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Abstract. Information about the memory locations accessed by a pro-
gram is, for instance, required for program parallelisation and program
verification. Existing inference techniques for this information provide
only partial solutions for the important class of array-manipulating pro-
grams. In this paper, we present a static analysis that infers the memory
footprint of an array program in terms of permission pre- and postcondi-
tions as used, for example, in separation logic. This formulation allows
our analysis to handle concurrent programs and produces specifications
that can be used by verification tools. Our analysis expresses the permis-
sions required by a loop via maximum expressions over the individual
loop iterations. These maximum expressions are then solved by a novel
maximum elimination algorithm, in the spirit of quantifier elimination.
Our approach is sound and is implemented; an evaluation on existing
benchmarks for memory safety of array programs demonstrates accurate
results, even for programs with complex access patterns and nested loops.

1 Introduction

Information about the memory locations accessed by a program is crucial for
many applications such as static data race detection [46], code optimisation [27,
34, 17], program parallelisation [18, 5], and program verification [31, 24, 40, 39].
The problem of inferring this information statically has been addressed by a
variety of static analyses, e.g., [9, 43]. However, prior works provide only partial
solutions for the important class of array-manipulating programs for at least one
of the following reasons. (1) They approximate the entire array as one single
memory location [4] which leads to imprecise results; (2) they do not produce
specifications, which are useful for several important applications such as human
inspection, test case generation, and especially deductive program verification;
(3) they are limited to sequential programs.

In this paper, we present a novel analysis for array programs that addresses
these shortcomings. Our analysis employs the notion of access permission from
separation logic and similar program logics [41, 44]. These logics associate a
permission with each memory location and enforce that a program part accesses
a location only if it holds the associated permission. In this setting, determining
the accessed locations means to infer a sufficient precondition that specifies the
permissions required by a program part.



Phrasing the problem as one of permission inference allows us to address the
three problems mentioned above. (1) We distinguish different array elements
by tracking the permission for each element separately. (2) Our analysis infers
pre- and postconditions for both methods and loops and emits them in a form
that can be used by verification tools. The inferred specifications can easily be
complemented with permission specifications for non-array data structures and
with functional specifications. (3) We support concurrency in three important
ways. First, our analysis is sound for concurrent program executions because
permissions guarantee that program executions are data race free and reduce
thread interactions to specific points in the program such as forking or joining a
thread, or acquiring or releasing a lock. Second, we develop our analysis for a
programming language with primitives that represent the ownership transfer that
happens at these thread interaction points. These primitives, inhale and exhale
[32, 39], express that a thread obtains permissions (for instance, by acquiring a
lock) or loses permissions (for instance, by passing them to another thread along
with a message) and can thereby represent a wide range of thread interactions in a
uniform way [33, 45]. Third, our analysis distinguishes read and write access and,
thus, ensures exclusive writes while permitting concurrent read accesses. As is
standard, we employ fractional permissions [6] for this purpose; a full permission
is required to write to a location, but any positive fraction permits read access.

Approach. Our analysis reduces the problem of reasoning about permissions for
array elements to reasoning about numerical values for permission fractions. To
achieve this, we represent permission fractions for all array elements qa[qi] using
a single numerical expression t(qa, qi) parameterised by qa and qi. For instance,
the conditional term (qa=a ∧ qi=j ? 1 : 0) represents full permission (denoted by
1) for array element a[j] and no permission for all other array elements.

Our analysis employs a precise backwards analysis for loop-free code: a
variation on the standard notion of weakest preconditions. We apply this analysis
to loop bodies to obtain a permission precondition for a single loop iteration.
Per array element, the whole loop requires the maximum fraction over all loop
iterations, adjusted by permissions gained and lost during loop execution. Rather
than computing permissions via a fixpoint iteration (for which a precise widening
operator is difficult to design), we express them as a maximum over the variables
changed by the loop execution. We then use inferred numerical invariants on these
variables and a novel maximum elimination algorithm to infer a specification for
the entire loop. Permission postconditions are obtained analogously.

For the method copyEven in Fig. 1, the analysis determines that the permission
amount required by a single loop iteration is (j%2=0?(qa=a ∧ qi=j?rd:0):(qa=a ∧
qi=j ? 1 : 0)). The symbol rd represents a fractional read permission. Using a
suitable integer invariant for the loop counter j, we obtain the loop precondition
maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0))). Our max-
imum elimination algorithm obtains (qa=a ∧ 0≤qi<len(a) ? (qi%2=0 ? rd : 1) : 0).
By ranging over all qa and qi, this can be read as read permission for even indices
and write permission for odd indices within the array a’s bounds.
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method copyEven(a: Int[]) {
var j, v: Int := 0;
while(j < length(a)) {

if (j % 2 == 0) { v := a[j] }
else { a[j] := v };
j := j + 1

}
}

Fig. 1: Program copyEven.

method parCopyEven(a: Int[]) {
var j: Int := 0;
while(j < length(a)/2) {

exhale(a, 2*j, 1/2);
exhale(a, 2*j+1, 1);
j := j + 1

}
}

Fig. 2: Program parCopyEven.

e ::= n | x | n·x | e1 + e2 | e1 − e2 | a[e] | len(a) | (b ? e1 : e2)
b ::= e1op e2 | e%n=0 | e%n6=0 | b1 ∧ b2 | b1 ∨ b2 | ¬b

op ∈ {=, 6=, <,≤, >,≥}
p ::= q | rd | p1 + p2 | p1 − p2 | min(p1, p2) | max(p1, p2) | (b ? p1 : p2)
s ::= skip | x:=e | a1:=a2 | x:=a[e] | a[e1]:=e2 | exhale(a, e, p) | inhale(a, e, p)
| (s1; s2) | if(b) { s1 } else { s2 } | while (b) { s }

Fig. 3: Programming Language. n ranges over integer constants, x over integer
variables, a over array variables, q over non-negative fractional (permission-
typed) constants. e stands for integer expressions, and b for boolean. Permission
expressions p are a separate syntactic category.

Contributions. The contributions of our paper are:

1. A novel permission inference that uses maximum expressions over parame-
terised arithmetic expressions to summarise loops (Sec. 3 and Sec. 4)

2. An algorithm for eliminating maximum (and minimum) expressions over an
unbounded number of cases (Sec. 5)

3. An implementation of our analysis, which will be made available as an artifact
4. An evaluation on benchmark examples from existing papers and competitions,

demonstrating that we obtain sound, precise, and compact specifications,
even for challenging array access patterns and parallel loops (Sec. 6)

5. Proof sketches for the soundness of our permission inference and correctness
of our maximum elimination algorithm (in the technical report (TR) [16])

2 Programming Language

We define our inference technique over the programming language in Fig. 3.
Programs operate on integers (expressions e), booleans (expressions b), and one-
dimensional integer arrays (variables a); a generalisation to other forms of arrays
is straightforward and supported by our implementation. Arrays are read and
updated via the statements x:=a[e] and a[e]:=x; array lookups in expressions are
not part of the surface syntax, but are used internally by our analysis. Permission
expressions p evaluate to rational numbers; rd, min, and max are for internal use.

A full-fledged programming language contains many statements that affect the
ownership of memory locations, expressed via permissions [33, 45]. For example
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in a concurrent setting, a fork operation may transfer permissions to the new
thread, acquiring a lock obtains permission to access certain memory locations,
and messages may transfer permissions between sender and receiver. Even in
a sequential setting, the concept is useful: in procedure-modular reasoning, a
method call transfers permissions from the caller to the callee, and back when
the callee terminates. Allocation can be represented as obtaining a fresh object
and then obtaining permission to its locations.

For the purpose of our permission inference, we can reduce all of these opera-
tions to two basic statements that directly manipulate the permissions currently
held [32, 39]. An inhale(a, e, p) statement adds the amount p of permission for the
array location a[e] to the currently held permissions. Dually, an exhale(a, e, p)
statement requires that this amount of permission is already held, and then
removes it. We assume that for any inhale or exhale statements, the permis-
sion expression p denotes a non-negative fraction. For simplicity, we restrict
inhale and exhale statements to a single array location, but the extension to
unboundedly-many locations from the same array is straightforward [38].

Semantics. The operational semantics of our language is mostly standard, but is
instrumented with additional state to track how much permission is held to each
heap location; a program state therefore consists of a triple of heap H (mapping
pairs of array identifier and integer index to integer values), a permission map
P , mapping such pairs to permission amounts, and an environment σ mapping
variables to values (integers or array identifiers).

The execution of inhale or exhale statements causes modifications to the
permission map, and all array accesses are guarded with checks that at least
some permission is held when reading and that full (1) permission is held when
writing [6]. If these checks (or an exhale statement) fail, the execution terminates
with a permission failure. Permission amounts greater than 1 indicate invalid
states that cannot be reached by a program execution. We model run-time errors
other than permission failures (in particular, out-of-bounds accesses) as stuck
configurations.

3 Permission Inference for Loop-Free Code

Our analysis infers a sufficient permission precondition and a guaranteed permis-
sion postcondition for each method of a program. Both conditions are mappings
from array elements to permission amounts. Executing a statement s in a state
whose permission map P contains at least the permissions required by a sufficient
permission precondition for s is guaranteed to not result in a permission failure.
A guaranteed permission postcondition expresses the permissions that will at
least be held when s terminates (see Sec. A of the TR [16] for formal definitions).

In this section, we define inference rules to compute sufficient permission
preconditions for loop-free code. For programs which do not add or remove
permissions via inhale and exhale statements, the same permissions will still
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pre(skip, p) = p pre((s1; s2), p) = pre(s1, pre(s2, p))
pre(x:=e, p) = p[e/x] pre(x:=a[e], p) = max(p[a[e]/x], αa,e(rd))

pre(a[e]:=x, p) = max(p[a′[e′] 7→ (e = e′ ∧ a = a′ ? x : a′[e′])], αa,e(1))
pre(exhale(a, e, p′), p) = p+ αa,e(p′) pre(inhale(a, e, p′), p) = max(0, p− αa,e(p′))

pre(if(b) { s1 } else { s2 }, p) = (b ? pre(s1, p) : pre(s2, p))

∆(skip, p) = p ∆((s1; s2), p) = ∆(s1,∆(s2, p))
∆(x:=e, p) = p[e/x] ∆(x:=a[e], p) = p[a[e]/x]

∆(a[e]:=x, p) = p[a′[e′] 7→ (e = e′ ∧ a = a′ ? x : a′[e′])]
∆(exhale(a, e, p′), p) = p− αa,e(p′) ∆(inhale(a, e, p′), p) = p+ αa,e(p′)

∆(if(b) { s1 } else { s2 }, p) = (b ? ∆(s1, p) : ∆(s2, p))

Fig. 4: The backwards analysis rules for permission preconditions and relative
permission differences. The notation αa,e(p) is a shorthand for (qa=a ∧ qi=e?p:0)
and denotes p permission for the array location a[e]. Moreover, p[a′[e′] 7→ e]
matches all array accesses in p and replaces them with the expression obtained
from e by substituting all occurrences of a′ and e′ with the matched array and
index, respectively. The cases for inhale statements are slightly simplified; the
full rules are given in Fig. 6 of the TR [16].

be held after executing the code; however, to infer guaranteed permission post-
conditions in the general case, we also infer the difference in permissions between
the state before and after the execution. We will discuss loops in the next section.
Non-recursive method calls can be handled by applying our analysis bottom-up in
the call graph and using inhale and exhale statements to model the permission
effect of calls. Recursion can be handled similarly to loops, but is omitted here.

We define our permission analysis to track and generate permission expressions
parameterised by two distinguished variables qa and qi; by parameterising our
expressions in this way, we can use a single expression to represent a permission
amount for each pair of qa and qi values.

Preconditions. The permission precondition of a loop-free statement s and
a postcondition permission p (in which qa and qi potentially occur) is denoted
by pre(s, p), and is defined in Fig. 4. Most rules are straightforward adaptations
of a classical weakest-precondition computation. Array lookups require some
permission to the accessed array location; we use the internal expression rd to
denote a non-zero permission amount; a post-processing step can later replace rd
by a concrete rational. Since downstream code may require further permission for
this location, represented by the permission expression p, we take the maximum
of both amounts. Array updates require full permission and need to take aliasing
into account. The case for inhale subtracts the inhaled permission amount from
the permissions required by downstream code; the case for exhale adds the per-
missions to be exhaled. Note that this addition may lead to a required permission
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amount exceeding the full permission. This indicates that the statement is not
feasible, that is, all executions will lead to a permission failure.

To illustrate our pre definition, let s be the body of the loop in the parCopyEven

method in Fig. 2. The precondition pre(s, 0) = (qa=a ∧ qi = 2∗j?1/2:0)+(qa=a ∧
qi=2∗j+1 ? 1 : 0) expresses that a loop iteration requires a half permission for
the even elements of array a and full permission for the odd elements.

Postconditions. The final state of a method execution includes the permissions
held in the method pre-state, adjusted by the permissions that are inhaled or
exhaled during the method execution. To perform this adjustment, we compute
the difference in permissions before and after executing a statement. The relative
permission difference for a loop-free statement s and a permission expression p (in
which qa and qi potentially occur) is denoted by ∆(s, p), and is defined backward,
analogously to pre in Fig. 4. The second parameter p acts as an accumulator; the
difference in permission is represented by evaluating ∆(s, 0).

For a statement s with precondition pre(s, 0), we obtain the postcondition
pre(s, 0)+∆(s, 0). Let s again be the loop body from parCopyEven. Since s contains
exhale statements, we obtain ∆(s, 0) = 0− (qa=a ∧ qi=2∗j ? 1/2 : 0)− (qa=a ∧
qi=2∗j+1 ? 1 : 0). Thus, the postcondition pre(s, 0) + ∆(s, 0) can be simplified to
0. This reflects the fact that all required permissions for a single loop iteration
are lost by the end of its execution.

Since our ∆ operator performs a backward analysis, our permission post-
conditions are expressed in terms of the pre-state of the execution of s. To
obtain classical postconditions, any heap accesses need to refer to the pre-state
heap, which can be achieved in program logics by using old expressions or
logical variables. Formalizing the postcondition inference as a backward analysis
simplifies our treatment of loops and has technical advantages over classical
strongest-postconditions, which introduce existential quantifiers for assignment
statements. A limitation of our approach is that our postconditions cannot capture
situations in which a statement obtains permissions to locations for which no
pre-state expression exists, e.g. allocation of new arrays. Our postconditions are
sound; to make them precise for such cases, our inference needs to be combined
with an additional forward analysis, which we leave as future work.

4 Handling Loops via Maximum Expressions

In this section, we first focus on obtaining a sufficient permission precondition for
the execution of a loop in isolation (independently of the code after it) and then
combine the inference for loops with the one for loop-free code described above.

4.1 Sufficient Permission Preconditions for Loops

A sufficient permission precondition for a loop guarantees the absence of permis-
sion failures for a potentially unbounded number of executions of the loop body.
This concept is different from a loop invariant: we require a precondition for
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all executions of a particular loop, but it need not be inductive. Our technique
obtains such a loop precondition by projecting a permission precondition for a
single loop iteration over all possible initial states for the loop executions.

Exhale-Free Loop Bodies. We consider first the simpler (but common) case of
a loop that does not contain exhale statements, e.g., does not transfer permissions
to a forked thread. The solution for this case is also sound for loop bodies where
each exhale is followed by an inhale for the same array location and at least
the same permission amount, as in the encoding of most method calls.

Consider a sufficient permission precondition p for the body of a loop
while (b) { s }. By definition, p will denote sufficient permissions to execute s
once; the precise locations to which p requires permission depend on the initial
state of the loop iteration. For example, the sufficient permission precondition for
the body of the copyEven method in Fig. 1, (j%2=0?(qa=a ∧ qi=j? rd : 0) : (qa=a ∧
qi=j ? 1 : 0)), requires permissions to different array locations, depending on the
value of j. To obtain a sufficient permission precondition for the entire loop, we
leverage an over-approximating loop invariant I+ from an off-the-shelf numerical
analysis (e.g., [14]) to over-approximate all possible values of the numerical
variables that get assigned in the loop body, here, j. We can then express the
loop precondition using the pointwise maximum maxj|I+∧b (p), over the values
of j that satisfy the condition I+ ∧ b. (The maximum over an empty range is
defined to be 0.) For the copyEven method, given the invariant 0 ≤ j ≤ len(a),
the loop precondition is maxj|0≤j<len(a) (p).

In general, a permission precondition for a loop body may also depend on
array values, e.g., if those values are used in branch conditions. To avoid the
need for an expensive array value analysis, we define both an over- and an
under-approximation of permission expressions, denoted p↑ and p↓ (cf. Sec. A.1 of
the TR [16]), with the guarantees that p ≤ p↑ and p↓ ≤ p. These approximations
abstract away array-dependent conditions, and have an impact on precision only
when array values are used to determine a location to be accessed. For example, a
linear array search for a particular value accesses the array only up to the (a-priori
unknown) point at which the value is found, but our permission precondition
conservatively requires access to the full array.

Theorem 1. Let while (b) { s } be an exhale-free loop, let x be the integer
variables modified by s, and let I+ be a sound over-approximating numerical
loop invariant (over the integer variables in s). Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s }.

Loops with Exhale Statements. For loops that contain exhale statements,
the approach described above does not always guarantee a sufficient permission
precondition. For example, if a loop gives away full permission to the same
array location in every iteration, our pointwise maximum construction yields a
precondition requiring the full permission once, as opposed to the unsatisfiable
precondition (since the loop is guaranteed to cause a permission failure).

7



As explained above, our inference is sound if each exhale statement is followed
by a corresponding inhale, which can often be checked syntactically. In the
following, we present another decidable condition that guarantees soundness and
that can be checked efficiently by an SMT solver. If neither condition holds,
we preserve soundness by inferring an unsatisfiable precondition; we did not
encounter any such examples in our evaluation.

Our soundness condition checks that the maximum of the permissions required
by two loop iterations is not less than the permissions required by executing the
two iterations in sequence. Intuitively, that is the case when neither iteration
removes permissions that are required by the other iteration.

Theorem 2 (Soundness Condition for Loop Preconditions). Given a loop
while (b) { s }, let x be the integer variables modified in s and let v and v′ be
two fresh sets of variables, one for each of x. Then maxx|I+∧b (pre(s, 0)↑) is a
sufficient permission precondition for while (b) { s } if the following implication
is valid in all states:

(I+ ∧ b)[v/x] ∧ (I+ ∧ b)[v′/x] ∧ (
∨
v 6= v′) ⇒

max(pre(s, 0)↑[v/x], pre(s, 0)↑[v′/x]) ≥ pre(s, pre(s, 0)↑[v′/x])↑[v/x]

The additional variables v and v′ are used to model two arbitrary valuations of x;
we constrain these to represent two initial states allowed by I+ ∧ b and different
from each other for at least one program variable. We then require that the effect
of analysing each loop iteration independently and taking the maximum is not
smaller than the effect of sequentially composing the two loop iterations.

The theorem requires implicitly that no two different iterations of a loop
observe exactly the same values for all integer variables. If that could be the
case, the condition

∨
v 6= v′ would cause us to ignore a potential pair of initial

states for two different loop iterations. To avoid this problem, we assume that all
loops satisfy this requirement; it can easily be enforced by adding an additional
variable as loop iteration counter [22].

For the parCopyEven method (Fig. 2), the soundness condition holds since,
due to the v 6= v′ condition, the two terms on the right of the implication
are equal for all values of qi. We can thus infer a sufficient precondition as
maxj|0≤j<len(a)/2 ((qa=a ∧ qi = 2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).

4.2 Permission Inference for Loops

We can now extend the pre- and postcondition inference from Sec. 3 with loops.
pre(while (b) { s }, p) must require permissions such that (1) the loop executes
without permission failure and (2) at least the permissions described by p are held
when the loop terminates. While the former is provided by the loop precondition
as defined in the previous subsection, the latter also depends on the permissions
gained or lost during the execution of the loop. To characterise these permissions,
we extend the ∆ operator from Sec. 3 to handle loops.

Under the soundness condition from Thm. 2, we can mimic the approach
from the previous subsection and use over-approximating invariants to project
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out the permissions lost in a single loop iteration (where ∆(s, 0) is negative)
to those lost by the entire loop, using a maximum expression. This projection
conservatively assumes that the permissions lost in a single iteration are lost
by all iterations whose initial state is allowed by the loop invariant and loop
condition. This approach is a sound over-approximation of the permissions lost.

However, for the permissions gained by a loop iteration (where ∆(s, 0) is
positive), this approach would be unsound because the over-approximation
includes iterations that may not actually happen and, thus, permissions that are
not actually gained. For this reason, our technique handles gained permissions via
an under-approximate1 numerical loop invariant I− (e.g., [36]) and thus projects
the gained permissions only over iterations that will surely happen.

This approach is reflected in the definition of our ∆ operator below via
d, which represents the permissions possibly lost or definitely gained over all
iterations of the loop. In the former case, we have ∆(s, 0) < 0 and, thus, the
first summand is 0 and the computation based on the over-approximate invariant
applies (note that the negated maximum of negated values is the minimum; we
take the minimum over negative values). In the latter case (∆(s, 0) > 0), the
second summand is 0 and the computation based on the under-approximate
invariant applies (we take the maximum over positive values).

∆(while (b) { s }, p) = (b ? d+ p′ : p), where:
d = max

x|I−∧b
max(0,∆(s, 0))↓ − max

x|I+∧b
max(0,−∆(s, 0))↑

p′ = max
x|I−∧¬b

max(0, p)↓ − max
x|I+∧¬b

max(0,−p)↑

x denotes again the integer variables modified in s. The role of p′ is to carry over
the permissions p that are gained or lost by the code following the loop, taking
into account any state changes performed by the loop. Intuitively, the maximum
expressions replace the variables x in p with expressions that do not depend
on these variables but nonetheless reflect properties of their values right after
the execution of the loop. For permissions gained, these properties are based on
the under-approximate loop invariant to ensure that they hold for any possible
loop execution. For permissions lost, we use the over-approximate invariant.
For the loop in parCopyEven we use the invariant 0 ≤ j ≤ len(a)/2 to obtain
d = −maxj|0≤j<len(a)/2 ((qa=a ∧ qi = 2∗j ? 1/2 : 0) + (qa=a ∧ qi=2∗j+1 ? 1 : 0)).
Since there are no statements following the loop, p and therefore p′ are 0.

Using the same d term, we can now define the general case of pre for loops,
combining (1) the loop precondition and (2) the permissions required by the code
after the loop, adjusted by the permissions gained or lost during loop execution:

pre(while (b) { s }, p) = (b ? max( max
x|I+∧b

pre(s, 0)↑, max
x|I+∧¬b

(p↑)− d) : p)

Similarly to p′ in the rule for ∆, the expression maxx|I+∧¬b (p↑) conservatively
over-approximates the permissions required to execute the code after the loop.
1 An under-approximate loop invariant must be true only for states that will actually
be encountered when executing the loop.
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For method parCopyEven, we obtain a sufficient precondition that is the negation
of the ∆. Consequently, the postcondition is 0.

Soundness. Our pre and ∆ definitions yield a sound method for computing
sufficient permission preconditions and guaranteed postconditions:

Theorem 3 (Soundness of Permission Inference). For any statement s, if
every while loop in s either is exhale-free or satisfies the condition of Thm. 2
then pre(s, 0) is a sufficient permission precondition for s, and pre(s, 0) + ∆(s, 0)
is a corresponding guaranteed permission postcondition.

Our inference expresses pre and postconditions using a maximum operator
over an unbounded set of values. However, this operator is not supported by SMT
solvers. To be able to use the inferred conditions for SMT-based verification, we
provide an algorithm for eliminating these operators, as we discuss next.

5 A Maximum Elimination Algorithm

We now present a new algorithm for replacing maximum expressions over an
unbounded set of values (called pointwise maximum expressions in the follow-
ing) with equivalent expressions containing no pointwise maximum expressions.
Note that, technically our algorithm computes solutions to maxx|b∧p≥0(p) since
some optimisations exploit the fact that the permission expressions our analysis
generates always denote non-negative values.

5.1 Background: Quantifier Elimination

Our algorithm builds upon ideas from Cooper’s classic quantifier elimination
algorithm [12] which, given a formula ∃x.b (where b is a quantifier-free Presburger
formula), computes an equivalent quantifier-free formula b′. Below, we give a
brief summary of Cooper’s approach.

The problem is first reduced via boolean and arithmetic manipulations to a
formula ∃x.b in which x occurs at most once per literal and with no coefficient.
The key idea is then to reduce ∃x.b to a disjunction of two cases: (1) there is a
smallest value of x making b true, or (2) b is true for arbitrarily small values of x.

In case (1), one computes a finite set of expressions S (the bi in [12]) guaranteed
to include the smallest value of x. For each (in/dis-)equality literal containing x
in b, one collects a boundary expression e which denotes a value for x making
the literal true, while the value e− 1 would make it false. For example, for the
literal y < x one generates the expression y + 1. If there are no (non-)divisibility
constraints in b, by definition, S will include the smallest value of x making b true.
To account for (non-)divisibility constraints such as x%2=0, the lowest-common-
multiple δ of the divisors (and 1) is returned along with S; the guarantee is then
that the smallest value of x making b true will be e + d for some e ∈ S and
d ∈ [0, δ − 1]. We use 〈〈b〉〉small(x) to denote the function handling this computation.
Then, ∃x.b can be reduced to

∨
e∈S,d∈[0,δ−1] b[e+ d/x], where (S, δ) = 〈〈b〉〉small(x).
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In case (2), one can observe that the (in/dis-)equality literals in b will flip
value at finitely many values of x, and so for sufficiently small values of x, each
(in/dis-)equality literal in b will have a constant value (e.g., y > x will be true). By
replacing these literals with these constant values, one obtains a new expression b′
equal to b for small enough x, and which depends on x only via (non-)divisibility
constraints. The value of b′ will therefore actually be determined by x mod δ,
where δ is the lowest-common-multiple of the (non-)divisibility constraints. We
use 〈〈b〉〉−∞(x) to denote the function handling this computation. Then, ∃x.b can
be reduced to

∨
d∈[0,δ−1] b

′[d/x], where (b′, δ) = 〈〈b〉〉−∞(x).
In principle, the maximum of a function y = maxx f(x) can be defined using

two first-order quantifiers ∀x.f(x) ≤ y and ∃x.f(x) = y. One might therefore be
tempted to tackle our maximum elimination problem using quantifier elimination
directly. We explored this possibility and found two serious drawbacks. First, the
resulting formula does not yield a permission-typed expression that we can plug
back into our analysis. Second, the resulting formulas are extremely large (e.g.,
for the copyEven example it yields several pages of specifications), and hard to
simplify since relevant information is often spread across many terms due to the
two separate quantifiers. Our maximum elimination algorithm addresses these
drawbacks by natively working with arithmetic expression, while mimicking the
basic ideas of Cooper’s algorithm and incorporating domain-specific optimisations.

5.2 Maximum Elimination

The first step is to reduce the problem of eliminating general maxx|b (p) terms to
those in which b and p come from a simpler restricted grammar. These simple per-
mission expressions p do not contain general conditional expressions (b′ ? p1 : p2),
but instead only those of the form (b′ ? r : 0) (where r is a constant or rd).
Furthermore, simple permission expressions only contain subtractions of the form
p− (b′ ?r : 0). This is achieved in a precursory rewriting of the input expression by,
for instance, distributing pointwise maxima over conditional expressions and bi-
nary maxima. For example, the pointwise maximum term (part of the copyEven ex-
ample): maxj|0≤j<len(a) ((j%2=0 ? (qa=a ∧ qi=j ? rd : 0) : (qa=a ∧ qi=j ? 1 : 0)))
will be reduced to:

max( maxj|0≤j<len(a)∧j%2=0 ((qa=a ∧ qi=j ? rd : 0)),
maxj|0≤j<len(a)∧j%2 6=0 ((qa=a ∧ qi=j ? 1 : 0)))

Arbitrarily-small Values. We exploit a high-level case-split in our algorithm
design analogous to Cooper’s: given a pointwise maximum expression maxx|b (p),
either a smallest value of x exists such that p has its maximal value (and b is true),
or there are arbitrarily small values of x defining this maximal value. To handle the
latter case, we define a completely analogous 〈〈p〉〉−∞(x) function, which recursively
replaces all boolean expressions b′ in p with 〈〈b′〉〉−∞(x) as computed by Cooper;
we relegate the definition to Sec. B.3 of the TR [16]. We then use (b′ ?p′ : 0), where
(b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x), as our expression in this case. Note
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〈〈(b ? p : 0)〉〉smallmax(x) = (T, δ), where (S, δ) = 〈〈b〉〉small(x), T = {(e, true) | e ∈ S}
〈〈p1 + p2〉〉smallmax(x) = (T1 ∪ T2, lcm(δ1, δ2))

where (T1, δ1) = 〈〈p1〉〉smallmax(x), (T2, δ2) = 〈〈p2〉〉smallmax(x)
〈〈max(p1, p2)〉〉smallmax(x) = 〈〈min(p1, p2)〉〉smallmax(x) = 〈〈p1 + p2〉〉smallmax(x) as above
〈〈p1 − (b ? p : 0)〉〉smallmax(x) = (T1 ∪ T2, lcm(δ1, δ2))

where (T1, δ1) = 〈〈p1〉〉smallmax(x), (S2, δ2) = 〈〈¬b〉〉small(x),

T ′2 = {(e, p1 > 0) | e ∈ S2}

〈〈(p, b)〉〉smallmax(x) = (Tp ∪ T ′b, δ′) where (Tp, δp) = 〈〈p〉〉smallmax(x), (Sb, δb) = 〈〈b〉〉small(x),

δ′ = lcm(δp, δb), (b′, δb) = 〈〈b〉〉−∞(x), (p′, δp) = 〈〈p〉〉−∞(x),

T ′b = {(eb, (
∨

d∈[0,δ′−1]

((¬b′ ∧ p′ > 0)[d/x])) ∨
∨

(ep,bp)∈Tp

dp∈[0,δp−1]

(¬b ∧ bp)[(ep + dp)/x]) | eb ∈ Sb}

Fig. 5: Filtered boundary expression computation.

that this expression still depends on x if it contains (non-)divisibility constraints;
Thm. 4 shows how x can be eliminated using δ1 and δ2.

Selecting Boundary Expressions for Maximum Elimination. Next, we
consider the case of selecting an appropriate set of boundary expressions, given a
max
x|b

(p) term. We define this first for p in isolation, and then give an extended

definition accounting for the b. Just as for Cooper’s algorithm, the boundary
expressions must be a set guaranteed to include the smallest value of x defining
the maximum value in question. The set must be finite, and be as small as
possible for efficiency of our overall algorithm. We refine the notion of boundary
expression, and compute a set of pairs (e, b′) of integer expression e and its
filter condition b′: the filter condition represents an additional condition under
which e must be included as a boundary expression. In particular, in contexts
where b′ is false, e can be ignored; this gives us a way to symbolically define an
ultimately-smaller set of boundary expressions, particularly in the absence of
contextual information which might later show b′ to be false. We call these pairs
filtered boundary expressions.
Definition 1 (Filtered Boundary Expressions). The filtered boundary ex-
pression computation for x in p, written 〈〈p〉〉smallmax(x), returns a pair of a set T
of pairs (e, b′), and an integer constant δ, as defined in Fig. 5. This definition is
also overloaded with a definition of filtered boundary expression computation for
(x | b) in p, written 〈〈(p, b)〉〉smallmax(x).

Just as for Cooper’s 〈〈b〉〉small(x) computation, our function 〈〈p〉〉smallmax(x) computes
the set T of (e, b′) pairs along with a single integer constant δ, which is the least
common multiple of the divisors occurring in p; the desired smallest value of x
may actually be some e+ d where d ∈ [0, δ − 1]. There are three key points to
Def. 1 which ultimately make our algorithm efficient:
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First, the case for 〈〈(b ? p : 0)〉〉smallmax(x) only includes boundary expressions
for making b true. The case of b being false (from the structure of the permission
expression) is not relevant for trying to maximise the permission expression’s
value (note that this case will never apply under a subtraction operator, due
to our simplified grammar, and the case for subtraction not recursing into the
right-hand operand).

Second, the case for 〈〈p1 − (b ? p : 0)〉〉smallmax(x) dually only considers boundary
expressions for making b false (along with the boundary expressions for maximis-
ing p1). The filter condition p1 > 0 is used to drop the boundary expressions for
making b false; in case p1 is not strictly positive we know that the evaluation of
the whole permission expression will not yield a strictly-positive value, and hence
is not an interesting boundary value for a non-negative maximum.

Third, in the overloaded definition of 〈〈(p, b)〉〉smallmax(x), we combine boundary
expressions for p with those for b. The boundary expressions for b are, however,
superfluous if, in analysing p we have already determined a value for x which
maximises p and happens to satisfy b. If all boundary expressions for p (whose
filter conditions are true) make b true, and all non-trivial (i.e. strictly positive)
evaluations of 〈〈p〉〉−∞(x) used for potentially defining p’s maximum value also
satisfy b, then we can safely discard the boundary expressions for b.

We are now ready to reduce pointwise maximum expressions to equivalent
maximum expressions over finitely-many cases:

Theorem 4 (Simple Maximum Expression Elimination). For any pair
(p, b), if |= p ≥ 0, then we have:

|= max
x|b

p = max
(

max
(e,b′′)∈T
d∈[0,δ−1]

(b′′ ∧ b[e+ d/x] ? p[e+ d/x] : 0)),

max
d∈[0,lcm(δ1,δ2)−1]

(b′[d/x] ? p′[d/x] : 0)
)

where (T, δ) = 〈〈(p, b)〉〉smallmax(x), (b′, δ1) = 〈〈b〉〉−∞(x) and (p′, δ2) = 〈〈p〉〉−∞(x).

To see how our filter conditions help to keep the set T (and therefore, the
first iterated maximum on the right of the equality in the above theorem) small,
consider the example: maxx|x≥0 ((x=i ? 1 : 0)) (so p is (x=i?1:0), while b is x ≥ 0).
In this case, evaluating 〈〈(p, b)〉〉smallmax(x) yields the set T = {(i, true), (0, i < 0)}
with the meaning that the boundary expression i is considered in all cases, while
the boundary expression 0 is only of interest if i < 0. The first iterated maximum
term would be max((true ∧ i≥0 ? (i=i ? 1 : 0) : 0), (i<0 ∧ 0≥0 ? (0=i ? 1 : 0) : 0)).
We observe that the term corresponding to the boundary value 0 can be simplified
to 0 since it contains the two contradictory conditions i < 0 and 0 = i. Thus, the
entire maximum can be simplified to (i≥0 ? 1 : 0). Without the filter conditions
the result would instead be max((i≥0 ? 1 : 0), (0=i ? 1 : 0)). In the context of our
permission analysis, the filter conditions allow us to avoid generating boundary
expressions corresponding e.g. to the integer loop invariants, provided that the
expressions generated by analysing the permission expression in question already
suffice. We employ aggressive syntactic simplification of the resulting expressions,
in order to exploit these filter conditions to produce succinct final answers.
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Program LOC Loops Size Prec. Time

addLast 12 1 (1) 1.9 3 21
append 13 1 (1) 1.9 3 32
array1 17 2 (2) 0.9 7 28
array2 23 3 (2) 0.9 7 35
array3 23 2 (2) 1.1 3 24
arrayRev 18 1 (1) 3.2 3* 28
bubbleSort 23 2 (2) 1.8 3* 34
copy 16 2 (1) 1.6 3 27
copyEven 17 1 (1) 1.6 3 27
copyEven2 14 1 (1) 1.4 7 20
copyEven3 14 1 (1) 2.2 3* 23
copyOdd 21 2 (1) 2.4 3 55
copyOddBug 19 2 (1) 7.1 3 57
copyPart 17 2 (1) 1.7 3 30
countDown 21 3 (2) 1.1 3 32
diff 31 2 (2) 2.0 7 70
find 19 1 (1) 3.0 3 43
findNonNull 19 1 (1) 3.0 3 40
init 18 2 (1) 1.1 3 28
init2d 23 2 (2) 2.1 3 52
initEven 18 2 (1) 0.9 7 26
initEvenbug 18 2 (1) 1.5 7 28
initNonCnst 18 2 (1) 1.1 3 27
initPart 19 2 (1) 1.1 3 30

Program LOC Loops Size Prec. Time

initPartBug 19 2 (1) 1.5 3 31
insertSort 21 2 (2) 2.5 3* 35
javaBubble 24 2 (2) 2.3 3* 32
knapsack 21 2 (2) 1.3 7 45
lis 37 4 (2) 4.2 3 73
matrixmult 33 3 (3) 1.5 3 78
mergeinter 23 2 (1) 3.4 7 56
mergeintbug 23 2 (1) 2.6 7 59
memcopy 16 2 (1) 1.6 3 28
multarray 26 2 (2) 2.1 3 40
parcopy 20 2 (1) 1.2 3 30
pararray 20 2 (1) 1.2 3 31
parCopyEven 22 2 (1) 5.0 3* 79
parMatrix 35 4 (2) 1.1 3 80
parNested 31 4 (2) 0.5 7 57
relax 33 1 (1) 1.4 3* 55
reverse 21 2 (1) 3.9 3 42
reverseBug 21 2 (1) 1.7 3 42
sanfoundry 27 2 (1) 2.1 3 37
selectSort 26 2 (2) 1.0 7 38
strCopy 16 2 (1) 0.9 7 21
strLen 10 1 (1) 0.8 7 15
swap 15 1 (1) 1.5 3 19
swapBug 15 1 (1) 1.5 3 19

Table 1: Experimental results. For each program, we list the lines of code and the
number of loops (in brackets the nesting depth). We report the relative size of
the inferred specifications compared to hand-written specifications, and whether
the inferred specifications are precise (a star next to the tick indicates slightly
more precise than hand-written specifications). Inference times are given in ms.

6 Implementation and Experimental Evaluation

We have developed a prototype implementation of our permission inference. The
tool is written in Scala and accepts programs written in the Viper language [39],
which provides all the features needed for our purposes.

Given a Viper program, the tool first performs a forward numerical analysis
to infer the over-approximate loop invariants needed for our handling of loops.
The implementation is parametric in the numerical abstract domain used for
the analysis; we currently support the abstract domains provided by the Apron
library [25]. As we have yet to integrate the implementation of under-approximate
invariants (e.g., [36]), we rely on user-provided invariants, or assume them to be
false if none are provided. In a second step, our tool performs the inference and
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maximum elimination. Finally, it annotates the input program with the inferred
specification.

We evaluated our implementation on 43 programs taken from various sources;
included are all programs that do not contain strings from the array memory
safety category of SV-COMP 2017, all programs from Dillig et al. [15] (except
three examples involving arrays of arrays), loop parallelisation examples from
VerCors [5], and a few programs that we crafted ourselves. We manually checked
that our soundness condition holds for all considered programs. The parallel loop
examples were encoded as two consecutive loops where the first one models the
forking of one thread per loop iteration (by iteratively exhaling the permissions
required for all loop iterations), and the second one models the joining of all
these threads (by inhaling the permissions that are left after each loop iteration).
For the numerical analysis we used the polyhedra abstract domain provided by
Apron. The experiments were performed on a dual core machine with a 2.60
GHz Intel Core i7-6600U CPU, running Ubuntu 16.04.

An overview of the results is given in Table 1. For each program, we compared
the size and precision of the inferred specification with respect to hand-written
ones. The running times were measured by first running the analysis 50 times
to warm up the JVM and then computing the average time needed over the
next 100 runs. The results show that the inference is very efficient. The inferred
specifications are concise for the vast majority of the examples. In 35 out of 48
cases, our inference inferred precise specifications. Most of the imprecisions are due
to the inferred numerical loop invariants. In all cases, manually strengthening the
invariants yields a precise specification. In one example, the source of imprecision
is our abstraction of array-dependent conditions (see Sec. 4).

7 Related Work

Much work is dedicated to the analysis of array programs, but most of it focuses on
array content, whereas we infer permission specifications. The simplest approach
consists of “smashing” all array elements into a single memory location [4]. This
is generally quite imprecise, as only weak updates can be performed on the
smashed array. A simple alternative is to consider array elements as distinct
variables [4], which is feasible only when the length of the array is statically-known.
More-advanced approaches perform syntax-based [19, 23, 26] or semantics-based
[13, 35] partitions of an array into symbolic segments. These require segments
to be contiguous (with the exception of [35]), and do not easily generalise to
multidimensional arrays, unlike our approach. Gulwani et al. [21] propose an
approach for inferring quantified invariants for arrays by lifting quantifier-free
abstract domains. Their technique requires templates for the invariants.

Dillig et al. [15] avoid an explicit array partitioning by maintaining constraints
that over- and under-approximate the array elements being updated by a program
statement. Their work employs a technique for directly generalising the analysis
of a single loop iteration (based on quantifier elimination), which works well
when different loop iterations write to disjoint array locations. Gedell and Hähnle
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[18] provide an analysis which uses a similar criterion to determine that it is
safe to parallelise a loop, and treat its heap updates as one bulk effect. The
condition for our projection over loop iterations is weaker, since it allows the
same array location to be updated in multiple loop iterations (like for example
in sorting algorithms). Blom et al. [5] provide a specification technique for a
variety of parallel loop constructs; our work can infer the specifications which
their technique requires to be provided.

Another alternative for generalising the effect of a loop iteration is to use a
first order theorem prover as proposed by Kovács and Voronkov [29]. In their
work, however, they did not consider nested loops or multidimensional arrays.
Other works rely on loop acceleration techniques [1, 7]. In particular, like ours,
the work of Bozga et al. [7] does not synthesise loop invariants; they directly infer
post-conditions of loops with respect to given preconditions, while we additionally
infer the preconditions. The acceleration technique proposed in [1] is used for the
verification of array programs in the tool Booster [2].

Monniaux and Gonnord [37] describe an approach for the verification of array
programs via a transformation to array-free Horn clauses. Chakraborty et al. [11]
use heuristics to determine the array accesses performed by a loop iteration and
split the verification of an array invariant accordingly. Their non-interference
condition between loop iterations is similar to, but stronger than our soundness
condition (cf. Sec. 4). Neither work is concerned with specification inference.

A wide range of static/shape analyses employ tailored separation logics as
abstract domain (e.g., [3, 20, 10, 30, 42]); these works handle recursively-defined
data structures such as linked lists and trees, but not random-access data struc-
tures such as arrays and matrices. Of these, Gulavani et al. [20] is perhaps closest
to our work: they employ an integer-indexed domain for describing recursive data
structures. It would be interesting to combine our work with such separation logic
shape analyses. The problems of automating biabduction and entailment checking
for array-based separation logics have been recently studied by Brotherston et
al. [8] and Kimura et al. [28], but have not yet been extended to handle loop-based
or recursive programs.

8 Conclusion and Future Work

We presented a precise and efficient permission inference for array programs.
Although our inferred specifications contain redundancies in some cases, they are
human readable. Our approach integrates well with permission-based inference
for other data structures and with permission-based program verification.

As future work, we plan to use SMT solving to further simplify our inferred
specifications, to support arrays of arrays, and to extend our work to an inter-
procedural analysis and explore its combination with biabduction techniques.
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