
Ownership Type Systems and Dependent Classes

Werner Dietl
ETH Zurich

Werner.Dietl@inf.ethz.ch

Peter Müller
Microsoft Research

mueller@microsoft.com

Abstract
Ownership type systems structure the heap and enforce restrictions
on the behavior of a program. Benefits of ownership type systems
include simplified program verification, absence of race conditions
and deadlocks, and enforcement of architectural styles.

Dependent classes are a generalization of virtual class systems
that allows one class to depend on multiple objects. Dependency
is expressed by explicit declaration of the depended-upon objects
as class parameters. This allows one to declare dependencies inde-
pendently of the nesting of classes, which increases the expressive
power and reduces the coupling between classes.

In this paper, we describe how ownership type systems can be
expressed on top of dependent classes. The ownership type systems
are split into two parts: (1) ensuring the topological structure of the
heap and (2) enforcing restrictions on the behavior of the program.
We present an encoding of the topological part in dependent classes
and describe how to enforce the restrictions of ownership type
systems directly on the dependent classes program. Finally, we
present the encoding of some examples for the MVC interpreter
and discuss future work.

Keywords Ownership type systems, Universes, ownership do-
mains, dependent classes, virtual classes

1. Introduction
Ownership type systems structure the heap and enforce restric-
tions on the behavior of a program. Benefits of ownership type
systems include simplified program verification [31, 29, 32], im-
proved specification of effects [10, 12], absence of race conditions
and deadlocks [6, 7, 5], easier memory management [8, 3], and
enforcement of architectural styles [1] and representation indepen-
dence [4] of a program.

The problems of aliasing in object-oriented programs have long
been recognized [24]. Ownership types [35, 15, 37] and their de-
scendants (e.g., [10, 5]) allow classes to be parameterized by own-
ership information. Each class declares one owned domain (also
called “context”) and in addition can be parameterized by enclos-
ing domains. Ownership types enforce the owner-as-dominator dis-
cipline, that is, every reference chain from an un-owned object to
an object o includes o’s owner. Ownership domains [2] generalize
ownership types by separating the aliasing policy from the mecha-
nism to enforce structure.

Copyright is held by the author/owner(s).
FOOL ’08 13 January, San Francisco, California, USA.
ACM .

Universe types [31, 18, 17] are a lightweight, non-parametric
ownership system that is used for program verification [31, 29].
A type checker and runtime support for Universe types is imple-
mented in the Java Modeling Language (JML) [28].

Virtual classes [30, 19, 20] express dependencies between ob-
jects. Similar to virtual methods, a class A can declare a dependent
class B by nesting class B within the definition of A. Virtual classes
can be overridden in subclasses, and the runtime type of an object
determines the concrete definition of a virtual class. Recent work
[36, 21, 13, 25, 38] formalized and extended virtual classes. All
of these systems have in common that dependency is expressed by
nesting of classes.

Dependent classes [23] are a generalization of virtual class sys-
tems that allows one class to depend on multiple objects. Depen-
dency is expressed by explicit declaration of the depended-upon
objects as class parameters. This allows one to declare dependen-
cies independently of the nesting of classes, which increases the
expressive power and reduces the coupling between classes.

In our recent work to extend the expressive power of Universe
types [40], we became interested in virtual class systems. Express-
ing dependencies only by nesting of classes is too restrictive to
express ownership relations, as the class of the owned objects in
general cannot be nested within the owning class. In this paper, we
explore the possibility of expressing ownership properties on top of
dependent classes [23].

The remainder of this paper is structured as follows. Section 2
gives a brief overview of ownership domains and Universe types,
and Section 3 explains the basics of dependent classes. Then, in
Section 4, we discuss how the ownership topology can be encoded
on top of dependent classes. Sections 5 and 6 give details about
how Universe types and ownership domains can be encoded. Sec-
tion 7 presents examples using the MVC interpreter for dependent
classes. Section 8 discusses related and future work, and Section 9
concludes. Finally, Appendix A gives the complete source code for
the examples.

2. Overview of Ownership Type Systems
In this section, we give a brief overview of ownership domains and
Universe types. Only the main ideas of the two type systems are
presented and discussed by examples.

We use uniform terminology for both type systems. A class
declares one or more domains and can be parameterized by domain
parameters. Reference types consist of one owning domain and in
addition can be parameterized by further domain arguments. At
runtime, an object is owned by a domain and a domain is owned
by at most one object. If a class only declares a single domain, then
we say that objects in that single domain are owned by the instance
of the declaring class and usually do not mention the domain.

2.1 Ownership Domains
Ownership domains [1, 2] are an extension to ownership types
[15] in three regards: (1) they allow the declaration of an arbitrary

number of domains per class, (2) domains can be public or private,
and (3) the encapsulation strategy can be declared by links between
domains and assumptions on the domain parameters.

Ownership domains include a uniqueness type system in addi-
tion to the ownership system. For the rest of this paper, we will
focus only on the ownership part.

We explain the basic concepts of ownership domains (and
thereby also of ownership types) by an example: a map from keys
to values. We discuss the interesting parts of the example here and
provide the complete source code in Appendix A.3.

Class declarations can be parameterized by domains:

1 class Map< keyD, valueD > {
2 domain nodes;
3 public domain iters;
4

5 link iters -> nodes;

In line 1 above, class Map is parameterized by two domains: the
domain keyD for the domain of the key objects and the domain
valueD for the domain of the value objects. Every class implicitly
has access to the domain owner, the owning domain. By default,
every class declares a domain owned for the representation of the
class. The implicit domain shared can be used for globally shared
objects.

Lines 2 and 3 declare a private domain nodes and a public
domain iters. Objects in a public domain can be accessed by all
objects that can access the owner of that domain.

By default, ownership domains enforce the owner-as-dominator
discipline. Additional links between domains can be declared using
links. Line 5 above allows objects in the iters domain to access
objects in the nodes domain. Note that this property is not tran-
sitive. The ownership domains rules ensure that the declaration of
links still maintains the encapsulation of the objects.

Types consist of an owning domain name, a class name, and a
possibly empty list of domain arguments. For example,

7 nodes Node<keyD, valueD> first;

declares that the field first references an object in the nodes do-
main and passes the domains keyD and valueD as domain argu-
ments to class Node.

Finally, let us look at a use of class Map:

64 class Client {
65 domain mydata;
66

67 void main(shared Data value) {
68 final mydata Map<mydata, shared> map;
69 map = new Map<mydata, shared>();
70 map.put(new ID(), value);
71 map.iters Iter<mydata, shared> iter;
72 iter = map.iterator();
73 mydata ID id = (ID) iter.getKey();
74 }
75 }

Class Client declares a domain mydata. Method main takes a
shared parameter value. In line 68, the final local variable map is
declared. The object referenced by map is in the mydata domain.
The keys of the map are also in the mydata domain, whereas the
values of the map are shared.

Line 71 declares local variable iter. Note that the declared
owner map.iters expresses that the iterator is in the iters do-
main of the map object. This path-type is expressible, because the
local variable map is final.

2.2 Universe Types
The Universe type system [18, 31] is an ownership type system that
enforces the owner-as-modifier discipline, which ensures that the

owner of an object controls all modifications of an owned object.
Only references to objects in the same domain and to owned objects
can be used for modifications. This discipline enables the modular
verification of invariants [32].

Statically, the Universe type system uses three different owner-
ship modifiers to build this ownership structure. The modifier peer
expresses that the current object this is in the same domain as the
referenced object, the modifier rep expresses that the current ob-
ject is the owner of the referenced object, and the modifier any does
not give any static information about the relationship of the two ob-
jects. References with an any modifier convey less information as
references with a peer or rep modifier with the same class and are
therefore supertypes of the two more specific types.

The owner-as-modifier discipline is enforced by forbidding field
updates and non-pure method calls through any references. An
any reference can still be used for field accesses and to call pure
methods. The method modifier pure is used to mark methods that
leave objects in the pre-state of a method call unchanged.

Generic Universe Types [17] extend the Universe type system to
type genericity as found in Java 5. We again use the map example
to illustrate Generic Universe Types. The complete example can be
found in Appendix A.5.

1 class Map< K, V > {
2 rep Node<K, V> first;

Class Map has two type variables K and V. Type variables pa-
rameterize over the concrete class and over ownership at the same
time. Field first is annotated as rep, that is, it references objects
that form a part of the representation of the current object.

58 class Client {
59 void main(any Data value) {
60 rep Map<rep ID, any Data> map =
61 new rep Map<rep ID, any Data>();
62 map.put(new rep ID(), value);
63 rep Iter<rep ID, any Data> iter;
64 iter = map.iterator();
65 rep ID id = iter.getKey();
66 }
67 }

The type of local variable map expresses that the Map object is
part of the representation of the Client object, that the keys are
rep ID objects, and that the values are in an arbitrary domain. In
this example, the iterators and the map are in the same domain and
therefore local variable iter is also annotated as rep.

One can think of Universe types as declaring one domain rep
that corresponds to the owned domain of ownership domains. The
peer modifier corresponds to the owner domain of ownership
domains, as both express that the referenced object is in the same
domain as the current object. Ownership domains as described in
[2] cannot express references to arbitrary domains (any references).
An extension is possible [27], but not considered here.

3. Overview of Dependent Classes
Dependent classes [23] generalize virtual classes. Instead of ex-
pressing dependencies between classes by nesting the classes
within each other, the dependent class is parameterized by de-
pended-upon objects. In contrast to nesting, parameterization by
more than one object is possible. The parametric style decouples
the involved classes and can express more dependencies.

Class declarations are parameterized by immutable field decla-
rations and the class is relative to the parameters. Types then take
arguments for these fields; the arguments can be paths or classes
and determine how restrictive the type is. Let us discuss these con-
cepts by an example taken from [23].

abstract class Space {
abstract Point(s: this) getOrigin();

}

abstract class Point(Space s) {
abstract Point(s: this.s)
add(Vector(s: this.s) v);

}

Class Space is the abstract base class for different spaces, e.g.
two- or three-dimensional spaces. It provides a method that returns
the point of origin for the space. The return-type of the method
is relative. The space s of the returned point is the current this
object. This expresses that the point of origin of the space is in the
same space.

Class Point is parameterized by a Space s. Method add takes
a vector that is parameterized by the same space as the current
point instance. The type Vector(s: this.s) expresses that the s
parameter of class Vector has this.s as its argument. Similarly,
the returned value is a point that is in the same space. These
declarations ensure that points and vectors from different spaces
do not get mixed.

Dependent classes also allow classes to be specialized depend-
ing on the parameters. For example, specialized implementations
of class Point can provide different implementations depending
on the type of space that is provided.

abstract class Point(2DSpace s) { ... }
abstract class Point(3DSpace s) { ... }

A class can also depend on the multiple parameters that are
provided, for example, a Union class can depend on the two Shape
objects that are its components. In class declarations, the fields are
implicitly matched by name with corresponding field declarations
in superclasses.

For the remainder of this paper, we assume that dependent
classes can be extended by the usual Java language constructs, es-
pecially the null value, type genericity, static fields, and in addition
to the final fields on which the class depends on, we allow other
fields that are not part of the type.

4. Encoding Topology
The basic idea for building ownership type systems on top of de-
pendent classes is to separate ownership type systems into two
parts: (1) the topological system that enforces a certain heap struc-
ture and (2) the encapsulation system that enforces a certain pro-
gram behavior. Existing ownership type systems usually combine
these two parts. Only ownership domains [2] separate the aliasing
policy from the mechanism to enforce structure. But the structural
part still enforces certain aliasing policies, for example, that ref-
erences to arbitrary objects (similar to any-references in Universe
types) are always forbidden. In the following, we describe how de-
pendent classes can be used as a very flexible topological system.

The ownership type systems that we discuss in this paper all
enforce the same basic topology: every object is owned by at most
one other object, and ownership builds a tree that is rooted in one
root domain.

Ownership domains allow distinct sets of objects that share the
same owner, by adding the additional level of domains. Each object
is owned by one domain and each domain is owned by at most one
object. Only the root domain does not have an owning object.

The encoding in dependent classes makes the relation to the
owning object explicit, by adding a field owner on which reference
types depend. This field is used to enforce the tree structure of the
ownership graph. There are two questions to answer:

1. In which class should the owner field be declared?

2. What type should the owner field have?

In which class should the owner field be declared? All ob-
jects in the system should support ownership, therefore the field
owner should be added to the root class of the class hierarchy, that
is, java.lang.Object or its equivalent.

An alternative is to add a new class, for instance, OwnedObject,
which acts as the root class for all objects that can be owned. The
system then has to ensure that all classes that should be ownable
are subclasses of OwnedObject.

What type should the owner field have? The important issue
is whether we create a recursion between the declaring class and
the type of the owner field. There are two possibilities: (1) the
owner field has the same type as the declaring class or (2) we use
a different class as type for the owner field.

• The owner field has the same type as the declaring class. If
the owner field is declared in the root class Object, then the
type for owner again has to be Object or a subclass thereof. If
the owner field is declared in a subclass OwnedObject, we can
choose to use OwnedObject as type for owner.
This nicely expresses that each object depends on at most one
other object as its owner and that the owning object can be
owned again. However, this introduces a recursion into our class
declaration. For example, let us assume

class OwnedObject(owner: OwnedObject) {}

The type of owner is again OwnedObject, but that type is
incomplete, as no argument for its owner field is given. The
dependent classes type system would need to build an infinite
type and therefore forbids such a recursion.
This also forbids us from adding the owner field directly to
the root of the class hierarchy. As this would be a more natural
model of ownership, it would be interesting to extend dependent
classes to allow this recursion in the future.

• We use a different class as type for the owner field. For exam-
ple, we could declare

class OwnedObject(owner: Object) {}

There is no recursion between the class that is being declared
and the depended-upon object. This would require that the
programmer checks whether the owner of an object is again
an owned object. This ensures that the programmer never goes
outside of the ownership hierarchy. On the other hand this
could also produce several different ownership trees, rooted at
different objects.

After answering these two questions, we present an encoding of
Universe types and ownership domains in the next two sections.

5. Encoding Universe Types
In recent work [26, 16], we separated the Universe type system
into a topological system and an encapsulation system. We are cur-
rently working on a version of Generic Universe Types [17], which
also separates the topological system and the encapsulation sys-
tem. Such a separation simplifies the type system and the sound-
ness proof. In this section, we show how the topology of Generic
Universe Types can be encoded in dependent classes and discuss
how the encapsulation properties can be checked.

5.1 Topology for Ownership Trees
To express the ownership tree structure that is found in ownership
types and Universe types, we define:

class Object {...}
class OwnedObject(owner: Object) {
// introduce a global name for the root domain
static final Object root = null;
...

}

The declaration of field root allows us to use a symbolic name for
objects in the root domain.

We can express the topology of the following simple program
that uses Universe types:

class C {...}
class D {
rep C f = new rep C();

}

The field f may reference only C objects that have the current
D object as owner. We can express this in the dependent classes
encoding as:

class C(Object owner) extends OwnedObject {...}
class D(Object owner) extends OwnedObject {
C(owner: this) f = new C(owner=this);

}

In the above program, we make explicit that the owner of the
referenced C object is the current this object.

5.2 Translation
To translate a program that uses Universe types into a program that
uses dependent classes, we perform the following transformation:

• Each class declaration adds the dependency on the owner field
and extends class OwnedObject if no superclass is specified.

• A peer D type is encoded as D(owner: this.owner) which
expresses that the owner of the referenced object is the same as
the owner of the current object.

• A rep D type is encoded as D(owner: this) which expresses
that the owner of the referenced object is the current object.

• An any D type is encoded as D(owner: Object) which does
not give a specific owner object and can therefore reference ob-
jects with arbitrary owners. In the informal syntax of dependent
classes, we can just omit the owner argument and write simply
D for an object with arbitrary owner.

• The purity of methods is preserved.

In the resulting dependent classes program, we can enforce the
owner-as-modifier discipline that is enforced by Universe types by
checking that for field updates and non-pure method calls:

• the receiver is either this or
• the owner of the receiver type is this or this.owner.

A separate task is to check whether the purity annotations are
used correctly. A conservative checker forbids all object creations,
field updates and non-pure method calls within a pure method [31].
More relaxed purity checks, that allow object creations [18] and
modifications of newly created objects [39], are possible.

There is a close relation between the path substitution found in
dependent classes and the viewpoint adaptation of Universe types.
Both adapt a relative type to a new environment and decide whether
the resulting type lost information.

Consider this simple example program that uses Universe types:

class C {
peer C f;
rep C g;
any C h;

void m() {
this.f = new peer C();
this.g = new rep C();
g.f = new rep C();
g.g = new rep C(); // error
h.h = new rep C(); // error

}
}

This code is translated into the following program that uses depen-
dent classes:

1 class OwnedObject(Object owner) { ... }
2 class C(Object owner) extends OwnedObject {
3 C(owner: this.owner) f;
4 C(owner: this) g;
5 C(owner: Object) h;
6

7 void m() {
8 this.f = new C(owner = this.owner);
9 this.g = new C(owner = this);

10 g.f = new C(owner = this);
11 g.g = new C(owner = this); // error
12 h.h = new C(owner = this); // error
13 }
14 }

The type of g.f is C(owner: this) and therefore the assign-
ment on line 10 is valid. On line 11 the type of g.g is C(owner:
Object), but this type may not be used for an update, as informa-
tion about the concrete type was lost. Finally, on line 12, the type
of h.h is C(owner: Object) and no information was lost, so de-
pendent classes would allow this update. But the type of the re-
ceiver h, C(owner: Object), has neither this nor this.owner
as owner. Therefore the additional checks for the owner-as-modifier
discipline prevent this update.

5.3 Map Example
The map example is encoded as follows. Note that we implicitly
use OwnedObject as superclass of all classes.

class Map< K, V >(Object owner) {
Node<K, V>(owner: this) first;

void put(K key, V value) {
Node<K, V>(owner: this) newfirst;
newfirst = new Node<K, V>(owner = this);
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
Iter<K, V>(owner: this.owner) i = iterator();
while (i.hasNext()) {...}
return null;

}

Iter<K, V>(owner: this.owner) iterator() {
IterImpl<K, V>(owner: this.owner,

map: this) res;
res = new IterImpl<K, V>(owner=this.owner,

map=this);
res.setCurrent(first);
return res;

}
}

class Node< K, V >(Object owner) {
K key; V value;
Node<K, V>(owner: this.owner) next;
void init(K k, V v,

Node<K, V>(owner: this.owner) n) {
key = k; value = v; next = n;

}
}

interface Iter< K, V >(Object owner) {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class IterImpl< K, V >(Object owner,
Map<K, V>(owner: Object) map)

implements Iter< K, V > {
Node<K, V>(owner: this.map) current;

void setCurrent(Node<K, V>(owner: this.map) c)
{ current = c; }

K getKey() { return current.key; }
V getValue() { return current.value; }
boolean hasNext() { return current != null; }
next() { current = current.next; }

}

class ID(Object owner) { ... }
class Data(Object owner) { ... }

class Client(Object owner) {
void main(Data(owner: root) value) {
Map<ID(owner: this), Data(owner: root)>

(owner: this) map;
map = new Map<ID(owner: this),

Data(owner: root)>(owner=this);
map.put(new ID(owner = this), value);
Iter<ID(owner: this),

Data(owner: root)>(owner: this) iter;
iter = map.iterator();
ID(owner: this) id = iter.getKey();

}
}

6. Encoding Ownership Domains
In this section, we present an encoding of the topology of own-
ership domains and show how to translate an ownership domains
program into a dependent classes program.

6.1 Topology for Ownership Domains
The topology for ownership domains is encoded similarly to Uni-
verse types, but we add an additional level: objects are owned by
domains and domains are in turn owned by objects. To prevent re-
cursion between the classes, we add appropriate superclasses that
abstract away the owner information. Consider the following defi-
nitions:
class Object {...}
class OObject extends Object {...}
class Domain extends Object {...}
class PublicDomain(OObject owner) extends Domain {...}
class PrivateDomain(OObject owner) extends Domain {...}

class OwnedObject(Domain owner) extends OObject {
final PrivateDomain(owner: this) owned =
new PrivateDomain(owner=this);

static final PublicDomain(owner: null) shared =
new PublicDomain(owner=null);

}

The classes OObject and Domain do not specify an owner in
order to break the recursion. Two subclasses of Domain are used to

introduce the dependency on an owning object and to distinguish
between public and private domains.

Class OwnedObject depends on an arbitrary domain as its
owner and declares two additional fields. Field owned is a default
private domain in ownership domains that is used to encapsulate
the representation of an object. Each object also has access to a
public domain shared. As we use the references to Domains in
dependent types, these fields have to be declared final. The field
shared is declared static; therefore, only one public domain
object is created and used by all OwnedObjects.

We added the distinction between Object and OObject in
order to ensure that in the ownership tree we always alternate
between domains and owned objects. As class Domain is not a
subtype of class OObject, the type system can directly prevent that
a domain owns another domain.

Consider the following simple ownership domains program:

class D {}
class C<data> {
owned D f = new D();
void m(data D p) { /*...*/ }

}
class Demo {
domain store;
store D d;
void main() {
owned C<store> s;
s.m(d);

}
}

which can be encoded as the following dependent classes program:

class C(Domain owner, Domain data)
extends OwnedObject {
D(owner: this.owned) f = new D(owner=this.owned);
void m(D(owner: this.data) p) {...}

}
class Demo(Domain owner)
extends OwnedObject {
final PrivateDomain(owner: this) store =
new PrivateDomain(owner=this);

D(owner: this.store) d;
void main() {
C(owner: this.owned, data: this.store) s;
s.m(d);

}
}

Note that this encoding of ownership domains can also be used
to express Universe types. The owned domain corresponds to the
representation domain and the owner domain corresponds to the
peer domain. Dependent classes also allow one to express arbitrary
owners by using OObject as type for the owner.

6.2 Translation
Translating a program that uses ownership domains into a program
that uses dependent classes is achieved by the following program
transformation:

• Each class declaration adds a dependency on the domain
owner. Formal domain parameters are turned into additional
dependent fields. If no superclass is specified explicitly, class
OwnedObject is used. For instance, the declaration

class D<domain dom> {...}

is translated into

class D(Domain owner, Domain dom)
extends OwnedObject {...}

• Each domain declaration is translated into a normal field of the
corresponding Domain subtype. The program fragment

domain dom;
public domain pubdom;

is translated to the new fields

final PrivateDomain(owner: this) dom =
new PrivateDomain(owner=this);

final PublicDomain(owner: this) pubdom =
new PublicDomain(owner=this);

• Uses of domains as owners of types are translated to corre-
sponding dependencies on the owner field. The type

dom C

becomes

C(owner: this.dom)

• Uses of domains as actual arguments are changed to arguments
for the corresponding field. The type

owned D<data>

becomes

D(owner: this.owned, dom: this.data)

• The link and assume declarations from ownership domains are
preserved in the dependent classes program. In the following
examples, we continue to use the ownership domains syntax,
but one can easily devise a conversion to stylized comments or
annotations.

Checking whether such a translated program conforms to the
encapsulation system that is specified by the link and assume dec-
laration works like in ownership domains. The link and assume
declarations are kept in the translated program and can be used to
check the link soundness property. Also, the restrictions on link
declarations can be checked as in ownership domains. For a de-
tailed discussion of these rules see Sections 2.5 and 3.3 of [2].

6.3 Map Example
Below we show parts of an encoding into dependent classes of the
ownership domains example from Section 2.1. The complete own-
ership domains code can be found in Appendix A.3 and the corre-
sponding encoding in Appendix A.4. Note that we again implicitly
use OwnedObject as superclass of all classes.

The class and domain declarations from ownership domains:

1 class Map< keyD, valueD > {
2 domain nodes;
3 public domain iters;

are translated to a corresponding dependency of the class and to
fields that represent the domains:

1 class Map< K, V >(Domain owner) {
2 final PrivateDomain(owner: this) nodes =
3 new PrivateDomain(owner=this);
4 final PublicDomain(owner: this) iters =
5 new PublicDomain(owner=this);

The declaration of field first in ownership domains:

7 nodes Node<keyD, valueD> first;

corresponds to:

9 Node<K, V>(owner: nodes) first;

where the ownership is expressed as dependency for the owner
field. The following ownership domains program uses class Map:

64 class Client {
65 domain mydata;
66

67 void main(shared Data value) {
68 final mydata Map<mydata, shared> map;
69 map = new Map<mydata, shared>();
70 map.put(new ID(), value);
71 map.iters Iter<mydata, shared> iter;
72 iter = map.iterator();
73 mydata ID id = (ID) iter.getKey();
74 }
75 }

This is translated into the following dependent classes program:

66 class Client(Domain owner) {
67 final PrivateDomain(owner: this) mydata =
68 new PrivateDomain(owner=this);
69

70 void main(Data(owner: root) value) {
71 final Map<ID(owner: mydata), Data(owner: shared)>
72 (owner: mydata) map = new Map<ID(owner: mydata),
73 Data(owner: shared)>(owner=mydata);
74 map.put(new ID(owner = mydata), value);
75 Iter<ID(owner: mydata), Data(owner: shared)>
76 (owner: map.iters) iter = map.iterator();
77 ID(owner: mydata) id = iter.getKey();
78 }
79 }

Note how the type of local variable iter can directly express the
path-dependent owner.

7. Examples using MVC
The authors of [23] provide an interpreter called MVC for the vcn

calculus [22]. In this section, we present several examples using
MVC — to ensure that our understanding of the calculus is correct
and to highlight some interesting cases.

The input language of the MVC interpreter follows the formal
calculus vcn quite closely. It only supports a restrictive language
that consists of dependent classes and only supports three kinds of
expressions: the this reference, reading a field of an expression,
and creating new objects. Methods are also encoded as classes
and method calls are encoded as object creation. MVC also does
not support the omission of fields in type declarations. The input
language omits the class and new keywords. Unfortunately, the
supported language subset is too restricted for many interesting
examples.

In the following we only perform experiments with encoding the
ownership topology in dependent classes. Implementing the trans-
lation and checking the encapsulation properties is future work.

We encode the ownership hierarchy as:

Object
OObject(Object owner) extends Object
Root extends Object

We always use the following two classes:

Data(Object owner) extends OObject
Main(Object owner) extends OObject

do(Main(owner: Object) target, Object arg)
: Object extends Object {
...

}
main() : Object extends Object {
do(Main(Root), Data(Root))

}

which corresponds to:

class Main {
void do(any Object arg) {
...

}

public static void main(String[] args) {
new peer Main().do(new peer Data());

}
}

In the experiments below, this basic framework will be extended
by additional classes and an implementation of method do.

Peer Experiments As a first example, we model the class

class TestPeer {
void foo(peer Object p) {}
void bar(peer Object p, peer Object q) {
foo(q)

}
}

in dependent classes:

TestPeer(Object owner) extends OObject

foo(TestPeer(owner: Object) target,
OObject(owner: this.target.owner) p)

: Object extends Object {
this

}

bar(TestPeer(owner: Object) target,
OObject(owner: this.target.owner) p,
OObject(owner: this.target.owner) q)

: Object extends Object {
foo(this.target, this.q)

}

Note how the types of p and q express that the referenced
object has the same owner as the target object, exactly reflecting the
meaning of a peer annotation in Universe types. Now we declare:

class Main {
void do(any Object arg)
new peer TestPeer.foo(new peer Data());

}
...

}

which corresponds to the following dependent class program,
which is accepted by the MVC interpreter:

do(Main(owner: Object) target, Object arg)
: Object extends Object {
// OK
foo(TestPeer(this.target.owner),

Data(this.target.owner))
}

Other valid implementations for method do are:

foo(TestPeer(this.target),
Data(this.target)) // and

bar(TestPeer(this.target),
Data(this.target), Data(this.target))

which correspond to:

new rep TestPeer().foo(new rep Data()); // and
new rep TestPeer().bar(new rep Data(),

new rep Data());

In contrast, if we use:

foo(TestPeer(this.target),
Data(this.target.owner))

which corresponds to:

new rep TestPeer().foo(new peer Data());

as body of class do, the MVC interpreter reports a type error.
This correctly reflects that the method is called on a TestPeer

object that is owned by object target, and that as argument we
get a Data object that is owned by the owner of target. This
does not match the declaration of class foo, which requires that
the argument has the same owner as the target.

Other invalid implementations of method do are:

bar(TestPeer(this.target.owner),
Data(this.target), Data(this.target)) // and

bar(TestPeer(this.target),
Data(this.target.owner), Data(this.target))

which correspond to

new peer TestPeer().bar(new rep Data(),
new rep Data()); // and

new rep TestPeer().bar(new peer Data(),
new rep Data());

All of these examples illustrate violations of Universe type
rules, which are caught by the dependent class type checker.

Rep Experiments Next, we investigate the following program
that uses the rep modifier

class TestRep {
void bar(rep Object p) {}

}

Note that in Universe types this method is only callable on the
receiver this. Any other receiver could not be allowed, as the
correct type for the argument is not expressible in Universe types.
Class TestRep can be translated into dependent classes as:

TestRep(Object owner) extends OObject

bar(TestRep(owner: Object) target,
OObject(owner: this.target) p)

: Object extends Object {
this

}

The type of parameter p expresses that the argument must be
owned by the receiver of the method call. In dependent classes the
type for the argument is expressible and therefore the method is
callable on receivers other than this. Now we declare class Main
as follows:

do(Main(owner: Object) target,
TestRep(owner: Object) arg)

: Object extends Object {
bar(this.arg, Data(this.arg))

}

main() : Object extends Object {
do(Main(Root), TestRep(Root))

}

which corresponds to the following class that uses path-dependent
Universe types [40]:

class Main {
void do(any TestRep arg)
arg.bar(new arg.rep Data());

}

public static void main(String[] args) {

new peer Main().do(new peer TestRep());
}

}

Note how a new data object is created that is owned by the
receiver of the method call. The above dependent classes code
passes through the MVC interpreter. This demonstrates the greater
flexibility that is achieved by using dependent classes. If the body
of do is changed to the following dependent classes code

bar(this.arg, Data(this.owner))

we get an error message from the interpreter, because the argument
is not owned by the receiver of the call.

Any Experiments Finally, we experiment with the any modifier.
The following Java program with JML annotations

class TestAny {
void anyarg(any Object a) {}
void ach(any Object p, any Object q) {}

void tung(any Object p, any Object q)
/*@ requires p.owner == q.owner; @*/
{}

}

declares methods ach and tung. Method ach accepts two refer-
ences to objects with arbitrary owners.

The declared types of the parameters of method tung are the
same and the type system also allows two arbitrary objects. But a
JML precondition ensures that the two arguments have the same
owner, that is, that they are in the same domain. Universe types can
not express this constraint in the type system and the programmer
needs to verify that the precondition always holds. However, in the
dependent classes translation of the above program, we can express
the constraint on method tung:

TestAny(Object owner) extends OObject

testpeer(OObject(owner: Object) a,
OObject(owner: this.a.owner) b)

: Object extends Object

anyarg(TestAny(owner: Object) target, Object a)
: Object extends Object

ach(TestAny(owner: Object) target,
OObject(owner: Object) p,
OObject(owner: Object) q)

: Object extends Object {
anyarg(this.target, this.p)

}

tung(TestAny(owner: Object) target,
OObject(owner: Object) p,
OObject(owner: this.p.owner) q)

: Object extends Object {
testpeer(this.q, this.p)

}

The following dependent classes program passes the MVC type
checks:

do(Main(owner: Object) target, Object arg)
: Object extends Object {
tung(TestAny(this.target),

Data(this.arg), Data(this.arg))
}

It corresponds to the following program with path-dependent Uni-
verse types:

class Main {
void do(any Object arg) {
new rep TestAny().tung(new arg.rep Data(),

new arg.rep Data());
}

}

Both arguments of the call to tung are owned by object arg and the
precondition is fulfilled. In contrast, the following implementation
of method do creates an error message from MVC because the
owners of the two arguments do not match, and dependent classes
can detect this error:

do(Main(owner: Object) target,
OObject(owner: Object) arg)

: Object extends Object {
tung(TestAny(this.target),

Data(this.arg.owner), Data(this.arg))
}

Summary It was possible to express some interesting examples
in the MVC input language and we received the expected results.
However, the restrictive language prevented us from doing more
involved examples.

8. Related and Future Work
8.1 Related Work
This paper presents first ideas for how ownership type systems can
be combined with a dependent classes system. The only previous
mention of ownership and virtual classes that we know of is one
paragraph in [13] and the abstract of [11]. Unfortunately, there is
no paper that corresponds to [11]. For dependent classes, we know
of no previous work on expressing ownership.

The dependent classes paper [23] provides additional examples,
discusses the relation to virtual classes and multiple dispatch, for-
malizes the semantics, proves soundness and completeness, and
discusses the relation of the single-dispatch subset of dependent
classes to several virtual class calculi. The authors also provide an
Isabelle formalization of the type soundness proof and the inter-
preter MVC for the calculus written in Haskell [22].

The dynamic ownership encoding used in Spec# [29] is similar
to the approach we took here. However, Spec# uses a ghost field
to store the reference to the owner object and relies on theorem
proving to check ownership, whereas we use an ordinary field and
the type checker of dependent classes. Spec# supports ownership
transfer, which is not permitted by dependent classes.

Like our translation to dependent classes, Ownership Generic
Java [37] hijacks another type system to express and check own-
ership, in their case Java’s generics. We believe that our encoding
is more direct because dependent classes are already parameterized
by objects.

8.2 Extending the Translation
An interesting question is the possible runtime overhead of using
dependent classes. The dependencies in dependent classes are re-
flected at runtime to allow dynamic dispatch. In contrast, owner-
ship domains do not need to preserve the reference to the owning
domain at runtime. Only domain arguments need to be stored at
runtime. Maybe dependent classes could be extended to allow de-
pendent fields that are only used for static checking, but which are
not preserved at runtime. For an encoding of Universe types into
dependent classes the ownership information needs to be preserved
at runtime, because references with arbitrary owners can be cast
to references with a specific owner. Such a downcast needs to be
checked at runtime and needs the ownership information.

The Isabelle proofs of dependent classes [23] could be com-
bined with our proofs of the Universe type system [26] to show the
well-formedness and equivalence of the encoding. Independently,
the dependent classes proofs could be extended to prove general
ownership properties, for instance, the tree structure or that a spe-
cific encapsulation system is enforced.

Once the system is formalized, an implementation of the trans-
lation of the ownership type systems and of the encapsulation
checkers will allow case studies to be performed.

8.3 Extending Dependent Classes
The recently proposed multiple ownership system [9] generalizes
ownership from tree structures to directed acyclic graphs. These
DAGs cannot be directly encoded in dependent classes, as each
dependent field only gets exactly one argument. One could envision
to solve this problem using arrays as owners.

Some ownership type systems allow ownership transfer [14,
33]. In dependent classes all dependent fields are final and cannot
be changed. It will be interesting to see whether the ideas of own-
ership transfer can be generalized to transfer in dependent classes.

8.4 Extending Ownership Type Systems
We are investigating how the increased expressiveness of depen-
dent classes can be used for ownership type systems.

External Domain Declarations Should one only allow depen-
dent classes programs that were generated from an ownership do-
mains or Universe types program or should more flexible programs
be allowed? For example, programs that are generated from our
transformation only contain domains that have the current object as
owner. If we allow arbitrary programs, we might write

class C {
final Object x;
final PublicDomain(owner: x) f =
new PublicDomain(owner=x);

}

This would add an additional public domain to object x, some-
thing that cannot be expressed in ownership domains. This might
be useful to associate some extra data with an object, but the impli-
cations of such flexibility have to be studied carefully. For example,
ownership domains forbid to create an object in a public domain of
an other object. Objects in a public domain can gain access to pri-
vate domains by corresponding link declarations. If anyone could
create objects in a public domain the security of the system could
be subverted.

Static Domains The only domain that is globally accessible in
ownership domains is shared, the root domain of the system.
In our translation, we modeled this with a static field in class
OwnedObject:

static final PublicDomain(owner: null) shared =
new PublicDomain(owner=null);

We are investigating the use of other static domains to model
the sharing between objects, that are in different locations in the
ownership tree.

class Data(Domain owner) {
int do() { ... }

}
class Demo(Domain owner) {
static final PrivateDomain(owner: null) cache =
new PrivateDomain(owner=null);

static Data(owner: Demo.cache) data = null;

public int do() {

if(data == null) {
data = new Data(owner=Demo.cache);

}
return data.do();

}
}

Objects of class Data provide some functionality, in the above
example for simplicity the computation of some integer. Class Demo
declares a static private domain cache and uses this domain as
owner for the static field data. The instance method do checks
whether the Data object was already created, creates one if neces-
sary, and uses it for the computation. Different instances of class
Demo have different owners, but all of them share the same cache
domain. This allows us to share objects just between the objects of
some class and to control the access to these objects. If we used the
global shared domain instead, we would lose all knowledge about
the shared objects.

Encapsulation Systems The flexibility to express more topologi-
cal structures makes it necessary to also investigate corresponding
encapsulation systems. The link declarations of ownership domains
allow one to express many disciplines, but the resulting structures
can become complex [34]. The owner-as-dominator and owner-as-
modifier disciplines are simpler to apply, but forbid the use of some
ownership topologies. Finding the right balance between flexibility,
ease of use, and guaranteeing certain properties remains an open is-
sue.

9. Conclusions
In this paper we presented first results on how different ownership
type systems can be expressed on top of dependent classes. Our
contributions are three-fold. First, we analyze how the topological
structure of ownership type systems can be encoded in dependent
classes. Second, we describe how programs that use ownership do-
mains and Universe types can be translated into corresponding de-
pendent classes programs. Third, we discuss how the encapsula-
tion properties can be checked directly on the dependent classes
program.

Is the research in ownership type systems over, once we have
a mapping into dependent classes? Definitely not. Ownership type
systems provide a concise and expressive language to express de-
sired encapsulation properties. Writing them directly in dependent
classes might be possible, but would be very tedious for the pro-
grammer or specifier.

Also, one might take advantage of the additional information
and constraints available in an ownership type system. For example,
in Generic Universe Types [17], we use the knowledge that the
owner-as-modifier discipline is enforced to allow more flexible
subtyping. This information would be lost in the translation to
dependent classes.

On the other hand, basing future ownership type systems on de-
pendent classes might simplify the soundness proofs, give more
expressiveness, and allow the experimentation with different en-
capsulation systems.

Acknowledgments
We are grateful to Joseph N. Ruskiewicz and the FOOL ’08 re-
viewers for their helpful comments, and to Vaidas Gasiunas for im-
provements to the MVC interpreter and helpful comments. This
work was funded in part by the Information Society Technologies
program of the European Commission, Future and Emerging Tech-
nologies under the IST-2005-015905 MOBIUS project.

References
[1] J. Aldrich. Using Types to Enforce Architectural Structure. PhD

thesis, University of Washington, 2003.

[2] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing
policy from mechanism. In M. Odersky, editor, European Conference
on Object-Oriented Programming (ECOOP), volume 3086 of LNCS,
pages 1–25. Springer-Verlag, 2004.

[3] C. Andrea, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao. Scoped
types and aspects for real-time systems. In European Conference on
Object-Oriented Programming (ECOOP), LNCS. Springer-Verlag,
2006.

[4] A. Banerjee and D. Naumann. Representation independence,
confinement, and access control. In Principles of Programming
Languages (POPL), pages 166–177. ACM, 2002.

[5] C. Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, MIT, 2004.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 211–230. ACM, 2002.

[7] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object
encapsulation. In Principles of Programming Languages (POPL),
pages 213–223. ACM, 2003.

[8] C. Boyapati, A. Salcianu, Jr. W. Beebee, and M. Rinard. Ownership
types for safe region-based memory management in real-time Java.
In Programming language design and implementation (PLDI), pages
324–337. ACM, 2003.

[9] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple
ownership. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 441–460. ACM, 2007.

[10] D. Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, 2001.

[11] D. Clarke. Nested classes, nested objects and ownership. Invited talk
at FOOL/WOOD ’06, www.research.att.com/~kfisher/FOOL/
FOOLWOOD06/program.html#clarke, 2006.

[12] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 292–310.
ACM, 2002.

[13] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe:
A simple virtual class calculus. In Aspect-Oriented Software
Development (AOSD), 2007.

[14] D. Clarke and T. Wrigstad. External uniqueness is unique enough. In
European Conference on Object-Oriented Programming (ECOOP),
2003.

[15] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 33(10). ACM,
1998.

[16] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, and
P. Müller. UT: Type Soundness for Universe Types. To appear.

[17] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In E. Ernst, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 4609 of LNCS, pages 28–53.
Springer-Verlag, 2007.

[18] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8), 2005.

[19] E. Ernst. gbeta – a Language with Virtual Attributes, Block Structure,
and Propagating, Dynamic Inheritance. PhD thesis, Department of
Computer Science, University of Aarhus, Århus, Denmark, 1999.

[20] E. Ernst. Family polymorphism. In J. L. Knudsen, editor, European
Conference on Object-Oriented Programming (ECOOP), volume
2072 of LNCS, pages 303–326. Springer-Verlag, 2001.

[21] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class calculus.
In Principles of programming languages (POPL), pages 270–282.
ACM, 2006.

[22] V. Gasiunas, M. Mezini, and K. Ostermann. vcn - a calculus for multi-
dimensional virtual classes. www.st.informatik.tu-darmstadt.
de/static/pages/projects/mvc/index.html.

[23] V. Gasiunas, M. Mezini, and K. Ostermann. Dependent classes. In
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 133–152. ACM, 2007.

[24] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Ho lt. The
Geneva convention on the treatment of object aliasing. OOPS
Messenger, Report on ECOOP’91 workshop W3, 3(2):11–16, 1992.

[25] A. Igarashi and M. Viroli. Variant path types for scalable extensi-
bility. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 113–132. ACM, 2007.

[26] M. Klebermaß. An Isabelle formalization of the Universe type
system. Master’s thesis, ETH Zurich, 2007. sct.inf.ethz.ch/
projects/student_docs/Martin_Klebermass/.

[27] N. Krishnaswami and J. Aldrich. Permission-based ownership:
encapsulating state in higher-order typed languages. In Programming
language design and implementation (PLDI), pages 96–106. ACM,
2005.

[28] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, and J. Kiniry. JML reference manual. Department
of Computer Science, Iowa State University. Available from www.
jmlspecs.org, 2006.

[29] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts.
In M. Odersky, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 3086 of LNCS, pages 491–516.
Springer-Verlag, 2004.

[30] O. L. Madsen and B. Møller-Pedersen. Virtual classes - a powerful
mechanism in object-oriented programming. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).
ACM, 1989.

[31] P. Müller. Modular Specification and Verification of Object-Oriented
programs, volume 2262 of LNCS. Springer-Verlag, 2002.

[32] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures. Science of Computer Programming,
62:253–286, 2006.

[33] P. Müller and A. Rudich. Ownership transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 461–478. ACM, 2007.

[34] S. Nägeli. Ownership in design patterns. Master’s thesis, ETH
Zurich, 2006. sct.inf.ethz.ch/projects/student_docs/
Stefan_Naegeli/.

[35] J. Noble, J. Vitek, and J. M. Potter. Flexible alias protection. In E. Jul,
editor, European Conference on Object-Oriented Programming
(ECOOP), volume 1445 of LNCS. Springer-Verlag, 1998.

[36] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory
of objects with dependent types. In L. Cardelli, editor, European
Conference on Object-Oriented Programming (ECOOP), volume
2743 of LNCS, pages 201–224. Springer-Verlag, 2003.

[37] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for
generic Java. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 311–324. ACM, 2006.

[38] C. Saito, A. Igarashi, and M. Viroli. Lightweight family polymor-
phism. Journal of Functional Programming, 2007.

[39] A. Salcianu and M. C. Rinard. Purity and side effect analysis for
Java programs. In Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 3385 of LNCS, pages 199–215.
Springer-Verlag, 2005.

[40] D. Schregenberger. Universe type system for Scala. Master’s thesis,
ETH Zurich, 2007. sct.inf.ethz.ch/projects/student_
docs/Daniel_Schregenberger/.

A. More Example Material
A.1 Un-annotated Map Example
For reference, here is the un-annotated source code for the map
example.
class Map< K, V > {
Node<K, V> first;

void put(K key, V value) {
Node<K, V> newfirst = new Node<K, V>();
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
Iter<K, V> i = iterator();
while (i.hasNext()) {
if (i.getKey().equals(key))

return i.getValue();
i.next();

}
return null;

}

Iter<K, V> iterator() {
IterImpl<K, V> res = new IterImpl<K, V>();
res.setCurrent(first);
return res;

}
}

class Node< K, V > {
K key; V value; Node<K, V> next;
void init(K k, V v, Node<K, V> n)
{ key = k; value = v; next = n; }

}

interface Iter< K, V > {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class IterImpl< K, V > implements Iter< K, V > {
Node<K, V> current;

void setCurrent(Node<K, V> c) { current = c; }
K getKey() { return current.key; }
V getValue() { return current.value; }
boolean hasNext() { return current != null; }
void next() { current = current.next; }

}

class ID { /*...*/ }
class Data { /*...*/ }

class Client {
void main(Data value) {
Map<ID, Data> map = new Map<ID, Data>();
map.put(new ID(), value);
Iter<ID, Data> iter = map.iterator();
ID id = iter.getKey();

}
}

A.2 Ownership Types
The first type system that was expressive enough for common
design idioms was ownership types [35, 15].

Ownership Generic Java (OGJ) [37] uses Java 5 style type
parametrization to encode the ownership information. This allows

the authors to reuse parts of the Featherweight Generic Java for-
malization and makes the formalization of OGJ elegant.

Ownership types can be encoded in ownership domains. The
default links and assumptions in ownership domains enforce the
owner-as-dominator property that is also enforced by ownership
types.

The map example can be written in OGJ as

class Map< K extends Object<KOwner>,
V extends Object<VOwner>,
Owner extends World > {

Node<K, V, This> first;

void put(K key, V value) {
Node<K, V, This> newfirst;
newfirst = new Node<K, V, This>();
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
Iter<K, V, Owner> i = iterator();
while (i.hasNext()) {...}
return null;

}

Iter<K, V, Owner> iterator() {
IterImpl<K, V, Owner> res;
res = new IterImpl<K, V, Owner>();
res.setCurrent(first);
return res;

}
}

class Node< K, V, Owner extends World > {
K key; V value; Node<K, V, Owner> next;
void init(K k, V v, Node<K, V, Owner> n) {
key = k; value = v; next = n;

}
}

interface Iter< K, V > {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class Client< Owner extends World > {
void main(Data<World> value) {
Map<ID<This>, Data<World>, This> map;
map = new Map<This>();
map.put(new ID<This>(), value);
Iter<ID<This>, Data<World>, This> iter;
iter = map.iterator();
ID<This> id = iter.getKey();

}
}

A.3 Ownership Domains
The ownership domains code in this paper was tested with Arch-
Java 1.3.2. ArchJava only supports parameterization by domains,
not by types.

The complete non-type-generic map example is

class Map< keyD, valueD > {
domain nodes;
public domain iters;

link iters -> nodes;

nodes Node<keyD, valueD> first;

void put(keyD Object key, valueD Object value) {
nodes Node<keyD, valueD> newfirst;
newfirst = new Node<keyD, valueD>();
newfirst.init(key, value, first);
first = newfirst;

}

valueD Object get(keyD Object key) {
iters Iter<keyD, valueD> i = iterator();
while (i.hasNext()) {
if (i.getKey().equals(key))

return i.getValue();
i.next();

}
return null;

}

iters Iter<keyD, valueD> iterator() {
iters IterImpl<keyD, valueD, nodes> res =

new IterImpl<keyD, valueD, nodes>();
res.setCurrent(first);
return res;

}
}

class Node< keyD, valueD > {
keyD Object key; valueD Object value;
owner Node<keyD, valueD> next;
void init(keyD Object k, valueD Object v,

owner Node<keyD, valueD> n)
{ key = k; value = v; next = n; }

}

interface Iter< keyD, valueD > {
keyD Object getKey();
valueD Object getValue();
boolean hasNext();
void next();

}

class IterImpl< keyD, valueD, nodeD>
implements Iter<keyD, valueD> {
nodeD Node<keyD, valueD> current;

void setCurrent(nodeD Node<keyD, valueD> c)
{ current = c; }

keyD Object getKey() { return current.key; }
valueD Object getValue() { return current.value; }
boolean hasNext() { return current != null; }
void next() { current = current.next; }

}

class ID { /*...*/ }
class Data { /*...*/ }

class Client {
domain mydata;

void main(shared Data value) {
final mydata Map<mydata, shared> map;
map = new Map<mydata, shared>();
map.put(new ID(), value);
map.iters Iter<mydata, shared> iter;
iter = map.iterator();
mydata ID id = (ID) iter.getKey();

}
}

The following version follows the syntax of [2], but could not
be checked with a compiler.

class Map< K, V > {
domain nodes;
public domain iters;
link iters -> nodes;

nodes Node<K, V> first;

void put(K key, V value) {
nodes Node<K, V> newfirst;
newfirst = new nodes Node<K, V>();
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
iters Iter<K, V> i = iterator();
while (i.hasNext()) {...}
return null;

}

iters Iter<K, V> iterator() {
iters IterImpl<K, V, nodes> res =

new iters IterImpl<K, V, nodes>();
res.setCurrent(first);
return res;

}
}

class Node< K, V > {
K key; V value; owner Node<K, V> next;
void init(K k, V v, owner Node<K, V> n)
{ key = k; value = v; next = n; }

}

interface Iter< K, V > {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class IterImpl< K, V, domain nodes>
extends Iter<K, V> {
nodes Node<K, V> current;

void setCurrent(nodes Node<K, V> c)
{ current = c; }

K getKey() { return current.key; }
V getValue() { return current.value; }
boolean hasNext() { return current != null; }
void next() { current = current.next; }

}

class Client {
domain mydata;

void main(shared Data value) {
final mydata Map<mydata ID, shared Data> map;
map = new mydata Map<mydata ID, shared Data>();
map.put(new mydata ID(), value);
map.iters Iter<mydata ID, shared Data> iter;
iter = map.iterator();
mydata ID id = iter.getKey();

}
}

A.4 Ownership Domains Encoded in Dependent Classes
The following code is the encoding of the map example using
dependent classes.

class Map< K, V >(Domain owner) {
final PrivateDomain(owner: this) nodes =

new PrivateDomain(owner=this);
final PublicDomain(owner: this) iters =
new PublicDomain(owner=this);

link iters -> nodes;

Node<K, V>(owner: nodes) first;

void put(K key, V value) {
Node<K, V>(owner: nodes) newfirst;
newfirst = new Node<K, V>(owner = nodes);
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
Iter<K, V>(owner: iters) i = iterator();
while (i.hasNext()) {...}
return null;

}

Iter<K, V>(owner: iters) iterator() {
IterImpl<K, V>(owner: iters,

nodes: this.nodes) res;
res = new IterImpl<K, V>(owner=iters,

nodes=this.nodes);
res.setCurrent(first);
return res;

}
}

class Node< K, V >(Domain owner) {
K key; V value;
Node<K, V>(owner: this.owner) next;
void init(K k, V v,

Node<K, V>(owner: this.owner) n) {
key = k; value = v; next = n;

}
}

interface Iter< K, V >(Domain owner) {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class IterImpl< K, V >(Domain owner,
Domain nodes)

implements Iter< K, V > {
Node<K, V>(owner: this.nodes) current;

void setCurrent(Node<K, V>(owner: this.nodes) c)
{ current = c; }

K getKey() { return current.key; }
V getValue() { return current.value; }
boolean hasNext() { return current != null; }
next() { current = current.next; }

}

class ID(Domain owner) { ... }
class Data(Domain owner) { ... }

class Client(Domain owner) {
final PrivateDomain(owner: this) mydata =
new PrivateDomain(owner=this);

void main(Data(owner: root) value) {
final Map<ID(owner: mydata), Data(owner: shared)>

(owner: mydata) map = new Map<ID(owner: mydata),
Data(owner: shared)>(owner=mydata);

map.put(new ID(owner = mydata), value);

Iter<ID(owner: mydata), Data(owner: shared)>
(owner: map.iters) iter = map.iterator();

ID(owner: mydata) id = iter.getKey();
}

}

A.5 Universe Types
The description of the Universe type system in [18] discussed how
the ownership structure can be enforced by an encoding as object
invariants. For this purpose, a ghost field (a specification-only field)
owner is declared in class java.lang.Object and for a peer field
pf the invariant

invariant pf == null || pf.owner == this.owner;

is added to the object invariant of the declaring class. Similarly, for
a rep field rf the invariant

invariant rf == null || rf.owner == this;

is added. Fields with the any modifier do not give rise to an
additional invariant.

Instead of expressing ownership as invariant on a ghost field, we
make the dependency explicit in dependent classes.

Generic Universe Types [17] are implemented in an extension to
the MultiJava compiler and JML checker and runtime system [28].
The complete source code for the map example is

class Map< K, V > {
rep Node<K, V> first;

void put(K key, V value) {
rep Node<K, V> newfirst;
newfirst = new rep Node<K, V>();
newfirst.init(key, value, first);
first = newfirst;

}

pure V get(K key) {
peer Iter<K, V> i = iterator();
while (i.hasNext()) {
if (i.getKey().equals(key))

return i.getValue();
i.next();

}
return null;

}

pure peer Iter<K, V> iterator() {
peer IterImpl<K, V> res;
res = new peer IterImpl<K, V>();
res.setCurrent(first);
return res;

}
}

class Node< K, V > {
K key; V value; peer Node<K, V> next;
void init(K k, V v, peer Node<K, V> n)
{ key = k; value = v; next = n; }

}

interface Iter< K, V > {
pure K getKey();
pure V getValue();
pure boolean hasNext();
void next();

}

class IterImpl< K, V > implements Iter< K, V > {
any Node<K, V> current;

void setCurrent(any Node<K, V> c)
{ current = c; }

pure any K getKey() { return current.key; }
pure any V getValue()
{ return current.value; }

pure boolean hasNext()
{ return current != null; }

void next() { current = current.next; }
}

class ID { /*...*/ }
class Data { /*...*/ }

class Client {
void main(any Data value) {
rep Map<rep ID, any Data> map =

new rep Map<rep ID, any Data>();
map.put(new rep ID(), value);
rep Iter<rep ID, any Data> iter;
iter = map.iterator();
rep ID id = iter.getKey();

}
}

A.6 Universe Types Encoded in Dependent Classes
The following code is the encoding of the map example using
dependent classes.

class Map< K, V >(Object owner) {
Node<K, V>(owner: this) first;

void put(K key, V value) {
Node<K, V>(owner: this) newfirst;
newfirst = new Node<K, V>(owner = this);
newfirst.init(key, value, first);
first = newfirst;

}

V get(K key) {
Iter<K, V>(owner: this.owner) i = iterator();
while (i.hasNext()) {...}
return null;

}

Iter<K, V>(owner: this.owner) iterator() {
IterImpl<K, V>(owner: this.owner,

map: this) res;
res = new IterImpl<K, V>(owner=this.owner,

map=this);
res.setCurrent(first);
return res;

}
}

class Node< K, V >(Object owner) {
K key; V value;
Node<K, V>(owner: this.owner) next;
void init(K k, V v,

Node<K, V>(owner: this.owner) n) {
key = k; value = v; next = n;

}
}

interface Iter< K, V >(Object owner) {
K getKey();
V getValue();
boolean hasNext();
void next();

}

class IterImpl< K, V >(Object owner,
Map<K, V>(owner: Object) map)

implements Iter< K, V > {
Node<K, V>(owner: this.map) current;

void setCurrent(Node<K, V>(owner: this.map) c)
{ current = c; }

K getKey() { return current.key; }
V getValue() { return current.value; }
boolean hasNext() { return current != null; }
next() { current = current.next; }

}

class ID(Object owner) { ... }
class Data(Object owner) { ... }

class Client(Object owner) {
void main(Data(owner: root) value) {
Map<ID(owner: this), Data(owner: root)>

(owner: this) map;
map = new Map<ID(owner: this),

Data(owner: root)>(owner=this);
map.put(new ID(owner = this), value);
Iter<ID(owner: this),

Data(owner: root)>(owner: this) iter;
iter = map.iterator();
ID(owner: this) id = iter.getKey();

}
}

