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Abstract
Object ownership is useful for many applications such as
program verification, thread synchronization, and memory
management. However, even lightweight ownership type
systems impose considerable annotation overhead, which
hampers their widespread application. This paper addresses
this issue by presenting a tunable static type inference for
Universe types. In contrast to classical type systems, own-
ership types have no single most general typing. Therefore,
our inference is tunable: users can indicate a preference for
certain typings by configuring heuristics through weights.
A particularly effective way of tuning the static inference
is to obtain these weights automatically through runtime
ownership inference. We present how the constraints of the
Universe type system can be encoded as a boolean satis-
fiability (SAT) problem, how the runtime ownership infer-
ence produces weights from program executions, and how
a weighted Max-SAT solver finds a correct Universe typing
that optimizes the weights. Our implementation provides
the static and runtime inference tools as a set of command-
line tools and Eclipse plug-ins, which we used to experiment
with the proposed workflow and the quality of our inference.

Keywords Ownership, Universe types, inference, static,
runtime

1. Introduction
Heap structures are hard to understand and reason about.
Aliasing—multiple references to the same object—makes
errors all too common. For example, aliasing permits the
mutation of an object through one reference to be observed
through other references. Aliasing makes it hard to build
complex object structures correctly and to guarantee invari-
ants about their behavior. This leads to problems in many ar-
eas of software engineering, including program verification,
concurrent programming, and memory management.

Object ownership [12] structures the heap hierarchically
to control aliasing and access between objects. Ownership
type systems express properties of the heap topology, for
instance whether two instances of a list may share node
objects. Such information is needed to show the correctness
of a coarse-grained locking strategy, where the lock of the
list protects the state of all its nodes [7]. Ownership type
systems also enforce encapsulation, for instance, by forcing
all modifications of an object to be initiated by its owner.

Such guarantees are useful to maintain invariants that relate
the state of multiple objects [38]. However, ownership type
systems require considerable annotation overhead, which is
a significant burden for software engineers.

Helping software engineers to transition from un-annotat-
ed programs to code that uses an ownership type system is
crucial to facilitate the widespread application of ownership
type systems. Standard techniques for static type inference
[15] are not applicable. First, there is no need to check for
the existence of a correct typing; such a typing trivially
exists by having a flat ownership structure. Second, there
is no notion of a best or most general ownership typing. In
realistic implementations, there are many possible typings
and corresponding ownership structures, and the preferred
one depends on the intent of the programmer. Ownership
inference needs to support the developer in finding desirable
structures by suggesting possible structures and allowing the
programmer to guide the inference.

This paper presents a static inference for the Universe
type system [14], a lightweight ownership type system de-
signed to enable program verification [37]. Our static in-
ference builds a constraint system that is solved by a SAT
solver. An important virtue of our approach is that the static
inference is tunable; the SAT solver can be provided with
weights that express the preference for certain solutions.
These weights can be determined by general heuristics (for
instance, to prefer deep ownership for fields and general
typings for method signatures), by partial annotations, or
through interaction with the programmer.

Runtime ownership inference is a particularly effective
way to determine weights automatically. The runtime infer-
ence executes the program, for example using the available
tests, and observes the generated object structures. It then
uses a dominator algorithm to determine the deepest pos-
sible ownership structure and to find possible Universe an-
notations. The quality of the annotations determined by the
runtime inference depends on the code coverage, which can
be reflected in the weights for the suggested annotations. By
combining the runtime inference with the static inference,
we get the best of both approaches. The static inference en-
sures that the inferred solution is type correct; the runtime
inference obtains weights for the static inference that ensure
a deep ownership structure, which is more likely to reflect
design intent and to be useful to programmers.
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The main contributions of this paper are:

Static Inference: an encoding of the Universe type rules
into a constraint system that can be solved efficiently by
a SAT solver to find possible annotations.

Tunable Inference: combining the static inference with a
weighted Max-SAT solver and using the runtime infer-
ence, heuristics, and programmer interaction to deter-
mine weights.

Runtime Inference: using information from actual execu-
tions to determine the deepest possible ownership struc-
tures and to suggest annotations to the static inference.

Prototype: an implementation of our inference scheme as
a set of command-line tools and Eclipse plug-ins, which
we used to experiment with the proposed workflow and
the quality of our inference.

This paper is organized as follows. Sec. 2 gives back-
ground on the Universe type system. Sec. 3 overviews the
architecture of the system. Sec. 4 presents the static infer-
ence, including support for partial annotations and heuris-
tics. It also motivates why the static inference alone is not
enough; Sec. 5 follows up with the runtime inference. Sec. 6
describes our prototype implementation and our experience
with it. Finally, Sec. 7 discusses related work, and Sec. 8
concludes.

2. Background on Universe Types
The Universe type system (UTS) [17, 14] is a simple own-
ership type system that is integrated into the tool suite of
the Java Modeling Language (JML) [28]. It organizes the
heap hierarchically into contexts and restricts modifications
across context boundaries. In the UTS, like in most other
ownership systems, each object has at most one owner ob-
ject. A context is the set of objects sharing an owner. The
ownership relation is acyclic.

The UTS expresses the ownership topology by associat-
ing one of three ownership modifiers with each reference
type in a program. The modifier peer expresses that the cur-
rent object this is in the same context as the referenced ob-
ject, the modifier rep expresses that the current object is the
owner of the referenced object, and the modifier any does
not give any static information about the relationship of the
two objects. A reference with an any modifier conveys less
information than the same references with a peer or rep
modifier; therefore, an any-modified type is a supertype of
the peer and rep versions. Fig. 1 illustrates the use of these
modifiers.

An ownership modifier expresses ownership relative to
the current receiver object this. When the interpretation
of the current object changes, for example when a field is
accessed through a reference other than this, we need to
adapt the ownership modifier to this new viewpoint. For in-
stance, the rep modifier in the declaration of field savings

public class Person {
peer Person spouse;
rep Account savings;

int assets() {
any Account a = spouse.savings;
return savings.balance + a.balance;

}
}

Figure 1: A simple example with Universe types. A Person
object owns its savings account and has the same owner as
its spouse.

in Fig. 1 indicates that the Account object is owned by the
Person object that contains the field. Therefore, it would
be wrong to assign the modifier rep to the field access
spouse.savings, because that would express that the ac-
count is owned by this, which is in general different from
the object spouse containing the field. The UTS determines
the type of a field access by adapting the modifier of the
field to the new viewpoint. In our example, this viewpoint
adaptation from spouse to this yields the modifier any,
which reflects correctly that the Account object is neither
owned by this nor a peer of this. We define this viewpoint
adaptation as a function B that takes two ownership mod-
ifiers and yields the adapted modifier. This paper only dis-
cusses a simplified version and considers three cases (an ex-
tension to the more sophisticated viewpoint adaptation used
in the formalization of the UTS [16, 14] is straightforward):
(1) peer B peer = peer; (2) rep B peer = rep; and
(3) for all other combinations the result is any. For instance,
the ownership modifier of spouse.savings in Fig. 1 is de-
termined by viewpoint adaptation of the modifier of spouse
(peer) and the modifier of savings (rep), which yields
any.

The Universe type system enforces that programs ad-
here to the heap topology described by the ownership modi-
fiers. In addition, the UTS enforces an encapsulation scheme
called owner-as-modifier discipline [17]: An object omay be
referenced by any other object, but reference chains that do
not pass through o’s owner must not be used to modify o.
This allows owner objects to control state changes of owned
objects and thus maintain invariants. For instance, a Person
object can easily maintain the invariant savings.balance
>= 0 because the owner-as-modifier discipline guarantees
that aliases to the Account object savings cannot be used
to modify the Account object, in particular, its balance
field. Therefore, it is sufficient to check that each method
of the Person object maintains the invariant.

The owner-as-modifier discipline is enforced by forbid-
ding field updates and non-pure (side-effecting) method calls
through an any reference. For instance, the call spouse
.savings.withdraw(1000000) is rejected by the type
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system because the viewpoint-adapted modifier of the re-
ceiver, spouse.savings, is any. An any reference can still
be used for field accesses and to call pure (side-effect-free)
methods. For instance, method assets in Fig. 1 may read
the balance field via the any reference a.

The Universe type system minimizes annotation overhead
by using the default modifier peer for most references. This
default makes the conversion from Java to Universe types
simple, since all programs continue to compile. However, it
results in a flat ownership structure. Inference is required, to
find a deep ownership structure automatically.

3. Overview
The overall workflow of our inference tool is illustrated in
Fig. 2. The four main components are the static inference,
the runtime inference, the purity inference, and the user in-
terface. The purity inference provides purity information for
methods, which is required to enforce the owner-as-modifier
discipline. It is a re-implementation [23] of Sălcianu and Ri-
nard’s algorithm [47]. This section gives an overview of the
other three components and describes how the programmer
interacts with the tool.

Static inference. The static inference performs syntax-
directed constraint generation. The main input is an abstract
syntax tree (AST) of the Java program, created by the JML
compiler. It supports Universe types and, therefore, handles
Java programs with partial Universe annotations.

For each possible occurrence of an ownership modifier in
the source code, the inference creates a constraint variable.
For example, there is a constraint variable for the ownership
modifier in each field declaration, and one for the ownership
modifier in each new expression. For each AST node, it
creates a constraint over these variables, which correspond
one-to-one to the type rules of the Universe type system
[17, 14, 16].

The constraints are solved using a weighted Max-SAT
solver. The weights are obtained from general heuristics
and, if available, prior runs of the runtime inference. The
output of the inference is a complete annotation of the input
program, that is, an ownership modifier for each reference
type in the program. The annotations can be persisted in
the Java source code for use by downstream tools such as
a program verifier.

Runtime inference. The runtime inference is an optional
step that tunes the static inference. It takes as input the ex-
ecutable program, a set of test cases, and purity informa-
tion. The inference tool then executes the test cases, traces
the program executions, and uses the object graphs deduced
from these executions to determine ownership modifiers.
The runtime inference determines the deepest possible own-
ership hierarchy for a particular program run.

As with any dynamic analysis, the inference result is de-
pendent on the coverage of the test suite. For instance, if a

class does not get instantiated during the program run, the
runtime inference cannot determine ownership modifiers for
its fields. Therefore, our runtime inference emits the own-
ership modifiers it determines together with information on
the code coverage. The static inference uses this information
as suggestions whose weights depend on the test coverage of
the runtime inference. The static inference tool has the free-
dom to override the suggestions from runtime inference, for
instance, if those suggestions would not lead to a valid UTS
program.

User interface. As we have explained in the introduction,
there is generally no best typing in ownership type systems.
Therefore, we expect the inference tool to be used itera-
tively. The user interface (an Eclipse plug-in) allows users
to control the inference process by guiding the static infer-
ence (through partial annotations and the choice of heuris-
tics) and by selecting test cases and object graph files for
the runtime inference. Moreover, the user interface includes
a basic visualizer for runtime and static object graphs and
their ownership structure. Programmers can use this visual-
izer to inspect the result of the inference.

If the annotations do not fully reflect the programmers de-
sign intent, the programmer can optimize the inference pro-
cess in four ways. First, the programmer can add ownership
modifiers to the input program to express their design intent
explicitly. For instance, the programmer might decide to de-
clare a Person’s spouse field with a peer modifier even if
the constraints of the type system would permit the undesir-
able situation where a person owns their spouse. Our infer-
ence tools treat partial annotations as constraints that have to
be satisfied. Second, the programmer might decide to mod-
ify the weights of the static inference to encourage or force
certain results. For instance, the programmer might select
heuristics that favor general types for a library in order to
make the library as widely applicable as possible, whereas
they might select heuristics that favor restrictive modifiers
when the whole program is available to facilitate subsequent
use of the ownership information, for instance, by a program
verifier. Third, the programmer might decide to add or mod-
ify test cases to improve the results of runtime inference.
This action seems useful when the inferred types are gen-
erally not satisfying. By storing object graphs persistently,
our tool enables programmers to run additional tests and to
combine their results with the object graphs from previous
runs. Fourth, the programmer might decide to fix defects in
the source code. For instance, Universe types encourage a
layered design and prevent lower layers from calling non-
pure methods of higher layers. The absence of a satisfying
ownership annotation might indicate violations of such an
architecture.

Once the programmer is satisfied with the obtained re-
sults, our tool inserts the ownership modifiers into the source
code to improve the documentation of the code, to encour-
age that the heap topology and encapsulation are considered
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Figure 2: Architecture and workflow of our tunable inference. Components and files are depicted by boxes and ovals,
respectively.

during program maintenance, and to make them available to
downstream tools.

4. Tunable Static Inference
Universe types express ownership information via three
ownership modifiers. This lightweight approach makes it
possible to infer ownership information statically by encod-
ing the constraints of the type system in a boolean formula
that can then be solved by a SAT solver. Using a SAT solver
is not only a very efficient way to solve the constraints but
also allows us to use weights to direct the solver towards
preferable solutions. This section introduces a simple Java-
like programming language, explains how our system ex-
tracts constraints from a program, and shows how the con-
straints are encoded into the input format of the SAT solver.

4.1 Programming Language
Fig. 3 summarizes the syntax of the language and the naming
conventions.

A program P consists of a sequence of class declarations
Cls , the name of a main class C, and a main expression e.
A program execution instantiates an instance of class C and
executes expression ewith this instance as the current object.
A class declaration Cls consists of the name of the class
and superclass and of field and method declarations. Field
declarations are simple pairs of types and identifiers. Method
declarations consist of the method purity, the return type, the
method name, the parameter declaration, and an expression
for the method body. An expression e can be the null literal,
a method parameter access, object creation, field read, field
update, method call, or cast.

A type T is a pair consisting of an ownership modifier u
and a class name C. The definition of the ownership modi-
fiers is the only deviation from previous formalizations of the
UTS [14, 16]. In addition to the three ownership modifiers
peer, rep, and any, we add ownership constraint variables

P ::= Cls, C, e
Cls ::= class Cid extends C { fd md }
C ::= Cid | Object
fd ::= T f ;

md ::= p T m(mpd) { e }
p ::= pure | impure

mpd ::= T pid
e ::= null | x | new T () | e.f | e0.f :=e1 |

e0.m(e) | (T ) e
T ::= u C
u ::= α | peer | rep | any
x ::= pid | this

pid parameter identifier
f field identifier
m method identifier

Cid class identifier
α ownership variable identifier

Figure 3: Syntax of our programming language. Constraint
variables α (framed) are placeholders for ownership modi-
fiers. The definition of the ownership modifiers is the only
deviation from previous formalizations of the UTS. A se-
quence of A elements is denoted as A.

α. These ownership variables are used as placeholders for
the concrete modifiers that the system will infer.

4.2 Building the Constraints
The constraints are built in a syntax-directed manner. For
each reference type occurring in the program (that is, for
each position where an ownership modifier may occur), we
introduce an ownership variable α that represents the owner-
ship modifier of that reference type. Our inference will later
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assign one of the three ownership modifiers rep, peer, or
any to each of these ownership variables.

The system creates constraints on these ownership vari-
ables, which correspond to the type rules expressed ab-
stractly over the ownership variables. Our inference is a
type-based analysis [42] that runs only on valid Java pro-
grams. Therefore, this paper does not encode all Java type
rules, but gives only constraints for the additional checks for
the Universe type system.

The kinds of constraint. The inference rules (which will
be introduced later, and which appear in Fig. 4) make use of
five kinds of constraints.

Declaration (decl(α)): Declaration constraints indicate the
introduction of a fresh ownership variable α. The system
generates one declaration constraint for each occurrence
of a reference type in the program.

Subtype (α1 <: α2): A subtype constraint enforces that
variable α1 will be assigned an ownership modifier that is
a subtype of the ownership modifier assigned to α2. peer
and rep are subtypes of any and are unrelated to one
another. Subtype constraints are used for assignments,
parameter passing, result passing.

Adaptation (α1 B α2 = α3): An adaptation constraint en-
sures that the viewpoint adaptation of variable α2 from
the viewpoint expressed by α1 results in α3. Adaptation
constraints are used wherever viewpoint adaptation oc-
curs in the type system, that is, for field accesses, param-
eter passing, and result passing.

Equality & Inequality (α1 = u, α1 6= u): An equality con-
straint fixes the value of an ownership variable α1 to the
ownership modifier u. They are used to handle input pro-
grams with partial annotations.
An inequality constraint forbids certain values for an
ownership variable. They occur whenever the type sys-
tem disallows certain modifiers, for instance, the any
modifier for the receiver of field updates.

Comparable (α1 <:> α2): A comparable constraint ex-
presses that two ownership modifiers are not incompat-
ible, that is, one could be a subtype of the other. These
constraints are used to prevent casts that are known to
fail at runtime. In UTS, the only two modifiers that are
not comparable are rep and peer.

Rules for constraint generation. Fig. 4 contains the rules
for extracting constraints from a program. It defines judg-
ments over class, field, and method declarations, as well as
over expressions. These judgments determine a set of con-
straints Σ that have to hold for the program.

An environment Γ maps variables to their types. Function
env defines this mapping depending on the surrounding
class and the method parameter declarations. Function om
gives the ownership modifier for a type. We use to denote
elided elements.

We now discuss the rules of Fig. 4 in turn. A program dec-
laration determines all constraints for the class declarations
and for the main expression. The environment Γ maps this
to C. The constraints for a class declaration consist of the
constraints for the field and method declarations. For field
and method parameter declarations, the rules add a declara-
tion constraint for the variable. In this rule, stands for a field
identifier f or a parameter identifier pid. A method declara-
tion requires that the ownership variables appearing in the
return type and method parameter types are declared, that
the constraints imposed by the method body are enforced,
and that the type of the method body is a subtype of the re-
turn type. Function overriding(Cid ,m) requires that, if the
current method is overriding a method in a superclass, the
parameter and return types are consistent.

Finally, there are seven judgments for expressions. The
null literal, and accessing a method parameter or this, do
not impose constraints. We discuss casts immediately below.
An object creation expression requires that the ownership
variable is declared and that the ownership modifier is dif-
ferent from any. The field access judgment requires the con-
straints from the receiver expression and the viewpoint adap-
tation. The adaptation constraint is determined by the helper
function fType , which yields the field type after viewpoint
adaptation, see below. A field update additionally requires
that the right-hand side to be a subtype of the left-hand side
and the receiver expression to be different from any. The
rule for a method call expression requires the constraints
from the subexpressions and viewpoint adaptation (analo-
gous to fType , the helper function mType yields the method
signature after viewpoint adaptation together with the neces-
sary constraints, see below). Moreover, method calls require
that the type of the argument expression is a subtype of the
parameter type and, if the method is non-pure, that the mod-
ifier of the receiver is different from any.

For a cast, the constraints of the subexpression must hold,
and the two types must be comparable. Note that our infer-
ence determines ownership modifiers for casts that already
exist in the program, but does not introduce any additional
casts. For instance, if the inferred modifier of variables x
and o are peer and any, respectively, then the constraint for
the expression x = (Person) o infers peer as ownership
modifier for the cast to make the assignment type correct.
However, we would not introduce a new cast for the assign-
ment x = o. Allowing the inference to introduce additional
casts would increase the risk of runtime errors significantly
and defeat the purpose of static type checking.

Note, however, that Universe types support casts. In Uni-
verse types, downcasts that specialize ownership informa-
tion (that is, casts from any to peer or rep) require a run-
time check. Our static inference does not guarantee these
runtime checks succeed. To mitigate the risk of a runtime
error, we allow the static inference to determine ownership
modifiers for the cast expressions present in the input pro-

Tunable Universe Type Inference 5 2010/3/26



Program declaration: ` P : Σ
` Cls : Σc Γ ` e : , Σe

` Cls, C, e : Σc ∪ Σe

Class declaration: ` Cls : Σ
` fd : Σf Cid ` md : Σm

` class Cid extends C { fd md } : Σm ∪ Σf

Field and Method Parameter Declaration: ` T f : Σ , ` T pid : Σ ` u C : {decl(u)}

Method Declaration: Cid ` md : Σ

` mpd : Σp env(Cid,mpd) = Γ
Γ ` e : T, Σb overriding(Cid , m) = Σo

Σ = Σb ∪ Σp ∪ Σo ∪ {om(T ) <: om(Tr), decl(om(Tr))}
Cid ` p Tr m(mpd) { e } : Σ

Expression: Γ ` e : T, Σ

Γ ` null : T, ∅ Γ ` x : Γ(x), ∅

Γ ` e0 : u0 C0, Σ
Σ′ = Σ ∪ {decl(u), u <:> u0}

Γ ` (u C) e0 : u C, Σ′
Σ = {decl(u), u 6= any}
Γ ` new u C() : u C, Σ

Γ ` e : T0, Σ0

fType(T0, f) = T, Σ1

Γ ` e.f : T, Σ0 ∪ Σ1

Γ ` e0 : T0, Σ0

Γ ` e1 : T1, Σ1

fType(T0, f) = T2, Σ2

Σ = {om(T1) <: om(T2), om(T0) 6= any}
Γ ` e0.f :=e1 : T2, Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ

Γ ` e0 : T0, Σ0

Γ ` e1 : T1, Σ1

mType(T0, m) = p Tr m(Tp pid), Σ2

Σ = {om(T1) <: om(Tp)}
p = impure⇒ Σ′ = Σ ∪ {om(T0) 6= any}

p = pure⇒ Σ′ = Σ

Γ ` e0.m(e1) : Tr, Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ′

Helper: om(u C) = u env(T pid) = pid 7→ T

Figure 4: Constraint generation rules. The constraint system contains one ownership variable for each occurrence of a reference
type in the program (that is, in field declarations, method signatures, casts, and object creation). These are exactly the places
where the system generates a declaration constraint.

gram, but not to introduce additional casts. Information from
the runtime inference of Sec. 5 might allow one to further re-
duce the risk of runtime errors.

Helper functions The overloaded helper functions fType
and mType are defined as follows. Function fType(C, f)
yields the declared field type of field f in class C or a
superclass of C. It yields only a type, but no constraints.
The overloaded function fType(u C, f) (taking a type rather
than a class as first argument) determines the type of field f
adapted from viewpoint u C to this. It results in an adapted
field type and constraints on the ownership variable u of the
viewpoint and the ownership variable for the declared type.

fType(u C, f) = u′ C ′, {u B u′′ = u′, decl(u′)}
where fType(C, f) = u′′ C ′

Function mType(C,m) yields the declared method sig-
nature of method m in class C or a superclass of C. The
overloaded function mType(u C,m) determines the method
signature of methodm adapted from viewpoint u C to this.
It results in an adapted method signature and constraints on
the ownership variable u of the viewpoint and the owner-
ship variables for the declared parameter and return types,

class C {
α1 Object f = new α2 Object();

}

Figure 5: Example with two ownership variables α1 and α2

for which we want to determine ownership modifiers.

respectively.

mType(u C,m) = p u′
r Cr m(u′

p Cp pid),Σ
where
mType(C,m) = p ur Cr m(up Cp pid)
Σ = {(u B ur = u′

r), (u B up = u′
p), decl(u′

r), decl(u′
p)}

Example. The example of Fig. 5 illustrates the constraint
generation process. This class contains a field declaration
and a field initializer consisting of an object creation. This
simplicity allows us to illustrate every step of the constrain
generation and encoding.

Class C contains two reference types, one in the declara-
tion of field f and one in the new expression. For these types,
the algorithm introduces ownership variables α1 and α2, re-
spectively. The inference creates the following constraints:
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Constraint Encoding

decl(α)

(βpeer ∨ βrep ∨ βany) ∧
¬(βpeer ∧ βrep) ∧
¬(βpeer ∧ βany) ∧
¬(βrep ∧ βany)

α1 <: α2

(βany
1 ⇒ βany

2 ) ∧
(βpeer

2 ⇒ βpeer
1 ) ∧

(βrep
2 ⇒ βrep

1 )

α1 B α2 = α3

(βpeer
1 ∧ βpeer

2 ⇒ βpeer
3 ) ∧

(βrep
1 ∧ βpeer

2 ⇒ βrep
3 ) ∧

(βany
1 ⇒ βany

3 ) ∧
(βany

2 ⇒ βany
3 ) ∧

(βrep
2 ⇒ βany

3 )
α = u βu

α 6= u ¬βu

α1 <:> α2
(βpeer

1 ⇒ ¬βrep
2 ) ∧

(βrep
1 ⇒ ¬βpeer

2 )

Figure 6: For each kind of constraint (see Sec. 4.2), the for-
mula that encodes it. Each constraint variableαi corresponds
to three boolean variables βrep

i , βpeer
i , and βany

i .

1. decl(α1), decl(α2): we generate the declaration con-
straints for the two ownership variables in the program

2. α2 6= any: variable α2 is a legal modifier for an object
creation

3. α2 <: α1: variable α2 is a subtype of variable α1 and,
thus, the assignment to field f is type correct.

4.3 Encoding for a SAT Solver
Once we have the constraint system Σ, it needs to be solved.
We use an existing weighted Max-SAT solver for three rea-
sons. First, the Universe type system allows only three own-
ership modifiers; thus, constraints can easily be encoded as
boolean formulas. Second, the weights allow us to encode
heuristics that direct the SAT solver to produce good solu-
tions. Third, reusing a solver allows us to benefit from all
the optimizations that went into existing solvers.

This section explains how to encode the constraints Σ
as boolean formulas. These formulas are then converted to
conjunctive normal form, which is the input format of the
SAT solver. The SAT solver either returns an assignment of
booleans that satisfies the formula or notifies the user that
the formula is un-satisfiable. The assignment of booleans
corresponds to ownership modifiers for the variables that
satisfy all constraints.

Our implementation supports changing the solver or the
encoding of the constraints, which facilitates experimenta-
tion. Fig. 6 defines the encoding of the constraints that our
implementation currently uses.

Declaration (decl(α)): We use three boolean variables βpeer ,
βrep , and βany to represent an ownership variable α from
the constraints. Our encoding expresses that exactly one
of these three booleans is assigned true.
Two booleans would be sufficient to encode the three
possibilities. However, the constraints are simpler, and
therefore more efficiently solvable, when using a one-
hot encoding of the options [20], that is, always allowing
only exactly one of the booleans to be true. Moreover,
this encoding makes it simpler to express heuristics as
weights; for instance, the preference for the modifier rep
can be easily expressed by assigning a high weight to the
boolean variable βrep .

Subtype (α1 <: α2): If the subtype is any, then the super-
type must be any. If the supertype is peer, then the sub-
type must be peer. If the supertype is rep, then the sub-
type must be rep.

Adaptation (α1 B α2 = α3): The encoding of adaptation
constraints reflects the definition of viewpoint adaptation
given in Sec. 2. The first two lines cover the situations
where viewpoint adaptation can determine the owner of
an object statically. In all other cases, the result of the
adaptation is any.

Equality & Inequality (α1 = u, α1 6= u): These constraints
are simply encoded by forcing that the corresponding
boolean is either true or false.

Comparable (α1 <:> α2): The clauses forbid that one
variable is assigned peer when the other variable is as-
signed rep.

4.4 Heuristic Choice of a Solution
In the simple example of Fig. 5, our system creates a con-
straint system with six boolean variables (for the two own-
ership variables) and clauses encoding the four constraints
described above. The SAT solver may return any of the fol-
lowing four solutions to this constraint system, depending on
its search strategy:

α1 α2

peer peer
rep rep
any peer
any rep

Like for any program, these solutions include one that
assigns peer to all variables. This is not useful (unless it is
the only possibility), because it corresponds to a completely
flat ownership structure.

When choosing among many possibilities to assign own-
ership modifiers, a human programmer is influenced by a
variety of design considerations.

• A deeper ownership structure gives better encapsulation,
so it is generally preferable, but it limits sharing.
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• The types in method signatures influence what clients
may call the method, so it is preferable for method pa-
rameters to have the any modifier.
• Weights can also be used to handle other guidance, from

a user or tool, more flexibly. Suppose that a user has par-
tially annotated a program. If the annotations lead to un-
satisfiable constraints, they can be converted from abso-
lute equality constraints (as described in Sec. 4.2) into
preferences. This gives the inference tool the flexibility
to override annotations when necessary.
• Other heuristics are possible; for instance, a verification

tool based on ownership such as Spec# [29] might have
different needs.

To reflect these design considerations, our approach uses
the weight feature of a weighted Max-SAT solver to encode
preferable ownership typings. These solvers permit a user
to express a preference for each clause to be true or false
as a weight. A maximal-weight assignment that satisfies all
constraints is not only correct, but is more likely to be what
a human developer would want.

Our tool combines multiple heuristics, by scaling and
then adding their weights. Among others, users can select
and combine the following heuristics:

• We provide pre-defined general heuristics that maximize
the depth of ownership structures and the applicability of
methods, for example, by prefering deep ownership for
fields and object creations, but any for method parame-
ters.
• Program-specific heuristics can be obtained from the run-

time inference as described in the next section.

Our tool allows programmers to weight the weights and
scaling of these different heuristics. A user can enable/dis-
able heuristics either before running the tool, or after ob-
serving a non-desirable tool output. However, we expect that
in most practical applications, the heuristics and scaling are
pre-defined or determined automatically by the tool, for in-
stance, depending on the code coverage of the runtime in-
ference. Therefore, programmers influence the outcome of
the inference mainly by providing partial annotations and
by running the runtime inference. To avoid bias, our experi-
ments use only the built-in heuristics.

However, the heuristic for preferring deeper ownership
structures over flatter structures does not guarantee the deep-
est structure overall. The source code in Fig. 7a illustrates
this problem. It implements a set using a list, which in
turn uses nodes. Suppose that the weights are set such that
wrep > wpeer > wany . The maximum-weight assignment
is the flat structure in Fig. 7b, which has weight 2wrep +
2wpeer . A programmer would most likely prefer the deeper
structure in Fig. 7c, because it encapsulates the Node object
inside the list, while allowing the list to control modifications

of the nodes and maintain invariants over the node structure.
However, its weight is less: 2wrep + wpeer + wany .

The next section explains how runtime inference can be
used to determine the deepest possible ownership structure.
While the static heuristic applies equally to all elements
of a certain category (for instance, all fields), the runtime
inference obtains weights for individual occurrences, such
as a particular field.

5. Runtime Inference
The runtime inference of Universe types obtains tracing in-
formation from one or several executions of the program.
Then, it performs the following five steps (explained in
Secs. 5.1–5.5) to compute the ownership modifiers:

1. Build the representation of the object store, which con-
tains all objects created during the program executions
together with information about references and modifi-
cations between them.

2. Build the dominator tree to identify for each object the
candidates for its owner.

3. Resolve conflicts with the Universe type system to obtain
an ownership structure that is compatible with the owner-
as-modifier discipline enforced by Universe types.

4. Harmonize different instantiations of a class to obtain
static ownership information for each reference type in
the program.

5. Output ownership modifiers as described in Sec. 3, to-
gether with information about the achieve code coverage.

We illustrate the runtime inference using the classes in
Fig. 8a.

5.1 Build the Representation of the Object Store
The program trace contains a record of each field reference
that occurred at run time. These references are of two types.
Write references were used to update a field or call a non-
pure method on an object; these references determine the
ownership structure of an application. Recall that Universe
types enforce the owner-as-modifier ownership discipline,
and does not restrict references in general (unlike other own-
ership type systems). Naming references were used for read-
ing fields and calling pure methods; these are needed to map
the inference results back to the source code.

From the trace, the runtime inference builds a cumulative
representation of the object store called the Extended Object
Graph (EOG) [45, 48]. The EOG represents all objects that
ever existed in the store, all references between these objects
that were ever observed, and, in particular, which objects
modified which other objects.

The nodes of the EOG are (representations of) run-time
objects, consisting of the object’s class and a unique identi-
fier. The edges of the EOG are of two types: write edges and
naming edges. (We sometimes call them “write references”
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public class Set {

Node lastUsed;

List impl;

}

public class List {

Node first;

}

public class Node {

Node next;

}

(a) Unannotated source code

public class Set {

rep Node lastUsed;

rep List impl;

}

public class List {

peer Node first;

}

public class Node {

peer Node next;

}

(b) Flat ownership structure

public class Set {

any Node lastUsed;

rep List impl;

}

public class List {

rep Node first;

}

public class Node {

peer Node next;

}

(c) Deep ownership structure

Figure 7: The static heuristics alone do not guarantee the deepest ownership structure. In this code, the lastUsed field
implements a cache that speeds up repeated membership queries. Parts (b) and (c), show two different possible ownership
structures. Contexts are depicted by rounded rectangles, and owner objects sit atop the context of objects they own. Arrows
represent references and the dashed reference is signifies a reference used only for reading.

public class Demo {

public static void main(String[] args) {

new Demo().testA(args.length > 0);

}

public void testA(boolean b) { new A(b); }

}

class A {

B b;

boolean mod;

A(boolean m) {

mod = m;

b = new B(this); }

void off() { mod = false; }

}

class B {

C c;

Object o = new Object();

B(A a) { c = new C(a); }

}

class C {

A a;

C(A na) {

a = na;

if (a.mod) { a.off(); } }

}

(a) Source code (b) Dominator tree of write edges (c) After conflict resolution

Figure 8: Running example to illustrate runtime inference.

and “naming references”, when no confusion with the trace
can arise.) Each naming edge is labeled with a field name.

For example, a call x.setFoo(y) introduces two edges
in the EOG. A write reference from the current receiver ob-
ject this to x represents that this modifies x by calling the
non-pure method setFoo. This reference will later influence
the ownership relation between this and x. A naming ref-
erence from x to y represents that a method of x takes y as
parameter. This naming reference is labeled with the name
of the formal parameter and will later be used to infer the
ownership modifier of the parameter.

Example In our running example (Fig. 8a), class A con-
tains in its constructor the statement b = new B(this). At
the bytecode level, this corresponds to two steps, first the
creation of a new object and then the update of the field b
of the current object. The object creation causes insertion,
into the EOG, of a write edge from the current receiver ob-
ject to the newly-created object. This write edge ensures that
the ownership modifier for the object creation is either peer
or rep, a requirement of the Universe type system. The field
update causes insertion, into the EOG, of a write edge from
the current object to the receiver of the field update, and a
naming reference from the receiver of the field update to the
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object on the right-hand side. All naming references for a
field can later be used to infer the ownership modifier for
that field.

5.2 Build the Dominator Tree
Universe types require that all modifications of an object are
initiated by its owner. For the EOG, this means that all chains
of write references from the root object to an object x must
go through x’s owner. Therefore, we can identify suitable
candidates for the owner of x by computing the dominators
[30, 4] of x.

Universe types do not restrict references that are merely
used for reading. Therefore, the naming references in the
EOG do not carry information that helps us to determine
ownership relations between objects. Consequently, we ig-
nore them when we build the dominator graph.

The result of finding the dominators for the example from
Fig. 8a is shown in Fig. 8b. Domination is depicted by
rounded rectangles. A direct dominator sits atop the rounded
rectangle that groups the objects it dominates. It is a candi-
date for becoming the owner of this group of objects.

5.3 Resolve Conflicts with the Universe Type System
Domination is a good approximation of ownership, but it
cannot be directly used to infer Universe types. The Universe
type system allows write references within a context and
from an owner to an owned object. However, a dominator
graph may have references (edges) from an object to an
object in an enclosing context. Such write references are not
permitted in the Universe type system. If such a conflicting
edge is found in the EOG, the objects connected by the
conflicting edge are raised to a common level. This process
is repeated until no more conflicts are present.

Example This situation is illustrated by the code in Fig. 8a.
If we observe an execution of the constructor of class C
when a.mod is false then the off method is not called
on the a reference. In this case, the reference from object 4
to object 2 is used in a read-only manner, that is, the EOG
contains a naming reference between object 4 and object 2.
Under this assumption, the dominator graph in Fig. 8b is a
valid ownership structure. The reference between object 4
and object 2 is stored in field a of class C. This field will be
annotated with an any ownership modifier.

However, if a.mod is true, the non-pure method off is
called on a. This results in a write reference from object 4
to object 2. In this case, the dominator graph does not repre-
sent a valid ownership structure for Universe types because
there is a write reference to an object in an enclosing con-
text. This write reference can neither be typed with a rep
nor with a peer modifier and is, therefore, not admissible in
Universe types. To solve this problem, we flatten the own-
ership structure to make the write reference from object 4
to object 2 admissible. This is done by raising the origin of
the write reference (object 4) to the context that contains the

destination of the write reference (object 2). This makes the
two objects peers, and the write reference between them is
admissible since it can be typed with modifier peer.

However, raising object 4 creates a conflict for the write
reference from object 3 to object 4 since now object 4 is
neither owned by nor a peer of object 3. Therefore, we apply
the same solution again; this time, object 3 is raised to be in
the same context as object 4. The resulting dominator graph
is depicted in Fig. 8c. In this graph, all write references are
from a direct dominator to an object it dominates or between
objects with the same direct dominator. Therefore, this graph
represents a valid ownership structure that can be expressed
in Universe types.

Algorithm The algorithm works as follows:
We assign to each object its depth in the EOG. The depth

of a write reference from x to y is the minimum of the
depths of its origin x and target y. A conflict reference
is a write reference that is not permitted by the Universe
type system. There are two kinds of conflict references:
(1) upward conflicts whose origin’s depth is strictly greater
than the depth of the target and (2) downward conflicts
whose origin’s depth is strictly smaller than the depth of
the target and whose origin does not dominate the target.
Downward conflicts do not occur in the initial EOG that is
obtained from the computation of the dominator tree, but
may be introduced during conflict resolution.

We set up an initial priority queue that contains all con-
flict references in the EOG, sorted by depth. As long as the
priority queue is non-empty, we select the minimum-depth
reference, say a reference from x to y. We resolve this con-
flict by raising the object with the greater depth to the context
of the object with the smaller depth. That is, for upward con-
flicts, we raise object x, and for downward conflicts, we raise
object y. We then add to the worklist all write references to
or from the raised object that have now become conflict ref-
erences, and then start the next iteration.

This algorithm obviously all conflicts because it iterates
until there are no conflict references in the EOG, and be-
cause each new conflict is added to the priority queue and
processed. So to show that the algorithm is correct, we only
have to argue that it terminates. A simple termination argu-
ment is that the sum of the depths of all nodes in the EOG
is non-negative and decreases in each iteration because the
origin or target of a conflict edge is raised, that is, its depth
decreases. The existence of such a termination measure is a
sufficient condition for termination.

An important property of our algorithm is that it raises
each object at most once and, therefore, is efficient. This is
achieved by processing the references in the worklist in a
top-down way, that is, by starting with the reference with
the smallest depth, say d. Raising the origin or target x of
this reference to depth d may lead to additional conflicts. If
a new conflict is an upward conflict, the conflict reference
points to x and, thus, also has depth d; if a new conflict is a
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downward conflict, it points from x to an object with a depth
greater that d and, thus, also has depth d. Consequently,
when the algorithm processes references of depth d, it will
never add references to the worklist with a depth smaller
than d. Therefore, no upward conflict in the worklist can
have x as its origin and no downward conflict can have x
as its target. Therefore, x will not be raised again.

5.4 Harmonize Different Instantiations of a Class
After conflict resolution, the EOG is consistent with the
owner-as-modifier discipline. However, it might not be pos-
sible to statically type the EOG because different instances
of a class might be in different ownership relations. To en-
force uniformity of all instances of a class, we traverse all
instances of each class and compare the ownership proper-
ties of each variable (field or parameter). This step has to
take into account both write and naming references in the
EOG.

If for any given variable the ownership relations are the
same (for instance, they all point to peer objects), the vari-
able can be typed statically. If they differ, we apply a reso-
lution that is similar to the conflict resolution described in
the previous subsection. If at least one instance of a variable
is the origin of a peer reference and the other instances of
this variable are rep references, we raise the targets of the
rep references to make them peers and type the variable with
modifier peer. If at least one instance of a variable is the
origin of a reference that is neither a peer nor a rep refer-
ence, the variable is typed with modifier any. In this case,
downcasts are needed at the point where this variable is used
for field updates and calls to non-pure methods. If there are
no casts in the program that the static inference could use to
refine ownership information (see Sec. 4.2), it will override
the suggestions from the runtime inference to eliminate the
need for a cast.

The harmonization step is not only used to harmonize the
objects within the EOG for one program execution, but also
to harmonize EOGs from multiple program executions. So to
support runtime inference using multiple executions as men-
tioned in Sec. 3, one can store the EOG of each execution
after the harmonization step, that is, when each EOG repre-
sents an ownership structure that can be typed with Universe
types. When several of these EOGs are combined, one has to
perform another harmonization step to resolve discrepancies
between the different graphs.

Example Imagine that the example program is executed
twice, with and without command line arguments. There-
fore, method testA in class Demo is once called with false
and once with true as the argument. Then we have two in-
stances of class A, once with a deep ownership structure as in
Fig. 8b (which is legal because the reference from object 4 to
object 2 is a naming reference) and once with a flat structure
as in Fig. 8c (where the reference from object 4 to object 2
is a naming reference and, thus, object 4 has been raised to

the context of object 2 during conflict resolution). The anno-
tation for field b in class A is once rep and once peer. The
harmonization algorithm then decides to use peer as anno-
tation for field b and raises the non-conforming instance to a
higher level.

5.5 Output Ownership Modifiers
After the first four steps of the runtime inference algorithm,
we have determined possible ownership modifiers for field
declarations, method parameters and results, and allocation
expressions. For the example in Fig. 7a, the runtime infer-
ence determines the deep ownership structure depicted in
Fig. 7c, provided that the Set object 1 does not directly mod-
ify object 3.

Types for local variables are not inferred from the EOG
because that would require monitoring every assignment of
a local variable. However, this gap is closed by the subse-
quent static inference. The static inference also detects if the
modifiers determined by the runtime inference violate the
type rules of Universe types. This problem occurs in partic-
ular when the runtime inference is based on program runs
with insufficient code coverage. Assume for example that
the runtime inference on the example in Fig. 8a was based
on a single program execution, in which method off is not
called. For such an execution, the reference from object 4
to object 2 in Fig. 8b is a naming reference such that the
runtime inference determines the modifier any for field a
in class C. However, this modifier contradicts the inequal-
ity constraint generated for the call to the non-pure method
a.off(), which requires the receiver expression a to have a
modifier different from any.

To handle such situations, the static inference treats the
input from the runtime inference as suggestions, not as fixed
annotations. So instead of generating equality constraints for
the modifiers suggested by the runtime inference, the static
inference just adjusts the weights for the boolean variables
in the encoding. In our example above, the static inference
would assign a weight of, say 50 to βany and 10 each to βrep

and βpeer for a’s modifier. These weights will make the SAT
solver prefer solutions where a’s modifier is any, but also
allow it to find other solutions if any is not possible (like
in our example) or if those other solutions are preferable
because they have a higher overall weight.

How trustworthy the suggestions from the runtime infer-
ence are depends on the code coverage. Therefore, our run-
time inference provides coverage information that is used by
the static inference to determine the absolute weights of the
boolean variables and also to scale the weights from the run-
time inference when combining them with other heuristics
as described in Sec. 4.4.

5.6 Discussion
Both the static and the runtime inference can operate on ar-
bitrary program fragments, such as a class and its unit tests.
To infer meaningful ownership modifiers, it is often neces-
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Figure 9: A screenshot showing a runtime object graph on
top and the static inference on the bottom. The visualizer
displays the object graph while it is built up and modified by
the runtime inference. This helps programmers understand
both the target program and the runtime inference algorithm.
Note that the graphs in Figs. 7 and 8 are screenshots from
this tool.

sary to consider larger contexts, in particular, the clients of a
class. Even without such context, the heuristics of the static
inference encourage solutions that are usable in a wider
range, for example, by preferring method parameters to have
the any modifier.

As we explained above, the ownership assignment ob-
tained from the runtime inference might not be correct, but
the combination with static inference removes this problem.
The static inference encodes all type rules in SAT, so if the
solution is satisfiable, the annotated program will compile.
An incorrect input from the runtime inference might then
only cause a longer exploration of the state space.

6. Experience
This section describes the implementation and our initial
experience with our inference approach.

Implementation We implemented our inference approach
as a set of command-line tools and also provide Eclipse plug-
ins to ease the interaction for programmers. The implemen-
tation of the whole tool-chain consists of around 50,000 non-
comment lines of Java and C++ source code. Fig. 9 shows a
screenshot of the Eclipse plug-in.

We support the workflow as described in Sec. 3. The pro-
grammer can first determine the purity of methods; then ex-
periment with the runtime inference and use the visualiza-
tion to understand the ownership structure; then use the static
inference to ensure consistent annotation of the whole pro-
gram; and finally, use the annotation tool to insert the own-
ership modifiers into the source code.

The annotations inferred by the different tools are stored
in XML files, which facilitates the comparison of multiple
runs of the inference tools. The XML representation also de-
couples the inference from the concrete UTS syntax, which
is useful to support alternative syntax such as the existing
JML2 Universe syntax in backwards-compatible Java com-
ments and the Java 7 annotations [19].

The runtime inference obtains program traces via the
Java Virtual Machine Tooling Interface (JVMTI). The ob-
ject graphs obtained from these traces are stored in XML
files. The object graphs for multiple program runs can be
combined to improve code coverage. Moreover, interactive
or long-running programs need to be traced only once for
each desired code path. This object graph can then be reused
later without requiring human interaction or recomputing re-
sults.

Both the static and the runtime inference also support ar-
rays and static methods. Arrays in the Universe type system
use two ownership modifiers, one for the relation between
this and the array object, and one for the relation between
this and the objects stored in the array. Static method calls
take an ownership modifier that determines the relationship
between the current object and the execution of the static
method.

Experience We have used our inference tools in the course
of development on many examples that test certain aspects
and corner cases. The tools are simple to use and interactive
work is possible with them.

One example we evaluated is a singly-linked list with it-
erator. The original implementation resulted in a flat owner-
ship structure, because the iterator directly modified the list
nodes. This direct modification prevents a deep ownership
structure. Once we rewrote the code to forward modifica-
tions from an iterator to the corresponding list, our inference
tools inferred a deep ownership structure. By applying the
tool to more test cases, the inferred ownership structures im-
proved. The final results are then inserted into the source
code as JML annotations and the correctness of the annota-
tions can be verified by the UTS type checker that is built
into the JML2 checker.

To assess how well the inference algorithms scale to solve
systems of constraints with many variables, we performed
inference on four micro-benchmarks. The results are pre-
sented in Fig. 10.

“Independent fields” contains 5,000 fields, each assigned
with a different object. This benchmark creates many small
objects at runtime, highlighting the runtime performance.
The static constraints are all independent from each other,
stressing this kind of constraint system.

“Chained fields” has 5,000 fields; each field is assigned
from the previous one, except the first that is assigned with
an object. Only one object is created at runtime; the static
constraints are all interdependent.
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Benchmark SLOC Static Inference Timing (s) CNF Size Runtime Inference Timing (s)
Parse Gen Solve Vars Clauses Orig Trace Solve

1. Independent fields 5,010 2.54 0.62 2.16 30006 70013 0.19 50.78 3.22
2. Chained fields 5,005 2.60 0.32 1.55 15009 40019 0.18 22.69 1.52
3. Chained objects 5,016 3.03 0.63 2.25 30015 85035 0.18 31.43 3.24
4. Conflicts 17 0.99 0.05 0.25 27 70 0.14 2.42 4.18

Figure 10: Timing results for the Micro-Benchmarks. SLOC gives the number of non-blank, non-comment lines. Column
‘Parse’ gives the time needed for the JML compiler to build the AST, ‘Gen’ the time to build the constraint system, and ‘Solve’
the time needed for the SAT solver to give a solution. Column ‘CNF Vars’ gives the number of variables and ‘CNF Clauses’
gives the number of clauses in the CNF encoding.

“Chained objects” has 5,000 objects, each of which has a
field that points to the next object; in addition, another object
has 5,000 fields and points to all the objects.

“Conflicts” has 5,000 objects, each of which has a field
that points to the next object and a field that points to the
root object. At runtime the program initially creates a deep
ownership structure, but then the many back pointers cause
the structure to collapse. The source code for this benchmark
is a lot simpler than for the other benchmarks, which makes
the static inference fast. Our explanation for the radically
lower tracing overhead is that the Just-in-Time compiler
has a chance to optimize the execution of this benchmark,
whereas the previous three benchmark did not contain loops.

We executed each of these benchmarks on the command
line to gather the timing information. We also inspected the
benchmarks in the Eclipse plug-ins and ensured that the
inferred annotations express the desired structure. We also
fixed certain annotations in the solution and let the static in-
ference propagate our constraints. Finally, we inserted the
inferred ownership modifiers into the source code and used
the JML2 checker to ensure that the type rules of the Uni-
verse type system are correctly followed.

Future Work Our experiments indicate that the inference
tools are usable. For both runtime and static inference, the
design goals were simplicity and modularity, not perfor-
mance. We have made no attempt to optimize their perfor-
mance, so there are many opportunities to speed up the tools.

The static inference suffers from two large overheads.
The JML2 compiler is very slow (the “parsing” numbers
in Fig. 10), and replacing it would also make our inference
system support more Java language features. The SAT solver
is invoked as a separate process, with input/output files.
Invoking it in the same process would be faster.

The runtime inference spends most of its time writing
trace files, in a verbose XML format. It could use a binary
format, buffering, or other optimizations.

We then plan to apply our inference approach to realistic
code bases and evaluate the usability with real programmers.

7. Related Work
7.1 Static inference
Milanova [34] presents preliminary results for the static in-
ference of Universe types. Her tool applies a static alias anal-
ysis to construct a static object graph and then computes
dominators to obtain candidates for owners. This approach
is similar to our earlier work on runtime inference [18].

Pedigree types [31] present an intricate ownership type
system similar to Universe types with polymorphic type
inference for annotations. It builds a constraint system that is
reduced to a set of linear equations. The inference does not
help with finding good ownership structures, but only helps
propagate existing annotations. We believe that our approach
to type inference is easier to understand and better supports
the programmer in finding the desired ownership structure.

The box model [43] separates the program into module
interfaces and implementations. Ownership annotations are
still required for the module interface, but are automatically
inferred for the implementations. It might be possible to
adapt our runtime inference to help with the annotation of
the interfaces.

General type qualifier inference [24] could be applied
to ownership, but it would not phelp in the inference of
the deepest or most desirable ownership structure. Rather,
it would infer any solution that satisfies all constraints, pos-
sibly a flat structure.

Several other static analyses are tangentially related. Ma
and Foster [32] present a static analysis to infer uniqueness
and ownership, without mapping the results to a type system.
Moelius and Souter’s static analysis for ownership types
resulted in a large number of ownership parameters [27].
Kacheck/J [25] infers package-level encapsulation proper-
ties. SafeJava [7, 9, 8] provides intra-procedural type infer-
ence for local variables to reduce the annotation overhead.
Agarwal and Stoller [3] describe a run-time technique that
infers further annotations. AliasJava [6] uses a constraint
system to infer alias annotations.

The system whose implementation is most similar to ours
is a type inference systems against races [22]. It builds a con-
straint system, uses a SAT solver to find solutions, and ex-
ploits a Max-SAT encoding to produce good error reports, in
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cases where the constraint system is unsatisfiable. However,
they are not concerned with finding an optimal structure for
their system, since any valid locking strategy is acceptable.
We use the weighting mechanism to find a desirable owner-
ship structure also for satisfiable solutions.

7.2 Dynamic inference
Alisdair Wren’s work on inferring ownership [48] provided
a theoretical basis for our work on runtime inference. It de-
veloped the idea of the Extended Object Graph and how to
use the dominator as a first approximation of ownership. It
builds on ownership types [11, 5, 7, 12] which uses para-
metric ownership and enforces the owner-as-dominator dis-
cipline. The number of ownership parameters for parametric
type systems is not fixed and is usually determined by the
programmer, as is the number of type parameters for a class.
Trying to automatically infer a good number of ownership
parameters makes their system complex.

Our tool contains a simple visualizer to help programmers
understand and evaluate the inferred annotations. Hill et
al. [26] have developed a sophisticated visualization tool
based on ownership types. Abi-Antoun and Aldrich [2, 1]
present how runtime object graphs can be extracted from
programs with ownership domain annotations to visualize
the architecture of the program. Noble [41] focuses on the
treatment of aliasing in heap visualizations.

Rayside et al. [46] present a dynamic analysis that infers
ownership and sharing, but they do not map the results back
to an ownership type system. Mitchell [35] analyzes the
runtime structure of Java programs and characterizes them
by their ownership patterns. The tool handles heaps with 29
million objects and creates succinct graphs. The tool Yeti
[36] analyzes heap snapshots and helps in understanding
large heaps and finding memory leaks. Both tools do not
distinguish between read and write references and the results
are not mapped to an ownership type system.

Daikon [21] is a tool to detect likely program invariants
from program traces. Invariants are only enforced at the be-
ginning and end of methods and therefore also snapshots are
only taken at these spots. From these snapshots we cannot in-
fer which references were used for reading and which were
used for writing.

7.3 Other sources of guidance for inference
Ownership has been used to verify object invariants in Spec#
[29] and JML [38]. These verification systems encourage,
but do not enforce the use of ownership to encapsulate the
state an invariant depends on. Therefore, we could use the
invariants as another source of suggestions for ownership
modifiers.

8. Conclusions
We presented a novel approach to static ownership inference
that uses a Max-SAT solver to optimize the result w.r.t.

preferences encoded as weights. The use of weights allows
us to take into account tentative ownership information from
various sources such as heuristics, partial annotations, and in
particular runtime inference. Our initial experiments suggest
that the combination of static and runtime inference leads
to a practical approach, which produces correct typings with
deep ownership structures.

Now that we have a working inference tool, our highest
priority for future work is performing a larger case study to
evaluate the quality of the inferred typings and to investigate
what ownership structures occur in real programs.

Universe types were an ideal target system for our work
because its modifiers can easily be encoded in boolean for-
mulas. As future work, we plan to apply our approach to
other ownership systems to explore four avenues. First, we
plan to extend our approach to Generic Universe Types
(GUT) [16]. The key issues are to adapt the runtime infer-
ence to GUT, especially in the presence of an erasure seman-
tics, and to explore whether we can infer ownership topolo-
gies without assuming an encapsulation discipline. Second,
we plan to extend our inference to support ownership trans-
fer [13, 39], which requires static inference to infer unique-
ness of variables and runtime inference to cope with dy-
namic changes of ownership information. Third, we plan to
investigate how our approach can be adapted to ownership-
parametric type systems [6, 12, 44]. We are confident that by
combining static and runtime inference, we can effectively
determine the minimum number of ownership parameters
required to type a class. Fourth, we plan to explore how we
can infer ownership annotations for more complex topolo-
gies such as ownership domains [5] or multiple ownership
[10].
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