
Object Ownership in Program Verification

Werner Dietl1 and Peter Müller2

1 University of Washington
wmdietl@cs.washington.edu

2 ETH Zurich
peter.mueller@inf.ethz.ch

Abstract. Dealing with aliasing is one of the key challenges for the
verification of imperative programs. For instance, aliases make it diffi-
cult to determine which abstractions are potentially affected by a heap
update and to determine which locks need to be acquired to avoid data
races. Object ownership was one of the first approaches that allowed
programmers to control aliasing and to restrict the operations that can
be applied to a reference. It thus enabled sound, modular, and automatic
verification of heap-manipulating programs. In this paper, we present
two ownership systems that have been designed specifically to support
program verification—Universe Types and Spec#’s Dynamic Ownership—
and explain their applications in program verification, illustrated through
a series of Spec# examples.

1 Introduction

Dealing with aliasing is one of the key challenges for the verification of imperative
programs. To understand some of the difficulties caused by aliasing, consider an
implementation of a list consisting of a list head and a linked node structure,
and two list instances l1 and l2. Typical verification tasks include:

1. Framing : Does a call to l1.Add affect properties of l2 such as l2’s length?
2. Invariants: Does a call to l1.Add possibly break the invariant of l2?
3. Locking : If each list method acquires the list head’s lock before performing a

list operation, can there be data races on the list structure?

The answers to these questions depend on aliasing. If l1 and l2 have disjoint
node structures then the answer to all three questions is “no”. However, if they
possibly share the nodes then the answer might be “yes”:

1. Appending a new node to the shared node structure affects l2’s length if the
length is computed by traversing the nodes until a null reference is reached.

2. Appending a node might also break l2’s invariant, for instance if l2 contains
a last field and the invariant last.next==null.

3. When two threads acquire the locks of l1 and l2, respectively, then they
might update the shared node structure concurrently, leading to a data race.

This example shows that program verifiers need information about aliasing to
decide when properties are preserved, which invariants to check, or which locks to
require for a heap access, to mention just some of the most common verification
tasks.

Early work on verifying heap-manipulating programs provided only partial
solutions to the problems caused by aliasing. Some techniques use an explicit
heap representation and require the user to reason about the consequences of each
heap update explicitly [59,28], which compromises abstraction and information
hiding. Moreover, the resulting proof obligations are non-modular and difficult to
prove automatically. Leino and Nelson [34,43] addressed the abstraction problem
by allowing a specification to provide information about the footprint of a heap
property without revealing the property itself; however, the resulting proof
obligations make heavy use of reachability predicates and are, thus, difficult to
discharge automatically. Yet another approach is to make unsound assumptions
about the effects of heap updates and to optimize the proof obligation to strike
a good balance between the errors that can be detected on one side and the
annotation overhead, modularity, and automation on the other side [24]. So
towards the end of the last millennium, there was no verification technique
for heap-manipulating programs that was sound, modular, and amenable to
automation.

This situation changed with the invention of object ownership and ownership
types [11]. Ownership provides two important benefits for program verification.
First, it allows programmers to describe the topology of heap data structures in
a simple and natural way, at least for hierarchical data structures. For instance,
ownership can express that two lists have disjoint node structures, without
resorting to reachability predicates. Ownership types provide an automatic
way of checking that an implementation conforms to the intended topology.
Hierarchical topologies help for instance with proving data race freedom. Second,
ownership can be used to define and enforce encapsulation disciplines, which
describe what references may exist in a program execution and which operations
may be performed on these references. For instance, an encapsulation discipline
may allow arbitrary objects (such as iterators) to read the nodes of a list, but
only allow the list header and its nodes to modify the node structure. Restricting
write accesses helps for instance with verifying object invariants.

In this paper, we summarize the topology and encapsulation disciplines that
are used in ownership-based program verification (Sec. 2) and present two ways
of enforcing them—a type system called Universe Types [49,22,18,20] and a
verification methodology called Dynamic Ownership [37] (Sec. 3). The main part
of the paper surveys applications of object ownership in program verification.
We discuss how the ownership topology is used for effect specifications, framing,
proving termination, and for defining the semantics of object invariants (Sec. 4).
Then we show how encapsulation disciplines on top of ownership systems are
used to verify object invariants, to define and check object immutability, and
to prove the absence of data races (Sec. 5). For each of these verification tasks,
we describe the problem, explain the ownership solution, and briefly summarize

2

1: Main

2: Person

3: Account

4: Person

5: Account

p1 p2

spouse

spouseaccount account

a1 a2

Fig. 1: Example of an ownership structure. Boxes and arrows depict objects and
references, respectively. Dashed boxes enclose the objects of an ownership context;
the owner of these objects sits atop the dashed box.

alternative solutions. We illustrate the ownership solutions using examples written
and verified in the Spec# system [3,41]. The Spec# examples as well as a
translation to Java with JML [33] and Universe annotations are available from
www.pm.inf.ethz.ch/publications/OwnershipInVerification/.

2 Ownership Topology and Encapsulation

This section gives a brief overview of the ownership topology and the encapsulation
disciplines that have been used to support program verification.

Topology. The ownership topology provides a hierarchical structure of the
objects in the heap. Each object is owned by at most one other object, its owner.
The ownership relation is acyclic, that is, the ownership topology is a forest of
ownership trees, and objects without owner are roots. The set of objects with
the same owner is called an ownership context.

Fig. 1 illustrates an ownership topology, where object 1 of class Main owns the
Person objects 2 and 4. Each of the Person objects owns an Account object. Since
Person objects own their Account objects, the ownership topology guarantees
that Account objects are never shared among Person objects.

Some ownership systems allow the ownership topology to change during the
execution of a program by supporting ownership transfer [12,37,53]. For simplicity,
we ignore ownership transfer in this paper; once an object has been assigned an
owner, the owner does not change for the remaining lifetime of the object.

Encapsulation. The ownership topology can be used to define various encap-
sulation disciplines that restrict references or interactions between objects. For
the verification of imperative programs, reasoning about side effects is one of
the key challenges. Therefore, the most widely used encapsulation discipline in
ownership-based verification is the owner-as-modifier discipline, which restricts

3

www.pm.inf.ethz.ch/publications/OwnershipInVerification/

the heap modifications that a method may perform. An alternative encapsulation
discipline is the owner-as-dominator discipline, which restricts the existence of
references.

The owner-as-modifier discipline [22,18] enforces that all modifications of an
object are initiated by the object’s owner. More precisely, when a method modifies
an object o then for each (transitive) owner o′ of o, the call stack contains a
method execution with o′ as receiver. For instance, whenever a method modifies
the Account object 3 in Fig. 1 then there must be method executions in progress
with objects 2 and 1 as receivers.

The owner-as-modifier discipline allows an object to control modifications of
the objects it (transitively) owns. In particular, the owner can prevent certain
modifications or maintain properties of the objects it owns. For instance, the
only way for Person object 4 to modify Account object 3 is to invoke a method
on object 3’s owner (object 2), which can then impose appropriate checks, for
instance, to maintain its own invariant.

In order to enforce the owner-as-modifier discipline modularly, a checker needs
to know which methods potentially modify the heap and which methods do not:
calls to methods with side effects (impure methods) must be restricted, whereas
side-effect free (pure) methods may be called on any object. For this purpose, we
assume that side-effect free methods are labelled as pure. How to check method
purity is beyond the scope of this paper [54,63].

The owner-as-dominator discipline [11] enforces that the owner o′ of an object
o is a dominator for every access path from a root of the ownership forest to
o. For instance, all access paths from object 1 to object 3 must pass through
object 3’s owner, object 2. The references a1 and a2 that bypass the owning
Person objects are not permitted in this discipline.

The owner-as-dominator discipline allows an object to control the existence of
access paths to the objects it (transitively) owns. Therefore, the owner controls
read and write access to these objects, which is for instance useful to enforce
locking strategies.

3 Enforcing Topology and Encapsulation

This section describes two alternative approaches to enforce the ownership
topology and encapsulation discipline: a type system called Universe Types and
a verification methodology called Dynamic Ownership.

3.1 Universe Types

Universe Types [20,21,19,22] is a static type system that enforces the ownership
topology and the owner-as-modifier encapsulation discipline as described in the
previous section.

4

Ownership Qualifiers. The type system equips each occurrence of a reference
type with one of five type qualifiers3. These ownership qualifiers describe the
position of an object in the ownership hierarchy relatively to the current object
this:

– peer indicates that an object has the same owner as the current object.
– rep (short for “representation”) indicates that an object is owned by the

current object.
– any indicates that no static knowledge about an object’s owner is available,

and the owner is arbitrary.
– lost indicates that no static knowledge about an object’s owner is available,

but there are constraints on the owner.
– self indicates that an object is the current object.

The example in Fig. 2 (left column) illustrates the use of ownership qualifiers.
A Person object has a reference to an Account, which is owned by the Person

object; therefore, the account field has a rep qualifier. A Person object and its
spouse share the same owner; therefore, the spouse field has a peer qualifier.
Instances of class Main own two Person objects as indicated by the rep qualifier
for the fields p1 and p2.

In Universe Types, the owner of an object is determined when the object is
created. The owner is indicated by a rep or peer qualifier in the new expression,
as illustrated by method Demo.

Viewpoint Adaptation. The ownership qualifier of a type depends on the
current object this. Therefore, when the current object changes, the ownership
qualifiers need to change as well. We call this process viewpoint adaptation. As a
simple example, consider class Person from Fig. 2. Field spouse has declared type
peer Person, expressing that the current Person instance and the referenced
person share the same owner. However, for any Person reference p, the type of
p.spouse is not necessarily the declared type peer Person. For instance, when
p is of type rep Person then p is owned by the current object this. Since p and
p.spouse have the same owner, p.spouse is also owned by this and, therefore,
has type rep Person. That is, the declared type of spouse was adapted to the
new viewpoint, this.

More formally, we define viewpoint adaptation of declared qualifier u ′ from
the viewpoint given by qualifier u to the current object this using function B,
which is defined as follows:

self B u′ = u′

peer B peer = peer

rep B peer = rep

u B any = any

u B u′ = lost otherwise

3 Arrays and instantiations of generic types may have more than one qualifier.

5

Universe Types:

class Account {
int value;

}

class Person {
rep Account account;
peer Person spouse;

Person () {
account = new rep Account ();
spouse = null;

}
}

class Main {
rep Person p1;
rep Person p2;

void Demo() {
p1 = new rep Person ();
p2 = new rep Person ();

p1.spouse = p2;
p2.spouse = p1;

any Account a1 = p1.account;
any Account a2 = p2.account;
int total = a1.value + a2.value;

// forbidden by Topology
p1.account = p2.account;
// forbidden by Encapsulation
a1.value += 10000;

}
}

Dynamic Ownership:

class Account {
int value;

}

class Person {
[Rep] Account account;
[Peer] Person spouse;

Person () {
account = new Account ();
spouse = null;

}
}

class Main {
[Rep] Person p1;
[Rep] Person p2;

void Demo() {
p1 = new Person ();
p2 = new Person ();

expose(this) {
p1.spouse = p2;
p2.spouse = p1;

}

Account a1 = p1.account;
Account a2 = p2.account;
int total = a1.value + a2.value;

// forbidden by Topology
p1.account = p2.account;
// forbidden by Encapsulation
a1.value += 10000;

}
}

Fig. 2: Illustration of the ownership topology and encapsulation. The code on the
left uses Universe Types; the code on the right uses Spec#’s Dynamic Ownership.
We omit accessibility qualifiers and non-null annotations for brevity. Execution
of method Main.Demo results in the ownership structure from Fig. 1.

Let us again consider class Person from Fig. 2 where field spouse has the
declared type peer Person. For a reference p of type rep Person, to determine
the type of a field access p.spouse, one adapts the declared qualifier (peer) from
the qualifier of the receiver (rep) to this; that is, we determine that rep B peer

is rep and the resulting type is therefore rep Person. This corresponds to the
intuition that the field access first goes into the representation and then stays
within the current representation—resulting in a reference that points into the
current representation.

Viewpoint adaptation is applied whenever a declared type needs to be adapted
to the current object, that is, for field accesses and updates (adapting the declared
field type), method calls (adapting the declared method parameter and return

6

types), and object instantiations (adapting the declared constructor parameter
types). For generic types, it is also applied to the upper bounds of type parameters.

There is an important distinction between the ownership qualifiers any and
lost. Qualifier any expresses that there is no static constraint on the ownership
of the referenced object. In our example, local variable a1 can be used to reference
an arbitrary account. On the other hand, lost expresses that there exists an
ownership constraint, but this constraint is not expressible in the type system.
In method Demo, the access p1.account first follows the rep reference p1 and
then another rep reference account. There is no static qualifier to express the
resulting ownership relationship. Viewpoint adaptation yields the lost qualifier
for the type of p1.account. Such a reference can be used for reading, but an
update of p1.account is forbidden, as the type system cannot statically ensure
that the assigned value satisfies the ownership constraint expressed by the rep

qualifier in the declaration of account. For the same reason, method invocations
and object instantiations are forbidden if the parameter types after viewpoint
adaptation contain lost. In that case, the method implementation expects a
specific owner, but the type system cannot guarantee that the caller passes an
argument with the expected owner because the ownership information has been
lost during viewpoint adaptation.

Subtyping. The ownership qualifiers are in a simple ordered relationship. The
self qualifier is used only for the current object this, which is evidently a peer
of itself; therefore self is a subtype of peer. Both peer and rep are subtypes
of lost as the former are more precise than the latter. Finally, all ownership
qualifiers are subtypes of any, because the latter does not express any ownership
information.

In method Demo, we can assign p1.account to local variable a1 because the
qualifier of the right-hand side, lost, is a subtype of a1’s qualifier, any.

Encapsulation. Universe Types optionally enforce the owner-as-modifier en-
capsulation discipline. Field updates and calls to impure methods require that
the ownership qualifier of the receiver is neither any nor lost. Field reads and
calls to pure methods are permitted for arbitrary receivers.

Consider the last assignment a1.value += 10000 in method Demo. This
assignment does not violate the ownership topology, because field value is of a
primitive type. However, it does violate the owner-as-modifier discipline. Since
the receiver a1 is of type any Account, we have no static knowledge of its
owner. Therefore, the type system cannot ensure that the owner controls this
modification and, thus, it is forbidden.

3.2 Dynamic Ownership

Dynamic Ownership [37] enforces the ownership topology and an encapsulation
discipline similar to owner-as-modifier through program verification. To support
inheritance, Dynamic Ownership uses object-class pairs as owners. Here, we

7

present a simplified version without the class-component. Dynamic Ownership
has been implemented in the Spec# language, and we will be using Spec# in
the rest of the paper.

Ownership Attributes. To encode the ownership relation, Dynamic Ownership
adds a ghost field owner to each object. The ownership topology is then expressed
through specifications over this ghost field. In particular, Spec# offers two
attributes (annotations in Java terminology) [Peer] and [Rep] that can be
added to field declarations4. Declaring a field f with a [Peer] attribute is similar
to the following object invariant, but is enforced differently as we explain below:

invariant f != null ==> f .owner == this.owner;

Analogously, a [Rep] attribute is similar to the following object invariant:

invariant f != null ==> f .owner == this;

The example in Fig. 2 (right column) illustrates the use of ownership attributes.
The fields account, spouse, p1, and p2 are declared with attributes analogous
to the ownership qualifiers in Universe Types. In contrast to Universe Types, the
declarations of methods and local variables do not include ownership information.
For methods, ownership information can be expressed via pre- and postconditions;
for locals, the verifier keeps track of any information about the owner field.

In contrast to Universe Types, Spec# does not determine the owner of an
object when it is created. Fresh objects start out as un-owned. The owner is set
when an un-owned object is assigned to a rep or peer field of another object.
More precisely, for a peer field f and the assignment o.f = e the verifier imposes
a proof obligation that either e is null, that o and e have the same owner, or that
e is un-owned. In the latter case, it sets e’s owner to o’s owner. If both o and e
are un-owned, they stay un-owned, but the verifier records that the objects are
peers (we say they form a peer group). When one object of a peer group gets its
owner assigned then the owner of all objects of the peer group is set to ensure
that they stay peers of each other. The treatment of assignments to rep fields is
analogous, but does not create peer groups.

Method Demo in Fig. 2 illustrates this process. After creating the first Person
object, it is initially un-owned. Its owner is set to this when it gets assigned to
field p1, because p1 is a rep field. The assignment p1.account = p2.account

towards the end of the method fails to verify since reference p2.account is not
known to be null and the owner of the object p2.account is p2, because field
account is a rep field. That is, the right-hand side is neither un-owned nor owned
by p1, making the assignment to a rep field of p1 invalid.

Spec#’s semantics of field updates guarantees that rep and peer fields satisfy
the corresponding ownership invariants in all execution states, similar to a type
system. However, Dynamic Ownership permits a more flexible initialization of
an object’s owner than most ownership type systems, because an object’s owner
need not be fixed when the object is created. Like Universe Types, Spec# does

4 Additional attributes allow one to handle arrays and instantiations of generic types.

8

not allow the owner of an object to change after it has been set, but supporting
ownership transfer is possible [37].

Encapsulation. Spec# enforces an encapsulation discipline that controls modi-
fications of objects, similar to the owner-as-modifier discipline. In Spec#, each
object is either in the valid or in the mutable state. We say that an object is
consistent if it is valid and its owner (if any) is mutable; it is peer consistent if
the object and all of its peers are consistent.

Valid objects must satisfy their object invariants, whereas mutable objects may
violate their object invariants (but not the ownership invariants mentioned above).
A proof obligation for field updates enforces that the receiver is mutable or—in
case the update is known not to violate the receiver’s object invariant—consistent.

Fresh objects are initially mutable and become valid when the new expression
terminates. Before a valid object can be modified, it has to be exposed. For
this purpose, Spec# provides a block statement expose(o) { . . . } with the
following semantics: The statement first asserts that o is consistent. Then o
becomes mutable and the body of the block statement is executed. Finally, the
expose statement asserts that o’s object invariant holds (see Sec. 5.1) and that
all objects owned by o are valid, and then makes o valid.

The Spec# methodology guarantees that in each execution state all objects
(transitively) owned by a valid object are also valid. Consequently, before updating
an object o, all of o’s transitive owners need to be exposed. Similarly to the
owner-as-modifier discipline, this gives the owners the possibility to control
modifications, for instance, to maintain invariants over the owned objects.

By default, impure methods (and constructors) in Spec# require their receiver
and arguments to be peer consistent and ensure that their result is also peer
consistent. This allows the method to expose the receiver and the arguments and
modify their state. Pure methods by default require the receiver and arguments
(and their peers) to be valid, and ensure peer validity of the result.

In method Demo (Fig. 2, right column), these defaults imply that the receiver
this is consistent at the beginning of the method. The newly created Person

objects are consistent when their new-expressions terminate; after assigning them
to the fields p1 and p2, they remain valid but are no longer consistent because
they now have a valid owner, this. Therefore, before updating their spouse

fields, the method has to expose this to make the Person objects consistent,
which is sufficient to permit the update since class Person does not declare an
object invariant. (If it did, we would also have to expose p1 and p2.) The fact that
we can read the account fields as well as the value fields of the Account objects
without exposing any objects illustrates that Spec#’s encapsulation discipline
controls modifications, but not read access. The last statement fails to verify
because the object a1 is neither mutable nor consistent. In order to verify the
assignment, the method would have to ensure that all of a1’s transitive owners
are mutable. By the default precondition of method Demo, the verifier knows that
the transitive owners of this are mutable. So it suffices to expose this and p1:

expose(this) {

9

expose(p1) {

a1.value += 10000;

}

}

This example illustrates that Spec#’s encapsulation discipline is slightly more
flexible than owner-as-modifier. For the update of a1.value, the owner-as-modi-
fier discipline requires that on each of a1’s transitive owners, a method execution
is currently on the stack. By contrast, Spec# requires only that these owners
are mutable, that is, that an expose block is currently being executed. However,
these expose blocks may occur in any method execution, not necessarily in
methods whose receiver is the owner. Here, we do not have to call a method on
p1 in order to update a1.value.

4 Using Ownership Topologies in Verification

Ownership has numerous applications in program verification. In this section, we
present four ways to use the hierarchical heap topology of ownership systems.
Applications that in addition rely on encapsulation are presented in Sec. 5. We
illustrate each application by an implementation of an array list, written and
verified in Spec# [3,41]. The Spec# examples as well as a translation to Java with
JML [33] and Universe annotations are available from the companion website.
Fig. 3 shows a simple list interface; class ArrayList in Fig. 4 implements this
interface.

interface List {

void Add(object! e);

ensures Contains(e);

ensures Length () == old(Length ()) + 1;

void Remove(object! e);

ensures old(Contains(e)) ==> Length () == old(Length ()) - 1;

[Pure] bool Contains(object! e);

[Pure] int Length ();

}

Fig. 3: A simple list interface. In Spec#, an exclamation point after a reference
type indicates a non-null type. Method pre- and postconditions are written as
requires and ensures clauses, respectively. The old keyword in postconditions is
used to refer to the prestate value of an expression. The attribute Pure indicates
that a method does not modify any objects that are allocated in its prestate;
pure methods may be used in specifications because they are side-effect free.

10

public class ArrayList : List {

[Rep][SpecPublic] object[]! elems = new object[32];

int next;

invariant 0 <= next && next <= elems.Length;

invariant elems.GetType () == typeof(object[]);

invariant forall{int i in (0: next); elems[i] != null};

public ArrayList ()

ensures Length () == 0;

{ }

public void Add(object! e)

{

expose(this)

{

if(next == elems.Length) // resize the array

{

object[] tmp = new object[elems.Length * 2 + 1];

Array.Copy(elems , tmp , next);

elems = tmp;

}

elems[next] = e;

next ++;

}

assert elems[next -1] == e;

}

[Pure] public bool Contains(object! e)

ensures result == exists{int i in (0: next); elems[i] == e};

{

for(int i = 0; i < next; i++)

invariant forall{int j in (0: i); elems[j] != e};

{

if(elems[i] == e)

return true;

}

return false;

}

// other methods omitted

}

Fig. 4: An array list implementation of the List interface. The methods inherit
the contracts defined in List. The invariant clauses after the field declarations
declare object invariants, whereas the invariant clause in method Contains

declares a loop invariant. The forall and exists expressions quantify over
half-open integer intervals. The SpecPublic attribute on elems allows the field
to appear in specifications of public methods.

11

4.1 Effect Specifications

Verification of imperative programs relies heavily on effect specifications to char-
acterize the parts of the heap that a method may read, modify, de-allocate, lock,
etc. [26]. For example, List’s Add method may modify the internal representation
of the list (for instance, an underlying array), but nothing else.

Problem. A naive approach to specifying effects is to enumerate the affected
heap locations in the effect specification. For instance, one could specify the write
effect of method Add in class ArrayList using the following specification clause:

modifies elems , next , elems [*];

which gives permission to modify the list’s elems and next fields as well as all
elements of the elems array. The problem with this approach is that it violates
information hiding, which has several negative consequences: (1) Changes of the
internals of a data structure become visible to clients and, thus, might require re-
verification of client code. (2) Enumerating locations is not possible for interfaces,
which do not have a concrete implementation. (3) It is difficult to allow overriding
methods in subclasses to modify the additional fields declared in subclasses (this
is sometimes called the extended state problem [35]).

When the effect of a method includes only fields of its parameters then
these problems can be solved by using wildcards or static data groups [35]. For
instance, Spec# provides the wildcard syntax o.* to denote all fields of an object
o. However, this solution does not apply to effects that include objects reachable
from the method parameters such as the array object in this.elems. In this case,
one needs to specify a path to the affected objects (here, elems), which reveals
implementation details. This is particularly problematic when a method affects
an unbounded number of locations, for instance, modifies fields of all nodes in a
linked list; it is then not possible to enumerate all of these locations statically.
So the problem is:

How to express implementation-independent effect specifications?

Ownership Solution. Clarke and Drossopoulou [10] showed that the hier-
archical heap topology of ownership systems provides a natural abstraction
mechanism for effects by using a reference to an object o to represent o and all
objects (transitively) owned by o (that is, the ownership tree rooted in o).

This idea is adopted by Spec# to specify read and write effects. Unless
indicated otherwise, every non-pure method in Spec# has the default write effect

modifies this.*;

which allows the method to modify all fields of the receiver object (by the
wildcard) as well as all fields of all objects (transitively) owned by the receiver (by
the abstraction mechanism mentioned above). This effect specification does not
reveal any implementation details. In our example, it applies to the Add method

12

of interface List and of class ArrayList. Note that the latter satisfies the effect
specification because it modifies at most the following locations: (1) fields of the
receiver, which is permitted by the wildcard in the effect specification, (2) the
array object in this.elems, which is permitted because the array is owned by
the receiver, and (3) elements of the new array it allocates; the initialization of
fresh objects is generally not considered a write effect and, thus, does not have to
be included in the effect specification. Note that in the implementation of Fig. 4,
this write effect does not allow the Add method to modify the states of the objects
stored in the elems array because they are not owned by the receiver. Spec#
provides an [ElementsRep] attribute for arrays to declare such an ownership
relation if desired.

Similarly, the default read effect of pure methods in Spec# contains all fields
of the receiver as well as all fields of all objects (transitively) owned by the receiver.
Other read effects can be specified using attributes on the method declaration.
The default allows methods Contains and Length of class ArrayList to read
next, elems, and the elements of elems.

Spec# checks write effects by generating appropriate proof obligations [2].
A crucial property of these proof obligations is that they avoid reachability
predicates (such as transitive ownership) because these are not handled well by
automatic theorem provers. Read effects are checked syntactically, but a more
precise checking through verification is also possible [39].

Other Solutions. Leino proposed a formalism based on explicit dependencies
between model fields and concrete fields to provide implementation-independent
specifications of effects [34]. When an effect includes a model field then it also
includes all fields the model field (transitively) depends on. Drawbacks of this
approach are that it uses reachability predicates (transitive dependencies) and
that its soundness argument is complicated [43]. A similar approach is used in
dynamic data groups [44], but with a simpler formalism. The second author’s
thesis [49] combined explicit dependencies with ownership.

Kassios developed a powerful technique to specify effects called Dynamic
Frames [32]. A dynamic frame is a set of objects or locations. Effect specifications
simply mention such sets; clients reason in terms of these sets and their disjoint-
ness, but do not need to know the set contents, which preserves information
hiding. In Kassios’ work, dynamic frames are encoded as functions of the heap.
Later work, for instance on Dafny [36] and Region Logic [1] encodes dynamic
frames using ghost variables to increase automation with SMT solvers.

Another approach to specifying effects is via permissions [9]. Each memory
location is associated with a permission, and a method may access a location only
if it has the permission to do so. Read and write effects can then be inferred from
permission specifications. This approach is for instance taken in Separation Logic
[5,60] and Implicit Dynamic Frames [64,40]. Abstraction is expressed via abstract
predicates [58]. Both Dynamic Frames and permission systems require a higher
annotation overhead than the ownership solution, but have the big advantage
that they are not limited to hierarchical structures.

13

4.2 Framing

One of the key challenges in verifying imperative programs is to determine
whether the heap modifications performed by a piece of code affect the validity of
heap properties. The client class in Fig. 5 illustrates this problem. The property
l1.Contains("one") is established by the call l1.Add("one"). To prove that
it still holds at the end of method Frame requires framing. One has to prove that
the call to l2.Remove does not invalidate the property, which could for instance
happen if l1 and l2 shared the same array.

class Client {

public static void Frame(List! l1 , List! l2)

requires l1 != l2;

modifies l1.*, l2.*;

{

l1.Add("one");

l2.Remove("one");

assert l1.Contains("one");

}

}

Fig. 5: A client of the List interface. Proving the assertion requires framing.

Problem. Framing is based on effect specifications. If the write effect of a piece
of code is disjoint from the read effect of a heap property then executing the
code does not affect the validity of the property. Framing is trivial with the
naive effect specifications, where the affected locations are explicitly enumerated.
However, when effect specifications use abstraction then clients must be able to
determine whether two effects are disjoint without actually knowing the concrete
set of affected locations. So the problem is:

How to determine whether two effects overlap?

Ownership Solution. As we discussed in Sec. 4.1, ownership-based effect
specifications use the root of an ownership tree to abstract over the locations
of all objects in the tree. Because each object has at most one owner, the trees
rooted in objects o and p are either disjoint or one tree is a (not necessarily
proper) sub-tree of the other. So to prove that the effects characterized by o and
p are disjoint, it is sufficient to show that o 6= p and neither o (transitively) owns
p nor vice versa.

In Spec#, this property is proved as follows. As we have explained in Sec. 3.2,
impure methods in Spec# require by default that the receiver and each explicit
argument are consistent, that is, that they are valid and their owners (if any) are

14

mutable. Since Spec# guarantees that all objects (transitively) owned by a valid
object are also valid, this default requirement implies that it is not possible for
one argument to own another. Thus, any two arguments either refer to the same
object or to disjoint ownership trees. In the example from Fig. 5, the precondition
guarantees that l1 and l2 point to different objects and, thus, the trees rooted
in l1 and l2 are disjoint, which is sufficient to prove that l2.Remove does not
affect the validity of l1.Contains("one").

Other Solutions. The three techniques for effect specifications discussed in
Sec. 4.1 solve the framing problem in different ways.

Techniques that use explicit dependencies without ownership include rules
that allow one to derive the absence of certain dependencies. If we know that a
model field a does not (transitively) depend on another field b then some code
with write effect a will not affect a property with read effect b. Reasoning about
such specifications again involves reachability. Dynamic data groups simplify this
reasoning by imposing various restrictions on dependencies. For instance in our
example, the pivot uniqueness requirement guarantees that the lists l1 and l2

operate on different arrays.

With Dynamic Frames, specifications have to state the disjointness of frames
explicitly. A common idiom is to put all locations that belong to a data structure
into one frame state. Methods of the data structure then typically read or
write state. With this effect specification, method Frame in Fig. 5 requires the
additional precondition l1.state ∩ l2.state = ∅.

Permission-based systems use two ingredients for framing. First, they require
every heap property (in particular, every abstract predicate) to be self-framing,
that is, to include permissions for all heap accesses in the property. Second,
they support a separating conjunction ∗, which holds if both conjuncts hold and
their permissions are disjoint. So if formulas P and Q hold separately, and a
piece of code operates using the permissions specified in P then it is guaranteed
not to affect Q. In our example, let’s assume an abstract predicate valid that
contains all permissions for the list data structure and that is used as pre- and
postcondition of methods Add, Remove, and Contains. Method Frame in Fig. 5
can then be verified using the additional precondition l1.valid ∗ l2.valid,
which implies that l2.Remove’s write effect is disjoint from l1.Contains’s read
effect.

4.3 Termination

Program verification often includes termination proofs for two reasons. First,
termination is a desired property of many implementations. Second, many specifi-
cation formalisms support recursive functions or pure methods, which are encoded
for the prover as uninterpreted function symbols with appropriate axioms. To
ensure the consistency of these axioms, one needs to show that the recursion is
well founded [62].

15

Problem. The standard approach to termination proofs is to find a ranking
function that maps the program state to a well-founded set such as the natural
numbers, and to prove that each recursive call or loop iteration decreases the
value of the ranking function [15]. Modular verifiers that check termination
require a ranking function for each loop and recursive method, which is difficult
to specify for loops and methods that traverse object structures. The example in
Fig. 6 illustrates the problem. The recursive call in method GetHashCode should
be permitted, provided that it does not eventually call GetHashCode on the list.
This could for instance happen if the hash code of an array was defined in terms
of the hash codes of its elements and if the list was stored in its own array.

[Pure] public override int GetHashCode ()

ensures result == elems.GetHashCode ();

{ return elems.GetHashCode (); }

Fig. 6: GetHashCode of class ArrayList. Spec# proves that recursive specifica-
tions of pure methods are well founded. Here, the height of the receiver in the
ownership hierarchy is implicitly used as ranking function.

In general, one needs to show that a recursive heap traversal does not go
in cycles, which is typically done by using the distance from the end of the
traversal as a ranking function. However, denoting this distance in specifications
requires a reachability predicate (for instance, this list node reaches the end
of the list in n steps), which are notoriously difficult to handle for automatic
verifiers based on SMT solvers. A work-around is to encode the distance using
ghost state; for instance, each list node stores its distance from the end of the
list. However, maintaining the ghost state increases the specification overhead.
Moreover, adding ghost state to library classes and arrays is not possible. So the
problem is:

How to specify ranking functions for heap traversals?

Ownership Solution. Since the ownership topology is acyclic, each recursion
that traverses an ownership tree only downwards or only upwards is well founded.
In other words, for traversals towards the leaves, we can use the height of an
object in the ownership tree as a ranking function, provided that the tree does
not grow during the traversal. Analogously, we can use the depth in the tree
for traversals towards the root. This approach does not lead to the annotation
overhead incurred by solutions based on ghost state. Moreover, it can be checked
syntactically, which avoids reasoning about reachability predicates. For downward
traversals, it is sufficient to check that the receiver of each recursive call is of a rep

type. One could use an analogous check for upward traversals, if the ownership
system provided an “owner” type qualifier or attribute, which is not the case in
Spec#.

16

Spec# uses a lexicographic ordering as ranking function [17]. The first com-
ponent is the height of an object in the ownership tree. Since termination is
proved only for pure (side-effect free) methods, the tree cannot grow during the
traversal. The second component is a static ordering of all method declarations
in a program; it is determined by the order in which the declarations occur in
the program text and can also be specified explicitly via attributes on method
declarations. The example in Fig. 6 is accepted by Spec# because the receiver of
the recursive call, elems, is declared with the [Rep] attribute.

Other Solutions. Another ranking function for recursive methods is the size of
their read effects [36]. If the read effect gets strictly smaller with each recursive
call then the recursion will terminate eventually. For effect specifications based
on dynamic frames, this property can be verified by comparing set cardinalities
(if the prover supports them) or by checking set inclusion. The solution based on
read effects has the advantage that it does not restrict the receivers of recursive
calls, which is sometimes useful. On the other hand, the ownership-based solution
works even if the read effect does not get smaller. For instance, the example in
Fig. 6 would verify even if the GetHashCode method of object and of ArrayList
were permitted to read the whole heap.

For effect specifications based on permissions, one can check that after passing
the required permissions to the recursive call, a non-empty permission set remains
with the caller. This solution works well for side-effect free methods, similar to
the ownership-based solution. For methods that create new objects, it is difficult
to make the checks sound and nevertheless permit calls on newly-created objects.

4.4 Multi-Object Invariants

Consistency criteria of data structures are often specified as object invariants
[23,48]. Non-trivial object invariants do not hold in all execution states; for
instance, the invariant of a fresh object typically does not hold until the object
is initialized, and some methods violate and later re-establish an invariant when
they update a data structure. Therefore, any specification language that supports
object invariants must define when invariants are expected to hold.

Problem. A common semantics for object invariants is to require the invariants
of all allocated objects to hold in the pre- and poststates of each method call
[27,48,59]. This visible state semantics is suitable for object invariants that
constrain the state of a single object5, but it is too restrictive for multi-object
invariants, which relate the states of multiple objects. The problem is illustrated
by class Map in Fig. 7.

Class Map implements a map; the keys and values are stored in two lists.
Consequently, Map maintains an invariant that these lists have the same length.

5 Visible state semantics is also problematic in the presence of call-backs [2,23], but
we ignore this issue here.

17

class Map {

[Rep][SpecPublic] List! keys = new ArrayList ();

[Rep] List! values = new ArrayList ();

invariant keys.Length () == values.Length ();

public void Put(object! key , object! value)

requires !keys.Contains(key);

requires Owner.Different(key , this);

requires Owner.Different(value , this);

{

expose(this) {

keys.Add(key);

values.Add(value);

}

}

// other methods omitted

}

Fig. 7: A map implementation that stores the keys and values in two lists. The
invariant relates the states of both lists. The second and third precondition
of Put are necessary to show that keys and values are peer consistent after
exposing this, which is required to satisfy the default precondition of List.Add
(see Sec. 3.2).

This invariant is a multi-object invariant since if relates the states of a Map object
and of the two List objects referenced by the Map object. Method Put adds a
new key-value pair to the map by adding the key and the value to the respective
lists. The call to keys.Add violates the Map invariant by increasing the length of
one list. The subsequent call to values.Add re-establishes the invariant. However,
note that the invariant does not hold in the poststate of the first call and in the
prestate of the second call, which are visible states. This example shows that the
visible state semantics is too restrictive to handle useful multi-object invariants.
So the problem is:

How to define a semantics for multi-object invariants?

Ownership Solution. In ownership systems, owned objects form the internal
representation of their owner, for instance, the List objects in our example
form the internal representation of the Map object that owns them. Consequently,
modifications of owned objects should be seen as internal operations of the owner,
which may violate the owner’s invariant as long as it gets re-established when
the modifications are completed. This is analogous to allowing field updates
to violate a single-object invariant as long as it gets re-established before the
enclosing method terminates.

18

Based on this idea, we can use the ownership topology to refine the standard
visible state semantics to the following relevant invariant semantics [49,52].
Consider an arbitrary execution of a method m on receiver o. In the pre- and
poststate of this execution, the invariants of those allocated objects have to hold
that are directly or transitively owned by the owner of o. In other words, m
may assume and has to preserve the invariants of o, o’s peers, and all objects
(transitively) owned by o and its peers. These objects are called the relevant
objects for o. However, m must not assume nor has to preserve the invariants
of o’s transitive owners. In the Map example, this semantics allows the calls to
keys.Add and values.Add to break the invariant of the Map object because it
owns the receivers of these calls and, thus, is not relevant for the receivers.

With the relevant invariant semantics, it is generally not possible for an object
o to call methods on receivers that are not relevant for o because their invariants
are not known to hold. For instance, o cannot call methods on its owner nor on
objects in a different ownership tree. To address this limitation, one can allow
methods to specify explicitly which invariants they require to hold [37,47]. Such
a specification is similar to an effect specification, and we can employ ownership
as an abstraction mechanism as discussed in Sec. 4.1. For instance, in Spec# the
precondition p.IsPeerConsistent requires that all objects relevant for p satisfy
their invariants. By default, a Spec# method requires that its receiver and all
explicit arguments are peer consistent. In our example, the call keys.Add(key)
requires implicitly that keys and key are peer consistent. The former follows from
the fact that the Map object this is peer consistent (by the implicit precondition
of Put) and owns keys. The latter follows from the implicit precondition of Put
that key is peer consistent.

Other Solutions. VCC [14] supports two-state invariants that hold between
the prestates and poststates of any action, similar to a standard visible state
semantics. This semantics is enforced by checking (1) that every action of the
program is legal, that is, preserves the invariants of the objects it modifies, and
(2) that every invariant is admissible, that is, is reflexive and cannot be broken
by any legal action. VCC would reject the invariant of class Map because it is
not admissible; the action keys.Add(key) is legal (it preserves the invariant of
the list), but violates the map invariant. To support interesting multi-object
invariants, VCC uses ghost state to encode an ownership scheme like the one
described above. The key ideas are: (1) to write an invariant I as a dented
invariant of the form valid ⇒ I, where valid is a boolean ghost field, (2) to
add a two-state invariant that the state of an object o does not change while
o.valid is true, and (3) to relate the valid fields of o and its owner using further
invariants.

Many specification formalisms do not support object invariants but instead use
pre- and postconditions together with model variables [43] or abstract predicates
[58] to express consistency criteria.

19

5 Using Ownership Encapsulation in Verification

The previous section showed that the ownership topology can be utilized in various
ways to simplify verification. For some applications, however, the topology alone
is not sufficient; it has to be complemented by an encapsulation discipline such
as owner-as-dominator or owner-as-modifier to control which objects may be
referenced and which operations can be performed on a referenced object. In
this section, we present three applications of ownership-based encapsulation to
program verification.

5.1 Verifying Multi-Object Invariants

In Sec. 4.4, we presented a semantics for multi-object invariants that defines
when invariants are expected to hold, but we did not explain how to verify
statically that the expected invariants actually hold. The textbook solution to
this problem—assuming invariants to hold in each method prestate and checking
at the end of each method that the receiver’s invariant holds [48]—is unsound
for multi-object invariants, in the presence of call-backs, and for languages that
permit field updates of objects other than the current receiver.

Problem. A sound verification technique has to ensure that an object invariant
holds in all states in which it is expected to hold. This is achieved by imposing
checks (proof obligations) for code that is supposed to establish or preserve
an invariant. For instance, most verification techniques impose a check that a
constructor establishes the invariant of the fresh object such that later operations
on this object may safely assume the invariant. A modular verification technique
imposes checks that can be verified locally for each class, without knowing its
subclasses or clients.

With multi-object invariants, a single field update potentially breaks the
invariants of many objects. Consider for instance the third invariant of class
ArrayList in Fig. 4, which expresses that the elements of the array elems

are non-null. In general, any array update a[j] = null potentially breaks this
invariant for any ArrayList object o where o.elems= a. A proof obligation
for the method m containing this array update would have to quantify over
all (relevant) ArrayList objects o, which is non-modular because m and class
ArrayList may have been developed independently, and so ArrayList is not
known during the verification of m. So the problem is:

How to verify multi-object invariants modularly?

Ownership Solution. Building on the invariant semantics described in Sec. 4.4,
multi-object invariants can be verified modularly as follows [37,49,52].

First, we use the ownership topology to restrict the objects an invariant may
depend on. An admissible ownership-based invariant of an object o may depend

20

on the fields of o and of all objects (transitively) owned by o6. In our example,
the third invariant of ArrayList is admissible because the array elems is owned
by the ArrayList object. Admissibility can be checked syntactically based on
ownership annotations and possibly read effects of pure methods mentioned in
invariants (such as method Length in class Map, see Fig. 7).

Second, we use an encapsulation discipline to restrict the modifications a
method may perform. For instance with the owner-as-modifier discipline, when a
method m with receiver r updates a field of an object o or an element of an array
o then o is either owned by r or it is a peer of r (which subsumes the case o = r).
In the former case, admissibility guarantees that the update affects at most the
invariants of o, r (which owns o), and the (transitive) owners of r. For o and r,
we can impose proof obligations that can be checked modularly. For the owners
of r, no check is required according to the relevant invariant semantics because
those objects are not relevant for r. In the latter case, admissibility guarantees
that the update affects at most the invariants of o and the (transitive) owners of
o. For o, we can impose a proof obligation that can be checked modularly. The
owners of o, which are the owners of r, are not relevant for r.

When m calls an impure method n on a receiver o then again o is either owned
by r or it is a peer of r. In the former case, admissibility and the verification
of n ensure that all invariants potentially violated by n are checked before n
terminates except for the invariants of r and r’s (transitive) owners. For r, we
can impose a proof obligation on m that can be checked modularly. The owners
of r are not relevant for r. In the latter case, admissibility and the verification
of n ensure that all invariants potentially violated by n are checked before n
terminates except for the invariants of o’s (transitive) owners. The owners of o,
which are the owners of r, are not relevant for r.

We explained how Spec# enforces a variation of the owner-as-modifier disci-
pline in Sec. 3.2. Using this approach, it is sufficient to check the invariant of an
object o at the end of o’s constructor as well as at the end of each expose(o)
block. In class ArrayList (Fig. 4) the third invariant is checked at the end of
the constructor (it holds because next is zero and, thus, the quantifier in the
invariant ranges over an empty interval7) as well as at the end of the expose

block in method Add (it holds because it held at the beginning of the expose

block and because e is non-null according to its type).

Note that the Add method of a list l may in general violate the invariant of a
Map object o using the list. To make o’s invariant admissible, o must own l. Hence,
o is not relevant for l and need not be checked in method Add, which would
be non-modular. The check happens instead in the caller of Add, for instance,
method Put (Fig. 7), where o gets exposed before calling Add.

The ownership solution to verifying invariants has also been adapted to model
fields [38]. In this adaptation, model fields and their representation clauses are
encoded as ghost fields with an appropriate invariant, respectively. Instead of

6 Extra restrictions are required for a sound treatment of inheritance, which we ignore
here [37].

7 Intervals in Spec# are half-open to the right.

21

checking that the invariant holds, one can update the ghost field automatically
such that the invariant is maintained.

Other Solutions. Not all multi-object invariants are protected by encapsulating
the state the invariant depends on. Visibility-based invariants [49,4] may depend
on fields outside the ownership tree as long as the invariant is visible wherever
the field can be updated. It is thus possible to generate modular checks at each
update. Visibility-based invariants relate for instance the nodes in a doubly-linked
list, which do not own each other. Monotonicity-based invariants may depend
on fields whose value changes monotonically as long as any monotonic change
preserves the invariant [45]. For instance, for a counter c that only grows, a
monotonicity-based invariant might express c > 7. When this invariant has once
been established, it will not be violated by any monotonic update of c. A special
case of monotonicity-based invariants is invariants over immutable state [42].

Verification methodologies based on dynamic frames [32] and permissions
[40,60,64] typically do not support invariants. Consistency criteria are specified
explicitly in method pre- and postconditions, with suitable abstraction mech-
anisms to preserve information hiding [58]. To allow implementations to hide
consistency criteria altogether from clients, Region Logic introduced the concept
of a dynamic boundary [55]. The dynamic boundary of a data structure is a
set of objects (or locations) that over-approximates the read effect of the data
structure’s invariant. Clients of a data structure must not modify objects in the
dynamic boundary, which allows the implementation of the data structure to
assume the invariant whenever an operation of the data structure is invoked.

5.2 Object Immutability

Immutable data structures simplify many aspects of programming and program
verification. For instance:

– Properties of immutable state are trivial to frame because they do not get
invalidated by any heap update. This simplifies the specification of read
effects and the framing of heap properties (see Sec. 4.2).

– Multi-object invariants may depend on the state of immutable objects without
encapsulating them because no method can violate the invariant by modifying
an immutable object. This reduces the need to introduce ownership (see
Sec. 5.1) and, therefore, allows more sharing.

– Concurrent accesses to immutable objects do not require synchronization
because all accesses are read-only. This simplifies the verification of data race
freedom (see Sec. 5.3).

Problem. Immutable data structures are typically implemented as immutable
classes. An immutable class such as Java’s Integer encapsulates all its fields,
initializes the fields in the constructor, and provides no methods to modify the
fields. Therefore, once an object has been initialized, clients have no way of

22

changing its state. For object structures such as string objects implemented
on top of (mutable) character arrays, the class in addition has to ensure that
references to mutable sub-objects are not leaked to clients. For instance, Java’s
String class has no method to obtain a reference to the internal character array.

While this idiom is a simple way of implementing immutable data structures,
it has several shortcomings for verification. First, immutable object structures
may reference mutable objects. For instance, an immutable collection may contain
mutable elements. Therefore, it is necessary to delimit the portion of the data
structure that is supposed to be immutable. Second, it is not entirely trivial to
verify that the implementation actually guarantees immutability, for instance,
that references to mutable sub-objects are not leaked and that the object does not
escape from its constructor while it is still under initialization (and, thus, being
modified) [65]. Third, it is often useful to have immutable instances of a class that
otherwise allows mutations, for instance, an immutable instance of ArrayList.
However, this is not supported by the idiom described above, which requires
that a class does not offer any mutating methods. Fourth, some data structures
become immutable only after a lengthy initialization phase that goes beyond the
execution of the constructor. For instance, an AST might become immutable
only after type checking has been completed. Again, this is not supported by
immutable classes, which require that an object is fully initialized when the
constructor terminates. So the problem is:

How to define and check the immutability of object structures?

Ownership Solution. Ownership provides a natural way to delimit which
portion of an object structure is immutable. Ownership-based solutions to im-
mutability [6,25,42,57] define this portion to be the ownership tree rooted in an
immutable object. That is, all objects (transitively) owned by an immutable
object are also immutable. This definition addresses the first problem mentioned
above and supports, in particular, immutable aggregate objects. For instance,
when an immutable string object owns its character array, the array also be-
comes immutable. In our example from Fig. 4 the elems array of an immutable
ArrayList object is also immutable because it is owned by the ArrayList object,
but the elements stored in the array are not.

The immutability of an ownership tree can be enforced by an encapsulation
scheme that prevents modifications of the objects in the tree [6,42,57]. Spec#
prevents modifications by assigning immutable objects a special owner, called
the freezer object8. The freezer does not mutate any of the objects it owns and
neither can other objects because they would have to expose the freezer first,
which is not possible. Since Spec# does not allow an owned object to change
owner, an object that is (transitively) owned by the freezer will stay owned by
the freezer—and thus immutable—for the rest of its lifetime. Building on an
existing encapsulation mechanism allows Spec# to enforce immutability without

8 The implementation of immutable objects is still experimental [46] and not part of
the Spec# release yet.

23

any additional checks, which addresses the second problem mentioned above.
Since ownership and, thus, immutability operate on the object rather than the
class level, this solution supports immutable instances of mutable classes, which
addresses the third problem mentioned above.

An object is made immutable with a special statement freeze, which takes
an un-owned object and sets its owner to the freezer. The freeze statement can
be used anywhere in the code, which allows objects to go through a complex
initialization phase before they become immutable. This addresses the fourth
problem mentioned above.

class Cell {

int val;

[return: Frozen] public List SingletonList () {

ArrayList l = new ArrayList ();

l.Add(this);

freeze l;

this.val++; // okay: cell is mutable

l.Add(this); // verification error: list is immutable

return l;

}

}

Fig. 8: Method SingletonList populates a mutable list and then makes it
immutable. The list elements remain mutable because they are not owned by the
list. The Frozen attribute indicates that the method result is immutable.

The code snippet in Fig. 8 illustrates the ownership solution to immutability.
Method SingletonList creates and initializes an ArrayList object. The sub-
sequent freeze statement makes the object immutable. However, since the list
does not own its contents, the Cell object this remains mutable as illustrated
by the update of field val. Attempting to modify the list after freezing (via the
second call to Add) results in a verification error because l is owned by the freezer.
Since the freezer is always valid, l is not peer consistent and, thus, does not
satisfy the default precondition of Add (nor any other precondition that would
allow the method to modify the object).

Other Solutions. IGJ [66] uses Java’s generic types to check immutability of
classes, objects, and references. Objects that are reachable from an immutable
object are also immutable, although fields can be explicitly excluded. IGJ provides
most of the flexibility of ownership-based solutions, but requires that immutable
objects are fully initialized when their constructor terminates, which prevents
complex initialization schemes. Later work on OIGJ [67] combines ownership and
immutability into a unified system.

24

5.3 Data Race Freedom

The applications of ownership we have discussed so far are relevant for the
verification of both sequential and concurrent programs. However, ownership is
also useful to address concurrency-specific problems, in particular, the verification
of data race freedom.

Problem. A common way of preventing data races is to synchronize accesses
to shared resources through locking. Verification of such programs requires one
to prove that no thread accesses a shared resource without holding the lock
that protects the resource. This is simple if there is a one-to-one correspondence
between resources and locks, for instance, when the locations of an object are
protected by the object’s lock. However, many programs use more flexible locking
patterns such as coarse-grained locking, where one locks protects a whole data
structure consisting of many objects. A concurrent (thread-safe) version of our
ArrayList example might use the lock associated with an ArrayList object
to protect accesses to this object as well as to the underlying array. To handle
flexible locking patterns, the specification must express which locks protect which
resources, and the verification must ensure that the required locks are held
whenever a thread accesses a shared resource. So the problem is:

How to verify mutual exclusion for accesses to shared resources?

Ownership Solution. A simple way of verifying mutual exclusion for coarse-
grained locking is to associate exactly one lock with each ownership tree, which
protects the locations of all objects in the tree. Any read or write access to
an object in the ownership tree requires acquiring the tree’s lock first. This
requirement can be checked using an encapsulation discipline that prevents read
and write accesses through non-owning references. Such a discipline is stricter
than owner-as-modifier because it restricts read and write accesses, but more
permissive than owner-as-dominator because it does not restrict the existence of
references.

This solution has been implemented in SpecLeuven, an extension of Spec# to
concurrency [29] and in VCC [13]. Both systems keep track of the set of objects
a thread may safely access. A thread can get read and write access to the root of
an ownership tree by locking it. Access to children is obtained by exposing their
parent. This discipline is similar to Spec#, but requires exposing the receiver
of both read and write accesses. VCC allows programs to implement their own
locks (using volatile variables), which then own the objects they protect.

Several type systems use ownership to check data race freedom. For instance
Boyapati et al. [7] employ ownership types with the owner-as-dominator discipline
to check for data races. Universes for Race Safety [16] check data race freedom
using the owner-as-modifier encapsulation discipline. The system associates a
lock with each ownership context and therefore supports finer grained locking.

25

Other Solutions. There are numerous type systems, static analyses, and model
checkers to detect data races [50]. In the realm of verification, permission-based
systems check for each heap access that the thread has the necessary access
permission. Since permissions cannot be forged, these checks ensure mutual
exclusion (fractional permissions [9] can be used to allow concurrent reading).
Permission-based verification is for instance supported in concurrent separation
logic [56], VeriFast [30], and Chalice [40]. Locking strategies can be specified by
associating permissions with locks, which requires that a thread must acquire a
lock in order to obtain the associated permissions.

6 Conclusion

Program verification was one of the first applications of object ownership and
ownership types. Initial work in this area focused on framing [51,49], the ver-
ification of object invariants [49], and checking data race freedom [8]. In this
paper, we surveyed these and other applications of object ownership to program
verification and illustrated how they are supported in the Spec# system.

Since ownership enabled the first sound, modular, and automatic verification
techniques for object-oriented programs, a number of alternative approaches
have been proposed. Among the most successful are separation logic [60,58]
(and other permission-based logics such as Implicit Dynamic Frames [64,40])
and Dynamic Frames [31,32] (and similar logics based on explicit footprints
such as Region Logic [1]). These alternatives are generally more flexible than
ownership-based verification, especially for non-hierarchical data structures [4]
and for data structures whose topology changes over time [61]. However, this
flexibility comes at the prize of more annotation overhead, for instance, to specify
access permissions or to update ghost state. So for programs that fit the ownership
model, ownership-based verification is still a relatively simple and lightweight
approach that scales to the verification of intricate concurrent programs as
illustrated by VCC [13].

Acknowledgments. We thank the editors for inviting us to contribute to this
book, and the reviewers for their helpful feedback.

References

1. A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In J. Vitek, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 5142 of LNCS, pages 387–411. Springer-Verlag,
2008.

2. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. Journal of Object Technology (JOT),
3(6):27–56, 2004.

3. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.
Specification and verification: The Spec# experience. Communications of the ACM,
54(6):81–91, June 2011.

26

4. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants
over shared state. In Mathematics of Program Construction (MPC), LNCS. Springer-
Verlag, 2004.

5. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In Principles of Programming Languages (POPL), pages 259–270.
ACM, 2005.

6. C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
MIT, 2004.

7. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pages 211–230. ACM Press, 2002.

8. C. Boyapati and M. Rinard. A parameterized type system for race-free Java
programs. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 56–69. ACM Press, 2001.

9. J. Boyland. Checking interference with fractional permissions. In Static Analysis
Symposium (SAS), volume 2694 of LNCS, pages 55–72. Springer-Verlag, 2003.

10. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness
of type and effect. In Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 292–310. ACM Press, 2002.

11. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
ACM Press, 1998.

12. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In L. Cardelli,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
2743 of LNCS. Springer-Verlag, 2003.

13. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C. In
Theorem Proving in Higher Order Logics (TPHOLs), pages 23–42. Springer-Verlag,
2009.

14. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global
invariants in concurrent programs. In T. Touili, B. Cook, and P. Jackson, editors,
Computer Aided Verification (CAV), volume 6174 of LNCS, pages 480–494. Springer-
Verlag, 2010.

15. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Com-
munications of the ACM, 54:88–98, May 2011.

16. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race
Safety. In Verification and Analysis of Multi-threaded Java-like Programs (VAMP),
pages 20–51, 2007.

17. Á. Darvas and K. R. M. Leino. Practical reasoning about invocations and imple-
mentations of pure methods. In M. B. Dwyer and A. Lopes, editors, Fundamental
Approaches to Software Engineering (FASE), volume 4422 of LNCS, pages 336–351.
Springer-Verlag, 2007.

18. W. Dietl. Universe Types: Topology, Encapsulation, Genericity, and Tools. PhD
thesis, Department of Computer Science, ETH Zurich, 2009.

19. W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In E. Ernst,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
4609 of LNCS, pages 28–53. Springer-Verlag, 2007.

20. W. Dietl, S. Drossopoulou, and P. Müller. Separating ownership topology and en-
capsulation with Generic Universe Types. Transactions on Programming Languages
and Systems (TOPLAS), 33:20:1–20:62, 2011.

27

21. W. Dietl, M. D. Ernst, and P. Müller. Tunable static inference for Generic Universe
Types. In European Conference on Object-Oriented Programming (ECOOP), July
2011.

22. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 4(8):5–32, 2005.

23. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified framework
for verification techniques for object invariants. In J. Vitek, editor, European
Conference on Object-Oriented Programming (ECOOP), LNCS. Springer-Verlag,
2008.

24. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI), volume 37(5) of ACM SIGPLAN Notices, pages 234–245. ACM
Press, 2002.

25. C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like
language. In R. De Nicola, editor, European Symposium on Programming (ESOP),
volume 4421 of LNCS, pages 347–362. Springer-Verlag, 2007.

26. J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson. Behavioral
interface specification languages. Computing Surveys, 2012. To appear.

27. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1:271–281, 1972.

28. M. Huisman. Reasoning about Java Programs in higher order logic with PVS and
Isabelle. Ipa dissertation series, 2001-03, University of Nijmegen, Holland, 2001.

29. B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and W. Schulte. A programming
model for concurrent object-oriented programs. Transactions on Programming
Languages and Systems (TOPLAS), 31(1), 2008.

30. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program
verifier. In Programming Languages and Systems (APLAS 2010), pages 304–311.
Springer-Verlag, 2010.

31. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In Formal Methods (FM), 2006.

32. I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23(3):267–
289, 2011.

33. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. JML Reference Manual. Available
from http://www.jmlspecs.org/, June 2008.

34. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute
of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

35. K. R. M. Leino. Data groups: Specifying the modification of extended state. In
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
volume 33(10) of ACM SIGPLAN Notices, pages 144–153. ACM Press, 1998.

36. K. R. M. Leino. Dafny: an automatic program verifier for functional correctness.
In E. M. Clarke and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), volume 6355 of LNCS, pages 348–370. Springer-
Verlag, 2010.

37. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
3086 of LNCS, pages 491–516. Springer-Verlag, 2004.

38. K. R. M. Leino and P. Müller. A verification methodology for model fields. In
P. Sestoft, editor, European Symposium on Programming (ESOP), volume 3924 of
LNCS, pages 115–130. Springer-Verlag, 2006.

28

http://www.jmlspecs.org/

39. K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In
S. Drossopoulou, editor, European Symposium on Programming (ESOP), volume
4960 of LNCS, pages 307–321. Springer-Verlag, 2008.

40. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
G. Castagna, editor, European Symposium on Programming (ESOP), volume 5502
of LNCS, pages 378–393. Springer-Verlag, 2009.

41. K. R. M. Leino and P. Müller. Using the Spec# language, methodology, and tools
to write bug-free programs. In P. Müller, editor, Advanced Lectures on Software
Engineering—LASER Summer School 2007/2008, volume 6029 of LNCS, pages
91–139. Springer-Verlag, 2010.

42. K. R. M. Leino, P. Müller, and A. Wallenburg. Flexible immutability with frozen
objects. In Verified Software: Theories, Tools, and Experiments (VSTTE), volume
5295 of LNCS, pages 192–208. Springer-Verlag, 2008.

43. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. Transac-
tions on Programming Languages and Systems (TOPLAS), 24(5):491–553, 2002.

44. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and
check side effects. In Programming Language Design and Implementation (PLDI),
volume 37(5) of ACM SIGPLAN Notices, pages 246–257. ACM Press, 2002.

45. K. R. M. Leino and W. Schulte. Using history invariants to verify observers. In
R. De Nicola, editor, Programming Languages and Systems (ESOP), volume 4421
of LNCS, pages 80–94. Springer-Verlag, 2007.

46. F. Leu. Implementation of frozen objects into Spec#. Master’s thesis, ETH Zurich,
2009. Available from http://www.pm.inf.ethz.ch/education/theses/student_

docs/Florian_Leu/florian_leu_MA_report.
47. Y. Lu, J. Potter, and J. Xue. Validity invariants and effects. In European Conference

on Object-Oriented Programming (ECOOP), volume 4609 of LNCS, pages 202–226.
Springer-Verlag, 2007.

48. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

49. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

50. P. Müller. Formal methods-based tools for race, deadlock and other errors. In
D. Padua, editor, Encyclopedia of Parallel Computing, pages 704–710. Springer-
Verlag, 2011.

51. P. Müller and A. Poetzsch-Heffter. Modular specification and verification techniques
for object-oriented software components. In G. T. Leavens and M. Sitaraman,
editors, Foundations of Component-Based Systems. Cambridge University Press,
2000.

52. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62:253–286, 2006.

53. P. Müller and A. Rudich. Ownership transfer in Universe Types. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 461–478.
ACM Press, 2007.

54. D. A. Naumann. Observational purity and encapsulation. Theor. Comput. Sci.,
376(3):205–224, 2007.

55. D. A. Naumann and A. Banerjee. Dynamic boundaries: Information hiding by second
order framing with first order assertions. In A. D. Gordon, editor, Programming
Languages and Systems (ESOP), volume 6012 of LNCS, pages 2–22. Springer-Verlag,
2010.

56. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375:271–307, 2007.

29

http://www.pm.inf.ethz.ch/education/theses/student_docs/Florian_Leu/florian_leu_MA_report
http://www.pm.inf.ethz.ch/education/theses/student_docs/Florian_Leu/florian_leu_MA_report

57. J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership, uniqueness,
and immutability. In R. F. Paige and B. Meyer, editors, Objects, Components,
Models and Patterns (TOOLS), volume 11 of Lecture Notes in Business Information
Processing, pages 178–197. Springer-Verlag, 2008.

58. M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and
M. Abadi, editors, Principles of Programming Languages (POPL), pages 247–258.
ACM Press, January 2005.

59. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, Jan. 1997.

60. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science (LICS). IEEE Computer Society Press, 2002.

61. A. Rudich. Automatic Verification of Heap Structures with Stereotypes. PhD thesis,
ETH Zurich, 2011.

62. A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method
specifications. In J. Cuellar and T. Maibaum, editors, Formal Methods (FM),
volume 5014 of LNCS, pages 68–83. Springer-Verlag, 2008.

63. A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs.
In VMCAI, volume 3385 of LNCS, pages 199–215. Springer-Verlag, 2005.

64. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dy-
namic frames and separation logic. In European Conference on Object-Oriented
Programming (ECOOP), LNCS, pages 148–172. Springer-Verlag, 2009.

65. A. J. Summers and P. Müller. Freedom before commitment—a lightweight type sys-
tem for object initialisation. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 1013–1032. ACM, 2011.

66. Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D. Ernst. Object and
reference immutability using Java generics. In European Software Engineering
Conference/Foundations of Software Engineering (ESEC/FSE), pages 75–84. ACM
Press, 2007.

67. Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and immutability in
generic Java. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 598–617, 2010.

30

	Object Ownership in Program Verification

