11), using the previous results, we can now deduce
h, 1 � 2 : peer MyDecoration

and
h, 1 � 2 : peer Decoration<peer Data>.

Finally, combining all the results we deduced for the example from Figure 12, we can
deduce

h, 1 � 2 : rep D<rep Object>
and

h, 1 � 2 : rep C<lost Data, rep Object>.
Note that there is no ownership modifier that could be used instead of lost, and
would fulfill the judgment, since there is no modifier to express that an object is the
representation of an object other than this.

3.4. Operational Semantics

We describe program execution by a big-step operational semantics for expressions and
programs.

3.4.1. Evaluation of an Expression. The transition rΓ � h, e � h ′, v expresses that the
evaluation of an expression e in heap h and runtime environment rΓ results in value v
and successor heap h ′. The rules for evaluating expressions are presented and explained
in the following.

Definition 3.17 (Evaluation of an Expression).

rΓ � h, e � h ′, v big-step operational semantics

rΓ � h, null � h, nulla
OS NULL

rΓ (x ) = v

rΓ � h, x � h, v
OS VAR
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dyn(sT ,h, rΓ, ∅) = rT ClassOf(rT ) = C

(∀f ∈ fields(C ). fv (f ) = nulla) h + (rT , fv ) = (h ′, ι)
rΓ � h, new sT () � h ′, ι

OS NEW

rΓ � h, e � h ′, v
h ′, rΓ � v : sT

rΓ � h, (sT ) e � h ′, v
OS CAST

rΓ � h, e0 � h ′, ι0
h ′(ι0.f ) = v

rΓ � h, e0.f � h ′, v
OS READ

rΓ � h, e0 � h0, ι0
rΓ � h0, e1 � h1, v

h1[ι0.f = v] = h ′
rΓ � h, e0.f = e1 � h ′, v

OS WRITE

rΓ � h, e0 � h0, ι0
rΓ � h0, eq � h1, vq

MBody(h0, ι0,m) = e MSig(h0, ι0,m) = <Xl extends > m( pid)
dyn(sTl , h, rΓ, ∅) = rT l

rΓ′={Xl �→ rT l ; this �→ ι0, pid �→ vq }
rΓ′ � h1, e � h ′, v

rΓ � h, e0.m<sTl>(eq) � h ′, v
OS CALL

The null expression always evaluates to the nulla value (OS NULL). Parameters, includ-
ing this, are evaluated by looking up the stored value in the stack frame, which is part
of the runtime environment rΓ (OS VAR). Object creation determines the runtime type
for the object from the static type using the heap h and the runtime environment rΓ,
and initializes all field values to nulla. (ClassOf(rT ) yields the class of the runtime
type rT ; note that sT could be a type variable and cannot be used to determine the
class. fields(C ) yields all fields declared in or inherited by C .) We construct the new
object using this runtime type and the field values and add it to the original heap h,
resulting in an updated heap h ′ and the address ι of the new object in the new heap
(OS NEW). For cast expressions, we evaluate the expression e and check that the re-
sulting value is well-typed with the static type given in the cast expression w.r.t. the
current environment (OS CAST).

For field reads (OS READ), we evaluate the receiver expression e0 and then look up the
field in the heap. We require that the receiver expression evaluates to an address ι0 and
not to the nulla value. For the update of a field f , we evaluate the receiver expression
e0 to address ι0 and the right-hand side expression to value v, and update the heap h1
with the new field value (OS WRITE).

For method calls (OS CALL), we evaluate the receiver expression e0 and actual method
arguments eq in the usual order. The receiver object is used to look up the most con-
crete method body and the method signature (from which we extract the names of
the method type variables Xl and the parameter names pid used to construct the new
runtime environment rΓ′; the static types in the method signature are irrelevant here).
The method body expression e is then evaluated in the runtime environment that maps
m ’s type variables to actual type arguments, as well as m ’s formal method parameters
(including this) to the actual method arguments. (Note that the method type argu-
ments are dynamized using an empty substitution for lost modifiers, which forbids
occurrences of lost in the type arguments; our type rules enforce this constraint and,
therefore, ensure that the dynamization is defined.) The resulting heap and address
are the result of the call.

3.4.2. Evaluation of a Program. A program with main class C is executed by evaluating
the main expression e in a heap h0 that contains exactly one C instance in the root
context where all fields of C are initialized to nulla and a runtime environment rΓ0
which maps this to this C instance.
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Definition 3.18 (Evaluation of a Program).

� P � h, v big-step operational semantics of a program

∀f ∈ fields(C ). fv (f ) = nulla
∅ + (roota C< >, fv ) = (h0, ι0)
rΓ0 = {∅ ; this �→ ι0} rΓ0 � h0, e � h, v

� Cls, C , e � h, v
OSP DEF

In the example from Section 2, we would have the classes from Figures 2, 3, and 4
as the sequence of classes, we use class identifier Client as the main class, and the
expression this.main() as the main expression.

This concludes our discussion of the programming language syntax and semantics.
The following section presents the topological system of GUT.

4. TOPOLOGICAL SYSTEM

In this section we formalize the topological system of GUT. We first formalize viewpoint
adaptation and define the ordering of ownership modifiers and subtyping. We then
present the static well-formedness conditions, including the type rules and the runtime
well-formedness conditions. We conclude this section by discussing the properties of
the topological system, most importantly type safety. The encapsulation system is
discussed in Section 5.

Note that the formalization presents the rules that are necessary for type safety; it
allows programs which are not meaningful for programmers to write, for example, it
allows the declared field type to contain the lost ownership modifier, even though such
a field can never be updated. This design choice keeps the formalization minimal and
highlights what is necessary for type safety.

Type checking is performed in a type environment sΓ, which maps the type variables
of the enclosing class and method to their upper bounds, and the method parameters
to their types:

sΓ ::= {X �→ sN; x �→ sT }
As with the runtime environment rΓ, we overload the notation; sΓ(X ) refers to the upper
bound of type variable X , and sΓ(x) refers to the type of method parameter x.

Note that the static environment stores the upper bounds for class and method
type variables in its first component; the runtime environment only needs to store the
actual type arguments for the method type variables, as the arguments for the class
type variables are stored in the heap.

4.1. Viewpoint Adaptation

As we informally discussed in Section 2.2, ownership modifiers express ownership rel-
ative to an object. Therefore, they have to be adapted whenever the viewpoint changes.
In the type rules, we need to adapt a type sT from a viewpoint that is described by
another type sT ′ to the viewpoint this. In the following, we omit the phrase “to the view-
point this”. To perform the viewpoint adaptation, we define an overloaded operator �,
whose remit is: (1) Adapt an ownership modifier from a viewpoint that is described
by another ownership modifier; (2) Adapt a type from a viewpoint that is described by
an ownership modifier; (3) Adapt a type from a viewpoint that is described by another
type.

4.1.1. Adapting an Ownership Modifier w.r.t. an Ownership Modifier. We explain viewpoint
adaptation using a field access e1.f . Analogous adaptations occur for method

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 6, Article 20, Publication date: December 2011.



Separating Ownership Topology and Encapsulation 20:25

parameters and results, as well as upper bounds of type parameters. Let u be the main
modifier of e1’s type, which expresses ownership relative to this. Let u ′ be the main
modifier of f ’s type, which expresses ownership relative to the object that contains f .
Then relative to this, the type of the field access e1.f has main modifier u � u ′.

Definition 4.1 (Adapting Ownership Modifiers).

u � u ′ = u ′′ combining two ownership modifiers

self � u = u
UCU SELF

peer � peer = peer
UCU PEER

rep � peer = rep
UCU REP

u � any = any
UCU ANY

otherwise
u � u ′ = lost

UCU LOST

The field access e1.f illustrates the motivation for this definition.

(1) Accesses via the current object this (that is, e1 is the variable this) do not require
a viewpoint adaptation, since the ownership modifier of the field is already relative
to this. The self modifier is used to distinguish accesses through this from other
accesses.

(2) If the main modifiers of both e1 and f are peer, then the object referenced by e1 has
the same owner as this, and the object referenced by e1.f has the same owner as
e1, and thus the same owner as this. Consequently, the main modifier of e1.f is
also peer.

(3) If the main modifier of e1 is rep and the main modifier of f is peer, then the main
modifier of e1.f is rep, since the object referenced by e1 is owned by this and the
object referenced by e1.f has the same owner as e1, that is, this.

(4) If the object referenced by f can have an arbitrary owner, then the object referenced
by e1.f can also have an arbitrary owner, regardless of the owner of e1. That is, if
the main modifier of f is any, then the main modifier of e1.f is also any, regardless
of the modifier of e1.

(5) In all other cases, we cannot determine statically that the object referenced by e1.f
has the same owner as this, is owned by this, or that it can be an object with an
arbitrary owner. Therefore, in these cases, the main modifier of e1.f is lost.

4.1.2. Adapting a Type w.r.t. an Ownership Modifier. As explained in Section 2, type vari-
ables are not subject to viewpoint adaptation. For nonvariable types, we determine the
adapted main modifier and adapt the type arguments recursively.

Definition 4.2 (Adapting a Type w.r.t. an Ownership Modifier).

u � sT = sT ′ ownership modifier - type adaptation

u � X = X
UCT VAR

u � u ′ = u ′′

u � sT = sT
′

u � u ′ C<sT > = u ′′ C<sT
′
>

UCT NVAR

4.1.3. Adapting a Type w.r.t. a Type. We adapt a type sT from the viewpoint described by
another type, u C<sT >.
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Definition 4.3 (Adapting a Type w.r.t. a Type).

sN � sT = sT ′ type - type combination

u � sT = sT1
sT1[sT /X ] = sT ′ ClassDom(C ) = X

u C<sT > � sT = sT ′ TCT DEF

The operator � adapts the ownership modifiers of sT and substitutes the type argu-
ments sT for the type variables X of C . Since the type arguments are already relative
to this, they are not subject to viewpoint adaptation. Therefore, the substitution of
type variables happens after the viewpoint adaptation of sT ’s ownership modifiers.

Note that the first parameter is a nonvariable type, since concrete ownership in-
formation u is needed to adapt the viewpoint and the actual type arguments sT are
needed to substitute the type variables X . In the type rules, subsumption will be used
to replace type variables by their upper bounds and thereby obtain a concrete type as
first argument of �. The adaptation is undefined, if the look-up of the domain of class
C is undefined, that is, C is not a valid class name in the program, or if the number of
type arguments does not correspond to the number of type variables.

As an example, consider the call map.getNode(key) in Figure 4. The receiver map has
type peer Map<rep ID, any Data>. The return type of the method is rep Node<K, V>.
This type is first adapted from the viewpoint peer, resulting in the type lost Node<K,
V>; then the substitution of the type arguments for the type variables results in the
type lost Node<rep ID, any Data>.

If the order of the viewpoint adaptation and the substitution were the other
way around, we would first substitute rep Data for K and any Data for V, re-
sulting in rep Node<rep ID, any Data>. Then, adapting this type from the view-
point peer would result in lost Node<lost ID, any Data>. This order of opera-
tions would not correctly represent the ownership information of the first type
argument.

It is convenient to define look-up functions that determine the declared type(s) of a
field, method signature, or upper bound, and adapt it from the viewpoint given by a
type. These functions are defined in the following sections.

4.1.4. Adapted Field Type Look-up. To look up the viewpoint-adapted type of a field, we
look up the declared type of the field and apply viewpoint adaptation. ClassOf(sN)
yields the class of the nonvariable type sN. The FType function is again only defined if
the field is declared in the class of the given type.

Definition 4.4 (Adapted Field Type Look-up).

FType(sN, f ) = sT look up field f in type sN

FType(ClassOf(sN), f ) = sT1
sN � sT1 = sT

FType(sN, f ) = sT
SFTN DEF

4.1.5. Adapted Method Signature Look-up. To look up the viewpoint-adapted method sig-
nature, we look up the signature in the class of the type and then viewpoint-adapt the
upper bounds, the return type, and the parameter types. The method type arguments
sTl are substituted for the method type variables Xl in all types.
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Definition 4.5 (Adapted Method Signature Look-up).

MSig(sN,m, sT ) = mso m in sN with method type arguments sT substituted

MSig(ClassOf(sN),m) = p <Xl extends sNl> sT m(sT ′
q pid)

(sN � sNl )[sTl/Xl ] = sN′
l (sN � sT )[sTl/Xl ] = sT ′

(sN � sT ′
q )[sTl/Xl ] = sT ′′

q

MSig(sN,m, sTl ) = p <Xl extends sN′
l>

sT ′ m(sT ′′
q pid)

SMSN DEF

Note that we have to perform capture-avoiding substitutions, that is, free type variables
in sN must not be captured by the Xl . If necessary, the Xl can be α-renamed in the
declared method signature.

4.1.6. Adapted Upper Bounds Look-up. The bounds of a type are the upper bounds of the
class of the type after viewpoint adaptation.

Definition 4.6 (Adapted Upper Bounds Look-up).

ClassBnds(sN) = sN look up bounds of type sN

ClassBnds(ClassOf(sN)) = sN1
sN � sN1 = sN

ClassBnds(sN) = sN
SCBN DEF

4.2. Static Ordering Relations

We first define an ordering relation <:u for ownership modifiers. Recall the definition of
subclassing (symbol �) from Definition 3.1, which is the reflexive and transitive relation
on classes declared in a program. Building on the ordering of ownership modifiers and
subclassing, we define subtyping (symbol <:), which additionally takes main modifiers
into account.

4.2.1. Ordering of Ownership Modifiers. The ordering of ownership modifiers <:u relates
more concrete modifiers to less concrete ones. Both self and peer express that an
object has the same owner as this, where self is only used for the object this, and is
therefore more specific than peer (OMO TP). Both peer and rep are more specific than
lost (OMO PL and OMO RL). All ownership modifiers are below any (OMO UA), and the
ordering of ownership modifiers is reflexive (OMO REFL).

Definition 4.7 (Ordering of Ownership Modifiers).

u <:u u ′ ordering of ownership modifiers

self <:u peer
OMO TP

peer <:u lost
OMO PL

rep <:u lost
OMO RL

u <:u any
OMO UA

u <:u u
OMO REFL

Note that the ordering of ownership modifiers is not transitive, as self <:u lost is not
included; this could be added, but only transitivity of subtyping is needed.

4.2.2. Static Subtyping. The subtype relation <: is defined on static types. The judgment
sΓ � sT <: sT ′ expresses that type sT is a subtype of type sT ′ in type environment sΓ.
The environment is needed, since static types may contain type variables. The rules
for this subtyping judgment are given in Definition 4.8.
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Two types with the same main modifier are subtypes if the corresponding classes
are subclasses. Ownership modifiers in the superclass instantiation (sT 1) are rela-
tive to the instance of class C, whereas the modifiers in a type are relative to this.
In particular, from the subclass relation C<X> � C ′<sT 1> we cannot simply derive
sΓ � u C<X> <: u C ′<sT 1>. Instead, sT 1 has to be adapted from the viewpoint of the
C instance to this (ST1). For types with the same class, according to ST2, the main
modifiers have to follow the ordering of ownership modifiers and the type arguments
have to follow the type argument subtyping <:l, explained below. A type variable is a
subtype of itself and of its upper bound in the type environment (ST3). Subtyping is
transitive (ST4).

Definition 4.8 (Static Subtyping).

sΓ � sT <: sT ′ static subtyping

C<X> � C ′<sT 1>

u C<sT > � sT 1 = sT
′

sΓ � u C<sT > <: u C ′<sT
′
>

ST1
u <:u u ′ � sT <:l sT

′

sΓ � u C<sT > <: u ′ C<sT
′
>

ST2

sT =X ∨ sΓ(X )=sT
sΓ � X <: sT

ST3

sΓ � sT <: sT1
sΓ � sT1 <: sT ′
sΓ � sT <: sT ′ ST4

Reflexivity of nonvariable types can be deduced from the reflexivity of ownership mod-
ifier ordering, type argument subtyping, and rule ST2. For type variables, rule ST3 gives
reflexivity.

The type any Object is at the root of the type hierarchy. Every other type is a subtype
of it.

In Section 3.1.1 we derived
MyDecoration � Decoration<peer Data>.

Using rule ST1 we can derive the two subtype relationships
rep MyDecoration <: rep Decoration<rep Data>

and
any MyDecoration <: any Decoration<lost Data>.

Note that in the second example, we cannot give concrete ownership information for
the type argument in the supertype, since we do not know the location of the object
and cannot express the relationship between the object and the type argument from
an arbitrary viewpoint.

By rule ST2 we can derive rep MyDecoration <: any MyDecoration.

We illustrate rule ST3 using the method call res.set(in) from class Decorator (Fig-
ure 5). The variable res has the type variable O as its type. To type-check the method
call, we need a concrete class to look up the method signature for method set. We use
rule ST3 to go from the type variable O to its upper bound peer Decoration<V>, and can
then successfully type-check the call.

Type Argument Subtyping. We use type argument subtyping (symbol <:l) only for
subtyping in type argument positions. Two nonvariable type arguments either have the
same main modifier or the supertype has the lost main modifier. The type arguments
can recursively vary by the type argument relation. A type variable is only a type
argument subtype of itself.
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any L<lost C>

lost L<lost C>

peer L<lost C> rep L<lost C>

any L<peer C>

lost L<peer C>

peer L<peer C> rep L<peer C>

any L<rep C>

lost L<rep C>

peer L<rep C> rep L<rep C>

any L<any C>

lost L<any C>

peer L<any C> rep L<any C>

Fig. 13. Static subtyping illustrated on an example. Both dashed and solid arrows denote subtyping; we
use dashed lines only to make the paths clearer. Gray types contain lost and cannot be supertypes for strict
subtyping (Definition 4.10).

Definition 4.9 (Type Argument Subtyping).

� sT <:l sT ′ type argument subtyping

u ′ ∈ {u, lost}
� sT <:l sT

′

� u C<sT > <:l u ′ C<sT
′
>

AST1 � X <:l X
AST2

This relation allows us to abstract away ownership information in type arguments.
Note that we do not use the same subtyping relation that is used on “top-level” types. It
would not be type-safe to allow peer List<peer Data> as a subtype of peer List<any
Object>, as the latter type allows storing objects of an arbitrary ownership and class
information, whereas the former is restricted to Data objects that share the same owner
as the current object. Also note that we impose restrictions on the uses of types that
contain the lost modifier. Nevertheless, this abstraction is helpful, as it allows us to
reference and modify objects with partially unknown ownership.

Consider the following class declaration:

class L<X extends any Object> {...}

Figure 13 shows the relation between instantiations of class L. Note that an arbitrary
sΓ can be used, as we do not consider type variables here.

As another example, consider the code from Figure 12. We can derive the subclass
relation D<Z>� C<rep Data, Z> and the subtype relation sΓ � self D<Z><: self C<rep
Data, Z>. However, deriving sΓ � peer D<Z> <: peer C<rep Data, Z> is not possible
because it would interpret the instantiation of type variable X as representation of the
current object, even though it is meant to be the representation of the D object. The
correct subtype relation is sΓ � peer D<Z> <: peer C<lost Data, Z>.

Strict Subtyping. In certain judgments it is convenient to express that a type sT is
a subtype of type sT ′ and that sT ′ does not contain the lost ownership modifier. We
define a strict subtyping judgment to express this concisely.

Definition 4.10 (Strict Subtyping).

sΓ � sT <:s sT ′ strict static subtyping

sΓ � sT <: sT ′
lost /∈ sT ′
sΓ � sT <:s sT ′ SSTDEF
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In Figure 13, types that contain lost are marked with a gray background. These
types cannot appear as a strict supertype. For the example in Figure 12, peer D<Z> is
a subtype, but not a strict subtype of peer C<lost Data, Z>.

4.3. Static Well Formedness

This section defines well-formedness judgments for the static system, including the
topological type rules.

4.3.1. Well-formed Static Type. The judgment sΓ � sT OK expresses that type sT is well
formed in type environment sΓ. Type variables are well formed if they are contained
in the type environment (WFT VAR). We use the overloaded notation X ∈ sΓ to denote
that sΓ(X ) is defined, and similarly x ∈ sΓ, to denote that sΓ(x ) is defined; note that sΓ
is a pair consisting of two separate domains. Well-formedness of the upper bounds is
checked by the well-formed static environment judgment (Definition 4.18) that checks
well-formedness of the types in the environment. A nonvariable type u C<sT > is well
formed (WFT NVAR) if its type arguments sT are well formed, do not contain self (denoted
by self /∈ sT ), and each actual type argument is a subtype of the upper bound adapted
to the current viewpoint.

Definition 4.11 (Well-formed Static Type).

sΓ � sT OK well-formed static type

X ∈ sΓ
sΓ � X OK

WFT VAR

sΓ � sT OK self /∈ sT
ClassBnds

(
u C<sT >

)
= sN sΓ � sT <: sN

sΓ � u C<sT > OK
WFT NVAR

We restrict the self modifier to the main modifier of a nonvariable type. Allowing the
use of self in a type argument position would complicate the runtime system without
adding expressiveness.

Note how the look-up of the upper bounds can result in lost ownership information.
This well-formed type judgment is intentionally weak and forbids only what is needed
for the soundness of the system; this simplifies the formalization, but complicates the
proofs. It allows static types that will never reference a valid object at runtime, and
could therefore be forbidden without limiting the expressiveness of the system and
providing earlier detection of likely errors.

As an example, consider class C from Figure 12:

class C<X extends rep Data, Y extends any Object> {}

The type peer C<peer Data, peer Object> is well formed. The viewpoint-adapted up-
per bound of type variable X is lost Data, which is a supertype of peer Data. However,
this type will never reference an object at runtime because the ownership of the type
argument is not consistent with the upper bound, and the type system forbids the
creation of such objects, as we explain next.

4.3.2. Strictly Well-formed Static Type. To guarantee well-formedness of the heap, we also
define a stricter form of well-formed types that is used for types that can be used for
object creations.

A type variable is strictly well formed if it is contained in the type environment
(SWFT VAR). We do not need to put additional constraints on the upper bound of the
type variable. A nonvariable type is strictly well formed if its type arguments are also
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strictly well formed, the modifiers self and lost do not appear in the type, and the
type arguments are strict subtypes of the adapted upper bounds (SWFT NVAR).

Definition 4.12 (Strictly Well-formed Static Type).

sΓ � sT strictly OK strictly well-formed static type

X ∈ sΓ
sΓ � X strictly OK

SWFT VAR

sΓ � sT strictly OK {self, lost} /∈u C<sT >
ClassBnds(u C<sT >) = sN sΓ � sT <:s sN

sΓ � u C<sT > strictly OK
SWFT NVAR

The use of strict subtyping ensures that lost does not appear in the viewpoint-adapted
upper bounds, and thus that no ownership information was lost by the viewpoint
adaptation.

Continuing the example the type peer C<peer Data, peer Object> is not strictly
well formed. The viewpoint-adapted upper bound of type variable X contains lost, and
therefore the type cannot be used in new expressions. This ensures that a well-formed
heap will never contain such an ill-formed object.

We do need both nonstrict and strict well-formed type judgments to allow flexible
access to objects with lost ownership information. We will present an example after the
topological type rules.

4.3.3. Topological Type Rules. We are now ready to present the topological type rules.
The judgment sΓ � e : sT expresses that expression e is well typed with type sT in
environment sΓ. The definition also uses the strict typing judgment sΓ � e :s sT to
expresses that expression e is well typed with type sT in environment sΓ and that
sT does not contain lost ownership modifiers; this definition simplifies the type rules
TR WRITE and TR CALL.

Definition 4.13 (Topological Type Rules).

sΓ � e : sT expression typing

sΓ � e : sT1
sΓ � sT1 <: sT
sΓ � sT OK

sΓ � e : sT
TR SUBSUM

self /∈ sT
sΓ � sT OK

sΓ � null : sT
TR NULL

sΓ(x ) =sT
sΓ � x : sT

TR VAR

sΓ � sT strictly OK
om

(sT , sΓ
) ∈ {peer, rep}

sΓ � new sT () : sT
TR NEW

sΓ � e :
sΓ � sT OK

sΓ � (sT ) e : sT
TR CAST

sΓ � e0 : sN0
FType(sN0, f ) = sT

sΓ � e0.f : sT
TR READ

sΓ � e0 : sN0 FType(sN0, f ) = sT
sΓ � e1 :s sT

sΓ � e0.f = e1 : sT
TR WRITE

sΓ � e0 : sN0
sΓ � sTl strictly OK

MSig(sN0,m, sTl ) = <Xl extends sNl> sT m(sT ′
q pid)

sΓ � eq :s sT ′
q

sΓ � sTl <:s sNl

sΓ � e0.m<sTl>(eq) : sT
TR CALL
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sΓ � e :s sT strict expression typing

sΓ � e : sT
lost /∈ sT
sΓ � e :s sT

STR DEF

An expression of type sT1 can also be typed with sT1’s well-formed supertypes (TR SUB-
SUM). The null-reference can have any well-formed type that does not contain the self
modifier (TR NULL). The type of method parameters (including this) is determined by a
look-up in the type environment (TR VAR). Objects must be created in a specific context.
Therefore, only types with main modifiers peer and rep are allowed for object creations.
Also, the type must be a strictly well-formed static type (TR NEW).

Function om is used to determine the main ownership modifier of a type. For a non-
variable type, om yields the main ownership modifier, ignoring the static environment;
for a type variable, om yields the main ownership modifier of the upper bound of the
type, as determined using the given static environment.

The rule for casts (TR CAST) is straightforward; it could be strengthened to prevent
more cast errors statically, but we omit these checks since they are not strictly needed.

As explained in Section 4.1, the type of a field access is determined by adapting
the declared type of the field from the viewpoint described by the type of the receiver
(TR READ). If the receiver type is a type variable, subsumption is used to determine its
upper bound because FType is defined on nonvariable types only. Subsumption is also
used for inherited fields to ensure that f is actually declared in sN0.

For a field update, the right-hand side expression must be typable as the viewpoint-
adapted field type, which is also the type of the whole field update expression (TR WRITE).
The rule is analogous to field read, but has the additional requirement that the adapted
field type does not contain lost, which is enforced by using strict expression typing. In
this case, we cannot enforce statically that the right-hand side has the required owner,
and therefore must forbid the update.

The rule for method calls (TR CALL) is in many ways similar to field reads (for result-
passing) and updates (for argument-passing). The method signature is determined
using the receiver type sN0 and the actual type arguments sTl substituted for the
method’s type variables Xl . Again, subsumption is used to find a type for the receiver
that declares the method. The type of the invocation expression is determined by the
return type sT . The method type arguments must be subtypes of the upper bounds
and, modulo subsumption, the actual method argument expressions eq must have the
formal parameter types. For these checks to be precise, we have to forbid lost in the
upper bounds and the parameter types, which is achieved by using strict subtyping
and strict expression typing, respectively. Note that the return type may contain lost.

The method type arguments must be strictly well-formed types. Like the static type
that is used in an object creation, the static types that are supplied as method type
arguments are dynamized to the corresponding runtime types. They are used in the
operational semantics to construct the runtime environment. We need to show that
the method type arguments are well formed from the viewpoint of the receiver, and
therefore need to enforce strict well-formed types as method type arguments.

Note that the topological type system treats pure and nonpure methods identically.
For type soundness we always need to forbid method calls where the viewpoint-adapted
upper bounds or parameter types contain lost. The purity information is only used for
the encapsulation system, which is presented in Section 5.

Deterministic Object Creation. We forbid creation of objects that contain the lost
modifier, statically by enforcing that lost is not contained in the type and at runtime
by using dyn with an empty substitution for lost. Also, the any modifier is forbidden as
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the main modifier of the static type. A design alternative would be to allow the creation
of types that contain lost anywhere in the type and also any as the main modifier, and
then at runtime choose an arbitrary owner that fulfills the constraints imposed by the
upper bounds. Even though this is not a soundness issue, we prefer the more stringent
rules that ensure deterministic behavior of object creation.

We ensure that all subexpressions are well formed, not strictly well formed, to allow
flexible access to objects with lost ownership information. Imagine that class C from
Figure 12 has a field f of type Y. The type peer D<peer Object> is both nonstrictly
and strictly well formed. Imagine a variable x of type peer D<peer Object> and a field
read x.f. By rule TR READ, we need to use subsumption to find the supertype that
declares field f. This supertype is peer C<lost Data, peer Object>, since from the
current viewpoint we cannot express the ownership of type argument X. This type is
not strictly well formed because it contains lost in a type argument and also in an
upper bound. However, we can still consider this type well formed and can determine
peer Object as type of the field access. Similarly, an update of field f would be valid.
If we required strict well-formedness for all static types, we would lose this significant
expressiveness.

4.3.4. Well-formed Class Declaration. The judgment Cls OK expresses that class decla-
ration Cls is well formed. According to rule WFC DEF, this is the case if: (1) the upper
bounds of Cls’s type variables are well formed in the type environment that maps Cls’s
type variables to their upper bounds; (2) the self modifier is not used in Cls’s upper
bounds; (3) the type arguments to the superclass are strictly well formed, and they are
strict subtypes of the upper bounds of the superclass; (4) Cls’s fields are well formed;
and (5) Cls’s methods are well formed.

Definition 4.14 (Well-formed Class Declaration).

Cls OK well-formed class declaration

sΓ={Xk �→ sNk ; this �→ self Cid<Xk>, }
sΓ � sNk OK self /∈ sNk

sΓ � sT strictly OK ClassBnds(self C<sT >) = sN
′ sΓ � sT <:s sN

′
sΓ � fd OK sΓ,Cid � md OK

class Cid<Xk extends sNk> extends C<sT > { fd md } OK
WFC DEF

class Object {} OK
WFC OBJECT

This definition allows the use of lost modifiers in the declaration of the upper bounds
of type variables. However, note that such a class can never be instantiated (type rule
TR NEW requires a strictly well-formed type) and also never subclassed (because the
instantiation of a superclass does not allow lost in the upper bounds).

The self modifier has the special meaning of referring to the current object only. Us-
ing the self modifier in an upper bound type would result in the undesired situation
that the supertype of the corresponding type variable contains the self modifier, even
though the type variable obviously does not contain the self modifier. For the sound-
ness of the static-type-to-value judgment (see Definition 3.15) this has to be forbidden.

In Figure 12, we introduced class C with a type variable X that has rep Data as an
upper bound. Class C can never be instantiated because the viewpoint-adapted upper
bound always results in lost ownership information. However, the subclass D can be
instantiated. We therefore consider class C well formed, even though the class can
never be instantiated.
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4.3.5. Well-formed Field Declaration. Field declarations are well formed if their corre-
sponding types are well formed.

Definition 4.15 (Well-formed Field Declaration).

sΓ � sT f ; OK well-formed field declaration

sΓ � sT OK
sΓ � sT f ; OK

WFFD DEF

For soundness, the field types only need to be well formed; they do not need to be
strictly well formed.

4.3.6. Well-formed Method Declaration. The judgment sΓ,C � md OK expresses that
method md is well formed in type environment sΓ and class C . A method declaration
md is well formed if (1) the return type, the upper bounds of md’s type variables,
and md’s parameter types are well formed in the type environment that maps md’s
and sΓ’s type variables to their upper bounds, as well as this and the explicit method
parameters to their types. The type of this is the enclosing class instantiated with its
type variables, C<X ′

k>, with main modifier self; (2) the upper bounds must not contain
the self modifier; (3) the method body, expression e, is well typed with md’s return
type; and (4) md respects the rules for overriding; see below.

Definition 4.16 (Well-formed Method Declaration).

sΓ,C � md OK well-formed method declaration

sΓ={X ′
k �→ sN′

k ; this �→ self C<X ′
k>, }

sΓ′={X ′
k �→ sN′

k , Xl �→ sNl ; this �→ self C<X ′
k>, pid �→ sTq }

sΓ′ � sNl , sT , sTq OK self /∈ sNl
sΓ′ � e : sT C<X ′

k> � m OK
sΓ,C � <Xl extends sNl> sT m(sTq pid) { e } OK

WFMD DEF

We allow lost in the parameter types and the upper bounds of the method type vari-
ables; such a method is never callable, as the type rule for method calls TR CALL forbids
the occurrence of lost in these types. Also note that self is forbidden only in the upper
bound types, but is allowed as the main modifier of the return and parameter types.
A method with self as main modifier of a parameter type is only callable on receiver
this; self as main modifier of the return type will result in lost if the method is not
called on receiver this.

Method m respects the rules for overriding if it does not override a method or if all
overridden methods have the identical signatures after substituting type variables of
the superclasses by the instantiations given in the subclass (the notation ms ′[sT /X

′
] is

used to apply the substitution to the upper bounds, the return type, and the parameter
types in the method signature ms’). Consistent renaming of method type variable
identifiers and parameter identifiers is allowed.

For simplicity, we require that overrides do not change the purity of a method,
although overriding nonpure methods by pure methods would be safe for the encap-
sulation system in Section 5. Moreover, parameter and return types are invariant,
although contravariant, respectively, covariant changes could be allowed [Cunningham
et al. 2008].
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Definition 4.17 (Method Overriding).

sCT � m OK method overriding OK

∀C ′<X
′
>. ∀ sT . (C<X> � C ′<sT > =⇒ C<X>,C ′<sT , X

′
> � m OK)

C<X> � m OK
OVR DEF

sCT ,C<sT , X> � m OK method overriding OK auxiliary

MSig(C ,m) = ms MSig(C ′,m) = ms′
o

ms′
o=None ∨ (ms′

o=ms ′ ∧ ms ′[sT /X
′
]=ms)

C<X>,C ′<sT , X
′
> � m OK

OVRA DEF

The requirement is expressed by two rules. Rule OVRA DEF determines the method
signatures in classes C and C ′. The method signature in the superclass must either
be undefined, signified by the value None, or must be identical after substitution of
the type arguments and possibly renaming of method type variables and parameter
identifiers. Rule OVR DEF quantifies over all superclass instantiations and checks that
the methods are consistent by using rule OVRA DEF.

4.3.7. Well-formed Type Environment. The judgment sΓ OK expresses that type environ-
ment sΓ is well formed. This is the case if all upper bounds of type variables and the
types of method parameters are well formed and self does not appear in the upper
bounds. Moreover, this must be mapped to a nonvariable type with main modifier self
and using the declared type variables of the class as type arguments.

Definition 4.18 (Well-formed Type Environment).

sΓ OK well-formed static environment

sΓ={Xk �→ sNk , X ′
l �→ sN′

l ; this �→ self C<Xk>, pid �→ sTq }
ClassDom(C ) = Xk ClassBnds(C ) = sNk
sΓ � sTq , sNk , sN′

l OK self /∈ sNk , sN′
l

sΓ OK
SWFE DEF

Note that self C<Xk> is well formed, since we check that class C is instantiated with
its type variables, that is, ClassDom(C ) = Xk .

4.3.8. Well-formed Program Declaration. The judgment � P OK expresses that program
P is well formed. This holds if all classes in P are well formed, the main class C is a
nongeneric class in P , the main expression e is well typed in an environment with this
as an instance of class C , and where subclassing does not contain cycles.

Definition 4.19 (Well-formed Program Declaration).

� P OK well-formed program

Clsi OK
{∅ ; this �→ self C< >} � self C< > OK
{∅ ; this �→ self C< >} � e :
∀C ′,C ′′.

((
C ′< > � C ′′< > ∧ C ′′< > � C ′< >

) =⇒ C ′=C ′′)
� Clsi , C , e OK

WFP DEF

4.4. Runtime Well Formedness

This section defines the well-formedness conditions of the runtime system.
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4.4.1. Runtime Field Type Look-up. It is convenient to look up the declared type of a field
for an object. We determine the supertype that can be assigned to the object at address
ι, whose class C declares the field f . Note that there is at most one such class in which
the field can be declared.

Definition 4.20 (Runtime Field Type Look-up).

FType(h, ι, f ) = sT look up type of field in heap

h � ι : C< > FType(C , f ) = sT
FType(h, ι, f ) = sT

RFT DEF

4.4.2. Runtime Upper Bounds Look-up. To look up the runtime types of the upper bounds
of a runtime type rT from the viewpoint ι, we first determine the static upper bound
types and then use simple dynamization to determine the runtime types.

Definition 4.21 (Runtime Upper Bounds Look-up).

ClassBnds(h, ι, rT , oι) = rT upper bounds of type rT from viewpoint ι

ClassBnds(ClassOf(rT )) = sN sdyn(sN, h, ι, rT , oι) = rT

ClassBnds(h, ι, rT , oι) = rT
RCB DEF

We provide a sequence of owner addresses oι that is used to substitute lost modifiers
that might appear in the static upper bounds look-up.

The simple dynamization requires that self does not appear in the static type and
that all type variables can be substituted by the runtime type; this is always the case
for a well-formed class (see Definition 4.14).

4.4.3. Strictly Well-formed Runtime Type. By h, ι � oι C< rT > strictly OK we denote that the
runtime type oι C< rT > is strictly well formed in heap h with viewpoint address ι. The
owner oι has to be an address in the heap or one of the special addresses anya or roota.
The type arguments have to be strictly well formed and must be runtime subtypes of
the corresponding upper bounds.

Definition 4.22 (Strictly Well-formed Runtime Type).

h, ι � rT strictly OK strictly well-formed runtime type rT

oι ∈ dom(h) ∪ {anya, roota} ClassBnds(h, ι, oι C< rT k>, ∅) = rT ′
k

h, � rT k strictly OK h � rT k <: rT ′
k

h, ι � oι C<rT k> strictly OK
SWFRT DEF

We call this judgment a strictly well-formed runtime type because conceptually it
corresponds to the strictly well-formed static type judgment. We did not find a need to
define a weak form of well-formed runtime type.

This judgment uses a viewpoint address to express that the runtime type is well
formed for a specific viewpoint address ι. The address ι is used to determine the runtime
upper bound types. If the declared upper bounds contain the rep modifier, then ι will be
used in the runtime upper bounds. This ensures that the rep upper bound is interpreted
correctly. It is interesting to note that a class with a rep upper bound can never be
instantiated, only a subclass of it could be instantiated. We never need to check strict
runtime well-formedness of such a type, and in our uses the viewpoint address ι can be
arbitrary.

The type arguments are also checked to be strictly well formed, but we use different
viewpoint addresses ι. The type arguments are types that potentially were created in
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a different viewpoint, for example, they are the result of substituting type arguments
for a type variable. Using different viewpoints for the different type arguments allows
for each type argument to be relative to a different point of instantiation.

Note that we use an empty sequence of substitutions for lost modifiers in ClassBnds.
This forbids occurrences of lost in the declared upper bounds of a class. Our type
rules ensure that we never use strictly well-formed runtime types for classes that
use lost in upper bounds, since all corresponding static types are checked for strict
well-formedness.

4.4.4. Well-formed Object at an Address. An object at an address ι is well formed in a heap
h, denoted h � ι OK, if the runtime type of the object in the heap is strictly well formed;
the root owner roota is in the set of transitive owners of the object (owners(h, ι) yields
the set containing the owner address for ι, owner(h, ι); and all the transitive owners),
and for all the fields that are declared in the corresponding class, the field type can be
assigned to the field value. By mandating that all objects are (transitively) owned by
roota and because each runtime type has one unique owner address, we ensure that
ownership is a tree structure.

Definition 4.23 (Well-formed Object at an Address).

h � ι OK well-formed object at an address

h(ι)↓1 = C< > h, ι � h(ι)↓1 strictly OK roota ∈ owners(h, ι)
∀f ∈ fields(C ). ∃ sT . (FType(h, ι, f ) = sT ∧ h, ι � h(ι.f ) : sT )

h � ι OK
WFA DEF

This definition allows a field type with the self main modifier. The address is well
formed, if the corresponding field value is the same address again. Also, field types
can contain lost modifiers and can reference objects of a suitable type because the
static-type-to-value judgment chooses a suitable owner addresses. However, the static
type rules forbid that such fields are used in an update, and therefore a well-formed
program will never create such a heap.

4.4.5. Well-formed Heap. A heap h is well formed, denoted h OK, if all the addresses in
the heap are well formed.

Definition 4.24 (Well-formed Heap).

h OK well-formed heap

∀ι ∈ dom(h) . h � ι OK

h OK
WFH DEF

4.4.6. Well-formed Environments. We need to express that the runtime information con-
sisting of a heap h and a runtime environment rΓ are consistent with the static envi-
ronment sΓ, written as h, rΓ : sΓ OK.

Definition 4.25 (Well-formed Environments).

h, rΓ : sΓ OK runtime and static environments correspond

rΓ={Xl �→ rT l ; this �→ ι, pid �→ vq }
sΓ={Xl �→ sNl , X ′

k �→ ; this �→ self C<X ′
k>, pid �→ sTq }

h OK sΓ OK h, ι � rT l strictly OK
dyn(sNl , h, rΓ, ∅) = rT ′

l h � rT l <: rT ′
l

h, rΓ � ι : self C<X ′
k> h, rΓ � vq : sTq

h, rΓ : sΓ OK
WFRSE DEF
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The runtime environment only contains the method type variables Xl with their run-
time type arguments rT l , whereas the static environment contains the method type
variables Xl and the class type variables X ′

k with their respective static upper bound
types. The type of the current object this has to match with the class type variables X ′

k
and the type of this must be assignable to the current object ι. The formal parameter
types sTq must be assignable to the argument values vq .

The method type arguments rT l must be strictly well-formed runtime types and
must be subtypes of the dynamization of the corresponding upper bounds. Note that
the static upper bounds of the method type variables sNl are dynamized using dyn, since
the sNl can contain other method type variables which need a runtime environment
rΓ for dynamization and could also come from a supertype of the runtime type of the
current object ι; sdyn would not be defined for such upper bounds. Note that we do not
need to ensure that the ownership structure induced by the method type arguments
and method arguments is correct—in particular, we do not need to ensure that roota
is contained, as we do in Definition 4.24. We ensure that all addresses are contained in
the heap, and therefore ensure the well formedness of the ownership structure using
Definition 4.24.

An empty substitution for lost modifiers is also used; our type rules ensure that
the upper bounds of method type variables do not contain lost modifiers (see TR CALL,
Definition 4.13; note that a well-formed method might contain lost modifiers in upper
bounds and parameter types, but such a method will never be callable, and therefore we
never need to show a correspondence between the static and runtime environments).

The heap h and the static environment sΓ have to be well formed according to their
respective well-formedness judgments, see Definition 4.24 and Definition 4.18.

4.5. Properties of the Topological System

This final section presents the main properties of the topological system and outlines
their proofs. Additional properties can be found in Appendix A, ACM Digital Library
(online only) and the detailed proofs in Section B.1.1 in Appendix B.

4.5.1. Type Safety. Type safety of Generic Universe Types in particular ensures that
the static ownership information is correctly reflected in the runtime system, which
is expressed by the following theorem. If a well-typed expression e is evaluated in a
well-formed environment (including a well-formed heap), then the resulting heap is
well formed and e ’s static type can be assigned to the result of e ’s evaluation.

THEOREM 4.26 (TYPE SAFETY).

� P OK h, rΓ : sΓ OK
sΓ � e : sT
rΓ � h, e � h ′, v

}
=⇒

{
h ′, rΓ : sΓ OK
h ′, rΓ � v : sT

The proof of Theorem 4.26 runs by rule induction on the operational semantics.
Lemma 4.28 is used to prove field reads and method results, whereas Lemma 4.29
is used to prove field updates and method argument-passing.

We omit a proof of progress, since this property is not affected by adding ownership
to a Java-like language. The basic proof can easily be adapted from FGJ [Igarashi
et al. 2001]. Extensions to include field updates and casts have also been done before
[Bierman et al. 2003; Flatt et al. 1999]. Only the additional check of the ownership
information in a cast is different from these previous approaches; its treatment is
analogous to a standard Java cast.
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4.5.2. Validation and Creation of a New Viewpoint. The following judgment is convenient for
the formulation of the viewpoint adaptation lemmas. It checks that all type variables
that appear in the static type sT are either from the class of sN or from the method type
variables Xl . Also, in some static environment, sN needs to be well formed. This ensures
that all type variables are substituted, and therefore that the type after substitution
of the class and method type variables is consistent with the new environment. Note
that the types sN and sT are not part of the new viewpoint rΓ′, but for brevity we want
to include the check of this common side-condition here. The judgment determines the
runtime types rT l for the method type arguments using the original environment rΓ
and an empty substitution for lost modifiers. The new viewpoint rΓ′ is constructed
using the method type arguments, the new current object ι, and arbitrary method
arguments.

Definition 4.27 (Validate and Create a New Viewpoint).

h, rΓ � sN, sT ; (sT /X, ι) = rΓ′ validate and create new viewpoint rΓ′

sΓ � sN OK ClassDom(ClassOf(sN)) = X free(sT ) ⊆ X, Xl

dyn(sTl , h, rΓ,∅) = rT l
rΓ′={Xl �→ rT l ; this �→ ι, }

h, rΓ � sN, sT ; (sTl/Xl , ι) = rΓ′ NVP DEF

4.5.3. Adaptation from a Viewpoint. The following lemma expresses that viewpoint adap-
tation from a viewpoint to this is correct. Consider the this object of a runtime envi-
ronment rΓ and two objects o1 and o2. If from the viewpoint this, o1 has the static type
sN, and from viewpoint o1, o2 has the static type sT , then from the viewpoint this, o2
has the static type sT adapted from sN, sN � sT . The following lemma expresses this
property using the address ι and value v of the objects o1 and o2, respectively. (Note
that v can be the nulla value because every static type (that does not contain self) can
be assigned to the nulla value.)

LEMMA 4.28 (ADAPTATION FROM A VIEWPOINT).

h, rΓ � ι : sN
h, rΓ′ � v : sT
h, rΓ � sN, sT ; (sT /X, ι) = rΓ′

⎫⎬
⎭ =⇒ ∃sT ′. (sN � sT )[sT /X] = sT ′ ∧

h, rΓ � v : sT ′

This lemma justifies the type rule TR READ and the method result in TR CALL. Note how
we can choose suitable substitutions for lost modifiers in the static types, that is, the
static type after viewpoint adaptation might contain more lost ownership information
and suitable runtime types are chosen. The proof runs by induction on the shape of
static type sT .

4.5.4. Adaptation to a Viewpoint. The following lemma is the converse of the preceding
Lemma 4.28. It expresses that viewpoint adaptation from this to an object o1 is correct.
If from the viewpoint this, o1 has the static type sN, and o2 has the static type sN �
sT , then from viewpoint o1, o2 has the static type sT . The lemma requires that the
adaptation of sT from viewpoint sN does not contain lost ownership modifiers, since
the lost ownership information cannot be recovered.
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LEMMA 4.29 (ADAPTATION TO A VIEWPOINT).

h, rΓ � ι : sN
(sN � sT )[sT /X] = sT ′ lost /∈ sT ′
h, rΓ � v : sT ′

h, rΓ � sN, sT ; (sT /X, ι) = rΓ′

⎫⎪⎪⎬
⎪⎪⎭ =⇒ h, rΓ′ � v : sT

This lemma justifies the type rule TR WRITE and the requirements for the types of
the parameters in TR CALL. The proof again runs by induction on the shape of static
type sT .

This concludes our discussion of the topological system. In summary, we presented
the static and dynamic semantics of the topological system and proved type safety. The
next section presents an encapsulation system that builds on top of the topological
system.

5. ENCAPSULATION SYSTEM

On top of the topological system that we defined in the previous section, we now define
an encapsulation system that enforces the owner-as-modifier discipline. Encapsulation
is first defined for expressions and then for methods, classes, and programs. We conclude
this section by stating the owner-as-modifier property formally and outlining its proof;
the detailed proof can be found in Section B.1.2 in Appendix B (online only).

The owner-as-modifier discipline allows an object o to be referenced from anywhere,
but reference chains that do not pass through o ’s owner must not be used to modify
o. This allows owner objects to control state changes of owned objects and supports
program verification [Drossopoulou et al. 2008; Müller et al. 2006; Leino and Müller
2004; Müller 2002]. It is also enforced in Spec�’s dynamic ownership model [Leino
and Müller 2004] and Effective Ownership Types [Lu and Potter 2006b]. Note that all
references, in particular method parameters and local variables, are subjected to the
same restrictions and cannot be used to circumvent the owner-as-modifier discipline.

5.1. Encapsulated Expression

The judgment sΓ � e enc, given below, expresses that expression e is an encapsu-
lated expression; that is, it is a topologically well-typed expression that constrains the
possible field updates and method calls.

Definition 5.1 (Encapsulated Expression).

sΓ � e enc encapsulated expression

sΓ � null :
sΓ � null enc

E NULL

sΓ � x :
sΓ � x enc

E VAR

sΓ � new sT () :
sΓ � new sT () enc

E NEW

sΓ � (sT ) e :
sΓ � e enc

sΓ � (sT ) e enc
E CAST

sΓ � e0.f :
sΓ � e0 enc

sΓ � e0.f enc
E READ

sΓ � e0.f = e1 :
sΓ � e0 : sN0

sΓ � e0 enc sΓ � e1 enc
om(sN0) ∈ {self, peer, rep}

sΓ � e0.f = e1 enc
E WRITE

sΓ � e0.m<sT >(e) :
sΓ � e0 : sN0

sΓ � e0 enc sΓ � e enc
om(sN0) ∈ {self, peer, rep} ∨ MSig(sN0,m, sT ) = pure < > m( )

sΓ � e0.m<sT >(e) enc
E CALL
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To enforce the owner-as-modifier discipline, the update of fields of objects in arbitrary
contexts must be forbidden. Therefore, field updates are only allowed if the main
modifier of the receiver type is self, peer, or rep (E WRITE). For a method call, either
the main modifier of the receiver type is self, peer, or rep, or the called method is pure
(E CALL). Pure methods can be called on arbitrary receivers because they do not modify
existing objects.

The encapsulation judgment prevents method main (Figure 4) from updating the field
key of the object referenced by n, since the main modifier of n is any. The update would
preserve the topology, but violate the owner-as-modifier discipline because the object
referenced by n is in a statically unknown context.

5.2. Pure Expression

To focus on the essentials of the type system, we under-specify what we mean with
a pure expression. All we need for the proof of the owner-as-modifier property (Theo-
rem 5.7, given later) is expressed in the following assumption: pure expressions do not
modify objects that exist in the prestate of the expression evaluation; formally, we have
the following.

ASSUMPTION 5.2 (PURE EXPRESSION).

h, rΓ : sΓ OK
sΓ � e :
sΓ � e pure
rΓ � h, e � h ′,

⎫⎪⎬
⎪⎭ =⇒ ∀ι ∈ dom(h) , f ∈ h(ι)↓2 . h(ι.f ) = h ′(ι.f )

As an example that satisfies this assumption, we give a strict definition of pure ex-
pressions [Dietl and Müller 2005]. This definition forbids all field updates, and calls to
nonpure methods.

Definition 5.3 (Strictly Pure Expression).

sΓ � e strictly pure strictly pure expression

sΓ � null :
sΓ � null strictly pure

SP NULL

sΓ � x :
sΓ � x strictly pure

SP VAR

sΓ � new sT () :
sΓ � new sT () strictly pure

SP NEW

sΓ � (sT ) e :
sΓ � e strictly pure

sΓ � (sT ) e strictly pure
SP CAST

sΓ � e0.f :
sΓ � e0 strictly pure

sΓ � e0.f strictly pure
SP READ

sΓ � e0.m<sT >(e) :
sΓ � e0 : sN0

sΓ � e0 strictly pure sΓ � e strictly pure
MSig(sN0,m, sT ) = pure < > m( )

sΓ � e0.m<sT >(e) strictly pure
SP CALL

Approaches that allow the modification of newly created objects [Salcianu and Rinard
2005] also fulfill this assumption.

5.3. Encapsulated Method Declaration

For an encapsulated method, we require that for a pure method, the method body is a
pure expression and that for a nonpure method, the method body is an encapsulated
expression.
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Definition 5.4 (Encapsulated Method Declaration).

sΓ,C � md enc encapsulated method declaration

sΓ,C � p <Xl extends sNl> sT m(sTq pid) { e } OK
sΓ={X ′

k �→ sN′
k ; this �→ self C<X ′

k>, }
sΓ′={X ′

k �→ sN′
k , Xl �→ sNl ; this �→ self C<X ′

k>, pid �→ sTq }
(p=pure =⇒ sΓ′ � e pure) (p=impure =⇒ sΓ′ � e enc)

sΓ,C � p <Xl extends sNl> sT m(sTq pid) { e } enc
EMD DEF

The first requirement checks that the method is a topologically well-formed method.
We then determine the static environments sΓ and sΓ′ that we need to check the method
body expression. The construction of these environments corresponds to the topologi-
cal well-formed method judgment (Definition 4.16). Finally, a pure method is required
to have an expression as method body that fulfills our assumption of a pure expres-
sion (Assumption 5.2) and a nonpure method needs a method body that fulfills the
encapsulated expression judgment (Definition 5.1).

5.4. Encapsulated Class and Program Declaration

The final two judgments define encapsulated class, Cls enc, and encapsulated program,
� P enc. They simply propagate the checks to the lower levels.

Definition 5.5 (Encapsulated Class Declaration).

Cls enc encapsulated class declaration

class Cid<Xk extends sNk> extends C<sT > { fd md } OK
sΓ={Xk �→ sNk ; this �→ self Cid<Xk>, } sΓ,Cid � md enc

class Cid<Xk extends sNk> extends C<sT > { fd md } enc
EC DEF

class Object {} enc
EC OBJECT

A class declaration is correctly encapsulated if it fulfills the topological rules of well
formedness and all methods are encapsulated in the corresponding environment sΓ (the
construction of sΓ again corresponds to the construction of the topological judgment,
this time from Definition 4.14). Class Object is always correctly encapsulated.

Definition 5.6 (Encapsulated Program Declaration).

� P enc encapsulated program

� Cls, C , e OK
Clsk enc
{∅ ; this �→ self C< >} � e enc

� Cls, C , e enc
EP DEF

A program is encapsulated if the program is topologically well formed, all classes are
correctly encapsulated, and the main expression is correctly encapsulated.

5.5. Examples

5.5.1. Purity Examples. Consider the following examples on method purity. Method
getData below is pure in both the weak (Assumption 5.2) and strict definitions (Defini-
tion 5.3):

class C {
rep Data f;
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pure rep Data getData() {
return f;

}
}

The method simply returns a reference to the internal state and does not modify any
state.

On the other hand, consider

class D {
pure rep Data computeData() {
rep Data x = new rep Data();
x.addInfo(...);
return x;

}
}

assuming some nonpure method addInfo in class Data. Method computeData is pure
according to the weak definition of purity from Assumption 5.2, since it does not modify
objects that exist in the prestate of the method call. It creates a new object, modifies only
this new object, and finally returns it. However, the strict definition from Definition 5.3
forbids method computeData because all nonpure method calls are forbidden.

Finally, the following method is nonpure by both definitions:

class E {
rep Data f;
rep Data cachedData() {
if( f==null ) {
f = new rep Data();
f.addInfo(...);

}
return f;

}
}

The modification of field f violates both purity definitions. However, caching and lazy
initialization are common in query methods. The current research on observational
purity [Cok and Leavens 2008; Naumann 2007; Barnett et al. 2004] tries to remedy
this problem, but the relation to the owner-as-modifier discipline has not yet been
investigated.

5.5.2. Encapsulation Examples. The following examples illustrate the encapsulation
judgments. The code fragment below is well encapsulated:

peer Data dp = ...;
dp.addInfo(...);
dp.count = 4;

rep Data dr = ...;
dr.addInfo(...);

any Data da = ...;
any Info ia = da.getInfo();
int count = da.count;
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Calls of the nonpure method addInfo are on receivers with a peer or rep type; also,
the field update is on a receiver with a peer type. We have no static knowledge of the
ownership of da; therefore, only the pure method getInfo can be called on it, and the
field can only be read.

Note that the encapsulation judgment is concerned only with the main modifier of
the receiver type. For example, consider

peer List<any Data> pla = new peer List<any Data>();
pla.add(new peer Data());

This code is well encapsulated. We know that the list referenced by pla has the same
owner as the current object, and the current object can therefore modify the object
referenced by pla. We have no static knowledge of the ownership of the type arguments,
but this is not needed to enforce the owner-as-modifier discipline.

Static types always represent static approximations of the runtime behavior.
Consider

any Data d;
if (...) {
d = new rep Data();

} else {
d = new peer Data();

}
d.addInfo(...);

This code is not well encapsulated. At runtime, variable d will always reference an
object that is either owned by the current object or by the owner of the current object.
However, the static type loses this ownership information and the encapsulation system
rejects the call to the nonpure method addInfo. The code must be rewritten to retain
the static knowledge.

5.6. Properties of the Encapsulation System

The owner-as-modifier discipline is expressed by the following theorem. The evaluation
of an encapsulated expression e in an encapsulated program P and a well-formed
environment can only modify those objects that are (transitively) owned by the owner
of this.

THEOREM 5.7 (OWNER-AS-MODIFIER).

� P enc
sΓ � e enc
h, rΓ : sΓ OK
rΓ � h, e � h ′,

⎫⎪⎬
⎪⎭ =⇒

∀ι∈ dom(h) . ∀f ∈ dom(h(ι)↓2) .
h(ι.f ) = h ′(ι.f ) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

The proof of Theorem 5.7 runs by rule induction on the operational semantics. The
interesting cases are field updates and calls of nonpure methods. In both cases, the
encapsulation rules enforce that the receiver expression does not have the main modi-
fiers lost or any. That is, the receiver object is owned by this or the owner of this. The
case for pure method calls relies only on Assumption 5.2 and not on a more restrictive
definition of purity.

6. RELATED WORK

Early work on object-oriented programming already discussed the problems of object
aliasing; for example, see the descriptions of Meyer [1988, 1997]. Guides to secure
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programming, for example for Java [Sun Developer Network 2010], also highlight the
problems of aliasing.

The “Geneva convention on the treatment of object aliasing” [Hogg et al. 1992] illus-
trates the problems, and outlines four possible treatments: detection, advertisement,
prevention, and control.

The Islands system [Hogg 1991] was the first approach to combat aliasing; however, it
has a high annotation overhead. Balloon types [Almeida 1997; 1998] use a type system
and static analysis to give strong encapsulation guarantees. Both severely restrict the
expressiveness and forbid many useful programs.

We structure the rest of this section as follows. In Section 6.1 we discuss the relation
to other ownership type systems, in Section 6.2 we give an overview of the work on
the Universe type system; and in Section 6.3 we discuss type systems that support
read-only references and immutable objects. Finally, in Section 6.4 we briefly discuss
object-oriented verification.

6.1. Ownership Type Systems

6.1.1. Ownership Types. Flexible alias protection [Noble et al. 1998] presents a mode
system and discusses its use to protect against the negative effects of aliasing. Clarke
et al. [1998] and Clarke [2001] developed an ownership type system for flexible alias
protection. It enforces the owner-as-dominator property for references stored in fields
as well as in local variables. To compare the owner-as-dominator and owner-as-modifier
properties, we want to distinguish three kinds of references: (1) references to peers or
representation objects; (2) references to objects in enclosing contexts; and (3) arbi-
trary other objects. Both encapsulation systems support references of the first kind.
In owner-as-dominator systems, context parameters express role separation and allow
an object, o, to reference objects in ancestor contexts of the context that contains o.
These references of the second kind violate neither the owner-as-dominator nor the
owner-as-modifier property. Still, we require references to ancestor contexts to be any
to prevent methods from modifying objects in ancestor contexts because such modi-
fications complicate verification [Müller et al. 2003]. References of the third kind are
permitted by the owner-as-modifier property (typed as any), but forbidden by the owner-
as-dominator property. Even though our encapsulation system is more permissive than
owner-as-dominator for references of kind 3, the invariant enforced by our encapsula-
tion system is not strictly weaker than the containment invariant of ownership types
because of the restricted handling of references to enclosing contexts,

Context parameters allow a fine-grained specification of the ownership relationship.
In contrast, the combination of type parameters and the any modifier allow GUT to
choose between parameterizing the class and using an abstraction of the ownership.
The abstract any types can replace context parameters in many situations, impose less
annotation overhead, and lead to programs that are easier to reason about. Using type
parameters allows us to parameterize a class by both ownership and class information.
For many examples, we believe that the type parameters found in GUT will be expres-
sive enough to model the desired ownership structures. Furthermore, type parameters
and any references allow multiple objects to reference one representation, which is
not supported by the owner-as-dominator model used in ownership types. However,
such nonowning references to a representation are used in common implementations
such as iterators or shared data structures. Both encapsulation models have important
applications and drawbacks that need to be considered [Boyland 2005].

In ownership types, the static visibility function SV is used to protect rep references
from exposure. However, it forbids all access to representation from non-owners. In
contrast, the viewpoint adaptation function used in GUT (see Section 4.1) will intro-
duce lost ownership information if the exact ownership relation cannot be expressed.
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This still allows limited access to the representation of other objects. The substitution
of context parameters also roughly corresponds to viewpoint adaptation in Universe
types, which adapts ownership information and replaces type arguments for type pa-
rameters. Clarke’s Ph.D. dissertation [Clarke 2001] gives a detailed development of an
object calculus with ownership types and proves a containment invariant.

For a detailed comparison of parametric ownership type systems to nongeneric Uni-
verse types, see Section 6.2.3 and Cameron and Dietl [2009]. Extending this work to
GUT is future work.

Clarke and Drossopoulou [2002] extended the original ownership type system to
support inheritance. Their type system is ownership-parametric, and enforces a slightly
weaker form of the owner-as-dominator property by not restricting the references that
are computed as intermediate results during expression evaluation. However, this
relaxation is not sufficient to handle common patterns such as lists with external
iterators. Based on their type system, Clarke and Drossopoulou present an effects
system and use it to reason about aliasing and noninterference.

Multiple Ownership for Java-like Objects (MOJO) [Cameron et al. 2007] is an own-
ership type system that enforces a more flexible topology, supporting more than one
owner per object and path types. The type system does not enforce an encapsulation
topology. The wildcard owner “?” provides ownership abstraction similar to any refer-
ences in Universe types. This system is only parametric in ownership contexts, not in
types.

6.1.2. SafeJava. SafeJava [Boyapati 2004; Boyapati et al. 2003] is very similar to own-
ership types, but enforces an encapsulation discipline that is slightly less restrictive
than owner-as-dominator: An object and all associated instances of inner classes can
access a common representation. For instance, iterators can be implemented as inner
class of the collection, and therefore directly reference the collection’s representation.
However, more general forms of sharing are not supported. SafeJava is more flexi-
ble than ownership types, but the Universe type system is both syntactically simpler
and more permissive. SafeJava has been applied to prevent data races and deadlocks
[Boyapati et al. 2002; Boyapati et al. 2003].

Boyapati et al. [2003] present a space-efficient implementation of downcasts in Safe-
Java. Their implementation inspects each class, C, to determine whether downcasts
for C objects potentially require dynamic ownership information. If not, ownership
information is not stored for C objects. “Anonymous owners,” marked as “-” in class
declarations, are used to mark owner parameters that are not used in the class body
and do not need runtime representation. This optimization does not work for the Uni-
verse type system, where any references to objects of any class can be cast to peer or
rep references, and therefore, objects of every class potentially need runtime ownership
information.

SafeJava [Boyapati 2004] supports type parameters and ownership parameters inde-
pendently, but does not integrate both forms of parametricity. This leads to significant
annotation overhead. Also, the combination with type parameterization is not formal-
ized. No implementation is available.

6.1.3. Ownership Domains. Ownership domains [Aldrich and Chambers 2004] support
a further relaxation of the owner-as-dominator discipline. Contexts can be structured
into several domains. Domains can be declared public, which permits reference chains
to objects in the public domain that do not pass through their owner. Programmers can
control whether objects in different domains can reference each other. For instance,
iterators in a public domain of a collection are accessible for clients of the collection.
They can be allowed to reference the representation of the collection stored in another
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domain. However, the use of public domains and linking of domains can lead to complex
systems [Nägeli 2006].

Ownership domains have been used to visualize software architectures [Abi-Antoun
and Aldrich 2007a, 2009]. They have also been encoded in Java 5 annotations [Abi-
Antoun and Aldrich 2007b]; however, the limited capabilities of Java 5 annotations
required a complex encoding.

The concept of ownership domains is powerful and allows many forms of sharing.
The link declarations allow programmers to declare the intended sharing in the sys-
tem, whereas our system enforces a uniform encapsulation discipline for all objects.
However, the link declaration further increases the annotation overhead of ownership
systems with context parameters.

Ownership Domains [Aldrich and Chambers 2004] combine type parameters and
domain parameters into a single parameter space, and thereby reduce the annotation
overhead of earlier type parametric ownership systems. However, type parameters are
not covered by their formalization. Ownership Domains are integrated in the ArchJava
compiler [Aldrich 2003].

6.1.4. Systems by Lu and Potter. The Acyclic Region Type System (ARTS) [Lu and Pot-
ter 2005] separates the heap into regions and ensures that reference cycles can only
occur within a region. The core language does not use ownership; it provides a strong
encapsulation discipline that prohibits common patterns.

Effective ownership types [Lu and Potter 2006b] enforce the owner-as-modifier dis-
cipline. They allow a method to modify objects in ancestor contexts of its receiver, and
are thus slightly less restrictive than our encapsulation system. This extra flexibility
requires context parameters and effective owner declarations for methods, which leads
to a significant annotation overhead. Effective ownership types do not separate the
topology from the encapsulation system.

Variant ownership types [Lu and Potter 2006a] support both ownership and accessi-
bility modifiers, allowing a fine-grained access scheme. Context variance allows us to
abstract over ownership information.

None of the three systems is type parametric and no implementation is available.

6.1.5. Ownership Generic Java. Ownership Generic Java (OGJ) [Potanin et al. 2006;
Potanin 2007] allows programmers to attach ownership information through type pa-
rameters. OGJ enforces the same owner-as-dominator discipline as the original own-
ership types. It piggybacks ownership information on type parameters. In particular,
each class C has a type parameter to encode the owner of a C object. This encoding
allows OGJ to use a slight adaptation of the normal Java type rules to also check
ownership, which makes the formalization very elegant. Similarly to OGJ, the Generic
Confinement system [Potanin et al. 2004; Potanin 2007] encodes package-level owner-
ship on top of a generic type system. WOGJ [Cameron and Noble 2009] presents an
encoding of ownership on top of a generic type system that supports wildcards and
requires less change to the underlying type system than OGJ.

We believe that adapting OGJ to separate the topological system from the encapsu-
lation system or to support the owner-as-modifier discipline is not easily accomplished.
We need to loosen up the static ownership information by allowing certain references
to point to objects in any context. In OGJ, the subtype relation between any types
and other types would require covariant subtyping—for instance, that Node<This> is a
subtype of Node<Any>. In OGJ, there is no covariant subtyping, because the underly-
ing Java (or C�) type system is nonvariant. Therefore, piggybacking ownership on the
standard Java type system is not possible in the presence of any ownership.
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6.1.6. Existential Types. Higher-order functional ownership by Krishnaswami and
Aldrich [2005] allows the abstraction of ownership information similar to any refer-
ences.

Existential owners for ownership types [Wrigstad and Clarke 2007] provides a mech-
anism that allows ownership types to support some downcasts without requiring a
runtime representation of ownership. This system does not provide the full flexibility
of any references.

Jo∃ [Cameron and Drossopoulou 2009; Cameron 2009] combines the theory on ex-
istential types with a parametric ownership type system. Ownership information is
passed as additional type parameters, and existential types can be used to allow sub-
type variance. Jo∃deep provides optional enforcement of the owner-as-dominator disci-
pline. The Jo∃ system provides theoretical underpinnings and builds a theoretically
sound basis. It does not provide a practical language design and no language imple-
mentation.

We discussed the relationship between a subset of Jo∃, called Jo∃−, and the non-
generic Universe type system [Cameron and Dietl 2009]; see our discussion in Sec-
tion 6.2.3. Analyzing the correspondence between GUT and Jo∃ will provide interesting
future work.

A formalization of wildcards [Cameron et al. 2008] uses existential quantification to
model Java wildcards. It could also provide insights into how to model lost and any in
future systems.

6.1.7. Other Ownership Type Systems. Confined types [Bokowski and Vitek 1999] have
been designed for the development of secure systems and guarantee that objects of
a confined type cannot be referenced in code declared outside the confining package.
Thus, they support encapsulation on the package level, rather than the object level. A
confinement system has also been used to ensure correct behavior of Enterprise Java
Beans [Clarke et al. 2003].

Banerjee and Naumann use ownership to prove a representation independence result
for object-oriented programs [Banerjee and Naumann 2002; 2004]. They show their
main result for a simplistic ownership system that enforces the owner-as-dominator
discipline for references from stack and heap locations. Their system requires that, for
a given pair of classes C, D, all instances of D are owned by some instance of C. This is
clearly too restrictive for many implementations.

The work on Simple Loose Ownership Domains and Boxes [Schäfer and Poetzsch-
Heffter 2007, 2008] provide a model of encapsulation that is based on Ownership
Domains [Aldrich and Chambers 2004], but allows “loose” references to representation
domains, abstracting multiple domains with a single type. It was also adapted to
active objects in CoBoxes [Schäfer et al. 2008]; a compiler for JCoBox, the realization
of CoBoxes for Java, is also available [Schäfer 2008].

Pedigree types [Liu and Smith 2008] provide additional ownership modifiers that
allow a finer description of ownership relations, similar to path types supported in
other systems. They also present an interesting inference system.

Ownership has received considerable attention for real-time and concurrent
applications—for example, the work on SafeJava [Boyapati et al. 2002, 2003; Boyapati
2004] mentioned above; scoped types for real-time applications [Andrea et al. 2006]; the
use for components and process calculi [Hirschkoff et al. 2005]; the use of an ownership
topology for concurrency [Cunningham et al. 2007]; the use of a dynamic ownership
model for concurrency in Spec� [Jacobs et al. 2005]; and an ownership system for object
race detection [von Praun and Gross 2001].

The work on gradual encapsulation and decapsulation [Herrmann 2008] in the con-
text of ObjectTeams [Herrmann et al. 2009] provides interesting discussions.
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6.2. Universe Type System

The original design goals of the Universe type system, according to Müller and
Poetzsch-Heffter [1999], were

(1) to have simple semantics;
(2) be easy to apply;
(3) be statically checkable;
(4) guarantee an invariant that is strong enough for modular reasoning; and
(5) be flexible enough for many useful programming patterns.

These goals were also our guiding principles for the development of Generic Universe
Types.

In the following we first discuss different formalizations of the Universe type system,
we then discuss the relation to dependent type systems, and finally compare Universe
types to parametric ownership systems that support existential quantification.

6.2.1. Formalizations. The Universe type system (UTS) was first introduced by Müller
and Poetzsch-Heffter [1999, 2000]. The early syntax was different to the current syntax,
and Type Universes were later removed. These early formalizations already use a
“type combinator” to adapt a declared type to a changed viewpoint. The syntax using
the three ownership modifiers peer, rep, and readonly was first used by Müller and
Poetzsch-Heffter [2001]. The UTS was used by Müller to develop a modular verification
methodology for object-oriented programs [Müller 2001, 2002].

In Dietl and Müller [2005] we present the integration of the Universe type system
into the Java Modeling Language (JML). We implemented a type checker, runtime
checks, and bytecode information for the UTS in the JML tools.

Universe Types with Transfer [Müller and Rudich 2007] realize ownership transfer
for nongeneric Universe types.

All formalizations mentioned before do not distinguish between enforcing the owner-
ship topology and the owner-as-modifier discipline. However, for some applications of
ownership, for example, for concurrency [Cunningham et al. 2007], enforcing the heap
topology only is enough; enforcing the owner-as-modifier discipline is an unneeded
restriction.

The separation of the topological structure and the encapsulation discipline was de-
veloped previously for UT [Cunningham et al. 2008]. That work renamed the modifier
readonly to any, because this ownership modifier now signifies only that the object
is in an arbitrary ownership context, and not necessarily that it is used for reading
only. The any modifier is a “don’t care” modifier, which expresses that, for the anno-
tated reference, the ownership of the referenced object is of no concern. That work
also introduced the new ownership modifier lost, which signifies that static ownership
information for a reference is not available. In contrast to any, lost is a “don’t know”
modifier—from the current viewpoint, we cannot express the ownership relation, but
the declared type might have a constraint. Updates of any variables are always possi-
ble, since the owner of their value is not of interest. Updates of lost variables must be
forbidden, since the ownership information required for type-safe updates is not stati-
cally known. Using lost in the nongeneric system allowed the clean separation of the
topology from the encapsulation system and simplified the rules and their presentation.
The encapsulation system in Cunningham et al. [2008] made the distinction between
an encapsulation property and an owner-as-modifier property. In this terminology, our
owner-as-modifier, Theorem 5.7, corresponds to the encapsulation property; a corre-
sponding owner-as-modifier property could be proved using a small-step semantics or
using execution traces. Klebermaß’s master’s thesis [Klebermaß 2007] used Isabelle
[Nipkow et al. 2002] to formalize UT and prove type soundness for a Java subset based
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on Featherweight Java [Igarashi et al. 2001; Foster and Vytiniotis 2006] and Jinja
[Klein and Nipkow 2004, 2006]. To our knowledge, this is the first soundness proof of
an ownership type system in a theorem prover.

A previous version of Generic Universe Types [Dietl et al. 2007, 2006] always en-
forces the owner-as-modifier discipline. A particularly interesting aspect of that ver-
sion is how generics and ownership can be combined in the presence of an any modifier,
in particular, how a restricted form of ownership covariance can be permitted with-
out runtime checks. For this ownership covariance to be safe, it recursively changes
the enclosing main modifiers of a type to any and relies on the enforcement of the
owner-as-modifier discipline, which always forbids modifications through any refer-
ences. This resulted in the rules for subtyping and viewpoint adaptation to be tightly
coupled.

In our current work, we allow ownership covariance using the lost modifier, and
thereby cleanly separate the topological system, including subtyping and viewpoint
adaptation, from the enforcement of an encapsulation system. In type arguments, we
use the lost modifier to express that ownership information was lost locally, and do not
need to change enclosing ownership modifiers. We also retain more static knowledge
about the ownership structure because we do not need to change enclosing ownership
modifiers to any. For a detailed comparison of the two systems, and for a discussion
of how arrays, exceptions, and static fields and methods are handled in GUT, see the
thesis of the first author [Dietl 2009], in particular Sections 2.5 and 2.6; here we outline
an example:

class Client {
peer Map<rep ID, any Data> m;

}
...
peer Client c;

In our current system, the type of c.m is peer Map<lost ID, any Data>. However, in
our earlier work [Dietl et al. 2007], the type of c.m is less precise, namely it is any
Map<any ID, any Data>. This is so because in Dietl et al. [2007], we had no way of
making the distinction between a “don’t care” (any) and a “don’t know” (lost) owner. If
c.m had the type peer Map<any ID, any Data>, then the update c.m.put(k, v) would
be legal for any ownership of k and v, even though the update is not guaranteed to
preserve the required heap topology for c.m. For this reason, and to avoid such harmful
updates, in Dietl et al. [2007] we changed the enclosing modifiers to any, and in the
process lost topological information, which through the introduction of lost, we could
retain in our current work.

Erasure and Expansion of Type Arguments. It is possible to erase a GUT program into
a Universe Types program without generics [Cunningham et al. 2008], using casts. The
interpretation of casts and type arguments is the same: both are from the viewpoint
of the current object. Therefore, the casts inserted into the erased program use the
same types that are used as type arguments. The simple example from Figure 14 can
be erased to the UT program in Figure 15.

However, we cannot translate a GUT program into a UT program by “expansion,” that
is, generating a new class for each type where the type arguments are substituted for
the type variables. In our example, this expansion would produce the code in Figure 16.

This does not work because the declared types will be adapted from the type of the
receiver to the current viewpoint. In the example above, this viewpoint adaptation will
result in lost ownership information, which will forbid the call of method push and
return less precise information for the result of pop. For some combinations of receiver
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Fig. 14. A simple stack and client.

Fig. 15. Erasure of the stack from Figure 14 to a nongeneric Universe Types program.

Fig. 16. The stack from Figure 14 after “expansion” of the type argument.

and parameter types this expansion is possible, but in general, as illustrated by the
example above, such an expansion is not possible.

We could adapt the runtime model to be closer to Java: keeping the runtime type
variables in the environment and in the heap is not done in Java. If we forbid creation of
type variables and casts with type arguments, as is done in Java, they are not needed.
We could still store the main owner in the heap in order for downcasts from any to rep
or peer to be checked at runtime.

6.2.2. Dependent Types. Ownership type systems structure the heap and enforce re-
strictions on the behavior of a program. Virtual classes [Madsen and Møller-Pedersen
1989; Ernst 1999, 2001] express dependencies between objects. Similar to virtual meth-
ods, a class A can declare a dependent class B by nesting class B within the definition
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of A. Virtual classes can be overridden in subclasses, and the runtime type of an ob-
ject determines the concrete definition of a virtual class. Recent work [Odersky et al.
2003; Ernst et al. 2006; Clarke et al. 2007; Igarashi and Viroli 2007; Saito et al. 2007]
formalized and extended virtual classes. All of these systems have in common that
dependency is expressed by nesting of classes.

Dependent classes [Gasiunas et al. 2007a, 2007b] are a generalization of virtual class
systems that allows one class to depend on multiple objects. Dependency is expressed
by explicit declaration of the depended-upon objects as class parameters. This allows
us to declare dependencies independently of the nesting of classes, which increases
the expressive power and reduces the coupling between classes. Even more generally,
constrained types [Nystrom et al. 2008; Charles et al. 2005] can express multiple
constraints and is parametric in the constraint system.

Ownership type systems, in particular the Universe type system and Ownership
Domains [Aldrich and Chambers 2004], can be expressed using dependent classes [Dietl
and Müller 2008]. The ownership structure is made explicit by adding a dependency
on an immutable owner field, similarly to the dynamic encoding in Dietl and Müller
[2005]. The ownership modifiers of the UTS can be directly expressed as constraints on
this owner field. Even more fine-grained relationships can be expressed, for example,
that an object is in an unknown context, but in the same context as some other object.

In the dependent classes [Gasiunas et al. 2007a] syntax, we can declare the following
class:

class OwnedObject( owner: Object ) {}

We can then express the topology of the following simple program that uses Universe
types:

class C {...}
class D {
rep C f = new rep C();

}

The field f may reference only C objects that have the current D object as owner. We can
express this in the dependent classes encoding as follows:

class C( Object owner ) extends OwnedObject {...}
class D( Object owner ) extends OwnedObject {
C(owner: this) f = new C(owner=this);

}

In the above program, we make explicit that the owner of the referenced C object is the
current this object. Similarly, a peer reference is translated into the constraint that
the referenced object has the same owner as the current object.

6.2.3. Parametric Ownership with Existential Types. Parametric ownership types [Noble
et al. 1998; Clarke et al. 1998; Clarke 2001; Clarke and Drossopoulou 2002; Potanin
et al. 2006] discussed above and the nongeneric Universe type system [Dietl and Müller
2005] are two ownership type systems that describe an ownership hierarchy and stat-
ically check that this hierarchy is maintained. They both provide (different) encapsu-
lation disciplines.

Ownership types can describe fine-grained heap topologies, whereas Universe types
are more flexible and easier to use. No direct encoding of one type system in the other
has been possible: the abstraction provided by any references in the Universe type
system could not be modeled with parametric ownership types.

Recently, parametric ownership has been extended with existential quantification of
contexts [Cameron and Drossopoulou 2009; Cameron 2009]. This extension, called Jo∃,
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provides the possibility to abstract from concrete ownership information—similarly to
any references in Universe types.

We show in Cameron and Dietl [2009] that the descriptive parts of the Universe
type system [Cunningham et al. 2008] and a variant of Jo∃, which we call Jo∃−, are
equivalent. In Jo∃− we use a single owner parameter that corresponds to the single
ownership modifier of the UTS. Note that full Jo∃ allows multiple owner parameters,
and is thus more expressive than nongeneric Universe types.

We formalize this correspondence as encodings between the two systems. We have
proved that the encodings from Universe types to Jo∃− and from Jo∃− to Universe types
are sound; thus, we have shown that the two systems are equivalent with respect to type
checking. As an intermediate step in the encoding we give an alternative formalization
of the UTS, which is closer to the underlying existential types model.

Consider the program P1 using Universe types:

class C {
peer Object f1;
any Object f2;

void m(any C x) {
this.f1 = new peer Object(); // 1: OK
x.f1 = new peer Object(); // 2: error
x.f2 = new peer Object(); // 3: OK

}
}

and the program P2 using Jo∃− types

class C<owner> {
Object<owner> f1;
∃o. Object<o> f2;

void m(∃o. C<o> x) {
this.f1 = new Object<owner>(); // 1: OK
x.f1 = new Object<owner>(); // 2: error
x.f2 = new Object<owner>(); // 3: OK

}
}

These two programs are equivalent, that is, both describe the same topology and type
checking in both systems rejects expression 2.

In P1, the field update x.f1 in expression 2 is forbidden, as the viewpoint adaptation
peer Object from any results in lost Object and lost is forbidden in the adapted field
type. On the other hand, the field update x.f2 in expression 3 is allowed, as any Object
from any results in any Object and the right-hand side is a correct subtype.

In expression 2 of P2, the type of x must be unpacked before it can be used. Therefore,
the field type lookup for field f1 in type C<o1> is performed, where o1 is a fresh context
variable. This lookup gives the type Object<o1>. There is no subtype relationship
between Object<owner> and Object<o1> because their parameters do not match and
subtyping of unquantified types is invariant.

In expression 3, the lookup for field f2 in type C<o1> results in ∃o. Object<o>, which
is a supertype of Object<owner>, due to the variance of existential types, and the
assignment is allowed.

The investigation of encoding ownership type systems in dependent types and
the relationship between Universe types and a parametric ownership system with
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existential quantification gave us valuable insights into these type systems and promis-
ing ideas for future research for combining these systems with GUT.

6.3. Read-only References and Immutability

Skoglund [2002, 2003] as well as Birka and Ernst [2004] present type systems for
readonly types that are similar to readonly references when the owner-as-modifier
discipline is enforced. Birka and Ernst’s type system is more flexible than ours, as it al-
lows us to exclude certain fields or objects from the immutable state. Neither Skoglund
nor Birka and Ernst combined readonly types with ownership. The combination with
ownership gives more context to decide when a downcast to a read-write reference is
valid.

Our readonly types leave the owner of an object unspecified. Whenever precise in-
formation about the owner is needed, a downcast with a dynamic type check is used.
This approach is similar to soft typing [Cartwright and Fagan 1991; Cartwright and
Felleisen 1996], where a compiler does not reject programs that contain potential type
errors, but introduces runtime checks around suspect statements. In soft typing, these
runtime checks are added automatically by the compiler, whereas we require program-
mers to introduce casts manually.

Immutability Generic Java (IGJ) [Zibin et al. 2007] allows the covariant change
of type arguments of readonly and immutable types. The unsoundness of the covari-
ant change is prevented by forbidding modifications through readonly and immutable
types. However, the erased-signature rule is needed to ensure that overriding methods
cannot introduce an unsoundness; this rule also requires that type variables that ap-
pear in the parameter types of pure methods are marked as nonvariant. In contrast,
in GUT the loss of ownership information in a covariant argument change is detected
for the method call, and we can therefore safely allow more methods.

Unique references and linear types [Boyland 2001; Boyland et al. 2001; Fähndrich
and DeLine 2002; Wadler 1990] can be used for a very restrictive form of alias control.
For ownership type systems, a weaker form of uniqueness [Clarke and Wrigstad 2003;
Wrigstad 2006] is sufficient to enable ownership transfer. Universe Types with Transfer
[Müller and Rudich 2007] realize ownership transfer for nongeneric Universe types.

Ensuring that an object is immutable cannot be checked by the GUT type system.
Immutability is present in other type systems (e.g., Javari [Tschantz and Ernst 2005];
Jimuva [Haack et al. 2007]; IGJ [Zibin et al. 2007]; and Joe3 [Östlund et al. 2008]) and in
a dynamic encoding of ownership called frozen objects [Leino et al. 2008]. Investigating
the combination with Universe types is interesting future work.

6.4. Object-Oriented Verification

Work on the formal verification of object-oriented programs is of particular interest
to this thesis. Verification tools for the Java Modeling Language (JML) [Burdy et al.
2003; Burdy et al. 2003; Cheon 2003; Cheon and Leavens 2002; Cok and Kiniry 2004;
Flanagan et al. 2002; Jacobs 2004; Jacobs and Poll 2001] and Spec� [Barnett et al.
2004] all have to deal with the problems of aliasing for program verification. Prevent-
ing representation exposure [Detlefs et al. 1998] and cross-type aliasing [Dhara and
Leavens 2001] also provide a discussion of aliasing problems and possible solutions.

A recent technical report provides an overview and comparison of different behav-
ioral interface specification languages [Hatcliff et al. 2009]. Specification and verifi-
cation challenges were also recently summarized [Leavens et al. 2007]. A framework
for verification techniques for object invariants [Drossopoulou et al. 2008] describes
different techniques using seven parameters.

Müller’s thesis [Müller 2002] provides the basis for the owner-as-modifier discipline
that we enforce in GUT. Ownership was also used to reason about frame properties in
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JML [Müller et al. 2003]. Spec�’s [Barnett et al. 2004] dynamic ownership model [Leino
and Müller 2004] (also called the Boogie methodology) for reasoning about invariants is
based on a dynamic ownership encoding similar to the one described in Dietl and Müller
[2005]. In this methodology, any reference can be used to modify an object, provided
that all transitive owners of this object are made mutable by applying a special unpack
operation. In practice, this requirement is typically met by following the owner-as-
modifier discipline: the owner unpacks itself before initiating the modification of an
owned object. The Boogie methodology supports ownership transfer. It is future work
to investigate how the topological system of GUT can be used together with the Boogie
methodology. Reasoning using ownership [Müller 2007] is a very promising approach,
but some remaining obstacles need to be overcome.

Lu et al. [2007] divide their system into validity invariants and the validity effect
to describe which objects need to be revalidated. The system is based on effective and
variant ownership types [Lu and Potter 2006b, 2006a].

Poetsch-Heffter and Schäfer [2006, 2007] describe the modular specification of com-
ponents based on their boxes type system [Schäfer and Poetzsch-Heffter 2007, 2008;
Schäfer et al. 2008].

Alternative approaches to the formal verification of systems are, for example, separa-
tion logic [Reynolds 2002], regional logic [Banerjee et al. 2008], and (implicit) dynamic
frames [Kassios 2006; Smans et al. 2009]. It will be interesting future work to in-
vestigate the relationships between these different approaches and ownership type
systems.

7. CONCLUSION

Encapsulation of object structures is an important challenge in programming language
research with many practical applications. In this article, we described the design and
formalization of Generic Universe Types (GUT), a lightweight ownership type sys-
tem that combines type genericity and ownership. Our system distinguishes itself
from earlier work in three ways. First, we separate the topological structure from the
enforcement of the encapsulation discipline. This separation allows the separate de-
velopment and reuse of these parts. Second, we formally integrate ownership and type
genericity, which allowed us to study subtle interactions such as the difference between
the existential modifiers any and lost. Third, our encapsulation system enforces the
owner-as-modifier discipline, which is more permissive than the discipline used in other
ownership systems, but provides guarantees that are strong enough for many applica-
tions of ownership, in particular, verification of object invariants. The GUT system is
rigorously formalized, proved sound, and implemented in the JML compiler.

As future work, we plan to further improve the expressiveness and tool support for
GUT. The expressiveness would greatly benefit from combining GUT with existing
solutions for ownership transfer [Müller and Rudich 2007] and object immutability
[Leino et al. 2008]. Both extensions seem possible, but we need to investigate how we
can preserve the modularity of the formalization. Universe Types with Transfer rely
on both the topological and the encapsulation system, which we want to keep separate,
and immutability should ideally be formalized as an extra system complementing the
existing two. The tool support could be improved by extending our static inference tool
for nongeneric Universe Types [Dietl et al. 2009] to GUT. This inference tool uses a
SAT solver to resolve the constraints on ownership modifiers coming from the type
system. The main challenge there is how to encode the constraints of the GUT, which
are considerably more complex than those of the nongeneric system.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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DROSSOPOULOU, S., FRANCALANZA, A., MÜLLER, P., AND SUMMERS, A. J. 2008. A unified framework for ver-

ification techniques for object invariants. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol. 5142, Springer, Berlin,
412–437.

EMIR, B., KENNEDY, A. J., RUSSO, C., AND YU, D. 2006. Variance and generalized constraints for C] generics. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP). Lecture Notes in
Computer Science, vol. 4067, Springer, Berlin, 279–303.

ERNST, E. 1999. gbeta—A language with virtual attributes, block structure, and propagating, dynamic
inheritance. Ph.D. dissertation, Department of Computer Science, University of Aarhus, Arhus,
Denmark.

ERNST, E. 2001. Family polymorphism. In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP). Lecture Notes in Computer Science, vol. 2072, Springer, Berlin, 303–326.

ERNST, E., OSTERMANN, K., AND COOK, W. R. 2006. A virtual class calculus. In Proceedings of the Symposium
on Principles of Programming Languages (POPL). ACM, New York, 270–282.

ERNST, M. D. 2008. Type annotations specification (JSR 308). http://types.cs.washington.edu/jsr308/.
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