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Abstract
Verification of object-oriented programs relies on object invariants
to express consistency criteria of objects. The semantics of object
invariants is subtle, mainly because of call-backs, multi-object in-
variants, and subclassing.

Several verification techniques for object invariants have been
proposed. These techniques are complex and differ in restrictions
on programs (for instance, which fields can be updated), restrictions
on invariants (what an invariant may refer to), use of advanced
type systems (such as ownership types), meaning of invariants (in
which execution states are invariants assumed to hold), and proof
obligations (when should an invariant be proven). As a result, it is
difficult to compare and understand whether/why these techniques
are sound, or to develop better techniques.

In this paper, we develop a unified framework to describe ver-
ification techniques for object invariants. We separate type system
concerns from verification strategy concerns. We distil seven pa-
rameters that characterise a verification technique, and identify suf-
ficient conditions on these parameters under which a verification
technique is sound. To illustrate the generality of our framework,
we instantiate it with six verification techniques from the literature.
We show how our framework facilitates the assessment and com-
parison of the soundness and expressiveness of these techniques.

1. Introduction
Object invariants play a dominant role in the specification and ver-
ification of object-oriented programs, and have been an integral
part of all major specification languages for object-oriented pro-
grams such as Eiffel [28], the Larch languages [4, 16, 17], the Java
Modeling Language JML [18], and Spec# [2]. Object invariants ex-
press consistency criteria for objects, which guarantee their correct
working. These criteria range from simple properties of single ob-
jects (for instance, that a field is non-null) to complex properties of
whole object structures (for instance, the sorting of a tree).

Most of the existing verification techniques expect object invari-
ants to hold in the pre-state and post-state of method executions,
often referred to as visible states [31]. Invariants may be broken
temporarily between visible states. This semantics is illustrated by
class C in Fig. 1. The invariant is established by the constructor. It
may be assumed in the pre-state of method m. Therefore, the first
statement in m’s body can be proven not to cause a division-by-zero
error. The invariant might temporarily be broken by the subsequent
assignment to a, but it is later re-established by m’s last statement;
thus, the invariant holds in m’s post-state.

While the basic idea of object invariants is simple, verification
techniques for practical OO-programs face challenges. These chal-
lenges are more daunting for modular verification where classes
are verified without knowledge of their clients and subclasses:

Call-backs: Methods that are called while the invariant of an ob-
ject o is temporarily broken might call back into o and find the
object in an inconsistent state. In our example (Fig. 1), during

class C {
int a, b;
invariant 0 <= a < b;

C() { a := 0; b := 3; }

void m() {
int k := 100 / (b − a);
a := a + 3;
n() ;
b := (k + 4) ∗ b;
}
void n() { m(); }
}

class Client {
C c;
invariant c.a <= 10;

/∗ methods omitted ∗/
}

class D extends C {
invariant a <= 10;

/∗ methods omitted ∗/
}

Figure 1. An example (adapted from [21]) illustrating the three
main challenges for the verification of object invariants.

execution of new C().m() the assignment to a breaks the in-
variant, and the call-back via n() leads to a division by zero.

Multi-object invariants: When the invariant of an object p de-
pends on the state of another object o, modifications of o poten-
tially break the invariant of p. In our example, a call o.m might
break the invariant of a Client object p where p .c = o. Alias-
ing makes the proof of preservation of p’s invariant difficult. In
particular, for modular verification of m, Client ’s invariant is
not known and, thus, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields
declared in the superclass C then methods of C potentially
break D’s invariant by assigning to C’s fields. In particular, for
modular verification of C, the subclass invariant is in general
not known and, thus, cannot be expected to be preserved.

Several verification techniques address some or all of these prob-
lems [1, 3, 14, 19, 21, 26, 29, 30, 31, 35]. They share many com-
monalities, but differ in the following important aspects:

1. Invariant semantics: What invariants are expected to hold in
which execution states? Some techniques require all invariants
to hold in all visible states, whereas others address the multi-
object invariant challenge by excluding certain invariants.

2. Proof obligations: Where are the proofs required? Some tech-
niques require proofs for invariants relating to the current active
object whereas others require invariant proofs for all objects in
the heap.

3. Invariant restrictions: What objects may invariants depend on?
Some techniques use unrestricted invariants, whereas others
address the subclassing challenge by preventing invariants from
referring to inherited fields.

4. Program restrictions: What objects may be used as receivers
of field updates and method calls? Some techniques permit ar-
bitrary field updates, whereas others simplify modular verifica-
tion by allowing updates to fields of the current receiver only.
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5. Type systems: What syntactic information is used for reasoning?
Some techniques are designed for arbitrary programs, whereas
others use ownership types to facilitate verification.

Furthermore, most techniques have no formal presentation.
All these factors complicate verification technique comparisons
and hinder proper understanding of why these techniques satisfy
claimed properties such as soundness. Thus, it is hard to decide
which technique to adopt or to develop new, sound techniques.

In this paper, we present a unified framework that formalises the
proposed verification techniques, abstracts away from their differ-
ences, and allows comparisons. We concentrate on techniques that
require invariants to hold in visible states, because they constitute
the vast majority of those described in the literature. We formalise
soundness for such verification techniques. Our formalisation ad-
vocates the separation of concerns between the type system and
verification strategy. Even though the soundness of the verification
technique relies on type system soundness, the two are intrinsically
distinct: With such an approach we can investigate the verification
strategy independently of the type system expressiveness. Such a
separation allowed us to quickly discover the lack of soundness in
one of the published techniques—more in section 5.

Approach. Our framework uses seven parameters to capture the
first four aspects in which verification techniques differ. To de-
scribe these parameters, we use object-areas (areas for short) and
invariant-regions (regions for short). The former statically char-
acterise sets of objects, while the latter statically characterise sets
of object-class pairs, and thus represent object invariants (each of
which is an object, and the class that declares the invariant – the
class component handles subclassing).

Thus, we describe the first four aspects as follows (the differ-
ences in type systems are discussed later):

1. Invariant semantics: The region X describes the invariants that
are expected to hold in visible states. The region V describes
the invariants that are vulnerable to a given method, that is,
the invariants that the method may break while the control is
within the method. The latter parameter is necessary because
most techniques require some invariants to hold even between
visible states, for instance, subclass invariants.

2. Invariant restrictions: The region D describes the invariants
that may depend on a given heap location. This characterises
indirectly the locations an invariant may depend on (cf. Def. 2).

3. Proof obligations: The regions B and E describe the invariants
that have to be proven to hold before a method call and at the
end of a method body, respectively.

4. Program restrictions: The areas U and C describe the permitted
receivers for field updates and method calls, respectively.

Fig. 2 illustrates the role of these parameters. In the pre- and post-
state of a method, X may be assumed to hold. Between these visible
states, some object invariants may be broken, but X \ V is known
to hold throughout the method body. Field updates and method
calls are allowed if the receiver object (here, this ) is in U and C,
respectively. Before a method call, B must be proven. At the end
of the method body, E must be proven. Finally, D (not shown in
Fig. 2) constrains the effects of field updates on invariants. Thus,
assignments to a and b affect at most D.

Techniques expressed through these seven components carry
numerous advantages over descriptions using words [35, 14, 19,
31] or typing rules[26]:

• The aspects in which verification techniques differ are distilled
in terms of these components (e.g., invariant semantics using D,
U, C, proof obligations using B, E.)

void m() {

int k := 100 / (b − a);

a := a + 3;

n() ;

b := (k + 4) ∗ b;

}

assume X�

check this in U�

check this in C�
prove B
check this in U�

prove E�

assume X�

X \ V holds

?

6

Figure 2. Role of framework parameters for method m (Fig. 1).

• Relationships between components can be expressed at an ab-
stract level (e.g., well-structured criteria in Def. 5.), and the in-
terpretations of components as areas and regions allow formal
comparisons of techniques in terms of set operations.

Developing our framework was challenging because different
verification techniques (1) use different type systems to restrict
programs and invariants, (2) use different specification languages
to express invariants, and (3) use different verification logics. To
deal with this diversity within one unified framework:

1. Instead of describing one particular type system, we state re-
quirements on the type systems used with our framework.

2. We assume a judgement that describes that an object satisfies
the invariant of a class in a heap. We require that a field update
preserves the invariant if the invariant does not fall within D.

3. We express proof obligations via a special construct prv r,
which throws an exception if the invariants in region r cannot
be proven, and has an empty effect otherwise.

Contributions. The contributions of this paper are:

1. We present a unified formalism for verification techniques for
object invariants.

2. We identify conditions on the framework which guarantee
soundness of a verification technique.

3. We separate type system concerns from verification strategy
concerns.

4. We show how our framework describes all major verification
techniques for visible state invariants.

5. We prove soundness for five techniques, and guided by our
framework, discovered a (repairable) unsoundness in the sixth.

Outline. Sec. 2 formalises programs and invariant semantics.
Sec. 3 describes our framework and defines soundness. Sec. 4
instantiates our framework with existing verification techniques.
Sec. 5 presents sufficient conditions for a verification technique to
be sound, and states a general soundness theorem. Sec. 6 discusses
related work. Proofs and more details are presented in a report [8].

2. Invariant Semantics
We formalise invariant semantics through an operational semantics.
This semantics defines at which execution points invariants are ex-
pected to hold. In order to cater for the different techniques, the
semantics is parameterised by regions to express proof obligations
and what invariants are expected to hold. In this section, we focus
on the main ideas of our semantics and relegate the less interest-
ing definitions to App. A. We assume sets of identifiers for class
names CLS, field names FLD, and method names MTHD, and use
variables c ∈ CLS, f ∈ FLD and m ∈ MTHD.
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e ::= this (this) | x (variable)
| null (null) | new t (new object)
| e.f (access) | e.f = e (assignment)
| e.m(e) (method call) | e prv r (proof annotat.)

er ::= . . . (as source exprs.) | v (value)
| verfExc (verif exc.) | fatalExc (fatal exc.)
| σ ·er (nested call) | call er (launch)
| ret er (return)

Figure 3. Source and runtime expression syntax.

Runtime Structures. A runtime structure is a tuple consisting of a
set of heaps HP, addresses ADR, and values VAL = ADR∪{null},
with the convention that h ∈ HP and ι ∈ ADR. A runtime structure
provides the following operations: dom represents the domain of a
heap; cls yields the class of the object at a given address; fld yields
the value of a field of the object at a given address in a heap; upd
yields the new heap after a field update; new yields the heap and
address resulting from an object creation. We do not describe how
these operations work, but require properties about their behaviour,
for instance, that upd only modifies the corresponding field of
the object at the given address, and leaves the remaining heap
unmodified. See Def. 9 (App. A) for details.

A stack frame σ ∈ STK = ADR×ADR×MTHD×CLS is a tuple
of a receiver address, an argument address, a method identifier, and
a class. The latter two items indicate the method currently being
executed and the class where it is defined.

Area/Region Structures and Types. An area/region structure
(Def. 10 in App. A) consists of a set A of object-areas and a set R
of invariant-regions. An area a ∈ A is a syntactic representation
for a set of objects; a region r ∈ R is a syntactic representation for
a set of object-class pairs.

Several verification techniques specify the invariants that may
be assumed or have to be proven relative to a given viewpoint ob-
ject. For instance, verification techniques using ownership [1, 26,
31] typically allow a method to assume the invariants of the view-
point this and of all objects owned by this . To capture viewpoints,
area/region structures provide the viewpoint adaptation operator .
[6], which adapts a region to the viewpoint described by an area.

We define a type, t ∈ TYP, as a tuple of an area and a class, a c.
The area allows us to cater for types that express the topology of
the heap, without being specific about the underlying type system.

Expressions. In Fig. 3, we define source expressions e ∈ EXPR.
Besides the usual basic object-oriented constructs, we include proof
annotations, e prv r, for an expression e. As we will see later,
such a proof annotation executes the expression e and then proves
the invariants characterised by the region r. It is crucial that our
syntax is parametric with the specific area/region structure; we use
different structures to model different verification techniques.

In Fig. 3, we also define runtime expressions er ∈ REXPR.
A runtime expression is a source expression, a value, a nested call
with its stack frame σ, an exception, or a decorated runtime expres-
sion. A verification exception verfExc indicates that a proof obli-
gation failed. A fatal exception fatalExc indicates that an expected
invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call,
respectively.

In App. A (Def. 11), we define evaluation contexts, E[·], which
describe contexts within one activation record and extend these to
runtime contexts, F [·], which also describe nested calls.

Programming Languages. We define a programming language
as a tuple consisting of a set PRG of programs, a runtime structure,
and an area/region structure (see Def. 12 in App. A). Each P ∈ PRG

(rVarThis)
σ = (ι, v, , )

σ ·this, h −→ σ ·ι, h
σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , , )
h′, ι′ = new(h, ι, t)
σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)
ι.f, h −→ v, h

(rAss)
h′ = upd(h, ι, f, v)
ι.f = v, h −→ v, h′

(rCall)
B(m, cls(h, ι)) = e, c σ = (ι, v, c,m)

ι.m(v), h −→ σ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h
′

(rCxtFrame)
er, h −→ e′r, h

′

σ ·er, h −→ σ ·e′r, h′

(rLaunch)
σ=(ι, , c,m)
h |=Xc,m, ι
σ ·call e, h −→ σ ·ret e, h

(rLaunchExc)
σ=(ι, , c,m)
h 6|=Xc,m, ι
σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c,m)
h |=Xc,m, ι
σ ·ret v, h −→ v, h

(rFrameExc)
σ=(ι, , c,m)
h 6|=Xc,m, ι
σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , , ) h |= r, ι
σ ·v prv r, h −→ σ ·v, h

(rPrfExc)
σ = (ι, , , ) h 6|= r, ι

σ ·v prv r, h −→ σ ·verfExc, h

Figure 4. Reduction rules of operational semantics.

comes equipped with the following operations. F (c, f) yields the
type of field f in class c as well as the class in which f is declared
(c or a superclass of c). M (c,m) yields the type of the (single)
parameter and the result type of method m in class c. B(c,m)
yields the expression constituting the body of method m in class
c as well as the class in which m is declared. Moreover, there are
operators to denote subclasses and subtypes (<:), inclusion of areas
(v), and projection ([[·]]) of areas and regions to sets of objects and
sets of object-class pairs, respectively. The projections also take an
address to interpret areas and regions that are specified relatively to
the current object as it is often the case in ownership systems.

We require that . represents viewpoint adaptation. That is, the
projection of a viewpoint-adapted region a . r wrt. an address ι is
equal to the union of the projections of r wrt. each object in the
projection of a:

[[a . r]]h,ι =
⋃
ι′∈[[a]]h,ι

[[r]]h,ι′

Each program also comes with typing judgements Γ ` e : t and
h ` er : t for source and runtime expressions, respectively. An
environment, Γ ∈ ENV, is a tuple of the class containing the current
method, the method identifier, and the type of the sole argument.

Finally, the judgement h |= ι, c expresses that in heap h, the
object at address ι satisfies the invariant declared in class c. The
judgement trivially holds if the object is not allocated (ι 6∈ dom(h))
or is not an instance of c (cls(h, ι) 6<: c). We say that the region r is
valid in heap h wrt. address ι if all invariants in [[r]]h,ι are satisfied.
We denote validity of regions by h |= r, ι:

h |= r, ι ⇔ ∀(ι′, c) ∈ [[r]]h,ι. h |= ι′, c

Operational Semantics. Given a program P and a region Xc,m
characterising the invariants that are expected to hold in the visible
states of a method m of class c, the runtime semantics is the
following relation defined in Fig. 4:

−→ ⊆ REXPR × HP × REXPR × HP

The first seven rules are standard for imperative object-oriented
languages. Note that in rNew, a new object is created using the
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function new, which takes a type as parameter rather than a class,
thereby making the semantics parametric wrt. the type system:
different type systems may use different areas, and function new to
describe heap topological information. Similarly, through the use of
upd and fld we can afford to be agnostic about the representation of
a heap. Rule rCall describes method calls; it stores the class where
the method body is defined in the new stack frame σ, and introduces
the ”marker” call er at the beginning of the method body.

Our reduction rules abstract away from program verification and
describe only its effect. Thus, rLaunch, rLaunchExc, rFrame, and
rFrameExc check whether Xc,m is valid at the beginning and end
of any method execution m defined in class c, and throw a fatal
exception, fatalExc, if the check fails. This represents the visible
state semantics discussed in the introduction. Proof obligations
e prv r are verified once e reduces to a value (rPrf and rPrfExc);
if r is not valid, a verification exception verfExc is thrown.

A visible state invariant may be assumed to hold if it held in the
previous visible state and is unaffected by the code executed since
that state, or if there is a proof obligation establishing the invariant.
Static verification amounts to showing all proof obligations in a
program logic, based on the assumption that expected invariants
hold in visible states. A verification technique is therefore sound
if it does not make any false assumptions, that is, if it guarantees
that fatalExc is never thrown. Soundness of a verification technique
does allow verfExc to be thrown, but this will never happen in a
statically verified program.

3. Verification Techniques
We now formalise verification techniques and their connection to
programs, and define soundness.

A verification technique is essentially a 7-tuple, where the com-
ponents of the tuple provide instantiations for the seven parameters
of our framework. These instantiations are expressed in terms of the
areas and regions provided by the programming language. To allow
the instantiations to refer to the program, for instance, to look up
field declarations, we define a verification technique as a mapping
from programs to 7-tuples.

Definition 1. A verification technique V for a programming lan-
guage is a mapping from programs into a tuple:

V : PRG → EXP×VUL×DEP×PRE×END×UPD×CLL

where
X ∈ EXP = CLS ×MTHD → R
V ∈ VUL = CLS ×MTHD → R
D ∈ DEP = CLS → R
B ∈ PRE = CLS ×MTHD × A → R
E ∈ END = CLS ×MTHD → R
U ∈ UPD = CLS ×MTHD × CLS ×MTHD → A
C ∈ CLL = CLS ×MTHD × CLS → A

For a verification technique applied to a program, and the appli-
cation of the components to class, method names, etc., we use
Xc,m, Vc,m, Dc, Bc,m,a, Ec,m, Uc,m,c′ , Cc,m,c′,m′ . The meaning
of these components is:

Xc,m: the region expected to be valid at the beginning and end
of the body of method m in class c. The parameters c and
m allow a verification technique to expect different invariants
in the visible states of different methods. For instance, JML’s
helper methods [19, 20] do not expect any invariants to hold.

Vc,m: the region vulnerable to method m of class c, that is, the
region whose validity may be broken while control is inside
m. Method m can break an invariant by updating a field or
by calling a method that breaks, but does not re-establish the
invariant (for instance, a helper method). The parameters c and

m allow a verification technique to require that invariants of
certain classes (for instance, c’s subclasses) are not vulnerable.

Dc: the region that depends on the fields declared in class c. The
parameter c is used, for instance, to prevent invariants from
depending on fields declared in c’s superclasses [19, 31].

Bc,m,a: the region whose validity has to be proven before calling a
method on a receiver in area a from the execution of a method
m in class c. The parameters allow a verification technique to
impose proof obligations depending on the calling method and
the ownership relation between caller and callee.

Ec,m: the region whose validity has to be proven at the end of
method m in class c. The parameters allow a verification tech-
nique to require different proofs for different methods to ex-
clude subclass invariants or helper methods.

Uc,m,c′ : the area of allowed receivers for an update of a field in
class c′, within the body of methodm in class c. The parameters
allow a verification technique, for instance, to prevent field
updates within pure methods.

Cc,m,c′,m′ : the area of allowed receivers for a call to methodm′ of
class c′, within the body of methodm of class c. The parameters
allow a technique to permit calls depending on attributes (e.g.,
purity or effect specifications) of the caller and the callee.

Role of the Seven Components. X and V express precisely which
object invariants hold at each step of program execution. The op-
erational semantics uses X to describe what is expected to hold
at visible states; soundness requires that X \ V holds during a
method activation; V may also affect X of the calling methods.
Well-verification below describes proof obligations using B and
E and program restrictions through U and C. Finally, D restricts
invariants. Stated otherwise, U, C, and D characterise the expres-
siveness of programs and invariants.

It might be initially surprising that we need as many as seven
components. This number is justified by the variety of concepts
used by modern verification techniques, such as accessibility of
fields, purity, helper methods, ownership, and effect specifications.
Note, for instance, that V would be redundant if all methods were
to re-establish the invariants they break; in such a setting, a method
could break invariants only through field updates, and V could be
derived from U and D. However, in the presence of helper methods
and ownership, methods may break but not re-establish invariants.

We found the selection of components to be stable after we
applied the framework to a couple of techniques. On the other
hand, the signatures of the components needed adaptations, which,
however did not cause any deep changes in the formalism.

Class and method identifiers can be extracted from an environ-
ment Γ or a stack frame σ in the obvious way. Thus, for Γ=c,m, ,
σ=(ι, , c,m), we use XΓ, Xσ as shorthands for Xc,m; we also use
BΓ,a and Bσ,a as shorthands for Bc,m,a.

Well-Verified Programs. The judgement Γ V̀ e expresses that
expression e is well-verified according to verification technique V .
The rules for this well-verification judgement are shown in Fig. 5.

The first five rules express that literals, variable lookup, object
creation, and field read do not require proofs. The receiver of a field
update must fall into U (vs-ass). The receiver of a call must fall
into C (vs-call). Moreover, we require the proof of B before a call.
Finally, a class is well-verified if the body of each of its methods is
well-verified and ends with a proof obligation for E (vs-class). Note
that we use the type judgement Γ ` e : t without defining it; the
definition is given by the underlying programming language, not
by our framework.

A program P is well-verified wrt. V , denoted as V̀ P, if (W1)
all classes are well-verified and (W2) all class invariants respect
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(vs-null)

Γ V̀ null

(vs-Var)

Γ V̀ x

(vs-this)

Γ V̀ this

(vs-new)

Γ V̀ new t

(vs-fld)
Γ V̀ e

Γ V̀ e.f

(vs-ass)
Γ ` e : a c′ F (c′, f) = , c a v UΓ,c Γ V̀ e Γ V̀ e′

Γ V̀ e.f = e′

(vs-call)
Γ ` e : a c′ B(c′,m) = , c a v CΓ,c,m Γ V̀ e Γ V̀ e′

Γ V̀ e.m(e′ prv BΓ,a)

(vs-class)

B(c,m) = e, c
M (c,m) = t, t′

}
⇒
{
e = e′ prv Ec,m
c,m, t V̀ e′

V̀ c

Figure 5. Well-Verified source expressions and classes.

the dependency restrictions dictated by D, i.e., the invariant of an
object ι′ declared in a class c′ will be preserved by an update of a
field of a class c if it is not within Dc.
Definition 2. V̀ P ⇔

(W1) ∀c ∈ P. V̀ c

(W2)
F (cls(h, ι), f) = , c
(ι′, c′) 6∈ [[Dc]]h,ι,
h |= ι′, c′

⇒ upd(h, ι, f, v) |= ι′, c′

Fig. 10 in App. A defines the judgement h V̀ er for verified
runtime expressions. Most of the rules correspond to those from
Fig. 5. The others deal with values and nested calls.

Valid States. The regions X and X \V characterise the invariants
that are expected to hold in the visible states and between visible
states of the current method execution, respectively. That is, they
reflect the local knowledge of the current method, but do not de-
scribe globally all the invariants that need to hold in a given state.

For any state with heap h and execution stack σ, the function
vi(σ, h) yields the set of valid invariants, that is, invariants that are
expected to hold :

vi(σ, h) =

{
∅ if σ = ε

(vi(σ1, h) ∪ [[Xσ ]]h,σ)\[[Vσ ]]h,σ if σ = σ1 ·σ

The call stack is empty at the beginning of program execution, at
which point we expect the heap to be empty. For each additional
stack frame σ, the corresponding method m establishes Xσ at the
beginning of the call, and may break Vσ during the call. Therefore,
we add [[Xσ]]h,σ\[[Vσ]]h,σ to the valid invariants.

A state with heap h and stack σ is valid iff:

(V1) σ is a valid stack, denoted by h V̀ σ (see Def. 13 in App. A),
and meaning that the receivers of consecutive method calls are
within the respective C areas.

(V2) The valid invariants vi(σ, h) hold.

(V3) If execution is in a visible state with σ is the topmost frame
of σ, then the expected invariants Xσ hold additionally.

These properties are formalised in Def. 3. A state is determined by
a heap h and a runtime expression er; the stack is extracted from
er using function stack, see Def. 14 in App. A.

Definition 3. A state with heap h and runtime expression er is
valid for a verification technique V , er |=V h, iff:

(V1) h V̀ stack(er)
(V2) h |= vi(stack(er), h)
(V3) er ∈ {F [σ ·call e], F [σ ·ret v]} ⇒ h |= Xσ , σ

Poetzsch-Heffter Huizing &
Kuiper

Leavens &
Müller

Xc any any any
Vc,m any vul〈c〉 any vs〈c〉

Dc any vul〈c〉 self vs〈c〉
Bc,m,a any vul〈c〉 any vs〈c〉
Ec,m,c′ any vul〈c〉 any vs〈c〉

Uc,m,c′ any self
any if visF(c′, c)
emp otherwise

Cc,m,c′,m′ any any any

Figure 6. Verification techniques for unstructured heaps.

Soundness. Intuitively, a verification technique is sound if veri-
fied programs only produce valid states and do not throw fatal ex-
ceptions. More precisely, a verification technique V is sound for
a programming language PL iff for all well-formed and verified
programs P ∈ PL, any well-typed and verified runtime expression
er executed in a valid state reduces to another verified expression
e′r with a resulting valid state. Note that a verified e′r contains no
fatalExc (see Fig. 10).

Well-formedness of a program P is denoted by ẁf P (see
Def. 15 in App. A). Well-typedness of a runtime expression er is
denoted by h, σ ` er : t (see Def. 12 in App. A). Type soundness is
a requirement on the type system and is assumed here (see Def. 16
in App. A).

Definition 4. A verification technique V is sound for a program-
ming language PL iff for all programs P ∈ PL:

ẁf P, h, ` er : ,

V̀ P, er |=V h, h V̀ er,
er, h −→ e′r, h

′

 ⇒ e′r |=V h′, h′ V̀ e′r

4. Instantiations
We now discuss how six verification techniques from the literature,
which can be seen as instances of our framework. These techniques
had originally been described without explicit concepts for area,
region,1 and viewpoint adaptation; heap topological aspects of the
type were intertwined with the verification concerns.

In our description of the six techniques, we were able to disen-
tangle the topological aspects from the verification concerns, and
found the concepts of areas and regions to be natural abstractions.

Obviously, an “optimal” verification technique would allow
maximal expressiveness of the invariants (i.e., large D), impose
as few program restrictions as possible (i.e., large U and C), and
require as few proof obligations as possible (i.e., small B and
E). These are contradictory goals, and some trade-offs need to
be struck.

The first three techniques use information about classes to im-
prove the tradeoff, whereas the latter three also use information
about the topology of the heap. We call them unstructured heap
and structured heap techniques, respectively.

4.1 Verification Techniques for Unstructured Heaps
Unstructured heap techniques use information about classes, visi-
bility, and access paths used in definitions of invariants. The instan-
tiations are summarised in Fig. 6.

Poetzsch-Heffter [35] devised the first verification technique that
is sound for call-backs and multi-object invariants. His technique
neither restricts programs nor invariants. To deal with this general-
ity, it requires extremely strong proof obligations.

1 However, the I and E from [26] are related to our X and V.
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In Fig. 6, any is overloaded, and stands for the region/area of all
object/object-class pairs respectively, see App. B for details. The
technique requires all invariants to hold in visible states. It does not
restrict invariants; D allows field updates to affect any invariant.
U and C permit arbitrary receivers for field updates and method
calls. Consequently, any invariant is vulnerable to each method.
This requires proof obligations for all invariants before calls (to
handle call-backs) and at the end of method bodies (B and E).

Huizing & Kuiper [14] suggest a technique almost as liberal
as Poetzsch-Heffter’s, but impose fewer proof obligations. They
achieve this by determining syntactically for each field the set of
invariants that are potentially invalidated by updating the field, and
imposing proof obligations only for those vulnerable invariants.

In Fig. 6, the area self denotes the current object; its use in
Uc,m,c′ restricts the receivers of field updates to this . The con-
cept of vulnerability is captured by vul〈c〉, which is the set of all
invariants (i.e., object-class pairs) of the current object, as well as
those of all client objects ι′ that refer to a field f of c via a run-time
access path. Thus, Dc = vul〈c〉. Again, see details in App. B.

All invariants are expected to hold at visible states (Xc = any),
and methods are allowed to modify only the receiver’s fields
(Uc,m,c′ = self). Therefore, the vulnerable set (Vc,m = vul〈c〉)
and the proof obligations at the beginning/end of method calls
(Bc,m,a = vul〈c〉 = Ec,m,c′ ) are smaller than those for Poetzsch-
Heffter’s technique.

Leavens & Müller [19] use visibility restrictions introduced in
programming languages (e.g., Java’s private fields are visible only
within their class), to derive information hiding for interface spec-
ifications. They allow classes to declare several invariants and to
specify the visibility of these invariants, and forbid invariants de-
pending on fields with different visibility.

Since our formalisation does not cover field visibility and as-
sumes exactly one invariant per class, we model a special case
of their technique: We assume that all fields of a class have the
same visibility, and that each class declares exactly one invariant
and specifies its visibility. The predicate visF(c′, c) states whether
the fields declared in class c′ are visible in class c, and visI(c′, c)
states whether the invariant declared in class c′ is visible in class
c. A generalisation is possible but would not provide additional in-
sights.

The technique allows field updates on arbitrary receivers as
long as the field is visible in the method performing the update
(Uc,m,c′ =any if visF(c′, c) in Fig. 6), and does not restrict method
calls (Cc,m,c′,m′ =any).

D allows invariants to depend only on fields of the same object
declared in the same class, provided that the invariant is visible
wherever the field is (self vs〈c〉 stands for the pair of current object
and c, provided that for all classes visF(c, c′) ⇔ visI(c, c′), see
details in App. B.). This requirement enforces that any method that
potentially breaks an invariant can see it and, thus, re-establish it.

The technique guarantees that only visible invariants are vulner-
able; therefore, only visible invariants need to be proven at the be-
ginning and end of method bodies (Bc,m,a=any vs〈c〉=Ec,m,c′ ),
where any vs〈c〉 stands for all object-class pairs, (ι′, c′), where
visI(c′, c).) The technique supports helper methods, which we omit
here for brevity (but see Sec. 6).

4.2 Comparison of Unstructured Heap Techniques
Invariant Restrictions (D). Poetzsch-Heffter allows invariants to
depend on arbitrary locations, in particular, his technique supports
multi-object invariants. Huizing and Kuiper require for multi-object
invariants the existence of an access path from the object containing
the invariant to the object it depends on. This excludes, for instance,
universal quantifications over objects. Leavens and Müller focus on

invariants of single objects, and address the subclass challenge by
disallowing dependencies on inherited fields.

Program Restrictions (U and C). All three techniques permit
arbitrary method calls. Huizing and Kuiper restrict field updates
to the receiver this . Leavens and Müller require the updated field
to be visible, a requirement enforced by the type system anyway.
Thus, they are not limiting expressiveness.

Proof Obligations (B and E). Poetzsch-Heffter as well as Huiz-
ing and Kuiper impose proof obligations for invariants of essen-
tially all classes of a program (even though Huizing and Kuiper use
a syntactic analysis to exclude invariants that are not vulnerable),
which make them non-modular. Leavens and Müller’s technique is
modular as it requires proof obligations only for visible invariants.

4.3 Verification Techniques for Structured Heaps
We consider three techniques which strike a better trade-off by us-
ing the heap topology enforced by ownership types, and summarise
them in Fig. 7. The rest of this section introduces the techniques
and summarises their formulation in terms of our model—more in
[8]. The less specialist reader may skip to section 4.4, where we
compare the techniques in terms of an example.

Müller et al. [31] present two techniques for multi-object in-
variants, called ownership technique and visibility technique (OT
and VT for short), which utilise the hierarchical heap topology en-
forced by Universe types [7, 30]. Universe types associate reference
types with ownership modifiers, which specify ownership relative
to the current object. The modifier rep expresses that an object is
owned by the current object; peer expresses that an object has the
same owner as the current object; any expresses that an object may
have any owner.

OT and VT forbid rep fields f and g declared in different
classes cf and cg , of the same object o to reference the same object.
This subclass separation can be formalised in an ownership model
where each object is owned by an object-class pair [21]. In this
model, the object referenced from o.f is owned by (o, cf ), whereas
the object referenced from o.g is owned by (o, cg). Since they have
different owners, these objects must be different.

Areas and regions are defined as

a ∈ A ::= emp | self | rep〈c〉 | peer | any |a t a
r ∈ R ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own

| rep+ | own+| r; r

We give their interpretation in App. B and here, an intuition for
the more interesting cases: For areas, rep〈c〉 describes all objects
owned by current object and class c; peer describes all objects
which share the owner object-class pair with the current object. For
regions, super〈c〉 is the set of pairs of the current object with all its
superclasses, peer〈c〉 is all the objects which share owner with the
current object, provided their class is visible in c.

Ownership Technique. As shown in Fig. 7, OT requires that in
visible states, all objects owned by the owner of this must satisfy
their invariants (X).

Invariants are allowed to depend on fields of the object itself (at
the current class) and all its rep objects. Therefore, a field update
potentially affects the invariant of the modified object and of all
its (transitive) owners (D). Dependencies on inherited fields are
disallowed to address the subclass challenge.

To guarantee that pure methods are side-effect free, they must
not update fields (U) and may only call pure methods (C). There-
fore, pure methods cannot break any invariants (V is empty) and do
not require proof obligations (B and E are empty).

A nonpure method may update fields of this (U). Type correct-
ness guarantees that the updated field is declared in the enclosing
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Müller et al. (OT ) Müller et al. (VT ) Lu et al.
Xc,m own ; rep+ own ; rep+ I ; rep∗

Vc,m
emp if pure
super〈c〉 t own+ otherwise

emp if pure
peer〈c〉 t own+ otherwise E ; own∗

Dc self〈c〉 t own+ peer〈c〉 t own+ self ; own∗

Bc,m,a
super〈c〉 if a = peer,¬pure
emp otherwise

peer〈c〉 if a = peer,¬pure
emp otherwise emp

Ec,m
emp if pure
super〈c〉 otherwise

emp if pure
peer〈c〉 otherwise

self if I = E
emp otherwise

Uc,m,c′
self if ¬pure
emp otherwise

peer if vis(c′, c),¬pure
emp otherwise

self if I = E
emp otherwise

Cc,m,c′,m′
emp, if pure,¬pure′
rep〈c〉 t peer otherwise

emp, if pure,¬pure′
rep〈c〉 t peer otherwise

⊔
a, with SC(I,E,I′,E′,Oa,c) a

where pure ≡ c ::m is pure method
pure′ ≡ c′ ::m′ is pure method

pure ≡ c ::m is pure method
pure′ ≡ c′ ::m′ is pure method

I = I(c,m)
E = E(c,m)
I′ = a ; I(c′,m′)
E′ = a ; E(c′,m′)

Figure 7. Verification techniques for structured heaps.

class or a superclass. Therefore, potentially affected by the update
are the invariants of this for the enclosing class and its superclasses
as well as the invariants of the (transitive) owners of this (V).

OT handles multi-object invariants by allowing invariants to
depend on fields of owned objects (D); thus, methods may break the
invariants of the transitive owners of this (V). E.g., the invariant of
Client (Fig. 1) is admissible only if c is a rep field. In this case, C’s
method m need not preserve Client ’s invariant. This is reflected by
the definition of E: Only the invariants of this are proven at the
end of the method, while those of the transitive owners may remain
broken; it is the responsibility of the owners to re-establish them.
E.g., Client has to re-establish its invariant after a call to c.m().

Since the invariants of the owners of this might not hold, OT
disallows calls on any references, as expressed by C.

The proof obligations for method calls (B) must cover those
invariants expected by the callee that are vulnerable to the caller.
This intersection contains the invariant of the caller, if caller and
callee are peers, and is empty otherwise.

Visibility Technique. VT relaxes the restrictions of OT in two
ways. First, it permits invariants of a class c to depend on fields
of peer objects, provided that these invariants are visible in c (D).
Visibility is transitive, thus the invariant is also visible wherever
fields of c are updated. Second, VT permits field updates on peers
of this (U).

These relaxations make more invariants vulnerable. Therefore,
V includes additionally the invariants of the peers of this . This
addition is also reflected in the proof obligations before peer calls
(B) and before the end of a non-pure method (E).

Lu et al. Lu, Potter, and Xue define Oval, a verification technique
based on ownership types [26]. Ownership types support owner pa-
rameters for classes[5], and thus a more precise description of the
heap topology. The distinctive features of this technique are: (1) Ex-
pected and vulnerable invariants are described using the ownership
parameters and are specific to each method. (2) Calls require no
proofs. (3) Calls and method overriding require “subcontracting”.

We discuss a slightly simplified version of Oval, where we
omit the existential owner parameter ”*”, and non-rep fields, a
refinement whereby only the current object’s owners depend on
such fields. Both enhance the expressiveness of the language, but
are not central to our analysis. Here, we give an overview of Oval;
more details are presented in our companion report [8].

In Oval, expected and vulnerable invariants are described using
ownership parameters and are specific to each method in a class.
Every Oval program defines a function returing a contract 〈I,E〉 for

each method defined: the expected invariants at visible states (X)
are the invariants of the object characterised by I and all objects
transitively owned by this object; the vulnerable invariants (V) are
the object at E and its transitive owners (D). These regions are
syntactically characterised by the L’s and K’s respectively, where

L ::= top | bot | this |X K ::= L |K ; rep
and where X stands for the class’s owner parameters.

To adapt Oval to our framework, we define areas and regions:

a ∈ A ::= emp | self | c〈K〉 | a t a
r ∈ R ::= emp | self | K | K ; rep∗ | K ; own∗

and give their interpretation in App. B.
Methods expect the invariants of the object characterised by I

and all objects owned by this object (X in Fig. 7).
Oval requires that the expected and vulnerable invariants of

every method are disjoint or intersect at this. Consequently, at the
end of a method, one has to prove the invariant of the current
receiver, if I and E are equal, and nothing otherwise (E). In the
former case, the method is allowed to update fields of its receiver;
no updates are allowed otherwise (U).

Oval does not impose proof obligations on method calls (B
is empty). Call-backs are handled via subcontracting, which is
defined using the order L � L′, which guarantees that at run-
time the object denoted by L will be transitively owned by the
object denoted by L′.2 Oval’s subcontracting is adapted here to
SC(I,E, I′,E′,K), which holds iff:

I ≺ E ⇒ I′ � I I = E ⇒ I′ ≺ I
I′ ≺ E′ ⇒ E � E′ I = E = this ⇒ E � K

where I, E characterise the caller, I′, E′ characterise the callee, and
K stands for the owner of the callee. Subcontracting is used to
restrict possible method calls (C), where O (defined in App. B)
extracts the owner of a.

Oval also requires SC(I,E, I′,E′,K) to hold between a method
and a method overriding it. As we discuss later, this is too weak
to guarantee soundness [25], and we have found a counterexample
[8, 25]. Therefore, we use the following stronger requirement for
methods m of a class c and its subclass c′:

I(c′,m) � I(c,m) � E(c,m) � E(c′,m)

2 The relation is extended for K in the obvious way [26].
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Müller et al. (OT ) Müller et al. (VT ) Lu et al.

1. [[XC,m]]h0,3
{ (4, D) , (4, D’) , (3,C),

(3,C’), (5,E), (5,E’) }
{ (4, D) , (4, D’) , (3,C),

(3,C’), (5,E), (5,E’) }
{ (3,C), (3,C’),
(5,E), (5,E’) }

2. [[VC,m]]h0,3 { (3,C), (2,B), (1,A’) } { (3,C), (2,B), (1,A’), (4, D) } { (2,B), (2, B’) , (1, A) , (1,A’) }

3. [[DC]]h0,3 { (3,C), (2,B), (1,A’) } { (3,C), (2,B), (1,A’), (4, D) }
{ (3,C), (3, C’) , (2,B), (2, B’) ,

(1, A) , (1,A’) }

4. [[BC,m,a]]h0,3
∅ if a = rep〈C〉
{ (3,C) } if a = peer

∅ if a = rep〈C〉
{ (3,C), (4, D) } if a = peer

∅

5a. [[EC,m]]h0,3 { (3,C) } { (3,C), (4, D) } ∅
5b. [[EC,m1]]h0,3 { (3,C) } { (3,C), (4, D) } { (3,C), (3,C’) }

6a. [[UC,m,Objct]]h0,3 { 3 } { 3, 4 } ∅
6b. [[UC,m1,Objct]]h0,3 { 3 } { 3, 4 } { 3 }
7. [[CC,m,Objct,m2]]h0,3 { 3, 4, 5 } { 3, 4, 5 } { 1 , 2 , 3, 4, 5, 6 }

assuming that

C::m not pure
ownr(h0, 5) = 3,C’,
ownr(h0, 3) = 2,B,
ownr(h0, 4) = 2,B’,
ownr(h0, 2) = 1,A

C::m not pure
ownr(h0, 5) = 3,C’,
ownr(h0, 3) = 2,B,
ownr(h0, 4) = 2,B’,
ownr(h0, 2) = 1,A
vis(C, D),¬vis(C,D’)

I(C,m) = this
E(C,m) = X, and X maps to 2
I(C,m1) = E(C,m1) = this
I(Obj,m2) = bot
E(Obj,m2) = top

Figure 8. Comparison of techniques for structured heaps; differences are highlighted in grey.

which guarantees (S5) from Def. 5 in the next section. We refer to
the verification technique with this stronger requirement as Oval’.

4.4 Comparison of Structured Heaps Techniques
We compare the techniques for structured heaps using the heap
h0 in Fig. 9, and show in Fig. 8 the values of the components of
the three techniques for object 3 and class C. In the last row, we
show the class-object pairs which own further objects (information
required by OT and VT), and the I and E (information required by
Oval).

Invariant Restrictions (D). Both OT and Oval support multi-
object invariants by permitting the invariant of an object o to de-
pend on fields of o and of objects (transitively) owned by o. How-
ever, OT requires that fields of o are declared in the same class as
the invariant to address the subclass challenge. For instance, D for
OT does not include (3,C’), whereas D for Oval does.

In addition, VT allows dependencies on peers (therefore, D
includes (4,D)) and thus can handle multi-object structures that are
not organised hierarchically.

Program Restrictions (U and C). In OT and Oval, an object may
only modify its own fields, whereas VT also allows modifications
of peers; thus, object 4 is part of U for VT . In Oval, an object may
only modify its own fields if the I, E annotations are this; this is
why U is empty for m but contains 3 for m1.

Method calls in OT and VT are restricted to the peers and reps
of an object; thus, a call on a rep object o cannot call back into one
of o’s (transitive) owners, whose invariants might not hold.

In Oval, the receiver of a method call may be anywhere within
the owners of the current receiver, provided that the I and E an-
notations of the called method satisfy the subcontract requirement.
Therefore, C for Oval includes for instance object 2, which is not
permitted in OT and VT .

Proof Obligations (B and E). Since OT uses rather restricted
invariants, it has a small vulnerable set V and, thus, few proof
obligations. The dependencies on peers permitted by VT lead to
a larger vulnerable set and more proof obligations. For instance,
(4,D) is part of the vulnerable set V (because executions on 3 might
break 4’s D-invariant). Hence, of the proof obligations B and E.

1:A’

2:B’

3:C’
5:E’

4:D’

6:E’

Figure 9. Heap h0, with objects at addresses 1–6 belonging to in-
dicated classes. Objects atop a box own those inside it. We assume
that A’ is a subclass of A and analogously for the other classes.

Oval imposes end-of-body proof obligation only when I and E
are the same (i.e., m1). Since it permits invariants to depend on
inherited fields, it requires proof obligations for subclass invari-
ants. For instance, (3,C’) is part of E for m1, which means that
verification of a class requires knowledge of a subclass3. OT and
VT avoid this problem by forbidding such dependencies; thus their
proof obligations do not include (3,C’).

4.5 Conclusions
Exact knowledge of which class’s invariant is broken or has to be
validated is crucial in ensuring modularity; this was a central point
in the works of Huizing & Kuipper, Leavens & Müller, and Müller
et al.

All techniques except Poetzsch-Heffter enforce restrictions on
which objects may be updated (U) or receive calls (C), and thus
reduce the number of objects whose invariant need to be verified
(B and E). Structured heaps techniques refine this not only on the
basis of the class of objects, but also on the basis of their location.

Oval’s more powerful type system is more precise about the
location of objects, and allows methods to declare individually their
requirements (E) and their effects (I). The method’s effects together
with the location of the callee allow Oval to be flexible about further
method calls (C). On the other hand, Oval is, in our view, very
restrictive as to the dependencies of invariants (D); thus e.g., it
cannot describe the subject-observer pattern. VT is most liberal in
that respect, as it allows dependencies on peers.

3 The Oval developers plan to solve this modularity problem by requiring
that any inherited method has to be re-verified in the subclass [25].

8 2007/12/17



Perhaps the most liberal approach would generalise Oval, and
allow dependencies to be declared per class; this would require
sophisticated analysis to ensure that proof obligations are sufficient.

5. Well-Structured Verification Techniques
We now identify conditions on the components of a verification
technique that are sufficient for soundness, state a general sound-
ness theorem, and discuss soundness of the techniques presented in
Sec. 4.

Definition 5. A verification technique is well-structured if, for all
programs in the programming language:

(S1) a v Cc,m,c′m′ ⇒ (a . Xc′,m′ ) \ (Xc,m \ Vc,m) ⊆ Bc,m,a
(S2) Vc,m ∩ Xc,m ⊆ Ec,m
(S3) Cc,m,c′,m′ . (Vc′,m′ \ Xc′,m′ ) ⊆ Vc,m
(S4) Uc,m,c′ . Dc′ ⊆ Vc,m

(S5) c <: c′ ⇒
{

Xc,m ⊆ Xc′,m,
Vc,m\Xc,m ⊆ Vc′,m \ Xc′,m

In the above, the set theoretic symbols have the obvious inter-
pretation in the domain of regions. For example (S2) is short for
∀h, ι : [[Vc,m]]h,ι ∩ ([[Xc]]h,ι ⊆ [[Ec,m]]h,ι.

The first two conditions relate proof obligations with expected
invariants. (S1) ensures for a call within the permitted area that the
expected invariants of the callee (a . Xc′,m′ ) minus the invariants
that hold throughout the calling method (Xc,m \Vc,m) are included
in the proof obligation for the call (Bc,m,a). (S2) ensures that
the invariants that were broken during the execution of a method,
but which are required to hold again at the end of the method
(Vc,m ∩ Xc,m), are included in the proof obligation at the end of
the method (Ec,m).

The third and fourth condition ensure that invariants that are
broken by a method m of class c are actually in its vulnerable
set. Condition (S3) deals with calls and therefore uses viewpoint
adaptation for call regions (Cc,m,c′,m′ . . . .). It restricts the in-
variants that may be broken by the callee method m′, but are not
re-established by the callee through E. These invariants must be in-
cluded in the vulnerable invariants of the caller. Condition (S4) en-
sures for field updates within the permitted area that the invariants
broken by updating a field of class c′ are included in the vulnerable
invariants of the enclosing method, m.

Finally, (S5) establishes conditions for subclasses. An overrid-
ing method m in a subclass c may expect fewer invariants than the
overriddenm in superclass c′. Moreover, the subclass method must
leave less invariants broken than the superclass method.

Soundness Results. The five conditions from Def. 5 guaran-
tee Verification Technique soundness (Def. 4), provided that the
programming language has a sound type system (see Def. 16 in
App. A).

Theorem 6. A well-structured verification technique, built on top
of a programming language with a sound type system, is sound.

This theorem is one of the main results of our work. It reduces
the complex task of proving verification technique soundness to
checking five fairly simple conditions.

Theorem 7. The verification techniques by Poetzsch-Heffter, by
Huizing & Kuiper, by Leavens & Müller, by Müller et al. (OT), by
Müller et al. (VT), and Oval’ are well-structured.

Corollary 8. The verification techniques by Poetzsch-Heffter, by
Huizing & Kuiper, by Leavens & Müller, by Müller et al. (OT), by
Müller et al. (VT), and Oval’ are sound.

We relegate proofs of the theorems to the companion report [8].

Soundness of Oval. The original Oval proposal as in [26] is
unsound because it requires subcontracting for method overriding,
which gives, in our terminology Vc,m\Xc,m v Vc′,m. This is
clearly weaker than what we require in (S5) ; this alerted us, and
using the X and V components (no type system properties, nor any
other component) we constructed a counterexample showing the
unsoundness (cf. [8]), which we communicated to the authors [25],
who confirmed our findings.

Soundness of the remaining techniques. Our formal proof con-
firmed soundness for the verification techniques by Poetzsch-
Heffter, by Huizing & Kuiper, by Leavens & Müller, by Müller
et al. (OT ), by Müller et al. (VT ). Nevertheless, we found that the
semi-formal arguments supporting the original soundness claims
at times missed crucial steps. For instance, the soundness proofs
for OT and VT [31] do not mention any condition relating to (S3)
of Def. 5; in our formal proof, (S3) was vital to determine what
invariants still hold after a method returns (see [8] for details).

6. Related Work
In this section, we discuss related work other than the verification
techniques covered in Sec. 4.

The idea of areas and regions is inspired from type and effects
systems [37], which have been extremely widely applied, e.g., to
support race-free programs and atomicity [10].

Object invariants trace back to Hoare’s implementation invari-
ants [12] and monitor invariants [13]. They were popularised in
object-oriented programming by Meyer [27]. Their work, as well
as other early work on object invariants [23, 24] did not address the
three challenges described in the introduction. Since they were not
formalised, it is difficult to understand the exact requirements and
soundness arguments (see [31] for a detailed discussion). However,
once the requirements are clear, a formalisation within our frame-
work seems straightforward.

The verification techniques based on the Boogie methodology
[1, 3, 21, 22] do not use a visible state semantics. Instead, each
method specifies in its precondition which invariants it requires.
Extending our framework to Spec# requires two changes. First,
even though Spec# permits methods to specify explicitly which
invariants they require, the default is to require the invariants of
its arguments and all their peer objects. These defaults can be
modelled in our framework by allowing method-specific regions
X. Second, Spec# checks invariants at the end of expose blocks
instead of the end of method bodies. Expose blocks can easily be
added to our formalism.

We only know of one verification technique based on visible
states, which cannot be expressed in our framework. The work by
Middelkoop et al. [29] uses proof obligations that refer to the heap
of the pre-state of a method execution. To formalise this technique,
we have to generalise our proof obligations to take two invariant-
regions, one for the pre-state heap and one for the post-state heap.
Since this generality is not needed for any of the other techniques,
we omitted a formal treatment in this paper.

Some verification techniques exclude the pre- and post-states
of so-called helper methods from the visible states [19, 20]. Helper
methods can easily be expressed in our framework by choosing dif-
ferent parameters for helper and non-helper methods. For instance
in JML, X, B, and E are empty for helper methods, because they
neither assume nor have to preserve any invariants.

Once established, strong invariants [11] hold throughout pro-
gram execution. They are especially useful to reason about con-
currency and security properties. Our framework can model strong
invariants, essentially by preventing them from occurring in V.

Existing techniques for visible state invariants have only limited
support for object initialisation. Constructors are prevented from
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calling methods because the callee method in general requires all
invariants to hold, but the invariant of the new object is not yet
established. Fähndrich and Xia developed delayed types [9] to
control call-backs into objects that are being initialised. Delayed
types support strong invariants. Modelling delayed types in our
framework is future work.

Even though separation logic [15, 36] has been used to reason
about invariants of modules with one instance [32], object invari-
ants are not as important as in other verification techniques. Instead,
verifiers are encouraged to write predicates to express consistency
criteria [33]. Abstract predicate families [34] allow one to do so
without violating abstraction and information hiding. The general
predicates of separation logic provide more flexibility than can be
expressed by our framework.

7. Conclusions
We presented a framework that describes verification techniques for
object invariants in terms of seven parameters, and separates veri-
fication concerns from those of the underlying type system. Our
formalism is parametric wrt. the type system of the programming
language, the regions used to describe assumptions and proof obli-
gations, and the meaning of validity of an invariant. We illustrated
the generality of our framework by instantiating it to describe six
existing verification techniques. We identified sufficient conditions
on the framework parameters that guarantee soundness and we
proved a universal soundness theorem.

A unified framework with the above separation of concerns,
offers, in our opinion, three important advantages. First, it allows
a simpler understanding of the verification concerns. Second, it
facilitates comparisons. Third, we found checking the soundness
conditions significantly simpler than developing soundness proofs
from scratch.

We hope that our framework will be used in future development
of further verification techniques.
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A. Appendix - The Framework
Definition 9. A runtime structure is a tuple

RSTRUCT = (HP,ADR,',�, dom, cls, fld, upd, new)

where HP, and ADR are sets, and where
' ⊆ HP × HP � ⊆ HP × HP
dom : HP → P(ADR)
cls : HP × ADR ⇀ CLS
fld : HP × ADR × FLD ⇀ VAL
upd : HP × ADR × FLD × VAL → HP
new : HP × ADR × TYP → HP × ADR

where VAL = ADR ∪ {null} for some element null 6∈ ADR. For all
h ∈ HP, ι, ι′ ∈ ADR, v ∈ VAL, we require:

(H1) ι ∈ dom(h)⇒ ∃c.cls(h, ι) = c

(H2) h ' h′ ⇒
{

dom(h) = dom(h′),

cls(h, ι) = cls(h′, ι)

(H3) h � h′ ⇒


dom(h) ⊆ dom(h′),

∀ι ∈ dom(h).

cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒


h ' h′ fld(h′, ι, f) = v,

ι 6= ι′ or f 6= f ′ ⇒
fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒
{
h � h′
ι′ ∈ dom(h′)\dom(h)

Definition 10. An area/region structure is a tuple
ASTRUCT = (A, R, .)

where A and R are sets, and . is an operation with signature:
. : A × R → R

Definition 11. E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f = e | ι.f = E[·] | E[·].m(e)

| ι.m(E[·]) | E[·] prv r | retE[·]
F [·] ::= [·] | F [·].f | F [·].f = e | ι.f = F [·] | F [·].m(e)

| ι.m(F [·]) | F [·] prv r | σ ·F [·] | callF [·] | retF [·]

(ad-null)

h V̀ σ ·null

(ad-addr)
ι ∈ dom(h)
h V̀ σ ·ι

(ad-new)

h V̀ σ ·new t

(ad-Var)

h V̀ σ ·x
(ad-this)

h V̀ σ ·this

(ad-verEx)

h V̀ F [verfExc]

(ad-ass)
h, σ ` er : a c′

F (c′, f) = , c
a v Uσ,c
h V̀ σ ·er
h V̀ σ ·e′r
h V̀ σ ·er.f = e′r

(ad-fld)
h V̀ σ ·er
h V̀ σ ·er.f

(ad-end)
h V̀ σ′ ·v

h V̀ σ ·σ′ ·ret v

(ad-call)
h, σ ` er : a c′

B(c′,m) = , c
a v Cσ,c,m
h V̀ σ ·er
h V̀ σ ·e′r
h V̀ σ ·er.m(e′r prv Bσ,a)

(ad-call-2)
h, σ ` v : a c′

B(c′,m) = , c
h |= Bσ,a, σ
a v Cσ,c,m
h V̀ σ ·v
h V̀ σ ·v′
h V̀ σ ·v.m(v′)

(ad-start)
h V̀ σ′ ·e

h V̀ σ ·σ′ ·call e prv Eσ′

(ad-frame)
h V̀ σ′ ·er

h V̀ σ ·σ′ ·ret er prv Eσ′

Figure 10. Verified runtime expressions.

Definition 12. A programming language is a tuple
PL = (PRG, RSTRUCT,ASTRUCT)

where PRG is a set where every P ∈ PRG is a tuple

P =

 F ,M ,B, <: (class definitions)
v, [[·]] (inclusion and projections)
|=,` (invariant and type satisfaction)


with signatures:

F : CLS × FLD ⇀ TYP × CLS
M : CLS ×MTHD ⇀ TYP × TYP
B : CLS ×MTHD ⇀ EXPR × CLS
<: ⊆ CLS × CLS ∪ TYP × TYP
v ⊆ A × A
[[·]] : A × HP × ADR → P(ADR)
[[·]] : R × HP × ADR → P(ADR × CLS)
|= ⊆ HP × ADR × CLS
` ⊆ (ENV × EXPR ∪ HP × REXPR)× TYP

where every P ∈ PRG must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′

(P2) B(c,m) = e, c′ ⇒ c <: c′

(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v
(P4) a1 v a2 ⇒ [[a1]]h,ι ⊆ [[a2]]h,ι
(P5) [[a . r]]h,ι =

⋃
ι′∈[[a]]h,ι

[[r]]h,ι′

(P6) [[a]]h,ι ⊆ dom(h)
(P7) h � h′ ⇒ [[r]]h,ι ⊆ [[r]]h′,ι
(P8) a c <: a′ c′ ⇒ a v a

′, c <: c′

Definition 13. Stack σ is valid wrt. heap h in a verification tech-
nique V , denoted by h V̀ σ, iff:

σ=σ1 ·σ ·σ′ ·σ2 ⇒


σ′ = (ι, , c′,m)

h, σ ` ι : a

c′ <: c, a v Cσ,c,m

Definition 14. The function stack : REXPR → STK∗ yields the
stack of a runtime expression:

stack(E[er]) =

{
σ ·stack(e′r) if er = σ ·e′r
ε otherwise

Definition 15. For every program, the judgement:
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ẁf : (HP × STK × STK × A) ∪ (ENV × HP × STK) ∪ PRG
is defined as:

• ẁf P ⇔



(F1) M (c,m) = t, t′ ⇒
∃e. B(c,m) = e, , c,m, t ` e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒
F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c,m) = t, t′,
M (c′,m) = t′′, t′′′ ⇒
t = t′′, t′ = t′′′′

(F4) c <: c′, B(c′,m) = e′, c′′ ⇒
∃c′′′. B(c,m) = e, c′′′, c′′′ <: c′′

• h, σ ẁf σ
′ : a ⇔ σ′ = (ι, , , ), h, σ ` ι : a

• Γ ẁf h, σ ⇔

 ∃c,m, t, ι, v.
Γ = c,m, t, σ = (ι, v, c,m),
cls(h, ι) <: c, h, σ ` v : t

h, σ ẁf σ
′ : a says that the receiver of σ′ is within a as seen

from the point of view of σ. Γ ẁf h, σ says that h, σ respect the
typing environment Γ. ẁf P defines well-formed programs as those
where method bodies respect their signatures (F1), fields are not
overridden (F2), overridden methods preserve typing (F3), and do
not “skip superclasses” (F4).

Definition 16. A programming language PL has a sound type
system if all programs P ∈ PL satisfy the constraints:

(T1) Γ ` e : t, t <: t′ ⇒ Γ ` e : t′

(T2) h ` er : t, t <: t′ ⇒ h ` er : t′

(T3) h ` er : t, h ' h′ ⇒ h′ ` er : t

(T4) h ` σ ·ι : c⇒ cls(h, ι) <: c

(T5) h ` σ ·ι.m(v) : t⇒


h ` σ ·ι : a c

M (c,m) = t′, t

h ` σ ·v : t′

(T6) σ = (ι, , , ), h ` σ ·ι′ : a ⇒ ι′ ∈ [[a]]h,ι

(T7) Γ ` e : a c, Γ ` h, σ ⇒ h ` σ ·e : a c

(T8) ẁf P, h, σ ` er : t
er, h −→ e′r, h

′

}
⇒ h′, σ ` e′r : t

(T1) and (T2) express subsumption. (T3) : runtime expression typ-
ing does not depend on the field values in the heap. (T4) : addresses
are typed according to their class in the heap. (T5) : method call typ-
ing implies that the parameter type and return type set by M for that
method are respected. (T6) : the area component of a type assigned
to an address respects the projection given for that area with respect
to the same viewpoint of the typing. (T7) is the correspondence be-
tween typing source expressions and runtime expressions for heaps
and stack frames that respect the typing environment; (T8) : for all
well-formed programs, reduction preserves typing.

B. Appendix - The Instantiations
We present more details about the formalization of the six verifica-
tion techniques.

Poetzsch-Heffter. Define A = {any} and R = {any} with
interpretations [[any]]h,ι = dom(h) and [[any]]h,ι = all(h).

Huizing & Kuiper. Define A = {self, any} with interpretation
[[self]]h,ι = {ι} and [[any]]h,ι = dom(h), and with
[[vul〈c〉]]h,ι = { | the invariant of c′ contains an expression

this .g1 . . . gn.f (n ≥ 0) where F (c, f) = , ∧
fld(h, fld(h, fld(h, ι′, g1), . . .), gn) = ι} ∪
{(ι, c′) | cls(h, ι) <: c′}

[[any]]h,ι = all(h)

.

Leavens & Müller. Define the area set A = {emp, any} with
interpretation [[emp]]h,ι = ∅ and [[any]]h,ι = dom(h), and the
region set R = {any, self〈c〉, any vs〈c〉} with interpretation:

[[any]]h,ι = all(h) [[any vs〈c〉]]h,ι =
{

(ι′, c′) | visI(c′, c)
}

[[self〈c〉]]h,ι =
{

(ι, c) | ∀c′.visF(c, c′)⇔ visI(c, c′)
}

Müller et al. Assume heap operation giving an object’s owner
ownr : HP × ADR → ADR × CLS

The interpretation of areas is defined as
[[self]]h,ι = {ι} [[any]]h,ι = dom(h) [[emp]]h,ι = ∅

[[rep〈c〉]]h,ι =
{
ι′ | ownr(h, ι′) = ι c

}
[[peer]]h,ι =

{
ι′ | ownr(h, ι′) = ownr(h, ι)

}
[[a1 t a2]]h,ι = [[a2]]h,ι ∪ [[a2]]h,ι

The interpretation of regions is defined as
[[emp]]h,ι = ∅ [[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c}

[[super〈c〉]]h,ι =
{

(ι, c′) | c <: c′
}

[[peer〈c〉]]h,ι =
{

(ι′, c′) | ownr(h, ι′) = ownr(h, ι) ∧ vis(c′, c)
}

[[rep]]h,ι =
{

(ι′, c′) | ownr(h, ι′)= ι
}

[[own]]h,ι={ownr(h, ι)}
[[r1; r2]]h,ι =

⋃
(ι′,c)∈[[r1]]h,ι

[[r2]]h,ι′

[[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

Lu et al. We interpret areas and regions as follows:
[[emp]]h,ι =∅ [[self]]h,ι={ι} [[a t a′]]h,ι=[[a]]h,ι ∪ [[a′]]h,ι

[[c〈K〉]]h,ι =
{
ι′ | h ` ι′ : c〈ι〉, ∀i. ιi ∈ [{Ki}]h,ι

}
[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅ [[self]]h,ι = {(ι, c) | ...}

[[K]]h,ι =
{

(ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c
}

[[K; r]]h,ι =

{
all(h) K= top, r= rep∗ ∨ K=bot, r=own∗⋃

(ι′,c)∈[[K]]h,ι
[[r]]h,ι′ r ∈ {rep∗, own∗}

[[rep∗]]h,ι =
{
ι′ | h ` ι′ �∗ ι

}
[[own∗]]h,ι =

{
ι′ | h ` ι �∗ ι′

}
[{X}]h,ι =

{
ιi | h ` ι : c〈ι〉, c has formal parameters X̄, X = Xi

}
As usual in ownership systems, h ` ι : c〈ι〉 describes that ι points
to an object of a subclass of c〈ι〉, while h ` ι′ � ι expresses that ι′

is owned by ι, and h ` ι′ �∗ ι is the transitive closure.
The owner extraction function O is defined as:

Oa,c =


K1, if a = c〈K〉
X1, if a = self, class c has formal parameters X̄.
⊥ otherwise
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