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Abstract

Deductive program verification tools require users to provide annotations such as
method preconditions and postconditions and loop invariants. For permission-based
verifiers, a substantial part of these annotations express which heap locations a method
or a loop may access, for instance, via points-to assertions, quantified permissions,
and recursive predicates. These permission specifications pose a significant annotation
burden for programmers; it is, thus, highly desirable to infer permission specifications
automatically. Moreover, information about the memory accessed by parts of a
program also finds use in other important applications, such as compiler optimisations
and program parallelisation. In this thesis, we advance the state of the art of automatic
permission inference by proposing two novel inference techniques.

First, we present a permission inference for the important class of array manipu-
lating programs. This approach represents permission specifications using numerical
expressions and employs a precise backwards analysis for loop-free code. Permissions
required by loops are expressed via maximum expressions over the results obtained
for individual loop iterations. These maximum expressions are then solved by a novel
maximum elimination algorithm, in the spirit of quantifier elimination. This first
approach is proven sound.

Second, we present a learning-based permission inference for programs operating on
individual heap locations and recursively defined data structures. The inference builds
on the ICE framework, which alternates between a teacher to generate constraints
on the desired specifications and a learner to solve these constraints to generate
candidate specifications to be checked by the teacher. We express constraints
over entire traces rather than individual states, which allows us to simultaneously
infer all necessary preconditions, postconditions, loop invariants, and definitions of
recursive predicates. Our inference targets automated permission-based verifiers,
which typically treat predicates isorecursively, that is, distinguish between a predicate
and its body. In particular, we automatically infer the ghost operations required
by such verifiers to unfold and fold predicate instances. This approach is black-box,
meaning that the teacher uses a verifier to check the specifications and does not
need to be cognisant of the program’s semantics, and the learner relies solely on the
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information communicated by the teacher. Moreover, this second approach is sound
by construction, assuming that the verifier used by the teacher is sound.

Both our inference techniques are implemented based on the Viper verification
infrastructure. An experimental evaluation for each of them demonstrates that they
are effective on a wide range of examples.
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Zusammenfassung

Deduktive Programmverifikationstools erfordern, dass Benutzer Annotationen – wie
zum Beispiel Methodenvorbedingungen und -nachbedingungen oder Schleifeninvari-
anten – manuell bereitstellen. Bei berechtigungsbasierter Verifikation (zum Beispiel
mit Separationslogik) drückt ein wesentlicher Teil dieser Annotationen lediglich aus,
auf welche Speicherorte eine Methode oder Schleife zugreifen darf; beispielsweise
mittels sogenannten Points-to-Assertions, quantifizierten Berechtigungen oder rekur-
siven Prädikaten. Das Schreiben solcher Spezifikationen für Zugriffsberechtigungen
ist mühselig und beansprucht viel Zeit. Daher ist es wünschenswert, erforderliche
Zugriffsberechtigungen automatisch zu inferieren. Abgesehen von Programmveri-
fikation finden Informationen über mögliche Speicherzugriffe auch Anwendung in
anderen wichtigen Bereichen, wie zum Beispiel Kompilationsoptimierungen oder
Programparallelisierung. In dieser Dissertation erweitern wir den Stand der Technik
der automatischen Inferenz benötigter Zugriffsberechtigungen, indem wir zwei neue
Inferenztechniken vorstellen.

Zuerst präsentieren wir eine Inferenz für die wichtige Klasse von Programmen,
die Arrays manipulieren. Dieser Ansatz nutzt numerische Ausdrücke, um Zugriffs-
berechtigungen darzustellen, und bedient sich einer präzisen Rückwärtsanalyse für
schleifenfreien Code. Zugriffsberechtigungen für Schleifen werden mittels Maxima
über die Ausdrücke, die für individuelle Ausführungen des Schleifenrumpfes inferiert
wurden, ausgedrückt. Diese Maxima werden dann mittels eines neuartigen Maxim-
aeliminationsalgorithmus, ähnlich einer Quantorenelimination, umgeformt. Zudem
beweisen wir die Korrektheit dieses ersten Ansatzes.

Zweitens präsentieren wir eine lernbasierte Inferenz für Programme, die auf indi-
viduelle Speicherorte zugreifen und auf rekursiven Datenstrukturen operieren. Diese
Technik baut auf dem ICE Framework auf, welches zwischen zwei Komponenten,
Lehrer und Schüler genannt, alterniert: Der Lehrer generiert Bedingungen für die
gewünschten Zugriffsberechtigungen, worauf der Schüler aufgrund aller bereits ges-
ammelten Bedingungen neue Kandidaten für die Zugriffsberechtigungen vorschlägt,
die wiederum vom Lehrer überprüft werden. Die generierten Bedingungen beziehen
sich anstelle von einzelnen Programmzuständen auf gesamte Programmausführungen.
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Dies erlaubt es uns alle notwendigen Methodenvorbedingungen und -nachbedingungen,
Schleifeninvarianten, sowie auch die Definitionen rekursiver Prädikate gleichzeitig zu
inferieren. Da berechtigungsbasierte Verifikationstools typischerweise mit isorekur-
siven Prädikaten arbeiten – das heißt, zwischen einer Instanz eines Prädikats und
dessen Rumpf unterscheiden – generiert unsere Inferenz auch alle Hilfsoperationen,
die zum Falten und Entfalten von Prädikatsinstanzen benötigt werden. Unser zweiter
Ansatz ist Black-Box; das bedeutet, der Lehrer benutzt ein Verifikationstool zum
überprüfen der Spezifikationen und muss sich der Programmsemantik nicht bewusst
sein und der Schüler stützt sich ausschließlich auf die vom Lehrer zur Verfügung
gestellte Information. Die Korrektheit dieses Ansatzes beruht auf seiner Bauart und
setzt voraus, dass das eingesetzte Verifikationstool fehlerfrei arbeitet.

Beide Inferenztechniken sind auf Basis der Viper Verifikationsinfrastruktur im-
plementiert. Eine experimentelle Evaluation demonstriert ihre Effektivität auf einer
breiten Auswahl von Beispielen.
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1 Introduction
Software is ubiquitous and governs almost every aspect of our everyday life. As a
result, the consequences of a computer program crashing or not behaving as intended
can be quite severe; in extreme cases, they can entail major financial losses or
even be a matter of life and death. To be more confident about the correctness
of their program, software developers employ various techniques, such as following
established practices, adopting pair programming, conducting code reviews, and
writing automated tests. However – as Dijkstra pointed out in 1972 – this is not
enough to be certain about a program’s correctness: “Program testing can be a very
effective way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence. The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness” [34]. In order for such
proofs to be feasible for real world programs, it is essential for the proof technique
to be amenable to automation. To this end, there have been considerable efforts
developing deductive verification tools [2, 8, 12, 37, 59, 70, 71, 83, 89, 97] that allow one
to prove programs correct with respect to complex specifications.

Permission-Based Verification. To enable modular reasoning about heap-manipulating
programs, many verifiers are based on separation logic or other permission lo-
gics [19, 91, 92, 98]. In these logics, a method may access a shared memory location
only if it holds the permission associated with this location. The permission is first
created when the location is allocated, and then may be transferred between different
methods. The permissions to be transferred upon a method call and return are
specified as part of the callee’s precondition and postcondition, respectively. As
permissions cannot be duplicated, any caller holding on to a permission during a
method call can safely assume that the value of the respective heap location does not
change, since the called method (and any recursively called method, for that matter)
is guaranteed to have no permission to write this heap location. Thus, all methods
can be reasoned about in isolation, taking into account only the specifications – that
is, preconditions and postconditions – of other methods.

Moreover, permission logics naturally extend to a concurrent setting [85]: A fork
statement may transfer permissions to the new thread, and back when the thread is
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Chapter 1 Introduction

joined. Acquiring a lock temporarily obtains permission to access certain memory
locations until the lock is released again. In such a setting, whenever a thread holds
on to a permission for a heap location, it is guaranteed that no other thread can
modify that location and, thus, enables thread-modular reasoning.

Note that there are several alternatives to permission-based verification that, for
example, make use of dynamic frames [63] or employ a notion of ownership [82]; these
approaches are not further discussed here as they are not the focus of this thesis.

Unbounded Data Structures. Programs commonly operate on data structure comprising
a statically unbounded number of heap locations. There are two main mechanisms
that are used to specify permissions for all heap locations of such data structures:

1. In permission logics, quantified permissions – often referred to as iterated
separating conjunctions [92] – allow programmers to write pointwise permission
specifications for unbounded data structures by quantifying over elements in a
set. By virtue of their flat structure, quantified permissions do not restrict the
order in which the heap locations are accessed; this makes them convenient for
specifying permissions for random access data, such as arrays (on the level of
individual array elements) but also for general graphs that are typically not
traversed in a predefined order.

2. Moreover, recursive predicates [92] can be used to inductively define linked
data structures. In contrast to quantified permissions that do not impose any
structure, recursive predicates intrinsically define a tree-shaped backbone for
the underlying data structure. A predicate definition consists of a name, a
list of formal parameters and a body defining the assertion represented by
a predicate instance. Like permissions for individual heap locations, predic-
ate instances may be held by the execution of a method or loop iteration.
Most automated permission-based verifiers [15, 59, 83, 89, 105, 106] distinguish
between a predicate instance and its body and require the user to annotate the
program with ghost statements to exchange a predicate instance with its body
and vice versa.

Permission Inference. Permission logics enable sound and modular verification of
sequential and concurrent heap-manipulating programs. However, they impose a
substantial annotation burden on the programmers. In addition to the correctness
properties they intend to verify, programmers need to provide extensive permission
specifications, in particular, method preconditions and postconditions as well as loop
invariants. It is, thus, highly desirable to infer permission specifications automatically,
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Section 1.1 State of the Art

such that programmers can complement them with specifications of the intended
functional behaviour of the code at hand.

Moreover – apart from program verification – information about the memory
accessed by parts of a program also finds use in other important applications that could
benefit from an automatic permission inference; noteworthy examples are static race
detection [103], code optimisations [41, 62, 73], and program parallelisation [14, 48].

1.1 State of the Art
There is a variety of tools and techniques that support specification inference to
some extent. For instance, Clousot [40] is a tool developed by Microsoft that
statically checks code contracts; it is based on an abstract interpretation [28] engine
that automatically infers loop invariants (such as numerical constraints) to discharge
proof obligations letting the user focus on method preconditions and postconditions.
The SeaHorn verification framework [54] infers numerical invariants using the
abstract interpretation based analyser IKOS [18]. Further examples of tools that
incorporate some form of inference are Houdini [44], an annotation assistant for
Java and Frama-C [80], a static analyser for C programs. However, none of the
tools mentioned above infer permission specifications.

In the work at hand, we focus on inferring permission specifications required for
deductive program verification. To the best of our knowledge there is no inference
capable of inferring all permission-related annotations – which includes method
preconditions and postconditions, loop invariants, predicate definitions and potentially
also ghost code – required by a program verifier; both, for programs that manipulate
arrays and recursive data structures. In particular, many approaches targeting linked
data structures are tailored to specific data structures, such as linked lists [11, 81]
or are limited to a set of predefined predicates, that is, do not infer predicate
definitions [22, 84, 102].

Abstract Interpretation. An established mathematical framework for specification infer-
ence is abstract interpretation [28]. Developing abstract interpretation techniques for
heap manipulating program is notoriously hard as it requires designing an abstract
domain striking the right balance between an abstraction that generalises well and
retaining precision in order to obtain sufficiently strong specifications.

One of the few abstract interpretation-based techniques that explicitly infers
permission specifications is Ferrara and Müller’s [42] approach, which builds upon
an alias analysis to abstract heap locations and then collect constraints for the
permissions required for each location. The inferred specifications are obtained by
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Chapter 1 Introduction

solving the resulting system of constraints using linear programming [31]. Their
inference mainly targets access permissions for individual heap locations and supports
unbounded data structures only if they are manually summarised via abstract
predicates; specifying unbounded data structures remains the programmer’s burden.

In general, many approaches concerned with analysing the memory footprint
of heap-manipulating programs are phrased as shape analyses. An example is
Distefano et al.’s [36] abstract interpretation-based shape analysis for list-manipulating
programs.

Graph and Grammar-Based. Many shape analyses, however, employ an internal repres-
entation of the heap that cannot easily be translated into an assertion. For example
Manevich et al.’s [75] graph-based analysis and and Lee et al.’s [69] grammar-based
technique can be used to check properties but do not produce annotations suitable
for program verification and human inspection.

Bi-Abduction. A particularly prominent technique for shape analysis in the context
of separation logic is bi-abduction, proposed by Calcagno et al. [22]. Within this
line of work, Brotherston et al.’s [20] cyclic abduction based inference and Le et
al.’s [66] second-order bi-abduction are both capable of inferring predicate definitions
for recursively defined data structures; however, the former cannot handle method
calls as this would require to infer preconditions and postconditions simultaneously,
while the latter does not support loops.

Furthermore, the problem of automating bi-abduction entailment checking for
array-based separation logic has been studied by Brotherston et al. [21]; this work
has not yet been extended to handle loops or recursion.

Learning-Based. Recently, many learning-based techniques [26, 95, 96] for inferring
program specifications emerged. These works typically focus on inferring a single
specification (for example, the loop invariant of a particular loop). Notably, Garg et
al. [46, 47] describe a learning-based approach that produces universally quantified
value constraints for arrays and lists; this approach, however, is not concerned with
inferring permission specifications. From this line of work, the technique closest to
our work is undoubtedly the one proposed by Neider et al. [84] that infers separation
logic specifications for recursively defined data structures; their approach requires
the programmer to provide method preconditions and the definition of recursive
predicates and method postconditions as well as loop invariants.

It is worth pointing out that learning has also been applied towards program syn-
thesis; for example, there is a rather well known line of work based on counterexample-
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Section 1.2 Research Goals and Scope

guided inductive synthesis (CEGIS) [99] that undoubtedly shares similarities with
some of the approaches mentioned above.

1.2 Research Goals and Scope
This thesis aims at developing and implementing inference techniques for permission
specifications that can be used directly in a standard verification workflow. To make
this possible, our techniques must (i) provide all specifications required by a verifier,
(ii) infer specifications that are concise and readable, such that programmers can
extend them to also express functional properties, and (iii) handle a wide range of
data structures.

As stated above, there are two main mechanisms to specify permissions for data
structures comprising a statically unbounded number of heap locations: on one
hand, there are quantified permissions that can be used, for example, to specify
permissions for integer-indexed data structures, such as arrays and matrices, and on
the other hand there are recursive predicates typically used to define permissions
for linked lists and tree-like data structures. Throughout this thesis, we present two
separate inference techniques for both of these specification mechanisms; as discussed
in more detail in Chapter 5, in most cases the permission specifications inferred by
either technique are independent of each other, which allows us to run the inference
techniques one after another to infer specifications for programs containing both
integer-indexed and recursively defined data structures. The following two sections
briefly outline the approach and contributions for both of our inference techniques.

1.3 Array Programs
In chapter Chapter 3, which is based on the CAV 2018 paper titled “Permission
Inference for Array Programs” [38], we present a permission inference for array
manipulating programs.

Approach. Our analysis reduces the problem of reasoning about permissions for array
elements to reasoning about numerical values for permission fractions. To achieve this,
we represent permission fractions for all array elements using a single numerical term
t(qa, qi) parameterised by two designated variables qa and qi ranging over all arrays
and indices, respectively. For instance, the conditional term (qa = a ∧ qi = i) ? 1 : 0
represents a full permission – denoted by 1 – for the array element a[i] and no
permission – denoted by 0 – for all other array elements.
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Chapter 1 Introduction

Our analysis employs a precise backwards analysis for loop-free code: a variation on
the standard notion of weakest preconditions. We apply this analysis to loop bodies
to obtain a permission precondition for a single loop iteration. Per array element,
the whole loop requires the maximum fraction over all loop iterations, adjusted
by permissions lost and gained during the loop execution. Rather than computing
permissions via a fixpoint iteration – for which a precise operation is difficult to design
– we express them as a maximum over the variables modified by the loop execution.
We then use numerical invariants obtained using an off-the-shelf numerical analysis in
combination with a novel maximum elimination algorithm to infer a specification for
the entire loop. For instance, computing the maximum of (qa = a ∧ qi = i) ? 1 : 0 over
all values for i satisfying 0≤ i ∧ i< len(a) yields (qa = a ∧ 0≤ qi ∧ qi < len(a)) ? 1 : 0 ,
which represents a full permission for all elements of the array a within bounds.

Contributions. The main technical contributions of Chapter 3 are:

1. We present a novel permission inference that expresses permission specifications
by numerical expressions parameterised by program variables and summarises
loops using maximum expressions ranging over an unbounded set of values.

2. Moreover, we introduce a maximum elimination algorithm that allows us to
solve such maximum expressions.

3. To account for permissions lost and gained throughout the loop execution, we
introduce and employ the notion of progressive numerical invariants that allows
us to distinguish between loop iterations that have already been executed and
ones that are still to be executed.

4. Our inference is proven sound, implemented, and evaluated on benchmark
examples from existing papers and competitions, demonstrating that we obtain
sound, precise, and concise specifications, even for challenging array patterns
and parallel loops.

1.4 Black-Box Inference
In Chapter 4, we present a learning-based permission inference targeting programs
manipulating recursively defined data structures.

Approach. Our inference is based on the ICE framework [47], where a teacher and
a learner work in tandem to iteratively infer specifications. In every iteration, the
teacher generates constraints on the desired specifications and the learner solves these
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Section 1.5 Thesis Outline

constraints to generate the next candidate specifications to be checked by the teacher.
The teacher employs a program verifier as an oracle to check the correctness of the
current candidate specifications. The learner translates the constraints imposed by
the teacher into an SMT encoding in order to synthesise appropriate specifications.
This approach is black-box since (i) the teacher only needs to understand how the
program interacts with specifications but is otherwise independent of any program
semantics, and (ii) the learner is entirely agnostic of the program and synthesises
new hypothesis based only on the constraints produced by the teacher.

Contributions. The main technical contributions of Chapter 4 are:

1. We present a novel black-box permission inference based on the ICE framework.
Our samples summarise the permission constraints of entire traces rather than
individual states, which allows us to generate specifications for the entire pro-
gram, by simultaneously inferring preconditions, postconditions, loop invariants,
and the definitions of recursive predicates.

2. Our inference targets automated separation logic verifiers, which typically treat
predicates isorecursively, that is distinguish between a predicate instance and
its body. In particular, we automatically infer ghost operations required by
such verifiers to unfold and fold predicates.

3. We have implemented our inference for the Viper verification infrastructure [83]
and evaluated it on a benchmark suite consisting of challenging examples.
Our evaluation shows that our technique can be applied to a wide range of
recursively defined data structure and code patterns to infer all permission-
related annotations at once, even in the presence of partial functional or
permission specifications.

1.5 Thesis Outline
The remainder of this thesis is structured as follows. In Chapter 2, we introduce
some basic mathematical notation, discuss the concept of permission specifications,
and define the syntax and semantics of a simple programming language used for our
formalisations. In Chapter 3, we present our permission inference for array programs.
In Chapter 4, we present our black-box inference technique targeting recursively
defined data structures. In Chapter 5, we conclude this thesis and discuss possible
future directions.
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2 Preliminaries

In this chapter, we establish the most important notations and concepts used
throughout this work.

Chapter Outline. We start by defining some mathematical notation. After that, we
introduce permission specifications. Finally, we define the syntax and semantics of a
simple programming language used for our formalisations later.

2.1 Mathematical Notations

In order to avoid ambiguity, we briefly introduce mathematical notation used through-
out this thesis that may be used differently in some of the existing literature.

Equalities. Throughout this thesis, we use the symbol = to denote semantic equality
while we use the symbol ≡ to denote syntactic equality. Moreover, we use the
symbols := and :≡ for defining equalities.

Number Sets. Throughout this thesis, we use the following symbols to refer to com-
monly used number sets: The set N := {0, 1, 2, 3, . . .} denotes the set of natural
numbers; we use N+ := N \ {0} to refer to all positive natural numbers. Furthermore,
the set Z := {. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of all integers. Finally, the set
Q := {p/q | p, q ∈ Z ∧ q 6= 0} denotes to all rational numbers.

Functions. Two functions f and g are equal if and only if their domains are the same
and their outputs agree on all input. That is, given f : X → Y and g : X → Y , we
have

f = g :⇔ ∀x : f(x) = g(x).

9
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1 method foo(a: Cell, b: Cell) {
2 a.val := 33333331
3 bar(a, b)
4 b.val := 333333331 / a.val
5 }
6

7 method bar(a: Cell, b: Cell) {
8 // some implementation ...
9 }

Listing 2.1. A heap manipulating program. The execution of the method foo may crash with a
division by zero if the method bar modifies the field a.val.

For all functions f : X → Y and all elements x ∈ X and y ∈ Y , we write f [x 7→ y]

to denote the function that is equal to f , with the exception that it maps x to y.
More formally, we define

f [x 7→ y] := λz.

y if z = x

f(z) otherwise.

2.2 Permission Specifications
In this section, we will first briefly discuss some aspects of permission-based verifica-
tion to set the context, and then introduce the permission specifications inferred by
our techniques presented later in this thesis.

2.2.1 Permission-Based Verification
Floyd and Hoare laid the foundation of deductive verification by formalising the
notion of preconditions and postconditions [45, 57]: A Hoare triple {P } c {Q }
states that any execution of the statement c starting in a state that satisfies the
precondition P will not fail and – if it terminates – result in a state that satisfies the
postcondition Q.

The Problem. As already hinted in the introduction, the standard notion of Hoare
triples is not suitable for modular verification of heap manipulating programs. To
illustrate this, let us consider the program shown in Listing 2.11. The last statement

1: The programming language will be introduced in Section 2.3 below.

10
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of the method foo succeeds only if a.val 6= 0; at the beginning of the method, this is
the case since a.val gets initialised to 33333331. However, the call to the method bar
in between can potentially set a.val to zero. In modular verification, we want to be
assured that this cannot happen by only looking at bar’s specification; in particular,
without having to look at its implementation. Consequently, bar’s postcondition
has to assert that a.val 6= 0, even if the value of a.val never gets updated. Clearly, as
there are unboundedly many heap locations, an approach where every method has
to explicitly state which heap locations it does not modify is impractical and does
not scale. This problem is known as the frame problem [76].

Permission Logics. Permission logics solve the frame problem by associating every
heap location with a permission; in particular, they allow a part of the program to
access the location’s value only if it holds said permission. In addition, permission
logics provide means to decompose the heap into disjoint sub-heaps; this allows
programmers to locally reason on the part of the heap that is actually relevant for
their implementation.

For example, in separation logic [92] – which is arguably the most prominent
permission logic – a points-to assertion l 7→ v denotes permission to access the heap
location l and also expresses that this location’s value is v. Moreover, assertions can
be combined with a separating conjunction A1 ∗ A2 stating that the heap can be
partitioned into two disjoint sub-heaps in which assertion A1, respectively A2, hold.
As permissions to a heap location can be understood to be exclusive, the assertion
l1 7→ v1 ∗ l2 7→x, for example, implies that the heap locations l1 and l2 must be
different; otherwise, it would denote permission for the same location twice.

Permission Transfers. A permission can be seen as a token of ownership for its as-
sociated memory location. A full-fledged programming language contains many
statements that affect the ownership of locations, expressed via permissions [72, 101].
Ownership of a location is first obtained upon allocation; creating a new object in
memory can therefore be represented as obtaining a fresh object and then obtaining
permission to its locations, that is, the fields of the object or individual array elements
if the object is an array. This ownership can then be passed to other parts of the
program by transferring the corresponding permission. For example, in a concurrent
setting, a fork operation may transfer permissions to the newly created thread or
acquiring and releasing a lock temporarily obtains permissions to access a set of
memory locations guarded by the lock. As already indicated in Chapter 1, even in a
sequential setting the concept of permissions is useful for method-modular reasoning:

11
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A call to a method transfers permissions from the caller to the callee, and back when
the method call terminates.

Inhales and Exhales. For the purpose of verifying programs – and also inferring per-
missions, for that matter – we can reduce all operations affecting the ownership of
locations to two basic operations that directly manipulate the permissions currently
held [71, 83]: An inhale A statement adds all permissions represented by the asser-
tion A. Dually, an exhale A statement requires that these permissions are already
held, and then removes them.

Framing. In permission logics, a Hoare triple {P } c {Q } additionally requires that
the precondition P denotes sufficient permissions to execute the statement c and that
any execution of the statement c starting in a state that satisfies P retains at least
the permissions denoted by the postcondition Q. The fact that permission logics
enable local reasoning is nicely captured by the frame rule, which can be stated as

{P } c {Q }
{P ∗ F } c {Q ∗ F },

where the statement c does not modify any variable appearing in F . Intuitively,
this rule states that if the statement c can safely be executed starting in a state
satisfying P , then it can also safely be executed from a state satisfying P ∗ F .
Moreover, the execution of c will will not affect the part of the heap nor affect any
permissions captured by F ; that is, the assertion F gets framed across the execution
of c.

As an example, let us revisit the program shown in Listing 2.1 and assume that
the precondition of bar does not mention any permission for a.val. In this case, the
assertion a.val 7→ V ∗ V 6= 0 can be framed across the method call to bar in the body
of foo. Notably, this then allows us to prove that division by a.val after this method
call does not fail.

2.2.2 Implicit Dynamic Frames
The specifications inferred by our inference techniques are based on implicit dynamic
frames [98]. Parkinson and Summers have studied the relationship between implicit
dynamic frames and separation logic, and have proven their weakest preconditions
to be equivalent [88].

Accessibility Predicates. As stated above, a separation logic points-to assertion l 7→ v

denotes permission to access the heap location l and simultaneously also makes a
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statement about this location’s value. Implicit dynamic frames separate these aspects:
The accessibility predicate acc(l) denotes permission to access the heap location l but
does not state anything about its value.

Separating Conjunctions. Implicit dynamic frames also provide a separating conjunction.
For example, the assertion acc(x.f) ∗ acc(y.f) denotes permission to both x.f and
y.f , and excludes that x and y alias. Note that the points-to assertion l 7→ v can be
expressed as acc(l) ∗ l = v.

Self-Framing Assertions. An implicit dynamic frames assertion is considered well-
defined only if it is self-framing, that is, denotes at least the permissions for the
heap locations that it reads. Note that, due to the decoupling of the permissions
from the value constraints, this is not always guaranteed: for example, the assertion
acc(a.val) ∗ a.val≥ 0 is self-framing, while a.val≥ 0 and acc(a.val) ∗ b.val≥ 0 are not.

Fractional Permissions. To support shared read access to heap locations, our permission
specifications use fractional permissions [16]. In this setting, a permission can be split
up into fractions. Holding the full permission for a heap location allows modifying
it, whereas holding a positive amount smaller than one allows reading (but not
modifying) it. Crucially, since there cannot be more than one permission in total,
holding on to some permission for a heap location guarantees that no other part of
the program can alter said location.

We use acc(l, q), where q ∈ Q and 0 ≤ q ≤ 1, to denote p permission for the heap
location l; by convention, the accessibility predicate acc(l) is equivalent to acc(l, 1).
Note that the assertion acc(l, q1) ∗ acc(l, q2) denotes q1 + q2 permission for l and is
equivalent to false if q1 + q2 > 1.

2.2.3 Quantified Permissions

As indicated in Chapter 1, there are two mechanisms to specify permissions for
unbounded data structures; one of them is quantified permissions [92]. Quantified
assertions are of the form ∀x ∈ S : A(x) and, intuitively, can be thought of as the
(possibly infinite) separating conjunction ∗x∈S A(x).

Example 2.2.1. » The quantified assertion ∀i ∈ Z : 0≤ i ∧ i< n⇒ acc(a[i]) denotes per-
missions for all array elements a[i], where i is between 0 and n−1. «

13
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2.2.4 Recursive Predicates

Another means to specify permissions for unbounded data structures are recursive
predicates [87]. A predicate definition p(~x ) , A consists of a name p, some paramet-
ers ~x and a predicate body A. A predicate instance p(~e ) is defined by a predicate
name p along with some arguments ~e. A predicate p(~x ) is called recursive if its body
contains at least one successor instance p(s(~x )), defined by some function s of the
predicate’s parameters ~x.

Example 2.2.2. » The recursive predicates

list(x) , x 6= null⇒ acc(x.val) ∗ acc(x.next) ∗ list(x.next)

tree(x) , x 6= null⇒ acc(x.val) ∗ acc(x.left) ∗ acc(x.right) ∗ tree(x.left) ∗ tree(x.right)

describe a null-terminated linked list and a binary tree, respectively. For the list
predicate, the successor is given by s(x) ≡ x.next, whereas the tree predicate has two
successors s1(x) ≡ x.left and s2(x) ≡ x.right. «

Intuitively, a predicate instance p(~e ) is equivalent to its body A[~e \~x ] and can be
thought of as the complete unrolling of its definition.2

Segment Predicates. For iterative implementations, loop invariants typically require
one to express the part of the data structure that has already been traversed, in
order not to leak the corresponding permissions. This is commonly done via segment
predicates that describe partial data structures.

Example 2.2.3. » Let us consider the loop while (node 6= null) {node := node.next}. The
predicate

lseg(x, y) , x 6= y⇒ acc(x.val) ∗ acc(x.next) ∗ lseg(x.next, y)

describes a segment of a linked list starting at x and truncated at y. The predicate
instance lseg(head, node), where head holds the value of node at the beginning of the
loop, can be used in the loop invariant of the loop above to refer to the part of the
list that has already been traversed. «

2: This interpretation treats predicates equirecursively. Automated verifiers often treat them
isorecursively, that is, distinguish between predicate instances and their bodies. For more
details, we refer to Section 4.5.
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2.3 Programming Language
The inference techniques presented in this thesis are defined for a simple imperative
programming language with local variables, heap-allocated arrays or objects with
fields, respectively, loops, method calls, and the usual boolean and arithmetic
expressions.

2.3.1 Program States
Our programming language is mostly standard, but equipped with additional state to
track how much permission is held to each heap location; a program state therefore
consists of three parts capturing the local variables, the shared heap, and the
permissions, respectively. As we will see below, our states comprise the entire heap;
this makes our program semantics a total-heap semantics rather than a partial-heap
semantics typically used by separation logic [88].

Stores and Heaps. Let X denote the set containing all program variables. Moreover,
we use L to denote the set of all heap locations. To accommodate the permission
inference for array programs introduced in Chapter 3, the set L contains all array
elements 〈a, i〉, where a is an array and i an index. Additionally, considering our
black-box inference for linked data structures presented in Chapter 4, it also includes
all locations l ∈ L consisting of pairs 〈o, f〉 of objects o and fields f .

Definition 2.3.1. » A store s : X → V is a function mapping program variables x ∈ X

to their value s(x). «

Definition 2.3.2. » A heap h : L → V is a function mapping heap locations l ∈ L to
their value h(l). «

Permission Maps. A permission map associates each heap location with a permission
amount. For the sake of generality, we define permissions over a set of resources R,
where L ⊆ R; this allows us to explicitly include predicate instances in our permission
map.

Definition 2.3.3. » A permission map π : R→ Q is a function mapping resources r ∈ R

to their permission amount π(r). «

Note that the permission fractions in our permission maps are not restricted to be
values between zero and one; this will simplify some of our formalisations later and
also permits states containing the same predicate instance more than once. For the
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sake of easier notation, we define addition and subtraction on permission maps as
pointwise operations. That is, for all permission maps π1 and π2, we define

π1 + π2 := λr. π1(r) + π2(r)

π1 − π2 := λr. π1(r)− π2(r).

Moreover, we often need to denote that a permission map represents at least as many
permissions as another permission map. To this end, for all permission maps π1 and
π2, we define

π1 v π2 :⇔ ∀r : π1(r) ≤ π2(r).

We observe that this partial order on permission maps induces a least upper bound
π1 t π2 and a greatest lower bound π1 u π2 that can be characterised as follows:

π1 t π2 = λr. max{π1(r), π2(r)}

π1 u π2 = λr. min{π1(r), π2(r)}

Throughout this work, we often need to refer to permission maps capturing no
permission or the permission of a single heap location; to facilitate this, let us define

πzero := λr. 0

πr,q := πzero[r 7→ q],

where r ∈ R and q ∈ Q.

States. Having introduced stores, heaps, and permission maps, we now formally
define program states.

Definition 2.3.4. » A state σ = 〈s, h, π〉 is a tuple consisting of a store s, a heap h, and
a permission map π. Moreover, let Σ to denote the set containing all states. «

When comparing two program states, we usually care only about the parts of the
heaps for which we have permissions (as we are not allowed to access the remainder
of the heap). This motivates the following definition.

Definition 2.3.5. » Two heaps h1 and h2 agree on a permission map π, denoted h1
π
= h2,

if and only if h1(l) = h2(l), for all heap locations l ∈ L with π(l) > 0. «
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2.3.2 Program Syntax

The syntax of our simple programming language is given by the following grammar.

c ::= skip | c ; c | if (b) {c} else {c} | while (b) {c}

| x := e | x := l | l := x

| inhale A | exhale A

b ::= true | false | e ∼ e | ¬b | b ∧ b | b ∨ b

e ::= n | x | e+ e | e− e | e · e | mod(e, n) | len(a)

l ::= a[e] | x.f

A ::= b | acc(l, q) | b⇒ A | A ∗A

In the grammar above, x ∈ X ranges over variables, ∼ ∈ {=, 6=,≤, <,≥, >} over
comparison operators, n ∈ Z over integers, a over array-typed variables, f over
fields, and q ∈ Q over permission amounts. Throughout this thesis, we assume that
variables are either integer- or reference-typed and consider only programs that are
well-typed.

Note that – for the sake of simplicity – we assume that all operations affecting
permissions are modelled via inhale and exhale statements. This has several advantages;
in particular, this lets us omit concurrency and method calls in our program syntax
and semantics. More details on methods calls are briefly discussed for both of our
inference techniques in the respective chapter. Moreover, also note that, in Chapter 4,
we will extend the grammar for assertions to also include predicate instances.

We observe that our program syntax allows accessing the heap only in designated
ways and via location expressions l; this ensures that all other conditions b and
expressions e are heap-independent. This is not a restriction, as any program can
easily be rewritten into such a form. For example, the assignment a.val := b.val+ 1
can be rewritten as t := b.val ; a.val := t+ 1 and an inhale acc(a.next.val) statement can
be rewritten as t := a.next ; inhale acc(t.val), where, in each case, t is a fresh variable.

2.3.3 Expression Semantics

The semantics of expressions is standard and defined recursively over the structure
of expressions. For all expressions e and states σ = 〈s, h, π〉, we use JeK(σ) to denote
the value obtained from evaluating the expression e in the state σ. For example, we
define JxK(σ) := s(x) and Je1+e2K(σ) := Je1K(σ)+Je2K(σ). We overload this notation
to also evaluate the value of conditions JbK(σ). For instance, we have JtrueK(σ) :⇔ true
as well as Je1 = e2K(σ) :⇔ Je1K(σ) = Je2K(σ).
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Heap Accesses. In order to formalise heap accesses, we need to be able to evaluate
heap locations represented by location expressions l. To this end, for all location
expressions l and all states σ, we define

JlKL(σ) :=

〈s(a), JeK(σ)〉 if l ≡ a[e]

〈s(x), f〉 if l ≡ x.f .

Note that, when we read from the heap, we want to lookup the value of a location
expression l; this value is given by JlK(σ) := h(JlKL(σ)). When we write to the heap,
we want to update the value of h associated with the corresponding location JlKL(σ).

2.3.4 Statement Semantics

A configuration captures a single point during a program execution and, therefore,
consists of the position in the program and the current program state. We represent
the position in the program as a statement that, intuitively, corresponds to the part
of the program that is still to be executed.

Definition 2.3.6. » A regular configuration γ = 〈c, σ〉 is a tuple consisting of a state-
ment c and a state σ. In addition, let γ denote the unique failing configuration.
Moreover, we use infeasible configuration γ× to summarise configurations that do not
exist in a real execution; for example, a configuration where the state provides more
than a full permission for a heap location. Finally, let Γ denote the set containing all
configurations, including γ and γ×. «

Below, we formalise a small steps semantics for our programming language by
introducing rules that collectively define a transition relation  ⊆ Γ× Γ capturing
a single step of an execution. For all k ∈ N, we write γ  k γ′ to denote that there
is an execution from γ to γ′ with k steps; note that, if k = 0, we must necessarily
have γ = γ′. If the number of steps is irrelevant, we write γ  ∗ γ′ to denote that
there is a k ∈ N, for which γ  k γ′. Furthermore, the following definition formally
introduces traces that capture all configurations encountered along an execution.

Definition 2.3.7. » A trace of length k ∈ N+ is a non-empty sequence of k configurations
t = 〈γ1, . . . , γk〉 such that γi  γi+1, for all i ∈ {1, . . . , k − 1}. Moreover, for all
i ∈ {1, . . . , k}, we use t[i] := γi to denote the i-th configuration of the trace t. «

Note that the length of a trace is determined by the number of encountered
configurations rather than by the number of steps.
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Sequential Compositions. The rules for sequential compositions c1 ; c2 execute one step
of the first statement c1, or drop the first statement if it is a skip statement and,
therefore, already fully executed.

〈c1, σ〉 〈c′1, σ′〉
〈c1 ; c2, σ〉 〈c′1 ; c2, σ′〉 〈skip ; c2, σ〉 〈c2, σ〉

Any failing configuration or ghost configuration encountered during the execution of
the first statement of a sequential composition is simply propagated.

〈c1, σ〉 γ 

〈c1 ; c2, σ〉 γ 

〈c1, σ  γ×〉
〈c1 ; c2, σ〉 γ×

Conditionals. The execution of a conditional statement if (b) {c1} else {c2} selects
either of the branches c1 or c2, depending on the value of the condition b.

JbK(σ)
〈if (b) {c1} else {c2}, σ〉 〈c1, σ〉

¬JbK(σ)
〈if (b) {c1} else {c2}, σ〉 〈c2, σ〉

Note that the evaluation of the condition b cannot fail as it is heap-independent.

Loops. The execution of a loop while (b) {c} iteratively unrolls loop iterations as
long as the loop condition b evaluates to true.

JbK(σ)
〈while (b) {c}, σ〉 〈c ; while (b) {c}, σ〉

¬JbK(σ)
〈while (b) {c}, σ〉 〈skip, σ〉

Again, the evaluation of the condition b cannot fail as it is heap-independent.

Assignments. The execution of a heap-independent variable assignment x := e simply
updates the store accordingly.

σ = 〈s, h, π〉 v = JeK(σ)
〈x := e, σ〉 〈skip, 〈s[x 7→ v], h, π〉〉

An assignment x := l reading from a heap location succeeds only if some permissions
for the heap location in question are currently held and fails, otherwise.

σ = 〈s, h, π〉 u = JlKL(σ) π(u) > 0

〈x := l, σ〉 〈skip, 〈s[x 7→ h(u)], h, π〉〉
σ = 〈s, h, π〉 u = JlKL(σ) π(u) ≤ 0

〈x := l, σ〉 γ 

Similarly, an assignment l := x updating a heap location succeeds only if a full
permission is held for the heap location in question and fails, otherwise.

σ = 〈s, h, π〉 u = JlKL(σ) π(u) ≥ 1

〈l := x, σ〉 〈skip, 〈s, h[u 7→ s(x)], π〉〉
σ = 〈s, h, π〉 u = JlKL(σ) π(u) < 1

〈l := x, σ〉 γ 
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Note that the rules leading to the failing configuration – capturing cases where
there are insufficient permissions – subsumes runtime failures such as null pointer
dereferences and out-of-bounds errors, as it is impossible to possess permission for
an invalid heap location (assuming that allocation, de-allocation, and permission
transfers are modelled soundly).

Assumes and Asserts. The execution of an inhale b statement corresponds to assuming
the condition b. The assumption of a condition that holds does not change the state,
whereas the assumption of a condition that does not hold is modelled as a transition
to the infeasible configuration γ×, indicating that the execution leading up to this
point is not possible.

JbK(σ)
〈inhale b, σ〉 〈skip, σ〉

¬JbK(σ)
〈inhale b, σ〉 γ×

Conversely, the execution of an exhale b statement corresponds to asserting the
condition b; it does not change the state and succeeds if the condition is true. One
might expect a failing assertion to lead to the failing configuration. For the sake of
inferring permissions, however, we do not consider non-permission failures and model
a failing assertion as a transition to the infeasible configuration γ×. Consequently,
the rules for assertions are the same as the ones for assumptions.

JbK(σ)
〈exhale b, σ〉 〈skip, σ〉

¬JbK(σ)
〈exhale b, σ〉 γ×

Inhales and Exhales. An inhale acc(r, q) statement adds q permissions for the resource r;
unless this would lead to a state with more than a full permission for r.

σ = 〈s, h, π〉 u = JrKR(σ) π(u) + q ≤ 1

〈inhale acc(r, q), σ〉 〈skip, 〈s, h, π + πu,q〉〉
σ = 〈s, h, π〉 π(JrKR(σ)) + q > 1

〈inhale acc(r, q), σ〉 γ×

In the rules above, we use J·KR(σ) to denote the extension of J·KL(σ) to resources.
Dually, an exhale acc(r, q) statement removes q permissions for the resource r; however,
the statement fails if less than q permissions for r were held in the first place.

σ = 〈s, h, π〉 u = JrKR(σ) π(u)− q ≥ 0

〈exhale acc(r, q), σ〉 〈skip, 〈s, h, π − πu,q〉〉
σ = 〈s, h, π〉 π(JrKR(σ))− q < 0

〈exhale acc(r, q), σ〉 γ 

Further, we observe that the inhale A1 ∗ A2 is equivalent to inhale A1 ; inhale A2

as well as that the inhale b ⇒ A is equivalent to if (b) {inhale A}. Thus, all inhale
statements not captured by the rules above can be handled by assuming them to be
rewritten according to the aforementioned observation; the analogous is also true for
exhale statements.
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Interference Rule. Our rules for inhale and exhale introduced above are not yet sufficient
to truthfully model the effect of other parts of the program (for example, concurrently
running threads or method calls), as they might update parts of the heap for which
we currently do not have any permissions. Such an interference could technically be
modelled using the following rule.

σ = 〈s, h, π〉 π(u) ≤ 0

〈c, σ〉 〈c, 〈s, h[u 7→ v], π〉〉

Adding such a rule, however, unnecessarily complicates proofs as it introduces a step
that is always possible. The effect of an update (by another thread, for example) on
a heap location for which we currently do not have permissions cannot be observed
anyway; not until we regain permissions to access said heap location, that is. Thus,
we can capture such effects by complementing our rules for inhale statements above
with the following rule.

σ = 〈s, h, π〉 u = JrKR(σ) π(u) ≤ 0 π(u) + q ≤ 1

〈inhale acc(r, q), σ〉 〈skip, 〈s, h[u 7→ v], π + πu,q〉〉

Intuitively, this rule lets us assume an arbitrary value for heap locations for which
we gain permissions and no permissions were previously held.

2.3.5 Useful Lemmas
Next, we prove some basic but useful lemmas about our program semantics that will
be of use for our soundness proof in Chapter 3. The first two lemmas let us split up
the execution of a sequential composition c1 ; c2 into the parts corresponding to c1
and c2.

Lemma 2.3.8. » For all non-negative integers k ∈ N, all statements c1 and c2, and all
states σ and σ′, we have 〈c1 ; c2, σ〉  k 〈skip, σ′〉 if and only if there is a state σ′′

such that 〈c1, σ〉  k1 〈skip, σ′′〉 and 〈c2, σ′′〉  k2 〈skip, σ′〉, for some k1, k2 ∈ N with
k1 + k2 + 1 = k. «

Note that – as the proof below suggests – the execution of the sequential composition
takes k1 + k2 + 1 rather than k1 + k2 steps because dropping the skip statement that
results from fully executing the first statement also counts as a step.

Proof (Sketch). Both directions can be proven separately.
The proof for the if -direction goes by induction on the length k1 of the derivation

sequence for the statement c1. For the base case k1 = 0, we must have c1 ≡ skip
and σ = σ′′. Thus, we have 〈c1 ; c2, σ〉  〈c2, σ′′〉  k2 〈skip, σ′〉 and, consequently,
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〈c1 ; c2, σ〉 k1+k2+1 〈skip, σ〉, as desired. In the step case k1 > 0, we can split off the
first step of the derivation sequence for c1: that is, 〈c1, σ〉 〈c′1, σ′′′〉 k1−1 〈skip, σ′′〉.
From here, the claim follows by applying the induction hypothesis to the shortened
derivation sequence of length k1 − 1 and then reattaching the first step.

Similarly, the only if -direction follows by induction on the length k of the derivation
sequence for the sequential composition. �

Lemma 2.3.9. » For all non-negative integers k ∈ N, all statements c1 and c2, and all
states σ with 〈c1 ; c2, σ〉 k γ , we have

1. 〈c1, σ〉 k−1 γ or

2. there is a state σ′ such that 〈c1, σ〉 k1 〈skip, σ′〉 and 〈c2, σ′〉 k2 γ , for some
k1, k2 ∈ N with k1 + k2 + 1 = k. «

Proof. By straightforward induction on the length k of the derivation sequence. �

The following lemma lets us extract the last loop iteration from a derivation
sequence representing multiple consecutive loop iterations.

Lemma 2.3.10. » For all positive integers k ∈ N+, all loops w ≡ while (b) {c}, and all
states σ and σ′ with 〈w, σ〉 k 〈w, σ′〉, there is a state σ′′, such that 〈w, σ〉 k1 〈w, σ′′〉
and 〈c, σ′′〉 k2 〈skip, σ′〉, for some integers k1, k2 ∈ N with k1 + k2 + 1 = k. «

Proof (Sketch). The proof goes by strong induction on the length of the derivation
sequence k. Since k > 0, we can unroll the first loop iteration and apply Lemma 2.3.8
to obtain the two derivation sequences 〈c, σ〉 n1 〈skip, σ′′′〉 and 〈w, σ′′′〉 n2 〈w, σ′〉,
for some state σ′′′ and integers n1, n2 ∈ N with n1 + n2 + 1 = k.

If n2 = 0, we are done, since the unrolled iteration is the last iteration of our entire
derivation sequence, and 〈w, σ〉 0 〈w, σ〉 holds trivially.

Otherwise, we can apply our induction hypothesis to extract the last iteration from
〈w, σ′′′〉 n2 〈w, σ′〉, which gives us another two sequences 〈w, σ′′′〉 n3 〈w, σ′′〉 and
〈c, σ′′〉  k2 〈skip, σ′〉, for some state σ′′ and integers n3, k2 with n3 + k2 + 1 = n2.
It then remains to combine the derivation sequences 〈c, σ〉  n1 〈skip, σ′′′〉 and
〈w, σ′′′〉  n3 〈w, σ′′〉 to get 〈w, σ〉  k1 〈w, σ′′〉, where k := n1 + n3 + 1. Some
fiddling with the integers easily verifies that k1 + k2 + 1 = k. �
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3 Array Programs
As mentioned in the introduction, information about the memory locations accessed
by a program is, for instance, required for program parallelisation and program
verification. Existing inference techniques for this information provide only partial
solutions for the important class of array-manipulating programs. In this chapter
– which is based on the CAV 2018 paper titled “Permission Inference for Array
Programs” [38] – we present a static analysis that infers the memory footprint of
an array program in terms of permission preconditions, postconditions and loop
invariants, as used, for example, in separation logic. This information allows our
analysis to handle concurrent programs and produces specifications that can be used
by verification tools.

Approach. Our analysis employs a precise backwards analysis that constructs permis-
sion expressions capturing the memory footprint of loop-free code. We make use of
numerical loop invariants to express the permissions required by a loop via pointwise
maximum expressions over the individual loop iterations. We introduce the concept
of progressive loop invariants that allow us to distinguish between past and future
loop iterations and construct permission invariants that reflect permissions lost and
gained by the execution of loops. The maximum expressions used to handle loops
range over an unbounded set of values and are typically not supported by automated
tools; to address this, we present a novel maximum elimination algorithm that – in
the spirit of quantifier elimination – solves such pointwise maximum expression.

Our approach is proven sound and implemented; an evaluation on existing bench-
marks for memory safety of array programs demonstrates accurate results, even for
programs with complex access patterns and nested loops.

Contributions. The main technical contributions of this chapter are:

1. We propose a novel permission inference that generates permission precondi-
tions, postconditions, and loop invariants expressing the memory footprint of
array-manipulating programs. The specifications are expressed using permis-
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sion expressions parameterised by program variables, allowing to summarise
loops via pointwise maximum expressions.

2. We introduce the concept of progressive loop invariants that allows us to leverage
off-the-shelf numerical analyses to obtain loop invariants that distinguish
between past and future loop iterations.

3. We present a novel algorithm for eliminating pointwise maximum expression
ranging over an unbounded set of values.

4. We provide formal proofs for the soundness of our permission analysis and the
correctness of our maximum elimination algorithm.

5. We implemented our analysis based on the Viper verification infrastructure [83].

6. We evaluated our permission analysis based on a benchmark containing ex-
amples from existing papers and competitions, demonstrating that we obtain
sound, precise, and concise specifications, even for challenging array access
patterns and parallel loops.

Chapter Outline. The rest of this chapter is structured as follows. In Section 3.1,
we provide an overview of our technique and introduce the permission expressions
used to capture the inferred memory footprint. In Section 3.2, we start by devising
rules to infer permission preconditions and postconditions for loop-free code. In
Section 3.3, we extend our permission preconditions and postconditions to arbitrary
loop programs; we do so by elaborating how to generalise results for a single loop
iteration to the entire loop with the help of pointwise maximum expressions and
numerical loop invariants. In Section 3.4, we introduce the concept of progressive loop
invariants and show how it can be used to obtain permission invariants to summarise
the permission changes caused by already executed loop invariants. In Section 3.5,
we describe our novel maximum elimination algorithm that can be used to solve our
pointwise maximum expressions. The results of our experimental evaluation is shown
in Section 3.6. Finally, in Section 3.7, we conclude this chapter with a discussion
that relates our approach to existing work and highlights its main strengths and
limitations.

3.1 Overview
This section provides an overview of our inference techniques; in particular, it
introduces permission expressions used to express the memory footprint of the array
program at hand.
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Section Outline. In Section 3.1.1, we outline our approach on a high level. In Sec-
tion 3.1.2 we define the syntax and semantics of the permission expressions employed
by our inference. In Section 3.1.3, we formally introduce pointwise maximum ex-
pressions used by our approach to summarise multiple loop iterations into a single
permission expression.

3.1.1 Approach
Our analysis reduces the problem of reasoning about permissions for array elements to
reasoning about numerical values for permission fractions. We do this by representing
the permission fractions for all array elements using a single permission expression p
parameterised by two designated variables qa and qi ranging over arrays and indices,
respectively. This way, the permission fraction for any array element a[i] is given by
the term p[a\qa][i\qi]. For instance, the ternary expression (qa = a ∧ qi = i) ? 1 : 0
represents full permission for the array element a[i] and no permission for all other
array elements.

Our analysis employs a precise backwards analysis for loop-free code: a variation of
the standard notion of weakest preconditions. We apply this analysis to loop bodies
to obtain a permission precondition for a single loop iteration. Per array element,
the whole loop requires the maximum permission fraction over all loop iterations,
adjusted by permissions gained and lost during the execution of the loop. Rather
than computing these permission fractions via a fixedpoint iteration – for which a
precise widening operator is difficult to design – we express them as a pointwise
maximum over the variables changed by the loop execution. We then use inferred
numerical invariants on these variables and a novel maximum elimination algorithm
to infer a specification for the entire loop.

Example 3.1.1. » Let us consider the copy_even_a method shown in Listing 3.1. Our
analysis determines that the permission amount required by a single loop iteration is

p ≡ mod(i, 2) = 0 ? ((qa = a ∧ qi = i) ? rd : 0) : ((qa = a ∧ qi = i) ? 1 : 0).

Note that – as we will introduce formally shortly – a ternary expression of the form
b ? p1 : p2 is equal to p1 or p2, depending on whether the condition b evaluates to true
or false. Moreover, the symbol rd represents an arbitrary positive permission amount;
a post-processing step can later replace rd by a concrete permission fraction. Using
the integer invariant 0≤ i obtained from a suitable numerical analysis combined with
the loop condition i< len(a), we obtain the pointwise maximum expression

max
i | 0≤ i∧ i< len(a)

{p},
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1 method copy_even_a(a: Int[]) {
2 var i: Int
3 var v: Int
4 i := 0
5 while (i< len(a)) {
6 if (mod(i, 2) = 0) {
7 v := a[i]
8 } else {
9 a[i] := v

10 }
11 i := i+ 1
12 }
13 }

Listing 3.1. A method copying all array elements at even indices to its neighbouring element
to the right.

representing sufficient permissions to execute the entire loop. Applying our maximum
elimination to this pointwise maximum expression and carefully selected syntactic
simplification rules obtains

(qa = a ∧ 0≤ qi ∧ qi < len(a)) ? (mod(qi, 2) = 0 ? rd : 1) : 0 .

By ranging over all qa and qi, this permission expression can be read as read permission
for all even indices and write permission for all odd indices within the array a’s
bounds. «

Permission postconditions are obtained in a similar fashion by combining the
precondition with an additional analysis that infers the permissions lost and gained
by the code at hand. Moreover – as detailed in Section 3.4 – loop invariants are
obtained from loop preconditions by leveraging so-called progressive invariants to
summarise the permission changes caused by loop iterations that have already been
executed.

3.1.2 Permission Expressions
Next, we formally introduce the syntax and semantics of the permission expressions
used by our analysis.

Definition 3.1.2. » The syntax of permission expressions is given by the grammar

p ::= q | p+ p | p− p | min(p, p) | max(p, p) | b ? p : p,
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where q ∈ Q ranges over permission fractions and b over boolean expressions. «

Definition 3.1.3. » The semantics of a permission expression is a function mapping
program states to permission fractions and is defined by

JpK(σ) :=



q if p ≡ q

Jp1K(σ) + Jp2K(σ) if p ≡ p1 + p2

Jp1K(σ)− Jp2K(σ) if p ≡ p1 − p2

min{Jp1K(σ), Jp2K(σ)} if p ≡ min(p1, p2)

max{Jp1K(σ), Jp2K(σ)} if p ≡ max(p1, p2)

Jp1K(σ) if p ≡ b ? p1 : p2 and JbK(σ)

Jp2K(σ) if p ≡ b ? p1 : p2 and ¬JbK(σ). «

Note that boolean expressions appearing in a permission expression may depend
on our designated variables qa and qi ranging over arrays and indices, respectively.
Throughout this chapter, it is often helpful to view a permission expression p as
a mapping from array elements a[e] to their corresponding permission fraction
represented by p[a\qa][e\qi]. In other words, each permission expression represents a
permission map that can be defined as follows.

Definition 3.1.4. » For all permission expressions p and all states σ, we define

JpKΠ(σ) := λ(a, i). Jp[a\qa][i\qi]K(σ). «

Note that, in the definition above, the subscript Π indicates that the permission
expression p is evaluated as a permission map, rather than the single permission
fraction JpK(σ). For the following definition, we recall from Chapter 2 that the
inequality v is defined as a pointwise comparison of permission maps and that πzero

denotes the permission map associating all heap locations – that is, array elements
in the context of this chapter – with no permission.

Definition 3.1.5. » A permission expression p is non-negative if and only if, for all
states σ, we have πzero v JpKΠ(σ). «

Sufficient Preconditions and Guaranteed Postconditions. Next, we formally define under
which conditions a permission expression represents a sufficient precondition or a
guaranteed postcondition. To do so, we first remind the reader of the transition
relation  ∗ defined in Chapter 2 and that σ � π′ is used to denote that the state
σ = 〈s, h, π〉 contains at least the permissions represented by π′, that is π′ v π.
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Definition 3.1.6. » A permission expression p is a sufficient permission precondition for
a statement c if and only if for all states σ with σ � JpKΠ(σ), we have 〈c, σ〉 6 ∗ γ . «

Example 3.1.7. » Let us consider the statement c ≡ a[i] := a[j] and the permission ex-
pression p1 ≡ (qa = a ∧ (qi = i ∨ qi = j)) ? 1 : 0 . We observe that any state σ satisfying
σ � Jp1KΠ(σ) must provide a full permission for a[i] as well as for a[j]. Thus, we have
〈c, σ〉 6 ∗ γ , meaning that p1 is a sufficient permission precondition for c.

In contrast, p2 ≡ (qa = a ∧ qi = i) ? 1 : 0 is no sufficient precondition for c: A state
σ in which i 6= j holds and satisfying σ � Jp2KΠ(σ) is not guaranteed to provide
permissions for a[j], making 〈c, σ〉 ∗ γ possible. «

Definition 3.1.8. » A permission expression p′ is a guaranteed permission postcondition
for a statement c with respect to the permission precondition p, if and only if,
for all pairs of states σ and σ′ with σ � JpKΠ(σ) and 〈c, σ〉  ∗ 〈skip, σ′〉, we have
σ′ � Jp′KΠ(σ). «

Example 3.1.9. » For all statements whose execution does not give away any permis-
sions, any permission precondition is simultaneously also a sufficient permission
postcondition.

Moreover, since any execution of the statement inhale acc(a[i], 1/2) ends up in a state
with at least half a permission for a[i], permission expression (qa = a ∧ qi = i) ? 1/2 : 0 is
a guaranteed permission postcondition said statement with respect to any permission
precondition. «

Note that guaranteed permission postconditions are expressed in terms of pre-states
and are, therefore, evaluated in the state σ.

Permission Expressions as Assertions. We briefly compare our permission expressions to
common hand-written specifications. Typically, assertions capturing permissions for
array elements are written using universally quantified permissions and are of the
form ∀qi ∈ Z : b⇒ acc(a[qi]), where b is a boolean expression determining for which
values of qi a permission for the array element a[qi] has to be provided. For example,

∀qi ∈ Z : 0≤ qi ∧ qi < len(a)⇒ acc(a[qi])

represents full permission for all elements in the array a’s range. In comparison, the
permission expression (0≤ qi ∧ qi < len(a)) ? 1 : 0 captures exactly the same permis-
sions; the corresponding assertion would then look something like

∀qi ∈ Z : acc(a[qi], (0≤ qi ∧ qi < len(a)) ? 1 : 0).
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Note that our permission expressions go one step further than the assertion shown
above by also implicitly quantifying over arrays.

In contrast to using a boolean expression b to determine for which array elements
permissions are required, using permission expressions has two key advantages: First,
permission expressions can easily be used to require different permission amounts for
individual array elements (see Example 3.1.1 above) and do not require to partition
the specifications into sets of equal permission amounts and finding a condition for
each of them. Second, dealing with numerical expressions allows us to easily add and
subtract permissions needed when, for example, permissions are inhaled or exhaled.

3.1.3 Pointwise Maxima
As already indicated, we will use pointwise maximum expressions to generalise results
obtained for individual loop iterations to the entire loop. The syntax coincides with
the one used for standard mathematical notation. The semantics of such pointwise
maximum expression is defined as follows:

r
max
x∈S

{p}
z
(σ) :≡ max

e∈S
{Jp[e\x]K(σ)}

As we often deal with pointwise maxima only ranging over variables that satisfy
a certain condition, for all permission expressions p and boolean expressions b, we
introduce the shorthand

max
x | b

{p} :≡ max
x∈Z

{b ? p : 0}.

Note that, throughout this chapter, we will consistently typeset pointwise max-
imum expressions (ranging over an unbounded set of values) using a red maximum
symbol max. We do this to make it easier for the reader to distinguish them from
regular binary maximum expressions max(p1, p2); this makes it straightforward to
spot all the maximum expressions that we would like to ultimately solve using our
maximum elimination algorithm.

We define pointwise minimum expression via pointwise maximum expressions
rather than providing analogous definitions. That is, we define

min
x∈S

{p} :≡ −max
x∈S

{−p}

min
x | b

{p} :≡ −max
x | b

{−p}.

This allows us to reuse our maximum elimination algorithm to also solve pointwise
minimum expressions. Note that this is done solely for the sake of easier presentation;
adapting the algorithm to a minimum elimination algorithm is possible and also does
not pose any additional challenges.
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qi
e

y = Jαa[e](1)K(σ)

0

1

Figure 3.2. A leaf expression αa[e](1) capturing a full permission for the array element a[i] and
no permissions for all other array elements plotted as a function of the designated variable qi.
The state σ is assumed to satisfy qa = a.

3.2 Loop-Free Code
In this section, we define inference rules to compute sufficient permission preconditions
for loop-free code. For programs which do not add or remove permissions via inhale
and exhale statements, the same permissions will still be held after executing the
code; however, to infer guaranteed permission postconditions in the general case,
we also infer the difference in permissions between the state before and after the
execution and then combine them with the permission preconditions in order to
express permission postconditions. We will discuss loops in the upcoming sections.
Non-recursive method calls can be handled by applying our analysis bottom-up in the
call graph using inhale and exhale statements to model the permission effect of calls.
An extension to recursive method calls is non-trivial and discussed in Section 3.7.3.

Section Outline. In Section 3.2.1, we first introduce leaf-expressions that capture
permissions for an individual array element and serve as a basic building block for our
inference rules. In Section 3.2.2, we provide the rules to infer sufficient permission
preconditions for loop-free code. In Section 3.2.3, we then introduce similar rules
that infer the permissions lost and gained by loop-free code that can be combined
with the permission preconditions in order to obtain permission postconditions.

3.2.1 Leaf Expressions
The basic building blocks for our permission analysis are so-called leaf expressions
αa[e](q) that capture q permissions for the array element a[e] (cf. Figure 3.2). These
leaf expressions are defined as follows.

Definition 3.2.1. » For all array variables, all integer expressions e, and all permission
fractions q, we define

αa[e](q) :≡ (qa = a ∧ qi = e) ? q : 0. «
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1 method copy_even_b(a: Int[]) {
2 var i: Int
3 var v: Int
4 i := 0
5 while (i< (len(a)− 1) / 2) {
6 v := a[2 · i]
7 a[2 · i+ 1] := v
8 i := i+ 1
9 }

10 }
11

Listing 3.3. A variation of the method copying
array elements at even indices.

1 method swap(a: Int[], b: Int[]) {
2 var i: Int
3 var v: Int
4 i := 0
5 while (i< len(a)) {
6 v := a[i]
7 a[i] := b[i]
8 b[i] := v
9 i := i+ 1

10 }
11 }

Listing 3.4. A method swapping the contents
of two arrays.

Observation 3.2.2. » For all leaf expressions αa[e](q) and all states σ = 〈s, h, π〉, we
have Jαa[e](q)KΠ(σ) = πu,q, where u := Ja[e]KL(σ) is the heap location to which a[e]

evaluates in the state σ (as defined in Chapter 2). In particular, if σ � Jαa[e](q)KΠ(σ),
then π(u) ≥ q. «

Multi-Dimensional Arrays. Our analysis can be easily extended to also support multi-
dimensional arrays or other integer-indexed data structures. This can be done
by introducing a slightly adapted version of the leaf expression defined above; all
remaining parts of the permission analysis remain unaffected. For instance, in order
to support matrices, we could define

αm[e1,e2](q) :≡ (qa = m ∧ qi = e1 ∧ qj = e2) ? q : 0,

where qj is another designated variable ranging over the second index. For the sake
of simplicity, however, we restrict our elaborations below to one-dimensional arrays.

3.2.2 Permission Preconditions
The permission precondition of a loop-free statement c and a permission expression p
is denoted by τ⦃c⦄(p). The second parameter p acts as an accumulator and may
contain our designated variables qa and qi. The weakest permission precondition for
a statement c is given by τ⦃c⦄(0). Most rules for τ are straightforward adaptions of
a classical weakest precondition computation. The following definition provides all
rules at once; afterwards, we then elaborate on some of the details and ultimately
provide a soundness proof.
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0
rd

1

qi

y = Jτ⦃c⦄(0)K(σ)

i

Figure 3.5. The permission precondition for
the body c of the copy_even_b method’s loop
representing sufficient permissions to ex-
ecute an individual loop iteration.

0
rd

1

qa

y = Jτ⦃c⦄(0)K(σ)

a b

Figure 3.6. The permission precondition for
the body c of the copy_swap method’s loop.
Note that the permission expression is plot-
ted as a function of qa (as opposed to qi).

Definition 3.2.3. » For all loop-free statements c and all permission expressions p, we
define

τ⦃c⦄(p) :≡



p if c ≡ skip

τ⦃c1⦄(τ⦃c2⦄(p)) if c ≡ c1 ; c2

b ? τ⦃c1⦄(p) : τ⦃c2⦄(p) if c ≡ if (b) {c1} else {c2}

p[e\x] if c ≡ x := e

max(p[a[e]\x], αa[e](rd)) if c ≡ x := a[e]

max(p[a[e] Z⇒ x], αa[e](1)) if c ≡ a[e] := x

b ? p : 0 if c ≡ inhale b or c ≡ exhale b

max(VpWa[e] − αa[e](q), 0) if c ≡ inhale acc(a[e], q)

p+ αa[e](q) if c ≡ exhale acc(a[e], q),

where, intuitively, the term p[a[e] Z⇒ x] updates the value of the array element a[e]
to x in p and the term VpWa[e] models havocs (cf. Chapter 2) by abstracting away
the value of the array element a[e] in p; these terms are formally defined below in
Definition 3.2.10 and Definition 3.2.17, respectively, below. «

As the following examples illustrate, these rules construct permission expressions
that capture the permissions for all accessed array elements, even across multiple
arrays.

Example 3.2.4. » Let us consider the loop of the copy_even_b method shown in Listing 3.3.
We note that the body of this loop is given by the statement c1 ; c2 ; c3, where
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c1 ≡ v := a[2·i], c2 ≡ a[2·i+1], and c3 ≡ i := i+1. For this statement, our analysis infers
the permission precondition

τ⦃c1 ; c2 ; c3⦄(0) ≡ τ⦃c1 ; c2⦄(τ⦃c3⦄(0))

≡ τ⦃c1 ; c2⦄(0)

≡ τ⦃c1⦄(τ⦃c2⦄(0))

≡ τ⦃c1⦄(max
(
0, αa[2·i+1](1)

)
)

≡ max
(
max
(
0, αa[2·i+1](1)

)
, αa[2·i](rd)

)
.

We observe that this permission expression captures both, permission to read from
the array element a[2·i] as well as permission to write to the array element a[2·i+1]; a
visual representation is shown in Figure 3.5. «

Example 3.2.5. » Let us consider the loop of the swap method shown in Listing 3.4.
For the body of this loop, our analysis infers the permission precondition

max
(
max
(
max
(
max
(
0, αa[i](1)

)
, αb[i](1)

)
, αb[i](rd)

)
, αa[i](rd)

)
,

which can be simplified to
max
(
αa[i](1), αb[i](1)

)
.

This permission expression grants write permissions to the array elements a[i] and b[i].
Note that using a maximum instead of an addition ensures that we do not require
two permissions for the same array element in case the array variables a and b alias,
that is, refer to the same array. «

Soundness. Our permission preconditions for loop-free code satisfies the following
soundness lemma.

Lemma 3.2.6. » For all loop-free statements c, the permission expression τ⦃c⦄(0) is a
sufficient permission precondition for c. «

Intuitively, whenever our analysis encounters a statement that requires q permis-
sions for an array element a[e], our rules ensure that the constructed precondition is
at least αa[e](q). This way, according to Observation 3.2.2, the permission expression
constructed by our analysis represents sufficient permissions to successfully execute
this individual statement. It remains to convince ourselves, that the parameter p
appropriately accumulates the permissions required for the execution of compound
statements, which we will do in what follows, and then ultimately prove Lemma 3.2.6.

35



Chapter 3 Array Programs

Variable Assignments. To prove the correctness of the rule for variable assignments,
we employ a fairly standard substitution lemma, which we formulate as follows.

Lemma 3.2.7. » For all permission expressions p, all integer-typed variables x, all
arithmetic expressions e, and all states σ = 〈s, h, π〉, we have

Jp[e\x]K(σ) = JpK(〈s[x 7→ JeK(σ)], h, π〉). «

Proof. By straightforward induction on the structure of the permission expression p.�

With this substitution lemma at hand, we easily see that our rules for assignments
to variables correctly update the accumulated permissions p to reflect the effect of
the assignment.

Lemma 3.2.8. » For all permission expressions p, integer-typed variables x, arithmetic
expressions e, and pairs of states σ and σ′ with 〈x := e, σ〉 〈skip, σ′〉, we have

σ � Jp[e\x]KΠ(σ) ⇔ σ′ � JpKΠ(σ′). «

Proof. The claim immediately follows by combining Lemma 3.2.7 with the definition
of the variable assignment rule in Section 2.3.4. �

Example 3.2.9. » We have τ⦃i := 0⦄(αa[i](1)) ≡ αa[0](1). «

Array Assignments. Assignments updating array values a[e] are handled similarly to
variable assignments. However, here, we also have to take into account potential
aliases: We cannot just syntactically replace all occurrences of a[e] in the accumulator
expression p as there might be syntactically different array accesses a′[e′] that represent
the same array value; that is, when a′ = a and e′ = e. This motivates the following
definition and subsequent substitution lemma for array updates.

Definition 3.2.10. » For all permission expressions p, all array variables a, and all
arithmetic expressions e and e′′, let

p[a[e] Z⇒ e′′]

the permission expression obtained from p by replacing each occurrence of an array
access a′[e′] with (a′ = a ∧ e′ = e) ? e′′ : a′[e′]. «

Lemma 3.2.11. » For all permission expressions p, all array variables a, all arithmetic
expressions e and e′, and all states σ = 〈s, h, π〉, we have

Jp[a[e] Z⇒ e′]K(σ) = JpK(〈s, h[Ja[e]KL(σ) 7→ Je′K(σ)], π〉). «
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Proof. By straightforward induction on the structure of the permission expression p.�

Lemma 3.2.12. » For all permission expressions p, array variables a, arithmetic ex-
pressions e, variables x, and pairs of states σ and σ′ with 〈a[e] := x, σ〉 〈skip, σ′〉,
we have

σ � Jp[a[e] Z⇒ x]KΠ(σ) ⇔ σ′ � JpKΠ(σ′). «

Proof. The claim follows by combining Lemma 3.2.11 with the definition of the heap
assignment rules in Section 2.3.4. �

Example 3.2.13. » Suppose that our analysis has already accumulated a permission
expression of the form p ≡ (a[i] = 0) ? p1 : p2; such an expression occurs, for example,
when the code at hand contains a conditional statement that branches on the
condition a[i] = 0. Assuming the next encountered statement is a[j] := 0, we get

τ⦃a[j] := 0⦄(p) ≡ ((a= a ∧ i= j) ? 0 : a[i]) = 0 ? p1 : p2.

We observe that in a state where i= j this entire expression evaluates to p1; otherwise,
it is equivalent to the original expression p (assuming no further array values appear
within p1 or p2), which is expected as the condition a[i] = 0 remains unaffected by
the array update. «

Thread Interference. Recall from Section 2.3.4 that our program semantics models in-
terference by potential concurrently running threads via the rules for inhale acc(a[e], q)
statements: Another thread can only update a heap location if we currently do not
hold any permission for that heap location. Therefore, whenever we inhale permission
for an array element a[e] for which we previously did not hold any permission, we
conservatively assume that its value may have been altered. We reflect this in our ana-
lysis by abstracting away the value of the array element a[e] whenever such an inhale
statement is encountered. To facilitate this, we introduce an operator that allows us
to abstract away the value of a given array element a[e] in a permission expression p.
We need both an over-approximate version VpWa[e] and an under-approximate version
TpUa[e] of this operator; the latter will be used for the postconditions described later.
Below, we first define two operators VbWa[e] and TbUa[e] that abstract away the value
of array element a[b] for boolean expressions b; afterwards, we then show how to
extend these operators to permission expressions.

Definition 3.2.14. » Consider some array variable a and integer expression e. For any
comparison e1 ◦ e2, where ◦ ∈ {=, 6=, <,≤, >,≥}, we define

Ve1 ◦ e2Wa[e] :≡

 ∨
〈a′,e′〉∈A

(a′ = a ∧ e′ = e)

 ? true : (e1 ◦ e2),
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where A is the set of all tuples 〈a′, e′〉 such that the array access a′[e′] appears in
e1 ◦ e2. The under-approximate version Te1 ◦ e2Ua[e] is defined analogously but with
true replaced with false. For all remaining boolean expressions, the operators are
defined recursively; for example, we define Vb1 ∧ b2Wa[e] :≡ Vb1Wa[e] ∧ Vb2Wa[e] and
V¬bWa[e] :≡ ¬TbUa[e]. «

Example 3.2.15. » Suppose our analysis has already accumulated a permission expres-
sion, in which the condition b ≡ a[i] = 0 appears. Moreover, suppose that we encounter
an inhale acc(a[j], 1) statement that requires us to abstract away the value of the array
element a[j] in this condition. We can do this by computing the term

VbWa[j] ≡ (a= a ∧ i= j) ? true : (a[i] = 0 ).

Note that, in a state where i= j, the term VbWa[j] evaluates to true. Conversely,
in a state where i 6= j, the term VbWa[j] evaluates to the same value as the original
condition b. This correctly preserves the value of the condition b if and only if a[i]
and a[j] refer to different array elements. «

Lemma 3.2.16. » For all permission expressions p, all array variables a, all integer
expressions e, all states σ = 〈s, h, π〉, and all values v, we have

1. JbK(σ′) ⇒ JVbWa[e]K(σ) and

2. JTbUa[e]K(σ) ⇒ JbK(σ′),

where σ′ := 〈s, h[Ja[e]KL(σ) 7→ v], π〉. «

Proof. The claim follows by induction on the structure of the boolean expression b.
The only slightly non-trivial case is for comparisons b ≡ e1 ◦ e2: It is easy to see that
the truth value of such a comparison depends on the value of the array element a[e] if
and only if the condition

∨
〈a′,e′〉∈A(a

′ = a ∧ e′ = e) in the definition above evaluates
to true. If this is the case, we over-approximate the comparison by true (respectively,
under-approximate it by false), otherwise, we use its original value e1 ◦ e2. �

Definition 3.2.17. » For all permission expressions p, array variables a, and integer
expressions e, we define

VpWa[e] :≡



q if p ≡ q

Vp1Wa[e] + Vp2Wa[e] if p ≡ p1 + p2

Vp1Wa[e] − Tp2Ua[e] if p ≡ p1 − p2

min
(
Vp1Wa[e], Vp2Wa[e]

)
if p ≡ min(p1, p2)

max(Vp1Wa[e],Vp2Wa[e]) if p ≡ max(p1, p2)

max((VbWa[e] ? Vp1Wa[e] : 0), (V¬bWa[e] ? Vp2Wa[e] : 0)) if p ≡ b ? p1 : p2,
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where operator TpUa[e] is defined analogously but with all approximation orders
flipped (that is, all over-approximations replaced by under-approximations and vice
versa). «

Lemma 3.2.18. » For all permission expressions p, all array variables a, all integer
expressions e, all states σ = 〈s, h, π〉, and all values v, we have

1. JpKΠ(σ′) v JVpWa[e]KΠ(σ) and

2. JTpUa[e]KΠ(σ) v JpKΠ(σ′),

where σ′ := 〈s, h[Ja[e]KL(σ) 7→ v], π〉. «

Proof. By Lemma 3.2.16 and straightforward induction on the structure of the
permission expression p. �

Now – using the over-approximate abstraction operator VpWa[e] – we can construct a
permission expression that represents permissions required after an inhale statement
in terms of the state before its execution. This is formalised by the following lemma.

Lemma 3.2.19. » For all permission expressions p, all array variables a, and all integer
expressions e, permission fractions q, and all pairs of states σ and σ′ with

σ � JVpWa[e] − αa[e](q)KΠ(σ)

and 〈inhale acc(a[e], q), σ〉 〈skip, σ′〉, we have σ′ � JpKΠ(σ′). «

Proof. The claim immediately follows by combining Lemma 3.2.18 with the definition
of the inhale rules: The term VpWa[e] makes sure that we can guarantee that the
permissions p are preserved without having to express them in terms of the array
value a[e] in the pre-state, while αa[e](q) accounts for the gained permissions. �

Preserving Permissions. Next, we prove that the permissions represented by second
parameter p of our precondition operator τ⦃c⦄(p) are guaranteed to be preserved
throughout the execution of c (of course, only if the permissions τ⦃c⦄(p) were present
in the first place). This is important, as it allows us to use the parameter p to
accumulate required permissions across compound statements.

Lemma 3.2.20. » For all loop-free statements c, all pairs of permission expressions p
and p′ with p ≡ τ⦃c⦄(p′), and all pairs of states σ and σ′ with σ � JpKΠ(σ) with
〈c, σ〉 ∗ 〈skip, σ′〉, we have σ′ � Jp′KΠ(σ′). «
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Proof. We prove the claim by induction on the structure of the loop-free statement c.
To this end, let us consider an arbitrary loop-free statement c and – as our induction
hypothesis – suppose that the claim holds for all of its sub-statements. Moreover,
we consider arbitrary permission expressions p and p′ with p ≡ τ⦃c⦄(p′) and ar-
bitrary states σ and σ′ with σ � JpKΠ(σ) and 〈c, σ〉  ∗ 〈skip, σ′〉. We proceed by
distinguishing the following cases:

• Case c ≡ skip: In this case, we have σ = σ′ and p ≡ p′. Thus, we trivially get
σ′ � Jp′KΠ(σ′).

• Case c ≡ c1 ; c2: According to Lemma 2.3.8, there is a state σ′′ such that
〈c1, σ〉 ∗ 〈skip, σ′′〉 and 〈c2, σ′′〉 ∗ 〈skip, σ′〉. Note that p ≡ τ⦃c1⦄(τ⦃c2⦄(p

′)).
We define p′′ :≡ τ⦃c2⦄(p

′) and observe that p ≡ τ⦃c1⦄(p
′′). Thus, applying

the induction hypothesis to c1 yields σ′′ � Jp′′KΠ(σ′′). Applying the induction
hypothesis another time to c2 then yields σ′ � Jp′KΠ(σ′) as required.

• Case c ≡ if (b) {c1} else {c2}: We assume that JbK(σ); the case where ¬JbK(σ)
follows entirely analogously. Here, we have p ≡ b ? τ⦃c1⦄(p

′) : τ⦃c2⦄(p
′). Using

JbK(σ), we observe that

JpKΠ(σ) = Jb ? τ⦃c1⦄(p′) : τ⦃c2⦄(p′)KΠ(σ) = Jτ⦃c1⦄(p′)KΠ(σ)

and, therefore, σ � Jτ⦃c1⦄(p′)KΠ(σ). Moreover, we observe that unrolling the
first step of our derivation sequence yields 〈c, σ〉 〈c1, σ〉 ∗ 〈skip, σ′〉. With
this, we can apply the induction hypothesis to c1 and obtain σ′ � Jp′KΠ(σ′)

• Case c ≡ x := e: We observe that p ≡ p′[e\x] and, therefore, σ � Jp′[e\x]KΠ(σ).
Consequently, this case immediately follows from Lemma 3.2.8.

• Case c ≡ x := a[e]: We observe that p ≡ max(p′[a[e]\x], αa[e](rd)) and, there-
fore, σ � Jp′[a[e]\x]KΠ(σ). Thus, this case also immediately follows from
Lemma 3.2.8.

• Case c ≡ a[e] := x: Here, we observe that p ≡ max(p′[a[e] Z⇒ x], αa[e](1)) and,
therefore, σ � Jp′[a[e] Z⇒ x]KΠ(σ). This case then follows from Lemma 3.2.12.

• Cases c ≡ inhale b and c ≡ exhale b: We note that p ≡ b ? p′ : 0. For any state σ
satisfying ¬JbK(σ), the only possible derivation sequence is 〈c, σ〉 ∗ γ×, which
contradicts our assumption that 〈c, σ〉  ∗ 〈skip, σ′〉; therefore, we must have
JbK(σ). Additionally, the rules for inhaling and exhaling boolean expressions
dictate that σ = σ′. Thus, we can also conclude σ′ � Jp′KΠ(σ) for this case.
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• Case c ≡ inhale acc(a[e], q): We observe that p ≡ max(Vp′Wa[e] − αa[e](q), 0) and,
therefore, σ � JVp′Wa[e] − αa[e](q)KΠ(σ). Thus, this case immediately follows
from Lemma 3.2.19.

• Case c ≡ exhale acc(a[e], q): Here, we have p ≡ p′ + αa[e](q) and, therefore,
σ � Jp′ + αa[e](q)KΠ(σ). Moreover, we observe that the only rule that justifies
〈c, σ〉  ∗ 〈skip, σ′〉 is the successful exhale rule. Thus, we have σ′ � Jp′KΠ(σ′)
for this case too. �

Non-Negativity. Another ingredient that we need for our soundness proof is that our
permission analysis only produces non-negative permission preconditions, which is
formalised by the following lemma

Lemma 3.2.21. » For all loop-free statements c and non-negative permission expres-
sions p, the permission expression τ⦃c⦄(p) is also non-negative. «

Proof. By straightforward induction on the structure of the loop-free statement c.�

Soundness Proof. We are now ready to combine the individual findings from above
into a proof for Lemma 3.2.6 stating that our permission preconditions for loop-free
code are sound. In order to be able to prove the claim by induction on the structure of
the statement at hand, we prove a slightly stronger claim formalised by the following
lemma:

Lemma 3.2.22. » For all loop-free statements c, all non-negative permission expres-
sions p, and all states σ with σ � Jτ⦃c⦄(p)KΠ(σ), we have 〈c, σ〉 6 ∗ γ . «

Proof. We prove the claim by induction on the structure of the loop-free statement c.
To do so, we consider an arbitrary loop-free statement c and assume that the claim
holds for all of its sub-statements. Furthermore, we consider an arbitrary non-negative
permission expression p and state σ with σ � τ⦃c⦄(p). We proceed by distinguishing
the following cases:

• Case c ≡ skip: In this case, the claim follows trivially.

• Case c ≡ c1 ; c2: According to Lemma 2.3.9, it suffices to show that

1. 〈c1, σ〉 6 ∗ γ and

2. 〈c2, σ′〉 6 ∗ γ , for all states σ′ with 〈c1, σ〉 ∗ 〈skip, σ′〉.
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We prove both of these cases separately:

First, we note that τ⦃c⦄(p) ≡ τ⦃c1⦄(τ⦃c2⦄(p)). We define p′ :≡ τ⦃c2⦄(p) and
observe that σ � Jτ⦃c1⦄(p′)KΠ(σ). By Lemma 3.2.21, p′ is non-negative. Thus,
applying our induction hypothesis to c1 yields 〈c1, σ〉 6 ∗ γ .

Second, we consider an arbitrary state σ′ with 〈c1, σ〉  ∗ 〈skip, σ′〉. Using
Lemma 3.2.20, we get that σ′ � Jp′KΠ(σ′). Therefore, we can apply our
induction hypothesis to c2 and obtain 〈c2, σ′〉 6 ∗ γ , as required.

• Case c ≡ if (b) {c1} else {c2}: We assume JbK(σ); the case where ¬JbK(σ) is
analogous. With the same line of arguments as in the corresponding case of
the proof of Lemma 3.2.20, we also get σ � Jτ⦃c1⦄(p)KΠ(σ) here. As the first
step of any derivation sequence starting from 〈c, σ〉 has to be 〈c, σ〉 〈c1, σ〉, it
remains to show that 〈c1, σ〉 6 ∗ γ , which follows from applying the induction
hypothesis to c1.

• Case c ≡ x := e: In this case, the claim trivially follows as the rules for a
regular variable assignment never lead to a permission failure.

• Case c ≡ x := a[e]: We have τ⦃c⦄(p) ≡ max(p[a[e]\x], αa[e](rd)) and therefore
σ � Jαa[e](rd)KΠ(σ). Consequently, by Observation 3.2.2, the only applicable
rule matching the initial configuration 〈c, σ〉 is the one that successfully executes
the assignment. Thus, we also have 〈c, σ〉 6 ∗ γ in this case.

• Case c ≡ a[e] := x: Analogous to the previous case.

• Cases c ≡ inhale b and c ≡ exhale b. This case follows from the observation that
inhaling or exhaling a boolean expression (not accessing accessing any array
elements) cannot result in a permission failure.

• Case c ≡ inhale acc(a[e], q): In this case, the claim trivially follows as the rules
for the execution of an inhale statement never lead to a permission failure.
Note that we can safely ignore the rule leading to the ghost configuration γ×.

• Case c ≡ inhale acc(a[e], q): We observe that τ⦃c⦄(p) ≡ p + αa[e](q). Thus,
by the non-negativity of p, we have σ � Jαa[e](q)KΠ(σ). Consequently, using
Observation 3.2.2, we can also conclude 〈c, σ〉 6 ∗ γ in this case. �

Proof (of Lemma 3.2.6). The claim immediately follows by picking p ≡ 0 in Lemma 3.2.22
above. �
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With this, we have proven that our permission analysis indeed produces suffi-
cient permission preconditions. Next, we will turn our attention to permission
postconditions for loop-free code.

3.2.3 Permission Postconditions

The final state of a method execution includes the permissions held in the method
pre-state, adjusted by the permissions that are inhaled or exhaled during the method
execution. To perform this adjustment, we compute the difference in permissions
before and after executing a statement.

Permission Difference. The relative permission difference for a loop-free statement c
and a permission expression p – in which qa and qi potentially occur – is denoted by
δ⦃c⦄(p) and defined backward, analogously to τ⦃c⦄(p) in Definition 3.2.3. Analogous
to the τ operator, the second parameter p of δ acts as an accumulator; the difference
in permission before and after executing c is represented by evaluating δ⦃c⦄(0).

Definition 3.2.23. » For all loop-free statements c and all permission expressions p, we
define

δ⦃c⦄(p) :≡



p if c ≡ skip

δ⦃c1⦄(δ⦃c2⦄(p)) if c ≡ c1 ; c2

b ? δ⦃c1⦄(p) : δ⦃c2⦄(p) if c ≡ if (b) {c1} else {c2}

p[e\x] if c ≡ x := e

p[a[e]\x] if c ≡ x := a[e]

p[a[e] Z⇒ x] if c ≡ a[e] := x

b ? p : 0 if c ≡ inhale b or c ≡ exhale b

TpUa[e] + αa[e](q) if c ≡ inhale acc(a[e], q)

p− αa[e](q) if c ≡ exhale acc(a[e], q) «

Lemma 3.2.24. » For all loop-free statements c, all permission expressions p and p′

with p ≡ δ⦃c⦄(p′), and all pairs of states σ = 〈s, h, π〉 and σ′ = 〈s′, h′, π′〉 with
〈c, σ〉 ∗ 〈skip, σ′〉, we have

JpKΠ(σ)− Jp′KΠ(σ′) v π′ − π.

In particular, if p′ ≡ 0, this implies JpKΠ(σ) v π′ − π. «

43



Chapter 3 Array Programs

Proof. We prove the claim by induction on the structure of the loop-free statement c.
Thus, we consider an arbitrary loop-free statement c and assume that the claim
hold for all of its sub-statements. Moreover, we consider two arbitrary permission
expressions p and p′ with p ≡ δ⦃c⦄(p′), as well as two arbitrary states σ = 〈s, h, π〉
and σ′ = 〈s′, h′, π′〉 with 〈c, σ〉  ∗ 〈skip, σ〉. We proceed by distinguishing the
following cases:

• Case c ≡ skip: In this case, the claim follows trivially.

• Case c ≡ c1 ; c2: We define p′′ :≡ δ⦃c2⦄(p
′) and observe that p ≡ δ⦃c1⦄(p

′′).
Moreover, according to Lemma 2.3.8, there is a state σ′′ = 〈s′′, h′′, π′′〉 such that
〈c1, σ′〉  ∗ 〈skip, σ′′〉 and 〈c2, σ′′〉  ∗ 〈skip, σ′〉. Thus, applying the induction
hypothesis to the statements c1 and c2 yields

JpKΠ(σ)− Jp′KΠ(σ′) = (JpKΠ(σ)− Jp′′KΠ(σ′′)) + (Jp′′KΠ(σ′′)− Jp′KΠ(σ′))

v (π′′ − π) + (π′ − π′′) = π′ − π,

as required.

• Case c ≡ if (b) {c1} else {c2}: Here, the claim follows by applying the induction
hypothesis to either c1 or c2, depending on whether JbK(σ) evaluates to true or
false.

• In the cases c ≡ x := e, c ≡ x := a[e], and c ≡ a[e] := x, the execution of
the statement c does not add or remove any permissions and, thus, π = π′.
Depending on whether the assignment is to a variable or an array element,
we employ either Lemma 3.2.8 or Lemma 3.2.12 to establish that σ � JpKΠ(σ)
if and only if σ′ � Jp′KΠ(σ′). Consequently – as the permission maps of the
states σ and σ′ are equal – we get JpKΠ(σ) = Jp′KΠ(σ′), from which the claim
immediately follows.

• Cases c ≡ inhale b and c ≡ exhale b: We observe that the derivation sequence
〈c, σ〉  ∗ 〈skip, σ′〉 is only possible if JbK(σ) and σ = σ′. Moreover, we note
that p ≡ b ? p : 0. Thus, we have JpKΠ(σ) = Jp′KΠ(σ′) and arrive at the claim
analogous to the previous case.

• Case c ≡ inhale acc(a[e], q): Let u := Ja[e]KL(σ) denote the heap location
corresponding to the array element a[e]. By matching the rules for inhale
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statements, we obtain that σ′ = 〈s, h[u 7→ v], π + πu,q〉, for some value v.
Moreover, we observe that p ≡ Tp′Ua[e] + αa[e](q). Thus, we have

JpKΠ(σ)− Jp′KΠ(σ′) = JTp′Ua[e]KΠ(σ) + Jαa[e](q)KΠ(σ)− Jp′KΠ(σ′)

v Jp′KΠ(σ′) + Jαa[e](q)KΠ(σ)− Jp′KΠ(σ′)

= Jαa[e](q)KΠ(σ) = πu,q = π′ − π,

where the inequality follows from Lemma 3.2.18 and the penultimate step
according to Observation 3.2.2.

• Case c ≡ exhale acc(a[e], q): Analogous to the previous case, except that there
is no abstracting away of the array value a[e]. �

Permission Postconditions. We are now ready to prove that we can use the permission
difference as described above to express guaranteed permission postconditions for
loop-free code.

Lemma 3.2.25. » For all loop-free statements c with permission precondition τ⦃c⦄(0),
the permission expression τ⦃c⦄(0) + δ⦃c⦄(0) is a guaranteed permission postcondi-
tion. «

Proof. We consider an arbitrary loop-free statement c and an arbitrary pair of states
σ = 〈s, h, π〉 and σ′ = 〈s′, h′, π′〉 with σ � τ⦃c⦄(0) and 〈c, σ〉  ∗ 〈skip, σ′〉. We
observe that

Jτ⦃c⦄(0) + δ⦃c⦄(0)KΠ(σ) = Jτ⦃c⦄(0)KΠ(σ) + Jδ⦃c⦄(0)KΠ(σ)

v π + π′ − π = π′,

where the inequality uses Jτ⦃c⦄(0)KΠ(σ) v π together with Lemma 3.2.24. Thus, we
have σ′ � Jτ⦃c⦄(0) + δ⦃c⦄(0)KΠ(σ), as claimed. �

For code that does not inhale or exhale any permissions, the permission postcondi-
tion is – unsurprisingly – equal to the permission precondition. The following two
simple examples illustrate how our difference operator accounts for permissions that
are lost or gained, respectively, by the execution of the statement at hand.

Example 3.2.26. » Let us consider the statement c ≡ a[i] := v ; exhale acc(a[i]). Our
analysis infers the permission precondition τ⦃c⦄(0) ≡ max(αa[i](1), 0+ αa[i](1)), which
simplifies to αa[i](1) and represents a full permission for the array element a[i]. The
permission difference is δ⦃c⦄(0) ≡ 0 − αa[i](1). Thus, the permission expression
τ⦃c⦄(0)+δ⦃c⦄(0) simplifies to 0, leaving us with no permissions in the postcondition;
which is expected due to the exhale acc(a[i]) statement. «
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Example 3.2.27. » Let us consider the statement c ≡ inhale acc(a[i]) ; a[i] := v. Here, we
have τ⦃c⦄(0) ≡ max(max(αa[i](1), 0)−αa[i](1), 0), which simplifies to 0. The permission
difference is δ⦃c⦄(0) ≡ 0 + αa[i](1). Thus, we can easily see that the permission
expression τ⦃c⦄(0) + δ⦃c⦄(0) simplifies to αa[i](1). That is, the precondition requires
no permissions, while the postcondition guarantees a full permission for a[i], which is
obtained through the inhale acc(a[i]) statement. «

Note that, since our δ operator performs a backward analysis, our permission
postconditions are expressed in terms of the pre-state of the execution of c. To obtain
classical postconditions, any heap access need to refer to the pre-state heap, which can
be achieved in program logics by using old expressions or logical variables. Formalising
the postcondition inference as a backward analysis simplifies our treatment of loops
and has technical advantages over classical strongest postconditions. A limitation
of our approach is that our postconditions cannot capture situations in which a
statement obtains permissions to locations for which no pre-state expression exists –
for example, when new arrays are allocated. Our postconditions are sound; to make
them precise for such cases, our inference needs to be combined with an additional
forward analysis, which we leave as future work.

3.3 Handling Loops
In this section, we extend our precondition operator τ and difference operator δ to
also handle loops. A sufficient permission precondition for a loop guarantees the
absence of permission failures for a potentially unbounded number of executions
of the loop body. This concept is different from a loop invariant: we require a
precondition for all executions of a particular loop, but it need not be inductive. We
will explain how inductive permission loop invariants can be obtained in Section 3.4
below.

In the following, we describe how we can obtain a loop precondition by projecting
a permission precondition for a single loop iteration over all possible initial states for
the loop executions. Our analysis expresses the permissions required by a loop using
a pointwise maximum operator that expresses a maximum over an unbounded set of
values. As this operator is typically not supported by tools such as SMT solvers, we
will provide an algorithm for eliminating these pointwise maxima in Section 3.5.

Section Outline. In Section 3.3.1, we focus on obtaining a sufficient permission pre-
condition for the execution of a single loop in isolation – independently of the code
before or after it. Similarly, in Section 3.3.2, we describe how to obtain a permission
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expression that summarises the permissions lost and gained by all iterations of a
loop combined. In Section 3.3.3, we then extend our permission analysis to generate
permission preconditions and postconditions for arbitrarily nested loops.

3.3.1 Permission Preconditions for Isolated Loops
For our elaborations below, let us consider an arbitrary but fixed loop l ≡ while (b) {c},
where c is assumed to be a loop-free statement; nested loops are treated later in
Section 3.3.3.

Individual Loop Iterations. Using our permission analysis described above, we can com-
pute a sufficient permission precondition p :≡ τ⦃c⦄(0) for the body of the loop c.
We observe that the precise permissions represented by p depend on the initial state
of the loop iteration. That is, p is parameterised by the variables ~x = 〈x1, . . . , xn〉
appearing within the loop body c; for the sake of simplicity, we suppose that all
these variables are integer-typed.

Assuming that the permission expression p does not depend on any array values,
we can use value vectors ~v = 〈v1, . . . , vn〉 ∈ Zn to capture permissions required
by individual loop iterations: More specifically, the permission expression p[~v \~x ]
captures sufficient permissions to execute the loop body starting in a state σ, where
JxiK(σ) = vi, for all i ∈ {1, . . . , n}.

Conditional Approximation. In general, a permission precondition for a loop body may
also depend on array values; for example, if those values are used in any branch condi-
tions. To avoid the need for an expensive array value analysis, we abstract away array
dependent conditions. To this end, we first define both an over-approximation VbW
and under-approximation TbU for boolean expressions, with the guarantee that VbW
is always true when b is, and TbU is only true when b is.

Definition 3.3.1. » For any comparison e1 ◦ e2, where ◦ ∈ {=, 6=, <,≤, >,≥}, we define
its over-approximation as

Ve1 ◦ e2W :≡

true if e1 or e2 contains any array lookup

e1 ◦ e2 otherwise.

The under-approximation Te1 ◦ e2U is defined completely analogously with the only
difference that the true is replaced with false. For all remaining boolean expressions,
the approximations are defined recursively; for example Vb1 ∧ b2W :≡ Vb1W∧ Vb2W and
V¬bW :≡ ¬TbU. «

47



Chapter 3 Array Programs

Lemma 3.3.2. » For all boolean expressions b, and all states σ, we have

1. JbK(σ) ⇒ JVbWK(σ) and

2. JTbUK(σ) ⇒ JbK(σ). «

Proof. By straightforward induction on the structure of the boolean expression b. �

We then extend the notion of over-approximation and under-approximation to
permission expressions. Here, we want that p is at most VpW and TpU is at most p
independently of the program state. Again, these operators are defined recursively
on the structure of the permission expression in a straightforward manner.

Definition 3.3.3. » For all permission expressions p, we define

VpW :≡



q if p ≡ q

Vp1W + Vp2W if p ≡ p1 + p2

Vp1W − Tp2U if p ≡ p1 − p2

min(Vp1W, Vp2W) if p ≡ min(p1, p2)

max(Vp1W, Vp2W) if p ≡ max(p1, p2)

max((VbW ? Vp1W : 0), (V¬bW ? Vp2W : 0)) if p ≡ b ? p1 : p2

The operator TbU is defined analogously but with all over-approximations and under-
approximations flipped. «

Example 3.3.4. » We have

Va[i] = 0 ? αa[i](1) : 0W ≡ max
((

Va[i] = 0W ? αa[i](1) : 0
)
, (V¬(a[i] = 0)W ? 0 : 0)

)
≡ max

((
true ? αa[i](1) : 0

)
, (¬false ? 0 : 0)

)
,

which simplifies to αa[i](1). «

Lemma 3.3.5. » For all permission expressions p and all states σ, we have

1. JpK(σ) ≤ JVpWK(σ) and

2. JTpUK(σ) ≤ JpK(σ). «

Proof. By straightforward induction on the structure of the permission expression p.�

These approximations abstract away array-dependent conditions, and have an
impact on the precision of our permission analysis only when array values are used
to determine a location to be accessed. For example, a linear array search for a
particular value accesses the array only up to the (a-priori unknown) point at which
the value is found, but our inferred permission precondition – as formally defined
below – conservatively requires permission to the full array.
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Figure 3.7. The top part of this figure shows the permission precondition of the loop body
evaluated in the initial states of different loop iterations; the diagrams shown in red correspond
to loop iterations not allowed by the loop invariant or loop condition. The pointwise maximum
over all permitted loop iterations shown in the bottom part captures sufficient permissions
to execute all iterations of the loop.
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Numerical Loop Invariants. To obtain a sufficient permission precondition for the entire
loop, we want to project the permission precondition for a single loop iteration over
all possible initial states for the loop body executions. To this end, we leverage
an over-approximate loop invariant I+ from an off-the-shelf numerical analysis (for
example [30]) to over-approximate all possible values of the numerical variables that
get assigned in the loop. Such a loop invariant must satisfy the following properties:

1. The loop invariant must hold upon entry of the loop. That is, for all initial
configurations γ of the program at hand and all states σ with γ0  ∗ 〈l, σ〉, we
have JI+K(σ).

2. The loop invariant must be inductive. That is, for all states σ and σ′ with
JI+K(σ) and 〈c, σ〉 ∗ 〈skip, σ′〉, we have JI+K(σ′).

Exhale-Free Loop Bodies. Next, we describe how we generalise the permission precondi-
tion p for a loop body to a sufficient permission precondition for the entire loop. In a
first step, we consider the simpler but common case of a loop that does not contain
any exhale acc(a[e], q) statements; that is, does not transfer permissions to a forked
thread, for example. The solution for this case is also sound for loop bodies, where
each exhale acc(a[e], q) statement is followed by a matching inhale acc(a[e], q′), where
q ≤ q′, as used, for example, in the encoding of most method calls that do not leak
permissions.

Lemma 3.3.6. » For all loops l ≡ while (b) {c} with over-approximate numerical invari-
ant I+, where the body c is a loop-free and exhale-free statement that modifies the
integer variables ~x, the permission expression

max
~x | I+∧b

{Vτ⦃c⦄(0)W}

is a sufficient permission precondition for the loop l. «

We do not give a formal proof for this lemma, as it is subsumed by Lemma 3.3.8
below. Intuitively, the claim follows by proving that max~x | I+∧b{Vτ⦃c⦄(0)W} represents
sufficient permissions to successfully execute any number n of unrollings of the loop
while retaining at least max~x | I+∧b{Vτ⦃c⦄(0)W} permissions. The proof goes by
induction on n. Since I+ is a sound over-approximating loop invariant, we must have
JI+ ∧ bK(σ) for any state σ at the beginning of a loop iteration. Moreover, since

Jτ⦃c⦄(0)KΠ(σ) v
r

max
~x | I+∧b

{Vτ⦃c⦄(0)W}
z

Π
(σ),

we get from Lemma 3.2.22 that the execution of the first loop iteration cannot result
in a permission failure. Furthermore, since c is exhale-free, we are guaranteed to

50



Section 3.3 Handling Loops

hold at least as many permissions after the execution of c as before, and so we can
apply our induction hypothesis to conclude that there are also sufficient permissions
for the remaining n− 1 loop iterations.

Example 3.3.7. » Let us revisit the loop of the copy_even_b method shown in Listing 3.3.
Recall from Example 3.2.4 that the permission precondition inferred for the loop
body is

p ≡ max
(
max
(
0, αa[2·i+1](1)

)
, αa[2·i](rd)

)
Further, we assume that we obtained the loop invariant I+ ≡ 0≤ i by running a
precursory numerical analysis on the program. As illustrated by Figure 3.7, the
permission precondition for the entire loop is then given by the pointwise maximum
expression

max
i | 0≤ i∧ i< len(a) / 2

{p}.

Note that i< len(a) / 2 comes from the loop condition and that VpW ≡ p. Using our
maximum elimination algorithm presented in Section 3.5, this pointwise maximum
can be rewritten into max(p1, p2), where

p1 ≡ (mod(qi, 2) = 1 ∧ 1< qi ∧ qi < 2 · (len(a)− 1) / 2+ 1) ? 1 : 0

p2 ≡ (mod(qi, 2) = 0 ∧ 0< qi ∧ qi < 2 · (len(a)− 1) / 2) ? rd : 0 .

The permission expression p1 captures write permission for all odd indices while p2
captures read permission for all even indices; note that the divisibility constraints
originate from the factor in front of the index in the array access a[2·i] and a[2·i+1]. «

Soundness Condition. For loops that contain exhale statements, the approach described
above does not always guarantee a sufficient permission precondition. For example,
if a loop gives away full permission to the same array element in every iteration, our
pointwise maximum construction yields a precondition requiring the full permission
once, as opposed to the unsatisfiable precondition (since the loop is guaranteed to
cause a permission failure).

As explained above, our inference is sound if each exhale statement is followed by
a corresponding inhale, which can often be checked syntactically. In the following,
we present another decidable condition that guarantees soundness and that can
be checked efficiently by an SMT solver. If neither condition holds, we preserve
soundness by inferring an unsatisfiable precondition; we did not encounter any such
examples in our evaluation.

Put in words, our soundness condition requires that the maximum of permissions
required by two (not necessarily subsequent) loop iterations is at least the permissions
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required by executing these iterations in sequence. Intuitively, this condition holds
whenever no iteration removes permissions that are required by another iteration. In
order to formalise this soundness condition, let us define

f~v(p) :≡ Vτ⦃c⦄(p)W[~v \~x ],

for all value vectors ~v ∈ Zn and permission expressions p. Roughly speaking f~v(p)
captures the permissions required to successfully execute a loop iteration starting in
an initial state where the variables ~x have values ~v, while retaining p permissions in
the end (cf. Lemma 3.2.22). Moreover, for the sake of shorter notation, we use ~vσ
to denote the values corresponding to the variables ~x in the state σ. That is, for
all states σ, we define the vector ~vσ := 〈v1, . . . , vn〉, where vi := JxiK(σ), for all
i ∈ {1, . . . , n}. We then use

V + := {~v ∈ Zn | ∃σ ∈ Σ: ~v = ~vσ ∧ JI+ ∧ bK(σ)}

to denote the set containing all value vectors corresponding to all possible loop
iterations (and possibly some spurious ones in case the loop invariant I+ is imprecise).

Formally, our soundness condition requires that, independent of the state σ, we
have

∀~v1, ~v2 ∈ V + : ~v1 6= ~v2 ⇒ Jf~v1(f~v2(0))KΠ(σ) v Jmax(f~v1(0), f~v2(0))KΠ(σ), (3.1)

where the vectors ~v1 and ~v2 capture the initial state of the two different iterations.
Note that this soundness condition requires that no two different iterations of a

loop observe exactly the same values for all integer variables. If that could be the
case, the condition ~v1 6= ~v2 would cause us to ignore a potential pair of initial states
for two different loop iterations. To avoid this problem, we assume that all loops
satisfy this requirement; it can easily be enforced by adding an additional variable as
loop iteration counter [53].

Soundness Proof. We now formally prove that our inference produces a sufficient
permission precondition whenever our soundness condition is met. We observe
that we can use f~v(p) and V + defined above to express a pointwise maximum
that is semantically equivalent to our pointwise maximum expression for the loop
precondition: Concretely, we have

r
max
~v∈V +

{f~v(0)}
z

Π
(σ) =

r
max

~x | I+∧b
{Vτ⦃c⦄(0)W}

z

Π
(σ),

for all states σ. As we will see in the following, this alternative representation is well
suited for our soundness proof, since there is a clear correspondence between the set
of value vectors V + and the states encountered throughout an execution.
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Lemma 3.3.8. » Let us consider an arbitrary loop l ≡ while (b) {c} along with a
numerical loop invariant I+, where c is a loop-free statement that modifies the integer
variables ~x. If the soundness condition shown in Equation (3.1) holds, then the
permission expression

max
~x | I+∧b

{Vτ⦃c⦄(0)W}

is a sufficient permission precondition for the loop l. «

Proof. Let us consider an arbitrary loop l ≡ while (b) {c} along with a numerical
loop invariant I+ and suppose that the soundness condition Equation (3.1) holds.
Moreover, for all states σ, we define

V +
σ := {~v ∈ V + | ∃σ′ ∈ Σ: ~v = ~vσ′ ∧ 〈l, σ〉 ∗ 〈l, σ′〉}

to capture value vectors corresponding to initial states of loop iterations that are
reachable from σ. Given some current state σ, this allows us to express the pointwise
maximum max~v∈V +

σ
{f~v(0)} over all future loop iterations; as we will see below, this

partitioning of V + in future and (implicit) past iterations is needed, since our
soundness conditions only talks about different loop iterations.

To prove the statement of the lemma, it suffices to prove that, for all integers k ∈ N
and all states σ with JI+K(σ) and σ � Jmax~v∈V +

σ
{f~v(0)}KΠ(σ), we have 〈l, σ〉 6 k γ .

We do this by strong induction on the length k of the derivation sequence. To this
end, let us fix an arbitrary k ∈ N and assume that the claim holds for all k′ ∈ N with
k′ < k.

We consider an arbitrary state σ satisfying JI+K(σ) and σ � Jmax~v∈V +
σ
{f~v(0)}KΠ(σ)

and aim to show that 〈l, σ〉 6 k γ . If k = 0, this trivially follows as 〈l, σ〉 6= γ .
Moreover, if ¬JbK(σ), the claim also immediately follows since 〈l, σ〉  〈skip, σ〉 is
the only possible derivation sequence. Therefore, for the remainder of the proof, we
assume k > 0 and JbK(σ). In this case, the first step of the derivation sequence has
to be 〈l, σ〉 〈c ; l, σ〉. Thus, according to Lemma 2.3.9, we are left to show that

1. 〈c, σ〉 6 k−1 γ and

2. there is no state σ′ such that 〈c, σ〉 k1 〈skip, σ′〉 and 〈l, σ′〉 k2 γ , for some
integers k1, k2 ∈ N with k1 + k2 + 1 = k.

Below, we prove both of these objectives separately. For the first objective, we
observe that ~vσ ∈ V +

σ and, therefore, f~vσ(0) v max~v∈V +
σ
{f~v(0)}. Consequently,

we have σ � Jf~vσ(0)KΠ(σ) and, therefore, also σ � Jτ⦃c⦄(0)KΠ(σ). Thus, using
Lemma 3.2.22, we can conclude that 〈c, σ〉 6 γ , as required.
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To prove the second objective, we consider two arbitrary integers k1, k2 ∈ N with
k1 + k2 + 1 = k and an arbitrary state σ′ with 〈c, σ〉 k1 〈skip, σ′〉, and aim to show
that 〈l, σ′〉 6 k2 γ . Let us consider an arbitrary value vector ~w ∈ V +

σ′ . We observe
that ~w 6= ~v, since we enforce the initial state of all loop iterations to be different and,
therefore, ~v /∈ V +

σ′ . We have

Jf~vσ(f~w(0))KΠ(σ) v Jmax(f~vσ(0), f~w(0))KΠ(σ) v
r

max
~v∈V +

σ

{f~v(0)}
z

Π
(σ),

where the first inequality holds due to the assumption of our soundness condition
Equation (3.1) and the second inequality is a consequence of {~vσ, ~w} ⊆ V +

σ . Similar
to the previous case, this lets us infer that σ � Jτ⦃c⦄(f~w(0))KΠ(σ). We then apply
Lemma 3.2.22 to get σ′ � Jf~w(0)KΠ(σ′). Moreover, since the value vector ~w ∈ V +

σ′

was chosen arbitrarily, σ′ � Jf~v(0)KΠ(σ′) must be true for all such vectors ~v ∈ V +
σ′ .

Thus, we have
σ′ �

r
max
~w∈V +

σ′

{f~w(0)}
z

Π
(σ′)

Finally, by our induction hypothesis, we get 〈l, σ′〉 6 k2 γ , which concludes the
proof. �

3.3.2 Permission Differences for Isolated Loops
In order to extend our permission analysis to arbitrary programs, we need to account
for the permissions lost and gained throughout the execution of a loop.

Lost Permissions. We over-approximate the permissions lost by the execution of the
loop while (b) {c} with over-approximate loop invariant I+ by

d− :≡ min
~x | I+∧b

{d−0 }, where d−0 :≡ min(Tδ⦃c⦄(0)U, 0). (3.2)

Note that the over-approximation is in terms of the absolute value of d−; the use of
the minimum and under-approximation is due to losses being expressed by negative
permission expressions.

Gained Permissions. Dually, we under-approximate the permissions gained by the
execution of the loop as

d+ :≡ max
~x | I−∧b

{d+0 }, where d+0 :≡ max(Tδ⦃c⦄(0)U, 0), (3.3)

where I− is an under-approximate loop invariant.
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Soundness Condition. Analogous to our loop preconditions, the pointwise minimum
in our permission expression d− capturing the lost permissions is only sound if no
two different loop iterations exhale permissions for the same array element. In
contrast, the pointwise maximum in our permission expression d+ capturing the
gained permissions is – as we will formally prove below – always sound since the
maximum conservatively under-approximates the gained permissions in cases where
two different loop inhale permissions for the same array element.

Below, we will formulate the precise condition under which our permission differ-
ences for loops are sound. To this end, for all permission expressions p and all value
vectors ~v ∈ Zn, we define

g~v(p) :≡ Tδ⦃c⦄(p)U[~v \~x ],

as well as

g−~v (p) :≡ min(g~v(p), 0)

g+~v (p) :≡ max(g~v(p), 0).

Roughly speaking, g~v(p) captures the permission differences corresponding to a loop
iteration starting in an initial state where the variables ~x have values ~v, while g−~v (p)
and g+~v (p) capture the lost permissions and gained permissions, respectively.

Put in words, our soundness condition for permission differences requires that
the minimum of the permission differences corresponding to two (not necessarily
subsequent) loop iterations is at most permission difference corresponding to the
execution of these iterations in sequence. Formally, we express this soundness
condition as

∀~v1, ~v2 ∈ V + : ~v1 6= ~v2 ⇒ Jmin(g−~v1(0), g
−
~v2
(0))KΠ(σ) v Jg−~v1(g

−
~v2
(0))KΠ(σ), (3.4)

independent of the state σ. Note that, just like our soundness condition for loop
preconditions, this condition also requires that no two different iterations of a loop
observe exactly the same values for the integers variables.

Moreover – at least intuitively – it is not hard to see that our soundness condition for
permission differences is weaker than the one for loop preconditions: The condition in
Equation (3.4) holds whenever no iteration removes permissions that are removed (as
opposed to required) by another iteration. Even syntactically, the two conditions are
very similar; note that the inequalities are flipped and one has a maximum while the
other has a minimum because, roughly speaking, the all leaf expressions αa[e](q) added
by the precondition operator τ are removed by the difference operator δ, and vice versa
(cf. Definition 3.2.3 and Definition 3.2.23). A formal proof of this claim, however, is not
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straightforward as the two operators δ and τ are defined recursively over the structure
of statements while the soundness condition might hold for a statement, while being
violated by some of its sub-statements; for instance exhale acc(a[i]) ; inhale acc(a[i]).
An example of a loop body that satisfies the soundness condition for permission
differences but not the one for loop preconditions is a[0] := 0 ; exhale acc(a[i]), assuming
i= 0 is allowed by the loop invariant.

Conjecture 3.3.9. » The soundness condition for our permission differences shown in
Equation (3.4) above is implied by the soundness condition for our permission
preconditions as defined by Equation (3.1). «

Of course, instead of relying on the conjecture above, we can alternatively also
directly verify the soundness of our permission differences by explicitly checking the
condition shown in Equation (3.4) using an SMT solver.

Soundness Proof. Before we dive into the soundness proof, let us first state the
following auxiliary lemma

Lemma 3.3.10. » For all loop-free statements c and all permission expressions p and p′,
where p does not contain any variables assigned by c and neither depends on array
variables, we have

Jδ⦃c⦄(p+ p′)KΠ(σ) = Jp+ δ⦃c⦄(p′)KΠ(σ),

for all states σ. «

Proof. The proof goes by straightforward induction on the structure of the loop-free
statement c. �

For our upcoming elaborations – just like for the soundness proof for loop pre-
conditions – we will employ pointwise maximum expressions that range over sets of
value vectors. To this end, we define

g∗〈S+,S−〉(p) :≡ min
~v∈S+

{
g−~v (p)

}
+ max

~v∈S−

{
g+~v (p)

}
,

for all pairs of sets of S+, S− ⊆ Zn of value vectors and all permission expressions p.
We then observe that, for all states σ, we have

Jg∗〈V +,V −〉(0)KΠ(σ) = Jd− + d+KΠ(σ),

where V − is defined just as V + but using the under-approximate loop invariant I−

instead of I+.
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The soundness proof for our permission differences for loops is similar to the one for
the loop preconditions; however, it is slightly more involved as it needs to differentiate
between the permissions that are lost and the ones that are gained. First, we prove
the following lemma that, intuitively, lets us bound the permissions lost and gained
by a single loop iteration.

Lemma 3.3.11. » Consider a value vector ~w ∈ V + and two pairs of sets A+, B+ ⊆ V +

and A−, B− ⊆ V − with ~w ∈ B+ and A+ ⊆ B+ \ {~w} as well as A− = B− or
A− ∪ {~w} = B−; that is, the pairs of sets that differ by at least ~w and by at most ~w,
respectively. Assuming the soundness condition given by Equation (3.4), for all pairs
of states σ and σ′ that differ only in the variables ~x, we have

Jg∗〈B+,B−〉(0)KΠ(σ
′)− Jg∗〈A+,A−〉(0)KΠ(σ) v Jg~w(0)KΠ(σ). «

Proof. Let us consider some value vector ~w ∈ V + and two pairs of sets A+, B+ ⊆ V +

and A−, B− ⊆ V + the properties stated in the lemma. Moreover, let σ and σ′ be
arbitrary states that differ only in the variables ~x. First, we prove an inequality that
bounds the lost permissions. We observe that

r
min

~v∈B+

{
g−~v (0)

}z
Π
(σ′) =

r
min

~v∈B+

{
g−~v (0)

}z
Π
(σ) (3.5)

v
r

min
~v∈A+

{
min
(
g−~w (0), g

−
~v (0)

)}z
Π
(σ) (3.6)

v
r

min
~v∈A+

{
g−~v (g

−
~w (0))

}z
Π
(σ) (3.7)

=
r

min
~v∈A+

{
g−~w (0) + g−~v (0)

}z
Π
(σ) (3.8)

=
r
g−~w (0) + min

~v∈A+

{
g−~v (0)

}z
Π
(σ). (3.9)

For the equality in the step (3.5) above, we used that g−~v (0), by construction, does not
depend on the variables ~x. The step (3.6) follows from ~w ∈ B+ and A+ ⊆ B+ \ {~w}.
The inequality (3.7) is due to our soundness condition; note that ~w /∈ A+ ⊆ B+ \{~w}
and, therefore, ~v 6= ~w, for all ~v ∈ A+. The equality (3.8) then makes use of
Lemma 3.3.10, which is applicable since g−~w (0) neither depends on the variables ~x nor
on any array values. And the final step (3.9) holds because g−~w (0) does not depend
on ~v.

Next, we prove an inequality that bounds the gained permissions. We have
r

max
~v∈B−

{
g+~v (0)

}z
Π
(σ′) =

r
max
~v∈B−

{
g+~v (0)

}z
Π
(σ)

v
r
g+~w (0) + max

~v∈A−

{
g+~v (0)

}z
Π
(σ),
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where the first step follows analogous to (3.5) and the inequality in the second step
is due to the sets A− and B− differing by at most ~w and the non-negativity of g+~w (0).

Combining our findings from above then yields

Jg∗〈B+,B−〉(0)KΠ(σ
′) =

r
min

~v∈B+

{
g−~v (0)

}
+ max

~v∈B−

{
g+~v (0)

}z
Π
(σ′)

v
r
g−~w (0) + g+~w (0) + min

~v∈A+

{
g−~v (0)

}
+ max

~v∈A−

{
g+~v (0)

}z
Π
(σ)

v Jg~w(0)KΠ(σ) + Jg∗〈A+,A−〉(0)KΠ(σ
′),

from which the claim immediately follows. �

Next, we aim to bound the permissions lost and gained by the first couple of – but
arbitrarily many – loop iterations. Intuitively, our strategy is to keep track of the
value vectors corresponding to past loop iterations; this will enable us to establish the
conditions on the sets of value vectors required to apply Lemma 3.3.11. To facilitate
this, for all states σ and ± ∈ {+,−}, we define the set

W±σ := {~v ∈ V ± | ∃σ′ ∈ Σ: σ′ 6= σ ∧ ~v = ~vσ′ ∧ 〈l, σ′〉 ∗ 〈l, σ〉}

that captures the subset of V + and V −, respectively, corresponding to states at the
beginning of loop iterations from which the state σ is reachable.

Lemma 3.3.12. » For all integers k ∈ N, and all states σ = 〈s, h, π〉 and σ′ = 〈s′, h′, π′〉
with 〈l, σ〉 k 〈l, σ′〉, we have

r
g∗〈W+

σ′ ,W
−
σ′ 〉

(0)
z

Π
(σ) v π′ − π,

assuming that σ is an entry state of the loop. «

Proof. First, we assume that our soundness condition from Equation (3.4) holds. For
the sake of shorter notation, for all states σ, we define

G(σ) :=
r
g∗〈W+

σ ,W−σ 〉
(0)

z

Π
(σ).

Our proof goes by strong induction on the length k of the derivation sequence. That
is, we aim to prove the claim for an arbitrary k ∈ N, while assuming its truth
for all k′ with k′ < k. To do so, let us consider two arbitrary states σ = 〈s, h, π〉
and σ′ = 〈s′, h′, π′〉 with JI+K(σ) and 〈l, σ〉 k 〈l, σ′〉.

For the case where k = 0, we observe that 〈l, σ〉  0 〈l, σ′〉 implies σ = σ′ and,
by extension, also π = π′. As every sound under-approximation of the set of loop
iterations laying in the past must be empty at the entry of the loop, we have
W−σ = ∅; this means that G(σ) potentially captures some spurious lost permissions,
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but certainly no gained permissions. Thus, we have G(σ) v πzero = π′ − π, which
concludes this case.

We now consider the case where k > 0. In this case, we can use Lemma 2.3.10 to
split off the last loop iteration to obtain the two derivation sequences 〈l, σ〉 k1 〈l, σ′′〉
and 〈c, σ′′〉  k2 〈skip, σ′〉, for some state σ′′ = 〈s′′, h′′, π′′〉 and integers k1, k2 ∈ N
with k1 + k2 + 1 = k. Below, we bound the permission differences for both of these
sequences, separately.

First, we observe that W+
σ′′ ⊆ W+

σ′ and W−σ′′ ⊆ W−σ′ , as the set of states that
lie in the past can only grow across the execution of a loop iteration. Note that,
by definition, we have ~vσ′′ /∈ W+

σ′′ , and ~vσ′′ ∈ W+
σ′ , since σ′ is reachable from σ′′;

that is, the sets W+
σ′′ and W+

σ′ differ by at least ~vσ′′ . Moreover, due to their under-
approximate nature, the sets W−σ′′ and W+

σ′ can differ by at most ~vσ′′ . Thus, we can
apply Lemma 3.3.11 to obtain

G(σ′)−G(σ′′) v Jg~vσ′′ (0)KΠ(σ) v Jδ⦃c⦄(0)KΠ(σ′′) v π′ − π′′, (3.10)

where the second inequality is due to the definition of g~vσ′′ (0), and the last one follows
from Lemma 3.2.24.

Next, we apply the induction hypothesis to k1, instantiated the derivation sequence
〈l, σ〉 k1 〈l, σ′′〉, which gives us

G(σ′′) v π′′ − π. (3.11)

With this, we are ready to conclude that
r
g∗〈W+

σ′ ,W
−
σ′ 〉

(0)
z

Π
(σ) =

r
g∗〈W+

σ′ ,W
−
σ′ 〉

(0)
z

Π
(σ′) (3.12)

= G(σ′)

= (G(σ′)−G(σ′′)) +G(σ′′)

v (π′ − π′′) + (π′′ − π) (3.13)

= π′ − π,

as required. Above, the first step (3.12) holds since g∗〈W+
σ′ ,W

−
σ′ 〉

(0) is independent of
the heap and any variable modified by c and the inequality in step (3.13) follows
from Equation (3.10) and Equation (3.11). �

Next, we prove a final lemma that bridges the gap between the permissions lost
and gained by arbitrarily many loop iterations and the permission differences caused
by the execution of an entire loop.

Lemma 3.3.13. » Let us consider an arbitrary loop l ≡ while (b) {c} along with over-
and under-approximate loop invariants I+ and I− and suppose that the soundness
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condition in Equation (3.4) holds. For all states σ = 〈s, h, π〉 and σ′ = 〈s′, h, π′〉 with
〈l, σ〉 ∗ 〈skip, σ′〉, we have

r
min

~x | I+∧b
{min(Tδ⦃c⦄(0)U, 0)} − max

~x | I−∧b
{max(Tδ⦃c⦄(0)U, 0)}

z

Π
(σ) v π′ − π,

assuming that σ is an entry state of the loop. «

Proof. Let us consider an arbitrary loop l ≡ while (b) {c} along with over- and under-
approximate loop invariants I+ and I− and suppose that the soundness condition in
Equation (3.4) holds. Moreover, we consider two arbitrary states σ = 〈s, h, π〉 and
σ′ = 〈s′, h, π′〉, where σ is an entry state of the loop and 〈l, σ〉 ∗ 〈skip, σ′〉. First, we
observe that omitting the last step of this derivation sequence yields 〈l, σ〉 ∗ 〈l, σ′〉
since the last step of the full execution of the loop must be 〈l, σ′〉 〈skip, σ′〉; note
that JbK(σ′), as the loop terminated in the state σ′. We observe that

Jd− + d+KΠ(σ) =
r
g∗〈V +,V −〉(0)

z

Π
(σ) v

r
g∗〈W+

σ′ ,W
−
σ′ 〉

(0)
z

Π
(σ) v π′ − π,

where the second step follows from W+
σ′ ⊆ V + and W−σ′ = V − and the last step is

justified by Lemma 3.3.12. �

Above, we have seen how to construct a permission expression capturing the
permissions lost and gained by the execution of an individual loop. In the following,
we will see how we can combine this with the permission preconditions for individual
loops from Section 3.3.1 above to obtain permission precondition and postconditions
for statements containing arbitrarily nested loops.

3.3.3 Permission Analysis for Loop Programs
We now use our findings from Section 3.3.1 and Section 3.3.2 above to extend our
permission analysis to statements containing arbitrarily nested loops.

Rules for Loops. We complement our precondition and difference operators for loop
free code defined in Section 3.2.2 and Section 3.2.3 with the following rules for loops.

Definition 3.3.14. » For all loops while (b) {c} with over- and under-approximate nu-
merical invariants I+ and I−, respectively, and all permission expressions p, we
define

τ⦃while (b) {c}⦄(p) :≡ b ? max
( p1︷ ︸︸ ︷

max
~x | I+∧b

{Vτ⦃c⦄(0)W},

p2︷ ︸︸ ︷
max

~x | I+∧¬b
{VpW}−d

)
: p

δ⦃while (b) {c}⦄(p) :≡ b ?

(
min

~x | I+∧¬b
{min(TpU, 0)}︸ ︷︷ ︸
p−

+ max
~x | I−∧¬b

{max(TpU, 0)}︸ ︷︷ ︸
p+

+d

)
: p,
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where
d :≡ min

~x | I+∧b
{min(Tδ⦃c⦄(0)U, 0)}︸ ︷︷ ︸

d−

+ max
~x | I−∧b

{max(Tδ⦃c⦄(0)U, 0)}︸ ︷︷ ︸
d+

. «

In the definition above, the permission expression p1, as elaborated in Section 3.3.1,
provides sufficient permissions to execute the loop. The expression p2 conservatively
over-approximates the permissions required to execute the code after the loop. The
role of the expressions p− and p+ in the difference operator is to carry over the
permissions p that are lost or gained by the code following the loop. Moreover, we
note that the difference d is equal to the sum d− + d+ of the permissions lost and
gained by the loop as defined in Equation (3.2) and Equation (3.3).

By construction, our permission preconditions and differences depend on numerical
invariants that come from a precursory analysis of the given input program. As a
result, our preconditions and differences for a statement c that is part of this input
program are only sound for execution that start in an initial state allowed by the
program. If we, say, cut out the statement c and embed it in a different program,
the preconditions and differences may become invalid as – in this new context –
any loops appearing within c may encounter different loop iterations. Therefore, in
the following, we always implicitly assume that the statement at hand is embedded
in its original program. Moreover, the permission differences for loops are only
sound for complete executions of the loop. This is why we restrict all our claims
below to derivation sequences starting from so-called entry configurations; intuitively,
encountering an entry configuration means that it is the first time – ignoring previous
iterations of loops at lower nesting levels – the execution reaches the corresponding
point in the program.

Soundness of Differences. As a first step towards proving the correctness of our rules
for loops, we prove that our difference operator δ⦃while (b) {c}⦄(p) for loops is sound.

Lemma 3.3.15. » For all statements c, all pairs of permission expressions p and p′

with p ≡ δ⦃l⦄(p′) and all pairs of states σ = 〈s, h, π〉 and σ′ = 〈s′, h′, π′〉 with
〈c, σ〉 ∗ 〈skip, σ′〉, we have

JpKΠ(σ)− Jp′KΠ(σ′) v π′ − π,

assuming that 〈c, σ〉 is an entry configuration and that the soundness condition in
Equation (3.4) holds. «

Proof. The proof of Lemma 3.2.24 already proves the claim for all loop-free state-
ments c. Here, we prove the claim for an arbitrary loop l ≡ while (b) {c}, where c
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itself is a loop-free statement. The claim can then be easily extended to arbitrary
statements with arbitrarily nested loops by induction on the maximal depth of nested
loops.

For the remainder of this proof, let us consider two permission expressions p and p′

with p ≡ δ⦃l⦄(p′) as well as two states σ and σ′ with 〈l, σ〉 ∗ 〈skip, σ′〉, where 〈l, σ〉
is an entry configuration. Furthermore, suppose that the soundness condition in
Equation (3.4) holds.

First, let us consider the case where JbK(σ). We define p−0 :≡ min(Tp′U, 0) as well
as p− :≡ min~x | I+∧¬b{p−0 } and observe that

Jp−KΠ(σ) v Jp−0 [~vσ′\~x]KΠ(σ
′) v Jp−0 KΠ(σ′), (3.14)

where the first inequality holds since JI+ ∧ bK(σ′); note that σ′ is the state in
which the loop terminates. Similarly, we also define p+0 :≡ max(Tp′U, 0) as well as
p+ :≡ max~x | I−∧¬b{p+0 } and observe that

Jp+KΠ(σ) v Jp+0 [~vσ′\~x]KΠ(σ
′) v Jp+0 KΠ(σ′), (3.15)

where the first inequality holds since the condition I− ∧¬b is always false or captures
exactly the final state σ′. Combining Equation (3.14) and Equation (3.15) then yields

Jp− + p+KΠ(σ) v Jmin
(
Tp′U, 0

)
+ max(Tp′U, 0)KΠ(σ′) v Jp′KΠ(σ′). (3.16)

With this, we are ready to conclude that

JpKΠ(σ)− Jp′KΠ(σ′) = Jδ⦃l⦄(p′)KΠ(σ)− Jp′KΠ(σ′)

= Jb ? (p− + p+ + d) : p′KΠ(σ)− Jp′KΠ(σ′)

= Jp− + p+ + dKΠ(σ)− Jp′KΠ(σ′)

= Jp− + p+KΠ(σ) + JdKΠ(σ)− Jp′KΠ(σ′)

v JdKΠ(σ)

v π′ − π,

where the penultimate step follows from Equation (3.16) and the last step is justified
by Lemma 3.3.13; note that d ≡ d− + d+, as used there.

Next, we consider the case where ¬JbK(σ). In this case, we have 〈l, σ〉 ∗ 〈skip, σ〉
and, therefore, also σ = σ′ and π = π′. Moreover, we observe that

JpKΠ(σ) = Jδ⦃l⦄(p′)KΠ(σ)

= Jb ? (p− + p+ + d) : p′KΠ(σ)

= Jp′KΠ(σ) = Jp′KΠ(σ′).

Thus, we can conclude JpKΠ(σ)− Jp′KΠ(σ′) = πzero = π′ − π, as required. �
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Soundness of Preconditions. Next, we prove the soundness of our precondition operator
τ⦃while (b) {c}⦄(p) for loops. As for the loop-free counterpart of this proof, we
first show that rule appropriately handles the permission expression p acting as an
accumulator. After that, we then show that our operator indeed produces a sufficient
permission precondition.

Lemma 3.3.16. » For all statements c, all pairs of permission expressions p and p′ with
p ≡ τ⦃c⦄(p′), and all pairs of states σ and σ′ with σ � JpKΠ(σ) and 〈c, σ〉 ∗ 〈skip, σ′〉,
we have σ′ � Jp′KΠ(σ′), assuming the soundness conditions from Equation (3.1) and
Equation (3.4) hold for all loops in c. «

Proof. The proof of Lemma 3.2.20 already proves the claim for all loop-free statements.
Here, we prove the claim for an arbitrary loop l ≡ while (b) {c}, where c itself is a
loop-free statement. The original claim then follows by induction on the maximal
depth of nested loops.

Let us consider two permission expressions p and p′ with p ≡ τ⦃c⦄(p′), and some
states σ and σ′ with σ � JpKΠ(σ) and 〈c, σ〉 ∗ 〈skip, σ′〉. Throughout this proof, we
will use the shorthands p1 :≡ max~x | I+∧b{Vτ⦃c⦄(0)W} and p2 :≡ max~x | I+∧¬b{Vp′W}.

First, we consider the case where ¬JbK(σ). In this case, we have 〈l, σ〉 ∗ 〈skip, σ〉
and, therefore, σ = σ′ and π = π′. Moreover, we observe that

JpKΠ(σ) = Jτ⦃l⦄(p′)KΠ(σ) = Jb ? max(p1, p2 − d) : p′KΠ(σ) = Jp′KΠ(σ)

from which the claim immediately follows for this case.
Next, we turn our attention to the case where JbK(σ). We observe that

Jp2 − dKΠ(σ) v Jb ? max(p1, p2 − d) : p′KΠ(σ) = Jτ⦃l⦄(p′)KΠ(σ) v π, (3.17)

where the last inequality holds due to σ � JpKΠ(σ). Moreover, we have

Jp′KΠ(σ′) = JVp′W[~vσ′\~x ]KΠ(σ) (3.18)

v
r

max
~x | I+∧¬b

{Vp′W}
z

Π
(σ) = Jp2KΠ(σ) (3.19)

= Jp2 − dKΠ(σ) + JdKΠ(σ)

v π + (π′ − π) = π (3.20)

and, therefore, σ′ � Jp′KΠ(σ′), as required. Above, the first step (3.18) exploits that
the states σ and σ′ differ only in the variables ~x and the heap, but Vp′W[~vσ′\~x ]
is independent of ~x and array values. The inequality in step (3.19) holds since
JI+ ∧ ¬bK(σ′). Finally, the last inequality in (3.20) is justified by Equation (3.17)
and Lemma 3.3.13. �
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Lemma 3.3.17. » For all statements c, all non-negative permission expressions p, and
all states σ with σ � τ⦃c⦄(p), we have 〈c, σ〉 6 ∗ γ , assuming the soundness
conditions from Equation (3.1) and Equation (3.4) hold for all loops in c. «

Proof. The proof of Lemma 3.2.22 already proves the claim for all loop-free statements.
Here, we prove the claim for an arbitrary loop l ≡ while (b) {c}, where c itself is
a loop-free statement. The claim then easily extends to arbitrary statements by
induction on the maximal depth of nested loops.

Let us consider an arbitrary permission expressions p, and two arbitrary states σ
with σ � τ⦃l⦄(p). In this case where ¬JbK(σ), the claim trivially follows since
〈l, σ〉 ∗ 〈skip, σ〉 is the only possible derivation sequence. For the case where JbK(σ),
we observe that

Jτ⦃l⦄(p)KΠ(σ) v
r

max
~x | I+∧b

{Vτ⦃c⦄(0)W}
z

Π
(σ),

from which the claim immediately follows by applying Lemma 3.3.8. �

Picking p ≡ 0 in the lemma above yields the desired result that our rules indeed
produce sufficient permission preconditions.

Corollary 3.3.18. » For all statements c, the permission expression τ⦃c⦄(0) is a suffi-
cient permission precondition for c, assuming the soundness conditions from Equa-
tion (3.1) and Equation (3.4) hold for all loops in c. «

Soundness of Postconditions. With our permission precondition and difference rules
extended to loops, we can express permission postconditions for arbitrary statements –
just like for loop-free statements – as the sum of the respective permission precondition
and the permissions difference (to account for the permissions lost or gained by the
execution of the statement).

Theorem 3.3.19. » For all statements c with permission precondition τ⦃c⦄(0), the
permission expression τ⦃c⦄(0) + δ⦃c⦄(0) is a guaranteed permission postcondition,
assuming the soundness conditions from Equation (3.1) and Equation (3.4) hold for
all loops in c. «

Proof. Analogous to the proof of Lemma 3.2.25. �

So far, we have described how to construct permission preconditions and postcon-
ditions for code containing arbitrarily nested loops. Most program verifiers, however,
handle loops modularly and require the user to annotate all loops with an inductive
loop invariant, which are different from loop preconditions in cases where individual
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loop iterations give away or gain permissions. In the upcoming section, we will
describe how to capture the permissions lost and gained by already executed loop
iterations, and how to combine them with loop preconditions in order to obtain a
loop invariant suitable for program verifiers.

3.4 Loop Invariants
In this section, we describe how we can construct a permission invariant that is
both sufficient and inductive. Here, sufficient means that the permission invariant
must provide enough permissions to successfully execute all remaining loop iterations.
Analogous to classical invariants, a permission invariant is inductive if any execution
of a single loop iteration starting in a state holding the permissions captured by the
invariant is guaranteed to end up in a state that still holds the permissions captured
by the invariant.

The permission preconditions for loops, as described in Section 3.3, provide
sufficient permissions to successfully execute all iterations of the loop for which they
were constructed. It is not hard to see that they are even inductive, as long as
the loop at hand does not give away permissions. If, however, the loop at hand
exhales permissions in some or all of its loop iterations, the loop precondition ends up
referring to permissions that are no longer present and, consequently, is not inductive.

Roughly speaking, our permission invariants described in this section are based
on our loop preconditions from Section 3.3.1 but adjusted for permissions lost and
gained by already executed loop iterations. We facilitate this permission adjustment
by introducing the novel concept of progressive loop invariants that allows us to
distinguish between past and future loop iterations. These progressive loop invariants
can then be used to refine the permission expressions from Section 3.3.2 to capture
the permissions lost and gained by already executed loop iterations (rather than the
permission changes caused by the entire loop).

This section is based on joint work with Becker conducted in the scope of his
Master’s thesis [10].

Section Outline. In Section 3.4.1, we first introduce progressive loop invariants that let
us distinguish between past and future loop iterations. In particular, we show how
to leverage existing numerical analyses to construct such progressive loop invariants.
In Section 3.4.2, we then make use of these progressive loop invariants to construct
pointwise maximum expressions capturing the permission differences caused by the
execution of the loop so far. Moreover, we show how to combine them with our loop
preconditions to obtain sufficient and inductive permission invariants.
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1 var i: Int
2 i := 0
3 while (i< len(a)) {
4 exhale acc(a[i])
5 i := i+ 1
6 }
7

8

9

Listing 3.8. A code snippet that encodes a
loop forking a series of threads, each of
which requiring permissions to read the i-th
array element.

1 var i: Int
2 var i’: Int
3 i := 0
4 assume 0≤ i’ ∧ i’≤ len(a)
5 i := i’
6 while (i< len(a)) {
7 exhale acc(a[i])
8 i := i+ 1
9 }

Listing 3.9. The instrumented loop used to
infer our progressive loop invariants.

3.4.1 Progressive Invariants

Regular loop invariants capture the set of reachable states and are expressed as a
constraint on a single program state. We introduce the novel concept of progressive
loop invariants that capture how states at different points in time throughout the
execution relate to each other and, therefore, are expressed as constraints over pairs
of program states.

Below, we focus on obtaining over-approximate progressive invariants by leveraging
an off-the-shelf over-approximating numerical analysis. Note, however, that under-
approximate progressive invariants can be obtained in a similar fashion using an
under-approximating numerical analysis.

Approach. Roughly speaking, we obtain our progressive loop invariants by simulating
stopping the numerical analysis at the beginning of an arbitrary loop iteration,
copying all program variables modified by the loop, and then resuming the execution.
Intuitively, the numerical analysis then infers constraints that relate the program
variables with a copy of themselves from an arbitrary but earlier loop iteration.
Following this idea, the generation of progressive loop invariants consists of the
following three steps:

1. First, we run a standard numerical analysis on the original program to obtain
a regular loop invariant I+ for the loop l ≡ while (b) {c} at hand.
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2. We then simulate the stopping of the loop at the beginning of an arbitrary
loop iteration by replacing the loop with

l′ :≡ assume I+[~x ′ \~x ] ; ~x := ~x ′ ; while (b) {c},

where ~x = 〈x1, . . . , xn〉 denotes the variables modified by the loop body c

and ~x ′ = 〈x′1, . . . , x′n〉 are fresh variables. The assume I+[~x ′ \~x ] statement
constrains the variables ~x ′ to capture an arbitrary state allowed by the loop
invariant I+; in particular, this includes all states that can potentially be
encountered at the beginning of a loop iteration. The assignment ~x := ~x ′

then ensures that the execution of the loop starts in the state captured by the
variables ~x ′.

3. Finally, we run the numerical analysis again – now, on the instrumented
program – in order to obtain numerical constraints that relate the program
variables ~x with the copy ~x ′ of themselves from an arbitrary but earlier loop
iteration.

Example 3.4.1. » Let us consider the loop shown in Listing 3.8 and assume that a
numerical analysis infers the loop invariant 0≤ i ∧ i≤ len(a). Running the numerical
analysis again on the instrumented loop shown in Listing 3.9 yields

i’≤ i ∧ 0≤ i ∧ i≤ len(a) ∧ 0≤ i’ ∧ i’≤ len(a).

While this constraint repeats the original loop invariant for i and i’, it also contains
the conjunct i’≤ i telling us that i is never going to decrease. «

Relational Constraints. Let R denote the loop invariant inferred by the numerical
analysis for our instrumented loop l′ that was constructed as described above. We
observe that the invariant R relates two states: The constraint does not only refer to
the original program variables ~x representing an arbitrary state σ but also comprises
variables ~x ′ collectively capturing another state σ′ at an earlier point in the execution;
below, we will call any such constraint relational.

For our elaborations, we want to be able to determine whether a relational
constraint R is satisfied by any given pair of states σ and σ′ for the original program.
To facilitate this, we use σ × σ′ to denote a state for the instrumented program in
which the variables ~x and ~x ′ capture the states σ and σ′, respectively; more formally,
for all i ∈ {1, . . . , n}, we have JxiK(σ×σ′) = JxiK(σ) and Jx′iK(σ×σ′) = JxiK(σ′). We
can then evaluate JRK(σ × σ′) to determine whether the relationship described by
the relational constraint R holds for the states σ and σ′.
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Progressive Constraint. Next, we prove that the loop invariant R resulting from the
numerical analysis on our instrumented program captures the successor relation
indicating whether a state can be reached from another state by executing zero, one,
or more iterations of the loop.

Lemma 3.4.2. » For all states σ and σ′ with JI+K(σ) and 〈l, σ〉  ∗ 〈l, σ′〉, we have
JRK(σ′ × σ), where R denotes an over-approximate loop invariant for l′. «

Proof. First, we observe that σ× σ is a possible initial state for the loop l′. Moreover,
since 〈l, σ〉 ∗ 〈l, σ′〉 is a valid derivation sequence for the original program, we also
have 〈l′, σ×σ〉 ∗ 〈l′, σ′×σ〉 for the instrumented program; note that the variables ~x ′

never get reassigned and, therefore, remain unchanged. Thus, we can conclude that
any sound over-approximate loop invariant R must satisfy JRK(σ′ × σ). �

Past Progressive Invariants. We expect the relational constraint R inferred as a loop
invariant for our instrumented loop to also imply the original loop invariant I+, as
well as the adapted loop invariant I+[~x ′ \~x ], for that matter. Although, there are no
formal guarantees that the numerical analysis at hand produces a constraint R that
satisfies this property, we can easily construct an expression that does: We use R′ to
denote the constraint R restricted to the parts that actually relate the variables ~x
and ~x ′ and then define our past progressive invariant as

I+← :≡ R′ ∧ I+[~x ′ \~x ] ∧ I+.

Note that, for Example 3.4.1, this transformation does not change anything as the
original constraint R already includes the invariants I+ and I+[~x ′ \~x ]. Moreover, we
observe that the claim from Lemma 3.4.2 is still true for this transformed relational
constraint: We clearly do not strengthen the relational part by omitting the non-
relational bits of R and also do not exclude any loop iterations by conjoining the
over-approximate loop iterations I+ and I+[~x ′ \~x, ].

Future Progressive Invariants. By symmetry, we obtain a future progressive invariant,
denoted I+→, from a past progressive invariant I+←, simply by switching the roles of ~x
and ~x ′.

Strict Progressive Invariants. Note that we can easily generate strict versions of our past
and future progressive invariants by adding an iteration counter c to each loop: For
example, I+← ∧ c′ < c over-approximates all states that were encountered in strictly
earlier iterations. Similarly, we can use I+← ∧ c′ + 1 = c to capture states that are
exactly one iteration apart. Below, we will make use of this; we therefore assume
that our instrumentation equips all loops with iteration counters.
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Example 3.4.3. » Adding an iteration counter c to our loop from Example 3.4.1 results
in a past progressive invariant I+← capturing i’+ c= i+ c’, assuming a sufficiently
precise numerical analysis. We observe that the constraint I+←∧c’< c describes strictly
past loop iterations as it implies i’< i. Moreover, we observe that I+←∧c’+ 1= c implies
i’+ 1= i, which is exactly the constraint we would expect to describe subsequent loop
iterations. «

Monotonicity. Assuming some current state σ, the set of states captured by any
relational constraint R is given by

SR(σ) := {σ′ ∈ Σ | JRK(σ × σ′)}.

For a past progressive invariant I+←, we expect this set SI+←(σ) to not shrink from
one iteration to the next iteration, as the set of states that lie in the past can only
grow. Conversely, for a future progressive invariant I+→, we expect this set SI+→(σ) to
not grow from one iteration to another, as the set of states that lie in the future can
only shrink. This observation motivates us to introduce the notion of monotonicity:

Definition 3.4.4. » A relational constraint R is monotonically non-decreasing, if and
only if for all pairs of states σ and σ′ with 〈l, σ〉 ∗ 〈l, σ′〉, we have SR(σ) ⊆ SR(σ

′).
Likewise, the constraint R is monotonically non-increasing, if and only if for all pairs
of states σ and σ′ with 〈l, σ〉 ∗ 〈l, σ′〉, we have SR(σ′) ⊆ SR(σ). «

Typically, we expect the past and future progressive invariants obtained as de-
scribed above to be monotonically non-decreasing and monotonically non-increasing,
respectively. In general, however, there are no formal guarantees that ensure that this
is always the case. Therefore, the following lemma introduces a condition that allows
us to check their monotonicity; this condition is decidable and can automatically and
efficiently be checked using an SMT solver.

Lemma 3.4.5. » A relational constraint R is monotonically non-decreasing if

∀v1, v2 ∈ Zn : JI+←[~v1\~x ′][~v2\~x ] ⇒ (R[~v1\~x ′] ⇒ R[~v2\~x ′])K(σ),

independent of the state σ. Moreover, by replacing the past progressive invariant I+←
with the future progressive invariant I+→ in the equation above, we can check whether
the relational constraint R is monotonically non-increasing. «

Proof. By Lemma 3.4.2, the condition I+←[~v1\~x ′][~v2\~x ] is true for all pairs of vectors ~v1
and ~v2 where ~v1 corresponds to loop iteration preceding the loop iteration represented
by ~v2. The implication R[~v1\~x ′] ⇒ R[~v2\~x ′] then captures the subset relation
required for the relational constraint to be monotonically non-decreasing. �
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Note that, due to I+← being over-approximate, the converse of Lemma 3.4.5 is not
necessarily true.

3.4.2 Permission Invariants
As indicated above, the construction of our loop invariants makes use of permission
expressions that represent the permissions lost and gained by previous loop iterations.

Lost Permissions. We start by describing how to express the permissions lost by
previous loop iterations. Roughly speaking, our goal is to generalise the permission
losses d−0 :≡ min(Tδ⦃c⦄(0)U, 0) caused by a single loop iteration using pointwise
minimum expressions ranging over states corresponding to already executed loop
iterations. We observe that the pointwise maximum max~x | I+∧b{Vτ⦃c⦄(0)W} used
for our loop preconditions captures the variables ~x and, therefore, results in an
expression that is independent of the values of ~x. In contrast, we want our permission
losses to depend on the current values of ~x; otherwise, they would represent the
same permissions in every loop iteration and, consequently, be unsuitable for our
purposes. We get around this, by letting our minimum expression capture the
variables ~x ′ corresponding to the other state introduced by our progressive loop
invariants (cf. Section 3.4.1). To do so, we first need to adapt the permission losses
to be expressed in terms of ~x ′, which can be done by a simple variable substitution
d−0 [~x

′ \~x ]. Our pointwise minimum expression then reintroduces the variables ~x via
the relational constraint P+ :≡ I+← ∧ ¬I+→ ∧ b[~x ′ \~x ]. Intuitively, this generalises the
state represented by the variables ~x ′ to all states described by P+, which can be
thought of as all states occurring before the state captured by the variables ~x.

Following our elaborations above, we define the permission expression that sum-
marises all permissions lost so far as

d−← :≡ min
~x ′ |P+

{d−0 [~x
′ \~x ]}, where

P+ :≡ I+← ∧ ¬I+→ ∧ b[~x ′ \~x ]

d−0 :≡ min(Tδ⦃c⦄(0)U, 0).

We observe that the permission losses d−← only range over loop iterations for
which ¬I+→ are true; that is, they are guaranteed to not include loop iterations that
have not been encountered yet. The last conjunct b[~x ′ \~x ] ensures that we do not
consider spurious loop iterations that do not satisfy the loop condition.

Example 3.4.6. » Let us revisit the loop shown in Listing 3.8, for which we infer
the past invariant I+← ≡ i’≤ i ∧ 0≤ i ∧ i≤ len(a) ∧ 0≤ i’ ∧ i’≤ len(a). Recall that the
corresponding future progressive invariant is obtained by switching the roles of i and
i’; that is, we have I+→ ≡ i≤ i’ ∧ 0≤ i’ ∧ i’≤ len(a) ∧ 0≤ i ∧ i≤ len(a). Furthermore, we
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observe that d−0 [i’\i] ≡ min
(
0 − αa[i’](1), 0

)
can be simplified to −αa[i’](1) and that the

loop condition is given by b ≡ i< len(a). Thus, we can express the permissions lost
by already executed loop iterations as

min
i’ |P+

{−αa[i’](1)},

where P+, by construction, entails 0≤ i’ ∧ i’< len(a) as well as i’≤ i ∧ ¬(i≤ i’), that is,
i’< i. Rewriting the minimum mini’ |P+{−αa[i’](1)} as −maxi’ |P+{αa[i’](1)}, using our
maximum elimination algorithm introduced in Section 3.5, and applying a suitable
set of simplification rules yields

− ((qa = a ∧ 0≤ qi ∧ qi < i ∧ i≤ len(a)) ? 1 : 0).

We observe that this permission expression captures precisely all permissions given
away by previous loop iterations. «

Gained Permissions. Analogous to the lost permissions, we also define an expression
that summarises all permissions gained so far as

d+← :≡ max
~x ′ |P−

{d+0 [~x
′ \~x ]}, where

P− :≡ I−← ∧ ¬I−→ ∧ b[~x ′ \~x ]

d+0 :≡ max(Tδ⦃c⦄(0)U, 0).

Note that, due to P− being a refinement of the under-approximate past progressive
invariant I−←, the permission gains d+← are guaranteed to only reflect permissions
gained in iterations that actually occurred.

Permission Invariant. Using, the permission expressions d−← and d+← summarising the
permission losses and gains, respectively, so far, we can express our permission
invariant as

τ⦃l⦄(p) + d←, where d← :≡ d−← + d+←

and p is the accumulator expression from our loop preconditions.

Example 3.4.7. » Let us revisit the loop shown in Listing 3.8, for which we already
have computed a permission expression capturing lost permissions in Example 3.4.6.
For this loop, our permission analysis produces the permission invariant

max
i | 0≤ i∧ i< len(a)

{αa[i](1)}+ min
i’ |P+

{(−αa[i’](1))}.

Note that we omit gained permissions, as they are 0 for all loop iterations. Using
our maximum elimination algorithm and simplifications, this loop invariant gets
rewritten into(
(qa = a ∧ 0≤ qi ∧ qi < len(a)) ? 1 : 0

)
+
(
(qa = a ∧ 0≤ qi ∧ qi < i ∧ i< len(a)) ?−1 : 0

)
,
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which can be further simplified into

(qa = a ∧ 0≤ qi ∧ qi < len(a)) ? (qi < i ? 0 : 1) : 0 .

We observe that this permission expression captures precisely all permissions required
for the current and future loop iterations. «

First, we observe that this permission invariant is sufficient by construction:
The loop precondition τ⦃l⦄(0) provides sufficient permissions to execute all loop
iterations (regardless of potentially gained permissions) and the lost permissions d−←
are guaranteed to only not reflect loop iterations that have not been encountered yet.

For the permission invariant to be inductive, the relational constraints P+ and P−

must be monotonically non-decreasing. Additionally, the set of states described
by P+ must grow at just about the right pace. Below, we will present a sufficient
condition under which this is the case. Note that, due to its under-approximate
nature, the set P− cannot grow too quickly: In any loop iteration, it captures at
most one additional loop iteration compared to the previous loop iteration.

Inductiveness Condition. Recall that our soundness condition for permission differences
requires that we never encounter two iterations where the variables ~x have exactly
the same values at the beginning of the loop iterations. This was essential to be
able to apply Lemma 3.3.11 in our soundness proof (proving Lemma 3.3.12) for the
permission differences, which essentially went by induction on the loop iterations of
an arbitrary execution (which we did in disguise over the length of the derivation
sequence).

Roughly speaking, our goal is to transfer the same idea to our loop invariants.
To this end, let us consider the initial states σ1 and σ2 of two subsequent loop
iterations; that is, we have 〈c, σ〉  ∗ 〈skip, σ〉. Let us have a look at the sets of
states SP+(σ1) and SP+(σ2) described by the relational constraint P+ evaluated in
the states σ1 and σ2, respectively. As illustrated in Figure 3.10 we want that the
state σ1 corresponding to the earlier loop iteration is contained within the difference
of these sets; combined with the monotonicity of the progressive invariants, we can
then establish the requirements to apply Lemma 3.3.11 after every loop iteration.
As we always have σ1 /∈ SP+(σ2), by definition of the relational constraint P+, it
suffices if our soundness condition enforces σ1 ∈ SP+(σ2); this is the case, whenever
σ1 /∈ SI+→(σ2). Therefore, we formulate our soundness condition as

∀~v1, ~v2 ∈ Z : Jc’+ 1= c ⇒ ¬I+←[~v1\~x ′][~v2\~x ] ∨ ¬I+→[~v1\~x ′][~v2\~x ]K(σ), (3.21)

independent of the state σ, where c and c’ are an iteration counter and the copy thereof,
respectively. Intuitively, this condition holds whenever the progressive invariants
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I+←[~v1\~x ] I+→[~v2\~x ]

I+←[~v2\~x ]

I+→[~v1\~x ]

¬b[~x ′ \~x ]

σ1
σ2

I+[~x ′ \~x ]

Figure 3.10. An illustration showing the relationship between sets of states corresponding to
the variables ~x ′ captured by different relational constraints. The circles represent the (non-
relational) loop invariant I+[~x ′ \~x ] and negated loop condition ¬b, as well as the (relational)
past and future progressive invariants I+← and I+→ evaluated in the initial states σ1 and σ2

(captured by the value vectors ~v1 and ~v2, respectively) of two subsequent loop iterations. The
shaded areas highlight the set of states SP+(σ1) ( ) and SP+(σ2) ( ). Our loop invariant
is inductive only if the hatched area ( ) is empty.

are strong enough to distinguish strictly past loop iterations from strictly future
loop iterations. For all examples in our benchmark suite, we were able to obtain
sufficiently strong progressive invariants by using the polyhedra abstract domain [30]
provided by Apron [60].

Correctness Proof. With our inductiveness condition at hand, we are ready to prove
the correctness of our loop invariant. First, we show that it can always be established
upon entering a loop. To do so, we prove that – upon entering the loop – the loop
invariant is at most the loop precondition, for which we are guaranteed to have
sufficient permissions.

Lemma 3.4.8. » For all entry states σ of the loop l at hand and all non-negative
permission expressions p, we have

Jτ⦃l⦄(p) + d←KΠ(σ) v Jτ⦃l⦄(p)KΠ(σ) «
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Proof. Let us consider an arbitrary entry state σ of the loop at hand. Note that it
suffices to show that Jd−← + d+←KΠ(σ) v πzero. First, we observe that, by construction,
we have Jd−←KΠ(σ) v πzero. Moreover, since P− describes an empty set of past states
when evaluated in an entry state of the loop, we have Jd+←KΠ(σ) = πzero. From this,
the claim immediately follows. �

Next, we show that the permissions described by our loop invariant are preserved
throughout the execution of the loop. We do this by proving that the permissions
are preserved by an arbitrary loop iteration.

Lemma 3.4.9. » For all states σ and σ′ and all non-negative permission expressions p
with σ � Jτ⦃l⦄(p) + d←KΠ(σ) as well as JI+ ∧ bK(σ) and 〈c, σ〉 ∗ 〈skip, σ′〉, we also
have σ′ � Jτ⦃l⦄(p)+d←KΠ(σ′), assuming our soundness and inductiveness conditions
hold «

Proof. Let us consider two arbitrary states σ = 〈s, h, π〉 and σ′ = 〈s′, h′, π′〉 cor-
responding to subsequent loop iterations; that is, states with JI+ ∧ bK(σ) and
〈c, σ〉 ∗ 〈skip, σ′〉. Also, suppose that our soundness and inductiveness conditions
hold. To prove the claim, it suffices to show

Jd←KΠ(σ′)− Jd←KΠ(σ) v π′ − π,

where, as before, d← ≡ d−← + d+←. To this end, for ± ∈ {+,−}, we define

A± := {~v ∈ Zn | ∃σ′′ ∈ Σ: ~vσ′′ = ~v ∧ σ′′ ∈ SP±(σ)}

B± := {~v ∈ Zn | ∃σ′′ ∈ Σ: ~vσ′′ = ~v ∧ σ′′ ∈ SP±(σ
′)}

We observe that, since our relational constraint P± include the loop invariant I±,
we have A± ⊆ V ± and B± ⊆ V ±. Furthermore, by monotonicity of the relational
constraints P+ and P−, we have A+ ⊆ B+ and A− ⊆ B−. Following our elaborations
around our inductiveness condition above, we have ~vσ /∈ A+ but ~vσ ∈ B+. Moreover,
A− and B− differ by at most ~vσ. Thus, we can conclude

Jd←KΠ(σ′)− Jd←KΠ(σ) = Jg∗〈B+,B−〉(0)KΠ(σ
′)− Jg∗〈A+,A−〉(0)KΠ(σ) (3.22)

v Jg~vσ(0)KΠ(σ) (3.23)

v Jδ⦃c⦄(0)KΠ(σ) (3.24)

v π′ − π, (3.25)

as claimed. Above, the first step (3.22) holds by the definition of g∗. The inequal-
ity (3.23) is justified by Lemma 3.3.11. The next inequality (3.24) is due to the
definition of g~vσ(0). Finally, the last inequality then follows by Lemma 3.2.24. �
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Finally, we briefly convince ourselves that the loop invariant leaves sufficient
permissions to execute everything that comes after the loop upon termination of
the loop: We know that τ⦃l⦄(p) + δ⦃l⦄(0) is a guaranteed postcondition of the loop.
Since our relational constraints P+ and P− do not describe more states than the loop
invariants I+ and I−, we easily see that, at the end of the loop, d← describes at most
the permissions δ⦃l⦄(0); thus, our loop invariants retains all permissions promised by
the loop postcondition. Note that this also shows, that our loop invariants seamlessly
integrate in our permission analysis described in the previous section.

Theorem 3.4.10. » Assuming that our soundness and inductiveness conditions hold, the
permission expression

τ⦃l⦄(p) + d←

is a sound and inductive permission invariant for the loop l. «

Proof. The claim follows from our elaborations above. �

Our permission invariants are compatible with the loop preconditions and postcon-
ditions described earlier. With this, our permission analysis is capable of inferring all
permission specifications required by a typical permission-based verifier: We can use
our permission analysis to infer sufficient permission preconditions and guaranteed
permission postconditions for methods, as well as inductive permission invariants for
loops.

3.5 Maximum Elimination
In this section, we present our maximum elimination algorithm. Roughly speaking,
this algorithm performs an involved syntactic transformation that replaces a pointwise
maximum expression over an unbounded set of values with an equivalent maximum
expression ranging over a finite set of values, which can then be expressed using a
finite number of nested binary expressions.

Cooper’s Quantifier Elimination. Our maximum elimination algorithm builds upon ideas
from Cooper’s classical quantifier elimination algorithm [27] which, given a formula
∃x ∈ Z : b, where b is a quantifier-free Presburger formula, computes an equivalent
and quantifier-free formula b′.

Essentially, eliminating the quantifier corresponds to finding out whether there
is a value i ∈ Z for which b[i\x] is true; throughout this section, we will call any
such value a solution. In order to find out whether there are any solutions, Cooper’s
algorithm – using boolean and arithmetic manipulations – first rewrites the boolean
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expression b into a simpler form in which the variable x occurs at most once per
literal and with no coefficient. The key idea is then to reduce the problem of checking
for the existence of the solution to a disjunction of two high-level cases: If there is
a solution, there is either a smallest solution or there have to be arbitrarily small
solutions, otherwise. In our elaborations below, these cases will be treated separately.

Our Maximum Elimination. In principle, any maximum q := maxx∈Z{p} can be defined
using two first-order quantifiers ∀x ∈ Z : p ≤ q and ∃x ∈ Z : p = q. One might
therefore be tempted to tackle our maximum elimination problem using quantifier
elimination directly. We explored this possibility and found two serious drawbacks.
First, the resulting formula does not yield a permission-typed expression that we can
plug back into our analysis. Second, the resulting formulas are extremely large and
hard to simplify since the relevant information is often spread across many terms
due to the two separate quantifiers.

Our maximum elimination algorithm addresses these drawbacks by natively working
with arithmetic expressions, while mimicking the basic ideas of Cooper’s quantifier
elimination algorithm and incorporating domain-specific optimisations. Analogous to
Cooper’s algorithm, our algorithm also exploits the case split distinguishing between
arbitrarily small solutions and smallest ones. Note that – in the context of maximum
elimination – a solution is any value i ∈ Z that maximises p[i\x].

Section Outline. Throughout this section, we describe Cooper’s classical quantifier
elimination algorithm and our extension to a maximum elimination algorithm in
lockstep. In Section 3.5.1, we introduce a simple form of boolean expressions
and permissions expressions, upon which the elimination algorithms operate. In
particular, we elaborate how more general expressions can be rewritten into this
simpler form. We then proceed by detailing the construction of expressions capturing
solutions corresponding to each case of our high-level case split: In Section 3.5.2
and Section 3.5.3, we show how to construct expressions covering arbitrarily small
and smallest solutions, respectively. Ultimately, in Section 3.5.4, we then combine
these expressions to obtain the resulting expression free of quantifiers and pointwise
maxima.

3.5.1 Simple Expressions

Next, we introduce the simpler form of expressions upon which the elimination
algorithms operate. Moreover, we also elaborate how general boolean and permission
expressions can be rewritten into this simpler form.
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Simple Boolean Expressions. We start by defining the simple boolean expressions used
by Cooper’s quantifier elimination algorithm.

Definition 3.5.1. » A boolean expression b is simple over variable x, if and only if it is
either

• a boolean expression b with x /∈ free(b)

• a comparison of the form b ≡ x ∼ e, where ∼ ∈ {=, 6=, <,≤, >,≥} and
x /∈ free(e),

• a divisibility constraint of the form b ≡ mod(x+ e, n) ∼ 0, where x /∈ free(e)
and ∼ ∈ {=, 6=},

• a logical combination of the form b ≡ b1 �b2, where b1 and b2 are simple boolean
expressions and � ∈ {∧,∨}. «

Note that in the definition above free(b) and free(e) denote the sets of free variables
appearing in the boolean expression b and arithmetic expression e, respectively.

Rewriting Boolean Expressions. In general, boolean expressions produced by our permis-
sion analysis are not in this simple form introduced above. Therefore, we describe
how we can rewrite an arbitrary boolean expression b in Presburger arithmetic into
an equivalent boolean expression that is in this simpler form

• First, the boolean expression is converted to negation normal form by pushing
all negations down to its individual literals. This is done by repeatedly applying
De Morgan’s law and double negation eliminations. In addition, negations
around comparisons and divisibility constraints are eliminated by flipping the
operator. For example, the comparison ¬(x < 0) gets replaced with x ≥ 0 and
the divisibility constraint ¬(mod(x, 2) = 0) is replaced with mod(x, 2) 6= 0.

• Next, we group all occurrences of the variable x in a literal such that each literal
is either a comparison of the form ci · x ∼i ei, where ∼i ∈ {=, 6=, <,≤, >,≥} or
a divisibility constraint of the form mod(ci · x+ ei, ni) ∼i 0, where ∼i ∈ {=, 6=}.
For example, the literal 2x+ 3 ≥ 1− x is rewritten to 3x ≥ −2.

• Finally, we eliminate the coefficients appearing before the variable x. To this
end we collect all coefficients c1, c2, . . . , cn and compute their least common
multiple c := lcm(c1, lcm(c2, lcm(. . . , cn))).

We then normalise the coefficients by multiplying each literal containing the
variable x with an appropriate constant such the coefficient before the variable x
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becomes c: For each literal where the current coefficient is ci, this constant
is given by di := c/ci; note that this is always an integer. Now, if the literal
is a comparison ci · x ∼i ei, we replace it with c · x ∼i di · ei. Otherwise, if
the literal is a divisibility constraint mod(ci · x+ ei, ni) ∼i 0, we replace it with
mod(c · x+ di · ei, ni) ∼i 0.

Once all coefficients have been normalised to be c, we can ultimately replace each
occurrence of c·x with a fresh variable x′. This yields a boolean expression b′ that
– when conjoined with mod(x′, c) = 0 – is equivalent with the original boolean
expression b. Note that the additional divisibility constraint is necessary since b′

might be true for values of x′ that do not correspond to integer values x′/c
for b.

Example 3.5.2. » The quantifier ∃i : a≤ i ∧ 2 · i< b gets rewritten into the equivalent
quantifier ∃i’ : i’≥ 2 · a ∧ i’< b ∧ mod(i’, 2) = 0. «

Note that, any boolean expression that does not admit to be rewritten into a
simple boolean expression can be handled – although, at the cost of losing precision
– by approximating all problematic conditions appearing within them.

Example 3.5.3. » Due to its non-linearity in x, the boolean expression x ≥ 0 ∧ x2 6= 3

cannot be rewritten into a simple boolean expression over x. However, it can be
over-approximated using only its first conjunct x ≥ 0. «

Simple Permission Expressions. Next, we introduce the simple form of permission ex-
pressions used by our maximum elimination algorithm.

Definition 3.5.4. » A permission expression p is simple over the variable x, if and ony
if it is either

• a leaf expression of the form p ≡ b ? q : 0

• an addition of the form p ≡ p1 + p2,

• a subtraction of the form p ≡ p1 − (b ? q : 0),

• an extremum expression of the form p ≡ min(p1, p2) or p ≡ max(p1, p2), or

• a ternary expression of the form p ≡ b ? p1 : 0,

where b is a simple boolean expression over x, p1 and p2 are simple permission
expressions x, and q a permission fraction. «
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Rewriting Permission Expressions. Below, we describe howe we can reduce the problem of
finding a method for eliminating a general pointwise maximum expression maxx | b{p}
to that of eliminating simple maximum expressions.

To this end, we introduce a set of rewriting rules. First, we distribute any additions
and subtractions over minimum, maximum, and ternary expressions. For example,
we can use the rules (read from left to right)

max(p1, p2) + p2 = max(p1 + p3, p2 + p3)

p1 + max(p2, p3) = max(p1 + p2, p1 + p3)

to distribute additions over maximum expressions. Note that distributing subtractions
over maximum expressions appearing as its second operand require the introduction
of minimum expressions:

p1 − max(p2, p3) = min(p1 − p2, p1 − p3)

This is the motivation for including minimum expressions in our grammar for
permission expressions. All other rewriting rules for the distribution of additions and
subtractions are defined similarly. In particular, we use the rules

p1 − (p2 + p3) = (p1 − p2)− p3

p1 − (p2 − p3) = (p1 − p2) + p3,

since the grammar for simple permission expression does not allow subtracting
expressions that themselves have addition or subtraction operators inside them. Using
the rewriting rules defined so far, we obtain an equivalent expression maxx | b{p′} in
which any occurrences of minimum, maximum, and ternary expressions are nested
at the topmost levels of p′.

Next, we describe how we can further rewrite this already slightly more structured
expression: We observe that any binary maximum expression at the topmost level
of p can be simply pulled outside the unbounded maximum. Therefore, we define

max
x | b

{max(p1, p2)} = max(max
x | b

{p1},max
x | b

{p2}).

Similarly, for ternary expressions where the condition does not depend on the
variable x, we can also pull the conditional outside the the unbounded maximum by
pushing the unbounded maxima into either cases. That is, we define

max
x | b

{b′ ? p1 : p2} = b′ ? max
x | b

{p1} : max
x | b

{p2},
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i
e

y = JpK(σ)

0

1

Figure 3.11. A graph showing the permission expression p :≡ (mod(i, 3) = 0 ∨ e≤ i) ? 1 : 0 plotted
as a function of i. There are arbitrarily small values for i that maximise p.

if x /∈ free(b′). For ternary expressions where the condition does depend on the
variable, we decompose the unbounded maximum into two simpler ones. More
specifically, we define

max
x | b

{b′ ? p1 : p2} = max( max
x | b′∧b

{p1}, max
x | ¬b′∧b

{p2}),

if x ∈ free(b′).
Iteratively and exhaustively applying these aforementioned rewriting rules yield

an equivalent expression consisting of potentially many but simpler expressions
maxx | b′{p′′}, where the permission expressions p′′ are simple over x.

3.5.2 Arbitrarily Small Solutions
Next, we deal with arbitrarily small solutions. The key insight for the elaborations
below is that – for the supported grammar of boolean and permission expressions – if
one considers sufficiently small values of x, all evaluations of the expression at hand
will yield the same value, modulo the divisibility constraints appearing in it. Thus,
intuitively, to capture arbitrarily small solutions, it suffices to study the behaviour of
the boolean or permission expression at hand as the value of x approaches negative
infinity.

Example 3.5.5. » As an example, let us consider the maximum expression maxi∈Z{p},
where p :≡ (mod(i, 3) = 0 ∨ e≤ i) ? 1 : 0 ; a visual representation is shown in Figure 3.11.
We observe that, for sufficiently small values for i, the condition e≤ i is always false
and the permission expression p behaves just like (mod(i, 3) ∨ false) ? 1 : 0 . «

Infinite Projection. In order to be able to reflect the behaviour of boolean and per-
mission expression for values of x approaching negative infinity, we introduce an
operator called infinite projection. We first define this infinite projection for boolean
expressions.
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Definition 3.5.6. » The infinite projection limx(b) of a simple boolean expression b

over x is defined as

limx(b) :≡



false if b ≡ x ◦ e and ◦ ∈ {=,≥, >}

true if b ≡ x ◦ e and ◦ ∈ {6=,≤, <}

limx(b1) � limx(b2) if b ≡ b1 � b2 and � ∈ {∧,∨}

b otherwise. «

Note that, above, divisibility constraints are handled by the last case, which
preserves them.

Lemma 3.5.7. » For all simple boolean expressions b over x and all states σ, there is
an integer i0 ∈ Z such that, for all integers i ∈ Z with i ≤ i0, we have

Jlimx(b)[i\x]K(σ) = Jb[i\x]K(σ). «

Proof. The claim follows by straightforward induction on the structure of the boolean
expression b. �

Example 3.5.8. » The infinite projection of b ≡ 0≤ i ∧ i< len(a) ∧ mod(i, 2) = 0 with
respect to the variable i is given by

limi(b) ≡ false ∧ true ∧ mod(i, 2) = 0,

which can be simplified to false. «

The following definition extends the infinite projection to permission expressions.

Definition 3.5.9. » The infinite projection limx(p) of a simple permission expression p

over x is defined as

limx(p) :≡



limx(b) ? q : 0 if p ≡ b ? q : 0

limx(p1)− (limx(b) ? q : 0) if p ≡ p1 − (b ? q : 0)

limx(b) ? limx(p1) : 0 if p ≡ b ? p1 : 0

min(limx(p1), limx(p2)) if p ≡ min(p1, p2)

max(limx(p1), limx(p2)) if p ≡ max(p1, p2). «

Lemma 3.5.10. » For all simple permission expressions b and all states σ, there is an
integer i0 ∈ Z such that, for all integers i ∈ Z with i ≤ i0, we have

Jlimx(b)[i\x]K(σ) = Jb[i\x]K(σ). «
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Proof. The claim follows by straightforward induction on the structure of the permis-
sion expression p and using Lemma 3.5.7. �

Example 3.5.11. » Let us consider the permission expression p ≡ max(i≥ 0 ? 1 : 0, rd).
We have

limi(p) ≡ max(false ? 1 : 0, rd),

which simplifies to rd. «

Period. Roughly speaking, while the infinite projection limx(p) preserves all di-
visibility constraints involving x, it eliminates all other constraints involving x.
Consequently, the pattern of values of the infinite projection – if seen as a function
of the variable x – repeats periodically. That is, to probe all possible values that can
be assumed by the infinite projection, it suffices to look at values of x within the
range of one period. Motivated by this insight, we define a function capturing the
period of simple boolean and permission expressions:

Definition 3.5.12. » The period ϕx(b) of a simple boolean expression b over x is defined
as

ϕx(b) =


n if b ≡ mod(x+ e, n) ◦ 0 and ◦ ∈ {=, 6=}

lcm(ϕx(b1), ϕx(b2)) if b ≡ b1 � b2, where � ∈ {∧,∨}

1 otherwise. «

Lemma 3.5.13. » For all integer-typed variables x, all boolean expressions b that are
simple with respect to x, all states σ, and all integers i, i′, k ∈ Z with i′ = i+k ·ϕx(b),
we have

Jlimx(b)[i\x]K(σ) = Jlimx(b)[i
′\x]K(σ). «

Proof. The claim follows by straightforward induction on the structure of the boolean
expression b. �

Definition 3.5.14. » The period ϕx(p) of a simple permission expression p over x is
defined as

ϕx(p) :=



ϕx(b) if p ≡ b ? q : 0

lcm(ϕx(p1), ϕx(p2)) if p ≡ p1 + p2

lcm(ϕx(b), ϕx(p1)) if p ≡ b ? p1 : 0

lcm(ϕx(p1), ϕx(p2)) if p ≡ min(p1, p2) or p ≡ max(p1, p2). «
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Lemma 3.5.15. » For all simple permission expressions p, all states σ, and all integers
i, i′, k ∈ Z with i′ = i+ k · ϕx(p), we have

Jlimx(p)[i\x]K(σ) = Jlimx(p)[i
′\x]K(σ) «

Proof. The claim follows by straightforward induction on the structure of the permis-
sion expression p and using Lemma 3.5.7. �

Arbitrarily Small Solutions for Quantifier Elimination. We are now ready to construct the
expressions capturing the arbitrarily small solutions. We start with the one for the
quantifier elimination.

Definition 3.5.16. » For all simple boolean expressions b with respect to x, we define

Ax(b) :≡
ϕx(b)−1∨

i=0

limx(b)[i\x]. «

Example 3.5.17. » We have Ai(i≥ 0) ≡ false, which correctly captures that i≥ 0 is false
for sufficiently small values of i. Conversely, we have

Ai(mod(i, 2) = 0) ≡
1∨

j=0

mod(i, 2) = 0[j\i] ≡ mod(0, 2) = 0 ∨ mod(1, 2) = 0,

which is equivalent to true and indicates that mod(i, 2) = 0 is satisfied by arbitrarily
small values of i. «

The following lemma states that our expression Ax(b) captures all arbitrarily small
solutions and also does not introduce any spurious solutions.

Lemma 3.5.18. » For all simple boolean expressions b over x and all states σ, the
following statements are true:

1. If there are arbitrarily small integers i ∈ Z with Jb[i\x]K(σ), then JAx(b)K(σ).

2. If JAx(b)K(σ), then there is an integer j ∈ Z such that Jb[j\x]K(σ). «

Proof. We consider an arbitrary simple boolean expression b over x and an arbitrary σ.
Moreover, let i0 denote the constant from Lemma 3.5.7.

To prove the first claim, we assume that there are arbitrarily small integers i ∈ Z
with Jb[i\x]K(σ) and aim to show that JAx(b)K(σ). To this end, we fix the integer i
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to be sufficiently small such that i ≤ i0. Moreover, we let i′ := i + k · ϕx((b)) for
some k ∈ Z such that i′ ∈ {0, . . . , ϕx(b)− 1}. Thus, we have

Jb[i\x]K(σ) = Jlimx(b)[i\x]K(σ) = Jlimx(b)[i
′\x]K(σ),

where the first equality is justified by Lemma 3.5.7 and the second one follows from
Lemma 3.5.13. We observe Jlimx(b)[i

′\x]K(σ) appears as a disjunct of Ax(b) and can
therefore conclude that JAx(b)K(σ) as claimed.

To prove the second claim, we assume that JAx(b)K(σ) and derive that Jb[j\x]K(σ),
for some j ∈ Z. Since we know that at least one disjunct of Ax(b) has to be true, there
is an j′ ∈ {0, . . . , ϕx(b)− 1} such that Jlimx(b)[j

′\x]K(σ). Now, let j := j′− k ·ϕx(b),
for some k ∈ Z chosen to be sufficiently large such that j ≤ i0. Analogous to above,
we get

Jlimx(b)[j
′\x]K(σ) = Jlimx(b)[j\x]K(σ) = Jb[j\x]K(σ),

which concludes the proof. �

Arbitrarily Small Solutions for Maximum Elimination. Next, we show how to construct the
permission expression capturing the arbitrarily small expressions for the maximum
elimination. For the sake of easier notation, for any non-empty and finite set of
expressions S = {e1, . . . , en}, we introduce the shorthand

max
e∈S

{p[e\x]} :≡ max(p[e1\x],max(p[e2\x],max(. . . , p[en\x]))).

Moreover – since we are dealing with non-negative permission – we can easily extend
this notation to empty sets by setting maxe∈S{p[e\x]} :≡ 0 in cases where S = ∅.

Definition 3.5.19. » For all simple permission expressions p over x, we define

Ax(p) :≡ max
i∈S

{limx(p)[i\x]},

where S := {0, . . . , ϕx(p)− 1}. «

Example 3.5.20. » We have Ai(i≥ 0 ? 1 : 0) ≡ false ? 1 : 0, which simplifies to 0. «

Lemma 3.5.21. » Consider an arbitrary simple permission expression p and an arbitrary
state σ and let q := maxi∈Z{Jp[i\x]K(σ)}. The following statements are true:

1. If there are arbitrarily small integers i ∈ Z with Jp[i\x]K(σ) = q, then we also
have JAx(p)K(σ) = q.

2. We have JAx(p)K(σ) ≤ q. «

Proof. The proof of this lemma is analogous to the one of Lemma 3.5.18. �
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i
e

y = JpK(σ)

0

1

Figure 3.12. A graph showing the permission expression p :≡ (mod(i, 4) = 0 ∧ e≤ i) ? 1 : 0 plotted
as a function of i. The smallest value for i that maximises p is the smallest value above e
satisfying mod(i, 3) = 0.

3.5.3 Smallest Solutions

In the following, we describe how to construct expressions that capture all smallest
solutions. Roughly speaking, the idea is to first consider potential smallest solutions
ignoring any divisibility constraint and then take into account the divisibility con-
straints by probing values of the expression at hand for all values of x within one
period from any such potential solution.

Example 3.5.22. » As an example, let us consider the maximum expression maxi∈Z{p},
where p ≡ (mod(i, 3) = 0 ∧ e≤ i) ? 1 : 0 ; a visual representation is shown in Figure 3.12.
Ignoring the divisibility constraint mod(i, 3) = 0, the smallest value for i maximising
the permission expression p is e. However, as mod(i, 3) = 0 might not be true for i= e,
we also have to probe i= e+ 1 and i= e+ 2; this is enough because the pattern of
the divisibility constraint’s truth value repeats for larger values of i. «

Boundary Expression. Let us consider an arbitrary simple boolean expression b over x
and think of it as a the function f(i) := Jb[i\x]K(σ), for some fixed state σ. We
observe that – for increasing values of i and ignoring any potential divisibility
constraints appearing in b – there are only finitely many values for i where the
value of function f(i) switches from false to true (and vice versa, for that matter).
Intuitively, the set of these values must also contain the smallest value for x making b
true. The following definition shows how we can extract a set of boundary expressions
from any simple boolean expression b that precisely capture these values; roughly
speaking, these boundary expressions can be computed based on a syntactic analysis
of b’s literals (cf. Figure 3.13).
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x
e

y = Jx = eK(σ)

false

true

x
e

y = Jx 6= eK(σ)

false

true

x
e

y = Jx < eK(σ)

false

true

x
e

y = Jx ≤ eK(σ)

false

true

x
e

y = Jx > eK(σ)

false

true

x
e

y = Jx ≥ eK(σ)

false

true

x
−e

y = Jmod(x+ e, n) = 0K(σ)

false

true

x
−e

y = Jmod(x+ e, n) 6= 0K(σ)

false

true

Figure 3.13. All types of literals depending on the variable x that may appear in a simple
boolean expression over x. The literals are depicted as a function of x in some fixed state σ.
For each type of literal, the corresponding boundary expression – that is, the smallest value
for which the expression switches from false to true – is highlighted ( ), if it exists.

Definition 3.5.23. » The set of boundary expressions Ex(b) of a simple boolean expres-
sion b over x is defined as

Ex(b) :≡



{e} if b ≡ x ◦ e and ◦ ∈ {=,≥}

{e+ 1} if b ≡ e and ◦ ∈ {6=, >}

Ex(b1) ∪ Ex(b2) if b ≡ b1 ◦ b2 and � ∈ {∧,∨}

∅ otherwise. «

The following lemma states that the boundary expressions, as defined above, indeed
capture the smallest solution; the formulation of that statement is a bit cumbersome
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as it also accounts for any potential divisibility constraints by incorporating the
period ϕx(b).

Lemma 3.5.24. » For all simple boolean expressions b over x, all states σ, and all
integers s, t ∈ Z and k ∈ N with t = s + k · ϕx(b) as well as ¬Jb[s\x]K(σ) and
Jb[t\x]K(σ), there is a pair of a boundary expression e ∈ Ex(b) and an integer
i ∈ {0, . . . , ϕx(b)− 1}, such that Je+ iK(σ) = t. «

Proof. We prove the statement by structural induction on the simple boolean ex-
pression b. To this end, we consider an arbitrary simple expression b and – as our
induction hypothesis – assume that the statement holds for all of its sub-expressions.
Moreover, we let the state σ be arbitrary and assume that there are integers s, t ∈ Z,
and k ∈ N such that

1. t = s+ k · ϕx(b) as well as

2. ¬Jb[s\x]K(σ) and Jb[t\x]K(σ).

Throughout this proof, we will refer to these properties as Property 1 and Property 2,
respectively. We proceed by distinguishing the following cases:

• Case x /∈ free(b): In this case, the value of JbK(σ) does not depend on x.
Thus, we have Jb[s\x]K(σ) = Jb[t\x]K(σ), which contradictions Property 2.
Consequently, there is nothing left to prove in this case.

• Case b ≡ x ∼ e for some e and ∼ ∈ {=, 6=,≥, >}: For this case, we define

e0 :≡

e if ∼ ∈ {=,≥}

e+ 1 otherwise

and observe that Ex(b) = {e0}. We consider the value v0 := Je0K(σ) and note
that it coincides with the unique point at which the function f(i) := Jb[i\x]K(σ)
switches from false to true. By the assumed Property 2, we have f(s) = false
and f(t) = true. Thus, we have s < v0 ≤ t. Since, by Property 1, the integers s
and t differ by exactly k · ϕx(b), there is an integer i0 ∈ {0, . . . , k · ϕx(b)− 1}
such that t = v0 + i0. Thus, there is a boundary expression and an integer,
namely e0 and i0, satisfying t = Je0 + iK(σ), as claimed.

• Case b ≡ x ∼ e for some e and ∼ ∈ {≤, <}: Similarly to the first case, we
arrive at a contradiction to Property 2.
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• Case b ≡ mod(x+ e, n) ∼ 0 for some e, n and ∼ ∈ {=, 6=}. We observe that
ϕx(b) = n and therefore t = s+ k · n. Thus, we have

Jb[s\x]K(σ) = Jb[s+ k · n\x]K(σ) = Jb[t\x]K(σ),

which, again, contradicts Property 2.

• Case where b ≡ b1 � b2, for some � ∈ {∧,∨}: This case follows by applying the
induction hypothesis to both simple boolean expressions b1 and b2 and the
observation that, for i ∈ {1, 2}, we have ϕx(b) = ki ·ϕx(bi), for some ki ∈ N. �

Smallest Solutions for Quantifier Elimination. The following definitions shows how our
boundary expressions can be used to construct a boolean expression capturing all
smallest solutions.

Definition 3.5.25. » For all simple boolean expressions b, we define

Bx(b) :≡
∨

e∈Ex(b)

ϕx(b)−1∨
i=0

b[e+ i\x] «

Example 3.5.26. » Let b :≡ i’≥ 2 · a ∧ i’< b ∧ mod(i’, 2) = 0 be the boolean expression
from Example 3.5.2. We observe that Ei’(b) = {2·a} and ϕi’(b) = 2. We have

Bi’(b) ≡ b1∨b2, where

b1 ≡ 2 · a+ 0≥ 2 · a ∧ 2 · a+ 0< b ∧ mod(2 · a+ 0, 2) = 0

b2 ≡ 2 · a+ 1≥ 2 · a ∧ 2 · a+ 1< b ∧ mod(2 · a+ 1, 2) = 0.

We easily see that b1 simplifies to 2 · a< b, while b2 simplifies to false. Thus, ∃i’ : b
has a smallest solution if and only if 2 · a< b. «

Lemma 3.5.27. » For all simple boolean expressions b over x and all states σ, the
following statements are true:

1. If there is a smallest integer i ∈ Z with Jb[i\x]K(σ), then JBx(b)K(σ).

2. If JBx(b)K(σ), then there is an integer j ∈ Z such that Jb[j\x]K(σ). «

Proof. Throughout this proof, we consider an arbitrary simple boolean expression b

and an arbitrary state σ.
To prove the first claim, we assume that there is a smallest integer t ∈ Z with

Jb[t\x]K(σ). We define s := t−ϕx(b) and observe that the integers s and t satisfy the
requirements of Lemma 3.5.24. Applying this lemma yields that there is a boundary
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expression e ∈ Ex(b) and an integer i ∈ {0, . . . , ϕx(b)− 1} such that Je+ iK(σ) = t.
Thus, we have Jb[e+ i\x]K(σ). We observe that b[e+ i\x] appears as a disjunct of
Bx(b) and can therefore conclude that JBx(b)K(σ), as claimed.

The second claim trivially follows from the fact that Bx(b) is a disjunction of terms
that correspond to restricting the variable x in b to specific values. �

Filtered Boundary Expressions. Next, we discuss an appropriate selection boundary
expressions for permission expressions that can be used for our maximum elimination
algorithm. Just as for Cooper’s algorithm, these boundary expressions must include
the smallest value of x defining the maximum value in question. The set must be
finite, and be as small as possible for efficiency of our overall algorithm. We refine
the notion of a boundary expression, and compute a set of pairs 〈e, b〉 of integer
expressions e and its filter condition b. Intuitively, the filter condition b represents
an additional condition under which e must be included as a boundary expression.
In particular, in contexts where b is false, the boundary expression e can be ignored.
This gives us a way to symbolically define an ultimately-smaller set of boundary
expressions, particularly in the absence of contextual information which might later
show b to be false. We call these pairs filtered boundary expressions.

Definition 3.5.28. » The set of filtered boundary expressions Ex(p) of a simple permission
expression p is defined as

Ex(p) :=



{〈e, true〉 | e ∈ Ex(b)} if p ≡ b ? q : 0

Ex(p1) ∪ Ex(p2) if p ≡ p1 + p2

Ex(p1) ∪ {〈e, p1 > 0〉 | e ∈ Ex(¬b)} if p ≡ p1 − (b ? q : 0)

Ex(p1) ∪ {〈e, Cx(b, p1)〉 | e ∈ Ex(b)} if p ≡ b ? p1 : 0

Ex(p1) ∪ Ex(p2) if p ≡ min(p1, p2) or p ≡ max(p1, p2),

where

Cx(b, p) :≡
∨

〈e′,b′〉∈Ex(p)

ϕx(p)−1∨
i′=0

(¬b ∧ b′)[e′ + i′ \x]. «

In the definition above, there are three key points which ultimately make our
algorithm efficient:

• First, the case for p ≡ b ? q : 0 only includes boundary expressions for making
b true. The case of b being false is not relevant for trying to maximise the
permission expression’s value. Note that this follows from the structure of the
permission expression: This case will never apply under a subtraction operator,
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due to our simplified grammar, and the case for subtraction not recursing into
the right-hand operand.

• Second, the case for p ≡ p1−(b?q :0) dually only considers boundary expressions
for making b false – along with the boundary expressions for maximising p1, of
course. The filter condition p1 > 0 is used to drop the boundary expressions
for making b false: In cases where p1 is not strictly positive, we know that the
evaluation of the whole permission expression will not yield a strictly-positive
value, and hence is not an interesting value for a non-negative maximum.

• Third, in the case for p ≡ b ? p1 : 0, we combine the boundary expressions for p1
with those for b. We exploit that, if all boundary expressions for p whose filter
conditions are true make the condition b true, then we can safely discard the
boundary expressions for b.

Lemma 3.5.29. » For all simple permission expressions p over x, all states σ, and all
integers s, t ∈ Z and k ∈ N with

• t = s+ k · ϕx(p) as well as

• Jp[s\x]K(σ) < Jp[t\x]K(σ),

there is a pair of a filtered boundary expression 〈e, b〉 ∈ Ex(p) and an integer
i ∈ {0, . . . , ϕx(p)− 1}, such that Jp[t\x]K(σ) ≤ Jp[e+ i\x]K(σ) and JbK(σ). «

Proof. We prove the statement by induction on the structure of the simple permission
expressions p. To this end, let us consider an arbitrary simple permissions expression p
over x and suppose that the claim holds for all of its sub-expressions. Moreover, let
the state σ be arbitrary and assume that there are integers s, t ∈ Z and k ∈ N such
that

• t = s+ k · ϕx(p) as well as

• Jp[s\x]K(σ) < Jp[t\x]K(σ).

Throughout this proof, we will refer to these properties as Property 1 and Property
2, respectively. We proceed by distinguishing the following cases

• Case p ≡ b ? q : 0. We observe that we must have ¬Jb[s\x]K(σ) and Jb[t\x]K(σ).
Thus, we can apply Lemma 3.5.24 to obtain that there is a boundary expression
e ∈ Ex(b) and an integer i ∈ {0, . . . , ϕx(b) − 1} such that Je + iK(σ) = t. We
observe that 〈e, true〉 ∈ Ex(p) and ϕx(p) = ϕx(b). Thus, for this case, the claim
follows from

Jp[t\x]K(σ) = q = Jp[e+ i\x]K(σ),
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where the first equality holds by Property 2.

• Case p ≡ p1 + p2. We observe that Property 2 must be satisfied by at least
one of the sub-expressions p1 or p2. Thus, this case follows by applying the
induction hypothesis to p1 and p2 and the observation that, for i ∈ {1, 2}, we
have ϕx(p) = ki · ϕx(pi), for some ki ∈ N.

• Case p ≡ p1 − (b ? q : 0). Here, we observe that we must have ¬Jb[s\x]K(σ) and
Jb[t\x]K(σ) or, equivalently ¬J(¬b)[s\x]K(σ) and J(¬b)[t\x]K(σ). Thus, similarly
to the first claim, we can apply Lemma 3.5.24 to arrive at the claim, similarly
to the first case. Note that, as explained above, the filter condition p > 1 is
guaranteed to be true for all boundary expressions of interest.

• Case p ≡ b ? p1 : 0. In this case, we must have ¬Jb[s\x]K(σ) and Jb[t\x]K(σ)
or Jp1[s\x]K(σ) < Jp2[t\x]K(σ), or both. Thus, the claim follows by using
Lemma 3.5.24 or applying the induction hypothesis to p1. Note that if our
filter condition Cx(b, p1) is true, then we know for sure that Jp1[s\x]K(σ) <
Jp2[t\x]K(σ) is true; that is the claim follows from the induction hypothesis
applied to p1 alone, which makes it safe to discard the boundary expressions
corresponding to the condition b.

• Case p ≡ min(p1, p2) and p ≡ max(p1, p2). Analogous to the case p ≡ p1+ p2. �

Smallest Solutions for Maximum Elimination. Using our filtered boundary expressions in-
troduced above, we can define a permission expression capturing smallest solutions
of the maximum elimination problem at hand.

Definition 3.5.30. » For all simple permission expressions p over x, we define

Bx(p) :≡ max
〈e,b〉∈Ex(p)

{
b ?

(
max

i∈{0,...,ϕx(p)−1}
{p[e+ i\x]}

)
: 0
}
,

where S := {0, . . . , ϕx(p)− 1}. «

Lemma 3.5.31. » Consider an arbitrary simple permission expression p over x and an
arbitrary state σ and let q := maxi∈Z{Jp[i\x]K(σ)}. The following statements are
true:

1. If there is a smallest integer i ∈ Z with Jp[i\x]K(σ) = q, then JBx(p)K(σ) = q.

2. We have JBx(p)K(σ) ≤ q. «
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Proof. Throughout this proof, we consider an arbitrary simple permission expression p
over x and an arbitrary state σ and let q := maxi∈Z{Jp[i\x]K(σ)}. For the sake of
easier argumentation, we prove the statement for

B′x(p) :≡ max
〈e,b〉∈Ex(p)

{
max
i∈S

{b ? (p[e+ i\x]) : 0}
}
,

which can be easily obtained from Bx(x) by pushing the condition b into the inner
maximum expression and is, therefore, equivalent.

We start by proving the second claim. To this end, let us consider an arbitrary
filtered boundary expression 〈e′′, b′′〉 ∈ Ex(b) and integer i′′ ∈ {0, . . . , ϕx(p)− 1}. We
observe that

Jb′′ ? p[e′′ + i′′\x] : 0K(σ) ≤ Jp[e′′, i′′\x]K(σ) ≤ max
i∈Z

Jp[i\x]K(σ) = q.

From this, the claim immediately follows, since the inequality holds for all filtered
boundary expressions 〈e′′, b′′〉 and integers i′′, it must also hold for the one maxim-
ising B′x(p) and, thus, we have B′x(p) ≤ q

To prove the first claim, we assume that there is a smallest integer t ∈ Z with
Jp[t\x]K(σ) = q. We define s := t − ϕx(p) and observe that Jp[s\x]K(σ) < q. Thus,
the integers s and t satisfy all requirements of Lemma 3.5.29. Applying this lemma
yields that there is a filtered boundary expression 〈e′, b′〉 ∈ Ex(p) and an integer
i′ ∈ {0, . . . , ϕx(p) − 1} such that Je′ + i′K(σ) = t and Jb′K(σ). We observe that the
expression b′ ? p[e′ + i′\x] : 0 appears as a sub-term of B′x(p). Thus, we have

JBx(p)K(σ) ≥ Jb′ ? p[e′ + i′\x] : 0K(σ) = Jp[e′ + i′\x]K(σ) = Jp[t\x]K(σ) = q.

Together with B′x(p) ≤ q from the second claim, we get B′x(p) = q, as required. �

To see how our filter conditions help to keep the result of the maximum elimination
small, we consider a simple yet illustrative example.

Example 3.5.32. » Let us consider the pointwise maximum expression

max
i | 0≤ i

{qi = i ? 1 : 0}.

that is, we have p ≡ 0≤ i ? (qi = i ? 1 : 0). Evaluating the filtered boundary expressions
for p yields Ei(p) = {〈0, qi < 0〉, 〈qi, true〉} with the meaning that the boundary
expression qi originating from the inner condition qi = i has to be considered in all
cases, while the boundary expression 0 originating from the outer condition 0≤ i is
only if interest if i< 0. With this, we get

Bi(p) ≡ max(p1, p2), where

p1 :≡ qi < 0 ? (0≤ 0 ? (qi = 0 ? 1 : 0))

p2 :≡ true ? (0≤ qi ? (qi = qi ? 1 : 0)).
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We observe that the term p1 corresponding to the boundary expression 0 can be
simplified to 0 since it contains the two contradictory conditions qi < 0 and qi = 0.
Thus, the entire expression Bi(p) can be simplified to 0≤ qi ? 1 : 0. Note that, without
the filter conditions, the simplified result would be max((qi = 0 ? 1 : 0), (0≤ qi ? 1 : 0))
instead. «

As the example above illustrates, in the context of our permission analysis, the filter
conditions allow us to disregard boundary expressions corresponding, for example,
to the integer loop invariants, provided that the expressions generated by analysing
permission expression stemming from analysing the loop body already suffice. For
our evaluation, we employed aggressive syntactic simplifications of the resulting
expressions, in order to exploit these filter conditions to produce a succinct final
permission expression.

3.5.4 Combining all Solutions
We now describe how to combine the expressions capturing all arbitrarily small
solutions with the expression capturing all smallest solutions to obtain a final
expression capturing all solutions.

Quantifier-Free Boolean Expressions. For the quantifier elimination algorithm, this final
quantifier-free expression equivalent to ∃x : b is obtained by simply disjoining Ax(b)

and Bx(b).

Definition 3.5.33. » For all simple boolean expressions b, we define

Fx(b) :≡ Ax(b) ∨Bx(b). «

Lemma 3.5.34. » For all simple boolean expressions b and all states σ, we have

∃i ∈ Z : Jb[i\x]K(σ) ⇔ JFx(b)K(σ). «

Proof. The claim follows by combining Lemma 3.5.18 and Lemma 3.5.27. �

Permission Expressions without Pointwise Maxima. Similarly, our maximum elimination
algorithm computes the final expression capturing the maximum maxx∈Z{p} by
constructing the maximum of Ax(p) and Bx(p).

Definition 3.5.35. » For all simple permission expressions p over x, we define

Fx(p) :≡ max(Ax(p), Bx(p)) «
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Theorem 3.5.36. » For all simple permission expressions p over x and all states σ, we
have

JFx(p)K(σ) = max
i∈Z

{Jp[i\x]K(σ)}. «

Proof. The claim follows by combining Lemma 3.5.21 and Lemma 3.5.31. �

Revisiting our Motivating Example. The definition and theorem above complete the elab-
orations of our maximum elimination algorithm. With this, we have described all
components of our permission inference for array programs. To wrap the description
of our inference technique, let us briefly revisit the copy_even_a method shown in
Listing 3.1 and already discussed in Example 3.1.1. We recall that this method’s
body contains the loop l ≡ while (i< len(a)) {c0}, where

c0 :≡ if (mod(i, 2) = 0) {v := a[i]} else {a[i] := v} ; i := i+ 1

Our permission analysis first analyses the loop’s body; the rules for loop-free code
yield the following permission precondition and difference.

τ⦃c0⦄(0) ≡ mod(i, 2) = 0 ? ((qa = a ∧ qi = i) ? rd : 0) : ((qa = a ∧ qi = i) ? 1 : 0)

δ⦃c0⦄(0) ≡ mod(i, 2) = 0 ? 0 : 0

The latter can be simplified to 0 and indicates that the loop does not gain or lose
any permissions. Using the numerical loop invariant I+ ≡ 0≤ i obtained from an
off-the-shelf analysis, our analysis expresses the permissions required by the loop
by the maximum expression maxi | 0≤ i∧ i< len(a){Vτ⦃c0⦄(0)W}; the terms capturing the
permissions required for the code that comes after the loop are omitted here, as they
can also be simplified to 0. In a next step, the analysis then applies our maximum
elimination algorithm to aforementioned maximum expression, which – after also
applying syntactic simplification rules – yields the permission expression

p ≡ (qa = a ∧ 0≤ qi ∧ qi < len(a)) ? (mod(qi, 2) = 0 ? rd : 1) : 0 .

As the loop does not gain or lose any permissions and the only statement before the
loop l is i := 0, the method copy_even_a’s permission precondition and postcondition
as well as the permission invariant for the loop l are all captured by p.

3.6 Evaluation
We developed a prototype implementation of our approach, which we evaluated on a
benchmark containing examples from existing papers and competitions.
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Section Outline. This section presents our experimental evaluation and is structured as
follows. In Section 3.6.1, we first briefly discuss our implementation. In Section 3.6.2,
we then describe our benchmark and discuss the experimental results.

3.6.1 Implementation
We have developed a prototype implementation of our inference.3 This tool was
developed as an artifact for the paper [38] this chapter is based on and is limited
to permission preconditions and postconditions. An extension of the tool that also
infers loop invariants was developed by Becker; for more details on this version of
the tool, we refer to his Master’s thesis [10].

Our tool is written in Scala and accepts programs written in the Viper language [83].
Given a Viper program, the tool first performs a forward numerical analysis to infer
over-approximating numerical loop invariants needed for our handling of loops. The
implementation is parametric in the numerical abstract domain used for the analysis;
we currently support the abstract domains provided by the Apron library [60]. As
we have yet to integrate the implementation of under-approximate invariants (for
example [77]), we rely on user provided invariants, or assume them to be false if
none are provided. In a second step, our tool performs the inference and maximum
elimination. Finally, it annotates the input program with the inferred specifications.

3.6.2 Experimental Results
We evaluated our implementation on 43 programs taken from various sources; included
are all programs that do not contain strings from the memory safety category of
SV-COMP 2017, all programs from Dillig et al. [35] (except three examples involving
arrays of arrays), loop parallelisation examples from VerCors [14], and a few
programs that we crafted ourselves. We manually checked that our soundness
condition holds for all considered programs. The parallel loop examples were encoded
as two consecutive loops where the first one models the forking of one thread per loop
iteration – by iteratively exhaling the permissions required for all loop iterations – and
the second one models the joining of all these threads – by inhaling the permissions
that are left after each loop iteration again. For the numerical analysis we used the
polyhedra abstract domain proved by Apron.

An overview of our experimental results is given in Table 3.14. The experiments
were performed on a dual core machine with a 2.60 GHz Intel Core i7-6600U CPU
and 16 GB of RAM, running Ubuntu 16.04. The running times were measured by

3: https://github.com/viperproject/sample/tree/master/sample_qp
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add_last.vpr 12 1 (1) 1.9 3 21
append.vpr 13 1 (1) 1.9 3 32
array_1.vpr 17 2 (2) 0.9 7 28
array_2.vpr 23 3 (2) 0.9 7 35
array_3.vpr 23 2 (2) 1.1 3 24
array_reverse.vpr 18 1 (1) 3.2 33 28
bubble_sort.vpr 23 2 (2) 1.8 33 34
copy.vpr 16 2 (1) 1.6 3 27
copy_even_a.vpr 17 1 (1) 1.6 3 27
copy_even_b.vpr 14 1 (1) 2.2 33 23
copy_even_c.vpr 14 1 (1) 1.4 7 20
copy_odd.vpr 21 2 (1) 2.4 3 55
copy_odd_bug.vpr 19 2 (1) 7.1 3 57
copy_part.vpr 17 2 (1) 1.7 3 30
count_down.vpr 21 3 (2) 1.1 3 32
diff.vpr 31 2 (2) 2.0 7 70
find.vpr 19 1 (1) 3.0 3 43
find_non_null.vpr 19 1 (1) 3.0 3 40
init.vpr 18 2 (1) 1.1 3 28
init_2d.vpr 23 2 (2) 2.1 3 52
init_even.vpr 18 2 (1) 0.9 7 26
init_even_bug.vpr 18 2 (1) 1.5 7 28
init_non_const.vpr 18 2 (1) 1.1 3 27
init_part.vpr 19 2 (1) 1.1 3 30
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init_part_bug.vpr 19 2 (1) 1.5 3 31
insertion_sort.vpr 21 2 (2) 2.5 33 35
java_bubble.vpr 24 2 (2) 2.3 33 32
knapsack.vpr 21 2 (2) 1.3 7 45
lis.vpr 37 4 (2) 4.2 3 73
matrix_mult.vpr 33 3 (3) 1.5 3 78
merge_inter.vpr 23 2 (1) 3.4 7 56
merge_inter_bug.vpr 23 2 (1) 2.6 7 59
memcopy.vpr 16 2 (1) 1.6 3 28
multarray.vpr 26 2 (2) 2.1 3 40
par_array.vpr 20 2 (1) 1.2 3 30
par_copy.vpr 20 2 (1) 1.2 3 31
par_copy_even.vpr 22 2 (1) 5.0 33 79
par_matrix.vpr 35 4 (2) 1.1 3 80
par_nested.vpr 31 4 (2) 0.5 7 57
relax.vpr 33 1 (1) 1.4 33 55
reverse.vpr 21 2 (1) 3.9 3 42
reverse_bug.vpr 21 2 (1) 1.7 3 42
sanfoundry.vpr 27 2 (1) 2.1 3 37
selection_sort.vpr 26 2 (2) 1.0 7 38
string_copy.vpr 16 2 (1) 0.9 7 21
string_length.vpr 10 1 (1) 0.8 7 15
swap.vpr 15 1 (1) 1.5 3 19
swap_bug.vpr 15 1 (1) 1.5 3 19

Table 3.14. The experimental results. For each program, we list the lines of code and the
number of loops (in brackets their nesting depth). We report the relative size of the inferred
specifications compared to hand-written specifications, and whether the inferred specifications
are equally precise 3 or not 7 (a double tick indicates slightly more precise than hand-written
specifications). All inference times are given in milliseconds.
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1 method copy_even_c(a: Int[]) {
2 var i: Int
3 var v: Int
4 i := 0
5 while (i+ 1< len(a)) {
6 v := a[i]
7 a[i+1] := v
8 i := i+ 2
9 }

10 }

Listing 3.15. Yet another variation of the method copying array elements at even indices.

first running the analysis 50 times to warm up the JVM and then computing the
average time needed over the next 100 runs. The results show that the inference is
very efficient.

Precision. In 35 out of 48 cases, our inference inferred precise specifications. In
one example, namely knapsack.vpr, the source of imprecision is our abstraction of
array-dependent conditions. All other imprecisions are due to the inferred numerical
loop invariants; in all these cases, manually strengthening the invariants yields a
precise specification: As an example, let us consider copy_even_c.vpr, which is yet
another variation of the method copying array elements at even indices shown in
Listing 3.15. The numerical invariant obtained for the loop in this method is 0≤ i
and does not capture that the index i is always even. As a result, the inferred
specifications require write permission for all but the first array element. However,
manually annotating the loop with the additional constraint mod(i, 2) = 0 allowed our
analysis to generate specifications that only required write permission for elements
at even indices.

Conciseness. For each program, we compared the size and precision of the inferred
specifications with respect to hand-written ones. Thanks to aggressive syntactic
simplification, the inferred specifications are concise for the vast majority of the
examples.

An example for which the inferred specifications are roughly twice the size com-
pared to hand-written ones is copy_even_b.vpr, for which we have already seen the
inferred specifications in Example 3.3.7. For convenience, we repeat the inferred loop
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precondition (which is simultaneously also the method precondition), which is given
max(p1, p2), where

p1 ≡ (mod(qi, 2) = 1 ∧ 1< qi ∧ qi < 2 · (len(a)− 1) / 2+ 1) ? 1 : 0

p2 ≡ (mod(qi, 2) = 0 ∧ 0< qi ∧ qi < 2 · (len(a)− 1) / 2) ? rd : 0 .

We see that the two terms p1 and p2 share a lot of similar conditions that would
not be repeated by hand-written specifications. A more concise specification, for
example, would be

(0< qi ∧ qi < len(a)) ? (mod(qi, 2) = 0 ? rd : 1) : 0

Note, however, that this specification is slightly less precise, as it always requires
permission for the last array element, which the inferred specifications shown above
does not in cases where the array is of odd length.

Loop Invariants. As mentioned, the version of the tool used for our experiments
above does not infer permission invariants; instead, it infers loop preconditions
and postconditions. Recall that, as long as the loop at hand does not gain or lose
permissions, these are identical and – at the same time – also loop invariants. The
only programs for which this is not the case are the five parallel loop examples
(their names are all prefixed with par_). The evaluation conducted by Becker as
part of his thesis [10] shows that our technique described in Section 3.4 produces
suitable permission invariants for all them. As described above, all these examples
follow the (also otherwise common) pattern, where there are two loops, one exhaling
permissions and one inhaling the permissions again. Below, we show the permission
invariants inferred for such a pair of loops in their plainest incarnation, given by the
statements c1 and c2, where

c1 :≡ i := 0 ; while (i< len(a)) {exhale acc(a[i]) ; i := i+ 1}

c2 :≡ i := 0 ; while (i< len(a)) {inhale acc(a[i]) ; i := i+ 1}.

The permission invariant for the loop in c1 iteratively giving away permission to all
elements of the array at hand is given by

(qa = a ∧ 0≤ qi ∧ qi < len(a)) ? (qi < i ? 0 : 1) : 0 .

Note that we have already seen this permission invariant as part of Example 3.4.7;
The permission invariant inferred for the loop in c2 that then iteratively regains all
lost permissions is given by

(qa = a ∧ 0≤ qi ∧ qi < len(a) ∧ qi < i ) ? 1 ? 0 .
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3.7 Discussion
We conclude this section by discussing related work, strengths and limitations of our
approach, and possible future directions.

Section Outline. In Section 3.7.1, we first compare our technique with related work. In
Section 3.7.2, we then summarise the main strengths and limitations of our approach.
Finally, in Section 3.7.3, we lay out some possible future directions.

3.7.1 Related Work

Much work has been dedicated to the analysis of array programs, but most of it focuses
on array content, whereas we infer permission specifications. The simplest approach
to analyse such array manipulating programs is to summarise all array elements
into one single abstract memory location [13]. This is generally quite imprecise,
as only weak updates can be performed. A simple alternative is to consider array
elements as distinct variables [13], which is feasible only when the length of the array
is statically known. More advanced approaches perform syntax-based [49, 56, 61],
semantics-based [29, 74] or symbolic [55] partitioning of an array into segments –
with the exception of [74] – and do not easily generalise to multidimensional arrays,
unlike our approach. Gulwani et al. [51] propose an approach for inferring quantified
invariants for arrays by lifting quantifier-free abstract domains. Their technique
requires user-defined templates for the invariants.

Dillig et al. [35] avoid an explicit array partitioning by maintaining constraints
that over- and under-approximate the array elements being updated by a program
statement. Their work employs a technique for directly generalising the analysis of
a single loop iteration – based on quantifier elimination – which works well when
different loop iterations write to disjoint array locations. Blom et al. [14] provide a
specification technique for a variety of parallel loop constructs; our work can infer
specifications which their technique requires to be provided.

Another alternative for generalising the effect of a loop iteration is to use a first
order theorem prover as proposed by Kovács and Voronkov [65]. In their work,
however, they did not consider nested loops or multidimensional arrays. Other works
rely on loop acceleration techniques [3, 17]. In particular, the work of Bozga et al. [17]
does not synthesise loop invariants; they directly infer postconditions of loops with
respect to given precondition, while we additionally infer the preconditions. The
acceleration technique proposed in [3] is used for the verification of array programs
in the tool Booster [4].
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Monniaux and Gonnord [78] describe an approach for the verification of array
programs via a transformation to array-free Horn clauses. Chakraborty et al. [25]
use heuristics to determine the array accesses performed by a loop iteration and split
the verification of an array invariant accordingly. Their non-interference condition
between loop iterations is similar, but stronger than our soundness condition (cf.
Section 3.3). Neither work is concerned with specification inference.

A wide range of static analyses and shape analyses employ tailored separation logics
as abstract domain (for example[12, 22, 50, 66, 93]); these works handle recursively-
defined data structures, but no random access data structures, such as arrays and
matrices. Of these works, Gulavani et al. [50] is perhaps closest to ours: they employ
an integer-indexed domain for describing recursive data structures. It would be
interesting to combine our work with such separation logic shape analyses. The
problem of automating bi-abduction entailment checking for array-based separation
logics have been recently studied by Brotherston et al. [21] and Kimura et al. [64],
but has not yet been extended to handle loop-based or recursive programs.

3.7.2 Strengths and Limitations

We now discuss some strengths and limitations of our technique.

Strengths. Our technique is very efficient and produces precise specifications that
are reasonably concise and human readable. In particular, the inferred specifications
are suitable for automated tools, such as program verifiers, but they can also be
used for other applications: For instance, the specifications can be leveraged to
automatically construct a condition that expresses whether an iteration of a loop
writes to a location read by other loop iterations, which can be automatically be
checked using an SMT solver in order to determine whether the loop can safely be
parallelised.

By being based on a purely syntactic analysis for loop-free code, our approach
inherently supports complex conditions appearing in the input program, without
the need for a sophisticated abstract domain as used, for example, in abstract
interpretation. Imprecisions are only introduced – if at all – when results for individual
loop iterations are generalised to multiple iterations. As we have demonstrated with
our evaluation, these imprecisions typically originate from the precursory numerical
analysis and can be solved by either switching to a more precise numerical analysis
or by manually strengthening the loop invariants.

Moreover, our inference depends only on widely available numerical analyses.
Even the progressive invariants – used to distinguish between past and future loop
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iterations and leveraged for our permission invariants – can be obtained by running
an off-the-shelf analysis on a transformed version of the input program.

Limitations. A limitation of our approach is that our postconditions cannot capture
situations in which a statement obtains permissions to locations for which no pre-state
expression exists; for example, postconditions cannot capture permissions obtained
through the allocation of new arrays. Moreover, while it would not be hard to support
non-recursive method calls, it would be non-trivial to extend our approach to also
support recursive method calls. In Section 3.7.3 below, we briefly outline how these
limitations could be addressed.

Although our inferred specifications are proven sound, they are not guaranteed to
be automatically verifiable. To see why, recall that our permission expressions range
over all arrays and indices; therefore, their respective assertion can, in general, only
be expressed using quantifiers (which makes verification undecidable). Typically,
SMT solvers – and, by extension, also program verifiers – require triggers to handle
quantifiers [33].

3.7.3 Future Directions
One possible future direction would be to support richer control flow, for example,
by extending the technique to an interprocedural analysis. As already indicated,
an extension to programs with no recursion is rather straightforward: Method calls
can be handled by applying our analysis bottom-up in the acyclic call graphs and
modelling the permission transfer of method calls using inhale and exhale statements.
Supporting recursion, however, seems significantly more challenging as, for example,
permission preconditions for recursive methods depend on the permissions required
by themselves. A conceivable approach could be to introduce symbolic placeholders
for such specifications, use an adaption of our technique to infer constraints on them,
and then use some kind of solver to synthesise a suitable permission expression.

In order to make our inference support memory allocation, the backwards analysis
used to infer the permission differences could be rephrased as a forward analysis;
such an analysis would likely have similarities with a strongest postcondition calculus
and introduce existential quantifiers for assignments. These existentials would either
have to be supported by our maximum elimination algorithm or be solved in another
way.
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In the previous chapter, we have described a permission inference for the important
class of array-manipulating programs. Another important and complementary class
of heap-manipulating programs operates on linked data structures. Many of these
data structures – for example, list-like and tree-like structures – exhibit sufficient
regularity to admit a recursive definition. In this chapter, we present a novel learning-
based permission inference that is targeted at programs manipulating such recursively
defined data structures.

The Problem. Our goal is to infer permission specifications that can be used directly
in a standard verification workflow. To make this possible, the inference needs to
satisfy the following main requirements:

• Comprehensive specifications: The inference provides all permission specific-
ations required by a verifier. This includes all method preconditions and
postconditions, loop invariants, but also the predicate definitions of any recurs-
ively defined data structures at hand.

Moreover, to prevent indefinite unrolling of recursive predicate definitions,
most automated verifiers use an isorecursive semantics [100] that distinguishes
between a predicate instance and its body. These verifiers require additional
guidance to manipulate predicate instances, which is typically provided via
ghost code consisting of designated unfold and fold statements that exchange
a predicate instance with its body and vice versa, and lemma applications in
cases where an inductive argument is required. To ensure that the inferred
specifications can readily be consumed by an isorecursive verifier, they have to
include all the required ghost operations.

• Wide applicability: The inference handles a large spectrum of data structures,
including recursive structures, acyclic structures, and structure with back-
pointers. Moreover, it also handles a wide range of control structures, such as
iteration and mutual recursion. Moreover, in order to support modular verific-
ation, it should itself be able to operate on individual modules; for example,
infer specifications for a collection of method without having its clients.
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• Specification process: The inferred permission specifications must be concise
and readable, such that they are amenable for programmers to extend them
to also express functional properties. Moreover, the inference should handle
programs with partial specifications, for instance because the code at hand
calls into already-specified libraries, or because the programmer provides initial
specifications to guide the inference.

Our Approach. As already indicated in Chapter 1, our approach is based on the ICE
framework [47], where a teacher and a learner work in tandem to iteratively infer
specifications. Roughly speaking, in every iteration, the learner proposes candidate
specifications, collectively called hypothesis, for the input program.

The teacher employs a verifier to check whether this hypothesis is valid, that is,
checks whether it provides permissions with which the input program can be verified.
If the verification succeeds, the inference terminates successfully and returns the
current hypothesis. Otherwise, the teacher produces a sample that characterises the
missing permission responsible for the verification failure and communicates it to
the learner. Our teacher uses the verifier as an oracle for the program semantics.
That is, it extracts all information needed by the learner from the verification failure
and the verifier’s counterexample. This includes the memory location to which the
permission is missing and the failing program trace; our samples comprise both.

The learner combines the current and all previous samples and proposes a hy-
pothesis for the next iteration. This hypothesis is produced by first generating a
parameterised template and then finding suitable parameters using an SMT solver.

Our approach satisfies the three requirements stated above:

• Comprehensive specifications: Our samples are defined over traces rather than
individual states, which enables us to infer all specifications for a program
simultaneously, including predicate definitions and the ghost code and lemmas
required by isorecursive verifiers.

• Wide applicability: The specification templates our learner synthesises from
the samples are general enough to capture linked list and tree-like structures.
Our inference supports both iteration and (mutual) recursion. It is modular,
that is, can handle libraries without requiring client code.

• Specification process: Driven by verification errors, our inference gradually
extends specifications, until the verification succeeds. This approach does not
formally guarantee minimal specifications, but in practice produces concise and
human-readable specifications, as demonstrated by our evaluation in Section 4.6.
Moreover, it also supports partial specifications.
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Contributions. We make the following technical contributions:

1. We present a novel black-box inference for permission specifications. Our
samples summarise the permission constraints of entire traces rather than
individual states, which allows us to generate the specifications for an entire
program, by simultaneously inferring method preconditions and postconditions,
loop invariants, and recursive predicate definitions.

2. We extend the inference to automatically generate all ghost code required to
manipulate isorecursive predicates.

3. We implement our approach based on the Viper verification infrastructure [83].
Our evaluation demonstrates that our technique is reasonably efficient and
effective for a wide range of examples.

Chapter Outline. The rest of this chapter is structured as follows. First, in Section 4.1
we provide some background and outline our learning framework. In Section 4.2,
we detail the teacher. In Section 4.3, we then describe the learner in more detail.
Subsequently, in Section 4.4, we present a concrete SMT encoding that can be used
by our learner to synthesise appropriate specifications using an off-the-shelf SMT
solver. Afterwards, in Section 4.5, we describe how to overcome the challenges posed
by using a verifier supporting isorecursive predicates. Finally, in Section 3.7, we
conclude the chapter with a short discussion.

4.1 Learning Framework
Next, we give an overview of our learning framework. In particular, we introduce its
individual components and describe how they interact in order to infer permission
specifications.

Section Outline. Below, we start this section by providing some background in Sec-
tion 4.1.1 and then outlining our learning framework in Section 4.1.2. In Section 4.1.3,
we proceed by introducing and discussing our running example. After that, we form-
ally define the interface between the teacher and the learner, which allows us to
treat them independently: This interfaces comprises of the hypotheses, described in
Section 4.1.4, and the samples, introduced in Section 4.1.6. Before the introduction
of the samples, however, Section 4.1.5 we first formally define the state and trace
abstraction used by our samples. In Section 4.1.7, we conclude this section by
discussing the formal guarantees provided by our learning framework.
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4.1.1 Background

In recent years, many learning-based inference techniques emerged [5, 6, 26, 46, 95, 96].
These works popularised the guess and check paradigm implemented via a teacher
and a learner that also our inference is based on. In contrast to white-box techniques
which synthesise specifications cognisant of the program semantics, the learner of
such a guess and check approach is black-box and generates candidate specifications
based only on the information – that is, the samples – communicated by the teacher.
Roughly speaking, early learning-based approaches employed two kinds of samples:
examples that indicate which program states have to be allowed by the specifications,
and counterexamples that indicate which ones have to be excluded. However – as
illustrated below – neither kind of sample is suitable to indicate that the current
specifications are not inductive, that is, allow a program state from which there is
an execution leading to another program state in which a specification cannot be
established.

ICE Learning. To address this issue, Garg et al. proposed ICE, a robust learning
framework for synthesizing invariants using examples, counterexamples as well as
implications [47]. To illustrate the use for each of these three kinds of samples, let as
assume that we want to prove the Hoare triple

{P } c1 ; while (b) {c2} ; c3 {Q }

and, in order to do so, need to infer a suitable loop invariant I first. The inferred
loop invariant should satisfy the following three properties:

• First, the loop invariant I it must be weak enough to be implied by the
precondition P across the statement c1 before the loop; that is, formally, it
must satisfy {P } c1 { I }. If this is not the case, the loop invariant forbids a
program state σ that must be allowed by a valid loop invariant; the teacher
communicates this to the learner by passing a positive sample, which requires
the loop invariant to allow the state σ.

• Second, the loop invariant I must be strong enough to – in conjunction with
the negation of the loop condition – imply the postcondition Q across the
statement c3 after the loop; that is { I ∧ ¬b } c3 {Q }. If this is not the case,
the current loop invariant allows a program state σ that must be excluded
by any valid loop invariant; the teacher communicates this to the learner by
passing a negative sample, which requires the invariant to disallow the state σ.
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• Third, the loop invariant I must be inductive and – in conjunction with the loop
condition – imply itself across the loop body c2; that is { I ∧ b } c2 { I }. If this
is not the case, the current loop invariant allows a program state that leads to
another program state that it excludes. This can be fixed by either disallowing
the former program state or by including the latter. The key insight of the
ICE framework is that – since the teacher does not know the precise invariant
– it cannot know whether it should pass a positive or negative example and
that it would be incorrect to make an arbitrary choice. The solution proposed
by Garg et al. is to use an implication sample instead; this implication sample
carries the intuitive meaning that if the loop invariant allows the former state
then it must also allow the latter state.

Advantages of Learning. A learning-based approach has many advantages over a white-
box technique. Most prominently – due to the guess-and-check nature of the approach
– the learner is unaware of the program semantics and therefore also synthesises
specifications for an arbitrarily complex program, as long as it can be verified using
specifications within the hypothesis space.

White-box techniques typically require additional heuristics or tactics to generalise
the inferred specifications. For example, abstract interpretation uses the widening
operator for this purpose [28]; designing them is not easy, as it is notoriously hard to
strike the right balance between maintaining precision and achieving a strong enough
generalisation that ultimately guarantees convergence. In contrast, learning-based
approaches typically try to find the simplest possible specifications permitted by the
current set of samples and thereby inherently achieve generalisation.

Finally, a learning-based approach allows the integration of a concrete verifier.
As a consequence, the inferred specifications are, by construction, readily verifiable.
Moreover, the teacher does not need to duplicate the semantics of the programming
language at hand.

4.1.2 Overview

Next, we give an overview of our learning framework. We do this by informally
describing all components and how they work in tandem to iteratively infer permission
specifications; in particular, we point out how our approach compares to the standard
ICE framework and in which points it differs therefrom. An outline of our learning
process is shown in Figure 4.1.
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Figure 4.1. An overview of the inference process: The teacher attempts to verify the given input
program with respect ot the current candidate specifications, collectively called hypothesis.
If the verification fails due to a missing permission, the teacher extracts a sample from
the reported verification counterexample; this sample represents a constraint characterising
the missing permission. Based on all samples produced by the teacher so far, the learner
synthesises a new hypothesis that provides the missing permission. This process is iterated
until the verification succeeds or the learner has accumulated an unsatisfiable set of constraints.
Note that the case where the verification fails due to a non-permission failure is omitted in
this overview.

Input. The input to the inference is an input program for which we want specifications
to be inferred. These specifications typically include all method preconditions and
postconditions as well as a loop invariant for every loop in the program.

Hypotheses. A hypothesis provides a candidate for every specification that needs to
be inferred. We call a hypothesis valid if the input program annotated with the
specifications provided by this hypothesis verifies successfully.

Main Loop. In every iteration, the teacher constructs a query program by annotating
the input program with the specifications provided by the current hypothesis. If the
verification succeeds, the inference terminates and returns the current hypothesis.
Otherwise, the teacher produces a sample that characterises the missing permissions
responsible for the permission failure and sends it to the learner. The teacher uses
the verifier as a black box; that is, it extracts all information to construct a sample
from the reported failure and the verification counterexample.

The learner combines the newly produced sample with all previous samples and
synthesises another hypothesis that is consistent with all these samples. The learner
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does this by generating specification templates and then employs a solver to reify
these templates into concrete specifications.

The inference fails if either the teacher encounters a verification failure that is not
caused by a missing permission or if the learner’s accumulated constraints become
unsatisfiable. Note that the former case cannot be fixed by inferring a suitable
permission specification; we therefore exclude this case in the following by assuming
that all verification failures are due to missing permission.

Abstract Samples over Traces. The standard ICE framework uses concrete program
states as samples. In contrast, we produce symbolic samples over traces. Intuitively,
our samples consist of a sequence of specifications and a permission amount, and
bound the sum of the corresponding permission changes – where inhaled specifications
contribute positively and exhaled specifications negatively – to be at least said
permission amount. This novel approach has several important advantages:

• Using symbolic samples does not require footprint information obtained from
the verifier to be reified into concrete program states.

• A single symbolic sample can summarise many concrete program states at once,
which reduces the number of iterations between the teacher and the learner.

• Using samples over traces enables us to represent disjunctive constraints in
a natural way: If there is more than one inhaled specification along a trace
our samples only require that they collectively – in their sum – provide the
missing permission. The choice as to which specification ultimately includes
the permission is left to the learner.

• Moreover, in a context where fractional permissions are used, the permission
sums also allow the learner to propose specifications that split required permis-
sion gains over multiple specifications: For instance, a full permission may be
provided via two separate specifications that each contribute one half of it.

It is also worth pointing out that we only use two types of samples, which we
will refer to as regular samples4, and implication samples. The former are the

4: We call them regular samples since – depending on how we think about them – we can either
interpret them as positive or as negative samples: On one hand, regular samples impose
bounds on the gained permissions and therefore exclude concrete program states and traces.
From this point of view, regular samples are negative samples. On the other hand, if we think
of them in terms of the permissions that are required to be included in the specifications,
they can justifiable also be seen as positive samples.
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aforementioned samples over traces, while the latter are – just like in the standard
ICE framework – used to address non-inductiveness. Note that, in the context of
our work where we aim to infer all program specifications at once, inductiveness
does not only apply to loop invariants, but any constellation where we have cyclic
dependencies between specifications; examples are preconditions and postconditions
of recursive and mutually recursive method calls, or resource invariants.

Requirements. Our inference framework can be instantiated for different programming
languages, permission models, verifiers, and solvers. For concreteness, all elaborations
below are with respect to the language introduced in Section 2.3 with a specification
language based on implicit dynamic frames [98] and fractional permissions [16].

• To annotate the input program with the current hypothesis, our teacher needs
to understand where the verifier syntactically expects specifications, but not
the semantics of the input program.

• Our inference requires that the verifier returns a verification counterexample in
cases where the verification results in a permission failure. This counterexample
needs to contain information about the missing permission and the verification
trace that caused the permission failure. In particular, the teacher needs to be
able to determine for which heap location permissions were missing.

• The underlying program semantics must be reasonably well-behaved with
respect to permissions. Roughly speaking, we assume that the standard separ-
ation logic frame rule holds for our program semantics; the precise assumption
is formalised in Section 4.2.2.

• We initially assume a verifier with equirecursive predicates; in Section 4.5, we
then address the additional challenges posed by integrating an isorecursive
verifier into our inference framework.

4.1.3 Running Example
We consider the contains method shown in Listing 4.2; In the elaborations below, we
restrict ourselves to the loop in the method’s body and illustrate how our technique
infers a suitable loop invariant.

Hypothesis Space. The inference starts with an initial hypothesis H1 containing no
permissions; that is, the invariant provided by the initial hypothesis is H1(inv) ≡ true.
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1 method contains(head: Node, key: Int) returns (found: Bool)
2 requiresH(pre)
3 ensuresH(post)
4 {
5 var node: Node
6 node := head
7 found := false
8 while (node 6= null ∧ ¬found)
9 invariantH(inv)

10 {
11 if (node.val= key) {
12 found := true
13 } else {
14 node := node.next
15 }
16 }
17 }

Listing 4.2. Our running example consisting of an iterative implementation of a method contains
that checks whether the linked-list starting at head contains a value that is equal to key.

In general, specifications inferred by our inference, can be thought of to have the
form

n∗
i=1

(bi ⇒ ri), (4.1)

for some n ∈ N, where each boolean expression bi, called guard, determines when the
resource ri is required. The latter is either an accessibility predicate ri ≡ acc(e.f, q)
or an instance of a recursive predicate ri ≡ p(~e ) introduced by our inference. For the
sake of this example, we only consider accessibility predicates with full permissions,
that is, q = 1.

First Iteration. Using the initial hypothesis H1, the teacher attempts to verify the
input program. We assume that the verifier reports missing permissions to access
node.val in the condition on line 11, together with a verification counterexample that
includes the trace leading up to the permission failure. The teacher produces a
sample that, in its simplified form, can be represented as

〈〈inv, {node 6= null}〉︸ ︷︷ ︸
snapshot

, acc(node.val)︸ ︷︷ ︸
permissions

〉.

The first part of the sample is a simplified representation of a so-called snapshot that
we will introduce later in Section 4.1.5 and indicates that the loop invariant was
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encountered along the failing trace. This tells the learner that the missing permission
can be provided by adding permissions to the loop invariant. The inequality node 6= null
in the snapshot above captures which states lead to the permission failure and
originates from the loop condition. The second part of the sample represents a lower
bound on the permissions that must be provided by future hypotheses. Note that, in
general, a sample can consist of multiple snapshots as more than one specification
may be encountered along a failing trace.

Based on this sample, the learner first generates the specification template

τinv ≡ b?1 ⇒ acc(node.val),

where b?1 represents an undetermined guard. The learner then uses a solver to
determine the guard such that the resulting hypothesis satisfies the constraint
imposed by the sample. A suitable choice is b?1 ≡ true; this yields a hypothesis with
H2(inv) ≡ acc(node.val) which is then used in the second iteration.

Second Iteration. Analogous to the first iteration, in order to allow accessing the field
node.next on line 14, the second iteration adds the conjunct acc(node.next) to the loop
invariant. This yields a hypothesis H3(inv) ≡ acc(node.val) ∗ acc(node.next) for the
third iteration.

Third Iteration. In the third iteration, the loop invariant already provides sufficient
permissions to successfully execute the loop body. However, the verifier reports that
re-establishing the conjunct acc(node.val) of the loop invariant at the end of the loop
iteration may require the permissions acc(node.next.val) at the beginning of the loop
invariant. In general, a permission failure caused by the current hypothesis can
be resolved in two ways: Either by adding more permissions to the specifications
such that the missing permission is present, or by removing permissions from the
specifications such that the missing permission is no longer needed. The teacher
therefore produces an implication sample that captures this choice. In our case, this
implication sample can be represented as

〈〈inv, {node 6= null}〉, acc(node.val)〉︸ ︷︷ ︸
left-hand side sample S1

→ 〈〈inv, {node.next 6= null}〉, acc(node.next.val)〉︸ ︷︷ ︸
right-hand side sample S2

The implication sample consists of two regular samples (labelled with S1 and S2,
respectively) and roughly speaking carries the meaning that whenever the specifica-
tions satisfy the constraint imposed by the left-hand side sample S1 they also need
to satisfy the constraint imposed by the right-hand side sample S2. As the sample
produced in the first iteration requires that the left-hand side of this implication
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is satisfied, the next candidate for the loop invariant must provide the permission
acc(node.next.val) mentioned by the right-hand side of the implication.

Forwarding to Last Iteration. Extrapolating this process suggests that the access paths
appearing in the loop invariant will grow indefinitely. We address this issue by
allowing the learner to introduce a recursive predicate once a some threshold on
the length of the access paths appearing in the samples is reached. That is, the
learner syntactically analyses all field accesses appearing in the samples and tries to
detect potential recursions; it then automatically generates a template for a recursive
predicate and introduces suitable predicate instances (cf. Section 4.3.1). For our
example, we jump to the last iteration and assume that the learner generates the
following templates, where rec(x) is a recursive predicate introduced by the learner:

τinv ≡ (b?1 ⇒ acc(node.val)) ∗ (b?2 ⇒ acc(node.next)) ∗ (b?3 ⇒ rec(node))

τrec ≡ (b?4 ⇒ acc(x.val)) ∗ (b?5 ⇒ acc(x.next)) ∗ (b?6 ⇒ rec(x.next))

For appropriate choices of the guards b?1, . . . , b?6, this yields a hypothesis, where
the loop invariant is H(inv) ≡ rec(node) and the body of the recursive predicate is
H(rec) ≡ x 6= null⇒ acc(x.val) ∗ acc(x.next) ∗ rec(x.next). The loop invariant provided by
this hypothesis is sufficient to verify the loop in the next iteration, and the inference
terminates successfully. In practice, the learner may not immediately come up with
suitable guards and require additional iterations before arriving at a valid hypothesis.

4.1.4 Hypotheses

Next, we describe how hypotheses are represented in our formal exposition, define
the shape of the specifications they comprise, and briefly elaborate how they affect
the program semantics.

Identifying Specifications. We recall that a hypothesis provides a candidate for every
specification that needs to be inferred. We introduce a unique identifier id for each
of these specifications and use I to denote the set containing all these identifiers.

Definition 4.1.1. » A hypothesis H : is a function mapping specification identifiers id
their corresponding candidate specification H(id). Each of these candidate spe-
cifications H(id) is an assertion that may depend on some parameters ~xid. We
use H(id, ~e ) :≡ H(id)[~e \~xid] to denote the specification H(id) instantiated with the
arguments ~e. «
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The parameters ~xid of a candidate specification may be any subset of the program
variables that are defined in the respective scope. For the purpose of this work, we
restrict ourselves to reference-typed variables. As we will see below, this restriction
is justified by the kind of terms that we use as the basic building blocks for our
specifications.

Example 4.1.2. » For the contains method from our running example shown in List-
ing 4.2, our inference introduces specification identifiers for the method precondi-
tion pre and postcondition post as well as for the loop invariant inv. The method
precondition and postcondition may both depend on the method parameter head,
whereas the loop may additionally depend on the local variable node; that is, we have
~xpre = ~xpost = 〈head〉 and ~xinv = 〈head, node〉. «

The instantiation of the specification parameters with some given arguments is
required whenever we need to adapt a specification to its context.

Example 4.1.3. » For any method call, to represent the method’s specification in the
context of its caller, the formal parameters have to be substituted with the actual
arguments. For instance, if we consider the method call contains(list, 42), we can
use H(pre, 〈list〉) ≡ H(pre)[list\head] to express the method’s precondition at the call
site. «

Definition 4.1.4. » A hypothesis H is valid if and only if the input program annotated
with this hypothesis verifies successfully. «

Shape of Specifications. The shape of our specifications can be described by the fol-
lowing grammar:

A ::= true | A ∗A | b⇒ A | acc(e.f, q) | p(~e )

Note that any assertion that can be derived in this grammar can easily be rewritten
into the general form mentioned in our running example and shown in Equation (4.1).
The reason why we keep the grammar above slightly more general than this form is
to allow the recursive predicates introduced by our learner to include an additional
truncation guard required for predicate segments (cf. Section 4.3.3).

Resource Guards. Our inference is parametric with respect to the candidate guards b
used in our specifications. However, for the sake of concreteness, we use guards in
disjunctive normal form over a fixed set of so-called atoms. For our evaluation, we
instantiate this set of atoms to be the set containing all equality terms that can be
formed from null and all reference-typed variables currently in scope.
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1 method client() {
2 var cell: Cell
3 cell := new Cell(42)
4 swap(cell, cell)
5 }
6

7 method swap(one: Cell, two: Cell)
8 requiresH(pre)
9 {

10 var tmp: Int
11 tmp := one.val
12 one.val := two.val
13 two.val := tmp
14 }

Listing 4.3. A simple swap method with a client method that indicates that the two cells passed
as arguments may alias.

Example 4.1.5. » For a specification with parameters ~xid = 〈one, two〉, we use the set of
atoms {one= null, two= null, one= two}. «

This choice of atoms is motivated by the following observations:

• First, a specification that unconditionally requires a permission acc(e.f) impli-
citly also requires the receiver expression to be non-null, that is, e 6= null. In
contrast, a specification requiring e 6= null ⇒ acc(a.f) allows states in which
e = null.

• Second, it is rather common for permission specifications to include certain per-
missions only if two references do not alias. As illustrated by the Example 4.1.6
below, this can be used to avoid requiring a permission twice in case two
receiver expressions alias.

Example 4.1.6. » Let us consider the swap method shown in Listing 4.3. Looking at this
method in isolation, we – and also our inference, for that matter – may come to the
conclusion that H(pre) ≡ acc(one.val) ∗ acc(two.val) is a suitable method precondition.

If we consider the method call swap(cell, cell) on line 3, however, this precondition
translates to requiring the permission acc(cell.val) twice, which cannot be satisfied
and therefore is equivalent to false. In order to make the precondition feasible for
the client method, the precondition may only require the two permissions acc(one.val)
and acc(two.val) simultaneously if one 6= two; a precondition that achieves this is, for
instance, H(pre) ≡ acc(one.val) ∗ (one 6= two⇒ acc(two.val)). «
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Parameterised Transition System. We now discuss how the current hypothesis affects
the program semantics. Recall that, in each iteration, the teacher constructs a
query program that checks whether the input program annotated with the current
hypothesis verifies. This means that the semantics of the query program depends on
the current hypothesis. For the elaborations in this chapter, we therefore formalise
the program semantics as a transition relation  H⊆ Γ × Γ that is parameterised
by a hypothesis H. We use  :=

⋃
H H to denote the transition relation that

summarises the transitions for all possible hypotheses. For any hypothesis H, an
H-trace is a trace with respect to the transition relation  H .

Permission Changes. Next, we have closer look at how a hypothesis affects the permis-
sions held along any trace. To this end, we distinguish between program transitions
and hypothesis transitions. The former describe transitions that correspond to pro-
gram statements and are therefore independent of the current hypothesis, whereas
the latter describe a transition in which a specification is inhaled or exhaled. For
any trace t of length k, we use It ⊆ {1, . . . , k} to denote the indices corresponding to
hypothesis transitions. The distinction between program transitions and hypothesis
transitions may seem rather apparent but is rather central for our inference: We
can control the permission changes caused by hypothesis transitions by choosing a
suitable hypothesis; In contrast, program transition remain unaffected by the current
hypothesis.

Definition 4.1.7. » For all traces t of length k and all i ∈ {1, . . . , k− 1}, the permission
changes in the i-th step of the trace t are defined as

∆t(i) := πi+1 − πi,

where πi and πi+1 denote the permission maps corresponding to the configurations
t[i] and t[i+ 1], respectively. «

We observe that, for any trace t and any index i ∈ It, we have

∆t(i) = ±JAKΠ(σ),

where A := H(id, ~e ) denotes the specification encountered in the i-th step of the
trace t, σ denotes the state corresponding to the i-th configuration t[i], and the sign
depends on whether the specification was inhaled or exhaled.

4.1.5 State and Trace Abstractions
Next we will give the formal definitions for the state and trace abstractions that will
be used for our samples.
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State Abstractions. As mentioned earlier, our inference employs symbolic samples.
Apart from the benefits that come from using symbolic samples there is also another,
more technical motivation: A verifier may internally abstract over many concrete
program states; for example, a verifier based on symbolic execution may collect the
path constraint a 6= null but leave the precise object to which a points undetermined.
Therefore, by extension, the verification counterexample may only be detailed enough
to describe an abstract verification trace that summarises multiple concrete program
traces. Thus, conceptually, there is a pair of a state abstraction function αΣ : Σ → Σ̂

and a state concretisation function γΣ : Σ̂ → 2Σ mapping between concrete states Σ

and abstracts states Σ̂ and vice versa. Note that an abstract state may represent
multiple concrete states at once, which is why the concretisation function maps to
sets of states. Neither function will ever be explicitly computed; they exist merely
for the purpose of our formalisations.

Boolean Evaluation. As we will see later, the teacher as well as the learner need to be
able to evaluate certain boolean expressions in a given abstract state. However, as
an abstract state σ̂ corresponds to a set γΣ(σ̂) of potentially many concrete states,
it might not be possible to uniquely define the value of the expression. Therefore,
we introduce two functions TbU(σ̂) and VbW(σ̂) that under-approximate and over-
approximate, respectively, the value of the boolean expression b in the abstract
state σ̂. More formally, we require that

TbU(σ̂) ⇒ ∀σ ∈ γΣ(σ̂) : JbK(σ)

∀σ ∈ γΣ(σ̂) : JbK(σ) ⇒ VbW(σ̂),

for all boolean expressions b and abstract states σ̂.

Example 4.1.8. » Let us consider an abstract state σ̂ in which x is known to be null
but the value of y is unknown. For such an abstract state, we have Tx= nullU(σ̂) and
¬Tx 6= nullU(σ̂) as well as ¬Ty= nullU(σ̂) and ¬Ty 6= nullU(σ̂). «

Permission Evaluation. Analogous to the boolean expressions, we also introduce two
functions TAUΠ(σ̂) and VAWΠ(σ̂) that under-approximate and over-approximate,
respectively, the permissions captured by the assertion A in the abstract state σ̂.
More formally, for all assertions A and all abstract states σ̂, we require

TAUΠ(σ̂) v min
σ∈γΣ(σ̂)

{JAKΠ(σ)}

max
σ∈γΣ(σ̂)

{JAKΠ(σ)} v VAWΠ(σ̂).
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Example 4.1.9. » For an accessibility predicate acc(e.f, q) and some abstract state σ̂,
we can compute Tacc(e.f, q)UΠ(σ̂) = πzero[〈o, f〉 7→ q] in cases where we are sure that
JeK(σ) = o, for all σ ∈ γΣ(σ̂), and Tacc(e.f, q)UΠ(σ̂) = πzero, otherwise. Moreover, the
we can approximate guarded assertions as

Tb⇒ AUΠ(σ̂) =

TAUΠ(σ̂) if TbU(σ̂)

πzero otherwise.

Finally, permissions corresponding to separating conjunctions can be approximated
by TA1 ∗A2UΠ(σ̂) = TA1UΠ(σ̂) + TA2UΠ(σ̂). «

Snapshots. Intuitively, a snapshot captures a state in which a specification is in-
haled or exhaled along the failing trace and carries enough information to compute
the permission changes corresponding to compute the related permission changes
corresponding to any trace permitted by some future hypothesis.

Definition 4.1.10. » A snapshot ε = 〈±, id, ~e, σ̂〉 is a tuple consisting of a sign ±, a
specification identifier id, a vector of arguments ~e, and an abstract state σ̂. Moreover,
in order to easily refer to the states abstracted by σ̂, we define γΣ(ε) := γΣ(σ̂). «

The snapshot ε = 〈±, id, ~e, σ̂〉, captures that the specification H(id, ~e ) was en-
countered in some state σ ∈ γΣ(σ̂); and the sign ± indicates whether the specification
was inhaled or exhaled.

For the sake of shorter notation, for all snapshots ε = 〈±, id, ~e, σ̂〉, and all boolean
expressions, we define

TbU(ε) := Tb[~e \~xid]U(σ̂)

VbW(ε) := Vb[~e \~xid]W(σ̂)

and, analogously, for all assertions A, we also define

TAUΠ(ε) := TA[~e \~xid]UΠ(σ̂)

VAWΠ(ε) := VA[~e \~xid]WΠ(σ̂).

Trace Abstractions. As already mentioned, our samples abstract over entire traces.
Roughly speaking, we abstract a trace by focusing on only the states in which spe-
cifications were encountered and computing the corresponding sequence of snapshots;
this gives us enough information to determine how a given hypothesis affects the
permission changes along the original concrete trace.
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inhaleH(id1, ~e1) exhaleH(id2, ~e2) inhaleH(id3, ~e3)

γΣ(σ̂1) γΣ(σ̂2) γΣ(σ̂3)

σj1 σj2

σj3

Figure 4.4. A trace abstracted by a sequence of snapshots.

In the following, we define this trace abstraction more formally; this is easiest
done algorithmically. That is, we consider an arbitrary trace t and describe how to
compute its abstraction αT (t). To this end, let us consider the trace’s specification
indices in ascending order: It = {j1, . . . , jn}, where ji < ji+1, for all i ∈ {1, . . . , n−1}.
For each encountered specification, we compute the corresponding snapshot. That
is, for all i ∈ {1, . . . , n}, we compute the snapshot εi = 〈±i, idi, ~ei, σ̂〉, where the
sign ±i indicates whether the encountered specification H(idi, ~ei) was inhaled and
exhaled and the abstract state σ̂i captures the state σji in which the specification
was evaluated; that is σji ∈ γΣ(σ̂i). As illustrated in Figure 4.4, the trace abstraction
is then given by the sequence of snapshots αT (t) = 〈ε1, . . . , εn〉.

Note that this trace abstraction function uniquely defines a corresponding con-
cretisation function: Specifically, for all sequences of snapshots 〈ε1, . . . , εn〉, we
have

γT (ε1, . . . , εn) := {t ∈ T | αT (t) = 〈ε1, . . . , εn〉}.

4.1.6 Regular and Implication Samples

We are now ready to formally introduce the samples used by our learning framework.

Regular Samples. A regular sample is used whenever the teacher needs to communicate
to the learner that a permission is missing and is defined as follows:

Definition 4.1.11. » A regular sample S = 〈ε1, . . . , εn, δ〉 is a tuple consisting of a
(potentially empty) sequence of snapshots ε1, . . . , εk and a permission map δ. «

Such a regular sample S = 〈ε, . . . , εn, δ〉 carries the intuitive meaning that the
cumulative permission changes caused by the inhaled and exhaled specifications along
any trace captured by the snapshots ε1, . . . , εn have to be at least δ.
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Implication Samples. An implication sample is used whenever there are insufficient
permissions to establish a specification and the teacher needs to communicate to the
learner that – as explained in our running example (cf. Section 4.1.3) – it can either
fix the problem by adding the missing permission or by removing the permission
from the specification that caused the permission failure.

Definition 4.1.12. » An implication sample S = S1 → S2 consists of two regular
samples S1 and S2. The samples S1 and S2 are referred to as the left-hand side and
the right-hand side of S, respectively. «

Such an implication sample S = S1 → S2 carries the intuitive meaning that
whenever a hypothesis satisfies the left-hand side S1, then it must also satisfy the
right-hand side S2.

Consistent Hypotheses. Next, we formally define under which conditions a hypothesis
is consistent with a sample. To facilitate this, we first make the following auxiliary
definition:

Definition 4.1.13. » A hypothesis H is ∀-consistent with a regular sample S if and
only if, for all H-traces t with t ∈ γT (S), we have δ v

∑
i∈It ∆t(i). Similarly, a

hypothesis H is ∃-consistent with a regular sample S if and only if there is an
H-trace t with t ∈ γT (S) such that δ v

∑
i∈It ∆t(i). «

The consistency with respect to regular and implication samples can then be
defined as follows:

Definition 4.1.14. » A hypothesis H is consistent with a regular sample S if and only
if it is ∀-consistent with the sample S. «

Definition 4.1.15. » A hypothesis H is consistent with an implication sample S1 → S2

if and only if it is ∃-consistent with the left-hand side sample S2 and ∀-consistent
with the right-hand side sample S2. «

Example 4.1.16. » As an example for a regular sample, let us recall the sample from
the first iteration of our running example (cf. Section 4.1.3). For convenience, we
repeat this sample in its full form here:

S = 〈〈+, inv, ~xinv, {node 6= null}〉, δ〉,

where ~xinv = 〈head, node〉 and δ denotes a permission map capturing a single permission
for the field access node.val. A hypothesis H is consistent with this sample S if and
only if the invariant H(inv, ~xinv) provides the permission acc(node.val).
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As an example for an implication, let us recall the third iteration of our running
example. There, the teacher produced the implication sample S1 → S2 with

S1 = 〈〈+, inv, ~xinv, {node 6= null}〉, δ〉

S2 = 〈〈+, inv, ~xinv{node.next 6= null}〉, δ′〉,

where δ is as above and δ′ denotes a permission map capturing a single permission
for the field access node.next.val. A hypothesis H is consistent with this sample S if
and only if the invariant H(inv, ~xinv) does not provide the permission acc(node.val) or
does provide both permissions acc(node.val) and acc(node.next.val). «

4.1.7 Formal Guarantees
To wrap up the framework section, we now discuss the formal guarantees provided
by our inference. In particular, we formalise the precise criteria that need to be met
by the teacher and the learner.

Soundness. Our technique is sound by construction. This stems from the fact that –
as we will elaborate in more detail in Section 4.2 – our teacher satisfies the following
lemma.

Lemma 4.1.17. » In every iteration, the query program generated by the teacher verifies
if and only if the input program annotated with the current hypothesis verifies. «

As a consequence and as stated by the following theorem, the specifications inferred
by our technique are sound.

Theorem 4.1.18. » Assuming that the underlying verifier used by the teacher is sound,
the specifications inferred by our inference are sound. «

Proof. The claim directly follows from Lemma 4.1.17 and the fact that the query
program checking the final hypothesis in the last iteration verifies successfully. �

Progress and Termination. Roughly speaking, our inference makes progress as any
sample produced by the teacher indicates that the verifier has found a deficiency
with the current hypothesis, which the teacher then immediately fixes by the learner
proposing a next hypothesis that is consistent with this newly produced sample. The
following two lemmas formalise this notion:

Lemma 4.1.19. » In every iteration, the current hypothesis is inconsistent with any
newly produced sample. «
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Lemma 4.1.20. » Any newly synthesised hypothesis is consistent with all samples pro-
duced by the teacher so far. «

The proof of Lemma 4.1.19 is deferred until the discussion of the teacher in
Section 4.2. Likewise, the proof of Lemma 4.1.20 is given as part of the discussion of
the learner in Section 4.3.

Theorem 4.1.21. » Our inference is guaranteed to make progress; that is, in every
iteration, the hypothesis synthesised by the learner is different from all previous
hypotheses. «

Proof. The claim immediately follows from combining Lemmas 4.1.19 and 4.1.20. �

As a consequence of Theorem 4.1.21, our inference terminates if there are only
finitely many specifications for the learner to propose.

Corollary 4.1.22. » Our inference terminates if the hypothesis space is finite. «

Proof. We observe that the number of times the inference can make progress is bounded
by the number of hypotheses in the hypothesis space. Thus, if the hypothesis space
is finite, the claim is immediately implied by Theorem 4.1.21. �

4.2 Teacher
In the following, we describe our teacher in more detail. As mentioned in Section 4.1
– in each iteration – the teacher’s task is to construct a query program that checks
the validity of the current hypothesis and to extract a suitable sample from the
verification counterexample if the verification of this query program fails.

Section Outline. Throughout this section, we consider a single iteration of our inference
process. In Section 4.2.1, we first discuss how the teacher performs the construction
of a query program that verifies successfully (ignoring non-permission failures) if and
only if the current hypothesis is valid. Afterwards, we elaborate how the teacher
produces a sample in case of a permission failure. To do this, in Section 4.2.2,
we first investigate how the teacher can extract a constraint from the verification
counterexample that – when satisfied by future hypotheses – prevents the same
permission failure from happening again. Based on this constraint, in Section 4.2.3,
we then describe how the teacher produces new samples.
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4.2.1 Query Programs

We now elaborate how our teacher constructs the query program. We want to point
out that the details of this construction – as one would expect – heavily depend on
which verifier is used by the teacher. Our elaborations are slightly biased towards the
Viper verifier, which we used for our evaluation. We nonetheless tried to keep the
discussion as general as possible and, consequently, at a fairly high level. Roughly
speaking, when constructing the query program, the teacher achieves the following
three points:

• First, the teacher annotates the input program with the specifications from
the current hypothesis. This ensures that the verification of the query program
fails due to a permission failure if and only if the current hypothesis is not yet
valid. To do so, it first locates all points in the program where a specification
is inhaled or exhaled and then inserts the respective specifications from the
current hypothesis at these. For the sake of clarity – in our elaborations below
– we do this by explicitly adding appropriate inhale and exhale statements.

• Second, the teacher uses the specifications as abstraction boundaries to de-
compose the input program into methods containing only loop-free code. As a
result, any potential failing trace (captured by the verification counterexample
in case of a permission failure) will be guaranteed to be finite. As we will
see later, this simplifies some of our elaborations – especially when we will be
dealing with isorecursive predicates in Section 4.5.

• Third, the teacher – if necessary – adds additional instrumentation such that
it will be able to extract all the required information for the samples from the
verification counterexamples.

Below, we briefly outline how our teacher implements these three points.

Havoc Statements. For the sake of our elaborations, we assume that the verifier at
hand supports a havoc(x) statement that assigns an arbitrary value to the variable x.
Note that, if the verifier does not support such a havoc statement, it can easily be
modelled via a call to a method that nondeterministically returns any value. For
any sequence of variables ~x = 〈x1, . . . , xn〉, we write havoc(~x) as a shorthand for
havoc(x1) ; . . . ; havoc(xn).

In the following, we will use havoc statements to encode variable updates; For
instance, the assignment x := e is equivalent to the statement havoc x ; inhale x= e. An
advantage of constraining the resulting value of an operation via an assertion is that
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it allows us to capture all possible behaviours of an operation in cases where the
resulting value of a variable is not uniquely determined. For example, the effect of a
call x := random(0, 10) to a method random returning a random value in the interval
defined by its two parameters can be encoded as havoc x ; inhale 0≤ x ∧ x≤ 10.

Methods and Method Calls. We first explain how method-related specifications are
handled in the query program. To this end, we consider an arbitrary method m
and assume that its precondition and postcondition are identified by pre and post,
respectively.

In order to check whether the method’s precondition provides sufficient permissions
to successfully execute the method, it is inhaled at the beginning of the method’s
body. Conversely, to check whether the method’s postcondition can be established
upon returning from the method, it is exhaled at the end of the method’s body.
Thus, the teacher replaces the method’s body c with

inhale H(pre) ; c ; exhale H(post).

Method calls are modelled by exhaling the called method’s precondition followed by
inhaling its postcondition; this checks whether the caller owns sufficient permissions
to call the method and accounts for the permission from the caller to the callee and
back. That is, the teacher replaces any method call ~x := m(~e ) with

exhale H(pre, ~e ) ; havoc(~x ) ; inhale H(post, ~e ′)

where ~e ′ denotes the sequence obtained from concatenating ~e with ~x (treating return
values as out-parameters), and the expression e does not refer to any variable in ~x.
Note that, in cases where e refers to ~x, we can simply rewrite the method call as
~y := ~x ; ~x := m(e[~y \~x ]), where ~y is a sequence of fresh variables

Loops. Next, we consider an arbitrary loop while (b) {c} and assume that its invariant
is identified by inv. The teacher replaces each such loop with

exhale H(inv) ; havoc(~x) ; inhale H(inv) ∧ ¬b,

where ~x denotes the variables written by the loop body c. This checks whether
the loop invariant is weak enough such that it can be established from upstream
specifications and whether it is strong enough to establish downstream specifications.
The inductivity of the loop invariant can then be checked independently by verifying

inhale H(inv) ∧ b ; c ; exhale H(inv).

This can be achieved, for instance, by constructing a separate method with the code
fragment above as its body and declares all necessary variables.
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Figure 4.5. A schematic depiction of the permission changes along a failing trace and a similar
successful trace

High-Level Concepts. There are many high-level concepts that can be modelled using
permissions. We illustrate how our approach could be used to infer the related
permission specifications for two such concepts:

• Forking and joining a thread can be modelled as exhaling the thread’s precon-
dition and inhaling its postcondition, respectively. That is, the teacher replaces
any t := fork m(~e ) statement with H(pre, ~e ), where pre identifies the precondi-
tion of the forked method. Conversely, each corresponding join t statement is
replaced with inhale H(post, ~e ), where post identifies the postcondition of the
forked method.

• In thread-modular verification, locks are typically associated with a resource
invariant [85], which is inhaled upon acquiring the lock and then exhaled again
when the lock is released. Thus, wherever a lock is acquired, the teacher inserts
an inhale H(res, l) statement, where res identifies the resource invariant and l

refers to the lock object. And, dually, at the point where this lock is released
again, the teacher inserts an exhale H(res, l) statement.

Additional Instrumentation. Depending on the verifier at hand, the query program might
contain additional instrumentation to allow the teacher to extract all the necessary
information from the verification counterexample. For instance, for our prototype
implementation, we had to introduce auxiliary variables that saved the value of local
variables at points where specifications were inhaled or exhaled in order to retrieve
the corresponding program states.
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4.2.2 Learning from Failures

An unsuccessful verification of the query program resulting in a permission failure
indicates that the verifier found a trace that leads to a final state with insufficient
permissions to continue the execution. Below, we investigate how the teacher can
extract a constraint from a corresponding verification counterexample and then
communicate this constraint via a sample to the learner in order to ensure that
any future hypotheses proposed by the learner will not exhibit the same permission
failure again.

Roughly speaking, the idea is the following: We consider all traces that differ from
the failing trace only in the permission held. For future hypotheses, we want the
specifications along these traces – as illustrated in Figure 4.5 – to cumulatively gain
sufficient permissions allowing the execution to successfully continue without the
permission failure. As we will see below, the teacher can achieve this by constructing a
suitable sample that imposes a lower bound on these cumulative permission changes.

Similar Traces. In our elaborations below, we often need to talk about traces that
are equal to the failing trace, except that their permission changes correspond to
a hypothesis other than the current one that caused the failure. To facilitate this,
we introduce the notion of similarity that captures the equality of states and traces
without taking into account the permission values of their respective permission
maps.

Definition 4.2.1. » Two states σ1 = 〈s1, h1, π1〉 and σ2 = 〈s2, h2, π2〉 are similar, de-
noted σ1 ' σ2, if and only if s1 = s2 and h1

π
= h2, where π := π1 u π2. Moreover,

two configurations γ1 = 〈c1, σ1〉 and γ2 = 〈c2, σ2〉 are similar, also denoted γ1 ' γ2,
if and only if c1 = c2 and σ1 ' σ2. Finally, two traces t1 and t2 are similar, also
denoted t1 ' t, if and only if they are both of length k and t1[i] ' t2[i], for all
i ∈ {1, . . . , k}. «

Note that, in the definition above, the comparison of states is restricted to parts
of the heap for which both states hold permissions; this is done to reflect the
circumstance that values of all heap locations for which no permissions are held
may not be accessed and therefore cannot be distinguished. Moreover, for this exact
reason, state similarity – and by extension also trace similarity – are no equivalence
relations.

Well-Behavedness Assumption. Before we dive into our elaborations, we want to point
out that the underlying program semantics – which is implicitly given via the
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programming language supported by the verifier – must be reasonably well-behaved
with respect to permissions; otherwise, our teacher could not use the verifier as a
black-box oracle. Roughly speaking, we require that a missing permission at some
point in the program can be fixed by adding more permissions to a specification
further up in the control flow. Therefore, we make the following natural assumption.

Assumption 4.2.2. » For all traces t1 and t2 with t1 ' t2 and all program transition
indices i /∈ It1 , we have ∆t1(i) = ∆t2(i). «

Intuitively, this assumption requires that the permission changes caused by program
transitions may only depend on the memory state and must not depend on the
permissions currently held. This is closely related to the monotonicity properties
required for the soundness of the frame rule [24, 107]. Moreover, note that our
assumption requires that permissions gained or lost by a program transition must be
deterministic; however, this restriction still allows to non-deterministically branch and
then inhale or exhale different permission amounts in the branches as the respective
traces would not be similar.

Necessary Permissions. For the sake of our elaborations, we assume that the current
hypothesis H• leads to a permission failure. That is, the verifier finds a failing
trace t• of some length k that leads to a final state with insufficient permissions to
execute the next statement (originating from the input program) or to establish a
specification (encoded by an exhale statement).

In a first step, we identify the permissions that would have been necessary to
successfully continue the execution of the failing trace. We observe that we can
characterise such necessary permissions using a permission map πmin such that, for
all configurations γ with γ ' t•[k] and γ 6 γ , we have γ � πmin.

Example 4.2.3. » Let us consider the assignment one.val := two.val from our swap method
with no annotations shown in Listing 4.3. A permission map πmin capturing either
permission acc(one.val) or acc(two.val) represents necessary permissions to execute the
assignment. «

Note that, alternatively, we could also have tried to identify the permissions that
are sufficient to successfully execute the failing statement. However this is not
always possible as verifiers typically stop as soon as they encounter the first missing
permission and therefore may only report part of the missing permissions (for our
example above, a verifier probably only reports missing permissions to evaluate the
right-hand-side of the assignment and then only encounters the missing permission
for the left-hand side once the first permission failure has been fixed).
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In the following, we consider an arbitrary trace t◦ with t◦ ' t•. Our goal is to find
a constraint that ensures t◦[k] � πmin. Intuitively, we can think of t◦ as a hypothetical
trace that is similar to the failing one, but allows the trace to successfully continue
after the k-th step. Below, we use t ∈ {t•, t◦} to refer to either trace.

Permission Changes. Next, we take a closer look at how the permissions held evolve
along these traces (cf. Figure 4.5). We recall that the permission changes in the
i-th step – as defined in Definition 4.1.7 – is given by ∆t(i) = πi+1 − πi, where πi
and πi+1 are the permission map corresponding to configurations t[i] and t[i + 1],
respectively. At the point of the failure, the permission map π is equal to the sum of
all these changes; that is,

π =

k−1∑
i=1

∆t(i).

In particular, we have t[k] � π.

Constraint. Recall that – due to the black-box nature of our approach – our teacher
does not know how arbitrary parts of the program affect permissions and therefore
cannot determine all permission changes. However, we know where our specifications
are inhaled and exhaled and can, thus, compute the corresponding permission
changes (by evaluating field receiver and permission expressions in the verifier’s
counterexample). The following lemma formalises that hypothesis transitions suffice
to determine a constraint that prevents the current permission failure:

Lemma 4.2.4. » Consider some hypothesis H• and a H•-trace t• of length k. Let π•
be the permission map corresponding to the final configuration t•[k] of the trace t•.
Moreover, let πmin be a permission map such that, for all configurations γ with
γ ' t•[k] and γ 6 γ , we have γ � πmin. For all valid hypotheses H◦, and all
H◦-traces t◦ with t◦ ' t•, we have

δ v
∑
i∈It◦

∆t◦(i), where δ := δ0 +
∑
i∈It•

∆t•(i)

and δ0 := πmin − π•. «

Proof. We consider some hypothesis H• and a H•-trace t• of length k. Let π• be
the permission map corresponding to the final configuration t•[k] of the trace t•.
Moreover, let πmin be a permission map such that, for all configurations γ with
γ ' t•[k] and γ 6 γ , we have γ � πmin.

Moreover, we let H◦ be an arbitrary valid hypothesis and consider an arbitrary
H◦-trace t◦ with t◦ ' t•. By the validity of the hypothesis, we have t◦[k] 6 γ 
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and therefore t◦[k] � πmin. Thus, the permission map π◦ corresponding to the
configuration t◦[k] of the trace t◦ satisfies πmin v π◦. Using π∗ =

∑k
i=1∆t∗(i), for

∗ ∈ {•, ◦} yields

π◦ − π• =
k∑

i=1

∆t◦(i)−
k∑

i=1

∆t•(i) =
∑
i∈It◦

∆t◦(i)−
∑
i∈It•

∆t•(i),

where the second equality follows from Assumption 4.2.2. The claim then follows
from combining this with πmin v π◦, followed by some reordering of the terms. �

Note that the constraint from the lemma above is expressed in terms of permission
maps and, therefore, represents a bound for all resources. A permission failure
reported by a verifier, however, typically only refers to a single heap location or
predicate instance. Thus, in practice, it suffices to evaluate the involved permission
maps for this individual heap location or predicate instance; the remaining parts of
the permission maps can safely be ignored.

In the next subsection, we explain how our teacher represents this constraint in
the samples it sends to the learner.

4.2.3 Sample Extraction
We now describe the actual steps involved when the teacher extracts a sample from
the verification counterexample. In a very first step, the teacher determines whether
the failure was caused by a program failure or by a hypothesis failure. The former
is caused by insufficient permissions to execute a program statement originating
from the input program, whereas the latter is caused by insufficient permissions to
establish a specification coming from the current hypothesis.

Program Failures and Regular Samples. We first have a look at the case, where a program
failure occurred; for instance, because permissions to read from or write to a field
were missing. To convey to the learner that more permissions are needed, the
teacher creates a regular sample S = 〈ε1, . . . , εn, δ〉 capturing the constraint from
Lemma 4.2.4:

That is, the teacher first identifies all specifications encountered along the failing
trace and computes the corresponding snapshots ε1, . . . , εn. That is, each snapshot
εi = 〈±i, idi, ~ei, σ̂i〉 consisting of a sign ±i, a specification identifier idi, the specification
arguments ~ei, and an abstract state σ̂i, and is computed such that t• ∈ γT (ε1, . . . , εn),
as defined in Section 4.1.5

The teacher then identifies permissions δ0 = πmin − π• that were missing but would
have been necessary to successfully continue the execution. It finally obtains the lower
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bound δ for the sample by adjusting these permissions adjusted for the permissions
lost and gained by the encountered specifications; more specifically, it computes

δ0 +

n∑
i=1

ci · JAiKΠ(σ̂i) = δ0 +
∑
i∈It•

∆t•(i) = δ,

where Ai := H•(idi, ~ei ) denotes the i-th specification encountered along the failing
trace and each ci ∈ {−1, 1} depends on whether the respective specification was
inhaled or exhaled.

Recall that the permission map δ0 captures the permissions that a successful trace
has to gain in addition of what the failing trace has cumulatively gained. Thus, it is
always possible to find necessary permission πmin such that

δ0(r) = πmin(r)− π•(r) > 0 (4.2)

where r ∈ R is assumed to be the resource for which there were insufficient permissions
in the final state of the failing trace. As we will see below, this is important in order
to guarantee that our inference makes progress.

Example 4.2.5. » Let us consider a method foo(x) that calls another method bar(x)
and then updates x.val := 0, and assume that the current hypothesis provides no
permission for the preconditions and postconditions of these two methods. To check
the body of the method foo, our teacher verifies the statement

inhale H(id1, ~e ) ; exhale H(id2, ~e ) ; inhale H(id3, ~e )︸ ︷︷ ︸
encodes method call bar(x)

; x.val := 0 ; exhale H(id4, ~e ),

where ~e = 〈x〉, and id1 and id2 identify the preconditions of foo and bar, respectively,
whereas id4 and id3 identify their postconditions.

Since none of the specifications add or remove any permission, the assignment
a.val := 0 fails. In the following, let r denote the resource corresponding to the field
access a.val. The specifications encountered along the failing trace are id1, id2, and id3.
From the verification counterexample, the teacher determines that there are at least
the permissions δ0 = πzero[r 7→ 1] missing in the failing state and computes

δ = δ0 +

3∑
i=1

ci · JH(idi, ~e )KΠ(σ̂i)︸ ︷︷ ︸
=πzero

= πzero[r 7→ 1],

where σ̂1, σ̂2, and σ̂3 capture the states at the corresponding specifications. The
teacher then produces the sample S = 〈ε1, ε2, ε3, δ〉, where

ε1 = 〈+, id1, ~e, σ̂1〉

ε2 = 〈−, id2, ~e, σ̂2〉

ε3 = 〈+, id3, ~e, σ̂3〉.
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Note that this sample allows the learner to provide the missing permissions via the
precondition of foo or the postcondition of bar (or to split it up between the two). «

Hypothesis Failures and Implication Samples. A hypothesis failure occurs when there are
insufficient permissions to establish a specification provided by the current hypothesis;
for instance, because permissions are missing to reestablish a loop invariant. In
this case, the teacher produces an implication sample S = S1 → S2 that constrains
future hypotheses to include the missing permissions only if they still the part of the
specification that caused the failure:

• The left-hand side S1 = 〈ε, δ〉 is a regular sample, where the snapshot ε =

〈+, id, ~e, σ̂〉 is such that H(id, ~e ) represents the specification that could not be
established and σ̂ abstracts the failing state. Moreover, the permission map δ

captures the part of the specification that caused the failure.

• The right-hand side S2 is a regular sample that is computed just as in the case
of a program failure described above.

Self-Framing Checks. Recall that implicit dynamic frames formulas are not necessarily
self-framed; that is, they may not contain enough permissions to evaluate some
sub-expressions appearing within themselves. We observe that permission failures
caused by a specification not being self-framed can be seen as a special case of a
hypothesis failure. Thus – as the following example illustrates – they can also be
handled using implication samples.

Example 4.2.6. » Assume that the current candidate for the body of the recursive
predicate is

H(rec) ≡ x 6= null⇒ acc(x.val) ∗ rec(x.next).

Clearly, the field access x.next appearing in the recursive instance rec(x.next) is not
framed. Therefore, the teacher produces the implication sample

〈〈+, rec, 〈x〉, {x 6= null}〉, rec(x.next)〉 → 〈〈+, rec, 〈x〉, {x 6= null}〉, acc(x.next)〉

in order to ensure that whenever the learner includes the instance rec(x.next), it also
includes the necessary permissions to frame it. «

Formal Guarantees. Recall from Section 4.1.7 that – in order to guarantee progress –
our teacher has to satisfy Lemma 4.1.19, which states that in every iteration, the
current hypothesis is inconsistent with any newly produced sample. As the following
proof shows, this is indeed the case:
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Proof (of Lemma 4.1.19). Let us consider an arbitrary regular sample S = 〈ε1, . . . , εn, δ〉
that our teacher produced as described above. Towards contradiction, we assume that
the current hypothesis H• is consistent with this sample S. Clearly, by construction
of the sample, the failing trace satisfies t• ∈ γT (S). Moreover, we have

δ0 +
∑
i∈It•

∆t•(i) = δ v
∑
i∈It•

∆t•(i),

where the equality holds by the construction of the sample according to the constraint
from Lemma 4.2.4 and the inequality due to the assumption of the current hypothesis
being consistent with the sample S. Thus, we have δ0 v πzero. However, this cannot
be: by Equation (4.2), we have δ0(r) > 0, for some r ∈ R (the resource for which
the permission was missing and was causing the permission failure). Hence, our
assumption has lead to a contradiction, which allows us to conclude that the current
hypothesis H• is inconsistent with the sample S.

Similarly, for a newly produced implication sample S = S1 → S2, we observe that
the current hypothesis is consistent with the left-hand side S1 (as it captures the
permission that caused the failure) while it is inconsistent with the right-hand side S2
(analogous to regular samples). Thus, the implication constraint imposed by the
sample S is not satisfied. �

4.3 Learner
In this section, we turn our attention to the learner. As mentioned in Section 4.1 –
in every iteration – the learner tries to synthesise a new hypothesis that is consistent
with all samples that have been produced by the teacher so far. Roughly speaking,
the synthesis of each new hypothesis consists of the following two phases

• In a first template generation phase, the learner generates a specification tem-
plate for every specification that needs to be inferred. Intuitively, each of
these specification templates has the same shape as the specifications ulti-
mately provided by the hypothesis (cf. Section 4.1.4) but leaves all guards and
permission amounts undetermined.

• In a second reification phase, the learner then reifies these specifications by
synthesizing concrete guards and permission amounts such that the resulting
hypothesis is consistent with all samples. The synthesis of these guards and
permission amounts is performed via an encoding to a suitable solver.

132



Section 4.3 Learner

Section Outline. Below, we describe the aforementioned template generation and
reification phase in more detail. To this end, in Section 4.3.1, we first introduce the
specification templates used by our learner. Then, in Section 4.3.2, we elaborate how
the specification templates get computed based on the samples provided by the teacher.
Thereby, we first focus on specification templates without recursive predicates. In
Section 4.3.3, we then explain how this template generation is extended to also
handle recursive predicates. Thereafter, we address the reification phase in which the
specification templates are turned into concrete specifications that are consistent with
the samples at hand. As our inference employs samples over traces, a single sample
potentially constrains multiple specifications at once. Therefore, in Section 4.3.4,
we elaborate how a constraint imposed by a sample can be decomposed into several
simpler constraints involving individual specifications. A concrete translation of these
simpler constraints into an SMT encoding that can be solved using an off-the-shelf
SMT solver is postponed until Section 4.4.

4.3.1 Specification Templates

The specification templates generated by the learner unsurprisingly closely follow
the shape of our specifications as introduced in Section 4.1.4. The most notable
difference is that they also comprise placeholders for guards and permission amounts;
these placeholders are then concretised during the reification phase.

Guard Placeholders. A guard placeholder b?k represents an undetermined guard. Any
resource appearing in a specification template will be guarded by such a guard
placeholder.

Permission Placeholders. All accessibility predicates appearing in a specification tem-
plate are of the form acc(e.f, q?k), where q?k is a permission placeholder that allows a
suitable permission fraction to be picked during the reification phase.

Predicates. Our specification templates allow the learner to introduce instances of
recursive predicates; as will be discussed in more detail later, the definition of such
a predicate is captured by a separate specification template. In our elaborations,
we use rec to name the predicate introduced by the teacher (for the sake of simpler
presentation, we assume that there is at most one) and seg to refer to a segmented
version thereof (cf. Section 4.3.3). Intuitively, seg(x, y) describes the predicate seg(x)
truncated at y; conversely, we can think of seg(x) being equivalent to seg(x, null).
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Choices. In addition to guard and permission placeholders, we also employ place-
holders for expressions e?k. Such an expression placeholder represents a choice among
a given set of options Ok = {e1, . . . , en} that is generated along with the specification
template. We will make use of such expression placeholders to defer the choices of
suitable truncation arguments for recursive predicates to the reification phase; that
is, all segment predicates appearing in our specifications will have the form seg(e, e?k).

Template Grammar. In general, all template expressions generated by the learner can
be derived in the following grammar:

τ ::= true | τ ∗ τ | b⇒ τ | b?k ⇒ τ | acc(e.f, q?k) | rec(e) | seg(e, e?k)

Apart from the placeholders introduced above, this grammar coincides with our
specification grammar. Note that the third rule b ⇒ τ allows one to introduce
concrete guards b that are fixed and therefore cannot be determined during the
reification phase. We will make use of this in Section 4.3.3 to introduce termination
conditions of segment predicates.

4.3.2 Template Generation

The generation of the specification templates is based on analysing which resources
are mentioned by the samples and, roughly speaking, can be broken down into the
following two steps:

• First, for all specification identifiers id, the learner computes a resource set Rid

containing all resources mentioned by any sample for the respective specifica-
tion. Intuitively, these sets over-approximate the resources for which – under
consideration of the current set of samples – the specification H(id) provided
by the hypothesis for the next iteration needs to contain some permissions.

• Second, for all specification identifiers id, the learner generates a specification
template τid that, intuitively speaking, contains a conjunct b?k ⇒ r, for every
resource r ∈ Rid. Thus, the resulting specification templates allow the learner
to provide all permissions mentioned by the samples. Note that these spe-
cification templates may also contain conjuncts for resources that need not –
and sometimes even must not — be included in the final specification; such a
resource can be omitted entirely by setting its respective guard to false during
the reification phase.
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Adapting Expressions. Recall that a sample imposes a lower bound on the permissions
cumulatively gained by the specifications encountered along some trace. Thus, the
learner needs to be able to construct assertions – consisting of accessibility predicates
and predicate instances – that can be used to express the required permissions within
these specifications. As the specifications are evaluated in different states – each of
which is captured by a snapshot – the assertion that can be used to express a given
permission may vary from specification to specification. We therefore need a way to
adapt an expression (for instance the receiver of a field access) to a state captured by
a snapshot. To this end, for all snapshots ε = 〈±, id, ~e, σ̂〉 and all values v, we define

Eε(v) := {e | ∀σ ∈ γΣ(σ̂) : Je[~e \~xid]K(σ) = v},

which will be used for the computation of the resource sets as described below.
Note that there might be situations where there are no expressions evaluating

to the value v, in which case the set Eε(v) is empty. Moreover, we also note that
these sets Eε(v) can be arbitrarily large and – in cases where pointers form cycles
or loops – can even be infinite. In practice, however, it suffices to consider the
subset of Eε(v) restricted to expressions that are actually allowed to appear in the
final specification. This subset is finite and can, therefore, be computed explicitly:
Due to syntactic restrictions such as bounding the length of access paths that may
appear in specifications all of the finitely many possible candidate expressions can
be enumerated and checked.

Resource Sets. We now describe how the learner computes the resource set Rid for
some given specification with identifier id. The learner does this by iterating over
all samples and collecting the resources Rid(S) contributed by each sample S. The
final resource set is then obtained by computing the union of all these sets, that is
Rid :=

⋃
S Rid(S).

For any implication sample S = S1 → S2, we compute Rid(S) := Rid(S1) ∪Rid(S2).
Since an implication consists of two regular samples, and any sample is either an
implication sample or a regular one, this allows us to consider only regular samples
from now on. For any regular samples S = 〈ε1, . . . , εn, δ〉, we further break down the
computation of the resource set Rid(id) to the level of individual snapshots ε: That
is, we define

Rid(S) :=

n⋃
i=1

Rid(εi, δ)

and elaborate how to compute the resource set Rid(ε, δ) for an arbitrary snapshot ε =
〈±, id′, ~e, σ̂〉. If id 6= id′, then the snapshot ε does not contribute to the resource set
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and we have Rid(εi, δ) = ∅. For the case where id = id′, we further distinguish the
following cases:

• If the permission map δ represents a permission for a single heap location
l = 〈o, f〉, that is, we have δ = πzero[l 7→ q], for some positive permission
fraction q > 0, then, we compute

Rid(ε, δ) := {acc(e.f) | e ∈ Eε(o)}.

Note that, for the computation of the resource sets, the permission amount q is
ignored entirely. This is because the permission amounts will be reintroduced
as permission placeholders in the templates for which suitable values will be
determined during the reification phase.

• If the permission map δ represents a permission for a single predicate instance
p(v1, . . . , vm) ≡ rec(v1) or p(v1, . . . , vm) ≡ seg(v1, v2), then we define

Rid(ε, δ) := {p(e1, . . . , em) | ∀i ∈ {1, . . . ,m} : ei ∈ Eε(vi)}

• In the general case, we decompose the permission map δ =
∑m

i=1 δi into several
permission maps δi capturing permissions for individual heap locations or
predicate instances and then compute

Rid(ε, δ) :=

m⋃
i=1

Rid(ε, δi)

using the definitions from the previous two cases.

Example 4.3.1. » Recall that in the first two iterations of our running example (cf.
Section 4.1.3), the teacher produces two samples that both consist of a snapshot
corresponding to the loop invariant inv and their permission maps correspond to the
permissions acc(node.val) and acc(node.next), respectively. Thus, these two samples
yield the resource set

Rinv = {acc(node.val), acc(node.next)}

used as a basis for the template generation in the second iteration. «

Template Conjuncts. As already mentioned above, the learner computes the specific-
ation templates τid by adding a conjunct for each resource r ∈ Rid. More formally,
given some resource set Rid = {r1, . . . , rn}, the learner computes the corresponding
specification template as

τid ≡
n∗

i=1

Ai, where Ai :≡

b?i ⇒ acc(e.f, q?i ) if ri ≡ acc(e.f)

b?i ⇒ ri if ri ≡ rec(e) or ri ≡ seg(e, e?i ).
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Example 4.3.2. » Given the resource set from Example 4.3.1 above, the learner com-
putes the specification template

τinv ≡ (b?1 ⇒ acc(node.val, q?1)) ∗ (b?2 ⇒ acc(node.next, q?2))

for the loop invariant. «

4.3.3 Recursion Detection

Next, we describe how the template generation can be extended to also handle
recursive predicates. For simplicity, we assume that there is only one recursive
predicate; the extension to multiple recursive predicates is straightforward and
mostly a matter of allowing the learner to generate more than one predicate instance.

Predicate Templates. As most commonly used recursive data structures can be de-
scribed using a recursive predicate rec with one recursive parameter, we fix the
parameters of the recursive predicate to be ~xrec = 〈x〉; segment predicates seg with
a second parameter are treated separately later. Note that, for the purpose of our
permission inference, we can safely ignore any additional parameters potentially
required to express value constraints.

Moreover, for our elaborations, it is helpful to conceptually divide each recursive
predicate into a recursive and a non-recursive part. The recursive part – as its
name suggests – consists of all the recursive instances of the predicate itself; in
accordance with our introduction of recursive predicates in Section 2.2.4, we call
each recursive instance rec(s(x)) a successor and associate it with a corresponding
successor function s. Dually, the non-recursive part consists of everything else. The
specification templates for recursive predicates employed by our learner reflects this
division and are of the form

τrec ≡
n∗

i=1

(b?i ⇒ acc(x.fi, q?i ))︸ ︷︷ ︸
non-recursive part

∗
m∗
i=1

(b?n+i ⇒ rec(si(x)))︸ ︷︷ ︸
recursive part

.

Detection Heuristics. A simple but central insight of our recursion detection heuristics
is that it only makes sense to include a permission for a field access in our recursive
predicate, if the permission for that field is required for two different nodes of the
data structure at hand. Moreover, it is highly likely that the permission is required
for a node and its successor. Therefore, if acc(e.f1) and acc(e.f2.f1) both appear in
the resource set Rid for some specification, we do the following:
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• First, we include permissions for the field f1 in our recursive predicate. That
is, we add the conjunct b?k ⇒ acc(x.f1, q?k) to the template τrec of the recursive
predicate.

• Second, we consider s(e) :≡ e.f2 as a potential successor for the recursive
predicate and, therefore, add the conjunct b?k ⇒ rec(s(x)) to the template τrec
of the recursive predicate.

Note that – as an optimisation that aims at reducing the total number of itera-
tion that our inference needs – we can also add the conjunct b?k ⇒ acc(x.f2, q?k)
to the predicate template; this then ensures that predicate template allows
to frame the field access appearing in the successor expression s(x) ≡ x.f2.
If, however, we chose not to do this, the self-framing checks that our teacher
performs will take care of this (cf. Section 4.2.3).

• Finally, we allow the learner to provide the permissions for the field accesses
e.f1 and s(e).f1 ≡ e.f2.f1 via the recursive predicate by adding the conjunct
b?k ⇒ rec(e) to the template τid of the specification in question.

Example 4.3.3. » Let us assume that the permissions acc(node.val) and acc(node.next.val)
appear in the resource set for some loop invariant; that is, we have

{acc(node.val), acc(node.next.val)} ⊆ Rinv.

Note that this was exactly the situation occurring in the last iteration of our running
example (cf. Section 4.1.3).

Based on these field accesses and according to our elaborations above, the learner
adds the successor s(e) ≡ e.next and permissions for the field val to the recursive
predicate. This yields the specification template

τinv ≡ . . . ∗ (b?3 ⇒ rec(node))

τrec ≡ (b?4 ⇒ acc(x.val, q?4)) ∗ (b?5 ⇒ acc(x.next, q?5)) ∗ (b?6 ⇒ rec(x.next))

Note that the conjunct b?5 ⇒ acc(x.next, q?5) is added as part of our optimisation to
allow to frame all arguments to the recursive predicate instance. «

Segment Predicates. We now briefly discuss how our learner handles segment predicates
used to capture permissions corresponding to partial data structures. Such segment
predicates are typically needed to write specifications for code that iteratively traverses
a recursive data structure; for example, to capture the permissions corresponding
to the part of the data structure that has already been traversed. For our work,
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we restrict ourselves to list-like predicates; a generalisation to segmented tree-like
predicates is possible but nontrivial.

For the sake of illustration, let us consider an arbitrary list-like predicate rec(x)
consisting of a non-recursive part rec’(x) and single successor instance rec(s(x)) guarded
by some condition b; that is, we have rec(x) , rec’(x) ∗ (b⇒ rec(s(x))). From this
decomposed, we can easily generate a segmented version of the predicate:

seg(x, y) , x 6= y⇒ rec’(x) ∗ (b⇒ seg(s(x), y))

Intuitively seg(x, y) describes the predicate rec truncated at y. Thus, in order to
directly produce such a segment predicate, our learner can generate a specification
template of the from

τseg ≡ x 6= y ⇒
(

n∗
i=1

(b?i ⇒ acc(x.f, q?i )) ∗ (b?n+1 ⇒ seg(s(x), y))
)
.

Example 4.3.4. » The template for the segment predicate corresponding to the recursive
predicate from Example 4.3.3 is

τseg ≡ x 6= y ⇒ ((b?4 ⇒ acc(x.val, q?4)) ∗ (b?5 ⇒ acc(x.next, q?5)) ∗ (b?6 ⇒ seg(x.next, y))). «

It remains to discuss how our recursion detection heuristics handles the truncation
parameter added with the introduction of segment predicates. In order not to
prematurely exclude any predicate instances, the choice for the second parameter is
delegated to the reification phase. That is, wherever our recursion detection heuristics
described above introduces the predicate instance rec(e), we add the predicate instance
seg(e, e?k) instead. In our evaluation, we observed that a suitable choice of options
for the expression placeholder e?k is Ok = {x1, . . . , xn} \ {e}, where ~xid = 〈x1, . . . , xn〉
are the parameters of the specification in question.

4.3.4 Reification Phase
Next, we turn our attention to the reification phase in which the learner reifies
the specification templates into concrete specifications that are consistent with all
samples. In this section, we explain how to extract constraints on samples from the
samples. In Section 4.4 we then elaborate how these constraints can be translated
into a concrete SMT encoding and solved by an off-the-shelf solver, such as Z3 [79].

Each sample potentially constrains the permission changes caused by multiple
specifications. To obtain constraints on individual specifications, we decompose
the constraint imposed by any samples into several simpler ones corresponding to
their individual snapshots; As each snapshot corresponds to one inhaled or exhaled
specification these simpler constraints involve single specifications.
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Snapshot Constraints. First, we introduce so-called snapshot constraints that capture
lower bounds on the permission changes corresponding to a single snapshot.

Definition 4.3.5. » For all snapshots ε = 〈±, id, ~e, σ̂〉 and all permission maps δ, we
define the corresponding snapshot constraints as

ψ∀H(ε, δ) :⇔ ∀σ ∈ γΣ(σ̂) : (δ v c · JAKΠ(σ))

ψ∃H(ε, δ) :⇔ ∃σ ∈ γΣ(σ̂) : (δ v c · JAKΠ(σ)),

where A := H(id, ~e ) and c ∈ {−1, 1} adjusts the sign of the permissions depending
on whether the snapshot corresponds to an inhaled or exhaled specification. «

Note that, for snapshots ε corresponding to an inhaled specification, we could
equivalently define ψ∀H(ε, δ) :⇔ TAUΠ(ε) and ψ∃H(ε, δ) :⇔ VAWΠ(ε); for snapshots
corresponding to exhaled specifications, the approximation needs to be flipped.

Intuitively, the first constraint ψ∀H(ε, δ) captures that the permission changes
corresponding to the snapshot ε are guaranteed to be at least δ and – as we will
see below – is required to prove that a hypothesis is ∀-consistent with a sample (cf.
Definition 4.1.13). In contrast, the second constraint ψ∃H(ε, δ) captures that there
may be states for which the permission changes are δ and is required to prove a
hypothesis’ ∃-consistency.

Decomposed Sample Constraint. We are now ready to formulate the decomposed con-
straint corresponding to a regular sample:

Definition 4.3.6. » For all samples S = 〈ε1, . . . , εn, δ〉, we define

ψ∀H(S) :⇔ ∃δ1, . . . , δn :

(
δ v

n∑
i=1

δi ∧
n∧

i=1

ψ∀H(εi, δi)

)
.

The constraint ψ∃H(S) is defined analogously but uses ψ∃H(εi, δi) instead of ψ∀H(εi, δi). «

As stated by the following lemma, these constraints precisely capture a hypothesis’
∀-consistency and ∃-consistency, respectively.

Lemma 4.3.7. » For all hypotheses H and all regular samples S, the following two
statements are true:

1. If ψ∀H(S) then the hypothesis H is ∀-consistent with the sample S.

2. If ψ∃H(S) then the hypothesis H is ∃-consistent with the sample S. «
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Proof. We only prove the first claim; the proof for the second claim follows analog-
ously. Let us consider an arbitrary hypothesis H and an arbitrary regular sample
S = 〈ε1, . . . , εn, δ〉, where εi = 〈±i, idi, ~ei, σ̂i〉, for all i ∈ {1, . . . , n}. To prove the
claim, we assume ψ∀H(S) and aim to show that the hypothesis H is ∀-consistent
with the sample S. According to Definition 4.1.13, we can do this by showing
δ v

∑
i∈It ∆t(i) for an arbitrary H-trace t with t ∈ γT (S).

We consider the indices It = {j1, . . . , jn} corresponding to the hypothesis trans-
itions of the trace t, and, without loss of generality, assume that j1 < j2 < . . . < jn.
Moreover, for all i ∈ {1, . . . , n}, we consider the i-th specification Ai := H(idi, ~ei)
encountered in the ji-th step and let σji denote the state in which this specification
is evaluated. We observe that σji ∈ γΣ(σ̂i) as well as

∆t(ji) = ci · JAiKΠ(σji), (4.3)

where ci ∈ {1,−1} depends on whether the specification Ai is inhaled or exhaled.
With this, we are ready to conclude that

δ v
n∑

i=1

δi v
n∑

i=1

ci · JAiKΠ(σji) =
n∑

i=1

∆t(ji) =
∑
i∈It

∆t(i),

where the first two steps follows by Definitions 4.3.5 and 4.3.6, respectively, the
third step is justified by Equation (4.3), and, finally, the last step holds due to
It = {j1, . . . , jn}. �

Corollary 4.3.8. » For all hypotheses H, if ψ∀H(S) then the hypothesis H is consistent
with a regular sample S. «

Proof. The statement immediately follows from Definition 4.1.14 combined with the
result from Lemma 4.3.7 above. �

Corollary 4.3.9. » For all hypotheses H, if ψ∃H(S1) ⇒ ψ∀H(S2) then hypothesis H is
consistent with an implication sample S = S1 → S2. «

Proof. The statement immediately follows from Definition 4.1.15 combined with the
result from Lemma 4.3.7 above. �

Formal Guarantees. We conclude this section by showing how we can accomplish that
our learner satisfies Lemma 4.1.20 required for our formal guarantees mentioned in
Section 4.1.7. Recall that this lemma states that any newly synthesised hypothesis is
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consistent with all samples produced by the teacher so far. Thus, according to our
elaborations above, this can be achieved by synthesizing a hypothesis that satisfies

n∧
i=1

ψ∀H(Si),

where S1, . . . , Sn denote the samples produced by the teacher. As indicated earlier,
a concrete SMT encoding that can be leveraged to reify our specification templates
to yield such a hypothesis is described in Section 4.4.

Proof (of Lemma 4.1.20). The claim follows by combining the results from Corollary 4.3.8
and Corollary 4.3.9. �

4.4 SMT Encoding
We now describe a concrete SMT encoding that can be leveraged by our learner
to reify specification templates. We recall from Section 4.3.4 above that, in order
for the resulting specifications to be suitable for the next hypothesis, they need to
satisfy a set of snapshot constraints that can be extracted from the samples. For
this section, we therefore assume that some specification templates are already given
and explain how to encode the snapshot constraints as SMT formulas. Assuming the
constraints are satisfiable, the learner can then reify the specification templates by
invoking an off-the-shelf SMT solver, such as Z3 [79], CVC4 [9], or CVC5 [7], and
then extract concrete specification from the model returned by the solver.

Section Outline. In Section 4.4.1, we start by outlining how our learner computes the
reified specifications from the specification templates and the model returned by the
SMT solver. This sets the context for the upcoming subsections that then further
detail this template reification and also provide the concrete SMT encodings that
ensure that the resulting specifications are, indeed, suitable.

The basic building blocks of our encoding are so-called guard encodings that
constrain individual guards. These guard encodings are formally introduced in
Section 4.4.2. In Section 4.4.3, we then show how such guard encodings can be
combined to express the desired snapshot constraints. Finally, in Section 4.4.4, we
briefly describe how choices represented by expression placeholders can be handled.

4.4.1 Template Reification
Below, we first briefly introduce SMT models and then outline how a specification
template is reified according to such a model.
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SMT Models. Let XSMT denote the set containing all variables appearing somewhere
in our formulas. A model µ : XSMT → VSMT is a function mapping each of these
variables x ∈ XSMT to its corresponding value µ(x). We write µ � F to denote that
the formula F is true in the model µ.

Most of the variables appearing in our encoding are boolean-typed variables;
Clearly, for all of these variables x, we have µ(x) ∈ {true, false}. Moreover, we model
permission-typed variables q as variables over rationals; that is, for all these variables,
we have µ(q) ∈ Q. Therefore, we set VSMT := {true, false} ∪Q.

Reified Specifications. Given a specification template τ and some model µ, we use ⦃τ⦄µ

to denote the specifications obtained by reifying the template τ according to the
model µ. We remind ourselves that our specification templates may contain place-
holders for guards, permission amounts, and expressions; the details related to these
placeholders are discussed in the upcoming sections:

• In Section 4.4.2, we show our learner can compute the reified guards ⦃b?k⦄µ

by introducing a guard encoding that can be used to impose constraints on
individual guards.

• In Section 4.4.3, we show how our guard encodings can be combined to express
snapshots constraints, as well as how the concrete permission amounts ⦃q?k⦄µ

are computed.

• Finally, in Section 4.4.4, where we discuss how choices represented expression
placeholders e?k are handled, we also define their reification ⦃e?k⦄µ.

Apart from the placeholders, the reification of specification templates is defined
inductively over the structure of the template in a straightforward manner:

Definition 4.4.1. » For all specification templates τ and all models µ : XSMT → VSMT, we
define

⦃τ⦄µ :≡



true if τ ≡ true

⦃τ1⦄µ ∗ ⦃τ2⦄µ if τ ≡ τ1 ∗ τ2
b⇒ ⦃τ1⦄µ if τ ≡ b⇒ τ1

⦃b?k⦄µ ⇒ ⦃τ1⦄µ if τ ≡ b?k ⇒ τ1

acc(e.f,⦃q?k⦄µ) if τ ≡ acc(e.f, q?k)

rec(e) if τ ≡ rec(e)

seg(e,⦃e?k⦄µ) if τ ≡ seg(e, e?k),

where – as mentioned above – the definitions of ⦃b?k⦄µ, ⦃q?k⦄µ, and ⦃e?k⦄µ are given
in the upcoming subsections. «
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4.4.2 Guard Encoding

The guards appearing in our specification templates determine under conditions
certain resources are provided by the final reified specifications. In order to ensure
that these specifications provide the right resources – that is, the ones requested by the
samples – we introduce a guard encoding that allows us to constrain individual guards.
To this end, we consider an arbitrary but fixed guard placeholder b?k and elaborate
how we can encode a constraint that guarantees that the resulting guard ⦃b?k⦄µ

is always true or false, respectively, for all states corresponding to some abstract
state σ̂. By the virtue of our samples, this abstract state always comes from a
snapshot ε = 〈±, id, ~e, σ̂〉. For our elaborations below, we assume that this snapshot
is given. Note that, as the snapshot corresponds to a specific specification with
identifier id – to warrant consistency – our guard placeholder b?k has to appear in the
template τid for this same specification.

Disjunctive Normal Form. We recall from Section 4.1.4 that our guards are formulas in
disjunctive normal form over a given set of atoms {aid

1 , . . . , a
id
mid

}, for some mid ∈ N,
that depend on the parameters ~xid of the specification they appear in. Moreover, we
assume that the maximal number of clauses n ∈ N that may appear in a guard is
given as a parameter. Accordingly, in the following, we describe a fairly standard
encoding for such a formula in disjunctive normal form; we start by introducing the
underlying variables.

Clause and Literal Variables. Our guard encoding always includes exactly n clauses, but,
for every i ∈ {1, . . . , n}, we introduce a clause activation variable cki that indicates
whether the i-th clause should be included in the guard. Moreover, for every clause
and every j ∈ {1, . . . ,mid}, we introduce a literal activation variable lki,j and a literal
sign variable ski,j that indicate whether the j-th literal of the i-th clause should be
included in the i-th clause and the literal’s sign, respectively.

Guard Reification. Having introduced all guard-related variables, we now define how
to construct a concrete guard ⦃b?k⦄µ, given some model µ : XSMT → VSMT that assigns
a value to all these variables:
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Definition 4.4.2. » For all guard placeholders b?k appearing in some specification tem-
plate for a specification with identifier id and all models µ : XSMT → VSMT, we define
⦃b?k⦄µ :≡

∨n
i=1 c

k
i (µ), where

cki (µ) :≡


∧mid

j=1 l
k
i,j(µ) if µ(cki ) = true

false otherwise

lki,j(µ) :≡


aid
j if µ(lki,j) = true and µ(ski,j) = true

¬aid
j if µ(lki,j) = true and µ(ski,j) = false

true otherwise,

(4.4)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mid}. «

An illustration of how a guard placeholder is reified is given in Example 4.4.5
below; first, we describe the actual guard encoding.

Guard Encoding. Roughly speaking, the learner tries to identify the value of each atom
aid
j and then – based on the atom’s values – constrains the aforementioned clause

activation, literal activation, and sign variables such that the resulting guard ⦃b?k⦄µ

is true or false, as required.
To evaluate an atom aid

j under consideration of the snapshot ε = 〈±, id, ~e, σ̂〉,
our learner can compute Taid

j U(ε). Recall from Section 4.1.5 that this corresponds
to checking whether the adapted atom aid

j [~e \~xid] is always true for all states σ ∈
γΣ(σ̂). If neither Taid

j U(ε) nor T¬aid
j U(ε) is true, the atom’s value cannot be uniquely

determined. In this case, its value is therefore soundly approximated by a default
value v ∈ {true, false}, depending on whether the guard encoding is supposed to
appear in a negative or in a positive position. With this, we are ready to give the
full definition of our guard encoding:

Definition 4.4.3. » For all guard placeholders b?k, all snapshots ε, and all boolean
values v ∈ {true, false}, we define

ϕk(ε, v) :≡
n∨

i=1

cki ∧
mid∧
j=1

(
lki,j ⇒ ϕk

i,j(ε, v)
)

ϕk
i,j(ε, v) :≡


ski,j if Taid

j U(ε)

¬ski,j if T¬aid
j U(ε)

v otherwise,

(4.5)

where i ∈ {1, . . . , n} and j ∈ {1, . . . ,mid}. «
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Intuitively, in the definition above, each literal encoding ϕk
i,j(ε, v) signifies the

truth value of the i-th literal in the j-th clause: If the truth value of the atom aid
j

can be uniquely determined, we constrain the literal’s sign variable ski,j accordingly.
Otherwise, the truth value of the literal is conservatively approximated by the
provided default value v ∈ {true, false}.

Our guard encoding ϕk(ε, v), then uses clause and literal activation variables cki
and lki,j to only select the literal encodings that actually show up in the resulting
guard. The following lemma formalises the guarantees provided by this encoding.

Lemma 4.4.4. » For all guard placeholders b?k, all snapshots ε, and all models µ, we
have

1. if µ � ϕk(ε, false) then T⦃b?k⦄µU(ε), and

2. if µ � ¬ϕk(ε, true) then T¬⦃b?k⦄µU(ε). «

Proof. We only prove the first claim; the proof for the second claim follows analogously.
Let the guard placeholder b?k, the snapshot ε = 〈±, id, ~e, σ̂〉, and the model µ be

arbitrary. First, we consider an arbitrary literal – that is, we consider some indices
i ∈ {1, . . . , n} and j ∈ {1, . . . ,mid} – and aim to prove

µ � ϕk
i,j(ε, false) ⇒ Tlki,j(µ)U(ε). (4.6)

Essentially, this implication captures the statement of the lemma restricted to a
single literal lki,j(µ),. To prove this implication, we assume its left-hand side and then
show its right-hand side; we thereby distinguish the following cases:

• We first consider the case where µ(lki,j) = true and µ(ski,j) = true. In this case,
combining the assumption µ � ϕk

i,j(ε, false) with the definition of the literal
encoding Equation (4.5) yields ϕk

i,j(ε, false) ≡ ski,j ; this is only possible if Taid
j U(ε)

is true. Note that, by Equation (4.5), we have lki,j(µ) ≡ aid
j . Thus, we have

Tlki,j(µ)U(ε), as required.

• The case where µ(lki,j) = true and µ(ski,j) = false is analogous to the previous
case.

• In the remaining case where µ(lki,j) = false, the implication holds trivially as,
by Equation (4.4), we have lki,j(µ) ≡ true.

The claim restricted to literals captured by Equation (4.6) above can easily be
extended to clauses cki (µ) and then to the entire guard ⦃b?k⦄µ – which yields the
statement to prove – by straightforward induction on the number of literals and the
number of clauses, respectively. �
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We wrap up the description of our guard encoding with a small example that
illustrates how constraints are encoded for a guard placeholder and how to extract
the resulting concrete guard.

Example 4.4.5. » Let us consider a guard placeholder b?k appearing in some specification
template τid and, for simplicity, assume that the number of clauses is set to n = 1 as
well as there is only one single atom aid

1 ≡ node= null, meaning mid = 1. Suppose, we
want to encode that the guard should be true for all states in node 6= null. This can
be achieved via the formula

F1 :≡ ϕk(ε1, false) ≡ ck1 ∧ (lk1,1 ⇒ ¬sk1,1),

where ε1 = 〈+, id, ~xid, {node 6= null}〉 is a snapshot with an abstract state that captures
node 6= null. Clearly, due to the first conjunct of this formula, any valid model µ1 with
µ1 � F1 must exhibit µ1(ck1) = true. We observe that the implication of the second
conjunct can be satisfied by setting µ1(lk1,1) = false; the value of µ1(sk1,1) is irrelevant
in this case. Such a model µ1 yields the guard ⦃b?k⦄µ1 ≡ true.

Next, suppose that we want to add a constraint that says that the guard should
be false in cases where node= null. To this end, we construct the formula

F2 :≡ ¬ϕk(ε2, true) ≡ ¬(ck1 ∧ (lk1,1 ⇒ sk1,1)),

where ε2 = 〈+, id, ~xid, {node= null}〉. Now, any model µ2 with µ2 � F1 ∧ F2 has
to satisfy µ2(c

k
1) = µ2(l

k
1,1) = true as well as µ2(sk1,1) = false. Such a model µ2

corresponds to the guard ⦃b?k⦄µ2 ≡ node 6= null. «

4.4.3 Snapshot Encoding
We now show how our guard encodings can be combined to express a snapshot
constraint from Section 4.3.4. We remind ourselves that there are two flavours of
snapshot constraints: ψ∀H(ε, δ) and ψ∃H(ε, δ). As the encodings for both versions are
analogous (except that all approximation orders are flipped), we only describe the
encoding for the former and omit the encoding for the latter.

In the following, we fix an arbitrary snapshot ε = 〈±, id, ~e, σ̂〉 and recall that

ψ∀H(ε, δ) ⇔ ∀σ ∈ γΣ(σ̂) : (δ v c · JAKΠ(σ)),

where A := c · H(id, ~e ) and c ∈ {−1, 1}, depending on whether the snapshot cor-
responds to an inhaled or exhaled specification. In order to avoid case distinctions
in our definitions below, we assume that the snapshot at hand corresponds to an
inhaled specification; the only difference for exhaled snapshots is that inequalities
and approximation orders need to be flipped.
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Moreover – also for the sake of easier illustration – we assume that the permission
map δ at hand captures a single permission; that is, δ = πzero[l 7→ q], for some
heap location l = 〈o, f〉 and some permission fraction q. Permission maps capturing
predicate instances can be handled analogously. And, in general, any permission
map δ =

∑n
i=1 δi can be decomposed into disjoint parts δi corresponding individual

permissions and predicate instances; the corresponding snapshot constraint can than
be expressed as

∧n
i=1 ψ

∀
H(ε, δi).

Permission Variables. As snapshot constraints impose bounds on permissions, we
need to be able to reflect permission values in our encoding. To this end, for each
permission placeholder q?k appearing in a specification template, we introduce a
corresponding permission variable qk. As formalised by the following definition, the
values of these permission variables directly correspond to the permission amounts
used for the resulting specifications:

Definition 4.4.6. » For all permission placeholders q?k and all models µ, we define
⦃q?k⦄µ ≡ µ(qk). «

In order to ensure that we only obtain meaningful permission amounts, for each
permission placeholder q?k, we add the constraint 0 ≤ qk ∧ qk ≤ 1 to our encoding.

Effective Guards. As a first step on our path towards constructing the snapshot
encoding is to figure out how many permissions individual accessibility predicates
appearing in the specification template at hand contribute to the heap location l. To
this end, we introduce the notion of effective guards:

An effective guard g = 〈qk, F 〉 for a heap location l is a tuple consisting of a
permission variable qk and a formula F . Intuitively, such an effective guard indicates
that if the formula F is satisfied then the reification of the specification template τ
at hand provides qk permissions for the heap location l.

Any given accessibility predicate acc(e.f ′, q?k) contributes qk permissions to the
heap location l if the following conditions are met:

• First, under consideration of our snapshot ε at hand, the field access e.f ′ needs
to express the heap location l = 〈o, f〉; that is, e ∈ Eε(o) and f = f ′.

• Second, all guards guarding the accessibility predicate must evaluate to true,
for all states captured by the snapshot ε.

Example 4.4.7. » We consider the specification template τ ≡ b?1 ⇒ acc(node.val, q?1) and,
for the sake of this example, assume that the field access node.val expresses the heap
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location of interest. In this scenario, an effective guard for the heap location l is
given by g = 〈q1, F 〉, where F :≡ ϕ1(ε, false) encodes that the guard ⦃b?1⦄µ should
be true.

Note that this means that we can require the resulting specifications to include a
full permission for the field access node.val by adding the constraint 1 ≤ F ? q1 : 0 to
our encoding. «

Collecting Effective Guards. In general, a specification template may offer more than
one way to provide permissions for a heap location. Ideally, we could compute the
set containing all effective guards for our heap location l. However, as specification
templates may potentially also contain predicate instances, this set can be infinite.
Thus, the best we can hope for, in general, is to compute a finite but reasonable
subset thereof.

To this end, we first unroll all predicate instances appearing in the specification
template at hand up to a predefined depth. After that, we exhaustively collect all
effective guards corresponding from this unrolled template. The following definition
formalises this collection process.

Definition 4.4.8. » For all snapshots ε = 〈±, id, ~e, σ̂〉, all heap locations l = 〈o, f〉, and
all specification templates τ , we define Gε,l(τ) := Gε,l(τ, true), where

Gε,l(τ, F ) :≡



Gε,l(τ1, F ) ∪Gε,l(τ2, F ) if τ ≡ τ1 ∗ τ2
Gε,l(τ1, F ) if τ ≡ b⇒ τ1 and TbU(ε)

Gε,l(τ1, F ∧ ϕk(ε′, false)) if τ ≡ b?k[~e1\~xrec] ⇒ τ1

{〈qk, F 〉} if τ ≡ acc(e.f, q?k) and e ∈ Eε(o)

∅ otherwise,

for all formulas F , and the snapshot in the third case is defined as ε′ := 〈±, rec, ~e1, σ̂〉. «

Example 4.4.9. » Let us revisit the specification templates for a loop invariant and a
recursive predicate from Example 4.3.3:

τinv ≡ (b?1 ⇒ acc(node.val, q?1)) ∗ (b?2 ⇒ acc(node.next, q?2)) ∗ (b?3 ⇒ rec(node))

τrec ≡ (b?4 ⇒ acc(x.val, q?4)) ∗ (b?5 ⇒ acc(x.next, q?5)) ∗ (b?6 ⇒ rec(x.next))

Unrolling the definition of the recursive predicate in the loop invariant’s specification
template once – and omitting irrelevant conjuncts – yields the specification template

τ ′inv ≡ (b?1 ⇒ acc(node.val, q?1)) ∗ . . . ∗ (b?3 ⇒ (b?4[node\x] ⇒ acc(node.val, q?4)) ∗ . . .).
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We easily observe that we can provide q?1 permissions for node.val by ensuring
that b?1 is true. Moreover, we can provide another q?4 permissions by ensuring that
b?3 ∧ b?4[node\x] is true. This is exactly what is reflected by our set of effective guards

{〈q1, ϕ1(ε, false)〉, 〈q4, ϕ3(ε, false) ∧ ϕ4(ε′, false)〉},

where the snapshot ε′ = 〈+, rec, 〈node〉, σ̂〉 accounts for the context switch from the
recursive predicate to the loop invariant. «

Next, we formulate and prove an auxiliary lemma that will later allow us to prove
the correctness of our snapshot encoding.

Lemma 4.4.10. » For all heap locations l, all permission amounts q, all specification
templates τ , and all effective guards 〈qk, F 〉 ∈ Gl(τ, true), we have

µ � F ∧ µ � q ≤ qk ⇒ ∀σ ∈ γΣ(σ̂) : (δ v c · JAKΠ(σ)),

where δ := πzero[l 7→ q]. «

Proof. Intuitively, in Definition 4.4.8, the formula F is used to accumulate the
constraint under which a permission can be provided. We therefore prove a slightly
more general statement that captures this accumulation: For all formulas F , all heap
locations l, all permission amounts q, all specification templates τ , and all effective
guards 〈qk, F0〉 ∈ Gl(τ, F ), we have

µ � F0 ∧ F ∧ µ � q ≤ qk ⇒ ∀σ ∈ γΣ(σ̂) : (δ v c · JAKΠ(σ)),

where δ := πzero[l 7→ q].
This more general statement follows by straightforward induction on the specifica-

tion template τ . The original claim then follows by setting F :≡ true. �

Snapshot Constraint. We now describe how to construct our snapshot constraint based
on the set of effective guards G = {g1, . . . , gn} described above. We recall that each
effective guards gi = 〈qki , Fi〉 corresponds to an accessibility predicate appearing
in the specification template. Due to the way we computed them, we know that,
conceptually, they all appear in different separating conjuncts. Therefore, the
snapshot encoding capturing the snapshot constraint ψ∀H(ε, δ) can be formulated as

q ≤
n∑

i=1

(Fi ? qki : 0).
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Example 4.4.11. » The set of effective guards from Example 4.4.9 yields the snapshot
encoding

q ≤ (ϕ1(ε, false) ? q1 : 0) + (ϕ3(ε, false) ∧ ϕ4(ε′, false) ? q4 : 0),

where ε′ = 〈+, rec, 〈node〉, σ̂〉. «

The following lemma captures the correctness of our snapshot encoding.

Lemma 4.4.12. » Let us consider an arbitrary snapshot ε, a permission map δ, and a
model µ with µ � q ≤

∑n
i=1(Fi ? qki : 0) as described above. Any hypothesis H with

H(id) ≡ ⦃τid⦄µ satisfies the snapshot constraint ψ∀H(ε, δ). «

Proof. The claim follows from Lemma 4.4.10 together with the observation that the
accessibility predicates corresponding to the effective guards conceptually come from
different separating conjuncts. �

Incompleteness. While our encoding takes the unrolling of predicate instances into
account, it does not consider the possibility to obtain a predicate instance by requiring
all permissions required by its body or rewriting predicate instances in other ways.
Although the details might be a bit intricate, an extension of our encoding to also
incorporate this is rather straightforward. In general, we can imagine situations
where such a more complete encoding would be necessary to successfully synthesise
a suitable next hypothesis. However, our less complete encoding was sufficient to
successfully infer all specifications, for every program in our evaluation.

In Section 4.5, we will discuss how our teacher handles isorecursive predicates. We
observe that, in the elaborations above, the unrolling of the predicate definitions
can be seen as counterparts of the unfold statements discussed there; a more com-
plete encoding would also include the counterparts of fold statements and lemma
applications.

4.4.4 Choice Encoding

Finally, we briefly discuss how our learner handles choices represented by expression
placeholders e?k. Recall that such choices are used only to allow the solver to pick a
second argument for segment predicates seg(e, e?k) and are associated with a set of
options Ok = {e1, . . . , en} that was generated along with the specification templates.
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Hot-Bit Encoding. For each i ∈ {1, . . . , n}, we introduce an option variable oki that
indicates whether the i-th option ei is chosen or not. In order to ensure that exactly
one option is chosen, we add the constraint

n∨
i=1

oki ∧
n−1∧
i=1

n∧
j=i+1

¬(oki ∧ okj )

to our encoding. Note that the first part of this constraint ensures that at least
one option is picked while the second part ensures that no two options are picked
simultaneously. The reification of the expression placeholder e?k is then defined
accordingly:

Definition 4.4.13. » For any expression placeholder e?k associated with the set of options
Ok = {e1, . . . , en}, we define ⦃e?k⦄µ :≡ ei, where i ∈ {1, . . . , n} is the unique index
such that µ(oki ) = true. «

Enumerating Choices. It remains to show how our learner can force the solver to choose
a suitable – and not just any – option. To do so, the learner conceptually replaces
each segment predicate seg(e, e?k) with the conjunction

n∗
i=1

(oki ⇒ seg(e, ei)).

We observe that the learner can treat the option variables oki just like regular boolean
expressions b, which then allows us to use the snapshot encoding from the previous
subsection without any further alterations.

4.5 Isorecursive Predicates
An equirecursive verifier treats a predicate instance as the complete unrolling of
its definition [1]. This also coincides with our intuitive understanding of recursive
predicates and is how our formal expositions so far treated recursive predicates. The
integration of our inference with an equirecursive verifier is therefore straightforward.
Most automated verifiers, however, employ an isorecursive semantics [100] that
distinguishes between a predicate instance and its body, while providing some means
to switch back and forth between the two. For the sake of our elaborations below,
we assume that there are two ghost statements unfold rec(~e ) and fold rec(~e ) that
exchange the predicate instance rec(~e ) with its body, and vice versa. Such statements
are used, for example, in Viper [83] and VeriFast [59]. The user typically has
to provide ghost code that explicitly tells the verifier where to unfold or fold a
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predicate or how to manipulate predicate instances via lemma applications. Without
such ghost code, an isorecursive verifier could report a permission failure even if
the required permissions are present but folded within a predicate instance. In our
setting, this would cause the teacher to produce spurious samples and thereby hinder
the learning process from making progress. For example, the teacher could produce
a sample requiring a permission that is already contained in the current hypothesis
and the learner could end up proposing the same hypothesis again. In summary, an
isorecursive verifier cannot readily be used by our teacher.

Section Outline. Throughout this section, we show how to overcome the limitations
of an isorecursive verifier such that it can be used by our teacher nonetheless. In
Sections 4.5.1 to 4.5.4, we first outline and then detail a strategy to automatically
generate fold and unfold statements. After that, in Section 4.5.5, we briefly discuss
how our teacher handles segment predicates.

4.5.1 Unfolding and Folding Strategy

In the presence of recursive predicates, the teacher has to factor in that our learning
framework treats predicate instances and their bodies interchangeably. While it is
already nontrivial to manually write ghost code that unfolds and folds predicate
instances for correct specifications, it is even harder to automatically generate ghost
code for potentially incorrect specifications. One of the challenges is to ensure that, in
case of a failure, this ghost code provokes the verifier to report a suitable verification
counterexample that can be leveraged to advance the inference.

Unfolding Strategy. First and foremost, the ghost code should prevent the verification
from failing when sufficient permissions are present but not exposed, that is, still folded
within a predicate instance. To this end, we introduce a ghost code fragment ud⦃A⦄
that statically unfolds all predicate instances appearing in the assertion A up to a
fixed depth d ∈ N; the code fragments for our unfolding strategy are formally defined
in Section 4.5.3 below.

Right after every point, where the query program inhales a specification H(id, ~e ),
we then add the fragment ud1⦃H(id, ~e )⦄, for some unfolding depth d1 This exposes
the permissions contained within the d1 top-most layers of the predicate instances
appearing in H(id, ~e ). For sufficiently large choices of d1 and an appropriate choice
for the predicate instances included in the specifications, this is enough to handle
any program: A loop-free sequence of statements can only access a data structure
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up to a constant depth, and due to abstraction boundaries such as loop invariants,
verifiers conceptually analyse straightline code.

Folding Strategy. At every point where a specification is exhaled, we potentially have
to fold any predicate instance that syntactically appears in the said specification.
However, as the code for which the specifications are inferred might traverse, modify,
create or delete the data structures at hand, we cannot blindly mirror the previous
unfolds. As the counterpart for our unfolding strategy, we therefore introduce a ghost
code fragment fd⦃A⦄ that adaptively folds required predicate instances up to a fixed
depth d ∈ N if they are not already present in the verifier’s permission state; the
code fragments for our folding strategy are formally defined in Section 4.5.4 below.

Right before every point, where the query program exhales a specification H(id, ~e ),
we then add the fragment fd2⦃H(id, ~e )⦄, for some folding depth d2 ≥ d1. The folding
depth d2 should be at least the unfolding depth d1, so that it is possible to entirely
re-fold any previously unfolded predicate instances. If the code at hand builds up a
data structure – for instance, prepends a node to a linked list – a larger fold depth is
required. For our evaluation, a suitable choice was d2 = d1 + 1.

Note that this folding strategy outlined above requires querying whether a permis-
sion for a predicate instance is present or not. For our prototype implementation,
we were working with a verifier that supports permission introspection [94], that is,
provides language primitives that allow us to reflect on the permissions currently
held. As this is a non-standard feature, our ghost code fragments introduced below
additionally simulate the necessary permission introspection using auxiliary variables
to track permissions.

4.5.2 Simulating Permission Introspection

As stated above, our fold strategy relies on knowing whether a particular predicate
instance is present in the verifier’s state. To this end, we now elaborate how to
generate the additional ghost code that keeps track of all predicate instances that are
added and removed by inhaling and exhaling specifications as well as all related ghost
operations. For the sake of simplicity, we assume that there is only one recursive
predicate; the extension to multiple recursive predicates is straightforward. Note
that, as the recursive predicate was introduced by our learner, we can be sure that
the original input program does not mention any instances of the recursive predicate;
permission changes corresponding to statements from the input program are, thus,
orthogonal.
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Tracking Variables. We can syntactically determine all places an inhale or unfold state-
ment of our ghost code potentially adds permissions held for a predicate instance;
in the following, we will refer to them as syntactic instances: For an inhale A state-
ment, these are the predicate instances appearing in the assertion A. And, for an
unfold rec(~e ) statement, these are the predicate instances appearing in Arec[~e, \~xrec],
where Arec and ~xrec are the predicate body and parameters, respectively.

In the elaborations below we assume that there are n syntactic instances in total,
and identify each of them with a unique index i ∈ {1, . . . , n}. For each syntactic
instance, we introduce a boolean variable bi that tracks whether the instance is alive,
that is, whether its related permission for the predicate instance has been gained but
not yet lost. Moreover, we also introduce variables ~vi used to record the values of
the predicate instance’s arguments. For all arguments ~e, we then define

q(~e ) :≡
n∑

i=1

qi(~e ), where qi(~e ) :≡ (bi ∧~vi = ~e ) ? 1 : 0.

Intuitively, each qi(~e ) indicates how much the i-th syntactic predicate instance
contributes to the permissions held for the predicate instance rec(~e ). Thus, their
sum q(~e ) reflects the total permissions held for rec(~e ).

Permission Accounting. We now briefly outline how the aforementioned variables have
to be initialised and updated in order to keep track of the permissions currently
held for any predicate instance. As the execution starts with no permissions, all
variables bi are initialised as bi := false.

At any point where a permission for a predicate instance rec(~e ) is gained through
the i-th syntactic instance, we add the ghost code bi := true ;~vi := ~e to update the
tracking variables accordingly; note that – as we are dealing with loop-free code
– any syntactic instance is encountered at most once. In Section 4.5.3 below, we
explain how this is achieved for our ghost code realising the unfolding strategy.

Conversely, if a permission for a predicate instance rec(~e ) is lost, our ghost code
goes through all syntactic instances and check whether there is a matching one
that is still alive; this can be done by checking is an index i ∈ {1, . . . , n} for which
q(~e ) = 1. If such an instance is found, it is marked as dead by setting bi := false. In
Section 4.5.4 below, we show how our ghost code for the folding strategy achieves
this.

4.5.3 Static Unfolding
We now formally define the ghost code fragment ud⦃A⦄ that statically unfolds
predicate instances appearing in the assertion A up to a predefined depth d.
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1 // initialise variables
2 b1 := false
3 // inhale specification
4 inhale rec(node)
5 // statically unfold ‘‘rec(node)’’
6 unfold rec(node)
7 if (node 6= null) {
8 // remember instance ‘‘rec(node.next)’’
9 b1 := true

10 v1 := node.next
11 }
12 // randomly advance pointer (from original program)
13 if (coinflip()) {
14 node := node.next
15 }
16 // adaptively fold ‘‘rec(node)’’
17 if (b1 ∧ v1 = node) {
18 // consume instance ‘‘rec(node)’’
19 b1 := false
20 } else {
21 if (node 6= null) {
22 // adaptively fold ‘‘rec(node.next)’’
23 if (b1 ∧ v1 = node.next) {
24 // consume instance ‘‘rec(node.next)’’
25 b1 := false
26 } else {
27 // no instance found
28 skip
29 }
30 }
31 fold rec(node)
32 }
33 // exhale specification
34 exhale rec(node)

Listing 4.6. An example showcasing our static unfolding and adaptive folding strategies to
handle the recursive predicate rec(x) , x 6= null⇒ acc(x.val) ∗ acc(x.next) ∗ rec(x.next), including
the ghost code simulating permission introspection. The condition coinflip() represents a
nondeterministic choice and prevents us from being able to determine whether or not the
predicate instance exhaled at the very end needs to be folded – just like, in general, the
teacher is not due to being agnostic about the program semantics.
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Definition 4.5.1. » For all assertions A and all depths d ∈ N, we define

ud⦃A⦄ :≡



ud⦃A1⦄ ; ud⦃A2⦄ if A ≡ A1 ∗A2

if (b) {ud⦃A1⦄} if A ≡ b⇒ A1

unfold rec(~e ) ; ud−1⦃Arec[~e \~xrec]⦄ if A ≡ rec(~e ) and d ≥ 1

bi := true ;~vi := ~e if A ≡ rec(~e ) and d = 0

skip otherwise,

where Arec and ~xrec denote the body and the arguments of the predicate p, respectively,
and the index i in the fourth case indicates which syntactic instance we are dealing
with. «

In the definition above, the first two cases are straightforward. The third case
recursively unfolds all predicate instances appearing in the body of the predicate
instance rec(~e ). The penultimate case updates the variables bi and ~vi corresponding
to the i-th syntactic instance rec(~e ) according to our elaborations in Section 4.5.2
above.

Example 4.5.2. » Lines 6 through 11 of Listing 4.6 correspond to the ghost code
fragment u1⦃rec(node)⦄, where rec(x) , x 6= null⇒ acc(x.val) ∗ acc(x.next) ∗ rec(x.next).
The first line of this fragment is unfold rec(node), which simply unconditionally
unfolds the predicate instance rec(node). The subsequent conditional statement
if (node 6= null) {b1 := true ; v1 := node.next} implements the permission accounting; in-
tuitively, it remembers the predicate instance rec(node.next), which is added by the
unfold rec(node) statement, given that node 6= null.

Note that the skip statement on line 28 is reached when the predicate instance
rec(node.next) required to fold rec(node) is not held, but the maximal fold depth is
reached. We observe that if the verifier deems this path reachable, the exhale rec(node)
at the very end of Listing 4.6 fails. If this happens during verification, there are
either indeed insufficient resources to obtain the predicate instance rec(node) and
the verification rightfully fails, or the picked unfold depth is not large enough and
needs to be increased; in the latter case, the teacher typically produces a sample
requiring a spurious resource, which can eventually be detected once the learner has
accumulated an unsatisfiable set of constraints. «

4.5.4 Adaptive Folding
Next, we formally define the ghost code fragment fd⦃A⦄ that constitutes the coun-
terpart to the unfolding strategy and adaptively folds any predicate instance required
to establish an assertion.
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Definition 4.5.3. » For all assertions A and all depths d ∈ N, we define

fd⦃A⦄ :≡



fd⦃A2⦄ ; fd⦃A1⦄ if A ≡ A1 ∗A2

if (b) {fd⦃A1⦄} if A ≡ b⇒ A1

gd,n⦃rec(~e )⦄ if A ≡ rec(~e )

skip otherwise

gd,i⦃rec(~e )⦄ :≡


if (bi ∧~vi = ~e ) {bi := false} else {gd,i−1⦃p(~e )⦄} if d ≥ 1 and i ≥ 1

fd−1⦃Arec[~e \~xrec]⦄ ; fold rec(~e ) if d ≥ 1 and i = 0

skip otherwise,

where Arec and ~xrec denote the body and the arguments of the predicate p, respectively,
and i ∈ {1, . . . , n}. «

The ghost code fragment fd⦃A⦄ essentially does the reverse of ud⦃A⦄ with the
exception that it makes use of the auxiliary definition gd,i⦃rec(~e )⦄, which ensures
that the predicate instance rec(~e ) is only folded if needed. Intuitively gd,i⦃rec(~e )⦄
goes through all syntactic instances and checks whether there is a matching one
that is still alive. If such an instance is found, its corresponding variable bi is set to
false to indicate that this instance is now (about to be) consumed. Otherwise, if no
such instance was found after going through all syntactic instances, the second case
recursively folds predicate instances appearing in the predicate’s body.

Example 4.5.4. » Lines 17 through 32 of Listing 4.6 correspond to the ghost code
fragment f1⦃rec(node)⦄. The condition b1 ∧ v1 = node.next on line 17 checks whether
the predicate instance rec(node) is already present; if so, it updates b1 := false in
order to mark the remembered predicate instance (cf. Example 4.5.2) as consumed
and, otherwise, recursively adaptively folds all predicate instances appearing in the
predicate’s body node 6= null⇒ acc(node.val) ∗ node(node.next) ∗ rec(node.next). «

4.5.5 Lemma Definitions and Applications

Occasionally, our adaptive folding strategy is not enough and the verifier needs to
apply an inductive argument. This typically only happens when code iteratively
traverses a recursive data structure. Such an inductive argument can be made
using a lemma method that recursively applies fold or unfold statements in order to
achieve the desired rewriting of the predicate instances; intuitively, the body of a
lemma method can be seen as the proof of the lemma while the precondition and
the postcondition capture the statement that is proven.
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x s(x) y s(y)

seg(x, s(y))

seg(x, y) rec’(y)

Figure 4.7. A visualisation of the layers of a segment predicate. In order to get from the
predicate instance seg(x, y) to the instance seg(x, s(y)) a layer has to be added at the innermost
nesting level ( ). Since fold and unfold statements only add and remove layers at the outermost
nesting level ( ), an inductive argument is needed.

Below, we elaborate how our teacher can generate such lemma methods based on
the inferred segment predicate and how lemma applications are handled. Recall from
Section 4.3.3 that we generate the specification templates for recursive predicates in
a structured form

seg(x, y) , x 6= y⇒ rec’(x) ∗ (b⇒ seg(s(x), y))

that directly corresponds to their recursive structure; ultimately, this is what allows
the teacher to generate the lemma definitions fully automatically. Our evaluation
demonstrates this for generic append and concatenation lemmas for segment predicates
describing parts of list-like data structures.

Append Lemma. Roughly speaking, an append lemma is used whenever a segment
predicate needs to be extended by one node at its end; That is, the goal is to rewrite
the predicate instance seg(x, y) into seg(x, s(y)). The required permissions for this are,
of course, seg(x, y), but also the permissions to form the last link: Unless y = s(y),
these additional permissions correspond to the non-recursive part rec’(y) for the
node y. note that, if y = s(y), the predicate instances seg(x, y) and seg(x, s(y)) are
equivalent.

Conceptually – as illustrated in Figure 4.7 – the permissions rec’(y) need to be
added at the innermost layer of seg(x, y). Since fold and unfold statements only allow us
to add or remove the topmost layer of a recursive predicate, an inductive argument is
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needed; hence the necessity of the a corresponding lemma method. A method proving
the append lemma for a generic list-like segment predicate is shown in Listing A.1 in
the appendix.

Concatenation Lemma. A concatenation lemma is needed whenever two adjacent predic-
ate instances seg(x, y) and seg(y, z) need to be merged into a single instance seg(x, z).
A method proving the concatenation lemma for a generic list-like segment predicate
is shown in Listing A.2 in the appendix.

Lemma Applications. In the same spirit as our adaptive folding strategy, our teacher
also applies lemmas adaptively. Intuitively, we want to apply an individual lemma
whenever the following conditions are met: First, we need to establish a predic-
ate instance mentioned in the lemma’s postcondition (which can be determined
statically). Second, the permissions for the predicate instances mentioned by the
lemma’s precondition are already present (which can be determined dynamically
using permission introspection).

This notion can easily be extended to any sequence of lemma applications, even
in combination with fold statements. As it is not apriori clear which such sequence
is suitable to establish the specifications in question, one option would be to let
the teacher generate code that exhaustively enumerates all strategies consisting of
sequences of lemma applications and fold statements, up to a predefined length,
and picks the one matching our requirements. Unfortunately, such an exhaustive
search quickly leads to infeasible verification times (due to a combinatorial explosion
introduced by many branching statements). To alleviate this problem, as described
in the following, guide our inference in cases where a lemma is needed.

Lemma Hints. We manually annotate the input program with lemma hints whenever
lemma applications are required. A hint indicates at what point the program a
lemma may be required; the hint comprises the name of the lemma and suitable
arguments. Note that, even in the presence of hints, our teacher produces code that
applies the lemmas adaptively, as there might be iterations for which the current
hypothesis does not require the lemma application (and the verification would result
in a spurious permission failure if we were to apply it anyway). Importantly, these
lemma hints seamlessly integrate into our unfolding and folding strategy described
above.

In general, the required hints are fairly idiomatic and therefore easy to come up
with: For our entire evaluation, the following two rules were sufficient:
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1 method contains(head: Node, key: Int) returns (found: Bool)
2 requires seg(head, null)
3 ensures seg(head, null)
4 {
5 var node: Node
6 var prev: Node
7 node := head
8 found := false
9 fold seg(head, node)

10 while (node 6= null ∧ ¬found)
11 invariant seg(head, node) ∗ seg(node, null)
12 {
13 unfold seg(node, null)
14 if (node.val= key) {
15 found := true
16 fold seg(node, null)
17 } else {
18 prev := node
19 node := node.next
20 append_lemma(head, prev, node)
21 }
22 }
23 concat_lemma(head, node, null)
24 }

Listing 4.8. The fully specified running example with applications of the append lemma and
concatenation lemma.
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• Apply an append lemma at the end of a loop that traverses a recursive data
structure to construct the segment predicate describing the part of the data
structure that has already been traversed.

• Apply a concatenation lemma after a loop that traverses a recursive data
structure to join the traversed part of the data structure with the left-over
part, if any.

Example 4.5.5. » The contains method from our running example requires both, an
application of the append lemma and an application of the concatenation lemma,
if we want to establish that the predicate instance required by the precondition is
not leaked and can be given back by the postcondition. The fully specified method
including the lemma applications is shown in Listing 4.8. «

4.6 Evaluation
We have developed a prototype implementation of our learning-based permission
inference and evaluated its effectiveness on a wide range of examples.

Section Outline. This section presents our evaluation and is structured as follows. In
Section 4.6.1, we briefly discuss our implementation. Afterwards, in Section 4.6.2,
we describe our benchmark and discuss the experimental results.

4.6.1 Implementation
We have developed a prototype implementation5 of our inference for the Viper
verification infrastructure [83]; our teacher uses Viper’s symbolic execution verifica-
tion backend [94]. The inference takes a Viper program as input and outputs the
program annotated with suitable specifications, including predicate definitions. The
permission model employed by our evaluation uses binary permissions, which is a
subset of fractional permissions – where permission amounts are restricted to be
either 0 or 1 – used for our formal presentation above. This yields a finite hypothesis
space and therefore guarantees termination (cf. Section 4.1.7).

Escalating Complexity. As an optimisation aimed at obtaining simpler specifications,
our implementation makes use of different levels of complexity used for the resource
guards. As a measure for complexity, we used the number of clauses. At first, the

5: https://github.com/dohrau/inference
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learner tries to synthesise specifications where the guards have no clauses; that is,
are either true or false (cf. Section 4.4.2). If this fails, the learner then gradually (and
globally) increases the number of clauses used for the guards (typically no or one
clause per guard were sufficient). Once a predefined upper bound on the number of
clauses is exceeded, the learner reports that it was unable to synthesise a hypothesis
for the next iteration. In addition to yielding simpler specification, we also observed
that this optimisation typically reduced the number of iterations required to converge
to a valid hypothesis.

Syntactic Upper Bounds. Another optimisation that we implemented was to extend the
SMT encoding to disallow specifications that – under consideration of unrolling of
predicate definitions – contain two syntactically identical accessibility predicates.
For example, our encoding does not allow the learner to infer a loop invariant
acc(node.val) ∗ rec(node) while simultaneously adding the permission acc(x.val) to the
recursive predicate rec(x). Without this optimisation, it occasionally happened that
our learner synthesised specifications that were equivalent to false.

4.6.2 Experimental Results

Next, we describe and discuss our experimental results. An overview of the results is
shown in Table 4.9. All experiments were performed on a 2020 MacBook Pro with
an M1 chip and 16 GB of RAM.

Quantitative Evaluation. We evaluated our inference on a benchmark comprising a
variety of programs creating, traversing, modifying, and deleting data structures.
Since Viper checks for memory safety but does not perform permission leak checks,
our inference typically only infers method preconditions and loop invariants for
programs consisting of a single method. In order to also get method postconditions,
we added a client that calls the method of interest and then deallocates the data
structure at hand in order to enforce that the permissions are not leaked.

The first two groups of programs in our benchmark suite comprise a wide range of
non-recursive, list-like, and tree-like data structures. The programs making up the
second group demonstrate our inference’s ability to infer segment predicates typically
needed for specifications for iterative implementations traversing or modifying list-like
data structures. As elaborated in Section 4.5.5, these were the only programs for
which we used lemma hints.
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cell_swap.vpr 32 4 5 0 8 0 0 5 6 2.54 2.38
cell_swap_alias.vpr 29 4 3 0 8 0 0 6 7 2.73 2.59
list_contains_rec.vpr 34 4 5 0 8 0 1 8 13 3.79 3.58
list_copy_rec.vpr 37 4 6 0 8 0 1 10 19 7.75 7.52
list_create_it.vpr 45 5 5 1 11 0 1 8 14 4.22 4.02
list_create_rec.vpr 49 5 6 0 10 0 1 7 12 3.78 3.64
list_delete_it.vpr 21 2 1 1 5 0 1 9 13 4.86 4.68
list_delete_rec.vpr 17 2 2 0 4 0 1 5 6 2.03 1.91
list_equal_rec.vpr 44 4 6 0 8 0 1 17 33 22.09 21.60
list_filter_rec.vpr 49 4 6 0 8 0 1 7 15 3.74 3.50
list_mutual_rec.vpr 51 5 7 0 10 0 1 9 19 5.53 5.35
list_reverse_it.vpr 39 4 4 1 9 0 1 12 26 10.58 10.26
list_sum_rec.vpr 37 4 5 0 8 0 1 8 17 3.58 3.42
list_zip_rec.vpr 39 4 6 0 8 0 1 9 20 7.33 7.13
sorted_insert_rec.vpr 49 5 6 0 10 0 1 9 17 5.19 5.02
sorted_merge_rec.vpr 51 4 6 0 8 0 1 12 24 14.86 14.61
sorted_remove_rec.vpr 43 4 6 0 8 0 2 8 18 5.53 5.34
stack_pop.vpr 34 4 4 0 8 0 2 8 17 4.74 4.56
stack_push.vpr 39 5 5 0 10 0 1 12 20 7.33 7.10
tree_create_rec.vpr 58 5 8 0 10 0 1 17 28 105.21 104.79
tree_delete_rec.vpr 20 2 3 0 4 0 1 7 9 3.35 3.22
tree_sum_rec.vpr 43 4 7 0 8 0 1 17 36 96.57 96.05
bst_contains_rec.vpr 47 4 7 0 8 0 1 9 25 10.43 10.21
bst_insert_rec.vpr 62 5 8 0 10 0 1 12 21 19.76 19.53

list_contains_it.vpr 44 4 4 1 9 2 1 9 19 6.42 6.19
list_copy_first_it.vpr 35 4 4 1 9 1 1 8 15 4.85 4.66
list_create_append_it.vpr 60 5 6 1 11 2 1 10 22 8.35 7.87
list_filter_it.vpr 53 4 5 1 9 2 2 12 23 36.53 36.16
list_sum_it.vpr 37 4 4 1 9 1 1 9 22 5.66 5.43
sorted_insert_it.vpr 55 5 5 1 11 2 2 10 23 20.88 20.63
sorted_remove_it.vpr 57 5 5 1 11 2 2 15 33 37.48 37.08

lifo_channel.vpr 72 6 4 2 15 0 2 17 31 64.02 63.43
lock_invariant.vpr 67 4 4 3 14 0 0 8 12 4.74 4.43
nagini.vpr 541 4 3 0 8 0 0 6 8 5.89 5.60
tree_to_dll.vpr 62 4 6 0 8 0 1 11 24 31.84 31.32
faulty_functional.vpr 37 4 5 0 8 0 0 - - - -
faulty_twice.vpr 7 1 0 0 2 0 0 - - - -
faulty_infinite.vpr 21 2 1 1 5 0 0 - - - -

Table 4.9. Our experimental results. For each program, we list numer of lines of code, methods,
method calls, and loops. Moreover, we indicate how many specifications are inferred and
the number of hints for lemmas used. We report the smallest unfold depth d with which
the inference succeeded (the adaptive fold depth was always chosen to be d+ 1), how many
iterations it took, the number of samples produced by the teacher, and the total time as well
as the time spent waiting for the verifier.

164



Section 4.6 Evaluation

Qualitative Evaluation. Apart from the aforementioned benchmark, we ran some addi-
tional qualitative experiments that evaluated other aspects of our technique; these
correspond to the third and last group of programs in our benchmark.

• The first two of these programs shows that our inference can be leveraged
to infer permission specifications for high-level programming concepts: For
these programs we introduced placeholder predicates and inhaled and exhaled
the related predicate instances wherever a permission transfer happened (cf.
Section 4.2.1). Our inference was able to infer suitable definitions for these
predicates – notably, without understanding which concepts they encoded:

The program lifo_channel.vpr encodes of a producer and a consumer thread that
repeatedly and concurrently write to and read from, respectively, a last-in-
first-out channel. Our inference successfully inferred the channel invariant
describing the stack-based data structure at hand.

The program lock_invariant.vpr forks and then joins a variable number of threads;
each of the threads operates on local data as well as on shared data guarded by
some lock. Our inference successfully inferred that the permissions to the local
data had to be passed via the thread preconditions and postconditions while
the permission to the global data could only be transferred via the resource
invariant associated with the lock.

• The program nagini.vpr is the Viper encoding of an unspecified Python program
generated by the verification frontend Nagini [39]. Frontend encodings are
notoriously verbose and obfuscated; therefore, one might think it is easier to
infer the specifications on the source code level. However, being able to infer
them on the level of the encoding allows us to readily reuse our implementation.

• The program tree_to_dll.vpr demonstrates that our inference works in the presence
of partial permission specifications: It implements a recursive method that
takes a binary tree as input and – reusing the left and right fields of each node
– transforms it into a doubly-linked list. While the permission specifications
for the binary tree was given, the predicate for the doubly-linked list was
successfully inferred.

Unfortunately, as our inference only infers permission specifications, it does not
infer the constraint that the left field of any node actually points back to the
previous node in the list. Specifically, the predicate inferred for the doubly linked
list by our inference is rec(x) , x 6= null⇒ acc(x.left) ∗ acc(x.right) ∗ rec(x.right).
However, the definition of this predicate, can easily be manually extended

165



Chapter 4 Black-Box Learning

to incorporate the constraint about back pointers by adding the conjunct
x 6= null⇒ unfolding rec(x.right) in x.right.left= x; note that the unfolding expression
instructs our isorecursive verifier to temporarily unfold the recursive instance
rec.right in the evaluation of the condition x.right.left= x.

• Finally, the last three programs in our benchmark demonstrate that our infer-
ence also correctly handles faulty programs. The program faulty_functional.vpr
contains a statement that potentially divides by zero; our inference correctly
reports that the verification failed due to an error that cannot be fixed by
inferring permission specifications.

If the program is not memory safe, our inference will either yield an unsatisfiable
specification or abort because the learner accumulated an unsatisfiable set of
constraints; due to our optimisations mentioned in Section 4.6.1, we only
observed the latter. For example, the program faulty_twice.vpr consists of a
main method forking two threads that concurrently write to the same memory
location.

The final program faulty_infinite.vpr contains a loop that indefinitely iterates over
a loop end never terminates. the execution of such a loop requires an infinite
predicate which cannot be constructed and therefore is equivalent to false.
Also in this case, our inference correctly reports that it is not possible to infer
specifications.

Conciseness. We manually inspected all inferred specifications and observed that they
closely resemble manually written ones; in particular, they are typically equivalent
and consist of an equal number of conjuncts.

For instance, for the contains method from our running example – which was
introduced in Listing 4.2 and corresponds to list_contains_it.vpr in Table 4.9 – our
inference infers the precondition pre, postcondition post, invariant inv, and recursive
predicate seg given by the following final hypothesis:

H(pre) ≡ seg(head, null)

H(post) ≡ seg(head, null)

H(inv) ≡ seg(head, node) ∗ seg(node, null)

H(seg) ≡ x 6= y⇒ acc(x.val) ∗ acc(x.next) ∗ seg(x.next, y)

These are precisely the specifications from the fully specified example shown in
Listing 4.8 and likely what a programmer would write themself.

We observed that, occasionally, our inference produces specifications that contain
unnecessary guards or additional conjuncts; importantly, however, never at the
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expense of the specifications’ correctness or satisfiability. To illustrate this, let us look
at two concrete examples. First, let us consider consider the program list_copy_rec.vpr
that contains a method that copies a list; for this method, our inference produces
the precondition

list 6= null⇒ rec(list),

where the condition list 6= null is unneccessary as it is already included in inferred
the predicate rec(x) , x 6= null⇒ acc(x.val) ∗ acc(x.val) ∗ rec(x.next). Next, we turn our
attention to the program lifo_channel.vpr that contains a method that pops a value
from the stack that is used to implement the channel; for this method, our inference
produces the precondition

(stack= null⇒ acc(stack.next)) ∗ rec(stack) . (4.7)

From a permission perspective, the first conjunct is not needed. It implicitly requires
that stack 6= null, as it is impossible to hold a permission for null.next; in other words, it
requires the stack to be non-empty and, thus, prevents the method to be used to pop
a value from an empty stack, which would lead to a failure. Interestingly – as our
inference only infers permission specifications – adding this seemingly spurious first
conjunct in Equation (4.7) is the only way the inference can enforce the condition
stack 6= null and guarantee memory safety. Notably, manually adding the condition
stack 6= null to the precondition of the method causes our inference to not infer this
first conjunct of Equation (4.7) above.

Conclusion. Our inference runs in reasonable time, which for the most part is spent
by the verifier – on average, more than 95%. All inferred specifications are sound,
concise, and satisfiable:

• As already discussed in Section 4.1.7, our inference is sound by construction:
The inferred specifications contain sufficient permissions to successfully verify
the program.

• As mentioned above, we observed that all inferred specifications closely resemble
manually written ones; they are typically equivalent and consist of an equal
number of conjuncts.

• Finally, we also manually checked that the specifications are satisfiable; that is,
they do not require more than one permissions for a single memory location
and predicate instances appearing within them can actually be constructed.

Thanks to the automatically generated ghost code, our inference can effectively
leverage an isorecursive verifier to infer specifications including recursive predicates.
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Moreover, this ghost code allows one to successfully verify the annotated output
program. Although the ghost code is not minimal, we manually confirmed that it
can easily be reduced using a few elementary simplification rules (for instance, dead
code elimination). Overall, our evaluation shows that our inference can be applied to
a wide range of data structures and code patterns to infer all specifications at once,
even in the presence of partial functional or permission specifications.

4.7 Discussion
Section Outline. In Section 4.7.1, we first compare our technique with related work.
Then, in Section 4.7.2, we then summarise its strengths and limitations. Finally,
Section 4.7.3, we conclude this chapter and briefly outline possible future directions.

4.7.1 Related Work

Several powerful inference techniques for permission specifications have been de-
veloped, but they do not satisfy all of our practicality requirements – comprehensive
specifications, wide applicability, and specification process – identified at the begin-
ning of this chapter. In particular, many approaches are limited to a set of predefined
predicates, or they cannot infer all specifications and permission-related annotations
that typical verifiers require. Below, we first discuss the most relevant permission
inference techniques.

Neider et al. [84] present a black-box inference also based on the ICE framework [47]
and also integrates an existing verifier. Their inference needs predicate definitions
and method preconditions (which we both infer), and produces loop invariants and
method postconditions with permissions and value constraints (we do not infer the
latter). Due to the integration of a concrete verifier, their specifications are, by
construction, readily verifiable, and their inference does not need to duplicate the
semantics of the programming language; both are also the case for our approach.

Guo et al.’s [52] white-box inference used inductive recursion synthesis to infer
predicate definitions for tree-like data structures as well as method summaries and
loop invariants. They handle complex recursive data structures (back-pointers,
composed, overlaid, and nested with arrays), including partial versions thereof, which
are expressed via the magic wand connective [92]. Their inference requires the
presence of code that constructs an instance of the data structure to reveal its
recursive backbone and is, thus, not fully modular. Moreover, it is unclear how much
manual effort is necessary to use the inferred specifications in an existing verifier, for
example, because additional annotations are needed for working with magic wands.
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Le et al.’s [66] inference needs to be integrated into a verifier with a second-order
bi-abduction separation logic solver; this is a strong requirement, given that most
automated verifiers are based on SMT solvers. Their inference produces predicate
definitions, corresponding folding and unfolding lemmas for the entailment solver,
and all program specifications. Their approach can handle complex data structures,
but does not support loops (which we do), and it remains unclear how to extend the
approach to infer predicates for partial data structures and the corresponding ghost
code needed for loops.

Next, we give a broader overview over other closely related techniques for spe-
cification inference and for heap analysis. Many existing inference techniques for
permission specifications are tailored to specific data structures or only support
predefined predicates. For instance, the dynamic shape analysis by Mühlberg et
al. [81] and the static shape analysis by Berdine et al. [11] are limited to linked
lists. This restriction allows them to infer permission specifications for more complex
list structures, but comes at the expense of not supporting other recursive data
structures.

More common are approaches that infer specifications involving recursive predicate
instances, but not the corresponding predicate definitions: these must be provided
by users, potentially with further input, such as proof rules for their folding and
unfolding. Examples are Calcagno et al.’s seminal bi-abduction inference [22], Vogels
et al.’s VeriFast-integrated inference [102], Lee et al.’s shape analysis for overlaid
data structures [68], Qin et al.’s inference for shape and value constraints [90], and
Le et al.’s debugger-based dynamic analysis [67], and Neider et al.’s learning-based
approach mentioned above [84]. In contrast to these techniques, our approach also
infers the definitions of the recursive predicates, and the ghost code necessary to
manipulate them, contributing to the comprehensive specifications requirement from
the introduction of this chapter. Similarly, Calcagno et al.’s bi-abductive synthesis
for resource invariants [23] assumes that the user annotates the input program with
thread preconditions, while we infer all specifications.

Many other inference techniques produce specifications that are not intended for
permission-based verification. Examples include the grammar-based shape analysis by
Lee et al. [69], Holík et al.’s shape analysis [58], and Ferrara et al.’s shape analysis [43]
from the long line of abstract interpretation based invariant inferences. It is unclear
if the specifications resulting from these techniques can be transformed and extended
automatically to obtain permission specifications directly usable by (isorecursive)
verifiers, as required by our specification process requirement.

Brotherston et al. propose a cyclic abduction technique [20] to infer predicate
definitions, and method preconditions with safety and termination specifications.
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Their approach, however, does not handle procedure calls, since this would require the
ability to infer method preconditions and postconditions simultaneously. Therefore,
this work does not satisfy our wide applicability requirement, and neither do Guo et
al.’s [52] and Le et al.’s [66] inferences, both already mentioned above.

4.7.2 Strengths and Limitations

We now briefly discuss some of the strengths and limitations of our approach.

Strengths. Our inference is capable of inferring multiple specifications at once; that is,
it is not limited to inferring a single specification but rather can simultaneously infer
all method preconditions and postconditions, loop invariants and potentially also
other permission specifications for a program. Moreover, our inference is also able to
infer the definition of the recursive predicate used in the inferred specifications and
does not rely on predefined or user-defined predicates. In addition to the specifications,
our inference also generates ghost code to successfully verify the annotated output
program using an isorecursive verifier.

Since our technique builds upon a learning-based approach, we also inherit some
of it strengths. Most importantly, the black-box nature of our approach allows the
learner to be unaware of the semantics of the program at hand. Therefore, it can
synthesise permission specifications for arbitrarily complex programs, as long as their
permission specifications reside within our hypothesis space.

While some of the existing work views the teacher as a white-box component that
needs to understand the semantics of the program at hand, our teacher can be seen
as using the verifier as an oracle: Although, the teacher needs to understand where
the verifier syntactically expects specifications, it does not need to understand the
semantics of the input program.

Limitations. Our inference is not guaranteed to infer weakest possible method pre-
conditions and loop invariants. Weaker specifications are generally desired as they
provide stronger framing. Possible approaches to weaken our inferred specifications
could be to perform satisfiability checks or – even better – to incorporate an addi-
tional analysis that checks which permissions are added to the specifications but not
required to execute the code at hand.

When inferring specifications for individual methods, we require client code in
order to also obtain a postcondition. Note, however, that this limitation mostly
stems from the fact that the verifier used for our evaluation does not check whether
permissions are leaked. We believe that our framework could also incorporate leak
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checks with some modifications to the teacher: For example, the teacher could
produce an implication sample requiring that if a permission is added to a method’s
precondition then it must also be added to the method’s postcondition.

4.7.3 Conclusion and Future Directions
We presented a black-box inference that uses abstract samples over traces to effectively
infer all specifications along with related ghost code required to automatically and
successfully verify heap manipulating programs. We demonstrated that our inference
can handle a wide range of data structures and code patterns, even in the presence
of partial functional and permission specifications.

Future Work. Based on the strengths and limitations of our inference in its current
form, there are many possible direction one could pursue. One rather obvious future
direction is to extend our inference to also infer functional specifications; that is, to
infer value constraints that complement the permission specifications. A possible
approach is to first run our permission inference and then a value analysis on top of
it. However, we believe that it is possible to infer permission and value specifications
simultaneously by extending our samples and encoding with value constraints, for
instance, similar to the octagonal constraints described by Garg et al. [47]. Such
a unified approach has the potential to infer stronger specifications compared to
consecutively running a permission and a value analysis; as an example, a predicate
capturing permissions of all elements of a sorted list up to a given value can likely
only be inferred if the permission inference is aware of value constraints.

Moreover, it would be interesting to explore extensions to our ghost code genera-
tion to support richer specifications, for instance, for composed and overlaid data
structures. More details on this and other extensions are discussed in Section 5.2.
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5 Conclusion and Future Work

In this chapter, we conclude the work at hand and briefly discuss possible future
directions.

5.1 Conclusion
In this thesis, we have explored automatic inference techniques for permission spe-
cifications. Concretely, we have developed and implemented two complementary
permission inference technique that both cover an important class of heap manipu-
lating programs.

Array Programs. The first inference technique that we have developed is a permission
inference for array manipulating programs. We have seen that expressing permission
specifications as numerical expressions has two key advantages. First, this allows
us to capture the permission amounts for all array elements using a single permis-
sion expression parameterised by program variables. Second, we can express the
permissions required by loops via maximum expressions over the results obtained for
individual loop iterations. While most existing array analyses focus on array content,
our inference is the first technique that automatically infers permission specifications
for array programs that also handles loops. In particular, our approach is capable of
inferring all permission specifications required by a typical permission-based verifier.

Furthermore, for our construction of the permission invariants, we introduced the
novel concept of progressive loop invariants. We showed how an off-the-shelf numerical
analysis can be leveraged to infer such progressive loop invariants. We believe that
this variation of loop invariants is useful beyond the scope of our permission inference,
for instance, to express progress and termination properties for loops.

In addition, we also introduced a novel maximum elimination algorithm that –
in the spirit of quantifier elimination – can be used to solve maximum expressions
ranging over an unbounded set of values by rewriting them into an equivalent
expression consisting of finitely many binary maximum expressions.

173



Chapter 5 Conclusion and Future Work

Black-Box Inference. The second inference technique that we have developed is a
learning-based approach targeted at inferring permissions for individual heap locations
and recursively defined data structures. Our approach is based on the ICE framework
and employs samples defined over symbolic traces rather than concrete individual
states. This enables our inference to be the first one that automatically infers all
permission specifications required by a typical permission-based verifier; including
method precondition and postconditions, loop invariants, and, crucially, also the
definitions of recursive predicates. Moreover, we also extended our inference to
support isorecursive verifiers – which is the norm for automated permission-based
program verifiers – by automatically generating all ghost code required to manipulate
isorecursive recursive predicates.

Furthermore, we have shown how our inference can be used to infer permission
specifications for high-level concepts, such as thread preconditions and postconditions
or resource invariants by encoding all related permission transfers as an inhale or
exhale of a placeholder predicate. This underlines the generality of our approach and
could be leveraged, for example, by a hypothetical verification frontend to use our
inference (without the need for any retrofitting) to infer permission specifications for
language features allowing such an encoding but not necessarily anticipated by us.

Compatibility. Although this thesis presents both of the aforementioned inference
techniques separately, there are many cases in which they can be combined in an
out-of-the-box manner to infer permission specifications for programs that operate on
both, arrays and recursively defined data structures. This is possible as long as the
parts of the specifications inferred by each technique do not depend on one another;
typically, this the case when the program does not make use of nested structures,
that is, does not operate on arrays of lists, trees with array-typed value fields, or
alike.

For the sake of our elaborations below, let us assume that we want to infer
permission specifications for a program admitting such independent permission
specifications. As our permission inference for array programs is solely based on
syntactic analyses and transformations, it is capable of inferring all array-related
permission specifications by ignoring non-array heap accesses and without taking into
account any other permission specifications. In contrast, our black-box inference is
agnostic of heap accesses permitted by any existing partial permission specifications
and can – assuming that the input program is already annotated with suitable array-
related permission specifications – infer the remaining permission specifications.

In summary – and as illustrated below by Example 5.1.1 – there are many programs
for which we can infer all permission specifications by first running our permission
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1 method swap_combined(a: Int[], head: Node) {
2 var i: Int
3 var t: Int
4 var node: Node
5 i := 0
6 node := head
7 while (i< len(a) ∧ node 6= null) {
8 // swap values
9 t := a[i]

10 a[i] := node.val
11 node.val := t
12 // advance
13 i := i+ 1
14 node := node.next
15 }
16 }

Listing 5.1. A method swapping the values stored in an array and linked lists. We can infer
all permission specifications required by a verifier by first running the permission inference
presented in Chapter 3 and then the one from Chapter 4.

inference for array programs, followed by running the black-box permission inference.
Note that running the inference techniques in reverse order does not work without
further adjustments since the teacher of our black-box inference does not know how
to handle array-related permission failures reported by the verifier, and would require
some sort of program slicing [104].

Example 5.1.1. » Let us consider the swap_combined method shown in Listing 5.1 that
swaps the values stored in an array and a linked lists. Running our permission infer-
ence for arrays on this program yields ∀qi ∈ Z : acc(a[qi], (0≤ qi ∧ qi < len(a)) ? 1 : 0)
as method precondition and postcondition, as well as loop invariant. Annotating the
input program with these specifications yields a program that, when verified, only
causes permission failures related to the linked list. That is, we can run our black-box
permission inference in this partially specified program to obtain the permission
specifications related to the linked list. We experimentally verified that the resulting
specifications are indeed sufficient to successfully verify the swap_combined method. «

In general, permission specifications and recursively defined data structures may
depend on each other (as stated above, to specify permissions for arrays of lists,
for example). In order to also handle such programs, there is probably no way
around developing a unified permission inference capable of inferring all permission
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specifications simultaneously; for example, by extending our black-box inference to
also handle quantified permissions.

5.2 Future Directions
There are several ways in which the inference techniques presented in this thesis
could be extended or complemented.

Magic Wands. In light of recent advances in automating magic wands [32], it would be
interesting to explore inference techniques that infer specifications making use of them.
A magic wand [86], written A1−∗A2, is the separation logic counterpart of the logical
implication and, intuitively, expresses the difference between the assertions A2 and A1.
This makes them very useful to describe partial data structures; For example, let
us recall the loop invariant seg(head, node) ∗ seg(node, null) from Example 4.5.5, where
seg(head, node) captures the part of the linked list that has already been traversed and
seg(node, null) the remaining part. Using magic wands, we can express an equivalent
invariant rec(node) ∗ (rec(node)−∗ rec(head)) without the need for a segment predicate;
here, the predicate instance rec(node) provides sufficient permissions to execute the
remainder of the loop, whereas the magic wand list(node)−∗ list(head) allows us to
regain the permission to the entire linked list once the loop terminates.

An advantage over an approach employing segmented versions predicates would
be that magic wands do not only allow one to easily specify parts of list-like data
structures but also naturally generalise to partial versions of arbitrary recursively
defined data structures; that is, such an approach would likely also be able to support
code that iteratively traverses tree-like data structures, for example. Similar to
the fold and unfold operations for predicates, automated verifiers supporting magic
wands require package and apply operations to establish a magic wand and apply it,
respectively. Ideally, an inference could infer these ghost operations automatically.

We believe that our black-box permission inference from Chapter 4 could serve as
a starting point, and be adapted or extended to support magic wands. For example,
instead of allowing the learner to introduce segment predicate, we could try allowing
it to introduce magic wands. One of the main challenges would be the automatic
generation of suitable package and apply operations; it is conceivable that a strategy
based on permission introspection – similar to the one we used for unfolding and
folding predicate instances – could work.

Richer Specifications. Another possible future direction could be to extend the ghost
code generation of our black-box inference approach to infer permission specifications
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for a wider range of programs operating on a richer set of data structures. There
are several directions one could pursue; examples include but are not limited to
(i) inferring recursive predicate for nested data structures, for example n-ary trees
that store the children of each node in a linked list, (ii) supporting overlaid data
structures, where two or more data structures share a set of nodes, (iii) supporting
additional lemmas, for example the counterpart of the concatenation lemma that
splits a linked-lists segment in two parts or the counterpart of the append lemma
that splits off the last element of a segment, or (iv) handling segmented versions
of general tree-like data structures. Note that the first two directions would also
require substantial changes in the part of the learner that is concerned with detecting
potential instances of recursive data structures. As indicated above, a promising
approach that could be used to tackle the last direction would be based on magic
wands.

Graph-Like Structures. An important class of data structures not covered by either of
our permission inference techniques presented in this thesis are linked data structures
with less structure than, say a linked list or a binary tree, which cannot easily
be described with a recursive predicate. In particular, this class includes more
general graph-like data structures with multiple possible paths between nodes and
potentially also consisting of loops and cycles. Such data structures are typically
specified using quantified permissions ranging over a set of references R satisfying
some closure property; hereby, the set R would be part of the ghost state and – in
an interprocedural setting – be passed as a ghost parameter from one method to
another. Maybe the simplest example of such a data structure is a cyclic list that
can be described by the assertion ∀node ∈ Nodes : acc(node.next), where Nodes is a set
of references satisfying null /∈ Nodes and ∀node ∈ Nodes : node.next ∈ Nodes.

It would be interesting to investigate permission inference techniques for such
graph-like data structures. Possible starting points would be to explore whether either
of the two inference techniques proposed in this thesis could be extended or adapted
to do so. Regardless of the chosen approach, a challenging open question would be
to automatically infer ghost code required to manipulate the set of references R for
code that does not only traverse but also modify the data structure at hand.
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Appendix

A.1 Lemmas for Isorecursive Predicates
Methods proving the append lemma and the concatenation lemma from Section 4.5.5
are shown in Listing A.1 and Listing A.2, respectively.

1 method append_lemma(x: Node, y: Ref, z: Ref)
2 requires seg(x, y)
3 requires y 6= z⇒ rec’(y) ∗ (b′⇒ s(y) = z)
4 ensures seg(x, z)
5 {
6 if (y 6= z) {
7 if (x= y) {
8 // base case
9 if (b′) {

10 fold seg(s(y), z)
11 }
12 fold seg(x, z)
13 } else {
14 // step case
15 unfold seg(x, y)
16 if (b) {
17 append_lemma(s(x), y, z)
18 }
19 fold seg(x, z)
20 }
21 }
22 }

Listing A.1. A method proving the append lemma for a generic list-like predicate segment
seg(x, y) , x 6= y⇒ rec’(x) ∗ (b⇒ seg(s(x), y)). We use b′ :≡ b[y\x] to denote the condition b

adapted to its context.
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1 method concat_lemma(x: Node, y: Ref, z: Ref)
2 requires seg(x, y) ∗ seg(y, z)
3 ensures seg(x, z)
4 {
5 if (x= y) {
6 // base case
7 } else {
8 // step case
9 unfold seg(x, y)

10 if (b) {
11 concat_lemma(s(x), y, z)
12 }
13 fold seg(x, z)
14 }
15 }

Listing A.2. A method proving the concatenation lemma for a generic list-like predicate segment
seg(x, y) , x 6= y⇒ rec’(x) ∗ (b⇒ seg(s(x), y)).
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