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Abstract. A Java Card applet is, in general, not allowed to access fields
and methods of other applets on the same smart card. This applet iso-
lation property is enforced by dynamic checks in the Java Card Virtual
Machine. This paper describes a refined type system for Java Card that
enables static checking of applet isolation. With this type system, firewall
violations are detected at compile time. Only a special kind of downcast
requires dynamic checks.

1 Introduction

The Java Card technology allows applications—so-called Java Card applets—to
run on smart cards. Several applets can run on a single card and share a common
object store. Since the applets on a card may come from different, possibly
untrusted sources, a security policy ensures that an applet, in general, cannot
inspect or manipulate data of other applets. To enforce this applet isolation
property, the Java Card Virtual Machine establishes an applet firewall, that is,
it performs dynamic checks whenever an object is accessed, for example, by field
accesses, method invocations, or casts. If an access would violate applet isolation,
a SecurityException is thrown.

Dynamically checking applet isolation is unsatisfactory for two reasons: (1) It
leads to significant runtime overhead. (2) Accidental attempts to violate the
firewall are detected at runtime, that is, after the card with the defective applet
has been issued, which could lead to enormous costs. In this paper, we sketch a
refined type system for the Java Card language that allows one to detect most
firewall violations statically by checks on the source code level. This type system
serves three important purposes:

1. It reduces the runtime overhead caused by dynamic checks significantly.
2. Most firewall violations are detected at compile time. At runtime, only cer-

tain casts can lead to SecurityExceptions. These casts occur when static
fields are accessed and when a reference is passed to another applet and then
retrieved again. Programmers and verifiers can focus on these cast expres-
sions when reasoning about applet isolation.

3. The refined type information provides formal documentation of the kinds of
objects handled in a program such as entry point objects, global arrays, etc.,
and complements informal documentation, especially, of the Java Card API.

In this paper, we are only interested in checking applet code and do not
consider the Java Card Runtime Environment (JCRE) implementation.



Overview. In the remainder of this introduction, we describe the applet fire-
wall and our approach. Section 2 presents the refined type system, which tracks
context information statically. Type safety is proved in Section 3. Based on the
refined type information, context conditions can check applet isolation stati-
cally. These static checks are explained in Section 4. We discuss the presented
and related work in Sections 5 and 6.

1.1 Applet Firewall

The applet firewall essentially partitions the object store of a smart card into
separate protected object spaces called contexts [24, Sec. 6]. It allows object
access across contexts only in certain cases. In this subsection, we describe con-
texts, object access across contexts, and the dynamic checks that enforce the
firewall.

Contexts. Each applet installed on a smart card belongs to exactly one applet
context. This context is determined by the package in which the applet class
is declared. It contains the applet objects and all objects created by method
executions in that context. The operating system of the card is contained in
the Java Card Runtime Environment (JCRE) context. At any execution point,
there is exactly one currently active context (in instance methods, this context
contains this). When an object of context C invokes a method m on an object in
context D, a context switch occurs, that is, D becomes the new currently active
context. Upon termination of m, C is restored as the currently active context.

Class objects do not belong to any context. There is no context switch when a
static method is invoked. Static fields can be accessed from any context. Objects
referenced by static fields belong to an applet context or to the JCRE context.

Firewall Protection. We say that an object is accessed if it serves as receiver
for a field access, array element access, or method invocation, if its reference is
used to evaluate a cast or instanceof expression, or if the object is an exception
that is thrown. In general, an object can only be accessed if it is in the currently
active context (see below for object access across contexts). To enforce this rule,
the Java Card Virtual Machine performs dynamic checks. If an object is accessed
that is not in the currently active context, a SecurityException is thrown.

Object Access Across Contexts. The Java Card applet firewall allows cer-
tain forms of object access across contexts:

(1) Applets need access to services provided by the JCRE. These services
are provided by JCRE entry point objects. These objects belong to the JCRE
context but can be accessed by any object. There are permanent entry point
objects (PEPs for short), temporary entry point objects (TEPs for short), and
global arrays. Global arrays share many properties of TEPs: References to global
arrays and TEPs cannot be stored in fields. An applet can invoke methods on
entry point objects, but not access their fields.
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(2) Interaction between applets is enabled by shareable interface objects (SIOs
for short). An object is an SIO if its class transitively implements the Shareable
interface. An applet can get a reference to an SIO of another applet by invoking a
static method of the JCRE. Access to SIOs is severely restricted. An applet can
invoke those methods of an SIO which are declared in an interface that extends
Shareable. However, it can neither access fields of SIOs nor cast an SIO to a
type other than a shareable interface [24].

(3) The JCRE has access to objects in any context.

Example. The following faulty implementation of two cooperating applets illus-
trates the dynamic checks of the applet firewall. Fig. 1 shows the implementation
of a client applet. We assume that the client and a server applet are installed on
the same card, but are contained in different packages.

public class Status {
private boolean success;
public Status(boolean b) { success = b; }
public boolean isSuccess() { return success; }

}

public interface Service extends Shareable {
Status doService();

}

public class Client extends Applet {
public void process(APDU apdu) {

AID svr = ...; // server ’s AID
Shareable s = JCSystem.getAppletShareableInterfaceObject(svr, (byte)0);
Service ser = (Service)s ; // legal cast : s refers to a Service object
Status sta = ser.doService (); // invocation is legal
if (sta . isSuccess ()) // leads to SecurityException

...
}

}

Fig. 1. Implementation of a client applet. All classes are implemented in the same
package. package and import clauses are omitted for brevity. We assume that a server
applet is implemented in a different package.

The following interaction is initiated by method process: By invoking the
static method JCSystem.getAppletShareableInterfaceObject, the client re-
quests an SIO from the server. This call returns an SIO that is cast to the
shareable interface Service. The client then invokes doService on the SIO.
This invocation yields a new Status object that is used to check whether the
service was rendered successfully.
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This interaction leads to a SecurityException: The client and server ap-
plet reside in different contexts. The Service SIO and the Status object be-
long to the context of the server. When the invocation sta.isSuccess() is
checked, none of the three cases for object access across contexts applies: (1) The
Status object is not an entry point object. (2) Since Status does not implement
Shareable, the Status object is not an SIO. (3) Since method process is exe-
cuted on an Applet object, the currently active context is an applet context, not
the JCRE context. Therefore, the access is denied and the exception is thrown.
To correct this error, one would have to use an interface that extends Shareable
instead of class Status.

1.2 Approach

To detect firewall violations at compile time, we adapt ownership type systems
for alias control [11, 17, 19]. Whereas these type systems focus on restricting
references between different contexts, we permit references between arbitrary
contexts, but restrict the operations that can be performed on a reference across
context boundaries.

Our type system augments every reference type of Java with context infor-
mation that indicates (1) whether the referenced object is in the currently active
context, (2) whether it is a PEP, (3) whether it is a TEP or a global array, or
(4) whether it can belong to any context. Type rules guarantee that every execu-
tion state is well-typed, which means, in particular, that the context information
is correct. We use downcasts to turn references of kind (4) into references of more
specific types. For such casts, dynamic checks guarantee that the more specific
type is legal. Otherwise, a SecurityException is thrown.

To check an applet with our type system, its implementation as well as the
interfaces of applets it interacts with and of the Java Card API must be enriched
by refined type information. This information is used to impose additional con-
text conditions on expressions to guarantee that the firewall is respected.

In the execution of a program that is type correct according to our type
system, only the evaluation of downcast expressions requires dynamic firewall
checks and might lead to SecurityExceptions. Thus, casts point programmers
at the critical spots in a program, which simplifies code reviews and testing.
Moreover, they allow standard reasoning techniques to be applied to show that
no SecurityException occurs [23].

2 The Type System

A type system expresses properties of the values and variables of a programming
language that enable static checking of well-definedness of operations and their
application conditions, in this case, Java Card’s firewall constraints.
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2.1 Tagged Types

In order to know whether an operation is legal in Java Card, we need information
about the context in which the operation is executed. The basic idea of our
approach is to augment reference types with context information.

Since we are interested in checking applet code, we consider statements and
expressions that are executed in an applet context. From the point of view of
an applet context, C, we can distinguish (a) internal references to objects in C,
(b) PEP references, (c) TEP references including global arrays, and (d) references
to objects in any context.

In the type system, this distinction is reflected by the context tags i for
internal, p for PEP, t for TEP and global arrays, and a for any. The a-tag is used
for references to non-TEP objects in contexts that are not known statically. For
checking applet isolation, it would be desirable to have more precise information
about the context of an object. However, the sharing mechanism through method
JCSystem.getAppletShareableInterfaceObject does not provide any static
information about the context of the returned SIO.

A tagged type is either a simple tagged type for primitive values or class
instances, or a tagged array type.

Simple Tagged Types. Let TypeId denote the set of declared type identifiers of
a given Java Card program; then the tagged type system comprises the following
types for primitive values and class instances:

SimpleTaggedType = {booleanT, intT, . . . ,nullT} ∪ ({i, p, t, a} × TypeId)

Except for the null-type, which is used to type the null literal, all reference
types in the tagged type system are denoted as a pair of a tag and a Java type.
In actual code examples we will use the keywords intern, pep, tep, and any

instead of the symbols used for the formalization.

Tagged Types. In general, an array type has two tags: The array tag specifies
the context that contains the array object, whereas the element tag specifies the
context of the array elements relatively to the context of the array object. For
instance, an array of type intern any Object[] belongs to the currently active
context and stores objects belonging to any context.

Global arrays serve as temporary entry points to the JCRE context. There-
fore, we use the tep tag to mark an array as global. For instance, the APDU

buffer, a global array of bytes, has type tep byte[]. Since the element type is
a primitive type here, there is no element tag.

Formally, a tagged type is either a simple tagged type or an array type. Since
Java Card does not provide multi-dimensional arrays, the array elements have a
simple tagged type. Permanent entry point arrays do not exist in Java Card.

TaggedType = SimpleTaggedType ∪ ({i, t, a} × SimpleTaggedType)
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Notation. In the following, the meta-variables S and T denote Java types; TS
and TT range over TaggedType. Calligraphic S and T can stand for Java types or
TaggedTypes. It is often convenient to use a tuple notation for tagged reference
types. (γ, T ) is the simple tagged type for objects of Java type T with tag γ.
(γ,TT) is a tagged array type with element type TT. (γ, T ) can be the type of
both a class instance or an array.

Subtyping on Tagged Types. The subtype relation � on tagged types fol-
lows Java’s subtype relation �J on Java types. It is the smallest reflexive and
transitive relation satisfying the following axioms.

(1) (γ, T ) � (γ, java.lang.Object) (2) nullT � (γ, T )
(3) (i, T ) � (a, T ) (4) (p, T ) � (a, T )
(5) (γ, S) � (γ, T ) ⇔ S �J T (6) (γ, (δ, S)) � (γ, (δ, T )) ⇔ S �J T

Every reference type is a subtype of the tagged type for Object, provided that
both types have the same tag (1). The null-type is a subtype of any tagged
reference type (2). intern and pep types are subtypes of the corresponding any

type (3,4). Note that there is no such axiom for tep types. tep types must not
be subsumed under any types to prevent TEPs from being stored in fields or
arrays (see Section 4.1). Two tagged types with the same tag are subtypes iff the
corresponding Java types are subtypes (5). Covariant array subtyping requires
runtime checks for each array update. For tagged types, these checks would
involve context information and could throw SecurityExceptions. To avoid
such checks, we allow only limited covariant subtyping of tagged array types.
Two tagged array types can only be subtypes if they have the same element
tag (6). That is, covariant subtyping is only possible in terms of Java types,
but not of tags. For instance, if S is a subtype of T then intern intern S is a
subtype of intern intern T, but not of intern any S.

Since Java Card imposes weaker restrictions on PEPs than on TEPs, we could
allow pep types to also be subtypes of the corresponding tep types, and forbid
downcasts from tep to pep. We omitted this subtype relation for simplicity.

Casts. Casts on tagged types work analogously to Java. A downcast can be
used to specialize the tagged type of an expression, in particular, the context
information. For instance, an expression of type (a, T ) can be cast to (i, T ). A
runtime check ensures that the refined context information is correct. If not, a
SecurityException is thrown.

Example. Fig. 2 shows the Service interface and the Client class from Fig. 1
with tagged type information. The return type of Service.doService is internal
since the method creates a new Status object in the context in which it is
executed (the context of the server applet). When doService is invoked from the
client context, the returned Status object is external to the client context and
must, thus, be tagged any. The type rules that enforce these tags are discussed
in the next subsection. The static checks that detect the firewall violation are
presented in Sec. 4.
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public interface Service extends Shareable {
intern Status doService();

}

public class Client extends Applet {
public void process(tep APDU apdu) {
pep AID svr = ...; // server ’s applet id is a PEP
any Shareable s =

JCSystem.getAppletShareableInterfaceObject(svr, (byte)0);
any Service ser = (any Service)s ; // ser is in general extern
any Status sta = ser.doService (); // sta is also extern
if (sta . isSuccess ()) // static firewall check fails

...
}

}

Fig. 2. Service interface and Client class with tagged types.

2.2 Tagged Type Rules

In the tagged type system, a type judgment of the form ` e :: TT means that
expression e is well-typed and has tagged type TT. ` s expresses that statement
s is well-typed. In the formalization, we omit the declaration environment and
all rules that handle the environment. Instead, we use [f ], TP , and TR to denote
the tagged type of a field f , the (sole) parameter type, and the return type of
a method, respectively. A more complete formalization of Java’s type system
including declaration environments is presented in [20, 22, 12].

Fig. 3 shows the most interesting rules of the tagged type system. Since the
type rules for statements are trivial, we focus on expressions here. In the type
rules, premises marked by (?) are only needed for static checks of applet isolation.
These premises will be discussed in Section 4.1. The function ShareItf? yields
whether the argument is an interface that extends Shareable.

For brevity, we do not present the rules for exceptions. Like all reference
types, exceptions are tagged. For throw and try statements, as well as for the
declaration of exceptions in method signatures, the normal Java rules apply
based on the subtyping of tagged types. The rules for method invocations treat
exceptions analogously to normal return values.

Object Creation, Cast, and instanceof. Newly created objects always be-
long to the currently active context. Therefore, the type of the new expression
has tag intern (T-New and T-NewArray). For simplicity, we assume that a new

expression directly returns a fresh object without calling a constructor.
The tagged type of a cast expression is the type TT appearing in the cast

operator (T-Cast). For simplicity, we do not allow upcasts. That is, TT has to be
a subtype of the expression type TS. Upcasts can be simulated by an assignment
to a local variable of the desired type.
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T-New
` new T() :: (i, T )

T-NewArray ` e :: intT
` new TT[e] :: (i,TT)

T-Cast
` e :: TS TT � TS

(?) TS = (a,S) ∧ TT = (γ, T ) ⇒ (S �J Shareable1 ∧ ShareItf?(T ) ∨ S = T )

` (TT) e :: TT

T-Instanceof
` e :: TS

(?) TS = (a,S) ∧ TT = (γ, T ) ⇒ (S �J Shareable1 ∧ ShareItf?(T ) ∨ S = T )

` e instanceof TT :: booleanT

T-Invoke

` e1 :: TS ` e2 :: TT TS ∗ TT � TP
(?) TS = (a,S) ⇒ ShareItf?(S)

` e1.m(e2) :: TS ∗ TR
T-SInvoke

` e :: TS
TS � TP

` T.m(e) :: TR

T-FRead

` e :: TS
(?) TS = (i,S)

` e.f :: [f ]
T-FWrite

` e1 :: TS ` e2 :: TT TT � [f ]
(?) TS = (i, S) (?) TT 6= (t, T )

` e1.f=e2 :: TT

T-SRead
` T.f :: [f ]

T-SWrite
` e :: TT TT � [f ] (?) TT 6= (t, T )

` T.f=e :: TT

T-ARead
` e1 :: (γ,TE) ` e2 :: intT (?) γ = i ∨ γ = t

` e1[e2] :: (γ,TE) ∗ TE

T-AWrite

` e1 :: (γ,TE) ` e2 :: intT ` e3 :: TT (γ,TE) ∗ TT � TE
(?) γ = i ∨ γ = t (?) TT 6= (t, T )

` e1[e2]=e3 :: TT

Fig. 3. Tagged type rules.

Method Invocation. For simplicity, we assume that methods have exactly one
formal parameter.

The rule for the invocation of instance methods (T-Invoke) has to handle
context switches. Consider for example the invocation ser.doService in Fig. 2.
The declared return type of doService is intern because the result object is
intern to the server context in which the method is executed. When doService

is invoked from the client context, the returned Status object is external to the
client context and, therefore, must be tagged any. This adaption of the tag is
described by the ∗-operator, which combines two tagged types. It is defined as
follows:

1 We write S �J Shareable to express that S is a Java type, which is a subtype of
Shareable.
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∗ : TaggedType × TaggedType → TaggedType
(γ, T ) ∗ (i,S) = (a,S), if γ 6= i

(γ, T ) ∗ TS = TS, in all other cases

The ∗-operator tags the parameter or result as any when the invocation could
lead to a context switch (γ 6= i) and an internal reference is passed to or returned
by the method.

Static methods are always executed in the currently active context. Therefore,
in rule T-SInvoke, the tags do not need to be adapted by the ∗-operator.

Field and Array Access. The type of a field read is the declared type of the
field, [f ] (T-FRead, T-SRead). T-FWrite and T-SWrite check that the tagged
type of the right-hand side of a field update is a subtype of the declared type of
the field.

Besides the rules for accessing static fields, there is also a requirement for
their declaration: Since class objects do not belong to any context, static fields
must not have an intern type.

Tagged element types specify the context of array elements relatively to the
context of the array object. Therefore, the ∗-operator is used to combine the
tagged array type, (γ,TE), with the tagged element type, TE, to determine the
type of an array read access (T-ARead). Similarly, the ∗-combination of the
array type and the type of the right-hand side expression of an array update has
to be a subtype of the element type (T-AWrite).

2.3 Annotations for the Java Card API

To typecheck applet implementations, tags have to be added to the Java Card
API. In particular, these tags determine which objects are entry point objects.
Fig. 4 illustrates such API annotations for three methods of class JCSystem. Ac-
cording to the API specifications, method getAID returns an AID object that is
a PEP. getAppletShareableInterfaceObject takes a pep AID and returns a
reference to an SIO in any applet context, hence the result type any Shareable.
Method makeTransientByteArray illustrates that exceptions thrown by the
JCRE are TEPs. Since the method creates a new array in the context in which
it is called, the result type has tag intern.

3 Dynamic Semantics

In this section, we formalize and prove type safety based on an operational se-
mantics of a subset of Java Card. Although we have proved type safety for the full
language, we omit primitive types, arrays, and exceptions in this formalization
for simplicity.
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public final class JCSystem {
static pep AID getAID() {...}
static any Shareable getAppletShareableInterfaceObject

(pep AID serverAID, byte parameter) {...}
static intern byte[ ] makeTransientByteArray(short length, byte event)

throws tep NegativeArraySizeException, tep SystemException {...}
// other methods omitted

}

Fig. 4. Tags for selected methods of the Java Card API.

3.1 State Model

We build on the formalization of the state model of Java presented in [23]. In
the following, we summarize those aspects that are specific to Java Card such
as the treatment of contexts.

Contexts, Objects, and Values. A Context is either the JCRE context or an
applet context, defined by a package name. A key property of the formalization
is that each object “knows” the context it belongs to and whether it is a PEP
or TEP. Since we do not consider primitive types here, a Value is either a
reference to an object or null. Sorts PackageId, ClassId, and ObjId stand for
package names, class names, and object identifiers (addresses), respectively. The
function ctxt yields the context an object belongs to.

Context = jcreC
| appletC( PackageId )

Value = ref( Object )
| null

Object = o( ClassId,ObjId,Context )
| pepo( ClassId,ObjId )
| tepo( ClassId, ObjId )

ctxt : Value → Context ∪ {undef}
ctxt(ref(o(T, O, C))) = C

ctxt(ref(pepo(T, O))) = jcreC
ctxt(ref(tepo(T, O))) = jcreC
ctxt(null ) = undef

In addition to these definitions, we use the following functions: typeof yields the
dynamic Java type of a value. pepo? and tepo? test whether an object is a PEP
or a TEP.

Object Stores. The state of an object is given by the values of its instance
variables. We assume a sort Location for the instance variables of objects and
the static fields of classes. The functions

iv : Value × FieldId → Location ∪ {undef}
sv : ClassId × FieldId → Location ∪ {undef}

are used to create a location from a value (or class) and a field name (sort
FieldId).
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The state of all objects in the current execution state is formalized by an
abstract data type Store with the following functions:

( ) : Store × Location → Value
〈 := 〉 : Store × Location × Value → Store
〈 , 〉 : Store × ClassId × Context → Store

new : Store × ClassId × Context → Object

OS(L) yields the value of location L in store OS. OS〈L := V 〉 yields the object
store that is obtained from OS by updating location L with value V . OS 〈T, C〉
yields the object store that is obtained from OS by allocating a new object of type
T in context C. new(OS , T, C) yields a reference to a new object of type T in
context C. The functions for object creation, OS〈T, C〉 and new(OS , T, C), are
connected by appropriate axioms. Since these axioms as well as other properties
of the above functions are not needed in this paper, we refer the reader to [23]
for their axiomatization.

Program States. Program states are formalized as mappings from identifiers
to values. A designated variable C contains the currently active context. We
use $ as identifier for the current object store. We assume that each method has
exactly one formal parameter, p. VarId is the set of identifiers for local variables.

State ≡ (VarId ∪ { this, p } → Value ∪ {undef}) ∪
({ $ } → Store) ∪ ({ C } → Context)

For σ ∈ State, we write σ(x) for the application to a variable or parameter
identifier x. In static methods, we set σ(this) = null. By σ[x := V ], we denote
the state that is obtained from σ by updating variable x with value V . An
analogous notation is used for the current object store, $, and the currently
active context, C. initS denotes the state that is undefined for all variables, $,
and C.

3.2 Operational Semantics

The operational semantics has two kinds of transitions: σ :: e → V, σ′ expresses
that the evaluation of expression e in state σ yields value V and final state σ′.
For statements, σ : s → σ′ expresses that the execution of statement s in state
σ leads to state σ′. Since the rules for statements are the usual Java rules, we
omit them here and refer the reader to [21].

The rules for expressions are found in Fig. 5. In the rules, we mark the
premises for the dynamic firewall checks with “(?)”. We refer to the semantics
including the dynamic firewall checks as strong semantics, whereas the weak
semantics does not contain these checks. In the following, we use → and →? to
denote transitions in the weak and strong semantics, respectively.

Following Drossopoulou and Eisenbach [12], we assume that all expressions
are annotated with their static types. These annotated versions of the expressions
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are produced by the type rules, although we leave that implicit in Fig. 3. In the
semantics rules, the static Java type of an expression e is denoted by [e].

The most complex rule handles invocations of instance methods (S-Invoke).
impl(T, m) yields the implementation of method m in type T . This implementa-
tion can be inherited from a superclass. First, the receiver and actual parameter
expressions are evaluated. Next, the implementation of the dynamically-bound
method m is executed in a state that maps the formal parameters to the actual
parameters and $ to the store after evaluating the actual parameter. The new
currently active context is the context of the receiver object. That is, a context
switch may occur. The return value of the method is stored in the special vari-
able, res. The strong semantics requires in addition that the receiver object is
in the currently active context, an entry point object, or that the static type of
the receiver is a shareable interface2. These conditions correspond to the firewall
checks described in Section 1.1.

3.3 Type Safety

Type safety w.r.t. tagged types means that the tag of the static type of a program
element e correctly reflects the context the object denoted by e belongs to. For
instance, the object held by a local variable of type intern T in an execution
state σ has to belong to the currently active context of σ.

Most Specific Tagged Types. An object knows its class, whether it is a
PEP, a TEP, or an ordinary object, and its context. Tagged types approximate
this information statically. The best approximation for an object X relative to
a context C is determined by ttype(X, C). In particular, for a non-entry point
object X , ttype(X, C) yields an intern type if X is in context C and an any

type if X belongs to a different context. For example, if X is an instance of class
T in context C, then the most specific tagged type relative to context C is (i, T )
because X is intern to C. (a, T ) would also be a valid tagged type for X , but is
not the most specific one. Function ttype is defined as follows:

ttype : Value ×Context → TaggedType

ttype(ref(o(T, O, C)), C) = (i, T )

ttype(ref(o(T, O, C)), D) = (a, T ) for C 6= D

ttype(ref(pepo(T, O)), D) = (p, T )

ttype(ref(tepo(T, O)), D) = (t, T )

ttype(null, D) = nullT

2 The Java Card documentation [24] formulates these rules for bytecode instructions.
Java bytecode provides different instructions for methods declared in classes and
interfaces. This distinction is reflected in our uniform invocation rule by referring to
the static type of the receiver.
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S-New
σ :: new T() → new(σ($), T, σ(C)), σ[$ := σ($) < T, σ(C) >]

S-Cast

σ :: e → V, σ′ ttype(V, σ(C)) � TT
(?) ctxt(V ) = σ(C) ∨ pepo?(V ) ∨ tepo?(V )∨
(typeof(V ) �J Shareable ∧ ShareItf?(TT ))

σ :: (TT )e → V, σ′

S-Invoke
σ :: e1 → V 1, σ′ σ′ :: e2 → V 2, σ′′ V 1 6= null,

initS [this := V 1, p := V 2, $ := σ′′($), C := ctxt(V 1)] : impl(typeof(V 1), m) → σ′′′

(?) ctxt(V 1) = σ(C) ∨ pepo?(V 1) ∨ tepo?(V 1) ∨ ShareItf?([e1])

σ :: e1.m(e2) → σ′′′(res), σ′′[$ := σ′′′($)]

S-SInvoke
σ :: e → V, σ′ initS [p := V, $ := σ′($), C := σ(C)] : impl(T, m) → σ′′′

σ :: T.m(e) → σ′′′(res), σ′[$ := σ′′′($)]

S-FRead
σ :: e → V, σ′ V 6= null (?) ctxt(V ) = σ(C)

σ :: e.f → σ′($)(iv(V, f)), σ′

S-FWrite

σ :: e1 → V 1, σ′ σ′ :: e2 → V 2, σ′′ V 1 6= null
(?) ctxt(V 1) = σ(C) (?) ¬tepo?(V 2)

σ :: e1.f = e2 → V 2, σ′′[$ := σ′′($) < iv(V 1, f) := V 2 >]

S-SRead
σ :: T.f → σ($)(sv(T, f)), σ

S-SWrite
σ :: e → V, σ′ (?) ¬tepo?(V )

σ :: T.f = e → V, σ′[$ := σ′($) < sv(T, f) := V >]

Fig. 5. Selected rules of the operational semantics.

Well-Typed States. Based on the function ttype, we can define well-typed
states: The most specific tagged type for a variable and a context has to be a
subtype of the declared type of the variable (written as [v] for a variable v).

Definition 1 (Well-Typed States). A state is well-typed if (1) the local vari-
ables and formal parameters are correctly typed relative to the currently active
context; (2) all instance variables X.f are correctly typed relative to the context
of X; (3) all static fields T.f are correctly typed relative to any context:

wt : State → Bool
wt(σ) ⇔ (∀v ∈ VarId ∪ {this, p} : ttype(σ(v), σ(C)) � [v]) ∧

(∀L ∈ Location : L = iv(X, f) ⇒ ttype(σ($)(L), ctxt(X)) � [f ]) ∧
(∀L ∈ Location : L = sv(T, f) ⇒ ∀C ∈ Context : ttype(σ($)(L), C) � [f ])
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For objects that are neither PEPs nor TEPs, ttype uses the context argument
C to determine whether the object is internal to C (tag i) or not (tag a). If a
local variable or formal parameter is typed intern, the referenced object has to
be in the currently active context, σ(C). If an instance field f is typed intern,
the object referenced by X.f has to be in the same context as X . Since static
fields can be read and written from any context, they cannot be typed intern.
Requiring that the object X referenced by static field T.f is correctly typed
relative to any context enforces that X is a permanent entry point object or [f ]
has tag any.

Java Card is type safe w.r.t. the tagged type system. That is, the type rules—
without the static firewall checks—ensure that tags correctly reflect dynamic
context information. Type safety does not rely on the dynamic firewall checks.
That is, it can be proved based on the weak operational semantics.

Theorem 1 (Type Safety). If the evaluation of a well-typed expression e

starts in a well-typed state, σ, and terminates then the final state, σ′, is well-
typed and has the same currently active context as σ. The resulting value is
correctly typed:

` e :: TT ∧ σ :: e → V, σ′ ∧ wt(σ) ⇒ wt(σ′) ∧ ttype(V, σ′(C)) � TT ∧ σ(C) = σ′(C)

If the execution of a well-typed statement s starts in a well-typed state, σ,and
terminates then the final state, σ′, is well-typed and has the same currently active
context as σ:

` s ∧ σ : s → σ′ ∧ wt(σ) ⇒ wt(σ′) ∧ σ(C) = σ′(C)

The proof of this theorem uses the following auxiliary lemma. This lemma
is used to relate (i) the argument of a method call to the context in which the
method is executed and (ii) the result of a call to the context of the caller.

Lemma 1 (Combination Lemma). Let TS be the tagged type of object X

relative to a context C. (i) If TT is the tagged type of value Y relative to C, then
the tagged type of Y relative to the context of X is a subtype of TS ∗ TT. (ii) If
TT is the tagged type of value Y relative to the context of X, then the tagged
type of Y relative to C is a subtype of TS ∗ TT.

(i) X 6= null ∧ ttype(X, C) = TS ∧ ttype(Y, C) = TT ⇒ ttype(Y, ctxt(X)) � TS ∗ TT

(ii) X 6= null ∧ ttype(X, C) = TS ∧ ttype(Y, ctxt(X)) = TT ⇒ ttype(Y, C) � TS ∗ TT

Proof: The proof of Lemma 1 runs by case distinction on the tags of TS and
TT. It is straightforward and, therefore, omitted.

Proof of Type Safety. The proof of Theorem 1 runs by rule induction on the
rules of the weak operational semantics. For brevity, we show only the most in-
teresting case, calls of instance methods. Consider the invocation e1.m(e2). We
have to prove that if the evaluation of the call starts in a well-typed state then
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(1) the state in which the implementation of m is executed is well-typed. This
is necessary to establish the induction hypothesis for the method implementa-
tion; (2) the induction hypothesis holds for the final state of the evaluation of
e1.m(e2). In the following, TS, TT, TP, and TR are used like in the type rule
T-Invoke (Fig. 3).

Part 1: TTthis denotes the tagged type of the implicit parameter of m’s imple-
mentation. TTthis = (i, S), where S is the class in which m is implemented.
That is, typeof(V 1) �J S.

wt(σ)
⇒ [induction hypothesis for σ :: e1 → V 1, σ′ and σ′ :: e2 → V 2, σ′′]

wt(σ′′) ∧ ttype(V 1, σ(C)) � TS ∧ ttype(V 2, σ(C)) � TT
⇒ [Lemma 1 (i), V 1 6= null ]

wt(σ′′) ∧ ttype(V 2, ctxt(V 1)) � TS ∗ TT
⇒ [TTthis = (i, S), typeof(V 1) �J S; TS ∗ TT � TP]

wt(σ′′) ∧ ttype(V 1, ctxt(V 1)) � TTthis ∧ ttype(V 2, ctxt(V 1)) � TP
⇒

wt(initS [this := V 1, p := V 2, $ := σ′′($), C := ctxt(V 1)])

Part 2:

wt(σ)
⇒ [induction hypothesis for σ :: e1 → V 1, σ′ and σ′ :: e2 → V 2, σ′′]

wt(σ′′) ∧ ttype(V 1, σ′(C)) � TS ∧ σ(C) = σ′′(C) ∧ σ′(C) = σ′′(C)
⇒ [induction hypothesis for method implementation]

wt(σ′′) ∧ wt(σ′′′) ∧ ttype(V 1, σ′(C)) � TS ∧ σ(C) = σ′′(C) ∧ σ′(C) = σ′′(C)
⇒ [res is a local variable of m’s implementation with type TR]

wt(σ′′) ∧ wt(σ′′′) ∧ ttype(V 1, σ′′(C)) � TS ∧
ttype(σ′′′(res), ctxt(V 1)) � TR ∧ σ(C) = σ′′(C)

⇒ [Lemma 1 (ii), V 1 6= null ]
wt(σ′′[$ := σ′′′($)]) ∧ ttype(σ′′′(res), σ′′[$ := σ′′′($)](C)) � TS ∗ TR ∧
σ(C) = σ′′[$ := σ′′′($)](C)

�

Type Progress. Besides type safety, progress is an interesting property of a
type system: Progress means that a well-typed program can actually be executed,
that is, applying the rules of the operational semantics does not lead to stuck
configurations. We do not prove progress formally in this paper. However, one can
easily show that the tagged type system guarantees progress if the original Java
Card type system does: (1) If a program PtJC is well-typed in the tagged type
system, then the Java Card program PJC obtained from PtJC by omitting all
tags is well-typed in the Java Card type system, because the tagged type system
only imposes additional checks. (2) Besides minor differences for object creation
and cast, the strong operational semantics for PJC and PtJC are identical. That
is, since PJC can be executed (progress of the Java Card type system), PtJC

can be executed as well. (3) The weak operational semantics is obtained from
the strong operational semantics by omitting several requirements. Therefore,
PtJC can also be executed in the weak operational semantics.
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4 Checking Applet Isolation

Tagged types provide a conservative approximation of runtime context informa-
tion. This information can be used to impose static checks that guarantee that
an applet respects the applet firewall at runtime. In the following, we explain
these checks and prove that they enforce applet isolation.

4.1 Static Checks

Applet isolation is enforced by additional checks in the tagged type rules (Fig. 3),
which are marked by (?). We will explain these premises below.

Object Creation, Cast, and instanceof. Object creation is always allowed
(T-New, T-NewArray). In Java Card, even finding out type information about
objects in other applet contexts is considered a security violation. Therefore,
casts are allowed if the object is in the currently active context, if it is an entry
point object, or if the object’s class implements Shareable and the object is cast
into a shareable interface. That is, the cast is legal if the object is intern, TEP,
or PEP. For tag any, we check that the object’s class implements Shareable

and that it is cast into a shareable interface (T-Cast). Moreover, we allow casts
from any T to intern T or pep T to refine the tagged type information. The
rule for instanceof expressions (T-Instanceof) is analogous.

Method Invocation. Instance methods can be invoked on objects (including
arrays) in the currently active context, on PEPs and TEPs, and if the static
type of the receiver is a shareable interface. Rule T-Invoke requires that if the
receiver can be in any context (tag any), then its static Java type must be a
shareable interface. Static methods can be invoked from any context and need
no checks (T-SInvoke).

Field and Array Access. As mentioned in Section 1.1, Java Card forbids
field access on objects (including the length field of arrays) not in the currently
active context. Therefore, the type of the receiver must have tag intern (T-
FRead, T-FWrite). Since it is not allowed to store TEPs in fields, the right-hand
side of a field update must not have tag tep. Static fields can be accessed from
any context. Therefore, only the check for TEP objects is required (T-SRead,
T-SWrite).

Access to an array element is only allowed if the array is either in the currently
active context or a global array. Therefore, rules T-ARead and T-AWrite require
the tag of the receiver expression to be intern or tep. Like for field updates, the
tagged type of the right-hand side of an array update must not have tag tep.

Example. In the example in Fig. 2, the firewall violation would be detected
statically. Since sta has tag any, the invocation sta.isSuccess() does not
pass the static checks of rule T-Invoke: Status is a class and does not implement
Shareable.
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4.2 Applet Isolation Lemma

The static checks described above guarantee applet isolation: Each Java Card
program with tagged types that passes the static checks behaves like the cor-
responding Java Card program with dynamic checks. That is, every Java Card
program that can be correctly tagged does not throw SecurityExceptions (ex-
cept for the dynamic checks for casts).

Theorem 2 (Applet Isolation). Let e be an expression that can be typed in the
tagged type system and that passes the static firewall checks. If e’s evaluation in
a well-typed state σ terminates normally then the evaluation of the corresponding
Java Card expression without tags, ê, in σ terminates normally in the same final
state and yields the same value:

`? e :: TT ∧ σ :: e → V, σ′ ∧ wt(σ) ⇒ σ :: ê →? V, σ′

where `? e :: TT denotes that e is well-typed and passes the static firewall checks.
→ and →? denote transitions in the weak and strong semantics, respectively.

Note that omitting tags from expressions makes those casts dispensable that
do not change the Java type of an expression. For instance, for a variable v of
tagged type (a, T ), omitting the tags from the cast (i T )v yields v. For such cast
expressions, the implication of the theorem is trivially true.

Proof of Applet Isolation. The proof of Theorem 2 runs by rule induction
on the weak operational semantics. It uses type safety of the tagged type system
and the static firewall checks. Again, we show the proof for the most interesting
case: the invocation of instance methods.

Since we have the transition σ :: e → V, σ′, we know that all premises of
rule S-Invoke in the weak semantics hold. Applying the induction hypothesis
to these premises yields the corresponding premises in the strong semantics.
It remains to show that the additional premise in the strong semantics holds:
ctxt(V 1) = σ(C) ∨ pepo?(V 1) ∨ tepo?(V 1) ∨ ShareItf?([e1]).

From the premise σ :: e1 → V 1, σ′ and type safety (Theorem 1), we get
ttype(V 1, σ(C)) � TS. We may assume that TS is a reference type (γ, [e1]). We
continue by case distinction on the tag γ:

1. Case i: Subtyping on tagged types gives that ttype(V 1, σ(C)) has tag i. The
definition of ttype yields V 1 = ref(o(S, O, σ(C))) for some S, O. Therefore,
ctxt(V 1) = σ(C).

2. Case p: Analogously to Case i, we get V 1 = ref(pepo(S, O)) for some S, O.
Therefore, pepo?(V 1) holds.

3. Case t: This case is analogous to Case p.
4. Case a: The static firewall check of rule (T-Invoke) gives directly the result

ShareItf?([e1])

�

Theorem 2 shows that well-typedness and the static firewall checks guar-
antee that execution of an expression does not violate the firewall at runtime.
Therefore, the checks can be used to enforce applet isolation statically.
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5 Discussion

In this section, we discuss the expressiveness of our type system, the overhead
it imposes on programmers, and its possible applications.

5.1 Expressiveness

The proposed type system does not significantly limit the expressiveness of Java
Card: Almost all ordinary Java Card programs can be handled, possibly by
introducing additional downcasts. This flexibility is due to the fact that any

types are supertypes of the corresponding intern and pep types. Therefore,
variables that may hold references to objects in various contexts can be typed
any, and casts can be used when such variables are read. In such situations, the
expressiveness of the type system comes at the price of runtime checks. However,
extra downcasts are only needed for two purposes: (1) when an internal object
is stored in a static field and then read again (recall that static fields must not
have intern types); (2) when an internal object is passed to a different context
and then retrieved again (e.g., from a container in a different context).

The only pattern that cannot be typed in our type system is when a vari-
able may hold a reference to a TEP or a non-TEP object. In such cases, the
variable can neither be typed tep nor any. However, this situation is extremely
uncommon since TEPs must not be stored in fields or arrays.

As presented in this paper, the tagged type system does not support con-
travariant subtyping, which prevents certain implementations that are admissible
in Java Card. Assume that a class C inherits a method void m(intern T p)

from its superclass, D, and implements a shareable interface, I , that declares
void m(any T p). Without tags, C would be a legal Java Card implementa-
tion, but C is forbidden by the tagged type system since it does not imple-
ment I ’s void m(any T p). However, this is not a serious restriction: If D’s
implementation of m can handle parameter objects in other contexts, the pa-
rameter p should be declared any. Otherwise, C has to override the method
anyway, and contravariant subtyping would allow C to widen the signature of m
to void m(any T p). Extending the tagged type system to contravariant sub-
typing w.r.t. tags is straightforward but omitted in this paper for simplicity.

5.2 Defaulting

The static safety of our type system comes at the price of some extra work for
programmers, who have to add tags to their programs. However, for the majority
of types, the tags can be determined easily. Except for static fields and program
elements involved in the interaction with the JCRE or other applets, all tags
are usually intern. Therefore, we can use intern as default tag for most types.
More precisely, we default each untagged occurrence of a Java type T to the
tagged type (δ, T ), where δ is:

– pep if T = AID;
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– tep if T = APDU or T is an exception class in the Java Card API;
– any if T is an interface extending Shareable or if the occurrence of T is in

the declaration of a static field;
– intern otherwise.

These defaults reduce the overhead significantly. For instance, all tags of the
Java Card API methods in Fig. 4 could be omitted. Although method process

in Fig. 2 communicates with the JCRE and another applet, only the tags for the
cast (any Service)s and the declaration any Status sta have to be specified
manually. The fact that defaulting does not work in the latter case already
indicates the error in the program. Usually, a well-formed applet does not hold
references of type any T if T is not an interface that extends Shareable.

The cases in which defaulting is not sufficient are (1) the extra downcasts
needed for reading static fields and (2) arrays of type byte[], which are heavily
used as internal objects and as global arrays for the APDU buffer.

An alternative to default tags would be type inference. Since inference has
been applied to the complex context information in ownership type systems [2,
9], we assume that inference would be applicable here as well. We used defaulting
since it works for modular programs.

5.3 Applications

In Section 4, we have shown that the type system can be used to check Java
Card’s applet isolation statically. The static context information can also be used
to enforce stricter policies. For instance, an applet can easily be prevented from
interacting with other applets by checking that no program element has tag any

in the applet’s code. Note that this policy cannot be enforced by just forbidding
calls to JCSystem.getAppletShareableInterfaceObject since applets can also
exchange references through static fields.

Our main motivation was to simplify the verification of source programs by
checking applet isolation syntactically before verifying the program. Therefore,
the type system is applied to source programs. However, the type system can
easily be adapted to bytecode. An adapted bytecode verifier [16] could check
applet isolation at load time. In that case, a modified virtual machine would
only have to check applet isolation for downcasts from any types to intern or
pep types. This would lead to a significantly faster program execution without
weakening the security of the Java Card platform.

6 Related Work

The presented type system benefited from the work on ownership type systems
[1, 2, 9, 11]. Like in these type systems, objects are grouped into contexts, and
types approximate context information statically. However, ownership type sys-
tems provide hierarchic context structures, whereas the contexts in Java Card
are flat. Like readonly references in the Universe type system [19, 17], the work
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presented here permits references between different contexts, but restricts the op-
erations that can be performed on such references. Both Universes and the type
system presented here use downcasts to specialize context information. Due to
these commonalities, we expect that both type systems can be easily integrated
into one type system that facilitates the verification of Java Card programs.

Most ownership type systems use owner parameters to keep track of the con-
text an object belongs to. A similar mechanism could be useful in our work to
provide more fine-grained context information than any tags do, and to make
downcasts with dynamic context checks dispensable. However, references to SIOs
are obtained through calls to JCSystem.getAppletShareableInterfaceObject.
The most specific tagged result type for this method is any Shareable since it
is not known statically from which context a reference is requested.

Similarly to Confined Types [8], Java Card provides one context per package.
However, with Confined Types only the code in package P can modify objects
in the context for P , whereas Java Card only uses the package structure to
determine which applets share one context. The code that modifies the objects
of an applet can reside in arbitrary packages.

Several static analyses for information flow between Java Card applets have
been published. Bieber et al. [6, 7] present an approach that allows smart card
issuers to verify statically by model checking that an applet satisfies a pre-defined
security policy. This analysis is complementary to applet isolation. It is able to
detect illicit information flow between several applets, whereas the applet firewall
controls the interaction between two applets.

Caromel et al. [10] propose a dataflow analysis to infer context information
statically. This information is then used to point programmers to potential fire-
wall violations. Éluard and Jensen [13] combine a dataflow analysis with quan-
tified conditional constraints to check more fine-grained sharing policies such as
sharing between designated applets rather than all applets on a card. In con-
trast to dataflow analyses, the tagged type system allows programmers to record
design decisions about applet sharing in the code, which serves as additional
documentation and enables modular checking. Checking applet isolation based
on dataflow analyses is too expensive to be performed on-the-fly by a virtual
machine; our type system could be easily checked by a bytecode verifier.

The Java Card platform and, in particular, the applet firewall, have been
formalized in different frameworks [5, 14]. These formalizations have been used
to formally verify applet isolation and confidentiality properties [3, 4, 15]. With
our type system, applet isolation can be mostly checked syntactically.

7 Conclusions

We presented a refined type system for Java Card that allows one to check
applet isolation mostly statically. In theory, our type system can replace almost
all dynamic firewall checks. However, unless all applets on a card are checked by
our type system and a refined bytecode verifier, the dynamic checks have to stay
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in place to prevent applets from untrusted sources from violating the firewall.
Still, the type system is useful to detect possibly fatal errors at compile time.

Our approach to checking applet isolation is complementary to formal verifi-
cation of applet properties. Using this type system reduces the verification effort
significantly since applet isolation does not have to be proved for each method
call, field access, instanceof, etc. as it is the case in plain Java Card. On the other
hand, verification techniques can be applied to prove that downcasts do not lead
to SecurityExceptions. As future work, we plan to implement the type system
in our verification tool Jive.
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