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Abstract

Since software systems increasingly govern both vital infrastructure and people’s daily
lives, ensuring their safety and security is vital. Where standard measures like testing
are insufficient, deductive verification can be used to mathematically prove software
properties once and for all. In the past decades, there has been huge progress in the design
and automation of verification techniques, to the point where there are multiple automated
verification tools able to prove trace properties for statically-typed programming languages
like Java or C. However, several challenges remain: Crucial security properties like non-
interference are hyperproperties, which are not supported by most standard verification
tools. Additionally, new verification techniques have to be developed to enable the
verification of programs written in other mainstream programming languages that offer
fewer or different static guarantees. In this thesis, we expand the state of the art in these
two directions, by enabling the automated verification of hyperproperties in standard
verification tools, and making existing verification techniques accessible for the dynamic
Python language as well as Ethereum smart contracts.

First, we present a modular verification for Python programs, targeting complex safety
and security properties for realistic code. We address the challenges stemming from
dynamic typing and the resulting lack of static knowledge about Python programs using
a mix of permissive static checks using an unsound type system and additional sound
checks in the verifier. The resulting verification technique is able to support typical
Python code patterns, and can be integrated with existing specification and verification
techniques for safety and security properties. We implement our solution in Nagini, an
automated verifier for a substantial subset of Python 3, and demonstrate its ability to
verify real-world Python code and prove complex program properties.

Second, we present modular product programs, a program transformation that enables the
verification of hyperproperties using standard verification tools. Unlike existing solutions,
modular product programs can be constructed automatically, impose no restrictions on
program control flow, and, crucially, enable modular proofs of hyperproperties using
relational specifications. We apply modular product programs to proving non-interference
using special information flow specifications, which can express complex properties like
value-dependent sensitivity and termination-sensitive non-interference. We implement
the product transformation for the Viper verification infrastructure and show that it
can prove both information flow properties and other hyperproperties for challenging
examples from the literature.

Third, we show how product constructions like the aforementioned modular product
programs, which are usually defined for small, sequential languages, can be applied to



more complex languages and integrated with existing verification tools that are based
on intermediate verification languages (IVLs). The key idea is to perform the product
construction on the level of the (simple) IVL instead of the (complex) source language, thus
enabling existing tools to verify hyperproperties with little engineering effort. We show
that this approach is not always sound, but provide a simple criterion that guarantees
soundness and can be easily checked in practice. Furthermore, we show how one can verify
non-interference properties of concurrent source programs using sequential product
constructions. We demonstrate the feasibility of this approach by implementing it for
Nagini. Our evaluation shows that this extended Nagini implementation, developed with
minimal effort, can compete with existing specialized verification tools for non-interference
in terms of its expressiveness, while offering acceptable performance.

Fourth, we present a modular specification and verification technique for Ethereum
smart contracts, i.e., small programs that execute in the Ethereum blockchain, which
typically implement custom resources and resource transfers. Smart contract verification
is challenging because contracts execute in an adversarial environment, interacting with
malicious outside contracts that can perform re-entrant calls. We present a specification
and verification technique that, unlike existing techniques, is sound and precise in
this context and does not assume or impose limits on re-entrancy. Furthermore, we
expand this technique to enable the contract-modular verification of sets of collaborating
contracts for the first time. Finally, we propose a domain-specific specification language
that lets users express properties directly in terms of resources and resource transfers,
reducing the likelihood of erroneous specifications. We implement our technique in
2vyper, an automated verification tool for the Vyper language (a smart contract language
for Ethereum which is distinct from the aforementioned Viper verification language), and
demonstrate its ability to verify complex properties of real smart contracts.



Zusammenfassung

Da Softwaresysteme immer mehr unsere kritische Infrastruktur und unser tägliches
Leben bestimmen, ist es wichtig, ihre Korrektheit und Sicherheit zu gewährleisten. Wenn
übliche Sicherheitsvorkehrungen wie Testen nicht ausreichen, kann Verifikation benutzt
werden, um Programme mathematisch ein für allemal korrekt zu beweisen. In den
letzten Jahrzehnten gab es grosse Fortschritte im Design und der Automatisierung
von Verifikationstechniken, so dass heutzutage mehrere Verifikationstools in der Lage
sind, automatisch Eigenschaften für statisch typisierte Programmiersprachen wie C
oder Java zu beweisen. Dennoch bleiben viele Probleme ungelöst: Wichtige Sicherheits-
eigenschaften wie Informationsflusseigenschaften sind sogenannte Hyperproperties,
die von Standard-Verifikationstools nicht unterstützt werden. Ausserdem müssen neue
Verifikationstechniken entwickelt werden, um andere weit verbreitete Programmier-
sprachen zu unterstützen, die weniger (oder andere) statische Garantien bieten. In dieser
Dissertation erweitern wir den Stand der Technik in diese zwei Richtungen, indem
wir die automatisierte Verifikation von Hyperproperties in Standard-Verifikationstools
ermöglichen und existierende Verifikationstechniken für die dynamische Python Sprache
sowie Sprachen für Ethereum Smart Contract nutzbar machen.

Zuerst präsentieren wir eine modulare Verifikationstechnik für Python-Programme, die
darauf abziehlt, komplexe Korrektheits- und Sicherheitseigenschaften von realistischem
Code zu beweisen. Den Mangel an statischen Garantien in Python adressieren wir mit
einer Kombination aus einem optimistischen statischen Typsystem und zusätzlichen
Checks als Teil der Verifikation. Die resultierende Verifikationstechnik ist in der Lage
typischen Python Code zu verifizieren und kann mit existierenden Spezifikations- und
Verifikationstechniken für Sicherheitseigenschaften integriert werden. Wir haben unsere
Technik in Nagini, einem automatisierten Veritikationstool für Python 3, implementiert,
und demonstrieren in unserer Auswertung, dass Nagini in der Lage ist, komplexe
Eigenschaften von echtem Python Code zu beweisen.

Zweitens präsentieren wir Modular Product Programns, eine Programmtransformation,
die es ermöglicht, Hyperproperties mit Standard-Verifikationstools zu beweisen. Anders
als existierende Lösungen können Modular Product Programs automatisch konstru-
iert werden, schränken den Kontrollfluss des Programms nicht ein, und ermöglichen
modulare Beweise mithilfe relationaler Spezifikationen. Wir wenden Modular Product
Programs auf das Problem von Informationsfluss an und präsentieren Informations-
flussspezifikationen, die komplexe Eigenschaften wie werteabhängige Sensitivität und
terminierungssensitive Nichtinterferenz ausdrücken können. Wir implementieren die
Produkttransformation für die Viper Verifikationsinfrastruktur und zeigen, dass sie



sowohl Informationsflusseigenschaften als auch andere Hyperproperties für komplexe
Beispiele aus der Literatur beweisen kann.

Drittens zeigen wir, wie Produktkonstruktionen wie Modular Product Programs, die
üblicherweise für einfache, sequentielle Programmiersprachen definiert werden, auch
auf komplexere Sprachen angewendet und in existierende Verifikationstools, die auf
Zwischensprachen (IVLs) basieren, integriert werden können. Die Kernidee ist, die
Produkttransformation auf der (einfachen) Zwischensprache statt der (komplexen)
Quellsprache anzuwenden, und dadurch existierende Tools ohne viel Aufwand in die
Lage zu versetzen, Hyperproperties zu verifizieren. Wir zeigen, dass dieser Ansatz nicht
immer korrekt ist, aber identifizieren ein einfach überprüfbares Kriterium, das Korrektheit
garantiert. Ausserdem zeigen wir, wie auf diesem Weg Informationsflusseigenschaften
von nebenläufigen Programmen mit sequentiellen Produktkonstruktionen bewiesen
werden können. Wir demonstrieren die Machbarkeit unseres Ansatzes, indem wir ihn
in Nagini implementieren; unsere Auswertung zeigt, dass die erweiterte Version von
Nagini, die mit minimalem Aufwand entwickelt wurde, in seiner Ausdrucksstärke mit
spezialierten Verifikationstools mithalten kann und akzeptable Performance bietet.

Viertens präsentieren wir eine modular Spezifikations- und Verifikationstechnik für
Ethereum Smart Contracts, also kleine Programme, die in der Ethereum Blockchain
ausgeführt werden, und die oft benutzerdefinierte Resourcen und Resourcenaustausch
implementieren. Die Verifikation von Smart Contracts ist schwierig, weil Smart Con-
tracts mit anderen, möglicherweise böswilligen, Contracts interagieren müssen, die
ihrerseits jederzeit den Contract zurück aufrufen können (solche Aufrufe werden als
re-entrant bezeichnet). Wir präsentieren eine Spezifikations- und Verifikationstechnik,
die in diesem Kontext, anders als existierende Lösungen, korrekt und präzise ist, ohne
solche Aufzufe zu beschränken. Dann erweitern wir diese Technik, um auch die modulare
Verifikation von Gruppen von Contracts, die zusammen eine Applikation bilden, zu er-
möglichen. Schliesslich präsentieren wir eine domänenspezifische Spezifikationssprache,
die es Benutzern ermöglicht, Eigenschaften direkt auf dem Level von Resourcen und
Resourcenaustausch zu beschreiben und so die Wahrscheinlichkeit falscher Spezifika-
tionen verringert. Wir implementieren unsere Lösung in 2vyper, einem automatischen
Verifikationstool für die Vyper-Sprache (einer Programmiersprache für Ethereum Smart
Contracts, nicht zu verwechseln mit der vorher erwähnten Viper-Sprache), und zeigen,
dass 2vyper in der Lage ist, komplexe Eigenschaften von echten Smart Contracts zu
beweisen.
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Introduction 1.

Our world is ruled by computer systems: They run our infrastructure,
handle our money and our most sensitive data, facilitate many of our
social interactions, and sometimes even control the light bulbs in our
living rooms. As a result, there are considerable incentives for malicious
actors to manipulate or attack these systems, and it is important to design
them as securely as possible.

The usual approaches for making systems secure in practice, such as using
established design principles, code reviews, and testing, often provide a
level of security which is “good enough” for their intended purpose, but
does not provide any absolute guarantees. As a result, these practices are
insufficient for systems with the highest security requirements, which
are likely to be attacked and which will lead to substantial problems
when exploited successfully. For such systems, formal methods can provide
rigorous mathematical correctness guarantees. For software in particular,
the gold standard is deductive program verification, which can prove
programs correct with respect to complex specifications once and for
all.

1.1. Security Property Verification

The central topic of this thesis is the verification of program properties

that encompass software safety and security. In particular, we focus our
attention on the implementations (as opposed to higher level designs or
models) of individual programs (as opposed to larger systems consisting of
different components), written in mainstream programming languages.
Note that this can encompass reasoning about the way an individual
component interacts with other components that are part of a system;
here, though, we focus on proving that the component’s interactions
conform to some protocol, rather than proving that the protocol itself
ensures some security property for the whole system (which can be
proved separately).

Security has traditionally been defined in terms of the so-called CIA triad
of confidentiality, integrity, and availability [162]. While these are somewhat
broad terms, proving software security according to these criteria can
require proving different concrete program properties. We focus on the
following:

1. System availability usually requires crash freedom, i.e., that the pro-
gram does not abort because of unexpected and unintended errors.
This property can encompass memory safety in programming
languages that do not guarantee this property by construction, and
in general requires showing the absence of out-of-bounds accesses,
divisions by zero and similar properties. Note that these properties
are usually called safety properties, but they are obviously relevant
for system security as well.
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2. Similarly, availability may require proving progress properties,
i.e., to stay available, a program must keep interacting with its
environment, and must not get stuck, e.g., in an infinite loop or
because of a deadlock.

3. Proving integrity may involve proving that, regardless of its (po-
tentially attacker-controlled) inputs, some set of invariants that a
program relies on can never be broken; this amounts to proving
functional properties of (parts of) the code.

4. Alternatively, proving integrity may require showing that some
data cannot be controlled or affected by the attacker. This property
can be formalized as non-interference, a property that can express
that inputs controlled by an attacker cannot taint certain critical
variables.

5. Confidentiality requires proving information flow security of the
involved program(s), which can again be formalized as (different
kinds of) non-interference.

6. And finally, for systems consisting of more than one component,
proving any security property of the system as a whole may require
proving properties about individual components’ interactions with
their environment, i.e., their input-output-behavior: For example, as
mentioned above, the security of a system may depend on the fact
that its components communicate according to some pre-defined
protocol that is known to be secure.

Note that this list is by no means exhaustive, and there are many other
(even code-level) security properties that we do not consider in this thesis;
for example, we will not attempt to prove the correct implementation or
usage of cryptographic primitives, nor will we reason about low-level
interactions between software and hardware security features.

1.2. State of the Art

Deductive program verification was first introduced by Hoare [105];
program logics known as Hoare logics allow proving Hoare triples of
the form ⊨ {𝑃}𝑐{𝑄}. Such a triple states that the command 𝑐, when
executed in a state satisfying the assertion 𝑃, will not abort with an error,
and will result in a state satisfying assertion 𝑄 if it terminates. Such
Hoare triples express partial correctness properties (since they do not
guarantee termination) [65]; these are sufficient to formally express crash
freedom and functional correctness. Hoare logics can also express total

correctness, whose corresponding Hoare triples also imply that 𝑐 will
always terminate when executed from a state satisfying 𝑃, making it
possible to express progress properties as well.

To be able to prove correctness of substantial code bases, it must be
possible to reason about different parts of the program modularly, i.e.,
in isolation, taking only the specifications of other parts of the program
into account. However, traditional Hoare logics are not well-suited
for modular reasoning about programs that work with global state, in
particular program heaps: If a caller and a callee function are to be verified
separately, the caller function by default does not know which part of
the global state may have been modified by the callee, and explicitly
specifying this information in postconditions for heaps of unknown and



1.2. State of the Art 3

[180]: Reynolds (2002), ‘Separation Logic:
A Logic for Shared Mutable Data Struc-
tures’
[157]: Müller (2002), Modular Specification

and Verification of Object-Oriented Programs

[169]: O’Hearn (2007), ‘Resources, concur-
rency, and local reasoning’

[177]: Poetzsch-Heffter (1997), ‘Specifica-
tion and verification of object-oriented pro-
grams’

[128]: Leino et al. (2004), ‘Object Invariants
in Dynamic Contexts’
[157]: Müller (2002), Modular Specification

and Verification of Object-Oriented Programs

[172]: Penninckx et al. (2015), ‘Sound, Mod-
ular and Compositional Verification of the
Input/Output Behavior of Programs’

[46]: Clarkson et al. (2010), ‘Hyperproper-
ties’

[179]: Prabawa et al. (2018), ‘A Logical Sys-
tem for Modular Information Flow Verifi-
cation’
[30]: Benton (2004), ‘Simple relational cor-
rectness proofs for static analyses and pro-
gram transformations’

[25]: Barthe et al. (2011), ‘Secure informa-
tion flow by self-composition’

[23]: Barthe et al. (2011), ‘Relational Verifi-
cation Using Product Programs’

[72]: Ernst et al. (2019), ‘SecCSL: Security
Concurrent Separation Logic’
[89]: Giffhorn et al. (2015), ‘A new algo-
rithm for low-deterministic security’
[203]: Smith (2007), ‘Principles of Secure
Information Flow Analysis’

[20]: Barras et al. (1997), ‘The Coq proof
assistant reference manual: Version 6.1’
[168]: Nipkow et al. (2002), Isabelle/HOL -

A Proof Assistant for Higher-Order Logic

[156]: Moura et al. (2008), ‘Z3: An Efficient
SMT Solver’
[22]: Barrett et al. (2011), ‘CVC4’

arbitrary size is infeasible. Separation logics [180] as well as ownership

models [157] solve this problem by requiring each function or method to
implicitly or explicitly state the heap footprint they may modify; caller
methods can then assume that any parts of their own footprint that
are not in the callee’s footprint will not be touched by a call. The same
concepts easily extend to reasoning about concurrent programs; concurrent

separation logics [169] ensure that different threads operate on separate
footprints (i.e., that programs are data race free), and can therefore be
reasoned about as if each thread executes without interference. Some of
the fundamental verification techniques mentioned so far have also been
integrated with specification techniques for object-oriented programming
languages, allowing for example to prove class invariants [177] that define
consistency criteria which must hold for every instance of a class, and
extending this concept to structures consisting of multiple objects [128,
157].

Various specialized Hoare or separation logics have been proposed that al-
low reasoning about other program properties, for example input/output-
behavior [172]. Non-interference, however, is a hyperproperty [46], that is,
a property of sets of executions of a program; as we hinted at above,
it is useful for expressing both integrity and information flow security
properties. While many type systems and static analyses exist to check
non-interference automatically, these are limited in their expressiveness
and precision, and therefore usually insufficient when trying to show
the security of complex, real-world systems. Therefore, it is necessary to
use deductive verification techniques to verify at least the most complex
parts of a code base. However, ordinary Hoare and separation logics
are not able to prove non-interference, since they reason about single
executions only; that is, they are limited to proving trace properties. As
a result, some separation logics specifically target information flow se-
curity [179]. Alternatively, like other hyperproperties, non-interference
can also be verified using relational Hoare logics [30], which explicitly
reason about multiple executions at once. Another alternative is to use
self-composition [25] or product programs [23], which reduce hyperproper-
ties of one program to ordinary trace properties of a newly-constructed
(product) program. The latter in particular allows proving hyperproper-
ties using standard program logics. One important thing to note is that
relational Hoare logics and most product program constructions only
target sequential programs, whereas there are a number of specialized
information flow logics, type systems, and static analyses that also target
concurrent programs [72, 89, 203].

Finally, the past two decades have seen enormous progress in mecha-
nizing and automating proofs, including program correctness proofs.
Interactive theorem provers like Coq [20] or Isabelle/HOL [168] allow users
to define theorems and proofs, and mechanically check the proofs for
correctness, yielding strong guarantees. Typically, there is also limited
support for proof automation, for example using so-called tactics. On the
other hand, SMT-solvers like Z3 [156] and CVC4 [22] are able to check
proof obligations in first order logic that include decidable theories like
linear integer arithmetic in a fully automated way. Combined with tech-
niques for extracting proof obligations, SMT-solvers enable the creation
of verification tools which automatically check programs annotated with
specifications for correctness.
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While some automated verification tools have been built directly on top
of SMT solvers, the creation of intermediate verification languages (IVLs,
examples of which include Boogie [18], Why3 [82] and Viper [159]), simple
languages with associated automated verification tools, has massively
simplified the creation of new verification tools: Creating a verifier for
a new programming language now only requires encoding the new
language and its specifications into the IVL in a sound way, leaving the
generation of verification conditions and the interaction with provers
to the IVL’s infrastructure. As a result of the rise of IVLs, a number of
verification tools for real languages now exist, and some verification
techniques are even presented primarily as encodings into IVLs and no
longer as Hoare logics or as weakest precondition calculi.

1.3. Challenges

As a result of the last decades of work, there is now a significant number
of verification tools able to prove trace properties of programs written in
standard statically-typed languages like Java or C.

In this thesis, our central goal is to extend the state of the art to enable

▶ modular verification of more advanced properties, particularly
properties like non-interference which are highly relevant for
proving systems secure,

▶ for languages that deviate from the standard statically-typed object-
oriented languages, for example by being dynamically-typed (like
Python) or by having an entirely different execution model (like
smart contracts)

▶ in a way that can be automated and integrated with existing
verification tools.

In particular, we address the following challenges:

1.3.1. Challenge 1: Different Programming Paradigms

Most current verification techniques (for imperative programs) target
statically-typed languages like Java or C, and are sound only if the entire

running application is verified. Verification of programs in different
programming environments is far less explored: Dynamic languages like
Python, for example, perform no static checks, therefore give almost
no static guarantees, and offer some dynamic language constructs not
seen in statically-typed languages. As a result, static reasoning about
them is substantially more challenging, requiring more information from
specifications, and having to reason about more possible behaviors. Many
established ways of reasoning about programs do not directly apply in
such a context. On the other hand, smart contracts are programs which
are generally statically-typed, but which are executed in the presence of
other code, which is generally unverified and potentially adversarial. As
a result, verification techniques like separation logic that require that all

code be verified again do not apply.
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1.3.2. Challenge 2: Automated and Modular

Hyperproperty Verification

The verification of hyperproperties like non-interference is still challeng-
ing in practice. While relational logics allow (modularly) reasoning about
them, they are either not automated at all, or use specialized tools that
are not found in standard verification tool chains [206]. On the other
hand, self-composition and product programs allow reducing hyper-
properties to trace properties of newly-constructed programs, but have
other drawbacks: Self-composition does not allow for modular reasoning
about procedure calls, whereas different existing product program con-
structions are either incomplete when dealing with different control flow
in different executions [23], or must be constructed manually [24].

1.3.3. Challenge 3: Non-interference Verification for

Concurrent Programs

Verification of hyperproperties such as non-interference is inherently
more challenging for concurrent programs, since different executions
can potentially have different thread schedules, which can in turn impact
the results of a program. As a result, self-composition and product
programs are typically defined only for sequential programs and do not
easily extend to a concurrent setting. While some verification techniques
for (variations of) non-interference for concurrent programs have been
proposed [86, 160, 194], almost no verification techniques in this setting
have been automated, and the few that have again require specialized
tools [72].

1.3.4. Challenge 4: Integration of Advanced Property

Verification Into Existing Tools

A significant number of verification tools based on IVLs and SMT-
solvers has been developed over the past decade, targeting a number
of real programming languages. These generally target standard trace
properties. While new techniques are constantly being developed to
prove more advanced properties, those are usually either not automated
or implemented in custom tools, using custom specification languages
and generally preventing easy combination with existing verification
infrastructures. Even when new verification techniques are defined
in terms of program transformation or other encodings that can be
integrated into standard verification tools, those transformations and
encodings are typically defined only for smaller languages lacking many
features used in practice. Since proving the security of real software
systems generally requires proving a combination of different properties,
it is vital that new verification techniques are designed in such a way
that existing tool chains can be extended to prove new, more advanced
properties.
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1.4. Contributions and Outline

We address each of these challenges by making the following contribu-
tions, each of which corresponds to a chapter of this thesis:

1.4.1. Contribution 1: Modular Verification of Python

Code

In Chapter 2, we present a technique for modular verification of Python
code, addressing Challenge 1. Aiming to support the verification of
typical (but not necessarily all) real-world Python code with manageable
specification overhead, we carefully design specifications and, where
necessary, impose restrictions that enable us to reason about code statically
and modularly. The result is a specification and verification methodology
that builds on standard verification techniques but adapts them to the
specific Python setting, for example by using the verifier for precise type
checking, and supporting dynamic addition and removal of fields in a
separation logic-like setting. We implement our approach in Nagini, a
verifier that encodes a substantial subset of (concurrent) Python into the
Viper IVL. Nagini proves the absence of runtime errors by default and
allows users to specify functional correctness and progress properties, as
well as input-output-behavior, i.e., several kinds of program properties
that are crucial for proving security properties of the systems they belong
to.

1.4.2. Contribution 2: Modular Product Programs

In Chapter 3, we introduce modular product programs, a kind of product
program that allows modular verification of 𝑘-safety hyperproperties us-
ing standard verifiers, and can be constructed automatically, addressing
Challenge 2. We introduce relational specifications that let users specify hy-
perproperties and reason about procedure calls modularly. Furthermore,
we define information flow specifications, which are specification constructs
specifically tailored towards modularly proving non-interference, and
show how they can be encoded into modular product programs. We
show that these specifications are sufficiently flexible to encode advanced
concepts like value-dependent sensitivity and termination-sensitive non-
interference. We implement the product transformation for Viper and
show that they can be used to prove non-interference for challenging
programs from the literature, as well as other hyperproperties.

1.4.3. Contribution 3: Using Modular Product Programs in

IVL-Based Tools

In Chapter 4, we explore how modular product programs, which are
defined for a simple sequential language, can be integrated into an
existing IVL-based verification tool for more complex and concurrent
languages, addressing Challenges 3 and 4. In particular, we explore
under which conditions it is sound to perform the product construction
on the level of the IVL (typically also a simple sequential language), and
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exploit the existing encoding from the more complex source language
to the IVL to verify hyperproperties in the source language with little
effort. We show that this approach is not always sound, but that there
are simple conditions on the existing IVL-encoding one can check to
ensure soundness, which are usually fulfilled by existing encodings,
requiring only few specific adaptations. In particular, we also show how
this approach can be used to prove non-interference of concurrent source
programs using sequential product construction. The resulting technique
allows us to retrofit existing IVL-based verifiers for trace properties to
also verify non-interference, even for concurrent programs, with little
effort. We implement the approach for Nagini by exploiting a product
construction on the level of the Viper IVL, and show that the resulting
tool, while slower than special-purpose information flow verifiers, can
prove complex non-interference properties for challenging examples
from the literature with acceptable performance.

1.4.4. Contribution 4: Modular Smart Contract Verification

Finally, in Chapter 5, we move to a different execution model and present
a verification approach for Ethereum smart contracts, again addressing
Challenge 1. Exploiting the special encapsulation guarantees provided by
smart contract languages, we address the problem that smart contracts
have to interact with an unverified and potentially malicious environment,
which can in particular make re-entrant calls in order to corrupt contract
state in a way that benefits them. Our technique is the first that can soundly
prove strong correctness properties of smart contracts without having to
restrict re-entrancy (which would rule out contracts that use re-entrancy
on purpose). It is also the first verification technique that allows modular
verification of sets of collaborating smart contracts, i.e., separate verification
of each contract that only uses an interface description of the contracts
it interacts with, abstracting over concrete implementations. Finally, we
provide special domain-specific specifications for resources and resource

transactions, which are the purpose of most existing smart contracts.
These specifications allow users to specify desired contract behavior on a
higher level of abstraction, and the associated verification technique finds
common problems (like contracts that accidentally duplicate resources,
or the bug in the infamous TheDAO contract) by default. We have
implemented our technique in 2vyper, a verifier for the Python-like
Vyper language for Ethereum smart contracts, which is again based on
the Viper IVL. Our evaluation shows that our technique can verify strong
properties of real, potentially collaborating smart contracts, without
having to restrict re-entrancy.

1.5. Publications

The work in this thesis has been partially published in the following
conference and journal publications:

Chapter 2 is based on

Marco Eilers and Peter Müller.

Nagini: A Static Verifier for Python
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In CAV 2018, Springer [97]

Chapter 3 is based on

Marco Eilers, Peter Müller, and Samuel Hitz.

Modular Product Programs

In ESOP 2018, Springer [68]

as well as the extended version of this paper

Marco Eilers, Peter Müller, and Samuel Hitz.

Modular Product Programs

In TOPLAS 2020, ACM [69]

Chapter 4 is based on

Marco Eilers, Severin Meier, and Peter Müller.

Product Programs in the Wild: Retrofitting Program Verifiers to

Check Information Flow Security

In CAV 2021, Springer [66]

Chapter 5 is based on

Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and

Alexander J. Summers.

Rich Specifications for Ethereum Smart Contract Verification

In OOPSLA 2021, ACM [43]

1.6. Further Contributions During the Thesis

Work

In the time working on this thesis, the author has made additional
contributions to the scientific community which are not included in this
thesis:

Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller.

MaxSMT-Based Type Inference for Python 3

In CAV 2018, Springer [97]

Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf,

Peter Müller, Martin Clochard, and David Basin.

Igloo: Soundly Linking Compositional Refinement and Separation

Logic for Distributed System Verification

In OOPSLA 2020, ACM [207]
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Modular Verification of Python

Code 2.

Dynamic languages have become widely used because of their expres-
siveness and ease of use. The Python language in particular is popular
in domains like teaching, prototyping, and more recently data science.
Python’s lack of safety guarantees can be problematic when, as is increas-
ingly the case, it is used for critical applications with high correctness
demands. The Python community has reacted to this trend by integrating
type annotations and optional static type checking into the language [181].
However, there is currently little tool support for reasoning about Python
programs beyond type safety.

A key reason for this lack of tool support is that the lack of static
information and the general design of the language, which focuses on
expressiveness, make reasoning about Python programs in many ways
inherently more difficult compared to languages like Java or C. This
is true even when disregarding language features like runtime code
generation, which is generally regarded as making verification infeasible
in practice.

The biggest difference is the lack of static type checking: Since Python
performs dynamic and structural type checking, it is difficult to determine
vital information about a program’s behavior from its AST. As an example,
reasoning about the behavior of a piece of code that performs a method
call requires having some information as to the target of said call;
while, in statically and nominally-typed languages, it is generally easy
to determine call targets (or, at least, sets of possible call targets) from
the type information available in the AST, this is much more difficult
in a language like Python. This problem cannot be mitigated by simply
imposing a standard, conservative type system after the fact, since typical
Python programs are written in such a way that most traditional type
systems would reject them outright.

Furthermore, in Python, even the high-level structure of a program (i.e.,
the set of modules, classes, and methods) is not static, but evolves as
the program executes; declarations of classes, methods, etc. are executed
inbetween other pieces of code. The result is a class of potential bugs that
does not even exist in other languages, namely, runtime errors resulting
from the usage of a class or method when it does not yet exist.

Finally, Python has an object model and a way of performing attribute
lookups that is far more complex than the simple field reads or pointer
dereferences used in other languages, and a plethora of smaller language
features in Python are either more complex than their equivalents in other
languages (e.g., assignments), or mirror those in other languages, but are
currently poorly supported by verification tools for those languages as
well (e.g., exception handling with finally-blocks).

In this chapter, which is partly based on the CAV 2018 paper “Nagini: A
Static Verifier for Python” [67], we present our verification approach for
Python 3. Our goal is to be able to modularly prove complex, security-
related properties of typical user-level Python code. That is, we do not
necessarily aim to allow verifying any Python code if doing so would
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come at too big a cost, e.g., if it would make verification inherently
non-modular, or result in an impractically high specification overhead
even for simple programs. However, we do aim to support typical Python
code patterns, while keeping the required specification overhead similar
to or lower than that of existing tools for other languages. We then use
our verification approach as a basis for integrating existing verification
techniques for proving complex, security-related program properties.

To summarize, we make the following contributions:

▶ We present a novel verification technique for Python 3 code that
allows the modular verification of complex properties of typical
real-world code for the first time. Our technique addresses the
challenge of dynamic typing by using a hybrid approach to type
checking: we build on an existing static type system checking some
properties optimistically (i.e., in an unsound way), and supplement
it with sound checks performed by the verifier. The resulting
technique can precisely reason about type information, variable-
and field definedness, and thus accommodates typical Python code
patterns. We allow sound reasoning about dynamically-bound calls
by imposing both nominal and behavioral subtyping, but support
the use of union types to be able to verify (most) code that relies on
the flexibility provided by Python’s standard structural subtyping.
Furthermore, we verify the correctness of all top-level statements,
in particular, by checking that all declarations are used only after
they are defined.

▶ We integrate our basic verification approach with existing specifi-
cation and verification techniques for advanced program proper-
ties that are vital for proving system security, like input/output-
behavior, progress properties, and general safety. 1

▶ We implement our approach in Nagini, an automated, modular
verification tool for a substantial subset of Python 3. Nagini auto-
mates the verification of Python programs by encoding them into
the Viper IVL [159], ultimately using the SMT solver Z3 [156], and
allows users to specify complex correctness properties directly on
the level of the Python code.

▶ We demonstrate Nagini’s ability to verify typical Python code
by applying it to a set of small individual Python programs as
well as a substantial part of a Python code base not written with
verification in mind. Subsequently, we show its ability to verify
security-related properties by verifying the I/O behavior of two
programs implementing different roles in a security protocol; this
proof can then be combined with a proof of protocol correctness,
resulting in a security proof of the entire system.

The remainder of this chapter is structured as follows: In Sec. 2.1, we give
an overview of the state of the art of automated program verification
for statically-typed programming languages. In Sec. 2.2, we present our
verification technique for Python, by first outlining the challenges Python
poses for static verification, and subsequently explaining our approach
to solving those challenges. After showing how reasoning about Python
code is possible in principle, we then show how we can integrate our
basic verification technique with techniques for specifying and verifying
the advanced program properties required to prove system security in
Sec. 2.3. In Sec. 2.4, we briefly describe a possible approach to proving
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the soundness of our verification technique. Subsequently, we describe
our implementation of the presented approach in Nagini in Sec. 2.5, we
evaluate it by applying it to different verification tasks that demonstrate
both its ability to verify realistic code and to express and prove complex
program properties in Sec. 2.6. Finally, we describe related work in Sec. 2.7
and conclude in Sec. 2.8.

2.1. Modular Verification of Statically-Typed

Object-Oriented Programs

2.1.1. Procedure and Method Specifications

In object-oriented programming languages, code is generally contained
inside methods; in imperative programs, in procedures. Since the differences
between the two do not matter for verification, we will generally refer to
named pieces of code that take arguments and can have side effects as
methods throughout this thesis.

In Chapter 1, we have already mentioned the Hoare triple ⊨ {𝑃}𝑐{𝑄},
which forms the basis of deductive verification [105], and which states
that when 𝑐 is executed in any state satisfying 𝑃, then it will not abort
with an error, and if its execution terminates, the resulting state will
fulfill 𝑄. Following the same basic idea, the basic specifications for
methods are preconditions and postconditions; if a method has an assertion
𝑃 as its precondition and an assertion 𝑄 as its postcondition and its
body is 𝑐, then the aforementioned Hoare triple must hold [9]. This
understanding of specifications is called partial correctness, since it does not
require the method to terminate; the alternative, total correctness, requires
that the body must terminate from every state fulfilling 𝑃 [65]. Unless
stated otherwise, our understanding will be that of partial correctness
throughout this chapter.

Note that the exact definition of what it means to “abort with an error”
may vary between different languages and verification systems, and
that these basic specification constructs are often supplemented with
others:

▶ Loop invariants are assertions used to verify loops: A loop’s invariant
must hold when the loop is first executed, and must then inductively
hold after each subsequent iteration of the loop. They are generally
thought of as auxiliary specifications, that is, one proves a loop
invariant in order to be able to prove that a method specification
holds for the method containing the loop, not primarily because
one is interested in the loop invariant itself.

▶ In languages with exception handling, exceptional postconditions

can describe which properties the program state must have when
a method does not terminate normally by returning, but instead
terminates by raising an exception [122].

▶ In object-oriented languages, class invariants can describe properties
that all instances of a class must have at any point while no method
of the object is executing, i.e., the properties that make up a
consistent state of a class instance [177]. In simple cases, class
invariants have to be established by the constructor, and must
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subsequently be shown to be preserved by every (public) method
of a class (though there are edge cases where the necessary proof
obligations become more complex).

▶ When dealing with concurrent programs, there are a number of
additional specification constructs (for example lock invariants [132,
169]), which we will discuss later.

For verification to scale to realistic programs, it is important to be able to
reason modularly, that is, to verify a program that may consist of many
different methods by verifying each method independently of the others.
In particular, when verifying the body of a method modularly, one must
not assume any information about the initial state except the method’s
precondition; in particular, no additional properties that are known to
hold at the call sites of the method in different parts of the code may
be assumed. Additionally, when reasoning about a call to a different
method, one only checks that the precondition of the called method is
established at the call site, and subsequently assumes that the method’s
postcondition holds after the call has returned; one does not assume any
information about the resulting state that one may learn from inspecting
the method’s code.

This principle sometimes requires verbose specifications in practice, but it
ensures that verification can scale, since neither call sites nor called code
needs to be inspected. As a result, the most complex verification task will
be the verification of the most complex individual method, as opposed the
the entirety of the program (although some existing work suggests that
the overall verification effort, at least for some types of applications, may
still scale quadratically with the size of the entire program, since larger
programs require proving more complex specifications for individual
methods [144]). Additionally, it ensures that it is possible to verify libraries
(for which one does not know all possible call sites) or code that uses
a library for which only a specification is available, but not the source
code. It also enforces principles of abstraction and information hiding,
since it ensures that correct programs do not break if the code in a callee
method is exchanged with different code that also fulfills the method’s
specification.

2.1.2. Reasoning about Heap-Manipulating Programs

Modular reasoning is especially complex when dealing with programs
that have modifiable global state, i.e., heap-manipulating programs.
Consider the Java code example in Figure 2.1.

The postcondition of method foo promises that the returned integer is
greater than one. Looking at the code, this is initially the case, since x.f is
initialized to be two at the beginning of the method. However, inbetween
those points, method bar is called, which could potentially modify the
value of x.f to be a lower value, so that the postcondition of foo would not
hold.

In modular verification, we can consider only the specification of bar to
ensure that this is not the case. For example, if bar does not modify x.f
at all, its postcondition could state that x.f is unchanged. However, this
approach clearly does not scale: No method can be expected to explicitly
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1 class X {
2 int f;
3
4 void bar(X x)
5 // requires ...
6 // ensures ...
7 { ... }
8 }
9

10 class Z {
11 float floatval;
12
13 int foo(X x, X y, int i)
14 // requires true
15 // ensures result > 1
16 {
17 x.f = 2;
18
19 Z z = new Z();
20 z.floatval = Math.pi ∗ i;
21 y.bar(x);
22 return x.f;
23 }
24 }

Figure 2.1.: Example of a heap-
manipulating program; foo may not be
correct if bar modifies the f-field. Here
and throughout, we use comments to de-
note method specifications: the requires
keyword marks a precondition and the
ensures keyword denotes a postcondition.
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mention all heap location it did not modify in its postcondition, since
there is a potentially infinite (and generally unknown) amount of such
heap locations.

There are different approaches to solve this problem, which is often called
the frame problem: Dynamic frames [115] requires methods to explicitly
state the set of all heap locations they may potentially modify (using
so-called modifies-clauses): Callers then know that any heap location not
mentioned will not be changed, and can get information about the new
values of the (now known) set of potentially-modified heap locations via
the postcondition. Note that the latter may still be infinite. Ownership-
based approaches [157] use a similar basic idea, but additionally define
an ownership hierarchy between objects, which allows the use of modifies-
clauses that express framing information on a higher abstraction level
well-suited to object-oriented programs.

Finally, permission logics like separation logic [180] and implicit dynamic

frames [199] allow accesses (i.e., reads or modifications) of heap locations
only if the accessing method currently owns a permission to that location.
Permissions come into existence when memory is allocated and belong
to the method performing the allocation by default. Subsequently, these
permissions can be passed through method calls, i.e., from the caller to
the callee, if they are part of the precondition of the called method, and
back from the callee to the caller on return if they are part of the method
postcondition. Crucially, permissions can never be duplicated, so that at
any given time, there is only ever a single method that currently owns
the permission to a heap location and is therefore allowed to access it.

In separation logic, the so-called points-to assertion 𝑥. 𝑓 ↦→ 𝑣 denotes
both a permission to location 𝑥. 𝑓 , and expresses that the current value
of said location is 𝑣. In implicit dynamic frames, which we will use
throughout this chapter, these two aspects are separated: The assertion
acc(𝑥. 𝑓 ) denotes a permission to location 𝑥. 𝑓 but makes no statement
about its value; however, unlike in separation logic, the expression
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𝑥. 𝑓 can then be used directly to make statements about its value. For
example, the assertion 𝑥. 𝑓 ↦→ 2 in separation is analogous to the assertion
acc(𝑥. 𝑓 ) ∗ 𝑥. 𝑓 = 2 in implicit dynamic frames. Here, the operator 𝑃 ∗ 𝑄
denotes a separating conjunction, whose meaning is analogous to an
ordinary conjunction, but which (in implicit dynamic frames) represents
the sum of the permission amounts in 𝑃 and 𝑄. Thus, the assertion
acc(𝑥. 𝑓 )∗acc(𝑦. 𝑓 ) represents two permissions, which implies non-aliasing:
If 𝑥 and 𝑦 were aliases, the assertion would denote two permissions
to the same location, but since there is only ever one permission for a
single heap location, no method can ever own two permissions to the
same location. Thus, the assertion implies that 𝑥 and 𝑦 must point to two
different heap locations. Inhaling an assertion adds the permissions it
represents to the current state and assumes the logical constraints the
assertion contains. Conversely, exhaling an assertion removes permissions
from the state and asserts all logical constraints.

The fact that there is only a single permission per heap location is also
used to tackle the frame problem: If a method owns the permission
to a heap location, it is guaranteed that no other method is allowed to
modify that location until it gives the permission away. In the example in
Figure 2.1, method foo would have to require the permission acc(𝑥. 𝑓 ) in
its precondition (otherwise it would not be allowed to modify the field
in the conditional), as shown in Figure 2.2 (left). Then, there are two
possibilities for the behavior of bar:

1. bar may not require permission to 𝑥. 𝑓 in its precondition, as shown
in Figure 2.2 (middle). As a result, foo keeps the permission to 𝑥. 𝑓

throughout the call to bar, and therefore can assume that the call
cannot possibly modify 𝑥. 𝑓 . As a result, in this case, no information
from the postcondition of bar about 𝑥. 𝑓 is required to prove foo
correct.

2. bar may require permission to 𝑥. 𝑓 in its precondition, as shown
in Figure 2.2 (right), meaning that foo temporarily gives up said
permission, and therefore gives others the ability to modify the
field. When reasoning conservatively about foo, one therefore has to
assume that 𝑥. 𝑓 may have been changed in arbitrary ways (e.g., set
to zero, as in the example); now, one has to rely on information one
may get from the postcondition of bar about the final value of 𝑥. 𝑓
to establish foo’s correctness. Additionally, for foo to be correct, bar
now has to give back permission to 𝑥. 𝑓 in its postcondition, since
otherwise the read of 𝑥. 𝑓 in foo after the call would not be allowed.

In the first case, just from the fact that bar does not take the permission to
𝑥. 𝑓 from its caller, we can conclude that 𝑥. 𝑓 (like any other locations for
which the caller may have permissions that are not given to the callee)
will not be changed by the call, i.e., we can frame any knowledge we have
about the values of those locations around the call.

More sophisticated permission systems exist; one important example are
fractional permissions [41], i.e., the ability to split up whole permissions into
fractions (where, for example, acc(𝑥. 𝑓 , 1

3 ) denotes a third of a permission
to location 𝑥. 𝑓 ): Holding a positive permission amount for a location
that is less than one then gives the ability to read, but not modify, said
location. This is again useful for framing: If a caller has a full permission
to a heap location, but the callee only requires a fraction of a permission
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1 class Z {
2 float floatval;
3
4 int foo(X x, X y, int i)
5 // requires acc(x.f)
6 // ensures result > 1
7 // ensures acc(x.f)
8 {
9 x.f = 2;

10
11 Z z = new Z();
12 z.floatval = Math.pi ∗ i;
13 y.bar(x);
14 return x.f;
15 }
16 }

1 class X {
2 int f;
3
4 void bar(X x)
5 // requires true
6 // ensures true
7 {
8 ... // cannot modify x.f
9 }

10
11 }

1 class X {
2 int f;
3
4 void bar(X x)
5 // requires acc(x.f)
6 // ensures acc(x.f)
7 {
8 x.f = 0;
9 }

10 }

Figure 2.2.: Left: Method foo with permission annotations; the permission to 𝑥. 𝑓 is required from the caller and subsequently given
back. Since 𝑧 is a newly-created object, the permissions to its fields are automatically given to the method creating it. Middle: A possible
implementation of bar that takes no permission to 𝑥. 𝑓 , and therefore cannot modify it, which guarantees that foo is correct. Right: An
alternative implementation of bar which takes foo’s permission to 𝑥. 𝑓 and may therefore modify it, so that foo’s postcondition does not hold.
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to that location in its precondition, then the caller keeps the remaining
permission throughout the call. On return, it may then assume that the
heap location cannot have been changed by the call, since it kept a partial
permission at all the times, which implies that noone else could have had
a full permission, and therefore noone else could have changed the heap
location.

Permission logics easily extend to the setting of concurrent programs, as
shown in concurrent separation logic [169] and similar approaches [132].
In this setting, they automatically ensure that all verified programs must
be data race free, since it is not possible that one thread modifies a heap
location (which would require a full permission) while another thread
simultaneously reads or writes the same location (which would also
require some amount of permission, which could only exist if there was
more than one full permission for that heap location in total, and that is
never the case). This way, permission logics enable modular reasoning
about concurrent programs.

As hinted at before, permission systems pose the challenge that methods
which access a statically unbounded number of heap locations must
require permission for all of these locations in their precondition. There
are two main mechanisms for doing so:

▶ Iterated separating conjunctions [180] (sometimes called quantified
permissions) allow specifying permissions amounts for each ele-
ment in a set that is quantified over; for example, ∀𝑥 ∈ 𝑠. acc(𝑥. 𝑓 )
denotes a full permission to the 𝑓 fields of all references in set 𝑠.

▶ Recursive predicates [180] can recursively define assertions and
therefore permission amounts. For example, a predicate list(x)
defined to be acc(𝑥.next) ∗ acc(𝑥.val) ∗ 𝑥.next ≠ null ⇒ list(𝑥.next)
recursively gives permission to all elements of a null-terminated
linked list.

In implicit dynamic frames, recursive predicates and method specifica-
tions like pre- and postconditions must generally be self-framing, that
is, they must only contain logical constraints about heap locations for
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which they also contain some permission. As an example, the asser-
tion acc(𝑥. 𝑓 ) ∗ 𝑥. 𝑓 = 5 is self-framing, but the assertions 𝑥. 𝑓 = 5 and
acc(𝑥. 𝑓 ) ∗ 𝑦. 𝑓 = 5 are not.

2.1.3. Automated Verification Using Intermediate

Verification Languages

Verification of imperative programs based on the principles shown above
can be efficiently automated in practice as follows:

▶ In a first step, one can automatically generate proof obligations
from programs annotated with specifications, e.g. using weakest
precondition calculi [60] or symbolic execution [31]. This step can
be performed completely automatically if some auxiliary specifi-
cations and annotations are present in the program to be verified,
e.g., if all loops are annotated with loop invariants.

▶ In a second step, these proof obligations can be dispatched to
theorem provers, in particular, SMT solvers like for example Z3 [156]
or CVC4 [22], which can efficiently decide assertion entailment if
all assertions are limited to first order logic and do not make use of
undecidable theories like non-linear integer arithmetic.

The limitations imposed by both steps are what makes automated verifi-
cation challenging; for example, it is often necessary to carefully design
verification techniques to avoid having to use higher-order logic or to
manage the size of the generated verification conditions. Sometimes,
additional user input will be required to make automated verification
viable. We provide two examples here, which respectively affect one of
the steps mentioned above:

▶ When recursive predicates are used, existing verification tools
typically require users to explicitly exchange a predicate for its
body (i.e., unfold the predicate definition once) and vice versa. This
is done to keep the generated verification condition finite, since in
general, it is unknown how far a definition needs to be unfolded to
prove a given method correct.
The statements that perform this operation, typically called unfold
and fold, are an example of ghost code, i.e., code that is not executed at
runtime, but only affects ghost state that is only used for verification;
an example of ghost state is the permission state in permission
logics, which of course do not exist at runtime.

▶ When assertions contain universal quantification (which makes ver-
ification undecidable), SMT-solvers typically require triggers (also
called patterns) [58], i.e., syntactical hints that indicate when and
for which values universal quantifiers are to be instantiated. Choos-
ing triggers is non-trivial, and bad choices can lead to too many
instantiations, leading to bad performance or non-termination, or
too few instantiations, leading to incompleteness.

Additionally, there is a considerable engineering effort associated with
implementing the generation and dispatch of proof obligations, which,
in principle, has to be reinvested for every new programming language
and every new verification technique. Intermediate verification languages

(IVLs) like Boogie [18], Why3 [82], and Viper [159] are one way to avoid
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Figure 2.3.: Architecture of IVL-based ver-
ification tools. A new frontend is created
for each new source language; the backend
verifiers that compute verification condi-
tions only have to be implemented once
per IVL.

[159]: Müller et al. (2016), ‘Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning’

the potentially massive duplication of work that occurs when performing
verification for multiple languages: They are simple (usually imperative)
programming languages with integrated specification mechanisms. Back-

end verifiers for these languages implement techniques for proof obligation
generation and dispatch them to SMT solvers or other theorem provers
and therefore enable automated verification. This infrastructure can then
be built upon to create a verifier for one or more actual programming
languages: The source language only has to be encoded into the IVL by a
frontend, which does not require computing proof obligations or directly
communicating with theorem solvers. Figure 2.3 shows the resulting
architecture of an IVL-based verifier.

Such an encoding can be performed in many different ways; after all, any
encoding is sound if the encoded program verifies only if the original
program is correct. However, typically, frontend encodings are somewhat
similar to compiling from a higher-level to a lower-level language, with
some peculiarities. Figure 2.4 shows a possible frontend encoding for
the program shown before in Figure 2.1 into (a simplified version of) the
Viper IVL [159]; from here on out, we will mark IVL encodings using red
highlighting.

The encoded version has a simplified but similar structure to the original
program; there are no more classes, but every class field corresponds to
a top level field, and similarly every class method corresponds to a top
level method. In addition, there are uninterpreted functions and types to
model functionality that is built into the original language, in this case
floating point operations.

The body of the encoded method has a similar structure and control flow
as the original, but displays three patterns commonly used in frontend
encodings: Compilation to simpler statements, overapproximation, and
assertion of verification conditions.

▶ An example of compilation into simpler statements is the creation of
a new instance of class Z in the original program, which is replaced
by two statements in the encoded program (simply because the IVL
is a simpler, smaller language), the first one being the assignment
of a new reference, and the second the invocation of the constructor
(which is now also a normal method).

▶ There are at least two examples of abstraction here: Class types have
been replaced by raw reference types and applications of floating
point operations are replaced by applications of uninterpreted
functions. In other words, some information is abstracted away, i.e.,
lost, in the encoding because it is either not crucial for verification
(the class types) or is intentionally not modeled in detail, since this
would result in complex verification conditions (information about
floating point operations and values). This is possible in a frontend
encoding because it does not impact soundness: If the program can
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Figure 2.4.: Possible frontend encoding of
the Java program in Figure 2.1 into a sim-
plified version of the Viper IVL [159]. The
encoding declares an uninterpreted float
type and (uninterpreted) operations on
that type. Classes no longer exist, method
and field names are made globally unique.
pre_bar and post_bar are placeholders rep-
resenting the pre- and postcondition of
method bar. A havoc statement assigns an
arbitrary value. As described before, inhale
and exhale statements add permissions and
assume constraints, and remove permis-
sions and assert constraints, respectively.

1 // encoding of built−in types
2 type float
3
4 constant float_zero: float
5
6 constant float_pi: float
7
8 function float_mult(x: float, y: float): float
9 requires y != float_zero

10
11 // encoding of class X
12 field X_f: Int
13
14 method X_bar(this: Ref, x: Ref) returns (res: Int)
15 requires pre_bar(this, x)
16 ensures post_bar(this, x, res)
17 { ... }
18
19 // encoding of class Z
20 field Z_floatval: float
21
22 method Z_foo(this: Ref, x: Ref, y: Ref, i: Int) returns (res: Int)
23 requires acc(x.X_f)
24 ensures res > 1 ∗ acc(x.X_f)
25 {
26 x.X_f := 2
27
28 var z : Ref
29 havoc z
30 Z_new(z)
31
32 z.Z_floatval := float_mult(float_pi, i)
33
34 // encoding of call to y.bar(y, x)
35 assert y != null
36 exhale pre_bar(y, x)
37 var tmp: Int // result variable
38 inhale post_bar(y, x, tmp)
39
40 res := x.X_f + 5
41 }
42
43 method Z_new(this: Ref)
44 requires true
45 ensures acc(this.X_f) ∗ this.X_f = 0

be verified even though some potentially useful information is not
given to the verifier (and the verifier, being conservative, always
assumes the worst case about anything unknown), it must still
be correct when taking this additional information into account.
However, if the lost information is vital to the correctness of a
program, such an encoding will be incomplete.

▶ The third pattern, the encoding of operations in terms of verification
conditions, is in this case done for the call to method bar: In
the encoding, there is no call; instead, there is an exhale of the
precondition of the called method, and subsequently an inhale of
the callee’s postcondition in the new state after the call. Essentially,
such an encoding directly instructs the verifier to check a sufficient
condition of the correctness of the call: The callee method will
be verified under the assumption that it gets the permissions
mentioned in its precondition, and all logical constraints in said
precondition hold in its initial state. Therefore, it is sufficient to
exhale the precondition at the call site, i.e., to assert that all logical
constraints in the precondition hold, to assert the caller owns all
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permissions mentioned in the precondition, and to subsequently
remove those permissions from the state of the caller (which implies
losing any information about heap locations to the caller retains
no permission). Subsequently, since the callee will be verified to
establish all logical constraints in its postcondition, and to give
all permissions mentioned in its postcondition to its callee, we
may inhale the postcondition at the call site. That is, we add the
permissions to the caller’s state, and assume all logical constraints
from its postcondition.
That is, the information that there is a call here is lost in the
encoding, but instead the encoding directly tells the verifier which
conditions it has to check to ensure that the encoded statement
would execute correctly.

2.2. Modular Verification of Python Code

In the previous section, we have explained the basics of modularly
verifying statically-typed languages like C or Java. When attempting to
verify programs written in a dynamic language like Python, this standard
“recipe” does not directly apply for two main reasons:

First, in such languages, there are often additional behaviors that simply
are not possible in typical statically-typed languages, and that may require
additional specifications and checks. Examples for this are the dynamic
declaration of classes and methods during the program execution, more
complex versions of basic statements like assignments, and a complex
model of objects and attribute lookups.

Second, a lot of information that is statically available in statically-typed
languages (such as, obviously, types) is simply not there in dynamic
languages, or at least it is more difficult to compute. This can make it more
difficult to reason about even standard language constructs correctly. The
primary example for this, which we already mentioned in the introduction
of this chapter, is to determine the target of a call: While languages like Java
can provide verifiers with a static type for the receiver expression for every
call, which determines either the called implementation (for statically-
bound calls) or a set of possible implementations (for dynamically-bound
calls, where the called implementation will either be the one in the static
receiver type, or an override of said implementation), no such information
is available in Python programs. This holds especially true if the goal is
to reason modularly, when it is not possible to, e.g., find all callers of a
method to determine all possible values of its arguments.

The goal of our verification approach for Python is not necessarily to
support the entire language with no limitations, but to make pragmatic
decisions in order to enable verification of typical user code (i.e., not
necessarily libraries that exploit all available language features to create
intuitive, DSL-like APIs, although we do also target libraries that do not
use such language features) with acceptable specification and verification
overhead. In order to reach this goal, we are prepared to restrict the
supported language subset where necessary, and enrich the specification
language and encoding in order to be able to express additional infor-
mation and perform additional checks specific to dynamic languages,
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while applying standard specification and reasoning techniques wherever
possible.

In this section, we will explain our approach to verifying Python code by
detailing different challenges posed by the language, and subsequently
describing our solutions. We will give all examples in Python 3, high-
lighted in blue, and encode examples in a simplified dialect of the Viper
IVL [159], highlighted in red, as above. Our focus is to highlight the points
that make Python verification different from static language verification,
not to explain the full encoding from Python to Viper; for aspects that
do not differ substantially between Python and static languages, we will
presuppose that there is some standard encoding (and use it in examples).
Similarly, we will highlight aspects of the Python language and the Viper
IVL when they are important to the discussion, but we will not provide a
thorough introduction to either language.

We present different parts of our verification technique grouped by the
challenges they address:

▶ In Sec. 2.2.1, we describe our solution to the challenge of dynamic
typing, i.e., our way of extracting sufficient type information to
make verification feasible, while still supporting standard Python
code patterns and keeping the required annotation overhead low.
Our approach is to use an optimistic static type system as a first
step, which ensures that the general structure of the program can
be statically extracted, but is intentionally unsound in several ways.
In particular, the system does not soundly check the definedness
of fields and variables, which is vital to support most real Python
code, and it allows users to locally opt out of static type checking
where necessary by using casts. We then supplement this type
system with sound checks in the verifier, which use the added
precision of the verifier (as well as, where necessary, additional
specifications) to soundly check variable and field definedness and
ensure that all casts will always succeed.

▶ Python’s use of structural subtyping can pose problems for verifica-
tion, since (as we will explain) structural subtyping allows clients
to pass objects with expected structure but arbitrary behavior to
any method call, which makes it difficult to precisely determine the
behavior of calls. In Sec. 2.2.2, we describe our solution to this prob-
lem: Like existing tools for static language verification, we instead
use a nominal type system, and perform standard checks for behav-
ioral subtyping (supplemented with some Python-specific checks).
However, to mitigate the effects of this decision on our ability to
verify existing code, we also support union types, which can often
mimic the intended behavior of structural typing. Additionally, to
make behavioral subtyping more permissive, we supplement it
with a version of (the existing notion of) predicate families, which
is designed to support standard Python coding patterns.

▶ In Sec. 2.2.3, we discuss the problems resulting from the fact
that declarations of modules, classes, and methods in Python are
executed as part of the program and potentially mixed with other
code, instead of being globally available from the start. In particular,
code may fail because it depends on classes or methods that are not
yet defined, and class or method declarations themselves may fail
if they refer to other elements that are not yet defined. We explain
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which properties need to be checked and show how we encode the
necessary checks.

▶ Sec. 2.2.4 discusses two sets of features we choose not to model:
First, dynamic code generation, which is generally not supported
by verification tools, and second, Python’s complex object model.
As for the latter, since precisely modeling Python’s attribute lookup
behavior would impact both verification performance as well as our
ability to perform checks modularly, we instead use a simplified
model of attribute lookups, and verify that code does not perform
any operations that would expose the actual, more complex object
model. We achieve the latter by preventing code from overrid-
ing certain built-in methods like __getattribute__ which implement
attribute lookups.

▶ Finally, in Sec. 2.2.5, we give an overview of other complex language
features in Python, and briefly detail how we support them, namely
exception handling with finally-blocks, concurrency, complex as-
signments, and the handling of default arguments.

2.2.1. Type Checking

2.2.1.1. Challenge

Consider the simple piece of Python code in Figure 2.5, which is artificial,
but serves to illustrate some of the fundamental problems with verifying
dynamically-typed programs.

1 def useArguments(x, y, z):
2 if z:
3 l = y.f1 ∗ 2
4 y.f2 = 78
5 if x.m1():
6 return l
7 return x.m2(y)

Figure 2.5.: Example of Python code
whose behavior (and correctness) depends
on the nature of the arguments it receives.

In a dynamic language like Python, where no static type checking is
performed at compile time, and where even constructs like modules,
classes, methods and constructors are all first class values that can simply
be referred to via some name at runtime, it is not at all obvious what this
method does when invoked without knowing the calling context.

For example, x and y could refer to modules, in which case f1, f2 would be
global variables in those modules, and m1 and m2 could be either top-level
methods or classes in said modules, if they exist at all. Alternatively, x
and y could be instances of some classes and f1 and f2 could be fields of
those classes, or even fields that exist only in these specific instances of
those classes, and m1 and m2 could be methods. As another alternative, x
could refer directly to a class, and m1 and m2 could refer to static methods,
or class methods, a kind of method specific to Python that implicitly takes
the class object itself as its first argument when invoked. Additionally,
the assignment to field f2 in line 4 can either modify the value stored in an
existing field or global variable, or it could create such a field or variable,
if there currently is none.
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As a result, a static verifier requires a lot of additional information to
modularly verify this method with respect to some specification. In
particular, in the context of a permission logic, it needs to prove:

▶ that the read values f1, m1, and m2 (whether they be fields, global
variables, classes, or methods) exist; if permissions are required to
read them, it also has to prove that these permissions are present

▶ that the assignment to f2 is allowed; that is:

• if f2 refers to a variable or field that already exists, the corre-
sponding write permissions (and there may be different kinds
of permissions for fields and global variables) are present,

• conversely, if they do not currently exist and “traditional” write
permissions therefore are not needed (since they are usually
required to modify heap locations that already exist, whereas
an assignment to a non-existing name in Python creates a new
variable or field and would therefore lead to new permissions
coming into existence), whether any permissions are needed
to create such a field or variable

▶ that the preconditions of the invocations of m1 and m2 hold, which
in turn requires knowing what those preconditions are and against
which arguments those preconditions must be evaluated (since, as
mentioned before, different kinds of calls have different implicit
arguments)

▶ that, on return, the specified postcondition of useArguments (if any)
holds; again, this requires knowing which postconditions may
be assumed to hold after each of the calls in the method, if any
permissions have come into existence as a result of these calls (e.g.
because a call was to a constructor and led to memory allocation)

▶ that the local variable l is defined if it is read, which will also
require information from the postconditions of invoked methods;
in particular, it requires knowing that x.m1() does not return True
unless z is also True.

Since, in modular verification, information from the method’s call site
is not taken into account when verifying a method, all this information
has to come from annotations of the method itself, that is, either its
specification (pre- and postcondition), or some other kind of annotation
that fulfills similar purposes. In a statically-typed language, most of this
information would be contained in or could be derived from the types of
the arguments, and the types and specifications of the methods and fields
that they refer to. Other information would not be needed, since some
options simply are not possible in typical statically-typed languages, like
passing a module/package as an argument, creating fields on the fly,
and conditionally defining local variables.

2.2.1.2. Tradeoff

There are two obvious ways of approaching this problem: One could
simply superimpose an ordinary static type system on top of a dynamic
language to recover the necessary information, or one could perform
all type checking as part of the verification process. Each approach has
different advantages and disadvantages.
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Option 1: Using a static type system before verification. It is possible
to impose a classical static type system over an existing dynamic language.
One could argue that, since static information about the program must be
provided in some form to make static verification possible, superimposing
a static type system is the obvious strategy: Static type systems come
with comparably low annotation overhead (typically a single type name
per parameter, method, field, and variable), and can be kept even lower
when some types can be inferred (typically locally inside methods).
Additionally, they are often decidable, i.e., they do not require user
interaction or complex prover support to check if a program is type
correct.

On the other hand, ordinary static type systems come with two main
drawbacks, limited expressiveness and imprecise reasoning.

1. Ordinary static type systems are somewhat coarse in the properties
they can express; for example, they will not be able to express
that a parameter has type X if some expression is true, and some
type Y otherwise (this would require dependent typing, which
in turn would make the type system undecidable). As another
example, they require any name in the program to have a single
type, meaning that they generally do not allow a method that could
take a parameter that is either a module, a class instance, or a class
(like variable y in the example). Additionally, they typically require
unambiguous declarations, meaning that it must be possible to
statically determine, for example, which class a name refers to; this
forbids, for example, conditional re-declarations like the one shown
in Figure 2.6 (left), which would otherwise be legal in Python.

2. In order to be decidable, ordinary type systems overapproximate
in their reasoning (even within the limited expressiveness they
provide), and will therefore reject some programs that would
not lead to type errors at runtime. For example, in the program
in Figure 2.6 (right), variable y will contain an integer if x is true and
an instance of class Y otherwise. The following code then multiplies
the result in the former case, and invokes a method of class Y in
the latter case, both of which would succeed at runtime (assuming
class Y has a method bar). However, traditional conservative type
systems (no matter if they infer types or require annotations) would
have to overapproximate the type of variable y to be one that can
contain either an integer, or an instance of Y; in Python 3, this
would require assigning it the type object, which is the supertype of
all other types. As a result, however, the type system can no longer
determine that the subsequent usages of y are both safe under the
conditions they happen. Similar limitations apply to other parts
of type checking; in particular, type systems that check that each
variable is initialized before its first read will generally require that
a read variable has been initialized on all paths leading to a read,
even infeasible ones. As a result, conservative static type systems
would also reject the initial assignment to y in Figure 2.6 (right),
since it reads variable a, for which typical type systems would
not be able to determine that it has definitely been initialized. For
typical Python programs, this is problematic, since they often do
not initialize all local variables, global variables, or object fields on
all paths.
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Figure 2.6.: Examples of code patterns
disallowed by typical static type systems.

1 class X:
2 def foo(self):
3 ...
4
5 if ∗:
6 class X:
7 def baz(self):
8 ...

1 if x:
2 a = 12
3 if x:
4 y = a
5 else:
6 y = Y()
7 if x:
8 z = 2 ∗ y
9 else:

10 z = y.bar()

Table 2.1.: Overview of our hybrid type checking approach. First, the type checker performs optimistic type checking based on standard
type annotations; then, the verifier soundly performs all remaining checks, using the information from both the type annotations and
possibly additional information from program specifications such as pre- and postconditions.

Type checker Verifier

Type information specification PEP 484 type annotations PEP 484 type annotations,
type information in specifications

Type checking Sound according to type system,
but allowing unchecked casts

Sound checks throughout,
casts checked for safety

Nullness check None Sound
Local variable definedness check Optimistic Sound
Field definedness Optimistic Sound
Global name definedness Optimistic Sound

Option 2: Precise reasoning inside the verifier. The second options is
to leave typing as dynamic as possible, perform type checking as part
of the verification process (e.g., by generating verification conditions
expressing type correctness and discharging them to an SMT solver or
theorem prover), and supply all necessary information in some kind
of specification language. This has the advantage of allowing users to
express arbitrarily precise specifications in principle, and to have the full
power of a verifier for reasoning about the program.

On the other hand, this approach typically requires much more complex
specifications than simply annotating variables and parameters with type
names (if the potential for superior expressiveness is to be exploited),
and it requires potentially more complex checks in the verifier.

The former point is more complex in practice than it might first appear,
especially when using an IVL: after all, before a verifier or prover can
check whether proof obligations are fulfilled, a frontend or verifier first
needs to be able to deduce what conditions need to be checked at all, and
it needs to do this in such a way that it can encode the resulting proof
obligations in first order logic if automation is desired. That is, a frontend
typically needs to be able to deduce some information about a program,
method or command statically (without consulting a powerful solver) in
order to even generate the proof obligation it can give to a solver. This is
an important part of what makes it challenging to develop automatable
verification techniques.

2.2.1.3. Our Approach to Type Checking

Based on our central design goal, which is to enable verification of typical

client Python code with manageable specification overhead, we decide
to use a hybrid type checking approach that builds on an ordinary type
system but also uses the verifier itself, as shown in Table 2.1. In particular,
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we use an optimistic type system to check any program that is to be
verified; such a type system, being decidable, can automatically establish
information about the basic structure of a program, but performs a
number of checks in an unsound way in order to allow more programs that
follow typical Python coding patterns to pass type checking. Subsequently,
we can then compute verification conditions based on the knowledge
of the program we get from the type system, and can use the verifier to
precisely check all properties that were not checked by the type system
in a sound way.

More concretely, we require all verified program to be type correct
according to an existing static type system for Python, introduced in
PEPs (Python Enhancement Proposals) 483 and 484 [181, 182], and
further extended in PEP 544 [134]. These PEPs define a system for type
annotations for Python 3 and the accompanying type system. Thus, while
static typing of course remains optional in Python, the system we use is
an official part of Python, and widely supported. The system uses type
annotations in the ordinary Python syntax and in the form of comments
both for methods and local variables. Type annotations (including casts)
are completely ignored at runtime; their usage comes with very low
runtime overhead (only that needed for parsing and evaluating, but not
checking, the type annotations that are part of the AST). The system also
defines a format for stub files that allow users to declare types for external
libraries.

The type system has support for both nominal and structural subtyping;
we will explain in the next section why we limit ourselves to nominal
subtyping only. The system supports generic classes and functions, with
upper bounds for type parameters; it supports Optional-types which
indicate that references may be None, it supports casts, and it supports
union types, which will also be discussed in the next section.

Crucially, this type system is intentionally unsound in three major ways:

1. It allows the use of type casts, which, in Python, are not checked at
runtime, and therefore only represent directives to the type checker
to make assumptions.

2. It optimistically checks the definedness of local and global variables,
as well as object fields. We have already seen an example of a
conditionally-defined local variable (variable a in Figure 2.6 (right)).
Similarly, in Python, fields may exist on some instances of a class
but not others, since they are not declared at the class level, but
come into existence when an assignment to the field is made. As
a result, it is possible that a field is only conditionally created in
the class constructor, is created in a setter method that has been
called on some instances but not others, or has been deleted on some
instance.

3. It allows calls and field accesses whose receivers have Optional-types
even when it cannot prove that the receiver will not be None.

As a result, the type system will reject some valid Python programs,
but will accept most typical Python code, provided that correct type
annotations are provided.

In particular, since the type system requires every variable to have a
single type, it is impossible, for example, to have a variable like y in the
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example above that might be either a module or a class or an integer.
Thus, programs like the one in Figure 2.6 (left) will no longer be allowed,
however, we argue that code patterns like these are not common in
practice, and would generally be considered hacky and bad style.

However, while the type system results in more limited expressiveness, we
can almost completely mitigate the drawback of imprecise reasoning by
delegating crucial checks to the verifier. That is, we make type information
from type annotations available to the verifier, and then use the verifier
to check the validity of all type casts in the program. Additionally, we
use the verifier to soundly and precisely check that all read variables and
fields are actually initialized. As a result, the program shown in Figure 2.6
(right) can be verified if casts are added, as shown in Figure 2.7: Unlike
a type system, the verifier is sufficiently precise to show that variable
a is definitely defined when it is read, and that the casts of variable y
to different types will always succeed; similarly, it will be able to verify
that receivers of calls and field accesses are not None with high precision.
Additionally, a frontend that encodes the program into an IVL can use
information from the type system to know that the call to bar has a
receiver of type Y. While this information from the type system is based
on unchecked information from a cast, the verifier can ensure that the
cast will succeed before using any assumptions about the receiver type of
the call.

Thus, since programmers can use casts at any point in the program,
they can essentially circumvent the limited precision of the used type
system completely, making the full power of the verifier available for
type checking. The frontend, however, still has static type information
available for every statement and name in the program, and can use it to
see which method a call refers to, and which proof obligations need to
be checked at which point in the program.

Figure 2.7.: Program from Figure 2.6
(right) with added casts.

1 if x:
2 a = 12
3 if x:
4 y = a
5 else:
6 y = Y()
7 if x:
8 z = 2 ∗ cast(int, y)
9 else:

10 z = cast(Y, y).bar()

Since we build on an existing type system that is fully described in the
aforementioned PEPs and already implemented in the mature Mypy
type checker [125], we will not describe the used static type system any
further. In the following subsections, we describe our encoding of type
information and type checks in the verifier: We will first describe how
we model type information and type checks, and subsequently, how we
soundly check the definedness of local variables and fields.

2.2.1.4. Encoding of Type Information and Checks

In Python 3, all values, including “primitive” values like integers, are
objects, and have the common supertype object (which we exploited in
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the example in Figure 2.7). As a result, any value can be assigned to a
variable of type object.

In the encoding, we therefore encode all values as references, and distin-
guish values of different types by explicitly adding type information. We
do the latter by declaring a function typeof which maps every reference to
its dynamic Python type (which we represent as a value of an uninter-
preted type PyType). Every known type, i.e., every built-in Python type
as well as every type resulting from a class declaration, corresponds to a
PyType value.

We then ensure that every newly created value is associated with type
information: in the example in Figure 2.7, we assume that the newly-
created instance of class Y has type Y by assuming typeof(r) == Y(), where r is
the reference variable containing the instance. In the other branch, we use
a function int_box that takes an integer value (in this case 2), maps it into
a reference value (more on that later), and declares in its postcondition
that the reference has type int.

The casts in the following conditional then assert the respective conditions
issubtype(typeof(y), int) and issubtype(typeof(y), Y), where issubtype is a function
which encodes the reflexive and transitive subtyping relation (we will
describe the modeling of this function later). Using the subtyping relation
here is important because the casts of course do not require y to have
exactly the types int or Y, but any subtype thereof.

In order to support such casts anywhere in the program, type information
must also be passed along between different parts of the program, e.g.,
across method boundaries. That is, for example, each method parameter x
of type T on the Python level is encoded as a reference-typed parameter in
the IVL with a corresponding precondition issubtype(typeof(x), T). Similarly,
for every permission assertion acc(x.f) in a precondition, postcondition or
loop invariant, the encoding adds a type assertion, so that the resulting
assertion on the IVL level is acc(x.f) ∗ issubtype(typeof(x.f), T), where T is the
type of field f. This is how type information from type annotations is
made available everywhere in the program.

Additionally, users may write specifications (e.g., pre- and postconditions)
that contain additional type information. For example, in the code example
in Figure 2.7, if the last four lines were moved to a separate method that
receives x and y as arguments, y’s type would have to be declared as object.
To be able to prove that the casts succeed, one would then need to add
a precondition describing more precise type information. That is, one
could write a precondition stating that if x is true, then y has type int, and
otherwise its type is Y; this can be expressed using the two implications
x ==> isinstance(int, y) and not x ==> isinstance(Y, y). This information, which is
more precise than type information that could be expressed using the
type system, can be easily encoded into a precondition on the IVL level
by translating Python’s isinstance expressions into issubtype constraints. The
verifier can then make use of this information to prove the casts correct.

The encoded type information is not only used to enable the checking
of casts, but can also be used in the encoding of statements (meaning
that some statements may have different proof obligations depending on
the type of the involved expressions), and is important for the modeling
of various built-in functions. For example, the aforementioned int_box
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function, which maps integer values to reference values, has an inverse
function int_unbox that extracts the integer value again. However, the
latter function is clearly not a total function from reference values to
integers, but is only partially defined, for references of type integer. Since
our encoding makes type information available, we can now explicitly
declare this in the precondition of the unboxing function, leading to the
two definitions shown in Figure 2.8.

Figure 2.8.: Boxing and unboxing func-
tions used to wrap integer values into
references; the unboxing function is par-
tial, and is only defined for integer-typed
references.

1 function int_box(prim: Int): Ref
2 ensures typeof(result) == int
3 ensures int_unbox(result) == prim
4
5 function int_unbox(box: Ref): Int
6 requires issubtype(typeof(box), int)

Note that this encoding means that all type checking performed by the
type system is essentially repeated on the verifier level. For example,
when calling any method, at the call site, the verifier will have to prove
that the supplied arguments actually have the required types, since this is
part of the called method’s precondition. To improve efficiency, one could
omit these checks, since they are already known to succeed from the
type system. However, we do not currently do this, for two reasons: First,
some specifications may not be well-formed unless all type information
is present (e.g. because they contain applications of partial functions, as
mentioned before). Second, re-doing all type checks means that we do
not rely on the correctness of the type checker, which enhances the trust
in our verification result.

The final piece of the puzzle is now the modeling of the subtype relation.
A crucial requirement of modeling subtyping in our setting is, since our
verification must be modular, that we must always assume that there may
be additional types that are currently unknown. Consider, for example, a
scenario with a known class X which has exactly one known subclass,
SubX. If a reference r is known to be of type X (meaning it is an instance of
X or any subtype of X), and it is known from elsewhere that r’s type is not
exactly X (for example because execution has entered a branch with the
condition type(r) is not X), it must not be possible to conclude that r has type
SubX; it may for example be an instance of some other class OtherSubX
that is currently now known.

As a result, the subtype relation we need to model is one between an
unbounded number of possible types, which is constrained by the typing
relations known to us from the (part of the) program we know.

As shown in Figure 2.9, we model the subtype relation issubtype with
the help of two additional relations, extends and isnotsubtype. We model
known types as constants, and use the extends function to model all direct
subtype relations between known types. Generic types are not encoded
as constants, but as functions. Encoding the subtype relation using the
extends-function then requires a universal quantifier.

Additional axioms which we will not show here are used to express that
all values representing different types are non-equal, that is, for example,
that the constant int is not equal to the constant X, which in turn is not
equal to list(int).
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1 type PyType
2
3 function issubtype(sub: PyType, super: PyType): Bool
4 function extends(sub: PyType, super: PyType): Bool
5 function isnotsubtype(sub: PyType, super: PyType): Bool
6
7 constant object: PyType
8 constant int: PyType
9 constant X: PyType

10 constant SubX: PyType
11 constant OtherSubX: PyType
12 function list(arg: PyType): PyType
13
14 axiom extends_relations {
15 extends(int, object) ∗
16 extends(X, object) ∗
17 extends(SubX, X) ∗
18 extends(OtherSubX, X) ∗
19 forall arg: PyType :: extends(list(arg), object)
20 } Figure 2.9.: Basic type system encoding.

We then use more axioms to define the issubtype relation. Of course, if one
class extends another, this implies that it is also a subtype of the other
class. Additionally, the subtype relation is reflexive and transitive. These
aspects are expressed by the first three axioms in Figure 2.10.

1 axiom extends_implies_subtype {
2 forall sub: PyType, sub2: PyType ::
3 { extends(sub, sub2) }
4 extends(sub, sub2) ==> issubtype(sub, sub2)
5 }
6
7 axiom issubtype_reflexivity {
8 forall t: PyType :: { issubtype(t, t) } issubtype(t, t)
9 }

10
11 axiom issubtype_transitivity {
12 forall sub: PyType, middle: PyType, super: PyType ::
13 { issubtype(sub, middle),issubtype(middle, super) }
14 issubtype(sub, middle) ∗ issubtype(middle, super) ==> issubtype(sub, super)
15 }
16
17 axiom issubtype_antisymmetric {
18 forall sub: PyType, super: PyType ::
19 { issubtype(sub, super) } { issubtype(super, sub) }
20 issubtype(sub, super) ∗ sub != super ==> !issubtype(super, sub)
21 }
22
23 axiom issubtype_exclusion {
24 forall sub: PyType, sub2: PyType, super: PyType ::
25 { extends(sub, super),extends(sub2, super) }
26 extends(sub, super) ∗ extends(sub2, super) ∗ sub != sub2 ==> isnotsubtype(sub, sub2)

∗ isnotsubtype(sub2, sub)
27 }
28
29 axiom issubtype_exclusion_propagation {
30 forall sub: PyType, middle: PyType, super: PyType ::
31 { issubtype(sub, middle),isnotsubtype(middle, super) }
32 issubtype(sub, middle) ∗ isnotsubtype(middle, super) ==> !issubtype(sub, super)
33 }

Figure 2.10.: Axioms defining the
issubtype relation. The expressions in curly
braces are triggers that SMT solvers use to
decide when to instantiate the quantifiers.

However, this information is not sufficient in practice: It is often critical
to know that one type is not a subtype of another. We add three axioms
to encode this fact, based on the following insights: First, the subtype
relation is antisymmetric, second, if two different classes 𝐴 and 𝐵 both
extend class 𝐶, then all subtypes of 𝐴 are not subtypes of any subtype of
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𝐵. Both are expressed in the last three axioms in Figure 2.10. Note that the
latter property holds only in type systems without multiple subtyping,
like the one we are modeling.

2.2.1.5. Encoding of Local Definedness Checks

As explained above, the type system we use performs optimistic checking
of the definedness of local variables, that is, it does not soundly ensure
that variables are necessarily defined when they are read. Since reading
an undefined variable leads to a runtime error, we need to perform this
check soundly in the verifier.

To accomplish this, we explicitly add information in the encoding that
models which names are currently defined. We do this as follows: Every
local variable name is mapped to an integer identifier; we will refer to the
integer identifier of name n as <n> from now on. We use an uninterpreted
function isDefined, shown in Figure 2.11, to check which names are defined.
When a local variable named n is assigned to, we assume isDefined(<n>)
right after the assignment.

Figure 2.11.: Functions used to model and
check the definedness of local variable
names.

1 function isDefined(n: Int): Bool
2
3 function checkDefined(n: Int, v: Ref): Ref
4 requires isDefined(n)
5 ensures result == v

A second function checkDefined shown in the same Figure is used to
check if read variables are defined. Every access of a variable x on the
Python level is encoded by the expression checkDefined(<x>, x’), where x’
is the reference-typed local variable on the IVL level that represents the
Python variable. Evaluating this expression requires first showing that
the precondition of checkDefined is fulfilled, i.e., that isDefined(<x>) actually
holds. If the verifier cannot prove that this is the case, this will lead to a
verification error. Otherwise, the value of this expression is simply the
value of the variable, as it should be.

Note that we do not support deleting local variables, since this is rarely
done in practice and virtually never necessary. Also note that, as a result
of the absence of deletions, performing the definedness-check for every

access of a variable could theoretically often be avoided, since variables
will never become un-defined once they come into existence; similarly, one
could often statically determine that local variables are unconditionally
defined, and therefore no check in the verifier is necessary at all. These
are possible optimizations that we currently do not perform.

The system we use for global variables is different and will be explained
in Sec. 2.2.3.

2.2.1.6. Encoding and Specification of Fields

The definedness of fields is a similar problem: Our static type system
checks optimistically that accessed fields may exist, which allows us to
support code that defines fields conditionally, like the fields f2 (which is
created if x is true) and f3 (which is created when set_f3 is called) in the
code snipped in Figure 2.12.
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1 class X:
2 def __init__(self, x: bool) −> None:
3 self.f1 = 1
4 if x:
5 self.f2 =2
6
7 def set_f3(self, v: int) −> None:
8 self.f3 = v
9

10 def get_field(self, x: bool) −> int:
11 if x:
12 return self.f2
13 return self.f3 Figure 2.12.: Dynamic creation of fields.

Thus, the verifier must perform sound checks that ensure that accessed
fields definitely exist. That is, when verifying get_field, we must show
that the current self object has the field f2 or f3 (depending on the value
of x). Since we want to use a permission logic, we also have to have
a permission for accessing said field. Note, however, that the latter
requirement subsumes the former: If permissions exist only for fields that
also exist, and accessing fields requires having the respective permission,
then the permission check is sufficient to ensure that accessed fields
actually exist. As a result, no additional specification is needed here: If a
permission exists only for fields that have actually been created, then the
problem is already solved.

What’s left to do now is to create a mechanism that soundly creates
permissions to fields when they are initially assigned. Clearly, it is sound
to give the code that first creates a field the permission to the newly-
created field. However, if a field already exists on an object, then writing to
that field must require that the method modifying the field already has the
field permission; it must not create another instance of the permission.

Our solution for this problem is as follows: First, we do not allow adding
fields to objects outside their classes. That is, an instance of a class may
have some subset of the fields that are assigned anywhere in the code
of the class or any of its superclasses, but no others. Second, creating a
field requires a special permission. That is, there is a different kind of
permission, which we denote by MayCreate(e, f) on the Python level, that
represents the right to create the (currently non-existing) field f on the
object e, but not the right to read said field (since it currently does not
exist). Assigning to this field will create it, and exchange the permission
MayCreate(e, f) for an ordinary field permission acc(e.f), which allows both
reading from and writing to the (now existing) field. Deleting the field
reverses the process, i.e., it consumes an ordinary permission acc(e.f) and
exchanges it for a permission MayCreate(e, f) that allows re-creating the
field.

Writing to a field now requires either having the MayCreate(e, f) permission,
in which case the write creates the field exchanges the create-permission
for an ordinary permission acc(e.f), or having the ordinary write permis-
sion acc(e.f), in which case the permission state does not change.

In the encoding, we encode field creation permissions using an unin-
terpreted predicate MayCreate(x: Ref, n: Int), where the first argument is the
receiver object and the second is the integer-encoded name of the field,
so that the permission MayCreate(e, f) on the Python level is represented
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2: In the actual encoding, we use an un-
constrained boolean function for this pur-
pose.

by the predicate MayCreate(e, <f>) on the IVL level. A write e1.f = e2 on the
Python level is then encoded as shown in Figure 2.13.

Figure 2.13.: Encoding of a field write. The
expression perm(MayCreate(e1, <f>)) re-
turns the amount of MayCreate-predicates
with the shown arguments held by the
current method, that is, the condition will
be true if the method holds such a permis-
sion.

1 if (perm(MayCreate(e1, <f>)) >= 1) {
2 exhale acc(MayCreate(e1, <f>))
3 inhale acc(e1.f)
4 }
5 e1.f := e2

That is, if a permission to create the field is currently held (which is only
the case if the field does not already exist), it is exchanged for an ordinary
permission, then the write is performed as usual. If neither permission is
held, then the write cannot be verified.

Class constructors implicitly get the permission to create all fields in the
class as their precondition; this is possible because the set of possible fields
for each class is bounded and statically known, as described above. The
constructors may then create some of the fields, and potentially pass on
the permission to create others back to their caller in their postcondition
using MayCreate-assertions.

Finally, we add a new specification construct that represents the right
to write to a field, whether it currently exists or not. This kind of
permission is useful for example for setter methods, like set_f3 in the
example in Figure 2.12: This method can be called on an object which
currently does not have an f3 field, in which case it requires the permission
MayCreate(self, f3), or it can be called on an object that already has a field
f3, in which case it requires permission acc(self.f3). We use a permission
called MayWrite(e, f), which represents the right to write to the field f on
instance e, i.e., it represents either MayCreate(e, f) if the field does not exist,
or acc(e.f) otherwise.

In the encoding, this new permission is represented differently in different
situations:

▶ When getting (i.e., inhaling) such a permission (e.g., in the pre-
condition of a method), the verifier has to assume that it either
has the permission to create or the ordinary field permission, but
does not know which. In this case, the permission is encoded as
nondet() ? MayCreate(e, f) : acc(e.f), where nondet() is a boolean expres-
sion whose value is unconstrained and unknown to the verifier (so
that it has to prove the method can be verified in both cases)2.

▶ When giving away (i.e., exhaling) such a permission (e.g. when calling
a method that requires it in its precondition), the method who has
to do so can choose whether it gives away a create-permission or an
ordinary one, since either will be sufficient for the called method
to succeed. Thus, we encode the permission using the expression
perm(MayCreate(e, <f>)) >= 1 ? MayCreate(e, <f>) : acc(e.f), i.e., if the caller
has the create-permission, it will give up that permission, otherwise
it will give up an ordinary permission.

2.2.1.7. Summary

The example in Figure 2.14 uses a combination of the aspects discussed
before, and is annotated with type annotations. Its IVL encoding (exclud-
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ing the declarations of type constants, functions, and axioms) is shown
in Figure 2.15.

1 class X:
2 def __init__(self, flag: bool) −> None:
3 # ensures acc(self.f1)
4 # ensures flag ==> acc(self.f2)
5 # ensures !flag ==> MayCreate(self, f2)
6 if flag:
7 x = 15
8 self.f1 = "initialized"
9 if flag:

10 self.f2 = x
11
12 def set_field(self, val: int) −> None:
13 # requires MayWrite(self, val)
14 # ensures acc(self.val) && self.val == val
15 self.f2 = val
16
17 def get_field(self) −> int:
18 # requires acc(self.val)
19 # ensures acc(self.val) && self.val == result
20 return self.f2
21
22
23 def do_stuff(args: Tuple[object...]) −> str:
24 # requires len(args) == 2
25 # requires args[0] ==> isinstance(str, args[1])
26 # requires not args[0] ==> isinstance(X, args[1])
27 if args[0]:
28 return cast(str, args[1])
29 return cast(X, args[1]).f1

Figure 2.14.: Example of a Python pro-
gram using type annotations, casts, and
specifications according to our model. The
constructor returns a field creation permis-
sion, and the setter requires a MayWrite-
permission. The precondition of do_stuff
contains additional type information out-
side the type system, which allows prov-
ing the casts in the method’s body correct.

2.2.2. Subtyping

The second major challenge in the static verification of Python is the
use of structural typing. The example in Figure 2.16 (left) illustrates the
problem.

The three classes A, B (which is a subclass of A), and C (which is declared
independently of both A and B) all offer a method foo. Method client
expects a single object as an argument, and calls method foo on it. We
will assume that client was written with the intention to receive instances
of either A, B, or C as arguments. However, in standard Python, with
dynamic and structural typing, client can be called with any object that
has a foo method without raising a type or attribute error.

Clearly, though, client is not correct for any possible argument that has a
foo method with a matching signature. Take, for example, class D, shown
in Figure 2.16 (right). Structurally, D is identical to A, but its behavior is
not: While the foo methods in A, B, and C can be called with the argument
2 without raising an error, doing so on an instance of D will result in
a division by zero. In other words, client is correct only if its argument
fulfills certain expectations about the behavior of its foo method. In a
verification setting, we say that client expects that its argument has a foo
method whose precondition is fulfilled by the argument 2.

Clearly, this fact must be represented in the signature or specification
of client. In languages that use nominal subtyping, a standard way of
solving this problem is to enforce behavioral subtyping [138], i.e., to enforce
that all methods in subtypes comply with the specifications of the
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Figure 2.15.: Partial IVL encoding of the
Python code in Figure 2.14. Casts are
checked using the partial function cast.
Type information from the type system is
encoded into pre- and postconditions. The
MayWrite-assertion in the precondition of
set_field is encoded using an inhale-exhale
assertion of the form [P, Q], which behaves
like assertion P when inhaled and like as-
sertion Q when exhaled.

1 function cast(t: PyType, r: Ref): Ref
2 requires issubtype(typeof(r), t)
3 { r }
4
5 method X___init__(self: Ref, flag: Ref)
6 requires issubtype(typeof(self), X)
7 requires issubtype(typeof(flag), bool)
8 ensures acc(self.f1) ∗ issubtype(typeof(self.f1), int)
9 ensures bool_unbox(flag) ==> acc(self.f2) ∗ issubtype(typeof(self.f2), str)

10 {
11 var x: Ref
12 if (bool_unbox(flag)){
13 x = int_box(15)
14 assume isDefined(<x>)
15 }
16 if (perm(MayCreate(self, <f1>) >= 1) {
17 inhale acc(self.f1)
18 }
19 self.f1 = str_box(<initialized>)
20 if (bool_unbox(flag)){
21 if (perm(MayCreate(self, <f2>) >= 1) {
22 inhale acc(self.f21)
23 }
24 self.f2 = isDefined(<x>, x)
25 }
26 }
27
28 method X_set_field(self: Ref, val: Ref)
29 requires issubtype(typeof(self), X)
30 requires issubtype(typeof(val), int)
31 requires [∗ ? (acc(self.val) ∗ issubtype(typeof(self.val), int)) : MayCreate(self, <val>),
32 perm(MayCreate(self, <val>)) >= 1 ?
33 MayCreate(self, <val>) :
34 (acc(self.val) ∗ issubtype(typeof(self.val), int))]
35 ensures acc(self.val) ∗ issubtype(typeof(self.val), int) ∗ self.val == val
36 {
37 if (perm(MayCreate(self, <val>) >= 1) {
38 inhale acc(self.val)
39 }
40 self.val = val
41 }
42
43 method X_get_field(self: Ref) returns (res: Ref)
44 requires issubtype(typeof(self), X)
45 requires acc(self.val) ∗ issubtype(typeof(self.val), int)
46 ensures issubtype(typeof(res), int)
47 ensures acc(self.val) ∗ issubtype(typeof(self.val), int) ∗ res == self.val
48 {
49 res := self.val
50 }
51
52 method do_stuff(args: Ref) returns (res: Ref)
53 requires issubtype(typeof(args), tuple(object)
54 requires tuple_len(args) == 2
55 requires tuple_get(args, 0) ==> issubtype(typeof(tuple_get(args, 0)), str)
56 requires tuple_get(args, 1) ==> issubtype(typeof(tuple_get(args, 1)), X)
57 ensures issubtype(typeof(res), str())
58 {
59 if (object___bool__(tuple_get(args, 0))) {
60 res := cast(str, tuple_get(args, 1))
61 goto end
62 }
63 var tmp: Ref
64 tmp := cast(X, tuple_get(args, 1))
65 res := tmp.f1
66 goto end
67 label end
68 }
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1 class A:
2 def foo(self, x: int) −> int:
3 return 4 // x
4
5 class B(A):
6 def foo(self, x: int) −> int:
7 return 3 // x
8
9 class C:

10 def foo(self, x: int) −> int:
11 return 2 // x
12
13 def client(a: A) −> int:
14 # expects A, B, or C
15 x = 2
16 return a.foo(x)

1 class D:
2 def foo(self, x: int) −> int:
3 return 5 // (x − 2)
4
5 client(D())

Figure 2.16.: Example of Python code us-
ing structural subtyping (left), and out-
side code that may break the existing code
(right).

[114]: Kassios et al. (2010), ‘Specification
and verification of closures’

supertype methods they override. In our example, assuming A.foo has the
precondition x != 0, this would mean enforcing that foo in its subclass B
(and all other subclasses) has the same or a weaker precondition, which
is the case here. Then, client could declare its argument type to be A, and
could be verified because of the knowledge that all possible arguments
have a foo method with a precondition that is weaker than x != 0, which is
definitely fulfilled by the argument 2. As a result, it would still be possible
to call client with instances of A and B, but no longer with instances of
C, since the latter is not explicitly declared to be a subclass of A and
therefore, in a nominal type system, not its subtype. Such an approach
would be incomplete, since passing instances of C will not result in an
error in our program, and should therefore be allowed.

When using structural subtyping instead, relying on behavioral subtyping
is infeasible altogether: Class D is a structural subtype of class A simply
by virtue of having the same structure, but clearly, one cannot demand
that D’s methods must fulfill the specification of class A, a class that
might be entirely unrelated and not even known to the implementer of
D. Thus, when using structural typing, behavioral information would
have to be specified independently of type information: In our example,
method client could (in addition to a type signature that enforces that its
argument has a method named foo) have a precondition stating that the
precondition of the foo method must be fulfilled by the value 2.

Such an approach is possible in practice and would provide maximum
flexibility (in fact, such an approach is often used to specify function
arguments in the preconditions of higher order functions) [114], but
it results in a large specification overhead and complex verification
conditions, which in turn affects verification performance.

We therefore propose using a compromise solution:

1. We use nominal subtyping instead of Python’s standard structural
typing, and additionally enforce behavioral subtyping. As de-
scribed above, this standard approach makes it easy to prove client
correct when annotating its argument with type A, but would, by
itself, come at the cost of disallowing calling client with instances of
C and therefore be incomplete.

2. To mitigate this incompleteness, we support union types. That is,
we allow annotating the parameter of client with type Union[A, C] to
state that any instance of (a subclass of) A or (a subclass of) C may
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be passed. The body of client is then verified under the assumption
that a may be an instance of A or of C.

3. Finally, we relax the requirements of behavioral subtyping, which,
when used naively, is problematic when used in the context of per-
mission logics (we will show why in an example later in this section),
by supporting predicate families [171] as specification constructs.

The result is a verification technique that (through the use of union types)
can accommodate many examples that make use of structural typing, like
the one shown in Figure 2.16 (left), but comes with a lower annotation
overhead and less complex verification conditions compared to a solution
that explicitly specifies the expected behavior of arguments.

Note, however, that union types are not a perfect replacement of (desired)
structural subtyping; in particular, they can be used only if a method (like
client in our example) knows all possible types it expects as arguments,
and can therefore list them explicitly in the union type. If the author of
client did not know about class C and therefore did not list is as a legal
argument type, it would not be possible to pass instances of C without
adapting the signature of client.

In the remainder of this section, we will explain each part of our solution
in more detail: We will first discuss the parts of our type system that deal
with subtyping and union types, and then describe how we integrate
union types into the type encoding in our verifier. Next, we describe how
we encode behavioral subtyping checks (which contain some Python-
specific elements that would not be needed in languages like Java), and
subsequently explain our design and encoding of predicate families
(which we also adapt to be best suited to support typical Python coding
patterns).

2.2.2.1. Nominal Type System

As mentioned before, for the initial optimistic static type checking, we
use the type system outlined in PEPs 483 and 484 [181, 182], which is a
nominal type system. There is an extension to this type system, defined in
PEP 544 [134], which adds the option to use structural typing; we support
only nominal type hints according to the former system, not structural
ones according to the latter.

PEPs 483 and 484 already contain support for union types; we adopt the
notation proposed in this PEP, where Union[A, B, C] denotes the union of
types A, B, and C; such a union can have any number of component types.
Type checking for union types is conservative: when a field read or a
method call is performed on a receiver whose type is a union type, the type
system ensures that the read or call is possible on all component types.
Similarly, the type system checks that method overrides in subtypes are
valid (in terms of their signatures); the example in Figure 2.17 illustrates
both valid and invalid overrides of method foo in class Y:

▶ The override in SubY1 is valid: It makes a parameter type more
general (contravariance), a return type more specific (covariance),
it does not change parameter names, and it adds the option to call
the method with three instead of one or two arguments, but does
not remove any option that exists in the superclass.
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1 class SuperX:
2 pass
3
4 class X(SuperX):
5 pass
6
7 class SubX(X):
8 pass
9

10 class Y:
11 def foo(self, x: X, s: str = "") −> X:
12 ...
13
14 class SubY1(Y):
15 def foo(self, x: SuperX, s: str = "", s2: str = "") −> SubX: # valid
16 ...
17
18 class SubY2(Y):
19 def foo(self, z: X, s: str = "") −> X: # invalid
20 ...
21
22 class SubY3(Y):
23 def foo(self, x: SubX, s: str = "") −> X: # invalid
24 ...
25
26 class SubY4(Y):
27 def foo(self, x: X, s: str = "") −> SuperX: # invalid
28 ...
29
30 class SubY5(Y):
31 def foo(self, x: X) −> X: # invalid
32 ...

Figure 2.17.: Example of valid and invalid
method overrides.

▶ The override in SubY2 is invalid, since it changes the name of the
parameter x to z, so that a call with a named argument y.foo(x=X())
would be invalid on the subclass.

▶ The override in SubY3 is invalid, since it makes the type of the
parameter x more precise, so that a call y.foo(X()) would be invalid
on the subclass.

▶ The override in SubY4 is invalid, since it makes the method’s return
type more general, so that code that calls the function and expects
an instance of X might get an object it does not expect when the call
is made on an instance of the subclass.

▶ The override in SubY5 is invalid, since it removes the option to
call the method with two arguments, so that a call with a named
argument y.foo(X(), "Hello") would be invalid on the subclass.

2.2.2.2. Union Type Support

Like for all other types, we represent type information for union types
in the encoded program. Union types are integrated into our existing
type encoding as follows: Each union type is (like every other generic
type) modeled using a function; the function takes the component
types as parameters. We then use two straightforward axioms to model
subtype relations between union types and other types. The code snippet
in Figure 2.18 shows the function declaration and the axiom for union
types with two components; if the verified programs uses union types
with different numbers of components, the required function declarations
and axioms can be generated on demand.



38 2. Modular Verification of Python Code

Figure 2.18.: Function and axioms defin-
ing subtyping for a union type with two
components.

1 function union_type_2(arg_1: PyType, arg_2: PyType): PyType
2
3 axiom union_subtype_2 {
4 forall arg_1: PyType, arg_2: PyType, X: PyType :: { issubtype(X, union_type_2(arg_1,

arg_2)) } issubtype(X, union_type_2(arg_1, arg_2)) == (issubtype(X, arg_1) ||
issubtype(X, arg_2))

5 }
6
7 axiom subtype_union_2 {
8 forall arg_1: PyType, arg_2: PyType, X: PyType :: { issubtype(union_type_2(arg_1,

arg_2), X) } issubtype(union_type_2(arg_1, arg_2), X) == (issubtype(arg_1, X) ∗
issubtype(arg_2, X))

9 }

The first axiom states that a type is a subtype of a union type if it is a
subtype of at least one of the components; the second states that a union
is a subtype of another type if all its component types are subtypes of
that other type. Using these axioms, the verifier can deduce, for example,
that a parameter of type Union[A, C] must either be an instance of A or of C
(or their subtypes).

Once this information is available to the verifier, we can use it to encode
calls and field accesses: The call a.foo(x) from the initial example, where a
has type Union[A, C], will be encoded as shown in Figure 2.19 (left).

Figure 2.19.: Encoding of a call to method
foo on a receiver of type Union[A,C] (left)
and Union[A,B], where A and C are unre-
lated types and B is a subtype of A.

1 if (issubtype(typeof(a), A)) {
2 A_foo(a, x)
3 } else {
4 C_foo(a, x)
5 }

1 if (issubtype(typeof(a), B)) {
2 B_foo(a, x)
3 } else {
4 A_foo(a, x)
5 }

That is, the encoding checks which component of the union the actual
receiver type is a subtype of, and then verifies it like a call to that type’s
version of the called method. Note that the call to C_foo will have a
precondition that ensures that the receiver actually has type C, which is
why the else-case can be left unguarded. For unions whose components
are subtypes of each other, our encoding always checks the more specific
types first; that is, for the type Union[A, B], where B is a subtype of A, the
encoding of a call to foo will be that shown in Figure 2.19 (right), so that
the case where the subclass method is invoked (which will have more
precise specifications) is always explicitly taken into account; if the cases
are checked in the reverse order, the else branch would be dead.

Similarly to method calls, a field access a.f on a receiver of type Union[A, C]
will be encoded as a conditional issubtype(typeof(a), A) ? a.A_f : a.C_f.

This way of precisely encoding calls and field accesses using type in-
formation results in precise verification of some corner cases like the
one shown in Figure 2.20. Here, the verifier knows that the call to foo is
performed only if a has type C, and therefore will verify the client only

against the specification of foo in C.

Figure 2.20.: Example using union types;
the call to foo in line 4 will only be executed
on receivers of type C.

1 def client(a: Union[A, C]) −> None:
2 if isinstance(A, a):
3 return
4 a.foo(x)
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2.2.2.3. Behavioral Subtyping Checks

The notion of behavioral subtyping [138] states that subtypes must adhere
to the specification of their supertypes. In our setting, this means that
when a subclass method overrides a superclass method, its precondition
must not get stronger, and its postcondition must not get weaker.

1 class X:
2 def bar(self, i: int) −> int:
3 # requires i > 5
4 # ensures result > 5
5 ...
6
7 class SubX1(X):
8 def bar(self, i: int) −> int: # valid
9 # requires i > 0

10 # ensures result > 10
11 ...
12
13 class SubX2(X):
14 def bar(self, i: int) −> int: # invalid
15 # requires i > 10
16 # ensures result > 5
17 ...
18
19 class SubX3(X):
20 def bar(self, i: int) −> int: # invalid
21 # requires i > 5
22 # ensures result > 0
23 ...

Figure 2.21.: Example of Python method
overrides that are either valid or invalid
with respect to behavioral subtyping.

Consider the example shown in Figure 2.21. A client performing a call
x.bar(6), where x has static type X, fulfills the precondition of X.bar and
may assume, from the postcondition of X.bar, that the returned result will
at least be 6. If, at runtime, x contains an instance of SubX1 instead, the
(now weaker) precondition of the actual receiver is still fulfilled, and the
(stronger) postcondition of the actual receiver still fulfills the assumption
the client makes about the return value, making this a valid override.

On the other hand, with a stronger precondition in SubX2, the caller may
unknowingly violate the (stronger) precondition of the actual receiver,
and with instances of SubX3, its assumption about the return value may
not be fulfilled by the (weaker) postcondition of the actual receiver,
making both overrides invalid.

1 class X:
2 def bar(self, i: int) −> int:
3 # requires P
4 # ensures Q
5 ...
6
7 class SubX(X):
8 def bar(self, i: int) −> int:
9 # requires P’

10 # ensures Q’
11 ...

1 method SubX_bar_override_check(self:
Ref, i: Ref) returns (res: Ref)

2 requires issubtype(typeof(self), SubX)
3 requires issubtype(typeof(i), int)
4 requires P
5 ensures Q
6 {
7 res := SubX_bar(self, i)
8 }

Figure 2.22.: Override in Python (left)
and generated behavioral subtyping check
(right). 𝑃, 𝑃′, 𝑄, and 𝑄′ represent arbi-
trary assertions. For the call to SubX_bar,
the verifier will check that its precondition
𝑃′ is fulfilled, and that its postcondition
𝑄′ is sufficient to establish 𝑄.

We check behavioral subtyping in the verifier by encoding a check that a
call to an overriding method fulfills the specification of the overridden
method. Note that, as an alternative, it would be possible to guarantee be-
havioral subtyping by using specification inheritance [59], which combines
a method’s declared specification with the specifications of the methods
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it overrides into an effective specification which, by construction, fulfills
behavioral subtyping; the method’s implementation is then verified
against this effective specification instead of the declared one. We choose
not to do this because we believe that, in practice, it makes verification
more difficult for programmers, who, while specifying a program and
debugging proofs, essentially have to mentally compute these effective
specifications to know what the current proof goal is. On the contrary,
checking behavioral subtyping in a verifier is simple and usually requires
no additional effort from programmers.

For the general case shown in Figure 2.22 on the left, we generate the
behavioral subtyping check shown on the right. This method verifies only
if the superclass precondition P is sufficient to establish (i.e., stronger than)
the subclass precondition, and the subclass postcondition is sufficient to
establish (i.e., stronger than) the supertype postcondition.

Once this check is in place, calls to dynamically-bound methods can now
always be assumed to fulfill the specification of the statically-referenced
method, and can be verified using that specification. This kind of encoding
is preferable to explicitly encoding such calls as explicit case splits
on the receiver type and calls to all possible overrides, since such an
encoding requires knowledge of all possible overrides and is therefore
not modular.

Figure 2.23.: Python code using class
methods.

1 class X:
2 def __init__(self, i: int) −> None:
3 # ensures acc(self.f) && self.f >= i
4 self.f = i
5
6 @classmethod
7 def construct(cls) −> X:
8 # ensures acc(result.f) && result.f >= 2
9 return cls(2)

10
11 class SubX1(X):
12 def __init__(self, i: int) −> None:
13 # ensures acc(self.f) && self.f == i
14 self.f = i
15
16 class SubX2(X):
17 def __init__(self, i: int) −> None:
18 # ensures acc(self.f)
19 self.f = 0
20
21 x = X.construct()
22 x_prime = X().construct()
23 x1 = SubX1.construct()
24 x2 = SubX2.construct()

One peculiarity of Python is that sometimes, behavioral subtyping is
required even for constructors, namely, when a class has a so-called class

method, as in the example in Figure 2.23. Class methods can be called on
classes or on class instances; crucially, both on (instances of) the class
they are defined in, and on (instances of) its subclasses. When invoked,
a class method implicitly gets the class object of its receiver as the first
argument. This class object (i.e., its constructor) can be called, resulting
in the creation of a new instance.

However, as a result, the verifier has to ensure that a class method in a
superclass also executes correctly and fulfills its specification when called
on a subclass, meaning that the constructor signature of the subclass
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must be compatible with that of the superclass (this is checked by the
type system) and that the specification of the constructor of the subclass
is compatible with that of the superclass.

In the example in Figure 2.23, the constructor of SubX1 has a specification
that is compatible with that of X (they have the same trivial precondition
and the subclass constructor has a stronger postcondition); however, the
constructor of SubX2 does not, since it does not ensure that the final value
of field f is at least the integer given as an argument. As a result, if SubX2
were admitted, construct would violate its postcondition when cls is SubX2,
and variable x2 at the end would have a field with a lower value than
promised by construct. To prevent cases like this, we perform behavioral
subtyping checks as shown below not just for ordinary methods, but also

for class constructors, if the class has some superclass that has at least
one class method (otherwise the check is not necessary).

2.2.2.4. Predicate Families: Design

In the context of permission logics, behavioral subtyping is not fulfilled
by many real programs with a naive treatment of specifications: The
requirement that preconditions of overriding methods must not be
stronger than those of the overridden methods is problematic if those
preconditions contain the permissions to read or modify heap locations,
since subclasses typically have more fields than superclasses. The example
in Figure 2.24 illustrates the problem.

1 class Socket:
2 def __init__(self, ip: str, ...) −> None:
3 # ensures acc(self.ip) && ...
4 # set up state
5 self.ip = ip
6 ...
7
8 def send(self, msg: Message) −> None
9 # requires acc(self.ip) && ...

10 # ensures acc(self.ip) && ...
11 ...
12
13 class BufferedSocket(Socket):
14 def __init__(self, ip: str, ...) −> None:
15 # ensures acc(self.ip) && ... && acc(self.send_buffer)
16 super().__init__(self, ip, ...)
17 self.send_buffer = []
18 ...
19
20 def send(self, msg: Message) −> None:
21 # requires acc(self.ip) && ... && acc(self.send_buffer)
22 # ensures acc(self.ip) && ... && acc(self.send_buffer)
23 if len(self.send_buffer) + 1 >= BUFFER_LEN:
24 super().send(self.concat(self.send_buffer, msg))
25 self.send_buffer = []
26 else:
27 self.send_buffer.append(msg)

Figure 2.24.: Example demonstrating the
problem of requiring behavioral subtyp-
ing in a permission logic: Overriding meth-
ods require more permissions than the
methods they override, making their pre-
conditions stronger.

In the example, we have a socket class representing a TCP/IP socket
which offers a send operation. The constructor sets up the state of the
socket, which will include some number of fields that store, for example,
the target IP address. The subclass, BufferedSocket, reuses the sending
functionality from its superclass, but sends messages in batches to
improve efficiency. As a result, it needs an additional field to store
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the buffer of messages that have not been sent yet. The send method
of this subclass now needs access to all the fields that the superclass
method needs to access, and it additionally needs to modify the buffer
field. In a permission logic, that means that its precondition contains
all permissions required by the superclass method and the permission
to the buffer field, making it stronger, which is not allowed by ordinary
behavioral subtyping.

However, cases like this one are clearly very common, and conceptually
(abstracting from the view of the permission logic), the subclass does

fulfill behavioral subtyping: In both classes, the send method requires
access to all class fields that are created by the respective constructor;
there are more such fields in the subclass, but the constructor also creates
more fields, so no dynamically-bound calls can actually ever run into
problems.

The established solution to this problem is the use of predicate families [171],
that is, abstract predicates that can be re-defined for every subclass in
a class hierarchy. In this case, we can declare an abstract notion of
having a socket that is initialized and running, and define what this
means for both classes. For an ordinary socket, this predicate would
contain the permissions (and possible value constraints) established by
its constructor; for the subclass, it additionally contains the permission to
the buffer-field (and possibly a constraint about the length of the contained
list). Then we can use this predicate in the specifications of the respective
constructors and send methods, resulting in the code in Figure 2.25.

Figure 2.25.: Example from Figure 2.24
using a predicate family running in the
specification.

1 class Socket:
2 def __init__(self, ip: str, ...) −> None:
3 # ensures self.running()
4 # set up state
5 self.ip = ip
6 ...
7
8 def send(self, msg: Message) −> None
9 # requires self.running()

10 # ensures self.running()
11 ...
12
13 predicate running(self):
14 acc(self.ip) ∗ ...
15
16 class BufferedSocket(Socket):
17 def __init__(self, ip: str, ...) −> None:
18 # ensures self.running()
19 super().__init__(self, ip, ...)
20 self.send_buffer = []
21 ...
22
23 def send(self, msg: Message) −> None:
24 # requires self.running()
25 # ensures self.running()
26 if len(self.send_buffer) + 1 >= BUFFER_LEN:
27 super().send(self.concat(self.send_buffer, msg))
28 self.send_buffer = []
29 else:
30 self.send_buffer.append(msg)
31
32 predicate running(self):
33 acc(self.ip) ∗ ... ∗ acc(self.send_buffer)

Now, the contracts for the send methods of both socket classes are
identical (on the abstract level where the different predicate definitions
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are ignored), so that behavioral subtyping is trivially fulfilled.

In practice, some notion of predicate families is almost always required
to allow verifying real code in languages with subclassing and behavioral
subtyping requirements. We will now explain the specific design and
implementation we have chosen for Python.

One central design choice is whether subclasses can completely re-define
the meaning of a predicate for itself, which is the case, for example, in
VeriFast [110], or if they can only add constraints (and permissions), which
is the case in Spec# [130]. In the example in Figure 2.25, the notation we
used suggests that running is completely re-defined by the subclass, but
actually, it would have been sufficient to state that the subclass adds the
permission to self.send_buffer to the predicate. The main advantage of the
former option is obviously flexibility; the advantage of the latter is that
predicates can be unfolded without exact type knowledge.

1 def print_socket_info(s: Socket) −> None:
2 # requires s.running()
3 # ensures s.running()
4 unfold s.running()
5 print(s.ip)
6 ...
7 fold s.running()

Figure 2.26.: Example which can be veri-
fied if predicate families are defined in an
additive way, but not if their definitions
for different types are completely indepen-
dent.

As an example, consider the piece of code in Figure 2.26. If predicate
families are defined in an additive way, then this method that takes a
Socket object (but does not know if it gets an instance of the exact Socket
class, the BufferedSocket class, or some other subclass) and requires the
running predicate can still unfold the predicate and know that it gets at least

the permissions and constraints in the version of running defined in the
Socket class, but may get additional constraints and permissions added
by subclasses. In this case, just the permissions to access the ordinary
Socket fields are sufficient for the implementation, and this method can be
verified with additive predicate families. With completely independent
predicate family members, the running predicate cannot be unfolded in this
setting (or one could get no information from such an unfolding, since one
may have an instance of the predicate of some currently unknown subclass
that contains no permissions at all). While this problem can be worked
around when getter-functions are used to access object information (the
unfolding can then happen inside the dynamically-bound getter functions,
where more precise type information about the receiver is available),
typical Python code often reads and modifies fields directly outside
their classes, and does not use getter and setter functions as often as, for
example, Java code. We therefore use an additive definition of predicate
families, and (unlike in Figure 2.25) subclasses only have to state the
added permissions and constraints when re-defining predicates; the
permissions and constraint from superclasses are implicitly added.

Predicate families do not come for free; their introduction creates two new
potential sources of unsoundness and incompleteness. We will explain
these cases (and our approach for preventing them) now.

The example in Figure 2.27 consists of a Cell class that contains a single
integer field, for which it has a setter, as well as another integer field that
is only set in the constructor; its subclass adds another field that shadows
the first field, and overrides the setter accordingly. The inv predicate
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Figure 2.27.: Example illustrating poten-
tial soundness and modularity issues
of verification using predicate families.
Preconditions using placeholders, like
x.inv(_), represent instances of the pred-
icate with arbitrary arguments; the no-
tation requires x.inv(?i) also represents an
instance with an arbitrary argument, and
binds that argument to variable i.

1 class Cell:
2 def __init__(self, i: int) −> None:
3 # ensures self.inv(i)
4 self.f = 0
5 self.i = i
6 fold self.inv(i)
7
8 def set(self, i: int) −> None:
9 # requires self.inv(_)

10 # ensures self.inv(i)
11 unfold self.inv(_)
12 self.i = i
13 fold self.inv(i)
14
15 predicate inv(self, i: int):
16 acc(self.f) ∗ acc(self.i) ∗ self.i == i
17
18 class SubCell(Cell):
19 def __init__(self, i: int) −> None:
20 # ensures self.inv(i)
21 self.f = 0
22 self.i = i
23 self.i2 = i
24 fold self.inv(i)
25
26 def set(self, i: int) −> None:
27 # requires self.inv(_)
28 # ensures self.inv(i)
29 unfold self.inv(_)
30 self.i = i
31 self.i2 = i
32 fold self.inv(i)
33
34 predicate inv(self, i: int):
35 acc(self.i2) ∗ self.i2 == i ∗ self.f >= 0
36
37 def outside_set_1(x: Cell, i: int) −> None
38 # requires x.inv(_)
39 # ensures x.inv(i)
40 unfold x.inv(_)
41 self.i = i
42 fold x.inv(i)
43
44 def outside_set_2(x: Cell) −> None
45 # requires x.inv(?i)
46 # ensures x.inv(i)
47 unfold x.inv(_)
48 self.f = −2
49 fold x.inv(i)

family contains the permissions for all fields in the class, and constrains
the fields. Two methods defined outside any of the classes attempt to
also implement the functionality of setters for each of the fields in the
original class. This code showcases three potential problems:

1. Notice that the set method in both classes does exactly what it
needs to satisfy its postcondition self.inv(i); in the superclass, that
means modifying one field, in the subclass, two fields. Both setters
are correct. Imagine, however, a scenario where SubCell does not

override the setter, and therefore simply inherits it: The resulting
code would be incorrect, since set, when called on an instance of
SubCell, must also modify field i2 to satisfy its postcondition with its
updated predicate definition. In other words, folding the self.inv(i)
predicate at the end of the setter should be possible if the receiver
has exactly type Cell, but not if the setter is inherited and self has type
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SubCell. However, clearly, it would be wrong to reject the definition
of set in Cell, since it does exactly what is required of it in that class;
the solution is to prevent inheriting this method in SubCell.
In general, any method that folds a predicate family member needs
to be re-verified when it is inherited in a class that adds to the
predicate definition, since the inherited code may not fulfill the
added constraints.

2. There is a similar problem in outside_set_1: Its implementation is
correct for instances of Cell but not SubCell because it does not
modify the i2 field, which would be required to re-establish the
predicate self.inv(i). However, this method is defined outside both
classes and is not inherited, and it may be defined and verified in a
context where SubCell is not even known. However, adding class
SubCell should not change the correctness of outside_set_2, which
does not depend on it; that would be non-modular. Therefore, this
method must be rejected even when SubCell is not known: Its body
simply does not fulfill its specification for all possible subclasses of
Cell and their definitions of inv; it only does so for instances of Cell
itself.
In general, it should not be possible to create a new predicate (here,
self.inv(i) for a new i, instead of the previous self.inv(_) with some
potentially different argument) without knowing the exact type of
the receiver, since this may always require establishing conditions
that are currently unknown.

3. outside_set_2 is similar again: it is correct for instances of Cell but
not SubCell, because its modification of the f field is forbidden by
the added conjunct self.f >= 0 in SubCell’s definition of inv. The same
modularity concerns apply as for the previous method, so we must
either forbid outside_set_2 or the definition of inv. In this case, we
opt for the latter, and forbid subclass predicate additions from
constraining heap locations without also adding some amount of
permission to those same locations themselves; in other words, each
subclass’ addition to a predicate family must be self-framing. In this
case, this requires either splitting the permission to self.f into two
parts and adding one part only in the predicate for SubCell, in which
case outside_set_2 no longer gets a full permission without knowing
its argument has type SubCell, and therefore cannot modify the field.
Or class SubCell is simply forbidden from adding the constraint.
In general, self-framing predicate additions ensure that outside
code can maintain predicate instances (in this case, self.inv(i) for
some specific i) when making modifications without knowing
the precise type of the receiver: Since all additional potentially
unknown constraints frame themselves, they cannot be violated by
any legal change that is allowed with only supertype permissions.

2.2.2.5. Predicate Family Encoding

We encode all members of a family that is defined on the Python level
(where we interpret each predicate defined as part of a class as a family)
into a single predicate on the IVL level. That is, the definition of the
predicate family pred in Figure 2.28 on the left is encoded as the predicate
on the right in the IVL, where pred_unknown is an abstract predicate, whose
purpose we will explain soon.
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Figure 2.28.: Generic predicate family
definition in Python (left) and its IVL-
encoding (right).

1 class X:
2 def foo(self, ...):
3 ...
4
5 def bar(self, ...):
6 ...
7
8 predicate pred(self, arg: Y):
9 P

10
11 class SubX1(X):
12 # foo is inherited
13
14 def bar(self, ...): # override
15 ...
16
17 predicate pred(self, arg: Y):
18 P1
19
20 class SubX2(X):
21 predicate pred(self, arg: Y):
22 P2
23
24 class SubSubX1(SubX1):
25 predicate pred(self, arg: Y):
26 P1’

1 predicate pred(self: Ref, arg: Ref) {
2 issubtype(typeof(self), X) ∗ issubtype(

typeof(arg), Y) ∗
3 (
4 issubtype(typeof(self), X) ==>
5 P
6 ) ∗
7 (
8 issubtype(typeof(self), SubX1) ==>
9 P1

10 ) ∗
11 (
12 issubtype(typeof(self), SubX2) ==>
13 P2
14 ) ∗
15 (
16 issubtype(typeof(self), SubSubX1)

==>
17 P1’
18 ) ∗
19 (
20 (
21 typeof(self) != X ∗ typeof(self) !=

SubX1 ∗
22 typeof(self) != SubX2 ∗ typeof(self)

!= SubSubX1
23 ) ==>
24 pred_unknown(self, arg)
25 }

Unfolding the predicate family on the Python level then simply corre-
sponds to unfolding this single predicate on the IVL level, and the verifier
will gain information and permissions from the predicate according to
its knowledge of the type of the receiver. For example, when unfolding
the above predicate, if the verifier knows that under certain conditions
the receiver is definitely a subtype of SubX1, it can conclude that it now
has the permissions from (and knows the information contained in) P
and P1, but does not know for certain that it also has P1’.

The definition of this predicate is obviously not modular, since its defini-
tion will be extended when a new class is known, and thus, code that
unfolds the predicate will get more information after an unfold, and have
to prove more to be able to fold a predicate. However, we have carefully
designed our encoding in such a way that the additional knowledge, or
the additional proof obligations resulting from an extended predicate,
never change the verification result for existing code. That is, while the
encoding itself is technically non-modular, the verification process still
is. We will first explain the proof obligations we generate (based on
the Python code example in Figure 2.28 (left)), and subsequently justify
why these proof obligations are sound and modular in the sense just
described.

Figure 2.29.: Verification of methods us-
ing precise type information (left), and
re-verification of inherited methods using
new type information (right).

1 method X_foo(self: Ref, ...)
2 requires ...
3 ensures ...
4 {
5 assume typeof(self) == X
6 ...
7 }

1 method SubX1_foo_inherit_check(self:
Ref, ...)

2 requires ...
3 ensures ...
4 {
5 assume typeof(self) == SubX1
6 ...
7 }

First, methods defined in a class are verified under the assumption that
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the type of the receiver is exactly the type of the class the method is defined
in, as shown in Figure 2.29 (left). Second, methods that are inherited are
re-verified, now with the knowledge that the receiver type is exactly the
type of the class that inherits the method, as shown in Figure 2.29 (right).
Essentially, we treat inherited methods as if they were re-defined in the
class that inherits them. Third, method calls on a super()-receiver (that is,
statically-bound calls to a superclass method) are inlined at the call site.

Fourth, as mentioned above, when methods are overridden, the overrid-
ing method is verified like any method definition, and the behavioral
subtyping check is generated as shown before in Figure 2.22 (right).

As a result of these four principles, all methods are now verified w.r.t.
the precise type of each possible receiver they can ever be called on:
All cases are checked with the most precise information available about
the receiver types, making verification both sound and as complete as
possible with respect to receiver types.

Regarding the modularity of handling predicate families whose receiver
is not the current self-object, we make two choices: First, we ensure that no
new predicate can ever be folded without knowing the precise type of the
receiver (preventing the issue shown above in outside_set_1), by using an
abstract pred_unknown shown in Figure 2.28 (right). If the verifier cannot
prove that the receiver of the predicate to be folded is a direct instance
of a known class, it must prove that the method has an instance of this
predicate, which it can never do. When the exact type is known, folding
the new predicate family instance is sound, because it is exactly known
which conditions must be fulfilled. Note, however, that it would not be
sound to just replace the abstract predicate with the expression false: This
would have the same effect when folding a predicate family, but when
unfolding one, one would gain the knowledge that the receiver has a
known type, which in general is not desired and would be unsound.

Second, we ensure that modifications of the contents of a predicate
cannot break constraints defined in currently unknown subclasses (the
issue shown above in outside_set_2) by encoding a proof obligation that
all family additions (i.e., in this case, P, P1, P2, and P1’ are individually
self-framing. Since all such potentially existing but currently unknown
constraints frame themselves, it is ensured that they cannot be broken by
any modification.

2.2.3. Global Statements and Declarations

As part of its dynamic nature, Python handles declarations (for example
of classes and methods) differently from most statically-typed languages:
In Python, declarations of such constructs are ordinary statements which,
when executed, evaluate the definition of a class or method, and bind it
to a name in the current namespace. That is, these declarations are part of
a global sequential program; they are executed at a point in time and in
a given state, and they can succeed or fail in that state. Moreover, classes
and functions can in principle be re-defined, and declarations of all kinds
can be mixed with any other statements, including statements performing
actual computations, as part of the global top-level program. Similarly,
module imports are also statements that are part of this program; their
effects depend on the current state, and importing modules not only adds



48 2. Modular Verification of Python Code

declarations to the scope, but also executes other top-level statements in
the imported module.

For verification, this poses the following challenges:

▶ To support real code, it must be possible to not only verify code
written in methods, but also code that is written as top-level
statements in a module.

▶ Verifying the top-level code requires proving that it only (transi-
tively) invokes methods and (transitively) refers to classes that are
already declared in the current state.

▶ Since declarations of methods and classes are also statements that
can refer to other declarations (e.g. a class declaration can refer
to another class as its superclass), it is also required to prove that
declarations will successfully execute in the current state.

▶ All previously mentioned points require modeling which global
names are defined (in different name spaces) in the current state.

▶ They also require modeling the effects of imports statements, which
cause the execution of all top-level statements in the imported mod-
ule; this is challenging because Python’s module import mechanism
is inherently non-modular.

In this section, we will explain our approach to addressing these chal-
lenges.

2.2.3.1. Top-Level Computation

The behavior of top-level statements in Python is inherently non-modular.
The piece of code in Figure 2.30 illustrates this: In this example, executing
module A has a different outcome than executing module B.

Figure 2.30.: Code consisting of two mod-
ules, module A on the left and module B
on the right.

1 a = 2
2 import B
3 assert a == 7
4 a += 3

1 from A import a
2 assert a == 2
3 a += 5

If module A is executed, it will assign the value 2 to variable a, then it
will load module B, which will in turn execute its top-level statements.
B’s first statement, however, says to import module A. Since A is already
in the process of being executed, this statement will not re-execute the
statements in module A, but will only import the (already existing)
variable a into module B. Since a’s current value is 2, the subsequent
assertion will succeed, and the next statement will add 5 to a’s value,
setting it to 7. Then, the execution of A’s top level statements continues
after the import; its assertion will also succeed, and it will then add 3 to
a.

If module B is executed, the behavior is different. B’s first statement
says to import module A, which, as before, leads to the execution of the
top-level statements in A. The first statement sets the value of a to 2. The
subsequent import of B does nothing, since B is already being executed,
and its namespace is currently empty, so nothing can be imported. Then,
the assertion in A is executed, which now fails, since a’s value is still 2,
and not 7, as the assertion demands.
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This example illustrates that the order in which statements are executed
is different depending on the starting point, and as a result, modules can
be correct when executed from one starting point, but incorrect when
executed from another. Since any module is, in principle, a valid starting
point for a program execution, the top-level statements have to be verified
separately for any such starting point.

Thus, by default, when tasked to verify a given Python module, we verify
the top level statements as if they were executed from that starting point.
For this purpose, we create a special method in the IVL encoding that
contains the top-level statements. For most statement types, the encoding
from Python to the IVL is identical no matter if the statement is located in
a method or on the top-level of a module; however, there are differences,
which we will discuss now.

2.2.3.2. Global Variables

Global variables differ from local variables, since they can be read and
modified by arbitrary methods.

For verification, we differentiate between two types of global variables:
mutable variables and constants. While Python has no built-in concept of
a constant, obviously the concept of a constant is still useful for many
programs in practice, and they will simply contain top-level global
variables that are set once and never modified. We heuristically designate
any global variable that has a name written in capital letters, and has
a primitive type, to be a constant, and enforce that it is only written to
once. All other global variables are treated as mutable variables.

The main distinction between the two types of global variables is that
methods will require permissions to access (read or modify) mutable
variables, whereas any method can read (but never modify) any constant
in the program. On the IVL level, we encode constants as global functions
that return the value of the constant; mutable variables are encoded as
functions that return a reference that has a value field, which contains the
actual value of the variable.

1 MY_CONSTANT = 34
2
3 my_var = 42
4
5 def modify():
6 # requires acc(my_var)
7 # ensures acc(my_var)
8 global my_var
9 my_var += MY_CONSTANT

Figure 2.31.: Program using a global con-
stant (in line 1) and a mutable global vari-
able (line 3); to access the latter, methods
require a permission.

As with local variables, we have to ensure that global variables are
defined when they are read. For mutable variables, this problem can be
solved by requiring the respective permission (the same solution as for
fields), as shown in Figure 2.31. For constants, we have to ensure that
they are already defined at the point where they are used. We use the
same mechanism for this as we use for any other declarations, which we
will describe in the following subsection.
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2.2.3.3. Declarations

As explained above, top-level statements can refer to declarations that
come only later in the program. Figure 2.32 (left) shows a simple example
where a class is instantiated before it is declared. When executed, a
program like this would abort with a NameError.

Figure 2.32.: Example code that refers to
a class before it is defined.

1 a = A()
2
3 class A:
4 pass

1 class B(A):
2 pass
3
4 class A:
5 pass

Similarly, however, other declarations can refer to classes or methods that
are not yet defined. The example in Figure 2.32 (right) shows a class B
that tries to subclass A before A is declared. Like the first program, this
would result in an error when executed.

Figure 2.33.: A method whose definition

requires a class to be defined (left), and
one whose execution (but not definition)
requires another method to be defined.

1 def foo(a: A):
2 ...
3
4 class A:
5 pass

1 def foo(...):
2 bar()
3
4 foo(...)
5
6 def bar(...):
7 ...

A similar error will be produced by the program in Figure 2.33 (left),
where method foo annotated its parameter a with type A before that type
is defined. For methods, however, it is important to make a distinction
between their definition and their execution. For example, the program
in Figure 2.33 (right) contains a method foo whose body will execute
method bar. bar is defined after foo, but this by itself is no problem:
When foo is defined, only its signature (i.e., type annotations on its
parameters and its return value, as well as all expressions that are used
as default values for its parameters) is evaluated, meaning that only the
dependencies of its signature must already be defined. In this example,
the definition of foo would be executed without an error.

However, after that, foo is executed at a point when bar has not yet been
defined. As a result, the execution of foo will fail at this point. If the
top-level call to foo was moved after the definition of bar, this program
would execute without an error.

To verify that the execution of a program does not result in an attempt to
reference a class, method or variable that has not yet been defined, we
perform the following steps:

▶ As for local variables, we explicitly track the set of global names
that are currently defined. Unlike for local variables, on the global
level, we track this information for any kind of name that could be
referenced by other code, i.e., for variables, methods, and classes.
For this purpose, we use, for every module, a set module_names
of integers that represent the names currently defined in that
module. Whenever a name n is defined, we generate the statement
module_names := module_names union Set(single(<n>)), which adds said
name to the set, where<n> represents the integer-encoding of name
n, as before. The function single maps integers to the uninterpreted
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type Name; we will explain the purpose of this function when
discussing imports.

▶ We compute the set of (transitive) dependencies of each top-level
statements. For methods, we distinguish between the dependen-
cies of the definition and the dependencies of the execution, as
explained before. Where necessary, we overapproximate, so that
this computation can be performed statically on the AST without
the help of an SMT solver.

▶ As part of the encoding of any global statement, we encode a proof
obligation stating that the dependencies must already be defined.
For example, if a statement refers to a name n, we add the assertion
assert <n> in module_names.

2.2.3.4. Imports

The final part of the encoding is the encoding of imports.

First, as we explained above, an import statement executes the top-level
code of an imported module, unless said module has been executed before.
We model this by adding a boolean flag module_defined for every module
in the program that represents whether the module has been imported
yet. When encountering an import statement for a given module with
global statement S, we then generate the code shown in Figure 2.34 on
the IVL level.

1 if (!module_defined) {
2 module_defined := true
3 // encoding of S
4 ...
5 }

Figure 2.34.: Encoding of an import of a
module whose body contains the top-level
statement 𝑆.

Second, an import adds names to the current modules namespace. Those
names will either be ordinary names, like in the case from A import a in the
example above, which only adds the name a to the current module. Or
they will be combined names consisting of the name of the imported
module and the names of the imported elements in the module. As an
example, a statement import A in a state where module A contains a name
a would instead make the name A.a available in the current module, as
well as all other names currently defined in A, concatenated to the name
of the module.

We also support this fact in our modeling of available names in a module:
As shown before, we use a function call single(<n>) to represent the simple
name n; now, we use a function call combine(single(<n1>), single(<n2>)) to
represent the combined name n1.n2.

When updating a module named n1, in the encoding, we declare a new set
of names new_names that we constrain to contain all names that combine

the name of the module and a name currently in the imported module.
We then add the names in this new set to the set of names in the current
module, as shown in Figure 2.35.



52 2. Modular Verification of Python Code

Figure 2.35.: Import encoding that adds
imported names to the set of currently
known names, where module_names_2 is
the set of names that exist in the imported
module.

1 var new_names : Set[Name]
2 assume forall name: Name :: { (combine(single(<n1>), name)) in new_names }
3 (name in module_names_2) == (combine(single(<n1>), name)) in new_names)
4 module_names := module_names union new_names

2.2.4. Limitations: Dynamic Object Model and Runtime

Code Generation

Python has some dynamic aspects that we have so far glossed over, which
we choose not to support at all.

The first one is unsurprising: Python allows generating code at runtime
(using the eval method and others); this is not supported by any existing
static verifiers, and generally excluded. Instead of supporting this case,
we prove that no such functions are called in verified code.

The second central limitation is that we choose not to model Python’s
object model and internal calling procedures precisely. As an example, we
have so far treated a field read e.f as if it was an atomic operation that (like
in Java or C++) directly returns the value of a fixed location in memory,
namely, a location that is part of the object e (or, if it is a static field,
its class). However, in Python, such a field read conceptually involves
several method invocations that can perform arbitrary computations and
modify the state. The simple Java-like field read semantics is simply the
high-level outcome of the default behavior of such methods.

More precisely, a field read (or, more precisely, an attribute lookup) e.f in
Python has the following steps (simplified because there are a number of
special cases):

1. e is evaluated to some value v
2. __getattribute__ is called on v, with the argument "f".

The default implementation of __getattribute__ in the object class will
first look for the key "f" in the object’s own attribute dictionary
(which can be accessed from outside as v.__dict__) and, if that fails,
in the object’s class’ attribute dictionary. If it finds an entry, it will
return it, otherwise, it will raise an AttributeError.
However, __getattribute__ can be overridden in classes, leading to
arbitrary different behavior.

3. If the call to __getattribute__ resulted in an AttributeError, the __getattr__
method is invoked on the object, again with argument "f". This
method is not implemented by default, and is intended to be defined
by programmers to define computable attributes dynamically.

4. If result of step one is a descriptor object, that is, one that implements
a __get__ method, and if it was retrieved from the __dict__ of the
object’s class, then the __get__ method is called and the result is
returned; otherwise, the result of the previous steps is returned
directly.

This process (which, as mentioned, is still a simplified version of the
actual process) is obviously quite complex for one of the most common
and basic operations that can be performed in the language. In addition,
since it can be customized in different ways by defining or re-defining
__getattribute__ or__getattr__, it basically allows programmers to completely
re-implement the behavior of a field write or read.
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Attribute lookups are not the only basic language features that can
be completely re-defined by programmers: Other so-called “magic”
methods are used to implement other basic language operations (such as
the __new__ method which usually handles object creation), and classes
themselves are instances of metaclasses that define these basic operations.
Programmers can define custom metaclasses that redefine the behavior
of many such basic language operations, and classes that are instances of
these custom metaclasses will subsequently behave accordingly.

During verification, if all language operations are modeled exactly, one
needs precise information about the behavior of all such methods for any
given object used by the code; otherwise it will be impossible to prove
even basic code properties. Note that this is a case where behavioral
subtyping does not help in practice: One could give a specification to
the standard implementations of all such magic methods, and then
demand that all subclasses (or submetaclasses) that override them also
stick to these specifications. However, in practice, the specifications of the
standard implementations would either precisely express the standard
behavior, in which case overrides would basically be forbidden from
making any meaningful changes and the additional flexibility would
be useless. Or the standard specifications would be relatively weak, in
which case overrides would have more freedom to implement custom
behavior, but in cases where only the (weak) standard specifications
are known, verification would be virtually impossible because of the
lack of information about many basic language operations. Note that all
these decisions also affect specifications, since permissions are usually
specified per field, so if the mechanisms that define how fields and field
lookups work are more dynamic, permission specifications would have
to be adapted accordingly.

While we do not claim that it would be impossible to define a specification
and verification mechanism that models, for example, attribute lookups
precisely and is precise enough to verify real code, we do believe that this
would come at the cost of significantly more complex specifications in
many standard cases, and would almost certainly also affect verification
performance due to the need to model many additional layers of indi-
rection. Since our goal is to be able to verify user code, and features like
metaclasses that redefine basic object functions are typically only used
in libraries, we therefore choose not to model these features precisely,
and instead model the simpler default behavior directly. In addition, we
ensure that verified code does not re-define any of these basic features, by
checking (syntactically) that metaclasses are not used and magic methods
responsible for basic object operations are not overridden.

We do, however, allow defining or overriding some magic methods that
do not modify fundamental language aspects: For example, we allow
overloading of arithmetic operators (which can be done, for example,
by implementing methods like __add__ and __mul__, which implement
the addition and multiplication operators, respectively), and we allow
defining length and boolean properties of objects by implementing the
__len__ and __bool__ functions; the former is called on an object if an
object is passed to the built-in len function, and the latter is called when a
non-boolean object is used where a boolean is expected, for example, as
the condition in a loop.
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In addition, we build support for some parts of the standard library that
internally use language features like the complex attribute lookup directly
into the verifier. As an example, the property decorator can be used to
annotate getter and setter functions, and makes them accessible through
field read and write operations (the implementation of this decorator
internally makes use of descriptors, mentioned above). An example is
shown in Figure 2.36.

Figure 2.36.: Example of code that uses
the property decorator.

1 class MyClass:
2 def __init__(self):
3 self._field = 0
4
5 @property
6 def field(self) −> int:
7 print("getter called")
8 return self._field
9

10 @field.setter
11 def field(self, val: int) −> None:
12 print("setter called")
13 if val >= 0:
14 self._field = val
15
16 myclass = MyClass()
17 myclass.field # prints "getter called", returns 0
18 myclass.field = 5 # prints "setter called"
19 myclass.field # prints "getter called", returns 5
20 myclass.field = −5 # prints "setter called"
21 myclass.field # prints "getter called", returns 5

We directly implement a treatment of such property functions in the
verifier that does not model the internals involving descriptor objects,
but treats a read from the field field like a call to the field method in the
class, and handles writes to the field analogously.

2.2.5. Other Complex Language Features

Python is a comparatively rich and complex language and offers some
other language features that offer interesting verification challenges
(some of which are unrelated to its dynamic nature). While we will not
go in detail about these features, we will briefly list some interesting
aspects here.

2.2.5.1. Complex Assignments

Python allows for complex assignments, whose left hand side can contain,
for example, nested tuples and starred expressions. As an example, the
statement d, (g, h), ∗e, z = l, where l is a list, will assign the first element of l
to variable d and the last element of l to z; it will take the second element of
l, ensure that it is a container (e.g. a tuple or a list) containing exactly two
elements, and assign those to variables g and h. Any remaining elements
of l will be assigned as a tuple to variable e. If l does not have at least three
elements, or if its second element is not a container containing exactly
two elements, the assignment will fail.

A verifier has to model this behavior precisely and prove that all con-
ditions under which the assignment can fail will not occur at runtime.
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Moreover, assignments of this form can not only occur as individual state-
ments, but several other statements also have assignment-like behavior.
For example, for loops, which assign the element of the current iteration
to a loop variable, can also have an expression containing nested tuples
and starred expressions like the one in our example instead of a single
variable.

In most cases, correctly modeling this kind of language feature is not
difficult in principle, but the number of statements in the language and
their subtlety still make it non-trivial to model them correctly in all
cases. We support arbitrarily complex assignments both as top-level
statements and wherever they occur in other supported parts of the
Python language by applying a general encoding for assignments that
models their behavior precisely in all such places.

2.2.5.2. Default Arguments

Python methods can have default arguments, as shown in line 15 of
Figure 2.17. In Python, these arguments can contain arbitrary expressions,
and those expressions are evaluated once when a method is defined. That
is, those expressions must be shown to evaluate without raising an error
when verifying the global top-level code (see the previous subsection),
and later invocations of methods with default arguments must take into
account that their state may have been modified in the meantime. We
solve this problem by treating default values as if they were explicitly
assigned to global variables.

2.2.5.3. Exception Handling

Like many other object-oriented languages, Python offers a mechanism
for raising exceptions, and for catching them using try−except−finally-blocks.
While not fundamentally different than the equivalent in, for exam-
ple, Java, verifying code that uses exception handling is still difficult.
Figure 2.37 illustrates the challenge.

1 def exception_example(x: bool) −> int:
2 try:
3 try:
4 other_method()
5 if x:
6 return 1
7 except MyException:
8 ...
9 finally:

10 ...
11 ...
12 except MyOtherException:
13 ...
14 finally:
15 ...
16 return 0

Figure 2.37.: Example demonstrating com-
plex control flow as a result of try-except-
finally-blocks.

Nested try−except−finally blocks give rise to a large number of possible paths
through the method. As an example, if the call to other_method returns
with an exception of type MyException, the code will jump to the handler in
line 8, then to the finally-block in line 10, then continue execution in line 11,
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and (barring other exceptions being raised) execute the other finally-block
in line 15, and then return in line 16. If, on the other hand, the raised
exception is of type MyOtherException, execution will directly jump to line
10, then skip line 11 and jump to the handler in line 13, subsequently go to
the finally-block in line 15 and return in line 16 as before. If no exception is
raised and the return-statement in line 6 is executed, the code will execute
both finally-blocks but skip everything else; if no exception is thrown and
x is false, then both finally-blocks are executed, but with line 11 inbetween
and line 16 afterwards. Similarly complex behavior can be seen when
using break statements in loops inside (potentially nested) try-blocks.

Modeling these options correctly, in particular, the fact that at the end of a
finally-block the execution can jump to many different places depending on
whether there is still an unhandled exception or the execution is returning,
is challenging in practice. We solve it by storing and maintaining data that
marks the kind of exit out of a try-block that is currently performed, and
branching depending on this data at the end of a finally-block. We will not
describe our encoding in detail here, but it has been reverse-engineered
from our implementation and described by Rubbens [184] in his Master’s
thesis, where he also compares it to other possible encodings.

2.2.5.4. Concurrency

Finally, since we aim to support concurrent Python programs, we have to
correctly model the forking and joining of threads, and thread interactions
through locks. As stated before, the permission system we use ensures
that verified code does not contain any data races. In such a system,
thread interactions can be modeled as follows [132]:

▶ When forking a new thread that is to execute some method m, the
forking thread has to exhale m’s precondition (conceptually giving
the permissions in said precondition to the new thread).

▶ Conversely, when joining a thread that has executed some method
m, the joining thread may inhale m’s postcondition. However, to
prevent duplicating permissions in the postcondition, if a thread is
joined multiple times, either only one join must result in an inhale
of the postcondition, or each join must give the joining thread only
a fraction of the permissions in the postcondition.

▶ Locks are associated with lock invariants that contain permissions to
the heap locations protected by the lock, as well as conditions that
must always be fulfilled when the lock is not held by any thread.
When acquiring a lock, the lock invariant may be inhaled.

▶ Conversely, when releasing a lock (and when sharing it for the first
time), the lock invariant must be exhaled.

We implement this model and add specifications and proof obligations
specific to Python’s design of threads and locks (both of which are objects
in Python). For example, we need to ensure that no thread object is started
twice (which would lead to a runtime error) and do this by creating a
permission MayStart which comes into existence when a thread-object
is created, and is consumed when it is actually forked (which happens
when the start-method is called on the thread-object). Similarly, we create
a permission ThreadPost that represents the right to inhale a thread’s
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postcondition when joining it. Additionally, since the creation of a thread-
object (which determines which method the thread will execute and with
which arguments) and the invocation of the start-method may happen
at different points in the program, we add specification constructs that
allow passing this information between different methods, as shown in
Figure 2.38.

1 def foo(c: Cell, i: int) −> None:
2 # requires acc(c.val)
3 # ensures acc(c.val)
4 # ensures c.val == old(c.val) + i
5 ...
6
7
8 def create_thread(c: Cell):
9 t = Thread(target=foo, args=(c,1))

10 fork_thread(t, c)
11
12
13 def fork_thread(t: Thread, c: Cell):
14 # requires MayStart(t)
15 # requires getMethod(t) = foo || getMethod(t) = bar
16 # requires getArg(t, 0) = c
17 c.val = 15
18 t.start(foo)
19 join_thread(t, c)
20
21
22 def join_thread(t: Thread, c: Cell)
23 # requires ThreadPost(t)
24 # requires getMethod(t) = foo || getMethod(t) = bar
25 # requires getArg(t, 0) = c
26 # requires getOld(t, arg(0).val) = 15
27 t.join(foo, bar)

Figure 2.38.: Three methods that create,
fork, and join a new thread. The informa-
tion which method the new thread will ex-
ecute is passed between methods through
custom specification constructs; the rights
to start the thread and to assume its post-
condition when joining it are modeled as
permissions. We provide custom versions
of the start and join methods that can be
passed several options for the method the
thread is executing. When the thread is
forked, we generate a proof obligation that
the thread’s actual method (which can be
specified using the getMethod function) is
among the enumerated methods, and con-
ditionally exhale the precondition of all
options. When joining the thread, (some
fraction of) its postcondition may be in-
haled if the joining thread owns (some frac-
tion of) the ThreadPost permission. The
function getArg can be used to specify
the arguments with which the thread’s
method was executed. Similarly, the func-
tion getOld expresses information about
the program state at the point when the
thread was forked (in this case, that the val
field of its first argument had the value 15);
this is useful in case the thread’s method’s
postcondition relates its result or resulting
state to its initial state via old-expressions.

As for locks, we require users to subclass Python’s built-in Lock-method
and define a predicate invariant in said subclass, as shown in Figure 2.39.
That is, client code must work with subclasses of Lock (so that it is statically
known, from the type of the lock, which invariant to in- or exhale) and
are not allowed to use instances of the supertype Lock directly.

1 class CellLock(Lock[Cell]):
2
3 predicate invariant(self, c: Cell):
4 return Acc(c.value) ∗ c.value > 0
5
6 def client(cl: CellLock)

Figure 2.39.: Declaration of lock invariants
in a subclass of the built-in Lock-class.

2.3. Specification of Advanced Properties

Our goal is to be able to prove security properties of software systems.
As explained in Chapter 1, this often requires proving a number of
different kinds of properties on the code level. In this section, we explain
the specification constructs we provide to achieve this goal, with one
exception: We will explain our concept for non-interference specifications
in the following two chapters.
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2.3.1. Crash Freedom

The most basic property needed to ensure a system’s availability is to
prove that programs do not crash. We prove this property by default, that
is, proof obligations for crash freedom are generated even if programmers
provide no specification whatsoever.

We use different mechanisms to prevent different kinds of crashes, some
of which we have already mentioned:

▶ Type errors and name errors are ruled out by the respective proof
obligations in the Viper encoding (guided by hints from the external,
untrusted, type checker) that ensure type correctness as well as the
definedness of all referenced names, both local and global. This
part includes a check that receivers of method calls or field accesses
are never None.

▶ We use permissions to ensure that fields can only be accessed if they
actually exist. In addition, we use predicates to bundle permissions,
as is standard in permission logics.

▶ For operations on built-in types, we prove by default that they do
not fail. For example, we generate proof obligations that ensure
that code does not divide by zero, that it does not access lists out
of bounds, and that it does not look up values in dictionaries for
keys that do not exist.

▶ We allow user code to raise exceptions only if this is explicitly stated
in the specification. For this purpose, we use explicit exceptional

postconditions, denoted by the exsures keyword, that denote that
a method may terminate with a specific kind of exception, and
provides an assertion that describes the program state in this case.
If a method does not have an exsures clause in its postcondition,
this is interpreted as exsures False, so we prove by default that all
exceptions that may be raised inside the method are also caught
inside the method. Figure 2.40 shows an example.

Figure 2.40.: Without requiring any specifi-
cation to express this explicitly, we always
prove that a method does not abort with
an error from, for example, accessing a list
out of bounds. Additionally, we prove that
no method raises an exception unless it
explicitly states that it may using an excep-
tional postcondition, like in this case: We
then prove that if the exception is raised,
the exceptional postcondition holds.

1 def find_entry(l: List[Entry], id: int) −> Entry:
2 # requires acc(l) && forall e in l: acc(e.id)
3 # ensures acc(l) && forall e in l: acc(e.id)
4 # ensures result in l && result.id = id
5 # exsures NotFoundException e: acc(l) && forall e in l: acc(e.id)
6 # exsures NotFoundException e: forall e in l: e.id != id
7 ...

These checks are standard in existing automated verification tools, with
the exception of the checks in the first two points, which, as we explained
in the previous section, are part of our concept for verifying a dynamic
language.

2.3.2. Progress

The second property that is required to ensure system availability is
progress, i.e., programs must not get stuck. Often, ensuring progress
is equated with proving termination, i.e., all loops in the program must
terminate after a finite number of iterations, and the number of recursive
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calls must similarly be bounded; in concurrent programs, it may also
involve proving other properties like the absence of deadlocks.

However, termination is too strong a property for programs that are
intended to potentially run forever, like for example servers: the desired
property here is finite blocking, i.e., no thread in the program will get
stuck at a specific program point forever. To achieve this, we implement
a verification technique by Boström and Müller [39]. This technique
uses obligations as its main specification construct. Obligations, like
permissions, are held by the current method, and can be passed around
between methods. As the name suggests, holding an obligation obliges a
thread to fulfill the obligation within a finite number of steps.

For example, methods can have a termination obligation in their pre-
condition, which obliges the method to terminate. Termination is also
relevant for thread interactions: A method may only join another thread
if that thread, when forked, was given an obligation to terminate; other-
wise, the joining thread could block forever waiting for the other thread
to terminate. Similarly, when a thread acquires a lock, it also acquires
an obligation to release the lock again within a finite amount of steps;
Figure 2.41 shows an example that illustrates this.

1 def consumer_thread(l: CellLock) −> None:
2 while True:
3 l.acquire()
4 print(l.cell.value)
5 l.release()
6
7 def producer_thread(l: CellLock) −> None:
8 while True:
9 l.acquire()

10 new_val = compute()
11 l.cell.val = new_val
12 l.release()
13
14 def compute() −> int:
15 # requires MustTerminate
16 ...

Figure 2.41.: Example of a concurrent pro-
gram consisting of a producer thread and
a consumer thread that communicate via a
cell-object protected by a lock. Our system
for proving finite blocking ensures that
every thread that acquires a lock will re-
lease it again in a finite amount of time, by
giving it a release-obligation when acquir-
ing the lock. This obligation can only be
fulfilled by releasing the same lock again.
Any operations invoked before releasing
the lock (like, here, the compute-method)
must be proven to terminate, otherwise
their invocation is not allowed.

The verification mechanism proposed by Boström and Müller [39] pro-
vides a system that ensures that all obligations will eventually be fulfilled
(which also involves showing that deadlocks cannot occur, since that is
obviously a possible cause of infinite blocking). It was adapted for use in
Python verification as part of a Master’s thesis by Astrauskas [11], who
also designed the encoding of obligations into the Viper IVL. For details
about this encoding or the exact design of the obligation specifications in
Python, we refer the reader to this thesis.

While proofs of termination and absence of deadlocks are standard and
supported in many existing tools, support for showing finite blocking is
non-standard and goes beyond what typical verifiers currently offer.

2.3.3. Functional Properties

As explained, proving a security property of a system sometimes requires
describing and verifying the functional behavior of its components, either
as an auxiliary proof obligation to prove other properties, or to prove
the integrity of a system by proving that important invariants can never
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be violated. As already stated, Nagini primarily uses pre- and postcon-
ditions to express functional behavior. To ensure that specifications are
sufficiently expressive, we support a number of mechanisms to specify
desired behavior:

▶ Assertions can contain quantifiers, which are important for example
to express properties of data structures of statically unbounded
size. As an example, a method finding the least element in a list or
set may use a universal quantifier to specify that all elements in
said collection are greater than or equal to the returned result, and
that the returned result is contained in the collection.

▶ Programmers can define pure functions and use them in specifi-
cations. In particular, those functions can be recursive; recursive
functions are often a useful way to express properties of recursive
data structures, whereas quantifiers are generally useful to express
properties of flat data structures like Python’s (array-like) lists.

▶ We provide a number of built-in data types to be used in specifica-
tions. In particular, it offers support for pure sequences, sets, and
multisets, which can be used as ghost state and used in specifica-
tions.

▶ In addition to the built-in types, programmers can define custom
data types, particularly ADTs, to model custom concepts that can
be referred to in specifications.

This set of specification constructs and data types constitutes the state of
the art in most automated verification tools. Figure 2.42 shows a program
that uses some of these specification constructs to model the desired
behavior.

Figure 2.42.: Example program that ma-
nipulates stateful Message-objects and
marshalls them into a bytestring format.
An ADT is used to abstractly represent
messages in specifications, and two pure
functions are used to map both Message-
objects and bytestrings to abstract mes-
sages. The permissions of a message ob-
ject and all constraints that determine a
valid message are encapsulated into the
predicate state.

1 ADT msg = identifier(int) | key(str) | hash(msg) | encrypt(msg, str) | pair(msg, msg)
2
3 pure
4 def parse(b: bytes) −> msg:
5 ...
6
7 class Message:
8 ...
9

10 predicate state(self):
11 ...
12
13 pure
14 def abstract(self) −> msg:
15 # requires self.state()
16 ...
17
18 def marshall(self) −> bytes:
19 # requires self.state()
20 # ensures self.state()
21 # ensures parse(result) = self.abstract()
22 ...

2.3.4. I/O Behavior

Finally, in order to specify the interactions of a system’s component with
its environment, which is often required to prove security properties of
the entire system, we support a system for input-output-specifications.
We build on a specification and verification technique proposed by
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Penninckx et al. [172], which allows specifying I/O behavior in the form
of petri nets.

i = read_int()

write_int(i)

noop()

i >
 0

i <= 0

Figure 2.43.: Example of a simple I/O
specification.

Figure 2.43 shows an example: In the initial state, a token is in the initial
place. Performing an I/O operation requires having a token in a place
from which such an operation is possible, and will move the token to the
output place of the operation. In the example, the token is initially in the
left place, from which only a read_int operation can be performed. After
performing such an operation, reading some value i, the program may
now perform a write_int with the argument i if the read i is strictly positive,
otherwise, it may only perform a noop. After that, the program may start
from the beginning by reading an integer again.

Specifying I/O behavior in this way allows for very expressive specifi-
cations and allows for modular verification. Going beyond the existing
system by Penninckx et al., we combine the verification of I/O behavior
with the system for ensuring finite blocking described above: Tokens can
be designated to be obligations, meaning that the program is forced to
make progress in the petri net by moving all its tokens after finite amounts
of time. For example, when the token in the petri net in Figure 2.43 is de-
clared to be an obligation, then a program must continually keep reading
and writing integers; it may never cease doing so by, for example, running
into an infinite loop or calling a non-terminating method between send
and receive operations (see the example in Figure 2.44). The system
for verifying this property was again developed by Astrauskas and is
described in his thesis [11]. While I/O verification based on petri nets
can easily be integrated into any separation logic based verifier, and is
supported, for example, in VeriFast [110], our system is the only one that
allows proving progress in the context of this specification approach.

Crucially, the I/O specification mechanism we use is compatible with
the one used by Sprenger et al. [207] in their Igloo framework, which
allows soundly combining proofs about systems consisting of several
components at an abstract level with proofs about the I/O behavior of
individual components into a sound proof about the overall system and
its implementations. That is, through the use of this I/O verification
technique, our proofs about Python programs can be integrated into
proofs about the systems they are a part of in a seamless manner.
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Figure 2.44.: Textual specification of the
petri net shown in Figure 2.43, where rep-
etition is defined using corecursion. Since
we prove that the program makes progress
inside the petri net, we only allow this pro-
gram if method wait promises to terminate.

1 io_operation print_positives(t):
2 exists i, t2 :: read_int(t, i, t2) ∗
3 i > 0 ==> (exists t3 :: write_int(t2, i, t3) ∗ print_positives(t3)) ∗
4 i <= 0 ==> (exists t3 :: noop(t2, t3) ∗ print_positives(t3))
5
6 def keep_printing_postives():
7 # requires print_positives(?t)
8 while True:
9 # invariant print_positives(?t)

10
11 # unfold print_positives(t)
12 i = os.read()
13 if i > 0:
14 print(i)
15 wait()
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2.3.5. Extensions

Our specification approach has been extended to support abstract read

permissions [102], which allow for more expressive (and often simpler)
specification of permission amounts than standard fractional permissions,
in a Bachelor thesis by Schmid [193]. Additionally, Weber, in his Master’s
thesis [224], extended our specification and verification approach with a
means to verify closures and higher-order functions.

2.4. Soundness

In this section, we will discuss possible ways of proving the soundness
of (parts of) our verification approach. Since, currently, no such proof
exists, it is of course possible that our technique is unsound in some
cases; even though our goal has been to design a sound verification
technique, we may, for example, have overlooked a language feature
which violates an assumption we made when designing our technique (or,
in fact, newer versions of Python might add such language features even
if our assumption was initially correct). In addition, even if the technique
is sound as designed, implementation errors may result in unsound
behavior in practice, and so could incorrect (assumed) specifications
for built-in types. In fact, our implementation makes one such unsound
assumption deliberately, since it assumes that each object is equal to
itself according to built-in equality methods. This assumption is vital
for completeness, but is actually violated by the special floating point
value NaN (like in other languages), which is not equal to itself. As
long as no formal soundness proof exists, one could use alternative
ways of increasing the confidence in the correctness of our technique,
e.g., by testing assumed specifications or by using fuzzing techniques
similar to those used for compilers [232]. In the remainer of this section,
however, we will elaborate on the ways a formal soundness proof could
be attempted.

First, it is important to note that we incorporate a number of existing
verification techniques for which formal soundness proofs (or less formal
but detailed soundness arguments) already exist. Examples of this are
implicit dynamic frames [199] and concurrent separation logic [216],
predicate families [171], as well as the verification techniques for I/O
properties [172] and finite blocking [40] we build on. Of course, those
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soundness proofs are generally carried out with respect to a minimal
programming language much simpler than the one we are dealing with,
so that it is not guaranteed that the soundness proof carries over to
our setting, or that the combination of these techniques is necessarily
sound (in fact, in the next chapter, we will discuss an instance of such
a combination potentially being unsound). Additionally, most of these
techniques are defined in terms of Hoare logics, separation logics, or
weakest precondition calculi, and our adaptation of them into an IVL
encoding might have introduced errors.

In principle, we could choose to transfer these existing proofs to our
new language and setting, either by completely re-doing the proofs
in the new setting (reusing the proof structure), or by attempting to
prove that an existing soundness result carries over from the original
language and setting to ours. However, when dealing with mainstream
languages of the complexity of Python, any such attempt would likely be
a major undertaking. To the best of our knowledge, there is currently no
general approach that would allow the re-use of soundness results in new
settings, and as a result, most existing verification tools that integrate
different existing techniques do not prove their implementations (e.g.,
IVL encodings) of these techniques sound, or only do so for a minimal
core of their language [219]. This is certainly not satisfactory, but it is
probably not surprising, since even defining the formal semantics of an
expressive assertion language for a mainstream programming language
(without actually proving a specific verification technique correct) is
currently a major undertaking [123].

However, we do believe it would be possible to prove the soundness of
different aspects of the verification technique presented in this chapter.
The simplest way of doing so, we believe, would be to build on an existing
logic or weakest-precondition calculus for Python, and show that the
proof obligations imposed by our technique entail those of said logic or
calculus, as has been done in the past for an encoding of Java bytecode
into the Boogie IVL [124]. However, to the best of our knowledge, no such
logic or calculus currently exists for Python.

Thus, the best basis for such a proof that we are aware of is small-step
semantics for Python 3 defined by Politz et al. [178]. Building on this
semantics, and either an axiomatic semantics or an operational semantics
of the used subset of the Viper IVL, one would have to define a coupling
invariant that relates the states of encoded Viper programs to the Python
states they represent. The definition of such a coupling invariant would
be simple for some aspects of the encoding, e.g., the contents of local and
global variables. Other seemingly simple aspects might be surprisingly
non-trivial, depending on the proof structure one aims for. For example,
as we explained in Sec. 2.2.1.5, if a local variable is defined in a Python
state, this is modeled in the Viper encoding by assuming the truth value
of a boolean function for a specific input. That is, if this function is known
to be true for a given input, the variable is definitely defined, if the
variable may not be defined, then the function’s value is unknown (i.e.,
the Viper program has states where its value is true and states where its
value is false), but the function is never known to be false. As a result, a
coupling invariant modeling this part of the encoding would necessarily
have to map sets of Viper states to individual Python states. On the other
hand, it is often desirable or even necessary to map individual Viper
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states to sets of Python states, since the Python encoding may not contain
some information present on the Python level. As a result, the concrete
form of such a coupling invariant would have to depend on the parts of
the encoding that need to be represented, and the properties that need
to be proved.

Once such a mapping exists, several aspects of our approach could be
proved sound. We will provide three examples here:

1. We could prove the soundness of our simplified object model. That
is, we could show that when accesses to certain attributes and
functions are forbidden, Python’s actual complex object model is
indistinguishable from our simplified object model, i.e., all accesses
that succeed in the simplified version also succeed in the complex
version, and return the same result.

2. We could prove the soundness of our type encoding. This part
could be done in two steps: First, we could prove that our subtyping
axioms are consistent and model a correct view of Python types
(without multiple subtyping). Second, we could prove that the type
assumptions we generate in the program are sound. We believe
that this proof would be feasible in practice, since only a small part
of the Python state (object types) needs to be modeled, and the
crucial part of the coupling between Python states and Viper states
is somewhat simple. Note that the soundness of the external type
checking algorithm does not need to be proved, since we do not
rely on its soundness and perform a full proof of type correctness
in the verifier.

3. As part of our verification of the global, top-level program, we com-
pute the dependencies of each top-level statement using a simple
static analysis, to be able to check that (some overapproximation
of) the dependencies of each statement is definitely defined at
the point it is executed. The computation of these dependencies
could be proved sound completely independently of its use in the
IVL encoding, and subsequently, the entire verification of top-level
statements could be proved sound as well.

We leave any such proofs as future work.

2.5. Implementation

We have implemented the specification and verification concept we have
described in this chapter in the tool Nagini, a frontend for the Viper
verification infrastructure [159], which is open source and available
online3. In this section, we describe its architecture, usage, and some
relevant details of the implementation.

2.5.1. Specifications

Nagini consists of two parts: The verifier itself, and a library of contract

functions. While we have shown specifications as comments so far, Nagini’s
actual implementation uses these contract functions to allow users
to add specification to the actual program text, in the style of Code
Contracts [77]. That is, for example, a postcondition stating that a method

https://github.com/marcoeilers/nagini
https://github.com/marcoeilers/nagini
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gives back permissions to a list l, and that its returned integer result is
greater than all list elements, can be expressed by writing the statement
Ensures(list_pred(l) and Forall(l, lambda e: Result() > e)) at the beginning of the
method, where Ensures, list_pred, Forall, and Result are all contract functions
declared in Nagini’s contract library.

The call to the Ensures function introduces a postcondition, the call
to list_pred represents a built-in predicate that gives permission to the
contents of a list, the Result function represents the result returned by the
method and can only be used in postconditions, and the Forall function
call represents a universal quantifier; its first argument must be either a
type or (as in this case) a collection, and its second argument must be a
lambda-expression that must be true for all elements of the collection or
all instances of the type.

Similarly, there are contract functions for preconditions, loop invariants,
ghost statements (e.g. for folding predicates), permissions, obligations,
and all other specification constructs supported by Nagini. Additionally,
decorators are used, for example, to mark Python methods that are
intended to be pure functions, or that represent predicates. Figure 2.45
shows an example of an annotated Python program, including a predicate
and a termination obligation.

1 from nagini_contracts.contracts import ∗
2 from typing import List
3 import db
4
5 class Ticket:
6 def __init__(self, show: int, row: int, seat: int) −> None:
7 self.show_id = show
8 self.row, self.seat = row, seat
9 Fold(self.state())

10 Ensures(self.state() and MayCreate(self, ’discount_code’))
11
12 @Predicate
13 def state(self) −> bool:
14 return Acc(self.show_id) and Acc(self.row) and Acc(self.seat)
15
16 def order_tickets(num: int, show_id: int, code: str=None) −> List[Ticket]:
17 Requires(num > 0)
18 Exsures(SoldoutException, True)
19 seats = db.get_seats(show_id, num)
20 res = [] # type: List[Ticket]
21 for row, seat in seats:
22 Invariant(list_pred(res))
23 Invariant(Forall(res, lambda t: t.state() and
24 Implies(code is not None, Acc(t.discount_code))))
25 Invariant(MustTerminate(len(seats) − len(res)))
26 ticket = Ticket(show_id, row, seat)
27 if code:
28 ticket.discount_code = code
29 res.append(ticket)
30 return res

Figure 2.45.: Example program demon-
strating Nagini’s specification language.
The contract functions are imported from
Nagini’s contract module in the first line.
Note that functional specifications and
postconditions are largely omitted to high-
light the different specification constructs.

This specification style has the advantage that the syntax of specifications
is exactly the same as for expressions in ordinary Python code, making
them comparatively easy to write for Python programmers. Additionally,
since specifications of this kind are part of the actual program’s AST
(which usually would not be the case if specifications were written
in comments) they can be read by the verifier without requiring an
additional parser.
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When executing verified code, these specifications can be removed from
the program automatically.

2.5.2. Architecture and Verification Workflow

Nagini

Analyzer

Mypy

Viper
 
 
 
 
 
 
 
 
 
 
 

SE/VCGTranslator Z3

Python Error

Python AST

Python Program
Model

Viper Error

Viper AST

Figure 2.46.: Nagini architecture and verification workflow.

Nagini is implemented in Python, which enables it to re-use Python
infrastructure including Python’s built-in parser and AST. It interacts
with Viper, which is implemented in Scala, via JPype4, a library that
allows Python code directly with the Java Virtual Machine (JVM), i.e., to
directly invoke Viper’s code from Python code.

Nagini’s high-level architecture and verification workflow are shown in
Figure 2.46. To verify a Python program, Nagini first invokes the Mypy
type checker on the Python program [125]. Mypy implements the type
system mentioned before; for variables (both local and global), it also
implements partial type inference. We use a slightly modified version
of Mypy which ignores type errors based on the potential None-ness of
receivers: Ordinary Mypy will complain when a field e.f is accessed or a
method e.m() is called and the type of e is an Optional type, i.e., it may be
None. We instead let the verifier make this check, which is of course more
precise.

If the program contains type errors, Nagini rejects the program right
away. Otherwise, it now performs an analysis of the program, during
which it builds up a model of the Python program: It collects informa-
tion about all modules in the program, including all classes, methods,
fields, and variables. This step is necessary because, as explained earlier,
Python programs are simply sequences of statements (some of which
will be declarations), and Python ASTs contain very little information
by themselves; references, for example, do not contain any information
regarding their target, and can refer to variables, modules, classes, or
functions. As part of the analysis step, Nagini extracts type information
from Mypy, and enriches its internal model with this information. The
leaves of the created model of the Python program contain references to
the analyzed Python AST nodes.

In the second step, Nagini then walks through the created model and
performs the encoding of each part of the program (by directly calling
constructors of Viper AST nodes through JPype), using the references to
the Python AST nodes they represent when necessary. Each created Viper
AST node is annotated with an identifier that allows mapping it back to
the Python AST node that it represents; this information is used for error
reporting later. The created Viper AST is then handed to either one of
Viper’s two backends, one of which is based on symbolic execution and

https://pypi.org/project/JPype1
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one of which uses verification condition generation through an encoding
into the Boogie IVL [18]. Viper will use the SMT solver Z3 [156] to verify
the program; it will then either report successful verification, in which
case Nagini also reports a success, or it returns a list of verification failures
in the Viper program, which include the Viper AST nodes that caused
the error. Nagini then converts each error message back to a message that
can be understood on the Python level, using the attached identifiers to
find the Python AST nodes that caused the error. When desired, Nagini
additionally generates a counterexample; examples of error messages
and a counterexample will be shown later in this section.

2.5.3. Tool Interaction

Nagini is a command line tool which, for basic usage, only expects a path
to a file to be verified as an argument. It will then automatically find all
other relevant files that are imported by the main file.

In addition, Nagini has a number of command line options to customize
its behavior:

▶ Users can use the “–select” option to enumerate some set of methods
and classes to verify; Nagini will then verify only the selected
elements, and not the remaining parts of the input program. Other
elements are included only if the selected parts depend on them; in
particular, if selected methods depend on (i.e., call) other methods,
Nagini will include stubs of those other methods but not their
bodies, so that their correctness is assumed. Similarly, functions
and axioms that model the type system (as described before) will
be generated only for those types that are (transitively) referenced
in the selected code.

▶ The “–ignore-global” option explicitly disables verification of top-
level code, and of the order of global declarations, as described in
Sec. 2.2.3.

▶ The obligation system explained in Sec. 2.3 (which causes some
performance overhead even in code that does not use obligations)
can be disabled using the flag “–ignore-obligations”.

▶ Nagini’s output during the encoding can be influenced by setting
a log level; additionally, the “–print-viper” flag can be used to
prompt Nagini to output the generated Viper program, which is
useful for debugging.

▶ When the “–counterexample” flag is used, Nagini will output a
counterexample for every verification error, as we will describe in
the next subsection.

▶ While a Nagini installation comes with matching versions of Viper
and Z3, users can supply paths to custom versions of all dependen-
cies to use those instead of the defaults.

▶ Finally, Nagini has a server mode that starts running a Nagini
instance, performs some setup work, and then waits to be invoked
on input programs. An accompanying client script invokes the
server on a specific file and reports the generated result.
This mode is useful to improve performance in practice, since
a substantial amount of work (starting a JVM, initializing some
parts of Viper, and parsing some Viper code that is internally
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Figure 2.47.: Nagini PyCharm plugin: Nagini can be run by using a button at the top right, and subsequently, verification errors will be
highlighted in the code.

5: Available at https://github.com/

marcoeilers/nagini-pycharm

6: https://www.jetbrains.com/

pycharm/

used to model parts of Python’s standard library) needs to be
performed for every run of Nagini; in this mode, this work can
be performed once up front, and does not have to be repeated
for subsequent usages. Additionally, this mode allows re-using
a single JVM instance, which is advantageous because the JVM
just-in-time-compiles Viper’s code, and repeated invocations will
therefore lead to better performance.

In addition to usage from the command line, we have developed an
experimental Nagini plugin5 for the popular PyCharm IDE6, which adds
a button to invoke Nagini to the IDE and reports verification errors errors
highlighted directly in the code. Figure 2.47 shows a screenshot of Python
code in the PyCharm IDE with the Nagini plugin, including Nagini’s
specifications and a reported error.

2.5.4. Error Reporting and Counterexamples

As stated before, Nagini maps Viper verification errors back to messages
that can be understood on the Python level. As a (very artificial) example,
consider a version of the program in Figure 2.45 where constructor
of the Ticket class has been modified as shown in Figure 2.48. Here,
the Fold statement is executed only conditionally, namely if the show
value is at most four, and otherwise (to illustrate a changed state in
the counterexample below) a list is created and assigned to a new
local variable, and the value of show is set to four. Verification fails
for this modified version, because the predicate self.state(), which the
postcondition promises to give back to its caller, does not always exist.

Viper will report the following error message:

https://github.com/marcoeilers/nagini-pycharm
https://github.com/marcoeilers/nagini-pycharm
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
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1 def __init__(self, show: int, row: int, seat: int) −> None:
2 self.show_id = show
3 self.row, self.seat = row, seat
4 if show <= 4:
5 Fold(self.state())
6 else:
7 my_var = [show, row, seat]
8 show = 4
9 Ensures(self.state() and MayCreate(self, ’discount_code’))

Figure 2.48.: Alternative constructor of
class Ticket that is incorrect and will result
in a verification error.

1 [postcondition.violated:insufficient.permission] Postcondition of Ticket___init__ might not
hold. There might be insufficient permission to access Ticket_state(self). (example.
py@27.16)

This error message references the internal names (i.e., the names used
in the Viper encoding) of the constructor and the state predicate. Using
the information it previously attached to the created AST nodes, Nagini
maps these back to the original Python AST nodes, to create the following
message:

1 Postcondition of __init__ might not hold. There might be insufficient permission to access
self.state(). (example.py@27.16)

This message now uses the correct names. In other cases, Nagini also
changes the kind of error message it reports: For example, if a local
variable is read before it is defined, Viper will report an error stating that
the precondition of a function checkDefined does not hold (see Sec. 2.2.1.5).
Nagini will map this error back to an error that clearly states that a local
variable has been read before its definition.

As mentioned before, Nagini can also generate counterexamples for every
reported error. A counterexample for the example we just described could
look like this:

1 Old store:
2 show −> 5,
3 row −> True,
4 seat −> 45,
5 self −> Ticket0
6 Old heap:
7 Ticket0 −> { }
8 Current store:
9 show −> 4,

10 row −> True,
11 seat −> 45,
12 self −> Ticket0
13 my_var −> list0
14 Current heap:
15 Ticket0 −> { show_id −> 5, row −> True, seat −> 45 },
16 list0 −> { len(list0) −> 3, list0[0] −> 5, list0[1] −> True, list0[2] −> 45 }

A programmer can learn from this counterexample that an error can
occur (the self.state() is not a part of the heap) in a situation where the
show variable was initially 5.

In general, Nagini shows a value for each local variable at the beginning
of the invocation of the current method or constructor (old store) and
at the point when the error occurs (current store). The two stores can
differ because additional local variables can be defined (like, in this
case, my_var), or the values of the parameter variables can be changed by
the method (like show in this case). References to class instances will be
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represented simply by a name (“Ticket0” in this case for the self-variable)
that contains the type of the instance.

The heap (again in two versions) then shows the values of the fields of
each of those instances; crucially, it will only show values for fields for
which the current method has permission. Predicate instances are also
shown here; if the current heap contained an instance of self.state(), then
this predicate would be shown as part of the heap. For built-in types like
lists, we show their important attributes, in this case the list’s length and
the values for its three different indices. We use this format (as opposed
to showing a list literal [5, True, 45]) because often, list contents will be
unconstrained, leading to counterexamples with lists too large to show
as literals, where only the values of some specific indices are relevant for
the counterexample.

Note that, in our example, the row parameter has type int but contains a
boolean value. This is possible because in Python, bool is a subtype of int,
and this fact is modeled accurately in Nagini; every integer variable can
also contain a boolean value.

To generate counterexamples, Nagini extracts the stores and heaps of the
generated Viper program from Viper, and then translated all elements
back to the Python level. That is, it maps the names of variables, fields,
classes and predicates back to their names on the Python level, and it
translates all values. The latter step is more complex than it might seem,
since, as we mentioned before, all values on the Viper level are simply
uninterpreted reference values. Translating a value v back to the Python
level therefore requires two steps:

1. Determine the type of the value, that is, evaluate the value of typeof(v)
in the counterexample. Since this actual type may actually be an
unknown type (since the encoding allows having more types than
the currently known ones to be modular, as discussed previously),
we then have to find the most precise known supertype of this
actual type by evaluating the issubtype relation. In the example, this
step would tell us that row actually contains a boolean value.

2. Using this type information, evaluate v. For example, if v has type
bool or int, this involves evaluating the respective internal unboxing
function bool_unbox or int_unbox; if it is a list, this involves evaluating
its length and its known values.

2.5.5. Limitations

Nagini’s implementation has a number of limitations that are not funda-
mental to the used verification approach.

Performance: As it is a prototype implementation, Nagini’s perfor-
mance could be improved in a number of ways. In particular, some
elements of its encoding (e.g. type checks, checking the definedness of
variables, wrapping integers into references) are needed to be able to
verify code in some cases, but could sometimes be omitted; for example,
Nagini could check on the AST level if a variable is definitely assigned
before it is read, and could subsequently omit checks of variable defined-
ness in the encoding. Similarly, integer wrapping, type checking, and
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some other aspects of the encoding could be omitted in some cases if a
static check on the AST is sufficient to determine that they are not needed
for a specific program or method.

Additionally, the implementation has not been optimized with regards to
caching the results of frequently-used operations; in particular, since the
interaction between Python code and the JVM through a library that must
rely on reflection in its own implementation is likely not very performant,
we believe that performance could be improved by the results of method
and constructor invocations on the JVM.

Furthermore, as we will also show in the evaluation section, Nagini’s
implementation is currently unable to encode only a part of a given
input program; its flag to select certain parts to verify only leads to
the exclusion of unneeded program parts after the encoding and before
verifying the encoded program. This limitation is not fundamental and
can be removed, but this would require refactoring the code base.

We leave these optimizations as future work.

Language features: In addition to the language features already dis-
cussed in Sec. 2.2.4, there are a number of Python’s language features
currently not supported by Nagini. One example is the nested definition
of functions or classes: Nagini currently expects all classes to be top-level
definitions, and only allows function definitions inside classes or on
the top level. While nested functions can complicate verification due
to captured state, in many cases, they do not complicate verification at
least in principle; thus, their support would not be difficult to add. As
mentioned before, Weber [224] created an extended version of Nagini
that supports closures and higher-order methods in general, but this
support is currently not part of the standard Nagini version.

There are some more involved language constructs that are currently not
supported; one important aspect is asynchronous computation using the
async and yield statements. Additionally, since Python is a comparatively
large language, there are a number of simpler statement types that are
currently not supported, like for example set and map comprehensions
(list comprehensions are supported).

Standard library: Nagini models Python’s basic types, like integers,
strings, lists, sets and dictionaries. Support for floating point numbers
exists, but is very incomplete; they are modeled simply as uninterpreted
types. Other types are currently not included by default.

Nagini is built to be easily extendable with new (uninterpreted) types
and built-in methods, even without modifying the verifier code at all:
New built-in types can be added simply by adding entries to an internal
JSON-file. To add a method (or pure function) to a built-in type, it is
sufficient to add a function or method entry containing the method’s
signature in said JSON-file, and to then add a Viper function or method
that encodes this method’s behavior to a file in its resources folder.

However, adding new non-reference types (e.g. modeling Python’s float-
ing point numbers as actual, interpreted floats on the Viper level) would
require (simple) changes in the actual code of the verifier.
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7: We chose examples that do not make
use of unsupported dynamic features or
external libraries from rosettacode.org,
interactivepython.org and github.

com/keon/algorithms.

Note that Nagini also supports the use of stub files to model the behavior
of (non built-in) types and libraries; that is, users can supply files con-
taining Python classes and method stubs that contain only signatures
and specifications, but no implementation.

Counterexamples: Counterexamples are currently only supported if
Viper’s symbolic execution backend is used. Additionally, heap parts
whose corresponding permissions are quantified are currently not dis-
played in Nagini’s output.

2.6. Evaluation

In addition to having a comprehensive test suite of over 12,500 lines of
code, we have evaluated Nagini on three sets of examples to demonstrate
its ability to verify 1) typical simple algorithm implementations, 2) code
from a real larger code base, and 3) properties relevant for proving the
security of a larger system.

2.6.1. Verification of Simple Algorithms

Table 2.2.: Experiments. For each example, we list the lines of code (excluding whitespace and comments), the number of those lines that are
used for specifications, the length of the resulting Viper program, properties (SF = safety, FC = functional correctness, FB = finite blocking,
IO = input/output behavior) that could be verified (✓), could not be verified (✗) or were not attempted (-), and the verification times with
Viper’s SE backend, sequential and parallelized, in seconds.

Example LOC / Spec. Viper LOC SF FC FB IO 𝑇𝑆𝑒𝑞 𝑇𝑃𝑎𝑟
1 rosetta/quicksort 31 / 10 635 ✓ - ✓ - 8.48 8.31
2 interactivepython/bst 145 / 65 947 ✓ ✓ - - 57.44 41.80
3 keon/knapsack 33 / 10 864 ✓ - - - 19.39 14.49
4 wikipedia/duck_typing 19 / 0 486 ✓ - - - 1.82 1.92
5 example 40 / 19 736 ✓ - ✓ - 6.11 5.91
6 verifast/brackets_checker 143 / 82 1081 ✓ ✓ ✓ ✓ 7.66 6.63
7 verifast/putchar_with_buffer 139 / 88 865 ✓ - ✓ ✓ 4.74 4.29
8 chalice2viper/watchdog 66 / 22 769 ✓ - ✓ - 3.66 3.41

10 parkinson/recell 46 / 25 561 ✓ ✓ - - 2.09 2.07

The first part of our evaluation consists of (parts of) implementations
of standard algorithms from the internet7, the example from Fig. 2.45,
as well as examples from other verifiers translated to Python. Table 2.2
shows the examples and which properties were verified; the functional
property we proved for the binary search tree implementation is that
it maintains a sorted tree. The examples cover language features like
inheritance (example 10), comprehensions (3), dynamic field addition (6),
operator overloading (3), union types (4), threads and locks (9), as well
as specification constructs like quantified permissions (6) and predicate
families (10). Nagini successfully verifies all examples.

All runtimes shown in this section were measured by averaging over
ten runs on a Lenovo Thinkpad T450s running Ubuntu 16.04, Python
3.5 and OpenJDK 8 on a warmed-up JVM. They show that Nagini can
effectively verify non-trivial properties of real-life Python programs in
reasonable time. Due to modular verification, parts of a program can be
verified independently and in parallel (which Nagini does by default), so

rosettacode.org
interactivepython.org
github.com/keon/algorithms
github.com/keon/algorithms
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that larger programs will not inherently lead to performance problems.
This is demonstrated by the speedup achieved via parallelization on the
two larger examples; for the smaller ones, verification time is dominated
by a single complex method. Additionally, the annotation overhead for
these examples is, on average, less than one line of specification or proof
annotation per line of code, though, as we will show in Sec. 2.6.3, this
ratio can be much higher when verifying more complex properties.

2.6.2. Verification of Real-World Code

The second set of examples is taken from the source code of the Python
implementation of the router for the SCION internet architecture [21].
More precisely, the verified methods are the ones that are executed when
the SCION router forwards a standard SCION packet that does not use
any extensions. These examples are challenging because they are taken
from a larger code base that was not written with verification in mind.
The code has a large number of dependencies to other parts of the SCION
code and to outside libraries, which need to be modeled via stubs. The
fact that this code can be verified demonstrates Nagini’s high coverage of
Python language features and, more generally, its ability to verify code
from real, large code bases.

The examples were verified by Forster [83] as part of his Bachelor Thesis;
all in all, the verified code base consists of 334 lines of verified code, plus
a large number of stub files to model dependencies. More details on the
code can be found in this thesis. We have taken the code and modified it
in a number of places to accommodate changes that have been made in
Nagini since the project was conducted.

Since the verified code is taken from a router, there are many different
(security-related) properties to be verified, in particular, crash freedom,
progress (i.e., termination), as well as output-behavior. Part of the output-
behavior is showing that the correct data is forwarded, which in turn
requires modeling and/or verifying functional behavior of methods that
modify package data. In addition to I/O specifications and termination
obligations, verifying this code requires using a large number of pred-
icates and predicate families to model the properties and permissions
that constitute the class invariants of various classes (e.g. the router itself,
packets, and packet components), often in conjunction with quantifiers.
A common example is that an object representing e.g. a path contains
several lists of other objects (e.g., of steps in the path), and therefore its
class invariant contains the (quantified) class invariants of all objects in
the list. We also make extensive use of pure functions to model aspects of
those classes, sometimes using methods that already existed in the code
base and marking them as pure, so that they are verified for crash and side
effect freedom and can subsequently be used in the specifications of other
methods. Additionally, ADTs were used throughout to model SCION
packets and express the desired functional behavior in specifications.

Table 2.3 shows all example methods and functions and details, for each
one of them, what kind of properties were proved. Note that, due to the
interwoven nature of the code base and the resulting large number of
dependencies between different parts, the verification of the depicted 17
methods required Nagini to read and partly encode a total of 56 modules,



74 2. Modular Verification of Python Code

[207]: Sprenger et al. (2020), ‘Igloo:
soundly linking compositional refinement
and separation logic for distributed sys-
tem verification’

[140]: Lowe (1997), ‘A Hierarchy of Authen-
tication Specification’

188 classes, and 591 methods (whose behavior, where it is relevant, we
modeled using stubs).

We verify each method individually, since the amount of dependencies
makes it infeasible to verify all methods at once (Nagini does not terminate
in a reasonable amount of time if this is attempted), demonstrating the
need for modular verification. However, many methods share some
dependencies (e.g., predicates, pure functions used in specifications, and
stubs of called methods) which have to be re-checked for well-definedness
and other properties on each verification run, so there is a significant
overlap between the work that is done when some closely related methods
are verified. In practice, it is therefore advisable to verify small sets of
closely-related methods at once. Alternatively, it might well be possible
to specify the code in a way that reduces common dependencies, but this
was not a focus of the aforementioned Bachelor project.

For each method, we show both the total verification time needed by
Nagini, and the amount of time used by Viper to verify the encoded
program. The latter is interesting because Nagini currently always reads
and encodes the entire program it is given, and subsequently removed
unneeded parts if it is instructed to verify only a specific subset of
the program (in this case, a single method and its dependencies). This
is a limitation of the implementation that exists for historical reasons,
however, it is in no way a fundamental limitation of Nagini’s encoding
or verification approach. As an unfortunate consequence of this, for the
SCION code base with its many dependencies, Nagini reads and encodes
the aforementioned 56 modules, 188 classes and 591 methods every time
even when asked to verify a single method, and there is therefore a
significant static overhead in its encoding time. We therefore also show
the verification times in Viper that directly show the actual verification
effort required per method.

The verification times for all examples are shown in Table 2.3. As expected,
the encoding times are basically constant for all examples, always taking
31-35 seconds, which is obviously a significant overhead. Verification
times, on the other hand, vary between 1.5 seconds for the simplest
methods, 10-35 seconds for many normal-sized methods, and 234 and 114
seconds for the two most most complex ones. We believe that (ignoring
the constant encoding overhead) the verification times are acceptable in
practice for a code base of this complexity, and could likely be reduced
by further optimizing Nagini (see the discussion of limitations of the
current implementation).

2.6.3. Verification of Security Properties

Finally, we have verified an implementation of a two-party authentication
protocol standardized as ISO/IEC 9798-3, as part of the evaluation of the
Igloo methodology [207]. In the protocol, the initiator 𝐴 first sends out
a message 𝐴, 𝐵, 𝑁𝐴, where 𝐵 is the intended recipient of the message,
i.e., the responder, and 𝑁𝐴 is a nonce. 𝐵 then responds with the message
𝑁𝐵 , 𝑁𝐴 , 𝐴, where 𝑁𝐵 is another nonce, and signs the entire message
with its private key.

For this protocol, Sprenger et al. have proved an injective agreement
property [140] on an abstract model of the protocol with a Dolev-Yao
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Table 2.3.: Verified methods from the SCION implementation, verified properties, and verification times, averaged over five runs. 𝑇 denotes
the total verification time, and its parts 𝑇𝐸 and 𝑇𝑉 denote the time used by Nagini for the encoding and the time used by Viper to verify
the encoded program, respectively. Verified properties include crash freedom (Safe), termination (Term), functional correctness (Func),
and input/output behavior (IO). Methods marked as pure are verified for crash and side effect freedom, so that they can be used in the
specifications of other methods.

Class Method Safe Term Func IO Pure 𝑇 𝑇𝐸 𝑇𝑉
Router handle_extensions x x 120.96 34.42 86.54

verify_hof x x x 70.12 34.64 35.49
send x x x x 149.23 35.38 113.85
_calc_fwding_ingress x x x 269.07 34.40 234.67
_egress_forward x x x x 132.78 34.76 98.02
_link_type x x 44.81 31.04 13.78
_process_flags x x 37.36 34.21 3.16
_validate_segment_switch x x x 53.47 31.29 22.18

SCIONPath get_curr_if x x 44.65 33.71 11.94
get_fwd_if x x 45.10 33.87 11.22
get_hof x x 43.15 32.78 10.37
get_hof_ver x x x 52.46 31.34 21.12
get_of_idxs x 42.84 35.14 7.70
get_iof x x 43.87 33.97 9.90
is_on_last_segment x x 43.78 34.89 8.89
inc_hof_idx x x x 66.49 32.31 34.18

HopOpaqueField verify_mac x 33.98 32.37 1.61

[62]: Dolev et al. (1983), ‘On the security
of public key protocols’

attacker [62], and refined the system according to the Igloo methodology
to I/O specifications that the individual implementations of both parties
have to fulfill. We have then implemented both roles in Python and
verified them with respect to this derived functional specification. That
is, due to the pre-existing correctness proof on the protocol level and the
connection between protocol level proof and I/O specification according
to the Igloo methodology, correctness proofs of the implementations lead
to a system that is proved correct by a single full-stack soundness proof
only depending on assumptions about the environment (i.e., the network
and the adversary) and assumptions made during code verification; as
for the latter, the proof assumes the correctness of libraries for encryption
and socket I/O.

On the level of the implementation, we soundly model the fact that
actual communication happens in the form of bit strings, while the
abstract model is specified in terms of abstract terms. The specifications
of both roles have I/O components that state which messages may be
sent and received, and proving them correct has functional components;
in particular, it requires proving that the sent messages are composed
correctly and received messages are validated correctly by both parties.
The latter requires modeling abstract message terms, including nonces,
identifiers, asymmetric encryption, and tuples (which we do using ADTs),
and it requires modeling the mapping between bitstrings and abstract
message terms.

The code consists of a total of 886 lines of code, of which 82 are implemen-
tation and 804 are specification. The initiator and responder programs
take 24.97 and 29.82 seconds to verify, respectively, again averaged over
five runs.

While the implementations are comparatively simple, the proved spec-
ification along with its connection to the higher-level protocol proof
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demonstrates Nagini’s ability to verify implementation properties that
are required to prove security properties of entire systems.

2.7. Related Work

The past decades have seen the development of a large number of
automated verification tools. While some such tools are constructed in a
monolithic way, like VeriFast [110] and SecC [72], most modern tools are,
like Nagini, built on top of intermediate verification languages. Examples
are Dafny [127], VCC [48], Spec# [130], and GPUVerify [34], which are
built on top of Boogie [18], Frama-C [54] and Krakatoa [81], which are
built on top of Why3 [82], and VerCors [38], Prusti [12], and Gobra [228],
which are (like Nagini) built on top of Viper [159].

For each of these verifiers, the specific challenges that arise tend to be
different based on the targeted languages; for example, Prusti, which
targets the Rust language, focuses on extracting information from Rust’s
type system to reduce specification overhead, GPUVerify and VerCors
both target GPU kernels and have to soundly model massively parallel
execution, and many of the tools mentioned above target object-oriented
programs and therefore have to model dynamic binding and object
invariants. All of them, however, model statically-typed languages.

Not many existing tools target deductive verification for dynamic lan-
guages. To the best of our knowledge, Nagini is the only verifier specifi-
cally built to verify Python code. The only existing alternative for verifying
Python code against custom specifications is the K-framework [183], which
allows users to define a language syntax and semantics, and, based on
that, automatically derives an interpreter, compiler, and even automated
verifier for the language. Guth has defined a semantics for Python 3 in
this framework [95], thus enabling verification of Python code. Since
this semantics accurately captures the behavior of, for example, attribute
lookups, this approach is in principle able to reason about any Python
code; this is unlike our approach in Nagini, which does not model some
parts of the language, and furthermore requires additional restrictions
like static typing. On the other hand, K generally does not offer any
high-level specification constructs that allow users to express properties
in an abstract and modular way; properties have to be specified on the
level of the state of the program. We believe that this is a substantial
drawback when targeting verification of real, substantial code bases.

The only other tools for reasoning about Python we are aware of perform
various kinds of static [84, 85, 97, 126, 142, 154] or dynamic [93] analysis.
Most of them focus on inferring type information, while some [85, 215]
go beyond that and either find errors or infer specifications on the input
data.

JavaScript is another popular dynamic language, for which a number
of verification tools has been developed. JavaScript differs from Python
in that it does not have similarly complex semantics for operations like
attribute lookup, or meta classes that modify class behavior; however, it
has its own set of complex language features which particularly make
local reasoning difficult (including, for example, an emulated store that
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behaves differently than in other languages and makes reasoning more
difficult [88]).

JaVerT is a symbolic execution tool that precisely models JavaScript’s
complex semantics using the JSIL intermediate representation [189]. How-
ever, like other existing symbolic execution tools for JavaScript [135, 191,
195, 227], JaVerT is not able to modularly reason about code. More recently,
JaVerT 2.0 [190] can perform symbolic testing, compositional testing, and
verification using bounded symbolic execution. To be compositional, it
explicitly specifies frame information (including negative frame informa-
tion that states that some attributes are not present; somewhat similar
to our MayCreate permissions), and uses an instrumented semantics to
incorporate this information. Specifications are structural in nature and
therefore more verbose than nominal types; unlike our approach, JaVerT
2.0 is limited to standard functional properties using pre- and postcondi-
tions. The authors’ later work, Gillian [143], implements separation logic
based modular reasoning for JavaScript based on similar principles.

Since its creation, Nagini has been used for multiple purposes. As
mentioned before, Forster [83] used Nagini to verify the correctness
of a part of the Python implementation of the SCION router. Nagini
has also been used to verify two of the three case studies of the Igloo
framework [207]; one of them has been mentioned in section Sec. 2.6, the
other is an implementation of a distributed leader election algorithm.
More recently, Nagini has been used by Gangopadhyay et al., who use it
to verify a novel combination of rule-based methods and reinforcement
learning for automated driving [87]. At Marktoberdorf Summer School
2018, Nagini has been used for teaching purposes as a case study for
building automated verifiers.

The encoding generated by Nagini has similarly been used for different
purposes: Becker et al. have used Nagini-generated Viper programs as
case studies for tool for finding problematic quantifier instantiations
in SMT solvers [28]. Rubbens has considered Nagini’s encoding of
type information, predicate families, and exception handling for use in
the VerCors verifier [184]. Dardinier et al. formally examine the topic
of inlining method calls in the context of permission logics, and use
Nagini’s encoding of field writes with its use of MayCreate permissions as
a case study [55]. Ongoing work by Dohrau et al. builds a learning-based
inference for permission specifications for Viper programs, and shows
that it can infer specifications for Viper programs generated by Nagini.

Nagini’s code base has been the basis for 2vyper, a verifier for Ethereum
smart contract which we will present in Chapter 5. Nagini’s implementa-
tion of counterexample extraction has similarly served as the basis for
the later implementation of this feature in Viper itself [100].

As mentioned before, Nagini served as a case study for an implementation
of abstract read permissions in Viper by Schmid [193], and it has been
extended with support for verifying code using closures by Weber [224].
It has been further extended to verify information flow security [66, 148],
which we will discuss in Chapter 4.
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2.8. Conclusion

In this chapter, we have presented our approach for statically verifying
programs written in Python 3. Our approach enables verification of
a dynamic language with manageable specification and performance
overhead compared to the verification of static languages, and is able
to support most typical real-world code. On top of our approach for
handling dynamic language features, we added the ability to specify and
verify a number of complex program properties vital for proving the
security of software systems, going beyond the abilities of most existing
verification tools. We implemented our approach in the automated verifier
Nagini, and showed that it is able to handle complex code from large
code bases and prove complex properties in practice.
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Modular Product Programs 3.

In this chapter, which is based on the ESOP 2018 paper “Modular Product
Programs” [68] as well as the TOPLAS 2020 paper of the same name [69],
we present our approach for modular verification of hyperproperties.

As explained in Chapter 1, the past decades have seen significant progress
in (automated) reasoning about program behavior, in particular, in prov-
ing trace properties like functional correctness or termination. However,
important security-related program properties cannot be expressed as
properties of individual traces; these so-called hyperproperties relate
different executions of the same program.

An important such property is non-interference, which expresses that some
subset 𝑆 of a program’s inputs cannot influence the values of some subset
𝑂 of the program’s outputs. It is a property of pairs of program executions,
since it states that, for any single execution, any second execution with
potentially modified values for the inputs in 𝑆 (but identical values for
all other inputs) will end up with identical values for all outputs in 𝑂.

Non-interference can be used to model confidentiality in the form of
secure information flow, by proving that secret (high-sensitivity) program
inputs do not influence the values of public (low-sensitivity) outputs
(i.e., the public outputs leak no information about the secret inputs). It
can also be used to model integrity, by proving that attacker-controlled
(low-integrity) inputs cannot influence the values of important variables
which must be outside the control of the attacker and are therefore
labeled as high-integrity.

As pointed out in Chapter 1, an important attribute of reasoning tech-
niques about programs is modularity, which is vital for scalability, and
to verify libraries without knowing all of their clients. A technique is
modular if it allows reasoning about parts of a program in isolation,
e.g., verifying each method separately and using only the specifications of
other methods.

Fully modular reasoning about hyperproperties thus requires the ability
to formulate relational specifications, which relate different executions of a
method, and to apply those specifications where the method is called. As
an example (in the setting of information flow security), the statement

1 if (l) { r := l } else { r:= f(l, h) }

where l is a low-sensitivity input, h is a high-sensitivity input, and r is
a low-sensitivity output, can be proved to fulfill non-interference if f’s
relational specification guarantees that its result, when given one low and
one high input, is also low, i.e., that f itself also fulfills non-interference.

Relational program logics [30, 206, 231] allow directly proving general
hyperproperties. However, automating relational logics is difficult and
requires building dedicated tools. Alternatively, self-composition [25]
and product programs [23, 24] reduce a hyperproperty to an ordinary
trace property, thus making it possible to use off-the-shelf program
verifiers for proving hyperproperties. Both approaches construct a new
program that combines the behaviors of multiple runs of the original
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program. However, by the nature of their construction, neither approach
supports modular verification based on relational specifications: Method
calls in the original program will be duplicated, which means that there
is no single program point at which a relational specification can be
applied. For the aforementioned example, self-composition yields the
following program:

1 if (l) { r := l } else { r := f(l, h) };
2 if (l’) { r’ := l’ } else { r’ := f(l’, h’) }

Non-interference can now be verified by proving the trace property that
identical values for l and l’ in the initial state (with potentially different
values for h and h’) imply identical values for r and r’ in the final state.
However, such a proof cannot make use of a relational specification for
method f (expressing that f does not leak any information about its high
input into its output). Such a specification relates several executions of f,
whereas each call in the self-composition belongs to a single execution.
Instead, verification requires a precise functional specification of f, which
exactly determines its result value in terms of the input. Verifying such
precise functional specifications increases the verification effort and is at
odds with data abstraction (for instance, a collection might not want to
promise the exact iteration order); inferring them is beyond the state of the
art for most methods [211]. Existing product programs allow aligning or
combining some statements and can thereby lift this requirement in some
cases, but this requires manual effort during the construction, depends
on the used specifications, and does not solve the problem in general.
Some techniques for proving equivalence between different programs
use product constructions that enable using relational specifications
between different functions. However, they cannot exploit the inherent
advantages resulting from combining a program with itself as opposed
to an arbitrary other program [98, 119].

In this chapter, we present modular product programs, a novel kind of
product programs that allows modular reasoning about hyperproperties.
Modular product programs enable proving 𝑘-safety hyperproperties,
i.e., hyperproperties that relate finite prefixes of 𝑘 execution traces, for
arbitrary values of 𝑘 [46]. We achieve this via a transformation that, unlike
existing products, does not duplicate loops or method calls, meaning that
for any loop or call in the original program, there is exactly one statement
in the 𝑘-product at which a relational specification can be applied. Like
existing product programs, modular products can be reasoned about
using off-the-shelf program verifiers.

We demonstrate the expressiveness of modular product programs by ap-
plying them to prove non-interference, a 2-safety hyperproperty that can
model both information flow security and integrity properties. Focusing
on the former, we then show how modular products enable proving
traditional non-interference using natural and concise information flow
specifications, and how to extend our approach for proving the absence
of timing or termination channels, and supporting declassification in an
intuitive way.

To summarize, we make the following contributions:

▶ We introduce modular 𝑘-product programs, which enable mod-
ular proofs of arbitrary 𝑘-safety hyperproperties for sequential
programs using off-the-shelf verifiers.
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1 method main(people)
2 returns (count)
3 {
4 i := 0;
5 count := 0;
6 while (i < |people|) {
7 current := people[i];
8 f := is_smoker(current);
9 count := count + f;

10 i := i + 1;
11 }
12 }

1 method is_smoker(person)
2 returns (res)
3 {
4 // first two bits of person encode
5 // how frequently person smokes.
6 smoking := person mod 4;
7 if (smoking != 0) {
8 res := 1;
9 }else{

10 res := 0;
11 }
12 }

Figure 3.1.: Example program. The param-
eter people contains a sequence of integers
that each encode attributes of a person;
the main method counts the number of
smokers in this sequence.

[160]: Murray et al. (2018), ‘COVERN: A
Logic for Compositional Verification of
Information Flow Control’

[159]: Müller et al. (2016), ‘Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning’

▶ We prove soundness and completeness of the modular product
program transformation.

▶ We demonstrate the usefulness of modular product programs
by applying them to non-interference, with support for complex
properties like value-dependent classification [160], declassification,
and preventing different kinds of side channels.

▶ We implement our product-based approach for verification of both
secure information flow and arbitrary other safety hyperproperties
in the Viper verification infrastructure [159].

▶ We show that our tool can automatically prove non-interference
and other hyperproperties of challenging examples.

The structure of this chapter is as follows: After giving an informal
overview of our approach in Sec. 3.1 and introducing our programming
and assertion language in Sec. 3.2, we formally define modular product
programs in Sec. 3.3. We prove the soundness and completeness of
the approach in Sec. 3.4. Sec. 3.5 demonstrates how to apply modular
products for proving non-interference. We describe and evaluate our
implementation in Sec. 3.6, discuss related work in Sec. 3.7, and conclude
in Sec. 3.8.

3.1. Overview

In this section, we will illustrate the core concepts behind modular
𝑘-products on an example program. We will first show how modular
products are constructed, and subsequently demonstrate how they allow
using relational specifications to modularly prove hyperproperties.

3.1.1. Relational Specifications

Consider the example program in Figure 3.1, which counts the number
of smokers in a sequence of people. Now assume we want to prove a
very simple hyperproperty, namely, that the program is deterministic: its
output state is completely determined by its input arguments. Determin-
ism is a 2-safety hyperproperty which states that, for two terminating
executions of the program with identical inputs, the outputs will be
the same. This hyperproperty can be expressed by stating that when
main terminates from two states that fulfill the relational (as opposed to
unary) precondition people(1) = people(2), the resulting two states fulfill the
relational postcondition count(1) = count(2), where 𝑥(𝑖) refers to the value
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[211]: Terauchi et al. (2005), ‘Secure Infor-
mation Flow as a Safety Problem’

of the variable 𝑥 in the 𝑖th execution. We write this relational specification
of main as {{people(1) = people(2)}}main{{count(1) = count(2)}}.

Intuitively, it is possible to prove this specification by giving is_smoker a pre-
cise functional specification like {true}is_smoker{res = (person mod 4)!},
meaning that is_smoker can be invoked in any state fulfilling the precon-
dition true and that res =(person mod 4)! will hold if it returns. From this
specification and an appropriate loop invariant, main can be shown to
be deterministic. However, this specification is unnecessarily strong. For
proving determinism, it is irrelevant what exactly the final value of count
is; it is only important that it is uniquely determined by the method’s
inputs. Proving hyperproperties using only unary specifications, how-
ever, critically depends on having exact specifications for every value
returned by a called method, as well as all heap locations modified by
it. Not only are such specifications difficult to infer and cumbersome
to provide manually; this requirement also fundamentally removes the
option of underspecifying program behavior, which is often desirable in
practice. Because of these limitations, verification techniques that require
precise functional specifications for proving hyperproperties often do
not work well in practice, as observed by Terauchi and Aiken for the case
of self-composition [211].

Proving determinism of the example program becomes much simpler if
we are able to reason about two program executions at once. If both runs
start with identical values for people then they will have identical values
for people, i, and count when they reach the loop. Since the loop guard
only depends on i and people, it will either be true for both executions
or false for both. Assuming that is_smoker behaves deterministically, all
three variables will again be equal in both executions at the end of the
loop body. This means that the program establishes and preserves the
relational loop invariant that people, i, and count have identical values
in both executions, from which we can deduce the desired relational
postcondition. Our modular product programs enable this modular and
intuitive reasoning, as we explain next.

3.1.2. Product Construction Idea

Like other product programs, our modular 𝑘-product programs multiply
the state space of the original program by creating 𝑘 renamed versions
of all original variables. However, unlike other product programs, they
do not duplicate control structures like loops or method calls, while
still allowing different executions to take different paths through the
program.

Modular product programs achieve this as follows: The set of transitions
made by the execution of a product is the union of the transitions made
by the executions of the original program it represents. This means that
if two executions of an if-then-else statement execute different branches,
an execution of the product will execute the corresponding versions of
both branches; however, it will be aware of the fact that each branch is
taken by only one of the original executions, and the transformation of
the statements inside each branch will ensure that the state of the other
execution is not modified by executing it.
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1 method main(p1, p2, people1, people2)
2 returns (count1, count2)
3 {
4 if (p1) { i1 := 0; }
5 if (p2) { i2 := 0; }
6 if (p1) { count1 := 0; }
7 if (p2) { count2 := 0; }
8 while ((p1 && i1 < |people1|) ||
9 (p2 && i2 < |people2|)) {

10 l1 := p1 && i1 < |people1|;
11 l2 := p2 && i2 < |people2|;
12 if (l1) { current1 := people1[i1]; }
13 if (l2) { current2 := people2[i2]; }
14 if (l1 || l2) {
15 t1, t2 := is_smoker(l1, l2,
16 current1, current2);
17 }
18 if (l1) { f1 := t1; }
19 if (l2) { f2 := t2; }
20 if (l1) { count1 := count1 + f1; }
21 if (l2) { count2 := count2 + f2; }
22 if (l1) { i1 := i1 + 1; }
23 if (l2) { i2 := i2 + 1; }
24 }
25 }

1 method is_smoker(p1, p2,
2 person1,
3 person2)
4 returns (res1, res2)
5 {
6 if (p1) {
7 smoking1 := person1 mod 4;
8 }
9 if (p2) {

10 smoking2 := person2 mod 4;
11 }
12 t1 := p1 && (smoking1 != 0);
13 t2 := p2 && (smoking2 != 0);
14 f1 := p1 && !(smoking1 != 0);
15 f2 := p2 && !(smoking2 != 0);
16 if (t1) { res1 := 1; }
17 if (t2) { res2 := 1; }
18 if (f1) { res1 := 0; }
19 if (f2) { res2 := 0; }
20 }

Figure 3.2.: Modular 2-product of the pro-
gram in Fig. 3.1 (slightly simplified). Pa-
rameters, local variables, and simple state-
ments like assignments have been dupli-
cated, but control flow statements have
not. Instead, they are expressed by creat-
ing new sets of activation variables, and
simple statements are conditional on their
values. The initial activation variables p1
and p2 of the main method can be thought
of as true.

1: In this way, the activation variables are
similar to path conditions used in sym-
bolic execution.

For this purpose, modular product programs use boolean activation

variables that store, for each execution, whether it is currently active. All
activation variables are initially true. For every statement that directly
changes the program state, the product performs the state change for all
active executions. Control structures update which executions are active
(for instance based on the loop condition) and pass this information
down (into the branches of a conditional, the body of a loop, or the callee
of a method call) to the level of atomic statements1. This representation
avoids duplicating these control structures.

Figure 3.2 shows the modular 2-product of the program in Figure 3.1.
Consider first the main method. Its parameters have been duplicated,
there are now two copies of all variables, one for each execution. This is
analogous to self-composition or existing product programs. In addition,
the transformed method has two boolean parameters p1 and p2; these
variables are the initial activation variables of the method. Since main is
the entry point of the program, the initial activation variables can be
assumed to be true (not shown).

The product will first initialize i1 and i2 to zero, like it does with i in
the original program, and analogously for count1 and count2. The loop
in the original program has been transformed to a single loop in the
product. Its condition is true if the original loop condition is true for any
active execution. This means that the loop will iterate as long as at least
one execution of the original program would. Inside the loop body, the
fresh activation variables l1 and l2 represent whether the corresponding
executions would execute the loop body. That is, for each execution,
the respective activation variable will be true if the previous activation
variable (p1 or p2, respectively) is true, meaning that this execution
actually reaches the loop, and the loop guard is true for that execution.
All statements in the loop body are then transformed using these new
activation variables. Consequently, the loop will keep iterating while at
least one execution executes the loop, but as soon as the loop guard is
false for any execution, its activation variable will be false and the loop



84 3. Modular Product Programs

body will have no effect on the variables of this execution.

Conceptually, method calls are handled very similarly to loops. For the
call to is_smoker in the original program, only a single call is created in
the product. This call is executed if at least one activation variable is
true, i.e., if at least one execution would perform the call in the original
program; without the conditional, the product would perform calls that
do not correspond to anything in the original executions, which could
lead to non-termination. In addition to the (duplicated) arguments of
the original call, the current activation variables are passed to the called
method. In the transformed version of is_smoker, all statements are then
made conditional on those activation variables. Therefore, like with loops,
a call in the product will be performed if at least one execution would
perform it in the original program, but it will have no effect on the state
of the executions that are not active when the call is made.

The transformed version of is_smoker shows how conditionals are handled.
We introduce four fresh activation variables t1, t2, f1, and f2, two for
each execution. The first pair encodes whether the then-branch should
be executed by either of the two executions; the second encodes the
same for the else-branch. These activation variables are then used to
transform the branches. Consequently, neither branch will have an effect
for inactive executions, and exactly one branch has an effect for each
active execution.

To summarize, our activation variables ensure that the sequence of
state-changing statements executed by each execution is the same in the
product and the original program. We achieve this without duplicating
control structures or imposing restrictions on the control flow.

3.1.3. Interpretation of Relational Specifications

Since modular product programs do not duplicate calls, they provide a
simple way of interpreting relational method specifications: A precondi-
tion that requires some relation between the states of different executions
is required to hold before the call, and a relational postcondition can be
assumed to hold afterwards. However, a relational method specification
should only apply if all the executions it refers to actually perform the
method call. If a call is performed by some of those executions but not
all, the relational specifications are not meaningful, and thus cannot be
required to hold. To encode this intuition, we transform every relational
pre- or postcondition �̂� of the original program that refers to some
subset 𝐸 of all executions into an implication (∧𝑖∈𝐸 p𝑖) ⇒ �̂�. As a result,
relational specifications will be trivially true if at least one execution it
refers to is not active at the call site.

In our example, we give is_smoker the relational specification {{person(1) =
person(2)}}is_smoker{{res(1) = res(2)}} , which expresses determinism. This
specification will be transformed into a unary specification of the product
program: {p1 ∧ p2 ⇒ person1 = person2}is_smoker{p1 ∧ p2 ⇒ res1 =

res2}.

Assume for the moment that is_smoker also has a unary precondition
person ≥ 0. Such a specification should hold for every call, and therefore
for every active execution, even if other executions are inactive. Therefore,
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(Methods) Mtd ::= method 𝑚(𝑥) returns (𝑦){𝑠}
(FStatements) ¤𝑠 ::= skip | error | magic
(RTStatements) 𝑠 ::= 𝑥:=𝑒 | 𝑠; 𝑠 | if (𝑒) {𝑠} else {𝑠}

| while (𝑒) {𝑠} | 𝑥:= 𝑚(𝑒)
| assert 𝑒 | assume 𝑒 | havoc 𝑥
| 𝑥:=frame𝑦(𝑠, 𝜎) | ¤𝑠

(Expressions) 𝑒 ::= 𝑐 | 𝑥 | 𝑒 ∧ 𝑒 | 𝑒 ∨ 𝑒 | ¬𝑒
𝑒 ⊕ 𝑒 where 𝑐 ∈ ℤ, ⊕ ∈ {+,−,×,=, <}

(Assertions) 𝑃 ::= 𝑃 ∧ 𝑃 | 𝑃 ⇒ 𝑃 | ∀𝑥. 𝑃 | 𝑒
(RelExpressions) 𝑒 ::= 𝑐 | 𝑥(𝑖) | 𝑒 ⊕ 𝑒 | 𝑒 ∧ 𝑒 | 𝑒 ∨ 𝑒 | ¬𝑒
(RelAssertions) �̂� ::= �̂� ∧ �̂� | �̂� ⇒ �̂� | ∀𝑥(1) , . . . , 𝑥(𝑘). �̂� | 𝑒
(MixAssertions) �̌� ::= 𝑃 ∧ �̂�

Figure 3.3.: Supported programming lan-
guage. Relational expressions and asser-
tions generalize unary ones to refer to the
state of multiple different executions. We
distinguish two kinds of statements: Run-
time statements (RTStatements) 𝑠 denote
all statements that can occur in a trace,
whereas final statements (FStatements) ¤𝑠
denote finished computations. We write 𝑥
to denote a vector of variables.

its interpretation in the product program is (p1 ⇒ person1 ≥ 0) ∧ (p2 ⇒
person2 ≥ 0). The translation of other unary assertions is analogous.

Note that it is possible (and useful) to give a method both a relational and
a unary specification; in the product this is encoded by simply conjoining
the transformed versions of the unary and the relational assertions.

3.1.4. Product Program Verification

We can now prove determinism of our example using the product
program. Verifying is_smoker is simple. For main, we want to prove the
transformed specification {(p1∧p2 ⇒ people1 = people2)}main{(p1∧p2 ⇒
count1 = count2)}. We use the relational loop invariant i(1) = i(2)∧count(1) =
count(2) ∧ people(1) = people(2), encoded as p1 ∧ p2 ⇒ i1 = i2 ∧ count1 =

count2 ∧ people1 = people2. The loop invariant holds trivially if p1 or p2
is false. Otherwise, it ensures l1 = l2 and current1 = current2. Using the
specification of is_smoker, we obtain t1 = t2, which implies that the loop
invariant is preserved. The loop invariant implies the postcondition.

3.2. Preliminaries

Fig. 3.3 shows the language we use to define modular product programs.
𝑥 ranges over the set of local integer variable names Var.

Program configurations have the form ⟨𝑠, 𝜎⟩, where a store 𝜎 ∈ Σ is a
partial function mapping variable names to integer values. We use ¤𝑠 to
range over the final statements skip, error, and magic. A configuration
is final if it has the form ⟨¤𝑠, 𝜎⟩. Executions ending in skip are regular
executions, whereas those ending with error represent failing executions
caused by failing assert statements. Similarly, an execution halts in a
magic state if an assume statement assumes something that does not hold
in the current state (and the execution is therefore assumed, magically,
not to exist).

Our language supports non-determinism viahavoc statements that assign
an arbitrary value to a variable; all other statements are deterministic. We
distinguish between runtime statements 𝑠 and program statements 𝑠 (not
depicted in Fig. 3.3): Program statements are runtime statements that do
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𝑒 ⇓𝜎 𝑣
(Assign)

⟨𝑥:=𝑒 , 𝜎⟩ → ⟨skip, 𝜎[𝑥 ↦→ 𝑣]⟩

(Havoc)
⟨havoc 𝑥, 𝜎⟩ → ⟨skip, 𝜎[𝑥 ↦→ 𝑣]⟩

𝑒 ⇓𝜎 ⊤
(Assert1)

⟨assert 𝑒 , 𝜎⟩ → ⟨skip, 𝜎⟩
𝑒 ⇓𝜎 ⊥

(Assert2)
⟨assert 𝑒 , 𝜎⟩ → ⟨error, 𝜎⟩

𝑒 ⇓𝜎 ⊤
(Assume1)

⟨assume 𝑒 , 𝜎⟩ → ⟨skip, 𝜎⟩
𝑒 ⇓𝜎 ⊥

(Assume2)
⟨assume 𝑒 , 𝜎⟩ → ⟨magic, 𝜎⟩

𝑒 ⇓𝜎 ⊤
(Cond1)

⟨if (𝑒) {𝑠1} else {𝑠2}, 𝜎⟩ → ⟨𝑠1 , 𝜎⟩

𝑒 ⇓𝜎 ⊥
(Cond2)

⟨if (𝑒) {𝑠1} else {𝑠2}, 𝜎⟩ → ⟨𝑠2 , 𝜎⟩

⟨𝑠1 , 𝜎⟩ → ⟨𝑠′1 , 𝜎′⟩ (Seq1)
⟨𝑠1; 𝑠2 , 𝜎⟩ → ⟨𝑠′1; 𝑠2 , 𝜎

′⟩
(Seq2)

⟨skip; 𝑠2 , 𝜎⟩ → ⟨𝑠2 , 𝜎⟩

(Seq3)
⟨error; 𝑠2 , 𝜎⟩ → ⟨error, 𝜎⟩

(Seq4)
⟨magic; 𝑠2 , 𝜎⟩ → ⟨magic, 𝜎⟩

𝑒 ⇓𝜎 ⊤
(Whl1)

⟨while (𝑒) {𝑠1}, 𝜎⟩ → ⟨𝑠1; while (𝑒) {𝑠1}, 𝜎⟩

𝑒 ⇓𝜎 ⊥
(Whl2)

⟨while (𝑒) {𝑠1}, 𝜎⟩ → ⟨skip, 𝜎⟩

Φ( 𝑓 ) = ([𝑝1 , . . . , 𝑝𝑛], [𝑟1 , . . . , 𝑟𝑚], 𝑠 𝑓 ) 𝑒1 ⇓𝜎 𝑣1 . . . 𝑒𝑛 ⇓𝜎 𝑣𝑛
(Call)

⟨𝑥:= 𝑓 (𝑒1 , . . . , 𝑒𝑛), 𝜎⟩ → ⟨𝑥:=frame𝑟(𝑠 𝑓 , [][𝑝1 ↦→ 𝑣1] . . . [𝑝𝑛 ↦→ 𝑣𝑛]), 𝜎⟩

⟨𝑠 𝑓 , 𝜎 𝑓 ⟩ → ⟨𝑠′𝑓 , 𝜎
′
𝑓 ⟩ (Frame1)

⟨𝑥:=frame𝑟(𝑠 𝑓 , 𝜎 𝑓 ), 𝜎⟩ → ⟨𝑥:=frame𝑟(𝑠′𝑓 , 𝜎
′
𝑓 ), 𝜎⟩

𝑟1 ⇓𝜎 𝑓
𝑣1 . . . 𝑟𝑚 ⇓𝜎 𝑓

𝑣𝑚
(Frame2)

⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (skip, 𝜎 𝑓 ), 𝜎⟩ → ⟨skip, 𝜎[𝑥1 ↦→ 𝑣1] . . . [𝑥𝑚 ↦→ 𝑣𝑚]⟩

(Frame3)
⟨𝑥:=frame𝑟(error, 𝜎 𝑓 ), 𝜎⟩ → ⟨error, 𝜎⟩

(Frame4)
⟨𝑥:=frame𝑟(magic, 𝜎 𝑓 ), 𝜎⟩ → ⟨magic, 𝜎⟩

Figure 3.4.: Operational semantics. We denote the empty store as [].
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not syntactically contain error, magic, or frame statements. Programs
contain only program statements; error, magic, and frame can occur
only in the process of executing a program statement. frame statements
are used to model stack-like behaviors for method calls: 𝑥:=frame𝑦(𝑠, 𝜎)
executes the statement 𝑠 in the framed store 𝜎 and, if it reaches a final
configuration, returns the results to the original store by assigning the
value of 𝑦𝑖 in the framed store to the target variable 𝑥𝑖 in the original
store.

The small-step transition relation for program configurations has the
form ⟨𝑠, 𝜎⟩ → ⟨𝑠′, 𝜎′⟩ and is defined in Fig. 3.4. We assume as given a
method context Φ that maps method names to triples (𝑞, 𝑟, 𝑠𝑚), where 𝑞

is a vector of input parameter variables, 𝑟 is a vector of return parameter
variables, and 𝑠𝑚 is the body of the method.

We denote that expression 𝑒 evaluates to value 𝑣 in store 𝜎 by 𝑒 ⇓𝜎 𝑣.
The inference rules for expression evaluation are standard and therefore
omitted. Expression evaluation is deterministic and total, and variable
names not present in the store evaluate to some default value. Programs
cannot get stuck in non-final configurations, but they can diverge. All
variables and expressions in our language have type integer. When
evaluating conditions, any non-zero value is interpreted as true. For
convenience, we write ⊤ and ⊥ to mean any arbitrary non-zero value
and zero, respectively; that is, ⊤ is not one fixed non-zero value but is
used as a stand-in for any number of potentially different values. As an
example, we write 𝑒1 ⇓𝜎 ⊤ ∧ 𝑒2 ⇓𝜎 ⊤ as a shorthand for ∃𝑣1 , 𝑣2. 𝑒1 ⇓𝜎

𝑣1 ∧ 𝑒2 ⇓𝜎 𝑣2 ∧ 𝑣1 ≠ 0 ∧ 𝑣2 ≠ 0.

The Hoare triple ⊨ {𝑃}𝑠{𝑄} denotes that statement 𝑠, when executed in
a store fulfilling the unary assertion 𝑃, will not fail, and if the execution
terminates regularly, the resulting store will fulfill the unary assertion
𝑄. Formally, ⊨ {𝑃}𝑠{𝑄} if and only if for all 𝜎, 𝜎′, ¤𝑠 s.t. 𝜎 ⊨ 𝑃 and
⟨𝑠, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩, we have either have ¤𝑠 = magic or (¤𝑠 = skip∧𝜎′ ⊨ 𝑄).

In addition to standard unary expressions and assertions, we define rela-
tional expressions and assertions. They differ from normal expressions
and assertions in that they contain parameterized variable references of
the form 𝑥(𝑖) and are evaluated over a tuple of stores instead of a single
one. A relational expression is 𝑘-relational if for all contained variable
references 𝑥(𝑖), we have that 1 ≤ 𝑖 ≤ 𝑘. The definition of 𝑘-relational asser-
tions is analogous. The value of a variable reference 𝑥(𝑖) with 1 ≤ 𝑖 ≤ 𝑘 in
a tuple of stores (𝜎1 , . . . , 𝜎𝑘) is 𝜎𝑖(𝑥); the evaluation of arbitrary relational
expressions and the validity of relational assertions (𝜎1 , . . . , 𝜎𝑘) ⊨ �̂� are
defined accordingly.

Definition 3.2.1 A 𝑘-relational Hoare triple {{�̂�}}𝑠{{�̂�}}𝑘 holds iff �̂�

and �̂� are 𝑘-relational assertions, and for all 𝜎1 , . . . , 𝜎𝑘 , 𝜎′1 , . . . , 𝜎
′
𝑘
, if

(𝜎1 , . . . , 𝜎𝑘) ⊨ �̂� and ∀𝑖 ∈ {1, . . . , 𝑘}. ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′
𝑖
⟩, then

(𝜎′1 , . . . , 𝜎′𝑘) ⊨ �̂�.

Note that our 𝑘-relational Hoare triples allow executions to fail, unlike
their unary counterparts. We write {{�̂�}}𝑠{{�̂�}} for the most common case
{{�̂�}}𝑠{{�̂�}}2.
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Mixed assertions combine unary and relational assertions and hold if
the unary parts hold for every single store, and the relational parts hold
for the tuple of stores as a whole. Formally, we define the validity of
a mixed assertion �̌� = 𝑃 ∧ �̂�, where �̂� is a 𝑘-relational assertion, as
(𝜎1 , . . . , 𝜎𝑘) ⊨ �̌� ⇔ (∀𝑖 ∈ {1, . . . , 𝑘}. 𝜎𝑖 ⊨ 𝑃) ∧ (𝜎1 , . . . , 𝜎𝑘) ⊨ �̂�.

3.3. Modular 𝑘-Product Program Definition

In this section, we define the construction of modular products for
arbitrary 𝑘. We will subsequently define the transformation of both
relational and unary specifications to modular products.

3.3.1. Product Construction

Assume as given an injective function 𝜙 : (Var,ℕ) → Var that renames
variables for different executions. We write 𝑒(𝑖) for the renaming of
expression 𝑒 for execution 𝑖. We write fresh(𝑥1 , 𝑥2 , . . .) to denote that
the variable names 𝑥1 , 𝑥2 , . . . are fresh names that do not occur in the
program and have not yet been used during the transformation. 𝑒 is used
to abbreviate 𝑒(1) , . . . , 𝑒(𝑘).

We denote the modular 𝑘-product of a program statement 𝑠 that is pa-
rameterized by the activation variables 𝑝(1) , . . . , 𝑝(𝑘) as J𝑠K�̊�

𝑘
. The product

construction for methods is defined as

Jmethod 𝑚(𝑥1 , . . . , 𝑥𝑚) returns (𝑦1 , . . . , 𝑦𝑛){𝑠}K𝑘
= method 𝑚(�̊� , 𝑥1 , . . . , 𝑥𝑚) returns (𝑦1 , . . . , 𝑦𝑛){J𝑠K�̊�𝑘 }

for fresh variable names �̊�.

Figure 3.5 shows the product construction rules for statements, which
generalize the transformation explained in Sec. 3.1. We abbreviate
if (𝑒) {𝑠} else {skip} as if (𝑒) {𝑠}, and use ⊙𝑘

𝑖=1 𝑠𝑖 as a shorthand
for the sequential composition of 𝑘 statements 𝑠1; . . . ; 𝑠𝑘 .

The core principle behind our encoding is that statements that directly
change the state are duplicated for each execution and made conditional
under the respective activation variables, whereas control statements
are not duplicated and instead manipulate the activation variables to
pass activation information to their sub-statements. This enables us to
assert or assume relational assertions before and after any statement
from the original program. The only state-changing statements in our
language, variable assignments and havocs, are therefore transformed to
a sequence of conditional assignments or havocs, one for each execution.
Each one is executed only if the respective execution is currently active.
Similarly, assert and assume statements should only check and assume that
an assertion is true for active executions, and are therefore treated in the
same way.

Duplicating conditionals would also duplicate the calls and loops in
their branches. To avoid that, modular products eliminate top-level
conditionals; instead, new activation variables are created and assigned
the values of the current activation variables conjoined with the guard
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for each branch. The branches are then sequentially executed based on
their respective activation variables.

A while loop is transformed to a single while loop in the product program
that iterates as long as the loop guard is true for any active execution.
Inside the loop, fresh activation variables indicate whether an execution
reaches the loop and its loop condition is true. In particular, if the number
of iterations of a loop differs between executions, there will be iterations
where the fresh activation variables will be false for the executions that no
longer iterate, but true for the others. The loop body will then modify the
state of an execution only if its activation variable is true. The resulting
construct affects the program state in the same way as a self-composition
of the original loop would, but the fact that our product contains only
a single loop enables us to use relational loop invariants instead of full
functional specifications. In particular, we do not require that loops iterate
the same number of times for all executions in order to use relational
loop invariants; it is sufficient that the iterations that are performed by
only some of the executions preserve the relational invariant.

Once the loop condition is false for all active executions, the loop in the
product will no longer be executed. As a result, the loop in the product is
guaranteed to terminate if the loop execution terminates in all executions
of the original program.

For method calls, it is crucial that the product contains a single call for
every call in the original program, in order to be able to apply relational
specifications at the call site. As explained before, initial activation
parameters are added to every method declaration, and all parameters
are duplicated 𝑘 times. method calls are therefore transformed such
that the values of the current activation variables are passed, and all
arguments are passed once for each execution. The return values are
stored in temporary variables and subsequently assigned to the actual
target variables only for those executions that actually execute the call,
so that for all other executions, the target variables are not affected.

The transformation wraps the call in a conditional so that it is performed
only if at least one execution is active. This prevents the transformation
from introducing infinite recursion that is not present in the original
program.

Note that for an inactive execution 𝑖, arbitrary argument values are passed
in method calls, since the passed variables 𝑎 𝑗 (𝑖) are not initialized. This is
unproblematic because these values will not be used by the method. It is
important to not evaluate 𝑒 𝑗

(𝑖) for inactive executions, since this could
lead to false alarms for languages where expression evaluation can fail.
Note that expression evaluation in our language is side-effect free; for a
language with effectful expression evaluation, the product construction
would have to be adapted slightly. In particular, the condition expressions
in loops and conditionals would have to be evaluated exactly once per
execution of the loop or conditional, which could easily be achieved by
assigning them to additional auxiliary variables before using them in the
product.
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3.3.2. Transformation of Assertions

We now define how to transform unary and relational assertions for use
in a modular product.

Unary assertions such as ordinary method preconditions describe state
properties that should hold for every single execution. When checking or
assuming that a unary assertion holds at a specific point in the program,
we need to take into account that it only makes sense to do so for
executions that actually reach that program point. We can express this
by making the assertion conditional on the activation variable of the
respective execution; as a result, any unary assertion holds trivially for
all inactive executions.

A 𝑘-relational assertion, on the other hand, describes the relation be-
tween the states of multiple executions executions. Typically, to prove
a 𝑘-relational property, assertions will relate all 𝑘 executions; however,
some intermediate assertions (e.g., loop invariants or postconditions of
auxiliary methods) may need to relate some subset of the executions to
summarize their relative behavior in the case where other executions
do not reach a program point. We say that an execution is relevant w.r.t.
a relational assertion if a variable from this execution is syntactically
referenced in the assertion. Checking or assuming a relational assertion
at some point is meaningful only if all relevant executions actually reach
that point. This can be expressed by making relational assertions condi-
tional on the conjunction of the current activation variables of all relevant
executions. If at least one relevant execution does not reach the assertion,
it holds trivially.

Assertions can be transformed for use in a 𝑘-product as follows:

▶ The transformation ⌊𝑃⌋ �̊�
𝑘

of a unary assertion 𝑃 is ∧𝑘
𝑖=1(𝑝(𝑖) ⇒ 𝑃(𝑖)).

▶ The transformation ⌊�̂�⌋ �̊�
𝑘

of a 𝑘-relational assertion �̂� with the
activation variables 𝑝(1) , . . . , 𝑝(𝑘) and relevant executions 𝑅 ⊆
{1, . . . , 𝑘} is (∧𝑖∈𝑅 𝑝(𝑖)) ⇒ �̂�.

Importantly, our approach allows using mixed assertions and specifica-
tions, which represent conjunctions of unary and relational assertions.
For example, it is common to combine a unary precondition that ensures
that a method will not raise an error with a relational postcondition that
states that it is deterministic.

A mixed assertion �̌� of the form 𝑃 ∧ �̂� means that the unary assertion 𝑃

holds for every single execution, and if all relevant executions are currently
active, the relational assertion �̂� holds as well. The transformation of
mixed assertions is straightforward: ⌊�̌�⌋ �̊�

𝑘
= ⌊𝑃⌋ �̊�

𝑘
∧ ⌊�̂�⌋ �̊�

𝑘
.

3.3.3. Heap-Manipulating Programs

The approach outlined so far can easily be extended to programs that
work on a mutable heap, assuming that object references are opaque, i.e.,
they cannot be inspected or used in arithmetic. There are two distinct
ways of achieving this, each of which uses a different way of creating
distinct state spaces for different executions:
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1. One way is to duplicate allocation (new) statements for each execu-
tion and make them conditional like assignments, thereby creating
a different object for each active execution. The renaming of a field
dereference 𝑒. 𝑓 is then defined as 𝑒(𝑖). 𝑓 . As a result, the heap of a
𝑘-product will consist of 𝑘 partitions that do not contain references
to each other, and execution 𝑖 will only ever interact with objects
from its partition of the heap.

2. Alternatively, one can create only a single new statement for every
new in the original program, and duplicate the fields each object
has. The renaming of a field dereference 𝑒. 𝑓 is then defined as
𝑒(𝑖). 𝑓 (𝑖). This approach has the effect that newly-created objects will
be considered to be equal between different executions.
Since references allocated at the same point might not actually
be equal between two program executions, such an encoding can
be useful because it gives a meaning to the idea that a reference
might be low when verifying non-interference properties; however,
it is sound only in programming languages where references
are opaque, i.e., their concrete values cannot be inspected, but
can only be checked for equality. Additionally, such an encoding
weakens the verified property to an object-sensitive version of non-
interference [15, 27, 29, 33, 99, 165], where values are considered
low if they are equal modulo a consistent renaming of references.
In our implementation, which we will discuss later, we choose this
second encoding.

The verification of modular products of heap-manipulating programs
does not depend on any specific way of achieving framing. Our implemen-
tation is based on implicit dynamic frames [199], but other approaches, in
particular flavors of separation logic [180], are feasible as well, provided
that methods can be specified in such a way that the caller knows the
heap stays unmodified for all executions whose activation variables are
false. With implicit dynamic frames, this is the case, because a permission
assertion acc(𝑒. 𝑓 ) in a callee’s pre- or postcondition will be transformed to
an assertion 𝑝(𝑖) ⇒ acc(𝑒. 𝑓 (𝑖)) for each execution 𝑖, meaning that the caller
only gives up and gets back field permissions for active executions, and
can therefore frame information about the fields of all inactive executions
around the call.

Since the handling of the heap is largely orthogonal to our main tech-
nique, we will not go into further detail here, but we do support heap-
manipulating programs in our implementation.

3.3.4. Discussion

One obvious property of the product construction is that it introduces a
high number of branching statements into the transformed programs,
which can make it expensive to reason about them using some analysis
and verification techniques. However, since the product construction
enables modular reasoning about loops and method calls, verifiers have
to reason only about small pieces of code at a time and can check
different methods independently from one another. Moreover, the ability
to use relational specifications tends to make specifications simpler
(and therefore easier to prove) in many cases. Additionally, the specific
structure of the generated program (e.g., many branches on the same
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condition, many identical statements on mirrored states) makes it very
efficient to reason about the generated program using some standard
techniques, as we will show in Sec. 3.6.

A limitation of our approach is that, while the product construction is
complete in principle, relational specifications can only be used to relate
the same loop or method call in multiple executions, but not different
loops or calls. As an example, for the program if (𝑒) {𝑚()} else {𝑚()},
relational specifications for 𝑚 cannot be used to relate the behavior of
the call in the then-branch to the one in the else-branch. Note, however,
that in this case, a full functional specification of 𝑚 will still be sufficient
to prove any relational property of the program; modular product
programs are therefore never weaker or require more specification than
self-composition. Some approaches from the related field of program
equivalence are able to relate different calls and loops [98, 119]. However,
this ability comes at a cost (e.g., losing the ability to reason about the
resulting program using separation logic, or to perform standard static
analyses on it), which we discuss in more detail in Sec. 3.7.
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J𝑠1; 𝑠2K
�̊�

𝑘
= J𝑠1K

�̊�

𝑘
; J𝑠2K

�̊�

𝑘

JskipK�̊�
𝑘

= skip

J𝑥:=𝑒K�̊�
𝑘

=
⊙𝑘

𝑖=1 if (𝑝(𝑖)) {𝑥(𝑖):=𝑒(𝑖)}
Jassert 𝑒K�̊�

𝑘
=

⊙𝑘
𝑖=1 if (𝑝(𝑖)) {assert 𝑒(𝑖)}

Jassume 𝑒K�̊�
𝑘

=
⊙𝑘

𝑖=1 if (𝑝(𝑖)) {assume 𝑒(𝑖)}
Jhavoc 𝑥K�̊�

𝑘
=

⊙𝑘
𝑖=1 if (𝑝(𝑖)) {havoc 𝑥(𝑖)}

Jif (𝑒) {𝑠1} else {𝑠2}K�̊�𝑘 =
⊙𝑘

𝑖=1(𝑝1
(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));⊙𝑘

𝑖=1(𝑝2
(𝑖):=𝑝(𝑖) ∧ ¬𝑒(𝑖));

J𝑠1K
𝑝1
𝑘

; J𝑠2K
𝑝2
𝑘

where
fresh(𝑝1) ∧ fresh(𝑝2)

Jwhile (𝑒) {𝑠}K�̊�
𝑘

= while (∨𝑘
𝑖=1(𝑝(𝑖) ∧ 𝑒(𝑖))) {⊙𝑘

𝑖=1(𝑝1
(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));

J𝑠K𝑝1
𝑘

}
where
fresh(𝑝1)

J𝑥1 , . . . , 𝑥𝑛 := 𝑓 (𝑒1 , . . . , 𝑒𝑚)K�̊�𝑘 = if (∨𝑘
𝑖=1 𝑝

(𝑖)) {⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

t:= 𝑓 (𝑝(1) , . . . , 𝑝(𝑘) , a);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

}
where
fresh(𝑎1 , . . . , 𝑎𝑚) ∧ fresh(𝑡1 , . . . , 𝑡𝑛)
a = [𝑎1 , . . . , 𝑎𝑚]
t = [𝑡1 , . . . , 𝑡𝑛]

Figure 3.5.: Construction rules for statement products.
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3.4. Soundness and Completeness

A product construction is sound if an execution of a 𝑘-product mirrors
𝑘 separate executions of the original program such that a property of
a product execution reflects a hyperproperty of the original program.
Similarly, the construction is complete if for any hyperproperty of the
original program, the corresponding property holds for the product.

In this section, we first prove, based on the operational semantics of our
language, that every execution of a 𝑘-product is simulated by 𝑘 execu-
tions of the original program. In particular, if the product of a statement
is executed from a store that mirrors 𝑘 original stores and terminates
normally then executing the original statement from any of the 𝑘 original
stores will also terminate normally, and the final store of the product
will mirror the final original stores. Subsequently, we show the reverse,
namely that any set of 𝑘 executions can be simulated by a product execu-
tion. Additionally, we show that the termination behavior of modular
product programs mirrors that of the underlying original executions: If
a set of executions terminates, the product execution that mirrors it is
guaranteed to terminate as well; conversely, normally-terminating prod-
uct executions correspond to sets of terminating executions. We discuss
the remaining case (the product terminates abnormally) below. Finally,
we show how properties of a product program relate to hyperproperties
of the original program. In particular, we prove that if a transformed re-
lational specification holds for a product program, the original relational
specification holds for the original program (soundness), and, conversely,
that if a relational specification holds for a program, the transformed
specification holds for its product program (completeness).

3.4.1. Preliminaries

Throughout this section, we will denote statements, stores and method
mappings of product programs by 𝑠, 𝜎, and Φ, respectively, and state-
ments, stores and mappings of the original (non-product) executions by
𝑠, 𝜎, and Φ.

We first define what it means for the store of a product program to mirror
the stores of multiple original executions. Stores in product executions
contain renamed versions of the stores of the original program executions.
By 𝜎 ∈𝑖 𝜎 we denote that 𝜎 contains an 𝑖-renamed version of all variables
in 𝜎 and no other 𝑖-renamed program variables, and the values of those
variables agree in both stores.

Definition 3.4.1 𝜎 ∈𝑖 𝜎 if and only if (∀𝑥 ∈ PVar. (𝑥(𝑖) ∈ 𝑑𝑜𝑚(𝜎) ⇔
𝑥 ∈ 𝑑𝑜𝑚(𝜎)) ∧ (𝑥(𝑖) ∈ 𝑑𝑜𝑚(𝜎) ⇒ 𝜎(𝑥) = 𝜎(𝑥(𝑖))), where PVar is the

set of variable names used in the original program, and RPVar is the set of

all renamed versions of all variables in PVar; i.e., 𝑥 ∈ PVar ⇔ (∀𝑖. 𝑥(𝑖) ∈
RPVar.)

We assume that all fresh variable names picked during the product
construction are not in RPVar, so that this definition allows 𝜎 to contain
𝑖-renamed auxiliary or activation variables that have no counterpart in
𝜎.
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Similarly, we use the relation 𝜎 ≼𝑉
𝑖
𝜎′, where 𝑉 is a set of variable names,

to say that 𝜎′ contains all variables in 𝜎 that belong to the 𝑖-th execution
and maps them to the same values, except for the variables in𝑉 :

Definition 3.4.2 𝜎 ≼𝑉
𝑖
𝜎′ if and only if∀𝑥. 𝑥(𝑖) ∉ 𝑉 ⇒ (𝑥(𝑖) ∈ 𝑑𝑜𝑚(𝜎) ⇒

𝑥(𝑖) ∈ 𝑑𝑜𝑚(𝜎′) ∧ 𝜎(𝑥(𝑖)) = 𝜎′(𝑥(𝑖))), where 𝜎 ≼𝑉 𝜎′ denotes that this is

true for all executions, i.e., 𝜎 ≼𝑉 𝜎′ ⇔ ∀𝑖 ∈ {1, . . . , 𝑘}. 𝜎 ≼𝑉
𝑖
𝜎′.

Note that both of this relation is reflexive.

We call freshvars(𝑠), where 𝑠 = J𝑠K�̊�
𝑘

for some 𝑘, �̊�, and 𝑠, the set of
variables used as fresh variables in the construction of 𝑠. For conve-
nience, we abbreviate 𝜎 ≼freshvars(𝑠) 𝜎′ as 𝜎 ≼𝑠 𝜎′ and 𝜎 ≼

freshvars(𝑠)
𝑖

𝜎′ as
𝜎 ≼

𝑠

𝑖
𝜎′. Additionally, we denote 𝜎 ≼RPVar∪freshvars(𝑠) 𝜎′ as 𝜎 ≾𝑠 𝜎′ and

𝜎 ≼
RPVar∪freshvars(𝑠)
𝑖

𝜎′ as 𝜎 ≾𝑠
𝑖
𝜎′.

Finally, we denote the free variables in a mixed assertion �̌� as fv(�̌�).

We prove soundness and completeness under the assumption that all
methods referenced by our product program have been transformed to
their modular products. This means that for an original program with
methods Φ, the product has methods Φ such that

∀ 𝑓 .Φ( 𝑓 ) = ([𝑞1 , . . . , 𝑞𝑛], [𝑟1 , . . . , 𝑟𝑚], 𝑠) ⇔ Φ( 𝑓 ) = (args, rets, J𝑠K�̊�
𝑘
)

where args = �̊� , 𝑞1 , . . . , 𝑞𝑛 and rets = 𝑟1 , . . . , ˚𝑟𝑚 , and the parameters �̊�

corresponding to activation variables are not in RPVar. If this is the case,
we say that match(Φ,Φ).

We start by showing that our notion of mirrored stores has the intended
effect, namely, that evaluating an expression in a store results in the same
value as evaluating a renamed expression in a store that mirrors the
original store:

Lemma 3.4.1 If 𝜎 ∈𝑖 𝜎 and fv(𝑒) ⊆ PVar then 𝑒(𝑖) ⇓𝜎 𝑣 ⇔ 𝑒 ⇓𝜎 𝑣.

Proof. By induction on the structure of 𝑒. For the case 𝑒 = 𝑥, the proof
follows trivially from the definition of ∈𝑖 ; for all others, it is either
immediate or follows from applying the induction hypothesis to the
subexpressions. □

3.4.2. Properties of Product Executions

We can now establish properties of modular product programs on the
level of the operational semantics.

3.4.2.1. Normal Executions Simulate Product Executions

The first result we prove is that each execution of a product that terminates
normally is simulated by a normally-terminating execution of the original
statement for the executions whose activation variables are true, and the
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parts of the product’s store belonging to executions whose activation
variables are false do not change.

Theorem 3.4.2 Assume that match(Φ,Φ) and that for some sets 𝐴 ⊆
{1, . . . , 𝑘} and 𝐼 = {1, . . . , 𝑘}\𝐴 we have that∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤∧𝜎𝑖 ∈𝑖 𝜎

and ∀𝑖 ∈ 𝐼. 𝑝(𝑖) ⇓𝜎 ⊥. Let {𝑝(1) , . . . , 𝑝(𝑘)} ∩ (RPVar ∪ freshvars(𝑠)) = ∅
and 𝑠 = J𝑠K�̊�

𝑘
and ⟨𝑠, 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩ under Φ.

Then

1. for all 𝑖 ∈ 𝐴, ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′
𝑖
⟩ under Φ for some 𝜎′

𝑖
s.t. 𝜎′

𝑖
∈𝑖 𝜎′,

and 𝜎 ≾
𝑠

𝑖
𝜎′,

2. for all 𝑖 ∈ 𝐼, 𝜎 ≼
𝑠

𝑖
𝜎′.

Proof. The full proof can be found in Appendix A.1.2. The proof goes by
strong induction on the length 𝑙 of the derivation ⟨J𝑠K�̊�

𝑘
, 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩.

We perform a case split on the structure of 𝑠, which determines the
structure of the product 𝑠. The cases for assignments, havocs, assumes,
and assertions are simple using Lemma 3.4.1. For other statements, we
generally perform as many steps of 𝑠 as necessary to get to a configuration
where the statement is again a product program. We show that the product
state in these configuration mirrors the states of (some of) the original
executions, so that we can apply the induction hypothesis. Subsequently,
we construct complete derivations of the original executions and show
that the final states mirror the final state of the product. □

We also prove that products always terminate and do not modify existing
state (except for fresh variables) if all activation variables are false:

Lemma 3.4.3 If, for all 𝑖 ∈ {1, ..., 𝑘}, 𝑝(𝑖) ⇓𝜎 ⊥, then for some 𝜎′, ⟨𝑠 =

J𝑠K�̊�
𝑘
, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ and 𝜎 ≼𝑠 𝜎′.

Proof. By induction on the structure of 𝑠. For simple statements the proof
is immediate. For loops, the condition of the loop in the product must
be false if all activation variables are false, and the product immediately
steps to skip. The same is true for method calls and the condition of the
conditional that wraps the call in the product. The cases for sequential
composition and conditionals follow immediately from applying the
induction hypothesis to the substatements. □

We now show that a product execution terminating abnormally is simu-
lated by a set of executions of which at least one terminates abnormally.

Lemma 3.4.4 Assume that match(Φ,Φ) and that for some sets 𝐴 ⊆
{1, . . . , 𝑘} and 𝐼 = {1, . . . , 𝑘}\𝐴 we have that∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤∧𝜎𝑖 ∈𝑖 𝜎

and ∀𝑖 ∈ 𝐼. 𝑝(𝑖) ⇓𝜎 ⊥. If ⟨𝑠, 𝜎⟩ →𝑙 ⟨¤𝑠, 𝜎′⟩, where 𝑠 = J𝑠K�̊�
𝑘

and ¤𝑠 ≠ skip,
under Φ, then for at least one 𝑖𝑒 ∈ 𝐴, ⟨𝑠, 𝜎𝑖𝑒 ⟩ →∗ ⟨¤𝑠, 𝜎′

𝑖𝑒
⟩ under Φ for some

𝜎′
𝑖𝑒

.
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Proof. The full proof can be found in Appendix A.1.3. The proof goes
by strong induction on 𝑙 and follows roughly the same outline as the
proof for Thm. 3.4.2. We again perform a case split on the structure of
𝑠. We show that the cases for assignments and havocs always terminate
normally, and that product assertions and assumes terminate abnormally
if at least one corresponding assert or assume terminates abnormally
in an original execution (using Lemma 3.4.1). For all other statements,
we perform case splits on which part of the product leads to abnormal
termination. We use Thm. 3.4.2 to reason about the effects of all parts that
are products and terminate normally, and apply the induction hypothesis
to those that do not. □

As a corollary of the previous theorem and lemma, we observe that
terminating product executions are simulated by sets of original execu-
tions that either all terminate, or of which at least one fails. An example
of the latter is a program assert 𝑒1; while (𝑒2) {skip}: If the assertion
fails for one of the original executions but succeeds for all others, the
other executions will diverge, whereas the product execution fails while
executing the product of the assertion.

3.4.2.2. Product Executions Simulate Normal Executions

Now we prove that any set of terminating executions is simulated by a
terminating execution of a modular product. The active executions of
the product each mirror one of the original executions, and its inactive
executions’ state does not change (modulo assignments to fresh variables).
We assume that we can map each of the executions to a distinct index in
the range 1, . . . , 𝑘.

Theorem 3.4.5 Assume that match(Φ,Φ) and that for a set of indices

𝐴 ⊆ {1, . . . , 𝑘} there is a derivation 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ⟨skip, 𝜎′
𝑖
⟩ under Φ

for each 𝑖 ∈ 𝐴. Assume also that 𝜎𝑖 ∈𝑖 𝜎 and 𝑝(𝑖) ⇓𝜎 ⊤ for all 𝑖 ∈ 𝐴, and

𝑝(𝑖) ⇓𝜎 ⊥ for any 𝑖 ∈ 𝐼, where 𝐼 = {1, . . . , 𝑘} \ 𝐴.

Then ⟨𝑠, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩, where 𝑠 = J𝑠K�̊�
𝑘
, under Φ for some 𝜎′ s.t. for all

𝑖 ∈ 𝐴, 𝜎′
𝑖
∈𝑖 𝜎′ and 𝜎 ≾

𝑠

𝑖
𝜎′, and for all 𝑖 ∈ 𝐼, 𝜎 ≼

𝑠

𝑖
𝜎′.

Proof. The full proof can be found in Appendix A.1.4. The proof goes by
strong induction on the sum of the lengths of derivations 𝑙 =

∑
𝑖∈𝐴 𝑙𝑖 .

For 𝑙 = 0 and |𝐴| = 0, the conclusion follows from Lemma 3.4.3. If
𝑙 = 0 and |𝐴| ≠ 0 then 𝑠 = skip and the conclusion follows trivially.
For 𝑙 > 0 we perform a case split on the structure of 𝑠. The cases for
assignments, asserts, assumes, and havocs are essentially the reverse
of the corresponding cases in the proof of Thm. 3.4.2. For all other
statements, we identify sets of traces that proceed in the same way
and show using the induction hypothesis that the product executes
subproducts that mirror the executions for those sets. □

Similarly to before, we now show that any set of terminating traces, at
least one of which ends abnormally, is mirrored by a product execution
that ends abnormally.
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Lemma 3.4.6 Assume that for a set of indices 𝐴 s.t. |𝐴| = 𝑗 and 1 ≤ 𝑗 ≤ 𝑘

and 𝐴 ⊆ {1, . . . , 𝑘} there is a derivation 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ⟨¤𝑠𝑖 , 𝜎′𝑖⟩, where

¤𝑠𝑖 ∈ {skip, error, magic}, under Φ for each 𝑖 ∈ 𝐴. Assume given 𝐴𝑠 ⊂ 𝐴

and 𝐴𝑒 = 𝐴\𝐴𝑠 s.t. for all 𝑖 ∈ 𝐴𝑒 , ¤𝑠𝑖 ≠ skip, and for all 𝑖 ∈ 𝐴𝑠 , ¤𝑠𝑖 = skip.
Assume also that 𝜎𝑖 ∈𝑖 𝜎 and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴, and 𝜎(𝑝(𝑖)) = ⊥ for

any 𝑖 ∈ 𝐼, where 𝐼 = {1, . . . , 𝑘} \ 𝐴.

Then ⟨𝑠, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ under Φ, where 𝑠 = J𝑠K�̊�
𝑘
, for some 𝜎′ and ¤𝑠 s.t.

∃𝑖 ∈ 𝐴𝑒 . ¤𝑠𝑖 = ¤𝑠.

Proof. The full proof can be found in Appendix A.1.5. The proof follows
roughly the same outline as the proof for Thm. 3.4.5. We again perform
a case split on the structure of 𝑠, and a further case split on which part
of the original executions lead to errors. We use Thm. 3.4.5 to reason
about successful executions of substatements that are products, and
apply the induction hypothesis to the executions of failing product
substatements. □

As a corollary, we observe that if a set of executions terminates, the
corresponding product execution always terminates as well.

3.4.3. Provable Properties

We now show that since product executions mirror sets of executions
of the original program, it follows that properties that hold for product
programs correspond to hyperproperties of the original programs.

In particular, we prove soundness, i.e., if a transformed relational specifi-
cation holds for a product program then the relational specification holds
for sets of executions of the original program. Conversely, we show com-
pleteness, i.e., for any hyperproperty which holds for multiple executions
of a program, the transformed property holds for its product.

First, we lift the correspondence of expression evaluation in product
stores and original stores to unary assertions, and show that a product
store that mirrors the original stores of all active executions fulfills a
transformed assertion if and only if the original stores fulfill the original
assertion.

Lemma 3.4.7 If 𝐴 ⊆ {1, . . . , 𝑘} and ∀𝑖 ∈ 𝐴. 𝜎𝑖 ∈𝑖 𝜎 ∧ 𝑝(𝑖) ⇓𝜎 ⊤ and

∀𝑖 ∈ {1, . . . , 𝑘} \ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊥ and fv(𝑃) ⊆ PVar then (∧𝑖∈𝐴 𝜎𝑖 ⊨ 𝑃) ⇔
𝜎 ⊨ ⌊𝑃⌋ �̊�

𝑘
.

Proof. Both directions of the proof go by induction on the structure of 𝑃.
Cases relating to expressions follow from Lemma 3.4.1; all others follow
from using the induction hypothesis on subassertions. □

Second, we show that the same property holds for tuples of stores and
mixed assertions (and therefore relational assertions as well).
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Lemma 3.4.8 If ∀𝑖 ∈ {1, . . . , 𝑘}. 𝜎𝑖 ∈𝑖 𝜎 ∧ 𝑝(𝑖) ⇓𝜎 ⊤ and fv(�̌�) ⊆ PVar

then (𝜎1 , . . . , 𝜎𝑘) ⊨ �̌� ⇔ 𝜎 ⊨ ⌊�̌�⌋ �̊�
𝑘
.

Proof. Both directions of the proof go by induction on the structure of
�̌�. Cases relating to unary assertions are covered by Lemma 3.4.7; cases
relating to expressions follow from Lemma 3.4.1; all others follow from
the induction hypothesis on subassertions. □

We can now prove the soundness theorem: If a transformed relational
specification holds for a modular 𝑘-product program, then the relational
specification holds for any 𝑘 executions of the original program.

Theorem 3.4.9 If ⊨ {⌊�̌�⌋ �̊�
𝑘
}J𝑠K�̊�

𝑘
{⌊�̌�⌋ �̊�

𝑘
} then ⊨ {{�̌�}}𝑠{{�̌�}}𝑘

Proof. We have to show that for all (𝜎1 , . . . , 𝜎𝑘) s.t. (𝜎1 , . . . , 𝜎𝑘) ⊨ �̌�, if for
all 𝑖 ∈ {1, . . . , 𝑘} ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ for some 𝜎′

𝑖
and ¤𝑠𝑖 ∈ {skip, error},

then all ¤𝑠𝑖 = skip and (𝜎′1 , . . . , 𝜎′𝑘) ⊨ �̌�.

Since we have ⊨ {⌊�̌�⌋ �̊�
𝑘
}J𝑠K�̊�

𝑘
{⌊�̌�⌋ �̊�

𝑘
}, we know that if 𝜎 ⊨ ⌊�̌�⌋ �̊�

𝑘
and

⟨J𝑠K�̊�
𝑘
, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ where ¤𝑠 ∈ {skip, error, magic}, then either ¤𝑠 =

magic or ¤𝑠 = skip ∧ 𝜎′ ⊨ ⌊�̌�⌋ �̊�
𝑘
.

We choose 𝜎 s.t. 𝑝(𝑖) ⇓𝜎 ⊤ and 𝜎𝑖 ∈𝑖 𝜎 for all 𝑖 ∈ {1, . . . , 𝑘}. By
Lemma 3.4.8 we have that 𝜎 ⊨ ⌊�̌�⌋ �̊�

𝑘
.

Assume that for all 𝑖 we have ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ (otherwise the proof
goal is trivially true).

▶ If all ¤𝑠𝑖 = skip, then by Thm. 3.4.5 this implies that there is a product
execution ⟨J𝑠K�̊�

𝑘
, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ for some 𝜎′. By Thm. 3.4.2 we

then have that that 𝜎′ ⊨ ⌊�̌�⌋ �̊�
𝑘

and for all 𝑖 ∈ {1, . . . , 𝑘}, 𝜎′(𝑝(𝑖)) = ⊤
and 𝜎′

𝑖
∈𝑖 𝜎′. By Lemma 3.4.8 we have (𝜎′1 , . . . , 𝜎′𝑘) ⊨ �̌�.

▶ Otherwise: If all ¤𝑠𝑖 ≠ error, we must have that some ¤𝑠𝑖 = magic,
in which case we are done. If some ¤𝑠𝑖 = error we case split on the
structure of the precondition �̌�:

• If �̌� = 𝑃′ for some𝑃′: Then we trivially have that ⊨ {{�̌�}}𝑠{{�̌�}}𝑘 .
• If �̌� = 𝑃′ for some𝑃′: Then we can choose some 𝜎′′ s.t. 𝜎(𝑝(𝑖)) =

⊤ and 𝜎𝑖 ∈𝑖 𝜎′′ and 𝜎(𝑝(𝑗)) = ⊥ for all 𝑗 ≠ 𝑖. By Lemma 3.4.7
we have that 𝜎′′ ⊨ ⌊�̌�⌋ �̊�

𝑘
. Then by Thm. 3.4.6 this implies that

there is a product execution ⟨J𝑠K�̊�
𝑘
, 𝜎′′⟩ →∗ ⟨error, 𝜎′′′⟩ for

some 𝜎′′′, which is impossible because ⊨ {⌊�̌�⌋ �̊�
𝑘
}J𝑠K�̊�

𝑘
{⌊�̌�⌋ �̊�

𝑘
}.

• If �̌� = 𝑃′ ∧ 𝑃′′ for some 𝑃′, 𝑃′′: Then this case is impossible
for the same reason as in the previous case.

□

Similarly, we prove completeness: If some unary precondition 𝑃 guar-
antees that a program executes without errors, and some relational
specification expressing a hyperproperty holds for the program, then the
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transformed version of the resulting mixed specification holds for the
modular product program.

The unary precondition 𝑃 is necessary to guarantee that the product
program does not fail in executions where some activation variables are
false and a 𝑘-relational precondition is therefore not required to hold.
As an example, the program 𝑠 = assert 𝑥 > 0 fulfills the relational
specification {{𝑥(1) > 0 ∧ 𝑥(2) > 0}}𝑠{{true}}2; however, ⌊𝑥(1) > 0 ∧ 𝑥(2) >

0⌋ �̊�2 = (𝑝(1) ∧ 𝑝(2) ⇒ 𝑥(1) > 0 ∧ 𝑥(2) > 0), and a store [𝑝(1) ↦→ ⊥, 𝑝(2) ↦→
⊤, 𝑥(1) ↦→ 0, 𝑥(2) ↦→ 0] therefore fulfills the transformed precondition but
raises an error when the product is executed. This is not a limitation in
practice, since the unary precondition that guarantees error-free execution
can always be extracted from a relational specification; in the example,
we can replace the relational precondition 𝑥(1) > 0 ∧ 𝑥(2) > 0 by a unary
precondition 𝑥 > 0.

Theorem 3.4.10 Let �̂� and �̂� be 𝑘-relational assertions, and ⊨ {𝑃}𝑠{true}
and ⊨ {{�̂�}}𝑠{{�̂�}}𝑘

Then ⊨ {⌊𝑃 ∧ �̂�⌋ �̊�
𝑘
}J𝑠K�̊�

𝑘
{⌊�̂�⌋ �̊�

𝑘
}.

Proof. We first show that for all 𝜎 s.t. 𝜎 ⊨ ⌊𝑃∧ �̂�⌋ �̊�
𝑘
, if ⟨J𝑠K�̊�

𝑘
, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩

for some ¤𝑠, 𝜎′, then ¤𝑠 = magic or ¤𝑠 = skip ∧ 𝜎′ ⊨ ⌊�̂�⌋ �̊�
𝑘
.

Assume that 𝜎 ⊨ ⌊𝑃 ∧ �̂�⌋ �̊�
𝑘

and ⟨J𝑠K�̊�
𝑘
, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ (otherwise the goal

is trivially true).

▶ If ¤𝑠 ≠ skip then we get by Lemma 3.4.4 that for some 𝑖 ∈ {1, . . . , 𝑘},
𝜎(𝑝(𝑖)) = ⊤, and for any 𝜎𝑖 s.t. 𝜎𝑖 ∈𝑖 𝜎 we have ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠, 𝜎′

𝑖
⟩

for some 𝜎′
𝑖
.

• If ¤𝑠 = magic then the specification holds trivially.
• If ¤𝑠 = error then we choose some such 𝜎𝑖 and by Lemma 3.4.7

we get that 𝜎𝑖 ⊨ 𝑃. But since ⊨ {𝑃}𝑠{true} we have that if
⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠′

𝑖
, 𝜎′

𝑖
⟩ then ¤𝑠′

𝑖
≠ error. Therefore we cannot have

that ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨error, 𝜎′
𝑖
⟩, and this case is impossible.

▶ If ¤𝑠 = skip, then we have by Thm. 3.4.2 that for all 𝑖 s.t. 𝜎(𝑝(𝑖)) = ⊤,
⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩ for some 𝜎′

𝑖
s.t. 𝜎′

𝑖
∈𝑖 𝜎′ and 𝜎′(𝑝(𝑖)) = ⊤.

• If ∀𝑖 ∈ {1, . . . , 𝑘}. 𝜎(𝑝(𝑖)) = ⊤, then we have that also ∀𝑖 ∈
{1, . . . , 𝑘}. 𝜎′(𝑝(𝑖)) = ⊤. Then by Lemma 3.4.8, we have that
𝜎′ ⊨ ⌊�̂�⌋ �̊�

𝑘
.

• If ∃𝑖 ∈ {1, . . . , 𝑘}. 𝜎(𝑝(𝑖)) = ⊥, then we have that for said 𝑖,
𝜎′(𝑝(𝑖)) = ⊥. Since ⌊�̂�⌋ �̊�

𝑘
= (∧𝑘

𝑖=1 𝑝
(𝑖)) ⇒ �̂�, we trivially have

that 𝜎′ ⊨ ⌊�̂�⌋ �̊�
𝑘
.

Therefore we have ⊨ {⌊𝑃 ∧ �̂�⌋ �̊�
𝑘
}J𝑠K�̊�

𝑘
{⌊�̂�⌋ �̊�

𝑘
}. □

3.5. Modular Verification of Non-Interference

In this section, we demonstrate the expressiveness of modular product
programs by showing how they can be used to verify non-interference, an
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important hyperproperty which can be used to express both information
flow security and integrity. To simplify the presentation, we will describe
our approach exclusively in terms of information flow security through-
out; the methodology for showing integrity properties is exactly the
same but uses different labels. We first concentrate on secure information
flow in the classical sense [221], and later demonstrate how the ability to
check relational assertions at any point in the program can be exploited
to prove advanced properties like the absence of timing and termination
channels, and to encode declassification.

3.5.1. Non-Interference

Properties like secure information flow that describe that some (secret)
program inputs do not influence (public) program outputs can be ex-
pressed as a 2-safety hyperproperty of a program called non-interference.
Non-interference states that, if a program is run twice, with the public
(low-sensitivity, often just called low) inputs being equal in both runs
but the secret (high-sensitivity, or high) inputs possibly being different,
the public outputs of the program must be equal in both runs [25].
This property guarantees that the high inputs do not influence the low
outputs.

We can formalize non-interference as follows:

Definition 3.5.1 A program 𝑠 with a set of input variables 𝐼 and output

variables 𝑂, of which some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies

noninterference iff for all 𝜎1 , 𝜎2 and 𝜎′1 , 𝜎
′
2, if ∀𝑥 ∈ 𝐼𝑙 . 𝜎1(𝑥) = 𝜎2(𝑥) and

⟨𝑠, 𝜎1⟩ →∗ ⟨skip, 𝜎′1⟩ and ⟨𝑠, 𝜎2⟩ →∗ ⟨skip, 𝜎′2⟩ then ∀𝑥 ∈ 𝑂𝑙 .𝜎′1(𝑥) =
𝜎′2(𝑥).

As stated above, the same definition can be applied to the setting of
integrity properties if the labels are switched: In this setting, the low-

integrity inputs must not influence the high-integrity outputs.

Since our definition of non-interference describes a hyperproperty, we
can verify it using modular product programs:

Theorem 3.5.1 A program 𝑠 with a set of input variables 𝐼 and output

variables 𝑂, of which some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies

non-interference under a unary precondition 𝑃 if ⊨ {⌊𝑃⌋ �̊�2 ∧ (∧𝑥∈𝐼𝑙 𝑥
(1) =

𝑥(2))}J𝑠K�̊�2 {∀𝑥 ∈ 𝑂𝑙 . 𝑥
(1) = 𝑥(2)}

Proof. Since non-interference can be expressed using a 2-relational speci-
fication, the theorem follows directly from Theorem 3.4.9. □

An expanded notion of secure information flow considers observable
events in addition to regular program outputs [89]. An event is a statement
that has an effect that is visible to an outside observer, but may not
necessarily affect the program state. The most important examples of
events are output operations like printing a string to the console or
sending a message over a network. Programs that cause events can be
considered information flow secure only if the sequence of produced
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events is not influenced by high data. One way to verify this using our
approach is to track the sequence of produced events in a ghost variable
and verify that its value never depends on high data. This approach
requires substantial amounts of additional specifications.

Modular product programs offer an alternative approach for preventing
leaks via events, since they allow formulating assertions about the relation
between the activation variables of different executions. In particular,
if a given event has the precondition that all activation variables are
equal when the event statement is reached then this event will either
be executed by both executions or be skipped by both executions. As a
result, the sequence of events produced by a program will be equal in all
executions.

3.5.2. Information Flow Specifications

The relational specifications required for modularly proving non-interference
with the previously described approach have a specific pattern: they can
contain functional specifications meant to be valid for both executions
(e.g., to make sure both executions run without errors), they may require
that some information is low, which is equivalent to the two renamings
of the same expression being equal, and, in addition, they may assert
that the control flow at a specific program point is low.

We therefore introduce modular information flow specifications, which can
express properties required for proving secure information flow but
are transparent w.r.t. the encoding or the verification methodology, i.e.,
they allow expressing that a given event or value must not be secret
without knowledge of the encoding of this fact into an assertion about two
different program executions. We define information flow specifications
as follows:

(SIFAssertions) �̃� ::= �̃� ∧ �̃� | 𝑒 | low(𝑒) | lowEvent | ∀𝑥. �̃�
| 𝑒 ⇒ 𝑒 | 𝑒 ⇒ low(𝑒) | low(𝑒) ⇒ low(𝑒)
| 𝑒 ⇒ lowEvent

low(𝑒) specifies that the value of the expression 𝑒 is not influenced by
high data. Note that 𝑒 can be any expression and is not limited to variable
references; this reflects the fact that our approach can label secrecy in a
more fine-grained way than, e.g., a type system; one can, for example,
declare to be public whether a number is odd while keeping its value
secret.

lowEvent specifies that high data must not influence if and how often
the current program point is reached by an execution, which is a suf-
ficient precondition of any statement that causes an observable event.
In particular, if a method outputs an expression 𝑒, the precondition
lowEvent ∧ low(𝑒) guarantees that no high information will be leaked via
this method.

Information flow specifications can express complex properties. 𝑒1 ⇒
low(𝑒2), for example, expresses that if 𝑒1 is true, 𝑒2 must not depend
on high data; this is sometimes called value-dependent sensitivity [160].
𝑒1 ⇒ lowEvent says the same about the current control flow. A possible
use case of these assertions is the precondition of a library function that
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⌈𝑒⌉ �̊� = (𝑝(1) ⇒ 𝑒(1)) ∧ (𝑝(2) ⇒ 𝑒(2))
⌈low(𝑒)⌉ �̊� = 𝑝(1) ∧ 𝑝(2) ⇒ 𝑒(1) = 𝑒(2)

⌈lowEvent⌉ �̊� = 𝑝(1) = 𝑝(2)

⌈�̃�1 ∧ �̃�2⌉ �̊� = ⌈�̃�1⌉ �̊� ∧ ⌈�̃�2⌉ �̊�
⌈𝑒1 ⇒ 𝑒2⌉ �̊� = (𝑝(1) ∧ 𝑒1

(1) ⇒ 𝑒2
(1)) ∧ (𝑝(2) ∧ 𝑒1

(2) ⇒ 𝑒2
(2))

⌈𝑒1 ⇒ low(𝑒2)⌉ �̊� = 𝑝(1) ∧ 𝑒1
(1) ∧ 𝑝(2) ∧ 𝑒1

(2) ⇒ 𝑒2
(1) = 𝑒2

(2)

⌈𝑒1 ⇒ lowEvent⌉ �̊� = (𝑝(1) ∧ 𝑒(1) ∨ 𝑝(2) ∧ 𝑒(2)) ⇒ 𝑝(1) = 𝑝2
(2)

⌈low(𝑒1) ⇒ low(𝑒2)⌉ �̊� = 𝑝(1) ∧ 𝑝(2) ∧ 𝑒1
(1) = 𝑒1

(2) ⇒ 𝑒2
(1) = 𝑒2

(2)

⌈∀𝑥. �̃�⌉ �̊� = ∀𝑥(1) , 𝑥(2). 𝑥(1) = 𝑥(2) ⇒ ⌈�̃�⌉ �̊�

Figure 3.6.: Translation of information
flow specifications. The intuition behind
the translation of universal quantifiers is
that we quantify over a single variable 𝑥

but give it two different names 𝑥(1) and
𝑥(2) so that we can transform the body of
the quantifier like any other assertion.

prints 𝑒2 to a low-observable channel if 𝑒1 is true, and to a secure channel
otherwise.

In addition to the two primitives low() and lowEvent, information flow
specifications can also contain ordinary functional specifications for
single executions. These can be used as a fallback if said primitives are
not expressive enough. As an example, for proving that the statement
if (𝑒) {𝑥.𝑚()} else {𝑥.𝑛()} ends with 𝑥 being low, it may be necessary
to give a description of the functional behavior of 𝑚 and 𝑛. Similarly,
if both 𝑚 and 𝑛 perform the same output, requiring the calls to be a
lowEvent (which is sufficient but generally not necessary) is too strong
a requirement, and their functional contracts must model the output
explicitly instead.

Note that high-ness of some expression is not modeled by its renamings
being definitely unequal, but by leaving underspecified whether they
are equal or not, meaning that high-ness is simply the absence of the
knowledge of low-ness. As a result, it is never necessary (or possible) to
specify explicitly that an expression is high. This approach (which is also
used in self-composition) is analogous to the way type systems encode
security levels, where low is typically a subtype of high.

The encoding ⌈�̃�⌉ �̊� of an information flow assertion �̃� under the ac-
tivation variables 𝑝(1) and 𝑝(2) is defined in Figure 3.6. For the exam-
ple in Figure 3.1, a possible, very precise information flow specifica-
tion could say that the results of main are low if the first two bits of
all entries in people is low. We can write this as {low(|people|) ∧ ∀𝑖 ∈
{0, . . . , |people| − 1}. low(people[i] mod 4)}main{low(count)}. In the product,
this will be translated to

p1 ∧ p2 ⇒ (|people1| = |people2|∧
∀𝑖 ∈ {0, . . . , |people1| − 1}.

(people1[i] mod 4) = (people2[i] mod 4))


main

{p1 ∧ p2 ⇒ count1 = count2}

In this scenario, the loop in main could have the simple invariant
low(i) ∧ low(count), and the method is_smoker could have the contract
{true}is_smoker{(low(person mod 4) ⇒ low(res))}. This contract follows a
useful pattern where, instead of requiring an input to be low and promis-
ing that an output will be low for all calls, the output is described as
conditionally low based on the level of the input, which is more permissive
for callers.
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Figure 3.7.: Password check example: Leak-
ing secret data is desired.

1 method check(password, input)
2 returns (result)
3 {
4 result := |password| == |input|;
5 i := 0;
6 while (i < |password| & & result) {
7 result := result & & password[i] == input[i];
8 i := i + 1;
9 }

10 }

[164]: Naumann (2006), ‘From Coupling
Relations to Mated Invariants for Checking
Information Flow’

The example shows that the information required for proving secure
information flow can in many cases be expressed concisely, without
requiring any knowledge about the methodology used for verification.
Modular product programs therefore enable the verification of the
information flow security of main based solely on modular, relational
specifications, and without depending on functional specifications.

3.5.3. Secure Information Flow with Arbitrary Security

Lattices

The definition of secure information flow used in Definition 3.5.1 is
a special case in which there are exactly two possible classifications
of data, high and low. In the more general case, classifications come
from an arbitrary lattice ⟨L, ⊑⟩ of security levels s.t. for some 𝑙1 , 𝑙2 ∈ L,
information from an input with level 𝑙1 may influence an output with
level 𝑙2 only if 𝑙1 ⊑ 𝑙2. Instead of the specification low(𝑒), information
flow assertions can therefore have the form levelBelow(𝑒 , 𝑙), meaning that
the security level of expression 𝑒 is at most 𝑙.

It is well-known that techniques for verifying information flow security
with two levels can conceptually be used to verify programs with arbitrary
finite security lattices [164] by splitting the verification task into |L|
different verification tasks, one for each element of L. Instead, we
propose to combine all these verification tasks into a single task by using
a symbolic value for 𝑙, i.e., declaring an unconstrained global constant
representing 𝑙. Specifications can then be translated as follows:

levelBelow(𝑒 , 𝑙′) =̂ 𝑙′ ⊑ 𝑙 ⇒ 𝑒(1) = 𝑒(2)

Since no information about 𝑙 is known, verification will only succeed if all
assertions can be proven for all possible values of 𝑙, which is equivalent
to proving them separately for each possible value of 𝑙. This approach
is similar to the one used in information flow type systems and logics,
which paramaterize their judgements by a free attacker level.

3.5.4. Declassification

In practice, non-interference is too strong a property for many use cases.
Often, some leakage of secret data is required for a program to work
correctly. Consider the case of a password check (see Figure 3.7): A secret
internal password is compared to a non-secret user input. While the
password itself must not be leaked, the information whether the user
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input matches the password should influence the public outcome of the
program, which is forbidden by non-interference.

To incorporate this intention, the part of the secret information that should
be leaked by the program can be declassified [188], e.g., via a declassification
statement declassify 𝑒 in the style of delimited information release [186]
that declares an arbitrary expression 𝑒 to be low. With modular products
(as with self-composition [211]), declassification can be encoded via a
simple assumption stating that, if the declassification is executed in both
executions, the expression is equal in both executions:

Jdeclassify 𝑒K�̊�2 = assume 𝑝(1) ∧ 𝑝(2) ⇒ 𝑒(1) = 𝑒(2)

Importantly, an assumption of this form can never contradict current
knowledge (i.e., assume false) if the information flow specifications from
Sec. 3.5.2 are used to specify the program. Recall that high-ness is
encoded as the absence of the knowledge that an expression is equal
in both executions, not by the knowledge that they are different. In fact,
the format of information flow specifications makes it impossible to
specify that an expression is definitely not equal in both executions,
since low(𝑒) can only occur in positive positions, i.e., not on the left
side of an implication; the only exception, low(𝑒1) ⇒ low(𝑒2), implies
that 𝑒1

(1) ≠ 𝑒1
(2) only under the condition that one can already prove

𝑒2
(1) ≠ 𝑒2

(2), which as just argued can never happen. As a result, there
is no danger that assuming equality will contradict current knowledge,
since any such assumption (and any combination of such assumptions)
will always be fulfilled if the state of both executions represented in
the product program is completely identical. Nevertheless, assumptions
outside of method contracts can obfuscate what property was actually
proved. In order to get better formal guarantees, one could for example
generate declassification statements based on some declassification policy.
The exact process of doing this, however, is orthogonal our approach. As
in the information flow specifications, the declassified expression can be
arbitrarily complex, so that it is for example possible to declassify the
parity of a number while keeping all other information about it secret.

The example in Fig. 3.7 becomes valid if we add declassify result at the
end of the method, or declassify equal(password, input) at some earlier
point. The latter would arguably be safer because it specifies exactly the
information that is intended to be leaked, and would therefore prevent
accidentally leaking more if the implementation of the checking loop
was faulty.

This kind of declassification has the following interesting properties:
First, it is imperative, meaning that the declassified information may be
leaked (e.g., via a print statement) after the execution of the declassification
statement, but not before. Second, it is semantic, meaning that the declas-
sification affects the value of the declassified expression as opposed to,
e.g., syntactically the declassified variable. As a result, it will be allowed
to leak any expression whose value contains the same (or a part of the)
secret information which was declassified, e.g., the expression 𝑓 (𝑒) if 𝑓

is a deterministic function and 𝑒 has been declassified.

While declassification statements by themselves are quite primitive, they
can be used to implement more complex declassification policies by



106 3. Modular Product Programs

Figure 3.8.: Programs with a termination
channel (left), and a timing channel (right).
In both cases, h is high.

1 method main(h: Int)
2 {
3 while (h != 0) {
4 h := h − 1;
5 }
6 }

1 method main(h: Int)
2 {
3 i := 0;
4 while (i < h) {
5 i := i + 1
6 }
7 print(0)
8 }

making the statements conditional, i.e., by declassifying information
under the condition that some policy is fulfilled.

3.5.5. Preventing Termination Channels

In Definition 3.5.1, we have considered only terminating program execu-
tions. In practice, however, termination is a possible side-channel that
can leak secret information to an outside observer. Figure 3.8 (left) shows
an example of a program that verifies under the methodology presented
so far, but leaks information about the secret input h to an observer: If
h is initially negative, the program will enter an endless loop. Anyone
who can observe the termination behavior of the program can therefore
conclude if h was negative or not.

To prevent leaking information via a termination side channel, it is
necessary to verify that the termination of a program depends only
on public data. We will show that modular product programs are
expressive enough to encode and check this property. We will focus
on preventing non-termination caused by infinite loops here; preventing
infinite recursion works analogously. In particular, we want to prove
that if a loop iterates forever in one execution, any other execution with
the same low inputs will also reach this loop and iterate forever. More
precisely, this means that

(A) if a loop does not terminate, then whether or not an execution
reaches that loop must not depend on high data.

(B) whether a loop that is reached by both executions terminates must
not depend on high data.

We propose to verify these properties by requiring additional speci-
fications that state, for every loop, an exact condition under which it
terminates, i.e., a boolean expression such that the loop terminates if and
only if the expression is true. For Figure 3.8 (left) the condition is ℎ ≥ 0.
We also require a ranking function for the cases when the termination
condition is true. We can then prove the following:

1. If the termination condition of a loop evaluates to false, then any
two executions with identical low inputs either both reach the loop
or both do not reach the loop (i.e., reaching the loop is a low event).
This guarantees property (A) above.

2. For loops executed by both executions, the loop’s termination
condition is low. This guarantees property (B) under the assumption
that the termination condition is exact.

3. The termination condition is sound, i.e., every loop terminates if
its termination condition is true. We prove this by showing that if



3.5. Modular Verification of Non-Interference 107

term(𝑤, 𝑐) = cond:=𝑒𝑐 ;
assert ¬𝑐𝑜𝑛𝑑 ⇒ lowEvent; // checks (a)

assert low(cond); // checks (b)

assert 𝑐𝑜𝑛𝑑 ⇒ 0 ≤ 𝑒𝑟 ; // checks (c)

assert 𝑐 ⇒ cond; // checks (e)

assert ¬𝑐𝑜𝑛𝑑 ⇒ 𝑒; // checks (d)

while (𝑒) do {
if (cond) {rank:=𝑒𝑟};
term(𝑠, cond);
assert 𝑐𝑜𝑛𝑑 ⇒ 0 ≤ 𝑒𝑟 ∧ 𝑒𝑟 < rank // checks (c)

assert ¬𝑐𝑜𝑛𝑑 ⇒ 𝑒; // checks (d)

}

Figure 3.9.: Program instrumentation for
termination leak prevention. We abbre-
viate while (𝑒) terminates(𝑒𝑐 , 𝑒𝑟 ) {𝑠} as
𝑤. If Jterm(𝑠, false)K�̊�2 verifies under some
precondition, 𝑠 does not have a termina-
tion side channel under this precondition.
Statements of the form assert �̃� are to
be interpreted as asserting the encoding
assert ⌈�̃�⌉ �̊� in the product program.

the termination condition is true, we can prove the termination of
the loop using the supplied ranking function.

4. The termination condition is complete, i.e., every loop terminates
only if its termination condition is true. We prove this by showing
that if the condition is false, the loop condition will always remain
true. This check, along with the previous proof obligation, ensures
that the termination condition is exact.

5. Every statement in a loop body terminates if the loop’s termination
condition is true, i.e., the loop’s termination condition implies the
termination conditions of all statements in its body.

We introduce an annotated while loop while (𝑒) terminates(𝑒𝑐 , 𝑒𝑟) {𝑠},
where 𝑒𝑐 is the exact termination condition and 𝑒𝑟 is the ranking function,
i.e., an integer expression whose value decreases with every loop iteration
but never becomes negative if the termination condition is true. Based
on these annotations, we present a program instrumentation term(𝑠, 𝑐)
that inserts the checks outlined above for every while loop in 𝑠. 𝑐 is the
termination condition of the outside scope, i.e., for the instrumentation
of a nested loop, it is the termination condition 𝑒𝑐 of the outer loop. The
instrumentation is defined for annotated while loops in Figure 3.9; for
all other statements, it does not make any changes except instrumenting
all subnodes. The instrumentation guarantees that if the product of the
instrumented program verifies, the original program does not leak secret
information via a termination channel. We slightly abuse the notation
and use assert statements with information flow assertions (as defined
in Sec. 3.5.2) instead of expressions; the intended meaning is that the
product of such a statement is a statement that asserts the encoded
version of said assertion (which can be written as an expression). Again,
we make use of the fact that modular products allow checking relational
assertions at arbitrary program points and formulating assertions about
the control flow.

We now prove that if an instrumented statement verifies under some
2-relational precondition then any two runs from a pair of states fulfilling
that precondition will either both terminate or both loop forever.

Theorem 3.5.2 Assume that 𝑠 = Jterm(𝑠, false)K�̊�2 and ⊨ {⌊�̌�⌋ �̊�2 }𝑠{true}
and (𝜎1 , 𝜎2) ⊨ �̌� and 𝑠 does not terminate with magic from 𝜎1 and 𝜎2 and 𝑠
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does not contain calls to (mutually) recursive methods.

Then either 𝑠 always terminates from both 𝜎1 and 𝜎2 or 𝑠 never terminates

from both 𝜎1 and 𝜎2.

Proof. The full proof can be found in Appendix A.1.6. We first prove
lemmas that state that if the product of an instrumented loop does not
fail from a state, single executions of this loop from states that mirror the
product state terminate (1) if and (2) only if their termination condition
is true. We show (1) by a standard termination proof using the provided
ranking function, and (2) by showing that the loop condition never
becomes false. We then extend these lemmas to general instrumented
statements. The main proof then goes by induction on the structure of 𝑠;
we show that if the product of an instrumented statement does not fail
from a state, pairs of executions from states that mirror the product state
either both terminate or both diverge. □

Note that, while this approach is sound, it is incomplete, since it requires
that the termination of every single loop by itself does not leak information.
It will therefore reject, for example, a program consisting two consecutive
loops, if the first terminates depending on secret data, and the second
never terminates at all. Assuming that an attacker can observe only the
termination of the program as a whole, no information is leaked since
the program never terminates, and the program should be accepted. This
incompleteness is similar to the one that occurs when specifying method
invocations to be low events (discussed in Sec. 3.5.2).

3.5.6. Preventing Timing Channels

A program has a timing channel if high input data influences the program’s
execution time, meaning that an attacker who can observe the time the
program executes can gain information about those secrets. Timing
channels can occur in combination with observable events; the time
at which an event occurs may depend on a secret even if the overall
execution time of a program does not. Consider the example in Figure 3.8
(right). Assuming main receives a positive secret h, both the print statement
and the end of the program execution will be reached later for larger
values of h.

Using modular product programs, we can verify the absence of timing
side channels in two ways:

1. In languages where all basic operations take constant time, timing
channels can be avoided by proving that all branch conditions are
low: If high data does not influence which statements are executed,
and the execution time of individual statements also does not
depend on the data they use, then high data cannot influence
execution time overall.

2. Alternatively, we can prove the absence of timing channels by
adding ghost state to the program that tracks the time passed since
the program has started; this could, for example, be achieved via a
simple step counting mechanism, or by tracking the sequence of
previously executed bytecode statements. This ghost state is up-
dated separately for both executions. We can then assert anywhere
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2: In the next chapter, we will describe
how we extend our implementation to
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in the program that the passed time does not depend on high data
in the same way we do it for program variables. In particular, we can
enforce that the passed time is equal whenever an observable event
occurs, and we can enable users to write relational specifications
that compare the time passed in both executions of a loop or a
method.

3.6. Implementation and Evaluation

We have implemented both the general modular product program trans-
formation and our approach for non-interference in the Viper verification
infrastructure [159] and applied it to a number of example programs from
the literature. 2 Both the implementation and examples are available at
http://viper.ethz.ch/modularproducts/.

3.6.1. Implementation in Viper

Our implementation supports an extended version of the Viper language
that adds the following features:

1. Expressions of the form rel(x,i) that represent a reference 𝑥(𝑖) to
variable 𝑥 from execution 𝑖 and can be used to express general
relational specifications

2. The assertions low(𝑒) and lowEvent for information flow specifica-
tions

3. A declassify statement
4. Variations of the existing method declarations and while loops that

include the termination annotations shown in Sec. 3.5.5

The implementation transforms a program in this extended language into
a modular 𝑘-product for arbitrary 𝑘 in the original language, which can
then be verified by the (unmodified) Viper backend verifiers, using either
symbolic execution (SE) or verification condition generation (VGC). Error
messages are automatically translated back to the original program.

In the resulting language, users can use unary, relational, and mixed
assertions in method pre- and postconditions as well as loop invariants,
and can therefore specify any hyperproperty that is expressible in the
framework we presented so far.

Alternatively, if 𝑘 = 2, specifications can be provided as information
flow specifications (see Sec. 3.5.2) such that users need no knowledge
about the transformation or the methodology behind information flow
verification.

Declassification is implemented as described in Sec. 3.5.4. Our imple-
mentation optionally verifies the absence of timing channels; the metric
chosen for tracking execution time is simple step-counting.

For languages with opaque object references, secure information flow
can require proving that pointers are low, i.e., equal up to a consistent
renaming of addresses. To avoid the complexity of reasoning about
such a renaming, we choose the second approach of modeling the heap
described in Sec. 3.3.3: Our implementation creates a single new statement

http://viper.ethz.ch/modularproducts/
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for every new in the original program, but duplicates the fields each object
has. As a result, if both executions execute the same new statement, the
newly created object will be considered low afterwards (but the values
of its fields might still be high).

For supporting unbounded heap data structures like lists or trees, we use
Viper’s existing support of iterated separating conjunctions, i.e., quantified

permission assertions of the form forall𝑥 ∈ 𝑠. acc(𝑥. 𝑓 ), which represent
the permissions to the 𝑓 fields for all references in set 𝑠 [158]. Note that it
is also possible to support recursive predicates (we will show how in the
next chapter), but we do not use them in our evaluation here.

3.6.2. Evaluation: Secure Information Flow

We have evaluated our approach for verifying non-interference in the
context of information flow security by verifying a number of examples
in the extended Viper language using our implementation. The examples
are listed in Table 3.1 and include all code snippets shown in this chapter
as well as a number of examples from the literature [8, 16, 23, 51, 56,
89, 117, 164, 204, 211]. They combine complex language features like
mutable state on the heap, arrays and method calls, as well as timing and
termination channels, declassification, and non-trivial information flows
(e.g., flows whose legality depends on semantic information not available
in a standard information flow type system). We manually added pre-
and postconditions as well as loop invariants; for those examples that
have forbidden flows and therefore should not verify, we also added a
legal version that declassifies the leaked information.

3.6.2.1. Qualitative Evaluation

Our implementation returns the correct result for all examples. In all
cases but one, our approach allows us to express all information flow
related assertions, i.e., method specifications and loop invariants, purely
as relational specifications in terms of low and lowEvent assertions (see
Table 3.1). For all these examples, we completely avoid the need to specify
the functional behavior of the program.

The only exception is an example that, depending on a high input,
executes different loops with identical behavior, and for which we need
to prove that the execution time is low. In this case we have to provide
invariants for both loops that exactly specify their execution time in
order to prove that the overall execution time after the conditional is
low. Nevertheless, the specification of the method containing the loop
is again expressed with a relational specification using only low. For
all other examples, unary specifications were only needed to verify the
absence of runtime errors (e.g., out-of-bounds array accesses), which
Viper verifies by default. Consequently, a verified program cannot leak
low data through such errors, which is typically not guaranteed by type
systems or static analyses.
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Table 3.1.: Evaluated examples for secure information flow. We show the used language features (Ev. = observable events, Hp. = mutable
heap, Arr. = arrays, Decl. = declassification, Call = method calls) and proved properties (Ter. = absence of termination channels, Tm. =
absence of timing channels), lines of code including specifications (LOC), overall lines used for specifications (Ann), unary specifications for
safety (SF), relational specifications for non-interference (NI), specifications for termination (TM), and functional specifications required for
non-interference (F). Note that some lines contain specifications belonging to multiple categories. Columns 𝑇𝑆𝐸 and 𝑇𝑉𝐶𝐺 show the running
times of the verifiers for the SE backend and the VCG backend, respectively, in seconds.

File Ev. Hp. Arr. Decl. Call Ter. Tm. LOC Ann/SF/NI/TM/F 𝑇𝑉𝐶𝐺 𝑇𝑆𝐸
antopolous1 [8] x 25 7/3/3/0/2 0.78 1.10
antopolous2 [8] x x 61 14/0/14/0/0 0.72 0.91
banerjee [16] x x x 76 17/11/6/0/0 1.02 0.61
constanzo [51] x x 22 7/2/5/0/0 0.67 0.28
darvas [56] x x 33 12/8/4/0/0 0.67 0.35
example x x 31 7/1/6/0/0 0.73 0.59
example_decl x x 19 5/2/3/0/0 0.72 0.77
example_term x x 31 8/4/2/2/0 0.77 0.43
example_time x x x x 32 9/0/9/0/0 0.70 0.38
joana_1_tl [89] x x x 28 1/0/1/0/0 0.62 0.23
joana_2_bl [89] x x 18 2/0/2/0/0 0.63 0.25
joana_2_t [89] x 15 1/0/1/0/0 0.62 0.20
joana_3_bl [89] x x x x 47 5/1/2/2/0 0.77 0.47
joana_3_br [89] x x x x 43 8/0/2/6/0 0.83 0.60
joana_3_tl [89] x x x 33 8/2/2/4/0 0.75 0.53
joana_3_tr [89] x x x x 35 8/4/2/2/0 0.76 0.51
joana_13_l [89] x 12 1/0/1/0/0 0.62 0.24
kusters [117] x x 29 9/6/3/0/0 0.64 0.44
naumann [164] x x 20 6/3/6/0/0 0.81 0.88
product [23] x x x 65 30/21/21/0/0 5.47 15.73
smith [204] x x 43 12/6/8/0/0 0.87 0.89
terauchi1 [211] 14 2/0/2/0/0 0.62 0.26
terauchi2 [211] x x 21 4/0/4/0/0 0.63 0.30
terauchi3 [211] 24 5/1/4/0/0 0.66 0.40

https://github.com/marcelosousa/

descartes

[206]: Sousa et al. (2016), ‘Cartesian Hoare
logic for verifying k-safety properties’
https://github.com/lmpick/synonym

[175]: Pick et al. (2018), ‘Exploiting Syn-
chrony and Symmetry in Relational Verifi-
cation’

3.6.2.2. Performance

For all but one example, the runtime (averaged over 10 runs on a Lenovo
ThinkPad T450s with an Intel Core i7-5600U CPU running at 2.6 GHz
base and 3.2 GHz turbo frequency with 12GB RAM on Ubuntu) with both
the Symbolic Execution (SE) and the Verification Condition Generation
(VCG) verifiers is under or around one second (see Table 3.1). The one
exception, which makes extensive use of unbounded heap data structures,
takes ca. five seconds when verified using VCG, and 15 in the SE verifier.
This is likely a result of inefficiencies in our encoding: As noted before,
the created product has a high number of branching instructions, and
some properties have to be proved more than once, two issues which
have a much larger performance impact for SE than for VCG. We believe
that it is feasible to remove much of this overhead by optimizing the
encoding; we describe some possible optimizations in the next chapter
and leave the rest as future work.

3.6.3. Evaluation: Other Hyperproperties

For the second part of our evaluation, we evaluated our approach
and implementation for other hyperproperties and compared them
to Descartes, a specialized tool by Sousa and Dillig that automates a
relational logic and handles loops by guessing and checking possible
invariants [206], as well as Synonym, a version of Descartes by Pick et al.
with additional optimizations to speed up the verification process [175].

We considered 34 Java implementations of comparators, taken from the
evaluation of Descartes. The examples were originally taken from posts
on websites like Stackoverflow, where developers asked questions about
buggy comparators and other users responded with proposed fixes.
Additionally, we considered all eight correct expanded examples from the

https://github.com/marcelosousa/descartes
https://github.com/marcelosousa/descartes
https://github.com/lmpick/synonym
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Figure 3.10.: Example of a faulty compara-
tor implementation (left) and a fixed ver-
sion (right) [206]. The left implementation
fulfills properties P1 and P2 but violates
property P3, the right version fulfills all
three properties.

1 public class AInt
2 implements Comparator<AInt>{
3 int length;
4 int get(int pos) { ... }
5
6 public int compare(AInt o1, AInt o2){
7 int index, aentry, bentry;
8 index = 0;
9 while ((index < o1.length) &&

10 (index < o2.length)) {
11 aentry = o1.get(index);
12 bentry = o2.get(index);
13 if (aentry < bentry) {
14 return −1;
15 }
16 if (aentry > bentry) {
17 return 1;
18 }
19 index++;
20 }
21 return 0;
22 }
23 }

1 public class AInt
2 implements Comparator<AInt>{
3 int length;
4 int get(int pos) { ... }
5
6 public int compare(AInt o1, AInt o2){
7 int index, aentry, bentry;
8 index = 0;
9 while ((index < o1.length) &&

10 (index < o2.length)) {
11 aentry = o1.get(index);
12 bentry = o2.get(index);
13 if (aentry < bentry) {
14 return −1;
15 }
16 if (aentry > bentry) {
17 return 1;
18 }
19 index++;
20 }
21 if (o1.length < o2.length) {
22 return −1;
23 }
24 if (o1.length > o2.length) {
25 return 1;
26 }
27 return 0;
28 }
29 }

evaluation of Synonym; these are variations of correct comparators from
Descartes that were artificially made more complex by Pick et al. Instead
of comparing two objects, they take three objects and decide which
one is the greatest according to the defined comparison metric. These
implementations are generally both longer than the original versions (the
longest, PokerHand, is 297 LOC long in the original Java version) and
contain more branching, and can thus be used to test the scalability of our
verification approach. Since the examples are derived from real-world
code, they have a number of challenging properties: Many of them call the
compare methods of other classes, many have deeply nested conditional
structures, and many loop over some data structure on both objects to
compare them.

Comparators have a single method compare that has to fulfill, among
others, the following hyperproperties:

▶ P1: ∀𝑥, 𝑦. sgn(compare(𝑥, 𝑦)) = −sgn(compare(𝑦, 𝑥))
▶ P2:∀𝑥, 𝑦, 𝑧. compare(𝑥, 𝑦) > 0∧compare(𝑦, 𝑧) > 0 ⇒ compare(𝑥, 𝑧) >

0
▶ P3:∀𝑥, 𝑦, 𝑧. compare(𝑥, 𝑦) = 0 ⇒ sgn(compare(𝑥, 𝑧)) = sgn(compare(𝑦, 𝑧))

where sgn denotes the sign of an integer.

For the modified pick methods, we want to check the following hyper-
properties (retaining the naming by Pick et al.):

▶ P13: ∀𝑥, 𝑦, 𝑧. pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧)
▶ P14:∀𝑥, 𝑦, 𝑧. pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧)∧pick(𝑥, 𝑦, 𝑧) = pick(𝑧, 𝑦, 𝑥)

Since all implementations have the signatures int compare(T x, T y) and
int pick(T x, T y, T z), respectively, where T is the class whose objects are
being compared, these properties can be expressed as follows in our
specification language (using res to refer to the result of the method):
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▶ P1: {{𝑥(1) = 𝑦(2) ∧ 𝑦(1) = 𝑥(2)}}compare{{sgn(res(1)) = −sgn(res(2))}}2
▶ P2: {{𝑦(1) = 𝑥(2) ∧ 𝑥(3) = 𝑥(1) ∧ 𝑦(3) = 𝑦(2) ∧ res

(1) > 0 ∧ res
(2) >

0)}}compare{{res(3) > 0}}3
▶ P3: {{𝑥(1) = 𝑥(2)∧𝑦(1) = 𝑥(3)∧𝑦(3) = 𝑦(2)∧res

(1) = 0}}compare{{sgn(res(2)) =
sgn(res(3))}}3

▶ P13: {{true}}pick{{(𝑥(1) = 𝑦(2) ∧ 𝑥(2) = 𝑦(1) ∧ 𝑧(1) = 𝑧(2)) ⇒ res
(1) =

res
(2)}}𝑠

▶ P14: {{true}}pick{{((𝑥(1) = 𝑦(2) ∧ 𝑥(2) = 𝑦(1) ∧ 𝑧(1) = 𝑧(2)) ∨ (𝑥(1) =
𝑧(2) ∧ 𝑦(1) = 𝑦(2) ∧ 𝑧(1) = 𝑥(2))) ⇒ res

(1) = res
(2)}}𝑠

For each comparator example, Sousa and Dillig provide a version of
the comparator that was initially reported as broken, as well as (both
successful and incorrect) attempts at fixed versions. Like them, we check
all three hyperproperties for all versions of the examples. Fig. 3.10 shows
an example of one of the simpler faulty comparator implementations from
the data set as well as a fixed version. For the modified examples by Pick
et al., we verify both properties only for the correct implementations.

Our encoding is based on the examples as encoded by Sousa and Dillig
and Pick et al., since the original versions of some of the examples
are no longer available. In particular, this means that we adopt some
simplifications performed by them; however, where we could find the
original versions, we tried to stay as close to them as possible. As an
example, in several cases, Sousa and Dillig exchanged loops that iterate
over a list by loops with a statically fixed number of iterations, and
with the current element in each iteration being the result of calling an
unspecified function; we reverted this change.

Since the examples were originally written in Java, they contain return
statements, which do not exist in the Viper language. We manually
emulate them in the standard way by declaring an output parameter
res as well as a boolean flag returned, which is initially not set. return
statements are then encoded by assigning the returned expression to
the result variable, setting the returned flag, and making subsequent
statements conditional on returned not being set. Additionally, we add
the conjunct ¬returned to the guards of loops whose bodies contain return
statements.

As before, we manually added pre- and postconditions as well as loop
invariants to all examples.

3.6.3.1. Qualitative Evaluation

Our implementation returns the correct results (i.e., verifies correct
implementations and shows errors for incorrect ones) for all of the original
comparator examples (see Table 3.2). In that, it behaves identically to
Descartes. For the modified examples, our implementation can correctly
verify all examples with the VCG backend, but fails to verify four
cases with the SE backend due to timeouts. Synonym times out on one
example and is unable to infer sufficient invariants in two other cases, and
Descartes times out seven times and does not find sufficient invariants
in one case. Note, however, that the feature set of the different tools is
quite different and comparing the performance can therefore only give
an indication of their respective scalability; we discuss the differences in
detail in the next section.
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[206]: Sousa et al. (2016), ‘Cartesian Hoare
logic for verifying k-safety properties’

[175]: Pick et al. (2018), ‘Exploiting Syn-
chrony and Symmetry in Relational Verifi-
cation’

In all cases, we were able to use purely relational specifications for
other compare methods called by the comparators to be verified. This is
vital, since doing otherwise would require information about the precise
behavior and therefore the contents and internal data structures of
referenced classes (some of which are presumably quite complex), which
clearly violates information hiding. By using relational specifications, we
were able to prove the desired hyperproperties of each comparator only
assuming that the same hyperproperties hold for called comparators of
other classes.

For loop invariants, we followed a mixed approach for specifications.
For proving P1, we had to use only simple, relational loop invariants.
For P2 and P3, where 𝑘 = 3, we opted to use unary loop invariants (i.e.,
full functional specifications of the loop behavior) for some loops with
simple functional behavior. The main reason for this choice was that the
proof would otherwise have required invariants that describe both the
relative behavior of all three executions if they all execute the loop, and

the relative behavior of any pair of executions if two executions reach the
loop and one does not. This is therefore an example where some of the
used specifications are relational but not all executions are relevant for
them.

As a result, relational loop invariants would in these cases have been more
verbose and arguably more complex. Additionally, we subjectively found
it non-trivial to find the required relational loop invariants in some cases:
Unlike in the case of secure information flow, where relational invariants
translate straightforwardly to high-level concepts like some data being
low, finding relational invariants for properties 2 and 3 actually required
thinking in terms of multiple executions and was thus more complex.
We proved properties P13 and P14 on the modified examples also using
a combination of relational of unary specifications for similar reasons.

Nevertheless, we benefited from the ability to use relational loop invari-
ants in several cases. In particular, in examples where other comparators
are called inside loop bodies, using functional specifications in the invari-
ant is not possible without also requiring them for the called comparator,
which, as pointed out before, is undesirable and not modular. In one
example, a loop called another comparator under a condition and per-
formed some simple computation by itself under a different condition;
in this case we found it easiest to use a mixed specification that describes
the behavior of the comparator in relational terms and the alternative
functional behavior in unary terms.

3.6.3.2. Performance

Table 3.2 shows the timings measured to verify all original comparator
examples using Viper’s VCG backend, its SE backend, and the Descartes
tool by Sousa and Dillig. The times for the modified examples are shown
in Table 3.3. All times were measured under the same conditions as
the timings for secure information flow. In particular, our timings for
Descartes and Synonym were measured using the version of the tools
currently on Github; in virtually all cases, they are similar to the timings
reported by Sousa and Dillig [206] and Pick et al. [175], respectively.
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Table 3.2.: Evaluated examples of Java comparators. We show the verification outcomes for all three hyperproperties for the original
version(s) and the fixed versions (marked with †) of each example. Columns 𝑇𝑉𝐶𝐺 , 𝑇𝑆𝐸 , and 𝑇𝐷𝐶 show the running times of the verifiers for
the VCG backend, the SE backend, and Descartes, respectively, in seconds.

P1 P2 P3
𝑉 𝑇𝑉𝐶𝐺 𝑇𝑆𝐸 𝑇𝐷𝐶 𝑉 𝑇𝑉𝐶𝐺 𝑇𝑆𝐸 𝑇𝐷𝐶 𝑉 𝑇𝑉𝐶𝐺 𝑇𝑆𝐸 𝑇𝐷𝐶

ArrayInt ✓ 1.22 1.23 0.06 ✓ 1.65 21.11 0.06 ✗ 1.79 11.87 0.11
ArrayInt † ✓ 1.25 1.52 0.11 ✓ 1.91 23.21 0.16 ✓ 3.43 23.43 0.11
CatBPos ✗ 1.25 1.09 0.26 ✗ 1.50 15.39 5.85 ✗ 1.52 7.90 1.71
Chromosome ✓ 1.18 0.91 0.11 ✗ 1.22 2.48 0.15 ✗ 1.31 1.08 0.22
Chromosome † ✓ 1.25 1.20 0.06 ✓ 1.61 22.41 2.02 ✓ 1.39 9.48 0.28
CollItem ✗ 1.19 0.43 0.06 ✗ 1.27 2.21 0.11 ✗ 1.27 1.85 0.16
CollItem † ✓ 1.15 1.94 0.06 ✓ 1.22 26.89 0.16 ✓ 1.25 27.13 0.13
Contact ✓ 1.38 5.91 0.11 ✗ 2.30 15.37 0.78 ✗ 1.92 2.41 1.34
ContainerV1 ✗ 1.15 0.30 0.06 ✗ 1.17 1.08 0.03 ✗ 1.25 0.88 0.06
ContainerV2 ✗ 1.15 0.31 0.06 ✗ 1.21 1.34 0.03 ✗ 1.22 1.02 0.06
Container † ✓ 1.19 0.94 0.16 ✓ 1.31 4.17 2.32 ✓ 1.25 2.99 0.94
DataPoint ✗ 1.30 0.78 0.21 ✗ 1.63 16.20 0.67 ✗ 1.61 38.80 0.42
FileItem ✓ 1.14 0.63 0.03 ✓ 1.37 4.58 0.03 ✗ 1.23 0.72 0.11
FileItem † ✓ 1.20 1.52 0.06 ✓ 1.34 11.29 0.06 ✓ 1.30 9.44 0.06
IsoSpriteV1 ✗ 1.16 0.33 0.06 ✗ 1.19 1.13 0.03 ✗ 1.21 1.01 0.06
IsoSpriteV2 ✗ 1.35 0.58 0.31 ✗ 2.13 32.94 1.22 ✓ 2.13 168.62 0.12
Match ✗ 1.16 0.47 0.04 ✓ 1.14 5.33 0.03 ✗ 1.19 1.72 0.06
Match † ✓ 1.17 0.96 0.03 ✓ 1.20 7.16 0.06 ✓ 1.22 7.29 0.06
NameComparator ✗ 1.24 0.74 0.07 ✓ 1.77 17.17 0.11 ✓ 1.70 16.44 0.10
NameComparator † ✓ 1.31 1.63 0.10 ✓ 1.66 24.10 0.11 ✓ 1.66 24.31 0.16
Node ✓ 1.13 0.77 0.03 ✓ 1.16 5.13 0.03 ✗ 1.20 1.37 0.07
Node † ✓ 1.13 0.77 0.03 ✓ 1.19 4.90 0.06 ✓ 1.21 5.01 0.06
NzbFile ✗ 1.39 0.56 0.11 ✓ 1.96 121.60 0.21 ✓ 1.76 108.31 0.11
NzbFile † ✓ 1.35 3.05 0.16 ✓ 2.39 71.57 0.21 ✓ 2.38 65.09 0.42
PokerHand ✓ 1.56 5.83 0.26 ✗ 9.19 118.18 0.37 ✗ 8.67 120.81 0.99
PokerHand † ✓ 1.62 6.94 0.27 ✓ 9.15 237.42 0.37 ✓ 9.09 233.72 0.66
Solution ✓ 1.17 0.86 0.16 ✓ 1.22 4.29 0.37 ✗ 1.24 1.25 0.52
Solution † ✓ 1.16 0.96 0.31 ✓ 1.29 4.84 0.97 ✓ 1.23 4.53 0.92
TextPosition ✓ 1.24 1.84 0.01 ✗ 1.37 7.77 0.01 ✗ 1.43 6.87 0.01
TextPosition † ✓ 1.28 1.99 0.11 ✓ 1.33 26.29 0.37 ✓ 1.42 24.98 0.16
Time ✗ 1.15 0.43 0.11 ✓ 1.34 6.23 0.32 ✓ 1.21 3.80 0.02
Time † ✓ 1.11 0.45 0.06 ✓ 1.28 3.92 0.26 ✓ 1.19 1.90 0.16
Word ✗ 1.30 0.61 0.23 ✗ 1.60 3.73 4.43 ✓ 1.65 34.68 0.03
Word † ✓ 1.26 1.54 0.11 ✓ 1.65 23.93 0.17 ✓ 1.77 24.41 0.11

We first observe that our implementation generally achieves good perfor-
mance when using the VCG backend. The average verification time for
the original comparators is under two seconds for all three properties.
With maximal verification times of under ten seconds even for the most
complex comparator examples and 18 seconds for the most complex
modified example, we conclude that our technique can be used to verify
hyperproperties of realistic code in very reasonable time.

When using our tool with Viper’s SE backend, we observe considerably
worse performance than with VCG. While the average verification times
for the original comparators are comparable for the first property, the
SE backend performs much worse for the two 3-safety hyperproperties,
particularly for the examples that have deeply nested conditionals, where
the worst case is an example taking almost four minutes to verify. For the
larger modified examples, performance becomes considerably worse; two
of the examples do not verify within one hour. This confirms our earlier
suspicion that the performance with SE (which considers each branch
separately) is impaired by the large amount of branching in modular
product programs: Since our product transformation introduces many
branches into the program (more for 𝑘 = 3 than for 𝑘 = 2), the SE backend
has to consider a large number of possible paths through the program.
While the SE backend struggles with this, the VCG backend is able to
exploit the fact that many of those branches are on the same or related
conditions, and the actual number of feasible paths through the program
is therefore much smaller than it seems.

We can now compare the performance of our implementation to that of
Descartes and Synonym. While this leads to some interesting conclusions,
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Table 3.3.: Evaluated modified examples. All examples fulfill both properties and verify successfully in every configuration for which a time
is shown. Columns 𝑇𝑉𝐶𝐺 , 𝑇𝑆𝐸 , 𝑇𝐷𝐶 , and 𝑇𝑆𝑌 show the running times of the verifiers for the VCG backend, the SE backend, Descartes, and
Synonym, respectively, in seconds. "TO" indicates that the test times out after one hour, "-" means that the tool reports that it could not infer
sufficient invariants.

P13 P14
𝑇𝑉𝐶𝐺 𝑇𝑆𝐸 𝑇𝐷𝐶 𝑇𝑆𝑌 𝑇𝑉𝐶𝐺 𝑇𝑆𝐸 𝑇𝐷𝐶 𝑇𝑆𝑌

ArrayInt-pick3-simple † 3.49 18.08 2.16 0.82 3.48 22.60 TO 292.90
ArrayInt-pick3 † 3.53 51.95 2.03 1.01 3.64 58.95 TO 210.71
Chromosome-pick3-simple † 3.52 55.65 1.12 0.68 3.47 78.28 TO 177.69
Chromosome-pick3 † 3.66 28.12 3.15 1.97 3.63 34.02 TO 980.77
PokerHand-pick3-part1 † 4.61 202.41 6.96 2.86 5.19 188.74 TO 1548.27
PokerHand-pick3-part2 † 7.14 1082.14 11.90 5.18 9.73 1125.56 TO -
PokerHand-pick3 † 12.05 TO 20.63 8.63 18.07 TO - -
Solution-pick3 † 4.79 TO 84.92 19.01 5.28 TO TO TO

In the VCG backend, each verification task
requires starting a .NET runtime for run-
ning the Boogie [18] verifier in the back-
ground, which leads to some constant
amount of overhead.

we stress that the feature sets supported by the tools are quite different.
Viper is a mature, general purpose verification tool with built-in support
for mutable heap data structures and several basic datatypes; it performs
several additional tasks like type checking, well-definedness checking of
specifications, and proving memory safety, all of which are not performed
by Descartes and Synonym. The latter, on the other hand, are specialized
prototype implementations that do not support heap mutation or data
types beyond integers, but, unlike Viper, are able to automatically infer
loop invariants via a guess-and-check-approach.

Compared to Descartes and Synonym, our implementation using the VCG
backend is generally slower for small examples (the original comparators)
but faster for the more complex modified examples; in fact, all verifiers
except for VCG time out on at least one example. This is likely at least
partly due to the aforementioned differences between the tools; while
Viper has a higher constant overhead for each program due to startup
time and additional checks, the additional work needed by Descartes
and Synonym for guessing and checking loop invariants becomes more
of a factor for more complex examples. SE has a lower constant overhead
than VCG and is more competitive than VCG on small examples (though
still slower than Descartes and Synonym) but scales much worse in most
cases and is thus the slowest tool for most (though not all) of the more
complex examples.

We conclude that while our technique creates programs that lead to
bad performance with some verification techniques (SE), it can be com-
bined with other standard verification techniques (in particular, VCG) to
verify arbitrary hyperproperties of real-world code in reasonable time.
Compared to existing more automated tools, our technique delivers
better performance on very complex examples when used with VCG.
In particular, since our approach allows modular (and therefore inde-
pendent) verification of different methods, we expect it to scale to large
programs.

One advantage of using a program transformation approach for verifying
hyperproperties is that one can freely choose which tool to use to reason
about the resulting program, based on the desired level of automation
and required language features. In contrast, adding mutable heap support
to Descartes would require changes to the underlying logic itself.
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3.7. Related Work

The notion of 𝑘-safety hyperproperties was originally introduced by
Clarkson and Schneider [46]. Here, we focus on statically proving hyper-
properties for imperative and object-oriented programs; more work exists
for testing or monitoring hyperproperties like non-interference at run-
time, or for reasoning about hyperproperties in different programming
paradigms.

Relational logics such as relational Hoare logic [30], relational separation
logic [231] and others [2, 26] allow reasoning directly about relational
properties of two different program executions. Beringer [32] extends
relational Hoare logic with rules for dissonant loops that allow reasoning
in a similar way as our product construction. Unlike our approach,
relational logics usually allow reasoning about the executions of two
different programs; as a result, they do not give special support for two
executions of the same program calling the same method with a relational
specification.

Banerjee et al. [17] introduced biprograms, which allow explicitly express-
ing alignment between executions and using relational specifications to
reason about aligned calls; however, this approach requires that methods
with relational specifications are always called by both executions, which
is for instance not the case if a call occurs under a high guard in secure
information flow verification. We handle such cases by interpreting rela-
tional specifications as trivially true; one can then still resort to functional
specifications to complete the proof. Their work also does not allow mixed
specifications, which are easily supported in our product programs.

Relational program logics are generally difficult to automate. Recent
work by Sousa and Dillig [206] presents a logic that can be applied
automatically by an algorithm that implicitly constructs different product
programs that align some identical statements, but does not fully support
relational specifications. Pick et al. [175] use similar ideas but exploit
symmetries in the verification problem and further align the execution of
loops for improved performance. Both approaches require dedicated tool
support, whereas our modular product programs can be verified using
off-the-shelf tools. More recently, Banerjee et al. [14] present a relational
logic for biprograms that supports modular reasoning for a rich language
including classes, takes into account concepts like encapsulation, and
has been automated in a prototype tool based on Why3 [82].

The approach of reducing hyperproperties to ordinary trace properties
was introduced by self-composition [25]. While self-composition is theo-
retically complete, it does not allow modular reasoning with relational
specifications; this distinction has recently been examined and formalized
by Nagasamudram and Naumann [163]. The resulting problem of having
to fully specify program behavior was pointed out by Terauchi and
Aiken [211]; since then, there have been a number of different attempts
to solve this problem by allowing (parts of) programs to execute in
lock-step. Terauchi and Aiken [211] did this for secure information flow
by relying on information from a type system; other similar approaches
exist [164].

Product programs [23, 24] allow different interleavings of program
executions. The initial product program approach [23] would in principle
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allow the use of relational specifications for method calls, but only under
the restriction that both program executions always follow the same
control flow. The generalized approach [24] allows combining different
programs and arbitrary numbers of executions. This product construction
is non-deterministic and usually interactive; in some (but not all) cases, it
allows avoiding duplicated calls and loops and thereby using relational
specifications. However, the construction requires manual work by the
programmer, and whether the product can be constructed in such a way
that call is not duplicated depends on the used specification, meaning
that the product construction and verification are intertwined and a new
product has to be constructed when specifications change. In contrast,
our product construction is fully deterministic and automatic, allows
arbitrary control flows while still being able to use relational specifications
for all loops and calls, and therefore avoids the issue of requiring full
functional specifications.

While modular product programs always align the same program points
in different executions (e.g., relational loop invariants always relate the
state after the same iteration of the same loop in different executions),
both Shemer et al. [197] and Farzan and Vandikas [78] recently proposed
techniques for automatically finding different alignments that allow
proving a specific hyperproperty using simpler relational invariants.
While the details differ, both techniques, when given a program, a
hyperproperty to be proves, and a set of assertions that may be used in
the proof, iteratively refine an alignment of different executions using
counterexamples until they either find an alignment that provably fulfills
the given property or they conclude that no proof is possible with the
given set of assertions.

Techniques for proving program equivalence, whose goal is to prove
relational properties about pairs of programs, can be used to prove
hyperproperties of a single program as well. In particular, Hawblitzel
et al. [98] and Lahiri et al. [119] propose two different techniques for
modularly proving and using mutual summaries that relate the behavior of
two different methods. Compared to our work, both techniques have the
advantage of being able to relate arbitrary pairs of method calls. In the
former approach [98], this is achieved by axiomatically assuming mutual
summaries for any pair of calls and subsequently generating verification
conditions that check the mutual summary of one pair of methods
assuming these axioms for all calls. In contrast to modular product
programs, this approach does not allow checking relational preconditions,
and it does not work with standard static analysis tools, since those
typically cannot make use of the axioms that are used to assume relational
postconditions. In the latter approach [119], mutual summaries are used
via a product construction that stores the local and global state before
and after each method call in auxiliary variables, sequentially composes
the bodies of both different methods, and subsequently assumes or
asserts relational properties about the stored information for each pair
of related calls. As a result, the technique is limited in the presence of
non-termination (since no relational properties are checked if one of the
programs does not terminate) and, for example, cannot support reasoning
about termination channels. Importantly, both of the aforementioned
approaches require that dependencies on global variables are statically
known and finite (since their values need to be mentioned in axioms
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or stored for each call, respectively) and therefore do not easily extend
to programs with dynamic heap allocation and to separation logics,
unlike modular product programs. Additionally, both approaches rely
on eliminating loops by transforming them to tail recursion. This is
always possible but can require additional specifications from the user to
carry information about local variables into method calls inserted by the
transformation. Felsing et al. [80] present a weakest precondition calculus
for showing (conditional) program equivalence as well as an encoding
into Horn clauses for automation. Their approach to loop verification is
based on similar ideas as our loop encoding and they also support mutual
function summaries. In contrast to our approach, Felsing et al. consider
only terminating programs in a language without arrays or a mutable
heap, and their approach requires dedicated tool support. Similar ideas
for loop fusion have been used for other purposes, e.g., to simplify loop
invariants in a single program and for program optimization [107].

The equivalence checking approach by Hawblitzel et al. [98] also supports
checking relative termination under some relational precondition, which is
similar but not identical to the absence of termination channels; it asserts
that if one execution terminates, the other can terminate as well. The
presented approach requires fewer annotations than ours, in particular,
it does not require ranking functions, but as a result it is less precise
and does not allow any loops or method calls under high conditions.
Similarly, Elenbogen et al. [70] provide an algorithm for proving mutual

termination, which can be used for proving the absence of termination
channels, via a product construction. It, too, is less precise than our
approach but requires less user input.

Reducing control flow to straight-line code with conditional statements,
also called predicated execution, is sometimes performed as a performance
optimization to avoid branching. The principle is also employed in
modern GPUs, which execute multiple threads at once in a SIMD fashion,
and implement diverging control flow by deactivating some threads
while a branch they do not take is executed. Betts et al. [34] exploit this and
present an encoding similar to our product construction to prove trace
properties of (concurrently executed) GPU kernels, but do not explore its
application to hyperproperties of sequential programs. Collingbourne
et al. [49] build on this work to present an encoding for GPU kernels
with arbitrary reducible control flow graphs; the main ideas behind this
extended encoding could likely also be used to create modular product
programs based on control flow graphs.

Considerable work has been invested into proving specific hyperprop-
erties like secure information flow. One popular approach is the use of
type systems [204]; while those are modular and offer good performance,
they overapproximate possible program behaviors and are therefore less
precise than approaches using logics. In particular, they require labeling
any single value as either high or low, and do not allow distinctions like
the one we made for the example in Fig. 3.1, where only the first bits
of a sequence of integers were low. In addition, type systems typically
struggle to prevent information leaks via side channels like termination
or program aborts. There have been attempts to create type systems that
handle some of these limitations (e.g. [57]).

Static analyses [8, 89] enable fully-automatic reasoning. They are typically
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not modular and, similarly to type systems, need to abstract semantic
information, which can lead to false positives. They strike a trade-off
different from our solution, which requires specifications, but enables
precise, modular reasoning.

A number of logic-based approaches to proving specific hyperproperties
exist. As an example, Darvas et al. use dynamic logic for proving non-
interference [56]; this approach offers some automation, but requires
user interaction for most realistic programs. Leino et al. [131] verify
determinism up to equivalence using self-composition, which suffers
from the drawbacks explained above. Prabawa et al. [179] present a
logic for proving secure information flow. While their approach, like
ours, enables modular verification, it can only track secrecy on a more
coarse-grained level, does not take into account semantic information,
and will therefore produce more false alarms.

The approach of declassifying data via special statements or expressions
has been introduced by Sabelfeld and Myers [186]. An extended version of
JML by Scheben and Schmitt [192] supports declassification expressions
as parts of method contracts that can be verified using self-composition.
Other kinds of declassification have been studied extensively; Sabelfeld
and Sands [188] provide a good overview. Li and Zdancewic [136]
introduce downgrading policies that describe which information can
be declassified and, similar to our approach, can do so for arbitrary
expressions. Costanzo and Shao [51] define a similar system that allows
users to define program preconditions to describe which parts of the
secret data may be released. Our approach allows for similar specifications
that describe that some aspects of some data are low (and everything
else is high by default).

Since their publication, modular product programs have been used to
automatically infer relational specifications and prove hyperproperties in
different ways. Pick et al. [176] use Syntax-Guided Synthesis (SyGuS) [6]
to infer information flow specifications, exploiting that they often have
simple syntactic shapes. They enumerate possible candidate specifica-
tions, including ones that include quantifiers to specify precise properties
of arrays, and check them using a CHC solver on an encoding of the
original program into its modular product program. Knabenhans [116]
uses abstract interpretation [52] and relational numerical domains [53,
153] on modular product programs to infer relational properties of the
original program. His analysis uses trace partitioning [145] to analyze
traces with different values of activation variables separately; this solves
the problem that the control flow of a modular product program essen-
tially merges the control flow of different executions, including the case
where no statements at all are executed (when all activation variables are
false). An analysis that considers all possible control flows at once has
to continually join the states of all possible paths and will be unable to
gain any information. Building on this analysis, Blarer [36] uses modular
product programs to statically analyze GPU kernels for potential per-
formance problems, exploiting the close relationship between modular
product programs and predicated execution used in GPUs mentioned
above.
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3.8. Conclusion

We have presented modular product programs, a novel form of product
programs that enable modular reasoning about 𝑘-safety hyperproperties
using relational specifications with off-the-shelf verifiers. We have proved
our approach sound and complete for arbitrary values of 𝑘. We showed
that modular products are expressive enough to handle advanced aspects
of secure information flow verification. They can prove the absence of
termination and timing side channels and encode declassification. Our
implementation shows that our technique works in practice on a number
of challenging examples from both the literature and real user code, and
exhibits good performance even without optimizations.
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Product Programs in IVL-Based

Verifiers 4.

As explained in Chapter 1, in recent years, many automated and expressive
verification tools have been developed for a wide range of real-world
programming languages. However, most of these tools are limited to
trace properties (properties of single program traces) and cannot prove
hyperproperties such as non-interference. Building new verifiers with
support for non-interference from scratch can take years when targeting
substantial subsets of real-world programming languages.

In principle, existing program verifiers can be used to verify hyperprop-
erties by reducing them to trace properties via self-composition [25]
or product programs [23, 24] like the product construction shown in
the previous chapter. However, this approach does not easily extend to
real-world programming languages: Many product constructions [23,
119], including modular product programs, have been defined only for
simple languages that lack many language features found in real world
languages (e.g., dynamic method binding and concurrency); others re-
quire manual work for the product construction [24]. While there is
one product construction we are aware of that applies to concurrent
programs [78], this construction does not allow for thread-modular veri-
fication and therefore likely does not scale to large programs; nor does
self-composition, which can handle arbitrary programming languages
in principle, but allows neither thread-modular nor method-modular
verification. As a result, applying product constructions to programs
written in complex languages would require defining and implementing
new and complex product constructions for every new verifier.

In this chapter, which is based on the CAV 2021 paper “Product Programs
in the Wild: Retrofitting Program Verifiers to Check Information Flow
Security” [66], we address the problem of retroactively enabling an
existing program verifier to check non-interference by using an existing
product construction. To do this, we leverage the fact that most automatic
deductive verifiers share a similar architecture explained in Chapters 1
and 2: They consist of a custom frontend, which encodes a source program
into an intermediate verification language (IVL), and a reusable backend,
which verifies the IVL program using generic proof search engines.
Boogie [18], Viper [159], and Why3 [82] are examples of such IVLs, which
power a large number of program verifiers; for instance Boogie is used
by Dafny [127], VCC [48], Spec# [130], and GPUVerify [34], Why3 [82]
by Frama-C [54] and Krakatoa [81], and Viper [159] by VerCors [38],
Prusti [12], Gobra [228], and of course Nagini. The ubiquitiy of this
architecture offers a chance to retrofit existing verifiers to check non-
interference by performing the product construction on the level of the
IVL (an approach that is already used by SymDiff [118] for the related
problem of program equivalence). The resulting architecture, which
allows one to reuse both the frontend and the backend of the existing
verifier, is shown in Figure 4.1.

Performing the product construction on the IVL level has three major
advantages over a product construction on the source program: (1) It
cleanly separates the encoding of the source language (which tends to
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Figure 4.1.: Proposed architecture for in-
formation flow verifiers. The existing en-
coding from source to IVL (frontend) as
well as the proof search (backend) can be
reused. The product construction needs to
support only the (relatively small) IVL and
can be reused across different verifiers.
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be complex for full-fledged languages) from the product construction.
(2) The product construction is much simpler, since IVLs are small,
sequential languages; as a result, existing product definitions can be used.
(3) The product construction can be reused across all verifiers built on the
same IVL. Overall, this architecture therefore has the potential to enable
non-interference verification in existing verifiers with substantially less
effort than building a new tool from scratch.

Even though this approach has strong advantages, there are several
open questions that must be addressed to make it useful and widely
applicable:

1. Soundness: Given an IVL encoding and a product construction
that are individually sound, is the resulting combination always
sound as well?

2. Concurrency: There is a substantial number of verifiers that verify
concurrent source programs by encoding them into (sequential)
IVLs. Can we soundly verify non-interference of concurrent pro-
grams based on a product program of the sequential IVL encoding?

3. Performance: Product constructions are known to cause a perfor-
mance penalty for verification. Does this overhead prevent the
construction of useful verification tools in practice?

In this chapter, we answer these three questions. We focus our investi-
gation on modular product programs, exploiting their usefulness for
modular verification demonstrated in the previous chapter, as well as
their ability to precisely express complex information flow properties
including termination-sensitive non-interference, value-dependent sensi-
tivity [160], and declassification. We will, however, not re-explain these
concepts or their encoding in modular product programs, and will focus
our presentation on ordinary termination-insensitive non-interference.
As in the previous chapter, we will describe our approach in terms of
information flow security throughout, but non-interference in general is
also relevant to proving integrity properties. To summarize, we make
the following contributions:

▶ We show that the combination of sound IVL encodings and sound
product constructions can indeed be unsound. We identify a novel
condition on IVL encodings that ensures the soundness of the
overall workflow (Sec. 4.1).

▶ We show real-world examples of both sound and unsound encod-
ings, and show how to adjust unsound encodings on the example
of a commonly-used encoding for dynamically-bound method calls
(Sec. 4.2).

▶ We show for the common case of data race free programs using
locks that it is possible to verify different non-interference proper-
ties as well as related properties like observational determinism
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for concurrent programs using sequential product programs. Fur-
thermore, we demonstrate that existing criteria for possibilistic
non-interference are insufficient in our setting; we provide alter-
native criteria that are sound and show how to encode them in a
product program (Sec. 4.3).

▶ We implement the approach for Nagini, thus completing its ability
to verify the program properties we outlined in Chapter 1 that
are relevant for proving security properties of software systems.
We evaluate the performance impact of the product construction
and show that, while worse than a custom-made information flow
verifier [72], performance is acceptable for real-world use, and its
expressiveness matches the state of the art (Sec. 4.4).

These results demonstrate that the proposed approach can indeed be
used to retrofit an existing verifier to soundly check non-interference,
even for concurrent programs. The resulting version of Nagini, whose
extension to non-interference verification took only a fraction of the
effort required for the development of a new verifier, can compete with
custom-made tools in its expressiveness at an acceptable performance
cost.

The remainder of this chapter is organized as follows: Sec. 4.1 explains
the proposed verifier architecture in more detail, shows its potential
soundness issue, and derives a soundness criterion on the IVL encoding.
In Sec. 4.2, we demonstrate the practical relevance of both the soundness
issue and the soundness criterion on two real-world examples. Sec. 4.3
shows how the proposed architecture can be used to verify different
non-interference properties for concurrent source language programs.
We describe and evaluate our implementation in Nagini and Viper in
Sec. 4.4, compare to related work in Sec. 4.5 and conclude in Sec. 4.6.

Throughout the chapter, we will re-use definitions and notation from the
previous chapter, and we will re-use the color-coding of code listings
from Chapter 2, i.e., we will mark source language code (for which we
use Python syntax) in blue and IVL code (for which we again use a
simplified Viper dialect) in red.

4.1. Sound Products of IVL Encodings

In this section, we address the first question from the introduction, namely,
whether we can always soundly combine an existing encoding into an
IVL with a sound product construction. We first describe the proposed
architecture in greater detail. Then we show a potential soundness issue
and define a sufficient criterion on the IVL encoding for the entire
approach to be sound.

4.1.1. Proposed Architecture

The architecture proposed in the introduction (Fig. 4.1) enables the
construction of information flow aware verifiers with relatively little
effort, by reusing most of the frontend encoding of the source language to
an IVL as well as the entire backend proof search. The only major change
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Figure 4.2.: Example of an encoding that
is unsound in our setting. The program
on the left can be encoded into a condi-
tional statement (identical to the source
program, modulo language syntax) or to
the program on the right; the latter leads
to unsoundness if P is a relational predi-
cate.

1 def foo(x: int):
2 if x > 7:
3 y = 5
4 else:
5 y = 7
6 assert P(y)

1 method foo(x: Int)
2 {
3 assert x > 7 ? P(5) : P(7)
4 }

that is necessary is that the frontend and the IVL have to be extended
to allow for the use of information flow assertions in specifications.
Crucially, the frontend does not have to know their meaning; it can treat
relational source-level assertions like low(𝑒) or lowEvent like ordinary
unary predicates and simply translate them to their counterparts low(𝑒)
and lowEvent on the IVL level. IVL-level relational assertions will then be
translated to ordinary assertions during the product transformation.

In the remainder of this chapter, we will generally assume that the
existing IVL encoding is used unchanged, and point out when changes
need to be made.

4.1.2. Soundness Issue

Surprisingly, combining a sound encoding from source language to IVL
with a sound IVL-level product construction may result in a verification
technique that is unsound in the presence of relational specifications.
Consider the source program in Fig. 4.2 (left), where P is some predicate.

A frontend could encode the body of foo into an identical (modulo syntax)
conditional statement on the IVL level (assuming the IVL provides
conditionals, assignments, and assert statements). Alternatively, it could
produce the encoding shown in Fig. 4.2 (right), which directly asserts a
sufficient precondition of the source program. If P is a unary predicate,
both encodings are sound: If they verify, the original program is correct.
However, if P(y) is a relational predicate, for instance, low(y), then the
encoding on the right is unsound: low(5) and low(7) are trivially true
(since 5 = 5 and 7 = 7), so the assertion in the encoded program trivially
passes, yet the original program is clearly incorrect: If x is greater than 7
in one execution but less in the other, y will have different values in both
executions, and will therefore not be low.

The underlying reason is that the encoding on the right does not encode
the exact behavior of the source program; it encodes a verification
condition computed by the frontend that is sound if assertions are unary,
but may not be sound for relational assertions.

We will now (1) formalize this intuition and derive a sufficient condition
for the soundness of an encoding in this approach, and (2) show an
example of this problem occurring in real frontends, and describe how it
can be solved.

4.1.3. Soundness Criterion

We write Σ and 𝑆 for states and statements of the source language, and 𝜎
and 𝑠 for states and statements of the IVL. States may contain, for example,
a mutable heap and a variable store. For simplicity, we assume that both
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source and IVL statements contain a statement skip that represents a
finished computation. We also assume that there is a small-step transition
relation → for both languages, and that the standard notion of Hoare
triple validity ⊨ {𝑃}𝑠{𝑄} is defined for the IVL. We let 𝑃 and 𝑄 range
over (source and IVL level) assertions from a standard assertion language
extended with low(𝑒) and lowEvent, and assume a standard definition of
assertion validity for pairs of states.

We define an encoding to be a triple ⟨𝛼, �, 𝛽⟩, where 𝛼 is an encoding
function from source statements to statements of the target language (i.e.,
the IVL), 𝛽 similarly encodes assertions to the target language, and �
relates source language states to corresponding target language states.

We first define the desired relational soundness property, which expresses
that if an encoded Hoare triple holds for the encoded program, then the
original hyperproperty holds for all pairs of executions of the source
program:

Definition 4.1.1 ⟨𝛼, �, 𝛽⟩ is relationally sound iff, for all𝑆,Σ1 ,Σ2 ,Σ
′
1 ,Σ

′
2 ,

𝑃, 𝑄, if ⊨ {⌈𝛽(𝑃)⌉ �̊�}J𝛼(𝑆)K�̊�{⌈𝛽(𝑄)⌉ �̊�} and Σ1 ,Σ2 ⊨ 𝑃 and ⟨𝑆,Σ1⟩ →∗

⟨skip,Σ′
1⟩ and ⟨𝑆,Σ2⟩ →∗ ⟨skip,Σ′

2⟩, then Σ′
1 ,Σ

′
2 ⊨ 𝑄.

Product programs represent the operational behavior of two program
executions by the operational behavior of a single product program
execution. The unsoundness shown before is caused by the fact that
the encoding into the IVL does not reflect the operational behavior of
the conditional statement (replacing it by an assertion of a sufficient
precondition) and, thus, the resulting product does not soundly reflect
two executions of the source program.

We call an encoding that preserves the operational behavior of the source
program operational: It encodes every step of the source program into
some number of steps of the target program so that matching initial states
result in matching end states. Similarly, it encodes specifications from the
source level into target-level specifications that hold in matching states.
We can formalize this intuition by requiring that the source and target
programs are connected by the simulation relation �:

Definition 4.1.2 ⟨𝛼, �, 𝛽⟩ is an operational encoding if: (1) for all

Σ,Σ′, 𝜎, 𝑆, 𝑆′, if ⟨𝑆,Σ⟩ → ⟨𝑆′,Σ′⟩ and Σ � 𝜎, then ⟨𝛼(𝑆), 𝜎⟩ →∗

⟨𝛼(𝑆′), 𝜎′⟩ for some 𝜎′ s.t. Σ′ � 𝜎′, and (2) if Σ � 𝜎 then Σ ⊨ 𝑃 iff

𝜎 ⊨ 𝛽(𝑃).

Note that this notion allows the encoding to overapproximate the be-
haviors of the source program, i.e., admit steps that are not possible on
the source level, but not vice versa. This is crucial, since abstraction and
overapproximation are a part of many typical frontend encodings, as
explained in Sec. 2.1.3.

For the example in Fig. 4.2, it is easy to see that this criterion is fulfilled
by the left encoding: the source and IVL programs are identical (modulo
syntax), matching states are identical states (modulo state encodings),
and the behavior of both programs is identical. The encoding on the
right, however, is not operational: While the left program modifies the
state, the right program never performs any state modification at all.
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We now show that operationality is sufficient for relational soundness:

Theorem 4.1.1 If ⟨𝛼, �, 𝛽⟩ is operational then it is relationally sound.

Proof. Assume that ⟨𝑆,Σ1⟩ →∗ ⟨skip,Σ′
1⟩ and ⟨𝑆,Σ2⟩ →∗ ⟨skip,Σ′

2⟩
and Σ1 ,Σ2 ⊨ 𝑃 and ⊨ {⌈𝛽(𝑃)⌉ �̊�}J𝛼(𝑆)K�̊�{⌈𝛽(𝑄)⌉ �̊�}. Let Σ1 � 𝜎1 and
Σ2 � 𝜎2. We have to show that Σ′

1 ,Σ
′
2 ⊨ 𝑄.

By operationality (1), we have that ⟨𝛼(𝑆), 𝜎1⟩ →∗ ⟨𝛼(skip), 𝜎′1⟩ and
⟨𝛼(𝑆), 𝜎2⟩ →∗ ⟨𝛼(skip), 𝜎′2⟩ for some 𝜎′1 , 𝜎

′
2 s.t. Σ′

1 � 𝜎′1 and Σ′
2 � 𝜎′2.

By Thm. 3.4.5, we have ⟨J𝛼(𝑆)K�̊� , 𝜎1 |𝜎2⟩ →∗ ⟨J𝛼(skip)K�̊� , 𝜎′1 |𝜎′2⟩, where
𝜎𝑖 |𝜎𝑗 is a state containing the renamed combination of 𝜎𝑖 and 𝜎𝑗 . By
operationality (2), we know 𝜎1 , 𝜎2 ⊨ 𝛽(𝑃) and therefore 𝜎1 |𝜎2 ⊨ ⌈𝛽(𝑃)⌉ �̊� ,
so because the Hoare triple is valid, we know 𝜎′1 |𝜎′2 ⊨ ⌈𝛽(𝑄)⌉ �̊� and
therefore 𝜎′1 , 𝜎

′
2 ⊨ 𝛽(𝑄). By operationality (2), we therefore know Σ′

1 ,Σ
′
2 ⊨

𝑄. □

Note that operationality is a sufficient but not necessary condition; encod-
ings of verification conditions may be sound for relational verification
as well. The main advantage of applying the operationality criterion
instead of directly reasoning about relational soundness is that, since op-
erationality represents the simple notion that the IVL program performs
equivalent steps and equivalent state changes to the source program, it
is intuitive and easy to check whether a given encoding is operational.

Some real-world encodings are not operational, but generate the same
proof obligations as a possible operational encoding (or stronger ones).
We call these encodings operational-equivalent and define this notion as
follows:

Definition 4.1.3 An encoding ⟨𝛼, �, 𝛽⟩ is operational-equivalent in some

sound Hoare logic if there is some operational encoding ⟨𝛼′, �′, 𝛽′⟩ s.t. for

all 𝑆, 𝑃, 𝑄, if in the Hoare logic ⊢ {⌈𝛽(𝑃)⌉ �̊�}J𝛼(𝑆)K�̊�{⌈𝛽(𝑄)⌉ �̊�} then also

⊢ {⌈𝛽′(𝑃)⌉ �̊�}J𝛼′(𝑆)K�̊�{⌈𝛽′(𝑄)⌉ �̊�}.

An example of an operational-equivalent encoding is the encoding of
a statically-bound call as an assert (or exhale in a permission logic)
of the call’s precondition and a subsequent assume (or inhale) of its
postcondition, as shown in Sec. 2.1.3: This encoding is not operational
(since the encoded program does not jump to the called implementation),
but in typical IVLs, call statements are verified by asserting the callee’s
precondition and assuming its postcondition. That is, from the verifier’s
perspective, there is no difference between an encoding containing a call
and an encoding containing an assert-assume-pair (or, in a permission
logic, an exhale-inhale-pair): If the latter verifies, the former would have
also verified. As a result, the soundness of an operational-equivalent
encoding follows directly from the soundness of the operational encoding
it is equivalent to:

Theorem 4.1.2 If ⟨𝛼, �, 𝛽⟩ is operational-equivalent, then it is relationally

sound.
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Proof. If⊢ {⌈𝛽(𝑃)⌉ �̊�}J𝛼(𝑠)K�̊�{⌈𝛽(𝑄)⌉ �̊�}, then, by the definition of operational-
equivalence, also ⊢ {⌈𝛽′(𝑃)⌉ �̊�}J𝛼′(𝑠)K�̊�{⌈𝛽′(𝑄)⌉ �̊�} for some operational
encoding ⟨𝛼′, �′, 𝛽′⟩. By the soundness of the Hoare logic, we have that
⊨ {⌈𝛽′(𝑃)⌉ �̊�}J𝛼′(𝑠)K�̊�{⌈𝛽′(𝑄)⌉ �̊�}. From here, the proof continues like the
proof for Thm. 4.1.1. □

Note that, for example, the encoding shown in Fig. 4.2 (right) is not
operational-equivalent, since (assuming that P(y) is low(y)) it generates
weaker proof obligations than any operational encoding: the encoded
program trivially verifies, whereas any operational encoding would also
require proving that the values y could have in two executions that take
different branches are equal at the end (which is not the case).

In the next section, we will show an example of a more complex real-
world encoding whose relational soundness can be derived from the fact
that it is operational-equivalent.

4.2. Practical Relevance

In this section, we discuss two examples of real-world encoding patterns
that violate the operationality criterion. For the first, we show that it
is indeed unsound, and propose an alternative sound encoding. For
the second, we show how the existence of an equivalent operational
encoding can be used to argue that the encoding is sound despite not
being operational.

As mentioned in Sec. 2.1.3, in most existing frontends, the encoding of
virtually all source language constructs is operational; the main appeal
of IVLs is, after all, that frontends do not have to compute verification
conditions, but can instead “compile” input programs into an IVL without
worrying about the verification process itself. However, many frontends
still use non-operational encodings at least for some language constructs.
Examples for this are VCC’s encoding of local blocks, Dafny’s encoding
of calls on traits, Prusti’s encoding for loops, and Nagini’s encoding of
dynamically-bound calls, which we have described in Chapter 2 and
which we will discuss in detail in the next subsection. Additionally, as
we will discuss in Sec. 4.3, all encodings of concurrent source languages
into sequential IVLs necessarily have some non-operational elements.

Where non-operational encodings are used, this is often intentional
to enable modular verification, since operational encodings for some
language constructs are inherently non-modular (see the following
example). In practice, one can therefore use the operationality criterion to
quickly check that the existing encoding is sound for the vast majority of
source language statements, and subsequently check the few remaining
ones for relational soundness in detail.

4.2.1. Example 1: Dynamically-Bound Calls

We now show a real example of an unsound encoding of dynamically-
bound calls that violates the operationality criterion, and show how to
derive a sound alternative.
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Figure 4.3.: Example of a problematic
method override. B.foo overrides A.foo and
has a compatible specification, but the im-
plementations return different values.

1 class A:
2 def foo(self) −> int:
3 # ensures low(result)
4 return 0

1 class B(A):
2 def foo(self) −> int:
3 # ensures low(result)
4 return 1

[138]: Liskov et al. (1994), ‘A Behavioral
Notion of Subtyping’

1: One could, of course, forbid the use of
relational specifications in some places to
trivially avoid the unsoundness; this, how-
ever, is typically not desirable in practice.

Statically-bound method calls, i.e., calls whose exact target is fixed at
compile time, can be encoded as method calls on the IVL level, which
yields an operational encoding if the operational semantics of the IVL
treats calls analogously to the source semantics. As mentioned above, the
IVL verifier might later reason about calls in terms of pre- and postcondi-
tions instead of actually performing a call, but this transformation is not
relevant here as long as the product program is constructed before such a
desugaring step (and if it is, as we have shown above, an argument can
be made for operational-equivalence).

However, the same approach does not work for dynamically-bound
calls, i.e., calls whose target is chosen at runtime based on the type of
the call’s receiver. Since the implementation to be executed is generally
not known during modular verification, it is not possible to encode
dynamically-bound calls as method calls with the usual operational
semantics (and existing IVLs do not offer dynamically-bound calls).
Therefore, dynamically-bound calls are typically (e.g., in Dafny and,
as shown in Chapter 2, in Nagini) directly encoded using the method
specification of the static call target. Additional, separate proof obligations
enforce that all overrides of a method respect behavioral subtyping [138],
i.e., live up to the specification of the overridden method.

Consider method A.foo in Fig. 4.3 (left), which returns a constant integer
and guarantees in its postcondition that the result is low. A dynamically-
bound call a.foo(), where a has the static type A, will be encoded as an
assertion (or exhale) of the (here, trivial) precondition of A.foo, followed
by an assumption (or inhale) of the postcondition (we ignore side effects
here for simplicity).

This encoding is sound if foo has a purely unary specification, without any
relational parts. However, it does not fulfill our operationality criterion:
The semantics of the source program performs a call to an implementation
of foo (selected based on the dynamic type of a), whereas the IVL encoding
directly encodes the proof obligations (similarly to the example from
Fig. 4.2). It is also not operational-equivalent, since conditional calls to
different overrides generate different proof obligations than a single,
unconditional call to a single method.

Since the encoding is not operational, we have to check whether it is
still relationally sound. Method B.foo in Fig. 4.3 (right), which overrides
A.foo, shows that it is not. B.foo’s contract is identical with that of A.foo, so
behavioral subtyping holds trivially. B.foo’s implementation satisfies the
contract because it also returns a constant (but, importantly, a different
one). Now, if a client calls a.foo() and, depending on a secret, the dynamic
type of a is either A or B, then, depending on the secret, the result will
be either 0 or 1. With the standard encoding of dynamically-bound calls
outlined above, however, the client will assume the postcondition of A.foo
and will therefore incorrectly conclude that the returned result is low.

To avoid this unsoundness while retaining the ability to use relational
specifications1, the problematic encoding must be replaced, either with
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an operational one, or with a different non-operational encoding that is
sound for relational specifications. Note that, depending on the case, this
second option may be non-trivial or may only be possible in restricted
settings; after all, finding modular verification approaches for properties
or programs that are not inherently modular has been an important
research topic in verification in the past decades.

For our example, the former option is not desirable: An operational
encoding for dynamically-bound calls would essentially have to case
split on the dynamic type of the receiver and invoke the appropriate
override. Since such an encoding is inherently non-modular (all possible
overrides need to be known), we follow the alternative option: we give
an example of a non-operational, but sound encoding.

For our new encoding we exploit the fact that the standard encod-
ing is unsound only if the two executions of the program resolve the
dynamically-bound call to two different implementations, that is, if the
dynamic types of the receiver differ in the two executions. We reflect
this observation by adjusting the encoding of pre- and postconditions as
follows: (1) If the postcondition of a method guarantees some relational
property (e.g., that an expression is low), we assume this at the call site
only if the dynamic type of the receiver is low, that is, the calls in the two
program executions are resolved to the same implementation. (2) Simi-
larly, if a precondition requires that the call is a low event, we enforce
that the receiver type is low in addition to the usual criterion for low
events. Low events typically perform observable behavior such as I/O;
it is therefore important that the same observable behavior is produced,
independent of the receiver type. The meaning of low-assertions in pre-
conditions remains unchanged, because the requirement of a method to
receive low arguments is independent of the invoked implementation
and must, thus, not be weakened. lowEvent-assertions are generally not
allowed in postconditions, where they add no expressiveness.

For a specification language that contains no relational specification
constructs except for low(𝑒) and lowEvent (otherwise, the encoding of
general relational assertions would mirror that of low(𝑒)), we can encode
this adjustment as follows:

⌈low(𝑒)⌉ �̊�
post𝑟

= (𝑝(1) = 𝑝(2) ∧ type(𝑟(1)) = type(𝑟(2))) ⇒ 𝑒(1) = 𝑒(2)

⌈lowEvent⌉ �̊�
pre𝑟

= 𝑝(1) = 𝑝(2) ∧ type(𝑟(1)) = type(𝑟(2))

where type(𝑒) represents the dynamic type of expression 𝑒, ⌈𝑃⌉ �̊�
post𝑟

is
the encoding of 𝑃 in the postcondition of a call with receiver 𝑟, and
⌈𝑃⌉ �̊�

pre𝑟
represents the same for the precondition. We leave the remaining

encoding untouched, meaning that we can summarize the resulting
encoding as follows:

1. We keep the existing check for behavioral subtyping for all overrides;
this prevents, for example, that A.foo is overridden with a method
that simply returns a secret value and therefore leaks information
into the result.

2. We keep the existing encoding of dynamically-bound calls as an
assert followed by an assume (or an exhale followed by an inhale),
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but interpret low(𝑒) in preconditions and lowEvent in postconditions
as shown above.

In the example above, this encoding lets the caller assume that the result
is low only if it can prove that the dynamic type of a is low.

The adjusted encoding is indeed sound:

Theorem 4.2.1 Let 𝑆𝑐 be of the form 𝑥:=𝑟.𝑚(), where 𝑟 has static type 𝐴,

and let pre𝐴.𝑚 and post𝐴.𝑚 be the pre- and postcondition of 𝐴.𝑚. Assume

that the implementation of A.m and its overrides fulfill their specifications and

satisfy behavioral subtyping, and that all specifications contain no relational

specification constructs except for low(𝑒) and lowEvent. Then the described

encoding of 𝑆𝑐 is relationally sound.

Proof. Assume that ⟨𝑆𝑐 ,Σ1⟩ →∗ ⟨skip,Σ′
1⟩ and ⟨𝑆𝑐 ,Σ2⟩ →∗ ⟨skip,Σ′

2⟩
and Σ1 ,Σ2 ⊨ 𝑃.

Also assume that ⊨ {⌈𝛽(𝑃)⌉ �̊�}J𝛼(𝑆𝑐)K�̊�{⌈𝛽(𝑄)⌉ �̊�}. Let Σ1 � 𝜎1 and Σ2 �
𝜎2. We have to show that Σ′

1 ,Σ
′
2 ⊨ 𝑄.

W.l.o.g. we can assume that no information is framed around the call.
If the encoding verifies, since the initial state must fulfill the initial
assertion, we know that ⌈𝛽(𝑃)⌉ �̊� ⇒ ⌈pre𝐴.𝑚(𝑟)⌉

�̊�
pre𝑟

. Similarly, we know
that ⌈post𝐴.𝑚(𝑟, 𝑥)⌉

�̊�

post𝑟
⇒ ⌈𝛽(𝑄)⌉ �̊� . Because of behavioral subtyping, for

any subclass 𝐵 of 𝐴, we know that overrides of 𝐴.𝑚 must be such that
pre𝐴.𝑚 ⇒ pre𝐵.𝑚 and post𝐵.𝑚 ⇒ post𝐴.𝑚 . We perform a case split:

▶ If the dynamic type of 𝑟 is equal in both source executions, both
calls step to some statement 𝑆𝐵, representing the implementation
of some override 𝐵.𝑚 (where 𝐵 might be identical to 𝐴). Since
the implementation of 𝐵.𝑚 fulfills its specification and we have
⟨𝑆𝐵 ,Σ1⟩ →∗ ⟨skip,Σ′

1⟩ and ⟨𝑆𝐵 ,Σ2⟩ →∗ ⟨skip,Σ′
2⟩ and Σ1 ,Σ2 ⊨

pre𝐵.𝑚 , we have Σ′
1 ,Σ

′
2 ⊨ post𝐵.𝑚 Since post𝐵.𝑚 ⇒ post𝐴.𝑚 and

post𝐴.𝑚 ⇒ 𝑄, we are done.
▶ If the dynamic type of 𝑟 is different in both source executions, the

calls step to different implementations 𝑆1 and 𝑆2. ⌈post𝐴.𝑚(𝑟, 𝑥)⌉
�̊�

post𝑟

cannot contain relational information in this case, since all occur-
rences of low(𝑒) are conditional under the dynamic types being
identical in both executions. Since post𝐴.𝑚 ⇒ 𝑄, 𝑄 also cannot
contain relational information. It therefore suffices to show that
both 𝑆1 and 𝑆2 separately fulfill the 𝑄, which follows from the fact
that they fulfill their own specification and behavioral subtyping
as in the previous case.

□

Note that this encoding is incomplete, since it is not aware that two
different receiver types can lead to the same implementation being called
(e.g., if one type inherits from the second and does not override the called
method). Alternative encodings could explicitly represent this possibility.
Conversely, one could approximate further (while remaining sound) by
requiring the receiver values to be low, not just their types, in encodings
that do not model dynamic types.
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1 def main():
2 # requires P
3 # ensures Q
4 parallel:
5 thread 1:
6 # requires P1
7 # ensures Q1
8 s1
9 thread 2:

10 # requires P2
11 # ensures Q2
12 s2

Figure 4.4.: Example program using a
parallel block. The parallel statement in-
troduces a parallel block which consists of
multiple threads, each of which have their
own pre- and postcondition.

1 method main()
2 requires P
3 ensures Q
4 {
5 parallel_block()
6 }
7
8 method parallel_block()
9 requires P1 ∗ P2

10 ensures Q1 ∗ Q2
11 {
12 assume false
13 }

1 method thread_1()
2 requires P1
3 ensures Q1
4 {
5 s1
6 }
7
8 method thread_2()
9 requires P2

10 ensures Q2
11 {
12 s2
13 }

Figure 4.5.: (Simplified version of) Ver-
Cors’ non-operational encoding of the pro-
gram in Figure 4.4.

[38]: Blom et al. (2014), ‘The VerCors Tool
for Verification of Concurrent Programs’

[133]: Leino et al. (2009), ‘Verification of
Concurrent Programs with Chalice’

As a final note, one can also argue that the adapted encoding is indeed
correct because it results in the same proof obligations as a possible
(non-modular) operational encoding that conditionally calls different
method implementation depending on the receiver type. We will show
how such an argument can be structured in the next subsection.

4.2.2. Example 2: Parallel Blocks in VerCors

We now show an example of a real-world encoding which is not oper-
ational, but which is operational-equivalent: The encoding of parallel
blocks used by VerCors [38]. Using this encoding, we show how an
argument for operational-equivalence can be made.

Note that this example serves only to illustrate the concept of operational-
equivalence, it is not an encoding that can then directly be combined with
a sequential product construction, since the example uses concurrency
and we are assuming a concurrent IVL here. More precisely, we will
assume an IVL that has fork and join statements to spawn and join new
threads similar to Chalice [133], and will show that VerCors’ existing
encoding, while not operational, is equivalent to a possible operational
encoding in such a language. In a later section, we will then explain how
a sequential product construction can be used to reason about concurrent
source programs.

Figure 4.4 shows an example program using such a parallel block (written
using imaginary Python syntax; VerCors’ internal language has parallel
blocks as native language constructs). A parallel block consists of some
number of threads which, as the name suggests, execute in parallel. Each
thread has its own specification. In our example, we have two threads
that each execute a statement and have some specification which we
leave abstract.
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Figure 4.6.: Modified method
parallel_block which would make
VerCors’ encoding operational and
imposes the same proof obligations as the
original encoding.

1 method parallel_block()
2 requires P1 ∗ P2
3 ensures Q1 ∗ Q2
4 {
5 var t1: Thread
6 var t2: Thread
7 t1 := fork thread_1()
8 t2 := fork thread_2()
9 join t1

10 join t2
11 }

2: This encoding does not explicitly model
the fact that these threads will execute in
parallel, i.e., interleaved, in the source pro-
gram; we explained why this is sound in
permission logics like CSL [169] in Chap-
ter 2, and will come back to this point in
the next section.

Figure 4.5 shows a simplified version of VerCors’ encoding of the source
program shown before. This encoding consists of several parts:

1. The main method itself, which, instead of the parallel block in the
source program, contains a single method call.

2. The parallel_block method, whose precondition is the separating
conjunction of the preconditions of all threads in the block, and
whose postcondition is similarly the separating conjunction of
the postconditions of all threads. This method’s body is simply
assume false, meaning that this method does not generate any proof
obligations for the verifier.

3. The thread_1 method has the specification of the first thread in the
block, and contains the body of this first thread.

4. Similarly, method thread_2 has the specification and the body of the
second thread in the block.

This encoding is obviously not operational: When main executes the
parallel block in the source program, the encoded program instead calls
a method whose body immediately assumes false, meaning that in a
typical operational semantics like the one shown in the previous chapter,
the program would step to a magic state. Meanwhile, the two methods
containing the code of the two threads are never executed from the main
method, neither in parallel nor sequentially.

This encoding is a part of a class of encodings which, instead of encoding
each statement in the source program to a single (potentially composite)
statement in the IVL, creates several unconnected pieces of code in the
IVL that check different verification conditions.

The intention behind this encoding is as follows: The two thread methods
require the verifier to prove that the respective thread bodies are both
correct with respect to their respective thread specifications2. The main
method, when calling method parallel_block, requires the verifier to prove
that the separating conjunction of all thread preconditions is fulfilled at
the point when the parallel block is executed (by exhaling it), and allows
it to inhale the separating conjunction of all thread postconditions holds
after the parallel block. Essentially, the method call here does not really
represent a method call at all, but is used to encode an exhale-inhale-pair
that is a proof obligation which must be checked by the verifier.

However, this encoding can easily be extended to one that is operational:
Figure 4.6 shows an alternative version of method parallel_block (written,
as stated before, in a concurrent IVL which we will assume behaves like
Chalice). In this alternative method implementation, we have added a
body which actually executes both threads in parallel, by forking both
of the thread methods and subsequently joining the threads. With this
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[187]: Sabelfeld et al. (2000), ‘Probabilistic
Noninterference for Multi-Threaded Pro-
grams’

alternative method, the entire encoding becomes operational: main, via its
call to parallel_block, starts executing both thread methods in parallel, and
the thread methods’ bodies are (the encoded versions of) the statements
executed by the threads in the original parallel block. After both threads
have finished executing, they are joined by the main thread, and the
execution can continue after the parallel block.

In addition to making the encoding operational, this adapted encoding
also combines the previously disconnected elements of the encoding by
introducing connections in the form of fork and join statements. For the
original encoding to be operational-equivalent, the adapted encoding
must also generate the same proof obligations as the original encoding (or
weaker ones). This is indeed the case: The body of the adapted method
parallel_block is constructed in such a way that it will always verify. The
reasoning for this is as follows: As explained in Sec. 2.2.5.4 in Chapter 2,
a fork statement is verified in permission logics, including Chalice, by
exhaling the precondition of the forked method, and a join statement by
inhaling its postcondition. However, the precondition of parallel_block gives
it the separating conjunction of the preconditions of all threads, which
means that it is always possible to sequentially exhale the individual
thread preconditions. Similarly, after sequentially inhaling all thread
postconditions (when verifying the join statements), the postcondition of
parallel_block, the separating conjunction of all thread postconditions, will
always be fulfilled.

As a result, method parallel_block in the adapted (operational) encoding
always verifies by construction, and thus we can argue that the adapted
encoding always verifies if the original encoding verifies (which does
not impose any proof obligations in parallel_block). Therefore, the original
encoding is operational-equivalent, and thus relationally sound.

As a final note, this pattern of combining disconnected parts of an
encoding to create an operational encoding can also be applied to argue
for the correctness of the adapted encoding of dynamically-bound calls
shown in the previous subsection. We leave this as an exercise to the
reader.

4.3. Product Programs and Concurrency

It has long been recognized that verification of information flow security
for concurrent programs is especially challenging. The reason is that
one needs to reason about a pair of executions that may have different
thread interleavings (depending on the type of scheduler), and that these
different interleavings can introduce additional information flows [187].

Many product constructions, like modular product programs, explicitly
target only sequential languages and thus do not support concurrent
programs at all. While self-composition can in principle be applied to
any programs, including concurrent ones, this would generally force the
verifier to consider all combinations of possible thread interleavings of
the two executions (in addition to the modularity issue also present for
sequential programs), which leads to a state space explosion and thus
makes verification infeasible in practice.
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A naive product construction for concurrent programs would have
to faithfully represent all combinations of potential thread interleav-
ings, which makes verification infeasible in practice. To the best of our
knowledge, there is currently only one existing product construction
that explicitly targets concurrent programs, a technique by Farzan and
Vandikas, which is implemented in the tool Weaver [78]. This technique
avoids reasoning about all possible combinations of thread schedules by
(automatically) creating a reduced product that represents all relevant

classes of schedule combinations. However, reasoning about all relevant
differences in interleavings is still required, and thus this approach is not
thread-modular.

We are aware of only one existing tool that automatically verifies infor-
mation flow security in a thread-modular way, SecC, which automates
SecCSL, a concurrent separation logic for information flow security
proofs [72].

As explained in Chapter 2, many existing verifiers for trace properties
avoid reasoning about different thread interleavings by employing a
program logic (such as concurrent separation logic [169], on which SecCSL
is based) that essentially reduces verification to sequential reasoning and
allows concurrent verification problems to be encoded into sequential
IVLs. Examples for such verifiers include VerCors and Nagini (using the
Viper IVL), as well as Chalice [133], VCC, and Spec# (using the Boogie
IVL).

In this section, we show how to use IVL-level product programs to extend
such verifiers to handle information flow properties. We first describe in
general terms how existing IVL encodings for concurrent languages work,
and subsequently show how we can use similar principles to apply an
IVL-based product construction, and which additional proof obligations
we must fulfill to ensure that no flows exist as a result of concurrency.

It is well-known that concurrent programs can have different additional
information flows depending on the type of scheduler [187]. To accom-
modate for this, we will present several solutions that give different guar-
antees when used with specific kinds of schedulers: We present detailed
solutions for proving both possibilistic and probabilistic non-interference,
and sketch an approach for proving observational determinism.

Our goal is to describe a technique that applies to a wide range of source
languages, IVLs, proof techniques, and encodings. Therefore, we focus
on the high-level concepts, instead of formalizing them for one specific
setting.

4.3.1. Concurrent IVL Encodings

Existing thread-modular encodings from concurrent source languages
to IVLs do not model the exact behavior of the original language, in
particular, the aforementioned thread interleavings (i.e., the parts of these
encodings that concern concurrency are non-operational). Instead, they
encode a verification condition that ensures that the original program is
correct for every possible thread interleaving.

While the exact proof techniques differ between frontends, and can be
based for example on CSL [169] (like in Nagini) or ownership [48, 90, 108,
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enc(l.acquire()) = // gain access to protected memory;
assume Inv(l)

enc(l.release()) = assert Inv(l);
// lose access to protected memory

Figure 4.7.: Standard IVL encoding of
lock operations. Inv(l) denotes the invari-
ant constraining the memory protected by
lock l.

[48]: Cohen et al. (2010), ‘Local Verifica-
tion of Global Invariants in Concurrent
Programs’
[90]: Goubault et al. (2018), ‘Concurrent
Specifications Beyond Linearizability’
[108]: Jacobs et al. (2011), ‘Expressive mod-
ular fine-grained concurrency specifica-
tion’
[109]: Jacobs et al. (2005), ‘Safe Concur-
rency for Aggregate Objects with Invari-
ants’
[132]: Leino et al. (2009), ‘A Basis for Veri-
fying Multi-threaded Programs’

3: This is true under the assumption,
which we make throughout this section,
that the scheduling behavior does not de-
pend on (potentially high) program state.

[205]: Smith et al. (1998), ‘Secure Informa-
tion Flow in a Multi-Threaded Imperative
Language’

109], they generally follow a common pattern [132]: They prove that the
source program is data race free, which ensures that thread interactions
need to be considered only at well-defined synchronization points, for
instance, upon acquiring or releasing a lock. The code between such
interaction points can be considered to execute without interference from
other threads, and thus can be reasoned about as if it were sequential.

We focus on locks here, but other synchronization primitives are handled
analogously. Program logics based on CSL or ownership systems formally
connect a lock and the heap locations it protects, such that these locations
may be accessed only while holding the respective lock. In addition, they
associate locks with an invariant that constrains the values of the heap
locations it protects. When acquiring a lock, a thread may assume that
this lock invariant holds, and when releasing a lock, it has to prove that
the invariant is re-established. A frontend can encode this into an IVL as
depicted in Fig. 4.7. As an example, in a CSL-like setting like the one used
by Nagini, gaining and losing access to the memory protected by a lock
is expressed by inhaling and exhaling permissions in the lock invariant,
respectively.

Our solution for information flow verification in concurrent programs
follows the same basic approach: We exploit that code between lock
operations can be considered to execute without interference, and that
we can therefore use ordinary sequential product programs to reason
about this code. To capture the thread interactions at synchronization
points, we extend lock invariants to contain relational assertions (which
can prescribe that some values protected by the lock are low), and add
additional checks around lock operations to ensure that they do not give
rise to unwanted information flow.

4.3.2. Possibilistic Non-Interference with

Non-Deterministic Scheduling

For concurrent programs executed in a language or execution environ-
ment with a non-deterministic scheduler, standard non-interference is
too strict a property: Since two executions can have different thread
schedules, their low outputs can differ not only because of different high
inputs, but because of scheduling differences, which are benign and
obviously do not constitute a breach of information flow security3. One
way of approaching this problem is to instead verify possibilistic non-

interference [205], which enforces that high information does not influence
the possible values of low outputs, i.e., if some combination of low output
values is reachable from an initial state, then the same combination of low
output values must still be reachable using some possible thread schedule
after arbitrarily changing the high inputs. Possibilistic non-interference
can be defined as follows:
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Definition 4.3.1 A program 𝑠 with a set of input variables 𝐼 and output

variables 𝑂, of which some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies

possibilistic non-interference iff for all 𝜎1 , 𝜎2 and 𝜎′1, if ∀𝑥 ∈ 𝐼𝑙 . 𝜎1(𝑥) =
𝜎2(𝑥) and ⟨𝑠, 𝜎1⟩ →∗ ⟨skip, 𝜎′1⟩ then ⟨𝑠, 𝜎2⟩ →∗ ⟨skip, 𝜎′2⟩ for some 𝜎′2
s.t. ∀𝑥 ∈ 𝑂𝑙 .𝜎′1(𝑥) = 𝜎′2(𝑥).

Note that this property is sufficient only in a setting with purely non-
deterministic thread scheduling without any underlying probability
distribution, as it would otherwise allow high inputs to influence the
probability of different outputs; we discuss a stronger notion of non-
interference that addresses this problem in the next subsection.

Since we build on a proof technique that ensures data race freedom, we
can see each program trace as a sequence of local operations and lock
operations by specific threads, where (1) every local operation depends
only on previous (local or lock) operations of the same thread, and
(2) every lock operation depends only on the previous local operations of
the same thread and all previous lock operations (of arbitrary threads).
As a result, we can (akin to partial order reduction) rearrange segments
freely as long as we retain the overall order of lock operations and
the order of operations of every specific thread; in particular, we can
rearrange a trace so that it consists of a number of segments, such that in
each segment, one thread executes any number of local operations and
then one lock operation.

Based on this observation, we impose proof obligations that ensure the
following property: For every program trace with some schedule and
some high and low inputs, and for arbitrary alternative high inputs, there
exists a second trace with the same low but the alternative high inputs
such that: (1) Both traces include the same lock operations performed by
the same threads, in the same order, and (2) at each lock operation, the
lock’s invariant holds; in particular, the relational assertions of the lock
invariant correctly relate the state protected by the lock in both traces.

To enforce this property, we devise four proof obligations that can be
checked thread-locally:

1. Every lock operation 𝑜 is a low event, i.e., if a thread executes 𝑜 in
the first execution, it will also execute 𝑜 in the second execution.

2. Termination of the local code before the lock operation does not
depend on secret data; i.e., if lock operation 𝑜 is reached in the first
trace, it will also be reached in the second trace.

3. 𝑜 operates on the same lock in both executions, i.e., the lock is low.
4. If 𝑜 releases the lock, i.e., makes a new lock state public, this lock

state fulfills the relational invariant, meaning that heap operations
meant to be low are identical in both executions after the lock
operation.

Note that, even though the lock operations of both traces are closely
aligned, the traces’ local operations may differ. For instance, a thread
may branch on a high guard as long as no lock operation is performed
before the control flow re-joins.
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poss(l.acquire()) = assert lowEvent;
assert low(𝑙);
// gain access to protected memory;
assume Inv(l)

poss(l.release()) = assert lowEvent;
assert low(𝑙);
assert Inv(l)
// lose access to protected memory;

poss(while (𝑒) {𝑠}) = assert low(𝑒);
assert lowEvent;
while (𝑒) {poss(𝑠); assert low(𝑒)}

Figure 4.8.: Statement encoding for pos-
sibilistic information flow security. For
loops, we check that the loop guard is
low, ensuring that termination is also low.

4.3.2.1. Encoding

The aforementioned four properties can be checked as part of the encoding
of lock operations. We adjust the encoding from Figure 4.7 for possibilistic
non-interference as shown in Figure 4.8. For thread acquire and release,
the assertions of lowEvent and low(𝑙) directly ensure properties (1) and
(3). Assuming and asserting the lock invariant works as in the standard
IVL encoding for concurrent programs, but now this invariant can be
relational, ensuring property (4). The condition on while loops is used to
ensure property (2), which can be done simply by asserting that the loop
condition is low for every loop in the program and reaching a (potentially
non-terminating) loop is a low event; we assume, for simplicity, that
there is no infinite recursion. Note that the latter is a simpler option than
the encoding for termination-sensitive non-interference presented in the
previous chapter, but said encoding may be used instead; we will discuss
the relative advantages and disadvantages later.

We now show that the above checks are sufficient to satisfy Def. 4.3.1. In
our proof, we will assume a similar language as in the previous chapter
for the purpose of this proof, but without assume and havoc statements,
since the former do not occur in actual code and the latter would be
non-deterministic, whereas we assume that thread scheduling is the only
possible source of non-determinism.

First, we prove a lemma stating that the encoding ensures that high data
does not influence termination, and similarly, that high data does not
influence whether a lock operation is executed:

Lemma 4.3.1 If 𝑠 is a sequential, deterministic command, 𝜎1 , 𝜎2 ⊨ 𝑃 and

⊨ {⌈𝑃⌉ �̊�}Jposs(𝑠)K�̊�2 {⌈𝑄⌉ �̊�} and ⟨𝜎1 , 𝑠⟩ →𝑙1 ⟨𝜎′1 , 𝑠′⟩, s.t. 𝑠′ is either skip

or a statement that would execute a lock operation in its next step, and no lock

operation has been executed in any of the 𝑙1 steps, then ⟨𝜎2 , 𝑠⟩ →𝑙2 ⟨𝜎′2 , 𝑠′⟩
for some 𝜎′2 and 𝑙2.

Proof. The proof goes by induction on the structure of 𝑠.

If 𝑠 is a basic statement, the proof is immediate if 𝑠′ is skip, since then
𝑠 cannot be a lock operations by assumption, and 𝑠 therefore always
terminates, and cannot fail by Thm. 3.4.2. In the case where 𝑠′ would
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execute a lock operation, we must have 𝑠′ = 𝑠 and 𝑙1 = 0, and the second
zero-step execution is trivial.

If 𝑠 is a conditional, its condition 𝑒 either evaluates to the same value
in both executions, in which case both step to the same substatement
𝑠′′ and we can apply the induction hypothesis to 𝑠′′. Otherwise, the
condition evaluates to different values, the two executions step to different
statements 𝑠1 and 𝑠2, and thus the activation variables of the branches in
the product program have different values for both executions from here
on out. As a result, both statements 𝑠𝑖 can never step to a statement 𝑠′′

𝑖

that is a loop or a lock operation, since poss(𝑠′′
𝑖
) asserts that the activation

variables have equal values (lowEvent), and this assertion would fail,
which is impossible because of the given Hoare triple. Therefore 𝑠 cannot
lead to a lock operation, and 𝑠′ must instead be skip. Since any loop-free
statement 𝑠 must necessarily terminate, the second execution of 𝑠 will
terminate as well.

If 𝑠 is a sequential composition 𝑠1; 𝑠2, we have two cases: Either 𝑠1 leads
to a lock operation 𝑠′′ from 𝜎1, meaning that 𝑠′ has the form 𝑠′′; 𝑠2. Then,
by the induction hypothesis, 𝑠2 also leads to 𝑠′′ from 𝜎2, and we are done.
Alternatively, 𝑠1 terminates and 𝑠2 steps to 𝑠′ from 𝜎1. Then we apply
the induction hypothesis twice to show 𝑠1 also terminates from 𝜎2, and
subsequently 𝑠2 steps to 𝑠′ again.

Finally, if 𝑠 is a loop, the assertion low(𝑒) in poss(𝑠) ensures that the loop
condition 𝑒 evaluates to the same value in both executions. If it is false,
both executions terminate immediately and 𝑠′ must be skip. Otherwise
they must both execute the loop body 𝑠′′ at least once. We do a proof
by induction on the number 𝑗 of complete executions of 𝑠′′ in the first
execution before the loops either terminates or an iteration steps to the
lock operation 𝑠′, and show that for any 𝑗, if 𝑗 executions of the loop body
𝑠′′ terminate in the first execution, then they also do so in the second
execution, and the value of 𝑒 after these 𝑗 loop executions will be equal in
both executions. The case for 𝑗 = 0 is trivial, since we start in a state where
𝑒 has the same truth value on both executions, as already stated. In the
inductive step, we know from initial the induction hypothesis that since
𝑠′′ terminates in the first execution, it does so in the second. Additionally,
since poss(𝑠) ensures that 𝑒 is again low at the end of the loop body, we
know that 𝑒 has the same truth value in both executions. By the induction
hypothesis, the remaining 𝑗 − 1 executions will also terminate and lead
to states with equal values of 𝑒. Then, if 𝑒 is false in both executions, both
executions terminate and 𝑠′ must be skip. Otherwise, the next execution
of a loop body must lead to a lock operation 𝑠′ in the first operation, and
by the original induction hypothesis, it also does so in the second. □

Now we can prove our main theorem, the soundness of our encoding.
We do this for programs that, at the top level, are a parallel composition
of multiple threads. Without defining properties of program states in
any more detail, we assume that a program state 𝜎 can be split up into
several partial states (e.g., partial heaps and parts of the store), and use
the operator ⊎ to combine states. That is, if 𝜎 consists of the partial states
𝜎1 and 𝜎2, we write 𝜎 = 𝜎1 ⊎ 𝜎2. Similarly, we assume that there is an
operator ∗ that allows combining assertions in such a way that if two states
𝜎1 and 𝜎2 individually fulfill the assertions 𝑃1 and 𝑃2, the combined state
𝜎1 ⊎ 𝜎2 fulfills the assertion 𝑃1 ∗ 𝑃2. This property is obviously fulfilled
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by the separating conjunction in permission logics, which is why we use
the same notation, but other specification techniques may have similar
concepts.

Theorem 4.3.2 Let 𝑠 = 𝑠1 | | . . . | |𝑠𝑛 and 𝜎1 = 𝜎1
1 ⊎ · · · ⊎ 𝜎𝑛

1 ⊎ 𝜎𝐿
1 and

𝜎2 = 𝜎1
2 ⊎ · · · ⊎ 𝜎𝑛

2 ⊎ 𝜎𝐿
2 and 𝑃 = 𝑃1 ∗ · · · ∗ 𝑃𝑛

and 𝑄 = 𝑄1 ∗ · · · ∗ 𝑄𝑛
,

s.t. 𝜎𝑖
1 , 𝜎

𝑖
2 ⊨ 𝑃

𝑖
for all 𝑖 ∈ {1, . . . , 𝑛}. Let 𝜎𝐿

1 , 𝜎
𝐿
2 ⊨ Invs, where Invs are the

(relational) invariants of a set of locks. If ⊨ {⌈𝑃 𝑖⌉ �̊�}Jposs(𝑠 𝑖)K�̊�2 {⌈𝑄 𝑖⌉ �̊�} for

all 𝑖 and ⟨𝜎1 , 𝑠⟩ →∗ ⟨𝜎′1 , skip⟩ in trace 𝜏1, then there is a trace 𝜏2 of the

form ⟨𝜎2 , 𝑠⟩ →∗ ⟨𝜎′2 , skip⟩ for some 𝜎′2 s.t. 𝜎′1 , 𝜎
′
2 ⊨ 𝑄.

Proof. As described before, all steps in a trace will either be thread-local
steps or lock operations (lock releases or acquires), and we partition
each thread’s steps into segments that consist of some number of local
steps and end with a lock operation. The proof goes by induction on the
number 𝑗 of segments in 𝜏1. If 𝑗 = 0, then threads do not interact at all
and execute completely independently. In this case, by Lemma 4.3.1, each
thread’s termination in 𝜏1 implies its termination in 𝜏2, and by Thm. 3.4.9,
all postconditions will be fulfilled.

Otherwise, we will show that it is possible to construct 𝜏2 such that it
has the same sequence of lock operations as 𝜏1, and the (relational) lock
invariants hold between both executions at each point of matching lock
operations. We consider the segment that ends with the first lock opera-
tion in 𝜏1, which we assume is performed by some thread 𝑖, and which
must therefore have the form 𝜏′1 = ⟨𝜎𝑖

1 , 𝑠
𝑖⟩ →∗ ⟨𝜎′𝑖1 , 𝑠′𝑖⟩ → ⟨𝜎′′𝑖1 , 𝑠′′𝑖⟩, for

some 𝑠′𝑖 , 𝑠′′𝑖 , 𝜎′𝑖1 , 𝜎
′′𝑖
1 s.t. 𝑠′𝑖 performs a lock operation. In the trace, this

segment is of course interleaved with steps from other threads, but (as
we argued before) since we assume that our encoding ensures data race
freedom, the segment would execute identically if all its steps were per-
formed without interruption, as in 𝜏′1. We construct 𝜏2 s.t. it exclusively
schedules thread 𝑖 until it performs the same thread interaction on the
same lock. By Lemma 4.3.1, we get that ⟨𝜎𝑖

2 , 𝑠
𝑖⟩ →∗ ⟨𝜎′𝑖2 , 𝑠′𝑖⟩. Then, we

make a case distinction on the kind of lock operation:

▶ If 𝑠′𝑖 performs a release, then poss(𝑠′𝑖) ensures that 𝜎′𝑖1 , 𝜎
′𝑖
2 ⊨ low(𝑙) ∗

Inv(𝑙) ∗ 𝑅 for some 𝑅, where Inv(𝑙) is the invariant of the acquired
lock 𝑙. That is, the relational invariant of the lock holds, and both
threads release the same lock 𝑙. We then split 𝜎′𝑖1 s.t. 𝜎′𝑖1 = 𝜎′′𝑖1 ⊎ 𝜎𝑙

1,
and split 𝜎′𝑖2 analogously, s.t. 𝜎𝑙

1 , 𝜎
𝑙
2 ⊨ Inv(𝑙) and 𝜎′′𝑖1 , 𝜎′′𝑖2 ⊨ 𝑅. 𝜎𝑙

1 is
added to the lock state 𝜎𝐿

1 in the next step, and analogously for the
second execution. That is, we get that ⟨𝜎′𝑖2 , 𝑠′𝑖⟩ →∗ ⟨𝜎′′𝑖2 , 𝑠′′𝑖⟩ and
have ensured that the lock invariant holds for the released lock.

▶ If 𝑠′𝑖 performs an acquire, then poss(𝑠′𝑖) ensures that 𝜎′𝑖1 , 𝜎
′𝑖
2 ⊨

low(𝑙) ∗ 𝑅 for some 𝑅, so both threads acquire the same lock
𝑙. Additionally, since the lock states 𝜎𝐿

1 and 𝜎𝐿
2 fulfill all lock

invariants, we know that they contain some parts 𝜎𝑙
1 and 𝜎𝑙

2 s.t.
𝜎𝑙

1 , 𝜎
𝑙
2 ⊨ Inv(𝑙) and 𝜎′′𝑖1 = 𝜎′𝑖1 ⊎𝜎𝑙

1. Now the second trace can perform
a step ⟨𝜎′𝑖2 , 𝑠′𝑖⟩ →∗ ⟨𝜎′′𝑖2 , 𝑠′′𝑖⟩, where 𝜎′′𝑖2 = 𝜎′𝑖2 ⊎ 𝜎𝑙

2, and it is safe to
assume 𝜎′′𝑖1 , 𝜎′′𝑖2 ⊨ 𝑅 ∗ Inv(𝑙).

Since all lock invariants are fulfilled at this point, and we have ⊨
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Figure 4.9.: Possibilistic information flow
violation via a secret-dependent lock re-
lease. The Cell state 4 is visible to other
threads only if secret is True.

1 def main(secret: bool) −> None:
2 c = Cell()
3 l = CellLock(c)
4 l.acquire()
5 c.val = 4
6 if secret:
7 l.release()
8 l.acquire()
9 c.val = 5

10 c.release()

[205]: Smith et al. (1998), ‘Secure Informa-
tion Flow in a Multi-Threaded Imperative
Language’

{⌈𝑅⌉ �̊�}Jposs(𝑠′′𝑖)K�̊�2 {⌈𝑄 𝑖⌉ �̊�}, we can now apply the induction hypoth-
esis on the remaining 𝑗 − 1 segments. □

4.3.2.2. Discussion

With our verification technique, the product construction on the IVL
level does not need to be aware of concurrency in any way; applying
the standard sequential product construction to the updated encod-
ing is sufficient to ensure possibilistic non-interference in concurrent
programs.

To the best of our knowledge, we are the first to consider possibilistic
information flow in a setting with locks, and therefore the first to propose
that the order of lock operations must be constrained (proof obligations
1 and 3). The example in Fig. 4.9 demonstrates that proof obligation 1
is indeed necessary to prevent unwanted information flow: The CellLock
protects the val field of a Cell object, which is intended to be low. The code
unconditionally sets the field to two constants (first to 4, then to 5), which
should be allowed since the constants are low. However, whether the
lock is released while the cell has value 4 depends on a secret. As a result,
when a different thread acquires the lock and sees that the value is 4,
this leaks that the secret must have been true, which violates possibilistic
non-interference.

Another example that illustrates the requirement to ensure that high data
does not influence which lock a lock operation accesses (proof obligation
3) can be found in Fig. 4.10. Here, two locks are created, and thread 1
acquires the first one. Thread 2 acquires, depending on the secret, either
the same lock or a different one. This influences the possible results of the
program: If both threads acquire the same lock, then the print statements
of one thread cannot be interleaved with those of the other, otherwise
they can. As a result, if the attacker observes the pattern 1212 (or any
other interleaving of 1s and 2s), they know with certainty that the two
threads acquired different locks and secret must therefore be False.

The necessity to prevent termination differences in a concurrent setting
(i.e., proof obligation 2) has been recognized before, e.g. in work on
security type systems [205]. Fig. 4.11 shows an example of a program
that leaks information because of secret-dependent non-termination. For
convenience, we have omitted locks in this example, but we assume that
all variables accessed in more than one thread (i.e., go_1, go_2, proceed,
and leak) are protected by a lock and that variables proceed and leak are
marked as low by the lock invariant. In the example, thread 0 controls, by
setting the shared variables go_1 and go_2 (both initially False), whether
or not the other threads set the value of the shared variable leak to a
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1 def thread1(l: Lock) −> None:
2 # requires lowEvent
3 l.acquire()
4 print(1)
5 print(1)
6 l.release()
7
8 def thread2(l: Lock) −> None:
9 # requires lowEvent

10 l.acquire()
11 print(2)
12 print(2)
13 l.release()

1 def main(secret: bool) −> None:
2 l1 = Lock()
3 l2 = Lock()
4 if secret:
5 l = l1
6 else:
7 l = l2
8 fork thread1(l1)
9 fork thread2(l)

Figure 4.10.: Possibilistic information flow
violation through locks. If secret is true,
both threads acquire the same lock, and
their critical sections cannot be inter-
leaved.

1 def thread_0(secret: bool):
2 if secret:
3 go_1 = True
4 else:
5 go_2 = True
6 while not proceed:
7 pass
8 print(leak)

1 def thread1():
2 while not go_1:
3 pass
4 leak = True
5 proceed = True
6
7 def thread2():
8 while not go_2:
9 pass

10 leak = False
11 proceed = True

Figure 4.11.: Example of a possibilistic
information flow violation through thread
interactions. The value of secret is leaked
through variable leak.

constant, and it does so based on variable secret. The go variables are
assigned under a high condition, but the assignments to variable leak
are not. However, whether or not they can ever be executed depends on
the values of the high go variables, because those determine whether the
loops before the respective assignments terminate or not.

As we stated before, to prevent this kind of information flow, it is necessary
to show that loop termination does not depend on high values, which
we do by forbidding loops with high guards. However, this criterion
is unnecessarily strict in some cases. Consider the example in Fig. 4.12,
which shows an alternative implementation of thread 2. It also contains
a loop with a high guard that is followed by an assignment to a shared
variable (leak). However, even though the guard is high, this loop always
terminates, and there is therefore always a possible schedule that will
execute the assignment to leak after the loop, which means that there is
no possibilistic non-interference violation.

To allow such loops, one can use a different criterion that forbids only
loops whose termination depends on a high value. As a result, one could
allow loops for which secret data influences the number of iterations
but does not influence termination, as is the case in Fig. 4.12. We can
easily implement this (and we did, in fact, do this in our implementation
in Nagini) by instead using the technique for preventing termination
channels in loops described in Sec. 3.5.5 in the previous chapter: We
require the user to specify, for each loop, an exact condition under which
its execution terminates (in the example, this condition is simply True).
We then (1) use standard techniques to prove that the loop terminates iff
the condition is true when the loop is reached, and (2) prove that this
termination condition is low.

Note, however, that this verification technique is not strictly more precise
than the one presented in this chapter, since it requires that a condition
under which a loop terminates can be expressed in thread-local terms
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Figure 4.12.: Example of a loop with a high
loop condition whose termination is low.

1 def thread2(secret: int):
2 while secret > 0:
3 secret −= 1
4 leak = False
5 proceed = True

Figure 4.13.: Example of probabilistic in-
formation flow. With a non-deterministic
scheduler, secret does not influence the set
of possible outputs, but a greater secret
leads to higher probability of seeing a final
cell value of 2.

1 def thread1(l: Lock, c: Cell):
2 ctr = 0
3 for i in range(100):
4 ctr += 1
5 l.acquire()
6 c.val = 1
7 l.release()

1 def thread2(l: Lock, c: Cell, secret: int):
2 ctr = 0
3 for i in range(secret):
4 ctr += 1
5 l.acquire()
6 c.val = 2
7 l.release()

[222]: Volpano et al. (1998), ‘Probabilis-
tic Noninterference in a Concurrent Lan-
guage’

before the loop executes and that loop termination under this condition
can be proved locally, which is not always the case. For example, one
could write a safe version of the code in Figure 4.11 where thread 0 always

sets go_1 and go_2 to True and therefore no information is leaked: In this
example, loop termination in threads 1 and 2 depends on the actions of an
outside thread, and no local termination proof is possible. However, with
the encoding shown in Figure 4.8, this example can be proved correct,
since both go_1 and go_2 can be marked as low in the lock invariant, and
therefore both loop conditions are low. Therefore, both ways of dealing
with loop termination can be used in conjunction, and none of them
always subsumes the other.

4.3.3. Probabilistic Non-Interference with Probabilistic

Scheduling

Possibilistic non-interference is generally regarded as insufficient in the
presence of schedulers that follow a known probability distribution,
since in this scenario, programs can leak high information through the
probability of seeing a certain result. Fig. 4.13 illustrates the problem:
The final value of c.val can be either 1 or 2, that is, possibilistic non-
interference holds. However, with most schedulers, a final value of 2 is
much more likely for greater secret values than for lower values because
the assignment of 1 is more likely to happen before the assignment of
2.

A stronger notion of non-interference that forbids such leaks is probabilistic

non-interference [222], which requires that two executions from low-
equivalent initial states will produce the same low outputs with the same
probabilities.

Definition 4.3.2 A program 𝑠 with a set of input variables 𝐼 and output

variables 𝑂, of which some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies

probabilistic non-interference iff for all 𝜎1 , 𝜎2 and 𝜎′1, if ∀𝑥 ∈ 𝐼𝑙 . 𝜎1(𝑥) =
𝜎2(𝑥) and ⟨𝑠, 𝜎1⟩ →∗ ⟨skip, 𝜎′1⟩ with probability 𝑝 then ⟨𝑠, 𝜎2⟩ →∗

⟨skip, 𝜎′2⟩ with probability 𝑝 for some 𝜎′2 s.t. ∀𝑥 ∈ 𝑂𝑙 .𝜎′1(𝑥) = 𝜎′2(𝑥).

The information flow in Fig. 4.13 is caused by secret data influencing
the timing of thread 2, which in turn may affect the relative order of
modifications of shared variables. This problem is sometimes called an
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prob(l.acquire()) = assert low(𝑙);
// gain access to protected memory;
assume Inv(l)

prob(l.release()) = assert low(𝑙);
assert Inv(l)
// lose access to protected memory;

prob(while (𝑒) {𝑠}) = assert low(𝑒);
while (𝑒) {prob(𝑠); assert low(𝑒)}

prob(if (𝑒) {𝑠1} else {𝑠2}) = assert low(𝑒);
if (𝑒) {prob(𝑠1)} else {prob(𝑠2)}

prob(𝑟.𝑚()) = assert low(type(𝑟));
𝑟.𝑚()

Figure 4.14.: Statement encoding for prob-
abilistic information flow security.

[72]: Ernst et al. (2019), ‘SecCSL: Security
Concurrent Separation Logic’
[160]: Murray et al. (2018), ‘COVERN: A
Logic for Compositional Verification of
Information Flow Control’
[201]: Smith (2001), ‘A New Type System
for Secure Information Flow’

internal timing channel, since the final value of the shared variables can
leak information about the relative timing of threads.

Of course, preventing high data from influencing execution time is
difficult in the general case, but becomes more viable depending on the
programming language and execution environment. As discussed in
Sec. 3.5.6 in the previous chapter, one can for example choose to explicitly
track timing as ghost state, and assert that the current execution time
is low at critical points. Alternatively, if the execution time of all basic
statements does not depend on their data, it suffices to prevent branching
on high values, since this ensures that high data does not influence which
statements will be executed. This assumption is frequently made in the
literature about information flow security for concurrent systems (e.g. [72,
160, 201], although it is not necessarily true on typical existing computers.
This basic system can, however, be extended to account for different
sources of timing differences: For example, if (in addition to branches)
memory accesses influence execution timing, which is usually the case in
reality because of cache effects, one can add additional proof obligations
to ensure that the same memory locations are accessed, independently
of secret data. We will, however, stick with the existing literature and
assume, for the sake of simplicity, that preventing high branches is
sufficient.

That is, to prevent secrets from influencing the timing of operations,
we additionally assert that every branch condition in the program is
low, meaning that the two executions will always follow the same code
path, which leads to the adjusted encoding in Fig. 4.14. Note that the
check that branch conditions are low must also be performed for any
implicit branches; e.g., with the encoding of dynamically-bound calls
shown before, we must now assert that the type of the receiver of every
such call is low. Also note that since we enforce that branches are low,
the lowEvent conditions we showed in the possibilistic encoding will be
trivially fulfilled and can be omitted here. However, we still need to assert
that acquired and released lock references are low.

With this adjusted encoding, probabilistic non-interference can be verified
using simple assertions in the IVL encoding and subsequently performing
a standard product construction on the IVL level.

We again formalize the correctness of our encoding, using the same model
as before, except that executions are now associated with probabilities.
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First, we prove that our encoding ensures that high data does not influence
a program’s control flow, i.e., in verified programs, each thread performs
the same step in both executions:

Lemma 4.3.3 If 𝑠 is a sequential, deterministic command that does not

contain lock operations, ⊨ {⌈𝑃⌉ �̊�}Jprob(𝑠)K�̊�2 {⌈𝑄⌉ �̊�} and 𝜎1 , 𝜎2 ⊨ 𝑃 and

⟨𝜎1 , 𝑠⟩ → ⟨𝜎′1 , 𝑠′⟩, then ⟨𝜎2 , 𝑠⟩ → ⟨𝜎′2 , 𝑠′⟩ for some 𝜎′2.

Proof. The proof goes by induction on the structure of 𝑠. If 𝑠 is a basic
statement, the proof is trivial, since all basic statements only step to
skip except assertions, and errors are ruled out by the Hoare triple and
Thm. 3.4.2. If 𝑠 is a conditional, then since prob(𝑠) asserts that its condition
𝑒 is low, both executions step to the same branch 𝑠′′, and we are done. If 𝑠
is a loop, by the same argument, the loop condition 𝑒 has the same value
in both executions, and either both executions finish or both execute the
same loop body. Finally, if 𝑠 is a sequential composition 𝑠1; 𝑠2, then either
𝑠1 is skip and both executions step to 𝑠2, or by the induction hypothesis
𝑠1 will step to some 𝑠′1 in both executions, and therefore 𝑠 steps to 𝑠′1; 𝑠2
in both executions as well, and we are done. □

Building on this, we now prove our soundness theorem:

Theorem 4.3.4 Let 𝑠 = 𝑠1 | | . . . | |𝑠𝑛 and 𝜎1 = 𝜎1
1 ⊎ · · · ⊎ 𝜎𝑛

1 ⊎ 𝜎𝐿
1 and

𝜎2 = 𝜎1
2 ⊎ · · · ⊎ 𝜎𝑛

2 ⊎ 𝜎𝐿
2 and 𝑃 = 𝑃1 ∗ · · · ∗ 𝑃𝑛

and 𝑄 = 𝑄1 ∗ · · · ∗ 𝑄𝑛
,

s.t. 𝜎𝑖
1 , 𝜎

𝑖
2 ⊨ 𝑃

𝑖
for all 𝑖 ∈ {1, . . . , 𝑛}. Let 𝜎𝐿

1 , 𝜎
𝐿
2 ⊨ Invs, where Invs are

the (relational) invariants of a set of locks. If ⊨ {⌈𝑃 𝑖⌉ �̊�}Jprob(𝑠 𝑖)K�̊�2 {⌈𝑄 𝑖⌉ �̊�}
and ⟨𝜎1 , 𝑠⟩ →𝑙 ⟨𝜎′1 , skip⟩ with probability 𝑝 in trace 𝜏1, then there is a

trace 𝜏2 of the form ⟨𝜎2 , 𝑠⟩ →𝑙 ⟨𝜎′2 , skip⟩ with probability 𝑝 for some 𝜎′2
s.t. 𝜎′1 , 𝜎

′
2 ⊨ 𝑄.

Proof. The probability 𝑝 of 𝜏1 is the product of each of its steps, i.e.,
𝑝 = 𝑝1 × · · · × 𝑝𝑙 . The proof goes by induction on the number 𝑙 of steps of
𝜏1. We will assume that joining terminated threads takes one execution
step, so if 𝑙 = 1, then all thread statements 𝑠 𝑖 must be skip so that the
program terminates immediately, and we must have 𝑃 ⇒ 𝑄 and are
done; 𝑙 = 0 is impossible. Otherwise, in the first step of 𝜏1, the scheduler
selects some thread 𝑖 with probability 𝑝1, and the thread executes
⟨𝜎𝑖

1 , 𝑠
𝑖⟩ → ⟨𝜎′𝑖1 , 𝑠′𝑖⟩ for some 𝜎′𝑖1 and 𝑠′𝑖 . Since the thread scheduler does

not depend on high data, it will also select thread 𝑖 with probability 𝑝1
from state ⟨𝜎2 , 𝑠⟩. By Lemma 4.3.3, we have that ⟨𝜎𝑖

2 , 𝑠
𝑖⟩ → ⟨𝜎′𝑖2 , 𝑠′𝑖⟩ for

some 𝜎′𝑖2 . As in the proof of Thm. 4.3.2, we know that the assertions in
prob(𝑠 𝑖) ensure that all lock invariants are preserved if this step executes
a lock operation. Again, we have ⊨ {⌈𝑅𝑖⌉ �̊�}Jprob(𝑠′𝑖)K�̊�2 {⌈𝑄 𝑖⌉ �̊�} for some
𝑅𝑖 s.t. 𝜎′𝑖1 , 𝜎

′𝑖
2 ⊨ 𝑅

𝑖 , and we can apply the induction hypothesis on the
remaining 𝑙 − 1 steps. □

As a corollary, we can show that the same encoding guarantees standard
non-interference in the presence of a deterministic thread scheduler: In
this setting, at every point in the program, the scheduler will choose
a specific thread with probability 1 in the first execution. As a result,
for any second execution with different high inputs, there will be an
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lowLoc(𝑥:=𝑒) = assert lowEvent;
assert low(𝑒);
𝑥:=𝑒

Figure 4.15.: Encoding of writes to low
locations, where 𝑥 is a low local variable.
Writes to low fields would be encoded
analogously; assignments to non-low loca-
tions do not have to be modified.

[106]: Huisman et al. (2006), ‘A Temporal
Logic Characterisation of Observational
Determinism’
[233]: Zdancewic et al. (2003), ‘Observa-
tional Determinism for Concurrent Pro-
gram Security’

[233]: Zdancewic et al. (2003), ‘Observa-
tional Determinism for Concurrent Pro-
gram Security’

[233]: Zdancewic et al. (2003), ‘Observa-
tional Determinism for Concurrent Pro-
gram Security’

execution with probability 1 that has the same public outputs. Since both
executions have probability 1, there are no other possible executions from
the same initial states, so the programs are deterministic and satisfy
ordinary non-interference. Note that, throughout the remainder of this
chapter, we will nevertheless refer to our encoding exclusively as an
encoding for probabilistic non-interference to avoid confusion.

4.3.4. Observational Determinism

A scheduler-independent definition of information flow security that is
often applied to concurrent programs is observational determinism [106,
233]. Observational determinism is defined for a setting where an attacker
can not only observe the low outputs of a program, but the values of a
set of memory locations declared to be low throughout its entire execution.
In this setting, observational determinism requires that the sequence
of values the attacker observes in a given low memory location is not
influenced by high data, modulo stuttering and prefixing [233].

We have not considered a setting where attackers can observe memory
during the execution in this chapter or the previous one, however, for
sequential programs, modular product programs can be easily adapted
to be used in this setting: One can simply add an assertion for every
assignment to a (potentially) low memory location that the assigned value
must be low, and the assignment itself must be a low event, as shown
in Figure 4.15. In sequential programs, these added proof obligations
ensure that for any low memory location, the same sequence of values
will be written to it throughout the execution of a verified program,
independently of high inputs.

For concurrent programs, it has been shown before that observational
determinism holds if (in addition to the usual rules that prevent illicit
information flows in sequential programs), there are no competing (i.e.,
racy) accesses to low memory locations from different threads [233]. Note
that the notion of racy here is different from the notion of data races we
used before (which is automatically ruled out by techniques like CSL), in
that competing accesses that are protected by locks are still problematic.
That is, in this setting, we say two accesses compete if they can occur in
any order and at least one of them is a write, no matter if the accesses are
protected by locks.

Figure 4.16 shown an example program consisting of two threads, one
of which receives a high input secret, that satisfies probabilistic non-
interference with a probabilistic scheduler, but does not satisfy obser-
vational determinism. In this example, the val field of the Cell object
modified by both threads is a low memory location and observable by
the attacker. The first thread acquires the lock that protects the Cell object
five times and writes the values 0, 1, 2, 3, 4 to the val field, in this order.
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Figure 4.16.: Example program that sat-
isfies probabilistic non-interference, but
does not satisfy observational determin-
ism. Cell.val is a low location, secret is a
high input, all other inputs are low.

1 def thread1(l: Lock, c: Cell, secret: int):
2 ctr = 0
3 for i in range(5):
4 l.acquire()
5 c.val = i
6 l.release()

1 def thread2(l: Lock, c: Cell) −> int:
2 # ensures low(result)
3 for i in range(2):
4 pass
5 l.acquire()
6 c.val = 1
7 l.release()
8 for i in range(2):
9 pass

10 l.acquire()
11 res = c.val
12 l.release()
13 return res

The second thread waits for some time, then writes the value 1 to the Cell,
waits some more, and then reads and returns the Cell’s current value.

With a probabilistic scheduler, the second thread can potentially insert
value 1 at any point before, inbetween, or after the writes of the first
thread; most likely (if threads are scheduled with uniform probability),
it will write it somewhere in the middle of the first thread’s sequence.
Crucially, the value of secret does not influence the probability of the point
when the second thread’s write occurs relative to the first threads’ writes.
Similarly, the second thread will either read some value written by thread
1, or the value it wrote itself, depending on scheduling, but the high
input does not influence the probabilities of different relative timings. As
a result, the example satisfies probabilistic non-interference.

However, it does not satisfy observational determinism: Without making
any assumptions about the scheduler, the writes of the first and second
thread can be interleaved in arbitrary ways, so the sequence of values
seen in the Cell’s field is not deterministic. If the scheduling depends on
variable secret (which we have assumed was not the case when talking
about probabilistic non-interference), then the sequence of values the
observer sees can easily leak high information (e.g., the scheduler could
prefer thread 1 if secret is positive and vice versa, s.t. a large secret value
leads to value 1 being written after all writes by thread 1). In this case,
clearly also the result returned by thread 2, which is intended to be low,
will leak secret information.

Observational determinism can be verified using modular product pro-
grams and an existing IVL encoding that prevents data races (in the
original sense) by simply not allowing lock invariants to be relational,
i.e., by forbidding low-assertions in lock invariants, and by forbidding
permissions to low locations in lock invariants. It is easy to see why:
When using a verification techniques that does not allow data races,
competing accesses are only possible if the two competing threads both
acquire a lock before performing the access, and the lock gives them the
permission to make the access. If, however, acquiring a lock never gives a
thread additional permission to a memory location regarded as low, then
it also cannot enable the thread to modify a low memory location in any
way. Additionally, if a lock invariant does not contain any low-assertions,
then all threads must regard data read from the locked memory location
as potentially high, and (if proven to be correct) will therefore not leak
any information about such data to their low outputs.

Put differently, this restriction on lock invariants ensures that
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4: There is one exception: Writes can be
by different threads, but only in a clearly
defined order, if one thread forks another
and passes the permission to a low loca-
tion to the new thread. In this scenario, all
writes by the new thread will always hap-
pen after all writes by the old thread, s.t.
the writes are still essentially sequential.

[233]: Zdancewic et al. (2003), ‘Observa-
tional Determinism for Concurrent Pro-
gram Security’

[106]: Huisman et al. (2006), ‘A Temporal
Logic Characterisation of Observational
Determinism’

[72]: Ernst et al. (2019), ‘SecCSL: Security
Concurrent Separation Logic’

▶ the low results of each thread can depend only on the thread’s
own low inputs (since any data from other threads, which could
potentially be influenced by thread scheduling, has to be regarded
as high).

▶ all writes to a low location will happen by a single thread (since
otherwise different threads need permission to the same location,
which is only possible if the permission is passed back and forth
between different threads through a lock)4; in this scenario, the
simple check shown in Figure 4.15 suffices to ensure this thread
always writes the same sequence of values to a given location.

In addition to these restrictions, it can be useful to also prevent secret-
dependent thread termination; this is not required by the original defini-
tion of observational determinism [233] but was convincingly argued to
be vital by Huisman et. al. [106]. To achieve this, we can use either of the
two encodings we already showed in Sec. 3.5.5 in the previous chapter
or in our encoding for possibilistic non-interference in this section.

We will not formalize the notion of observational determinism for our
setting, nor will we provide a detailed soundness argument for this
encoding here, since our main setting does not contain the notion of low
memory locations.

To summarize, we have shown that it is possible to extend existing verifiers
for concurrent programs to verify both possibilistic and probabilistic
non-interference as well as observational determinism with very small
changes in the frontend, using only a sequential product construction
and not requiring any changes on the level of the IVL (except the ability
to write relational specifications).

4.4. Implementation and Evaluation

In this section, we evaluate the performance of the proposed architec-
ture, by extending the previously information flow unaware Nagini
verifier according to our design, enabling it to verify non-interference
for sequential Python programs as well as possibilistic and probabilistic
non-interference for concurrent Python programs. We will first briefly
describe the adaptations we needed to make to both Nagini and the un-
derlying Viper verification infrastructure, then evaluate the performance
overhead generated by the product transformation, and subsequently
evaluate the implementation on a number of information flow examples,
comparing it to SecC [72] in the process.

4.4.1. Implementation in Viper

We did not have to modify any part of the core Viper IVL, its backend
verifiers, or any other parts of the core Viper code base. Instead, we
added new code that extends the language and performs the product
construction, building on the implementation described in Chapter 3.
Crucially, this means that the added code is compiled separately and
existing Viper code does not depend on it, showing that (at least in
this case), the proposed architecture could be implemented without any
support from the IVL developers.
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Figure 4.17.: Relational recursive predicate
defining a linked list whose values are low
(left) and its transformed version that can
be used in a modular product program
(right).

1 predicate list(x: Ref) {
2 acc(x.next) ∗ acc(x.val) ∗
3 low(x.val) ∗
4 x.next != null ==> list(x.next)
5 }
6
7 method m(x: Ref)
8 requires list(x)
9 { ... }

1 predicate list0(x: Ref) {
2 acc(x.next0) ∗ acc(x.val0) ∗
3 x.next0 != null ==> list0(x.next0)
4 }
5 predicate list1(x: Ref) {
6 acc(x.next1) ∗ acc(x.val1) ∗
7 x.next1 != null ==> list1(x.next1)
8 }
9 function list_low(x0: Ref, x1: Ref)

10 requires list0(x0) ∗ list1(x1)
11 {
12 unfolding list0(x0) in
13 unfolding list1(x1) in
14 x0.val0 == x1.val1 ∗
15 (x0.next0 != null ∗ x1.next1 != null ==>
16 list_low(x0.next0, x1.next1))
17 }
18
19 method m(p0: Bool, p1: Bool,
20 x0: Ref, x1: Ref)
21 requires p0 ==> list0(x0)
22 requires p1 ==> list1(x1)
23 requires (p0 ∗ p1) ==> list_low(x0, x1)
24 { ... }

[50]: Collingbourne et al. (2013), ‘Interleav-
ing and Lock-Step Semantics for Analysis
and Verification of GPU Kernels’

For encoding the program heap and object allocation, we used the second
option described in Sec. 3.3.3, which is sound only for languages whose
references are opaque. This is generally the case in Python, however,
as was pointed out by Toby Murray, it is actually possible to access
information about the values of the underlying pointers: the default
implementation of __str__, i.e., the default string representation of an
object contains (a part of) the pointer value. This problem can be mitigated,
e.g., by considering this string representation to be high even for low
references, but it illustrates the potential danger of unsound assumptions
we alluded to in Sec. 2.4.

As explained in Chapter 3, we implemented the modular product pro-
gram transformation for the existing Viper AST, enriched with new
AST nodes for information flow specifications. Compared to the imple-
mentation described in the previous chapter, we further extended this
transformation to cover a larger part of the Viper language; in particu-
lar, we added the ability to transform recursive predicates containing
relational assertions, as shown in Figure 4.17. For convenience, we also
slightly extended the Viper-based product transformation to directly
transform statements that Nagini previously encoded using gotos, such
as break and continue statements, that is, we added new kinds of AST nodes
to the existing Viper AST. This was simpler than requiring the product
transformation to be able to deal with arbitrary reducible control flow
graphs (though that is possible in principle [50]).

We decided not to implement the additional checks required for pos-
sibilistic and probabilistic non-interference on the Viper level, and to
add them on the Nagini level instead, i.e., to generate them as part of
Nagini’s encoding into Viper. Our reason for this is that adding these
checks on the Viper level would have led to spurious checks: For example,
the encoding for probabilistic non-interference shown in Figure 4.14
adds proof obligations for every branch (i.e., conditional or loop) in
the program. However, Nagini’s existing encoding sometimes generates
branch statements on the IVL level that do not correspond to branches
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on the source level (like, for example, for field assignments, as shown
in Figure 2.13 in Chapter 2).

Our implementation of the product transformation includes several
optimizations to the standard modular product encoding shown in the
previous chapter:

1. We assume in every method that the activation variable for the first
execution is initially true. As a result, the verifier does not have
to consider the case that both executions are inactive throughout
(which causes overhead, but can never lead to a verification error,
and may thus be skipped). Similarly, it does not have to consider
both the case where the first execution is initially inactive and the
second is active, and the case where the first execution is initially
active and the second is inactive: These two cases are completely
symmetrical for non-interference verification, and considering one
of them is sufficient.

2. We merge conditionals that branch on the same activation vari-
able into blocks where possible. As an example, according to the
product transformation shown in the previous chapter, two subse-
quent assignments in a program would result in four conditionals,
each containing one assignment. In our optimized encoding, we
instead merge them into two conditionals that each contain two
assignments, reducing the number of branches in the generated
program.

3. We omit some checks used for ordinary safety verification for
the second execution, since they are already checked in the first
execution. This optimization is implemented in a generic way, i.e., a
frontend can provide the product transformation with information
regarding which checks are to be omitted in the second execution.
For Nagini, we omit all checks about variable definedness (this
optimization could likely be extended to also avoid checking other
properties twice). Note that it is not possible to omit all checks
of functional properties in the second execution in practice; for
example, permission operations like exhales still have to be per-
formed (requiring the checks that ensure permissions are actually
present) in order to properly frame information, and checks e.g. for
type correctness are required to ensure that all specifications are
well-defined.

4.4.2. Implementation in Nagini

For Nagini, we made several changes directly in its existing code base.
We added command line options to enable verification of informa-
tion flow properties, and to specify which property to verify (standard
non-interference, possibilistic non-interference, or probabilistic non-
interference). We extended Nagini’s existing specification language to
include information flow specifications, i.e., we added new contract func-
tions like Low, LowEvent, and LowVal. The latter can be used with values
of “primitive” built-in types like integer to specify e.g. that the integer

value of an expression is low, but the reference might not be, a distinction
that exists in languages like Python which wrap all primitive values into
objects: Figure 4.18 shows an example of a method that always returns the
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Figure 4.18.: Method whose result does
not leak the secret through the returned
integer value, but may leak it via the ob-
ject representing that value; since i + 0 can
return an object different from i, if the se-
cret is zero, the returned object may be
different from i.

1 def add_zero(i: int, secret: int) −> int:
2 # requires low(i)
3 # ensures lowVal(result)
4 if secret == 0:
5 return i + 0
6 return i

[40]: Boström et al. (2015), ‘Modular
Verification of Finite Blocking in Non-
terminating Programs’

[199]: Smans et al. (2012), ‘Implicit dy-
namic frames’
[169]: O’Hearn (2007), ‘Resources, concur-
rency, and local reasoning’

5: https://github.com/viperproject/

silver-sif-extension

6: https://github.com/marcoeilers/

nagini

[148]: Meier (2018), ‘Verification of infor-
mation flow security for Python programs’

same integer value in both executions, but may return different integer
objects depending on secret information.

New contract functions also give programmers the ability to specify and
verify the absence of termination channels by using the encoding de-
scribed in Chapter 3, adapted for use with Nagini’s existing methodology
for proving termination [40]. We also provide support for easily marking
entire methods that do not deal with secret data at all without marking
every single parameter and field as low, by using a decorator @AllLow,
which signifies that a method does not deal with any sensitive data, and
automatically encodes this into preconditions, postconditions and loop
invariants.

Since Nagini’s existing encoding from Python to Viper is almost entirely
operational or obviously operational-equivalent, we only adapted the
encoding of dynamically-bound calls as shown in Sec. 4.2.1, and re-
implemented the encoding of AST nodes that previously used goto
statements using the new AST nodes mentioned above.

Since Nagini’s encoding of concurrent programs is based on implicit
dynamic frames [199] and principles of concurrent separation logic [169],
we could modify its existing encoding by adding the checks shown in
Sec. 4.3 to prove both possibilistic and probabilistic non-interference for
concurrent programs. In the encoding for probabilistic non-interference,
we also added another optimization: Since the encoding ensures that the
control flow of both executions always stay aligned, it is sound in this
case to always assume that the control flow is also initially aligned, i.e.,
that the values of both activation variables are equal at the beginning
of each method. This assumption (soundly) removes the need for the
verifier to consider executions with differing control flow, which, as we
will show in the evaluation, can have a big impact on performance in
practice.

Finally, we adapted the back-translation of errors and counterexamples
in Nagini: In particular, when verifying non-interference and getting a
counterexample for a verification error in a product program, Nagini
translates this information into a counterexample that cleanly shows the
states of a pair of executions that lead to a verification error, instead of
showing only a single state. Figure 4.19 shows a counterexample returned
by Nagini for a verification error stating that a relational property might
not hold.

The Viper extension for product programs5 and the extended version of
Nagini6 are open source and available online. Further information about
the implementation can be found in [148].

https://github.com/viperproject/silver-sif-extension
https://github.com/viperproject/silver-sif-extension
https://github.com/marcoeilers/nagini
https://github.com/marcoeilers/nagini
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1 Verification failed
2 Errors:
3 Postcondition of abs might not hold.
4 Assertion Low(Result()) might not hold. (arttest.py@5.12).
5 First execution:
6 Old store:
7 x −> False
8 Old heap: Empty.
9 Current store:

10 x −> False,
11 Result() −> False
12 Current heap: Empty.
13
14 Second execution:
15 Old store:
16 x −> True
17 Old heap: Empty.
18 Current store:
19 x −> True,
20 Result() −> True
21 Current heap: Empty.

Figure 4.19.: Counterexample to a rela-
tional assertion, showing states of two
different executions.

4.4.3. Performance Overhead of the Product Construction

Our first goal is to evaluate the performance overhead generated by the
product construction. To this end, we compared the verification times
of Nagini’s entire functional test suite with and without the product
transformation enabled. That is, we artificially forced the construction
of a product program without adding relational specifications, so that
no additional properties are verified, but the overhead resulting from
verifying the (more complex) product program instead of the original
program can be measured. The test cases range from small programs
targeting specific language or specification constructs, to realistic code
examples taken from programming tutorials. We ran each test five times
on a warmed-up JVM with the information flow extension enabled and
disabled, without adding any information flow specifications. Our test
system was a 12 core AMD Ryzen 3900X with 32GB of RAM running
Ubuntu 20.04.1.

We summarize our main findings here; all test cases and measured times
are shown in Table B.1 in App. B. All tests report the same results with
and without the product transformation (i.e., either verification succeeds
in both settings or the same verification errors are reported), meaning that
soundness and completeness are not impacted by the extension, and that
we can indeed still reason about the entire language subset supported by
Nagini (even though we only had to implement the product construction
for the much simpler Viper IVL). Without the product transformation,
each test case takes between 3 and 9 seconds, with the majority taking
between 3 and 5. For most cases, enabling the product construction leads
to an increase in verification time that is clearly acceptable (less than 11%
for half the tests, less than 30% for three quarters, and less than 100% for
90% of the tests). For five test cases, the slowdown is a factor between 5
and 12, and a single outlier (a quicksort implementation) has a slowdown
factor of 17.5 and a resulting verification time of two minutes. We believe
that the main reason for the large slowdown for these particular test
cases is the extensive use of quantifiers in their specifications (e.g., to
specify properties of all elements in a list). Quantifier handling is difficult
for automated verification in general, because unbounded chains of
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[58]: Detlefs et al. (2005), ‘Simplify: a theo-
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7: While the soundness result of the un-
derlying logic was formalized for a setting
with a deterministic scheduler, in which
case this approach guarantees ordinary
non-interference (as we also pointed out
in Sec. 4.3.3), we will continue to refer to
the property proved as probabilistic non-
interference to simplify the presentation.

quantifier instantiations can occur during the proof search [58], and this
problem seems to be exacerbated when using the product encoding.
We found examples where this problem (i.e., bad heuristics leading to
unnecessarily many quantifier instantiations) was already present in the
original program, but was exacerbated when using the product encoding;
fixing the underlying problem by restricting quantifier instantiations
then led to slightly improved performance of the original program but
greatly improved performance of the product version.

We conclude that the performance impact of the product transformation
is acceptable for most examples, but can be significant for programs with
complex functional specifications. Nevertheless, those programs can still
be verified, and modular verification enables scaling to larger systems.

4.4.4. Expressiveness and Comparison with SecC

In a second step, we evaluated the expressiveness and performance of
our implementation on a number of challenging examples from the
literature. In particular, we use the information flow examples from the
evaluation of the previous chapter (sequential examples collected from
various previous papers) translated to Python and from this chapter, both
shown in Table 4.1, as well as examples taken from SecC [72], the only
other automated and modular verification tool for concurrent programs
we are aware of, shown in Table 4.2.

Our examples represent the state of the art in automated information flow
verification, requiring semantic reasoning that would not be possible
in a type system, and using complex information flow specifications
including declassification, termination-sensitive non-interference, and
value-dependent sensitivity [160]. As show in the previous chapter, these
features can be easily encoded into modular product programs.

Table 4.2 includes the CDDC case study [160], which models an embedded
device that interacts simultaneously with multiple users and classified
networks, and an example (Declassify) from a different paper [194] that
uses several non-trivial declassification policies and has been encoded
using SecC (and now, Nagini). For one of the SecC examples (DB) whose
original version uses arrays, pointer arithmetic, and recursive predicates
containing relational assertions, we created two versions in Nagini: One
that also uses relational recursive predicates and, since pointer arithmetic
is not possible in Python, a linked list (which results in very similar
specifications), and one (DB-List) that uses Python’s built-in list and
expresses specifications using quantifiers; the latter is arguably much
more natural in Python, but may be more difficult to verify.

Additionally, we verified several of the SecC examples using two different
settings: SecC, which is designed specifically for verifying concurrent
programs, always requires that all branches are low and both executions
thus follow the same path, similar to our approach for probabilistic non-
interference described in Sec. 4.3.3. Thus, in a context with probabilistic
thread scheduling, SecC also ensures probabilistic non-interference.7
When applied to sequential programs, the requirement of low branching
is unnecessary (unless one aims for a constant time implementation, as
in the CT example) but sound; as a result, SecC soundly but incompletely
verifies standard non-interference when applied to sequential programs
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Table 4.1.: Programs evaluated for proving information flow security. We show the total lines of code (LOC) including implementation and
specification but excluding whitespace, lines of specification and proof annotation (Ann.), the property we proved (Prop., where NI =
non-interference, TNI = termination sensitive non-interference, PS = possibilistic non-interference, PR = probabilistic non-interference) and
the verification time in seconds (𝑇), averaged over five runs.

LOC Ann. Prop. 𝑇
banerjee 77 21 NI 5.19
constanzo 21 12 NI 5.39
darvas 38 18 NI 4.20
example 27 12 NI 5.39
Example-decl 27 12 NI 5.76
Example-term 8 4 TNI 3.59
joana-1-tl 22 7 NI 3.87
joana-2-bl 13 5 NI 3.64
joana-2-t 12 4 NI 3.72
joana-3-bl 36 15 TNI 3.55
joana-3-br 33 14 TNI 4.60
joana-3-tl 23 9 TNI 4.50
joana-3-tr 25 10 TNI 4.19
joana-13-l 11 2 NI 4.54
kusters 28 12 NI 4.35

LOC Ann. Prop. 𝑇
naumann 27 17 NI 8.46
product 39 18 NI 11.35
smith 39 21 NI 6.81
terauchi1 10 3 NI 3.59
terauchi3 19 6 NI 3.69
terauchi4 18 8 NI 3.97
Fig. 4.3 19 6 NI 3.82
Fig. 4.11 53 17 PS 4.92
Fig. 4.12 24 11 PS 4.19
Fig. 4.9 23 8 PS 4.37
Fig. 4.10 36 15 PS 4.40
Fig. 4.13 34 15 PS 4.57
Fig. 4.16 38 17 PR 9.60
Fig. 4.18 7 3 NI 2.56

Table 4.2.: Comparison with SecC. We show the total lines of code and lines of specification for Nagini (LOCN, AnnN) and SecC (LOCS,
AnnS), the property we proved (Prop., where NI = non-interference, PR = probabilistic non-interference) and the verification time in seconds
in both tools (𝑇𝑁 and 𝑇𝑆) and in Nagini without the product construction (𝑇𝑁𝑃 ), averaged over five runs.

LOCN AnnN LOCS AnnS Prop. 𝑇𝑆 𝑇𝑁 𝑇𝑁𝑃

SecC CAV 40 13 50 11 PR 0.81 3.00 2.42
SecC CDDC 278 105 214 47 PR 9.53 33.93 7.54
SecC CT 64 35 211 159 PR 0.99 3.56 2.66
SecC DB 260 197 256 167 PR 1.37 10.53 4.06
SecC DB 260 197 - - NI - 12.73 4.06
SecC DB-List 100 48 - - PR - 15.50 4.47
SecC DB-List 100 48 - - NI - 107.28 4.47
SecC Encrypt 29 12 49 18 PR 0.85 3.16 2.41
SecC Encrypt 29 12 - - NI - 3.50 2.41
SecC Declassify 218 148 265 172 PR 1.08 5.17 3.31

(for example, it would not be able to verify the examples joana-2-t and
joana-13-l from Table 4.1). For the sequential examples that are not aiming
for constant time, i.e., DB (both versions) and Encrypt, we run Nagini
both in ordinary non-interference mode (which is more complete for
sequential programs but requires reasoning about potentially differing
control flow between executions) and in probabilistic non-interference
mode (which mirrors SecC in the generated proof obligations).

Nagini was able to verify all correct examples and correctly flagged incor-
rect ones, which demonstrates that our approach can handle concurrent
implementations and express complex non-interference properties. For
the examples from Table 4.1, Nagini takes between 3 and 12 seconds each,
which we believe is clearly acceptable.

For the examples taken from SecC, Nagini takes 3-5 seconds for five of
them and 10-15 seconds for three variations of the DB example, which we
believe is also acceptable. Two examples take longer: The CDDC example,
which is a complex case study, takes 34 seconds, and the list-version
of the DB example, when verified in ordinary non-interference mode
(which, as described, is more complete for sequential programs than
the probabilistic non-interference mode), takes 107 seconds. The latter
demonstrates again that an abundance of quantifiers in specifications can
lead to bad performance. However, performance even for this example is
acceptable when verified in probabilistic non-interference mode, meaning
that the extreme negative performance impact of quantifiers is only
seen if the verifier has to consider different control flow between both
executions. As expected, the versions of the same example that use
recursive predicates instead of quantifiers take less time, and every
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example takes less time when verified in probabilistic non-interference
mode than in ordinary non-interference mode.

Table 4.2 shows that SecC is faster than our implementation for all five
examples and configurations it is able to verify, by a factor of 3 to 8; for the
biggest example (CDDC), the performance difference is around a factor
of 3.5. However, this difference cannot be blamed entirely on the product
construction since, as shown in the table, Nagini is slower than SecC
for four of these five examples even without verifying non-interference,
due to both architectural reasons and, more importantly, the additional
properties that have to be verified in Python code due to its more dynamic
nature; direct performance comparisons are therefore difficult.

We conclude that Nagini matches SecC in its expressiveness, and is in
fact more complete for sequential programs as discussed before; while
its performance is significantly worse for all examples, it is not worse
by an order of magnitude, so if it is feasible to verify a program with
SecC in terms of performance, it is likely also feasible to verify it with
Nagini. The main exception we observe is the verification of programs
with many quantifiers in specifications in Nagini’s complete ordinary
non-interference mode, but as stated before, such a mode is not available
in SecC in the first place (and its general ability to deal with quantifiers
is also more limited than Nagini’s). Additionally, we stress that SecC
was designed and implemented for information flow verification for
concurrent programs from scratch (which meant it could be optimized
for relational property verification and, even more specifically, for the
scenario where both executions’ control flow never diverges) without
being able to reuse code from an existing verifier, whereas our extended
Nagini version could be implemented with minimal effort.

4.5. Related Work

In this section, we discuss other existing work related to the combination
of product constructions and IVL encodings, or to the verification of non-
interference properties for concurrent programs. Note that we will not
discuss product constructions in general or sequential information flow
security verification, as those topics have been covered in the previous
chapter.

To the best of our knowledge, SymDiff [118] for the Boogie IVL is the only
existing tool that constructs product programs on an IVL level. SymDiff
is a tool for differential program verification, which requires reasoning
about pairs of executions of two different (but related) programs and is
thus similar to hyperproperty verification; in fact, SymDiff has also been
used to verify non-interference in the past [4]. The authors of SymDiff have
proposed different techniques for modularly proving mutual function
summaries, similar to relational specifications, one of which uses a kind
of product construction [98, 119]. However, they do not examine potential
soundness problems arising from this approach, nor do they discuss if it
can be applied to concurrent source programs.

In addition to SymDiff, there are some other tools that perform analyses or
program transformations on the level of the Boogie IVL (e.g., Corral [121]
performs stratified inlining). We believe that it is possible that, like for
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product constructions, there are hidden soundness conditions for IVL
encodings that apply to these tools.

The phenomenon that non-interference is not necessarily preserved by
some transformations that do preserve trace properties (like, in our case,
the encoding into an IVL) is not entirely new and also exists, for example,
in refinement [91]. However, the underlying reasons are different: in
refinement, resolving non-determinism can introduce information flows,
whereas in our case, IVL encodings (which, if anything, tend to introduce

non-determinism) can hide unwanted information flows.

There are various existing type systems (e.g. [161, 203]) and static anal-
yses (e.g. [45, 89]) for proving information flow security of concurrent
programs. Compared to verification based on product programs or spe-
cialized program logics, these are generally more automated, but less
precise. As discussed before, type systems and static analyses exist for
proving possibilistic non-interference (by forbidding secret-dependent
non-termination) [205], probabilistic non-interference (by forbidding
branches on high values, sometimes only if the branches have observably
different effects) [201, 202], observational determinism (by forbidding
competing variable modifications) [233], as well as other forms of infor-
mation flow security [89].

Moreover, there are several dedicated program logics for information
flow verification for concurrent programs: Covern [160] builds on rely-
guarantee-reasoning [111] and adds some elements of CSL, though it
stops short of supporting features like pointers or arrays. The latter are
supported in its successor logic, SecCSL, which is a full extension of CSL
for information flow verification. Veronica [194] builds on Owicki-Gries
style reasoning [170], separates functional verification from information
flow verification by requiring functional information as inputs, and sup-
ports complex declassification policies. All three of these logics work in
the same setting as our approach, allowing inter-thread communication
only through locks, and their central way of preventing information flows
resulting from internal timing channels is the same as in the type systems
mentioned above and in our approach for ensuring probabilistic non-
interference: they either forbid branching on high data, or, in Veronica’s
case, allow branching on high values only if all branches are indistin-
guishable to the attacker, i.e., have for example the same timing behavior.
The only logic of these three that has been automated is SecCSL, whose
implementation in SecC we compared against in the previous section.
One example in our evaluation (Declassify) is an extended example from
the Veronica paper, encoded into SecC’s and Nagini’s syntax, showing
that these tools are also able to encode non-trivial declassification policies
even without dedicated support in the logic. The implementation of SecC
additionally goes beyond the logic it implements by also supporting
rely-guarantee reasoning.

More recently, two logics have enabled verification for more complex
settings: SecRSL [230] targets concurrent programs executed in relaxed
memory models and builds on relaxed separation logic (RSL) [217], and
SeLoC [86], which is built on the Iris framework [112], targets fine-grained
concurrency verification using protocols. The latter also overlays a type
system on top of the logic, making it possible to use both (automatable)
type checking and (precise) verification on different parts of a program.
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Instead of statically proving that a program does not leak high data, some
techniques aim to prevent unwanted information leakage for arbitrary
programs at runtime, including leakage as a result of internal timing
channels. Different techniques achieve this goal either by modifying the
language runtime or the scheduler [218], by using information flow aware
concurrency primitives, which can be implemented as a library [208],
or by transforming the original program [185]. Such techniques have
the advantage of allowing to run programs that would be rejected by
static techniques, but at the cost of requiring specific runtimes, additional
synchronization, or affecting execution performance in other ways.

As already discussed, most product program constructions [23, 119],
including modular product programs, are defined explicitly for sequen-
tial languages. Self-composition [25] can be used with any programs,
including concurrent ones, in principle, but (in addition to not allow-
ing for method-modular verification) it offers no support for relating
intermediate states of different executions, which makes it difficult (and
in practice often infeasible) to relate the final states of two executions
which may have had completely different thread schedules, since, in
principle, any combination of schedules has to be considered. The only
product program construction we are aware of that explicitly supports
concurrency [78] partly addresses this problem by creating a reduced
product that only represents relevant combinations of thread schedules;
however, for large programs, we believe that this approach will still suffer
from scalability problems. In contrast, our approach of constructing a
sequential product program of a sequential IVL-encoding of a concur-
rent source program is thread-modular and therefore does not have to
explicitly reason about different interleavings at all.

4.6. Conclusion

We presented an approach for retrofitting existing IVL-based program
verifiers to check non-interference properties using product programs.
This approach allows reusing existing frontends to reduce the required
implementation effort. We have shown when this technique is sound,
that it can incorporate concurrency, and that it can be implemented in an
existing verifier with acceptable performance.
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Rich Specifications for Modular

Smart Contract Verification 5.

Smart contracts are programs that execute inside blockchains such as
Ethereum [229], and allow the execution of resource transactions between
different parties without the need for a trusted third party. Smart contracts
tend to be comparatively short programs, which makes the use of formal
methods viable and economical in practice. In addition, since they
handle large amounts of currency and are non-trivial to implement
correctly, there are huge incentives for attackers to find and exploit any
vulnerabilities for their own, sometimes significant, financial gain (as
demonstrated, e.g., by the attack on TheDAO [94]).

Proving smart contracts secure poses special challenges that do not apply
to most standard kinds of applications, mainly because they execute
in and are forced to interact with a completely open and adversarial
environment: Their public functions can be called both by external
attackers and by other (malicious) contracts, which anyone can freely
deploy; conversely, most contracts are forced to themselves perform
calls to other, potentially malicious, contracts as part of their intended
workflow. Additionally, the contracts themselves (i.e., their bytecode) and
their current state as well as all communication are public and therefore
visible to attackers.

This has a number of consequences for proving standard security prop-
erties:

▶ Since all state is public, many standard notions of confidentiality
(including non-interference) do not apply; specific privacy proper-
ties can instead be enforced using Non-Interactive Zero Knowledge
proofs [209].

▶ Integrity properties are of utmost importance: It must not be
possible for malicious calls to the contract, or calls from the contract
itself to malicious outside contracts, to corrupt a contract’s state or
lead to unintended functionality. Most bugs that lead to immediate
benefits for attackers are the result of key contract invariants being
violated, often through the use of re-entrant calls, i.e., callbacks
from functions called by the contract itself.

▶ Availability of the contract’s functions themselves is guaranteed
by the underlying blockchain (which we will not focus on) and
contracts cannot get stuck due to non-termination, since each
execution terminates once its (finite) budget of gas, which is used
to execute any contract statement, is depleted. However, contracts
can potentially reach states in which some vital functionality (e.g.,
typically, the ability for an outside contract to withdraw currency
they are owed) can no longer be executed, because any attempt to
do aborts for one reason or another.

In this chapter, which is based on the OOPSLA 2021 paper “Rich Specifica-
tions for Ethereum Smart Contract Verification” [43], we aim to modularly

prove integrity and, to some degree, availability properties of Ethereum
smart contracts, and address the following three challenges: (1) Since
smart contracts execute in an adversarial environment, standard modular
reasoning techniques such as separation logic [180], which reason about
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calls under the assumption that all code is verified and obeys a set of basic
rules, do not apply in this setting. This problem is exacerbated by the
presence of re-entrant calls. A sound reasoning technique must account
for all behaviors a call to an unverified contract could possibly exhibit,
which requires novel ways of specifying the calling contract. (2) Many
contracts collaborate with some small set of trusted outside contracts,
forming distributed applications. The integrity of such applications of-
ten depends on invariants spanning multiple contracts. To decouple
collaborating contracts, their implementations are often hidden behind
interfaces. To enable contract-modular verification, these interfaces need
to be equipped with specifications that provide enough information to
allow verification. (3) Typical smart contracts are primarily concerned
with modeling and executing resource transactions of different kinds.
Examples range from simple token contracts to escrow implementations,
ICOs, and complex decentralized finance (DeFi) applications. However,
even though notions such as resource ownership and agreed exchanges
are central to programmer intentions, resources themselves are often
implicit in smart contract implementations. As a result, even when for-
mal methods are used to prove smart contract correctness according to
some specification, this discrepancy between high-level intentions and
low-level implementations makes it difficult to correctly specify intended
behavior on the implementation level, potentially leading to subtle and
costly mistakes.

Existing (automated) verifiers for smart contracts do not fully address
these challenges. Some verifiers [79, 120, 212, 213] prove specific properties,
e.g., the absence of overflows or re-entrancy bugs, but cannot be used to
prove full functional correctness of a contract. Other verifiers [96, 103, 113,
174, 226] aim to prove arbitrary, user-defined properties using variations of
established specification and verification techniques. However, because
these techniques are not sufficiently adapted to the setting of smart
contracts, they are either not generally applicable or very imprecise in the
presence of arbitrary re-entrancy. In general, no existing technique allows
reasoning modularly about compositions of multiple smart contracts
while preserving interface abstractions. Furthermore, existing techniques
offer limited support for specification and reasoning in terms of high-level
notions of custom resources such as tokens.

In this chapter, we propose a novel specification and verification method-
ology for the sound, unbounded verification of security properties of
Ethereum smart contracts. Our goal is to specify and verify general safety
properties, which will enable us to ensure contract integrity and, to some
degree, availability. To that end, we offer specification constructs tailored
to the domain of smart contracts, enabling users to prove strong functional
correctness properties of arbitrary smart contracts, with specifications
that capture their intended resource manipulations explicitly.

We make four main contributions:

(1) Reasoning in the presence of unverified code: To the best of our knowledge,
we present the first smart-contract verification technique that is sound
and precise in the presence of calls from and to unverified and potentially
malicious code with arbitrary re-entrancy. Our technique: (a) identifies
and proves properties which cannot be invalidated by calls to malicious
code, including vital properties such as access control (which lacks
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direct language support and must be implemented manually in smart
contracts), and (b) provides specification constructs that abstract over
all modifications a call can potentially make, exploiting language-level
encapsulation guarantees.

(2) Modular reasoning about collaborating smart contracts: We demonstrate
the challenges of verifying collaborating contract structures, in particular,
proving invariants spanning multiple contracts in an adversarial envi-
ronment. We show that our specification methodology can express all
required information at the interface level, forming the basis of the first
modular verification technique for collaborating smart contracts.

(3) Intuitive specifications of resource manipulation: We introduce a specifi-
cation mechanism for contracts which manage resources and resource
transactions. Specifications are expressed directly at the abstraction level
of transferring, exchanging, and loaning resources, which results in
concise and intuitive specifications and, effectively, makes smart con-
tract specifications more similar to actual business contracts. Ubiquitous
integrity properties of resources such as ownership, access control,
and non-duplicability are baked into our system, avoiding potentially
repetitive and error-prone boilerplate specifications; violations of these
properties are found by default. While other blockchain systems build
(different kinds of) resources directly into the language [35], those do
not always guarantee the integrity properties built into our approach;
additionally, our approach is the first to enable reasoning about cus-
tom resources in smart contracts systems without dedicated language
support.

(4) Implementation and evaluation: We implemented our approach in 2Vyper,
an automated, SMT-based verification tool for the Vyper language [75]
for Ethereum smart contracts. To the best of our knowledge, 2Vyper is the
first verification tool specifically aimed at Vyper contracts. It supports the
entire Vyper language as of version 0.2.0 and allows specifying contracts
and interfaces in the form of readable, source-level code annotations.
Our evaluation shows that 2Vyper enables automated verification of
strong correctness properties of (collaborating) real-world contracts
with reasonable performance and annotation overhead. In particular,
we demonstrate that 2Vyper can verify contracts that use re-entrancy
patterns not supported by other verification tools, and that it enables
modular verification of collaborating smart contracts used in practice.

The chapter is structured as follows: We introduce Ethereum smart
contracts in Sec. 5.1. In Sec. 5.2, we informally introduce the specification
constructs we use to reason about contracts containing re-entrant calls;
subsequently, we show how they can be used to reason about collaborating
contracts in Sec. 5.3. We introduce our resource-based specification
approach in Sec. 5.4, discuss availability properties in Sec. 5.5, and
present our verification technique in the form of a Hoare logic in Sec. 5.6.
We describe our implementation in 2Vyper and evaluate it in Sec. 5.7. We
discuss related work in Sec. 5.8 and conclude in Sec. 5.9.
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Figure 5.1.: Simplified auction contract
written in Vyper. assert statements revert
the current transaction, whereas send state-
ments send Ether to another contract.
Since the contract does not have an ex-
plicit constructor function, all fields are
initialized with default values.

1 beneficiary: address
2 highestBid: int256
3 highestBidder: address
4 ended: bool
5 pendingReturns: map(address, int256)
6 lock: bool
7
8 def bid():
9 assert not self.lock and msg.value > self.highestBid and not self.ended

10 self.pendingReturns[self.highestBidder] += self.highestBid
11 self.highestBidder = msg.sender
12 self.highestBid = msg.value
13
14 def withdraw():
15 assert not self.lock
16 toSend = self.pendingReturns[msg.sender]
17 self.pendingReturns[msg.sender] = 0
18 self.lock = True
19 send(msg.sender, value=toSend)
20 self.lock = False
21
22 def end():
23 assert not self.lock and not self.ended and msg.sender == self.beneficiary
24 self.ended = True
25 self.lock = True
26 send(self.beneficiary, value=self.highestBid)
27 self.lock = False
28 self.highestBid = 0

[74]: Ethereum (2021), Solidity documenta-

tion

[75]: Ethereum (2021), Vyper documentation
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ledger’

1: Our tool nonetheless allows one to ver-
ify that a function does not revert due to
under- or overflows.

5.1. Ethereum Smart Contracts

Ethereum smart contracts are programs usually written in a high-level
language, most commonly Solidity [74] or the newer Vyper [75] language,
and then compiled to bytecode for execution in the Ethereum Virtual
Machine (EVM) [229]. Fig. 5.1 shows an example of a Vyper smart contract
implementing an auction. Note that in this example and throughout
the chapter, we use a simplified presentation of Vyper and Ethereum
contracts and omit details that are irrelevant to our approach (e.g., that
Ether can be transferred only by calling functions marked as payable, or
that Vyper functions revert when encountering under- or overflows1).
We also ignore the fact that contract execution consumes gas, i.e., a fixed
cost associated with every executed instruction, which is not relevant for
proving safety properties, the focus of this chapter.

A contract can declare fields that form its persistent state. In our example,
the contract stores the beneficiary of the auction, the current highest bid
and bidder, and the amounts of wei, a sub-unit of Ethereum’s built-in
currency Ether, it owes to bidders who have been outbid. In addition
to explicitly declared fields, every contract has a built-in balance field
that tracks the amount of Ether currently held by the contract. Unlike
ordinary fields, which can be written to directly by the contract (but,
crucially, not by other contracts), the balance cannot be written to directly.
Ether is the only resource with native language support; programmers
can, however, implement smart contracts that provide custom resources
(often called tokens), illustrated later in this section.

Contracts define a set of functions and a special constructor function
called __init__ that is executed when the contract is set up. Smart contracts
are executed as transactions: a caller outside the blockchain can request
to invoke a contract’s function, and miners can then decide to execute
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1 minter: address
2 balances: map(address, int256)
3
4 def transfer(from: address, to: address, amount: uint256):
5 assert self.balances[from] >= amount and msg.sender == from
6 newAmount: int256 = self.balances[from] − amount
7 self.balances[to] += amount
8 self.balances[from] = newAmount
9 to.notify(from, self, amount)

10
11 def mint(to: address, amount: uint256):
12 assert msg.sender == self.minter
13 self.balances[to] += amount

Figure 5.2.: Simplified token contract im-
plemented in Vyper. The minter can create
new tokens by calling mint; other users call
transfer to give their own tokens to an-
other user. assert statements ensure that
the transaction reverts if a user tries to
spend tokens they do not own.

2: Throughout this chapter, when we say
that a contract interacts with other con-
tracts, we mean other contract instances,
i.e., contracts deployed at other addresses
that may contain the same or (usually)
different code from our contract.

this function as part of the next block. If this happens, the function is
executed, and may in turn call functions of the same or other contracts
as part of the same transaction2. (Note that throughout this chapter, we
inline internal calls to private functions for simplicity.) External calls
typically occur via interfaces that list (a subset of) the available functions
of a contract. Importantly, there is no observable concurrency while all
transitively-called functions are executed.

The intended workflow of the auction contract is that clients call the bid
function and transfer along a larger amount of Ether than the current
highest bid. If another client bids a higher value later, the contract updates
pendingReturns to remember that no-longer-highest bidders can get their
Ether back. Such a bidder can call withdraw to have the Ether transferred
back to them. Contracts can transfer Ether to other contracts via send
statements (e.g., in function end), where the parameter value specifies
the transferred amount, or by calling a function (like the bid function)
on another contract and implicitly passing along some amount of Ether.
Internally, these are the same: executing a send statement is implemented
by calling a default function on the recipient.

Ethereum transactions can revert, meaning they abort and all state changes
they made are reset, for several reasons. Smart contracts commonly use
assert statements to revert a transaction if the asserted condition is false.
This is intended behavior used to enforce that e.g., arguments supplied
to a call are valid and that the call is allowed given the current state of
the called contract. For example, a call to the end function will revert if
the auction is already over, and bid reverts if the new bid is not higher
than the current highest bid. This contract also reverts if called while the
lock field is set, a pattern commonly used to explicitly prevent a contract
from being called in unexpected situations (often to prevent re-entrancy
vulnerabilities, discussed below).

In addition to the contract’s fields and explicitly declared arguments, a
contract can always access the implicit arguments msg and block, which
contain information about the current call and the block the current
transaction is a part of. For example, msg has the particularly important
field msg.sender, which contains the address of the caller of the current
function. Function end uses this variable to ensure that only the beneficiary
of the auction can end the auction, whereas the bid function uses msg.value
to obtain the amount of Ether sent with the call.

Custom resources. While the auction contract works directly with the
built-in Ether currency, many real contracts implement or work with
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tokens [220], i.e., custom currencies tracked via ad-hoc implementations
in smart contract fields. Fig. 5.2 shows a very simple version of a token
contract. Its state consists of a map that represents the balances that
each other contract holds for this token. Contracts can call transfer to
transfer tokens from one contract to another, which simply corresponds to
updating the map. This contract enforces important properties common to
resources in general: Each client holding a balance should be able to transfer

only tokens that it owns. This implicit notion of resource ownership (tracked
via numeric values in a map here) is a native notion in our specification
methodology, explained in Sec. 5.4. This contract’s implementation
enforces this intention by reverting if it is asked to transfer tokens away
from anyone except the caller. Similarly, the right to mint new tokens
is restricted to a special privileged contract (represented by its address),
self.minter.

The token contract can also be used to illustrate the infamous concept
of re-entrancy vulnerabilities: the subtle potential for a called contract to
perform malicious callbacks and achieve undesirable outcomes. Say, for
example, that lines 8 and 9 in the token contract were swapped, i.e., the
contract first called the receiver contract to notify it that it has received
tokens, before reducing their balance. If the notified contract called the
sender of the transaction, it could in turn call back into the token contract
and transfer the tokens it just transferred away a second time; in particular,
the assert on line 5 would not prevent the transfer because the balance
was not yet updated at the time the callback happens. This would allow
clients of the token contract to create tokens out of thin air. Variations
of this pattern, which was first described in 2008 [223], are behind most
re-entrancy vulnerabilities, e.g., the infamous DAO exploit [94]; as we
will show in Sec. 5.4, our explicit resource reasoning will uncover such
coding errors by default.

5.2. Verification in the Presence of Untrusted

Code and Re-Entrancy

Smart contracts frequently interact with other contracts; in particular,
contracts that offer services to arbitrary clients often call functions on
arbitrary other contracts. For example, the auction contract above sends
Ether to (i.e., calls) an arbitrary msg.sender in its withdraw function, which is
necessary to ensure that any contract that has previously placed a bid and
has been outbid can get back the Ether they sent. While calls to functions
of the same contract (internal calls) can simply be verified by inlining the
callee function, calls to other contracts (external calls) are challenging for
two reasons. First, as we explained earlier, the implementations of other
contracts are in general untrusted and not verified, and therefore do not
have trustworthy specifications (e.g., standard pre- and postconditions)
we could use to reason about them. Second, the implementations of other
contracts are in general not known: we cannot make any assumptions
about the callbacks they perform directly or via other contracts3. That is,
we do not know if an external call simply modifies the state of the called
contract and then returns, or if it triggers more complicated interactions
such as those shown in Fig. 5.3: Contract 𝐴 calls contract 𝐵, which
performs a re-entrant call to 𝐴; subsequently, 𝐴 performs an external call
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Figure 5.3.: Example of a smart contract
transaction involving re-entrancy. Calls
and returns are marked by arrows and
dashed lines, respectively.
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to a third contract 𝐶 before all calls return. In this scenario, when 𝐴’s call
to 𝐵 returns, its own state may have changed as a result of the re-entrant
call from 𝐵. Consequently, if the implementation of 𝐵 is unknown, one
does not know which functions of 𝐴 have been re-entrantly called (if
any), and how 𝐴’s state has changed as a result. In this section, we
present a specification and verification technique that is sound in the
presence of unverified code and arbitrary re-entrancy. In the following,
we assume that all calls are external (internal calls are inlined) and that
the implementation of the callee is neither known nor verified (trusted,
known and verified callees could provide stronger assumptions about
the effects of the calls, but we focus on the common, most difficult case
here).

5.2.1. The Challenge

The problem of re-entrancy by itself is not specific to smart contracts; it can
also occur, for example, between objects in object-oriented programming
languages. When reasoning about programs in such languages, this
problem is usually solved by constraining what a called function may
assume about the state and which parts of the heap it may manipulate [19,
115, 157, 180]. However, these verification techniques require that all

executed code adheres to the rules of the verification technique. In
particular, called functions are typically verified to only cause side effects
allowed by the verification technique. In a smart contract setting, however,
external code is often unverified, potentially malicious, and cannot be
soundly assumed to follow any particular rules beyond those of the
execution environment. For the same reason, classical preconditions on
public functions are of limited use in this setting, since one cannot rely on
external callers actually respecting them; any contract that critically relies
on preconditions it does not enforce itself must be considered insecure.
In order to reason soundly, we have to conservatively assume that any
external call may lead to arbitrary callbacks into the original contract and,
in particular, mutate the original contract’s state in any possible way.

Some existing reasoning techniques for smart contracts either assume [174]
or aim to prove [3, 92] that re-entrancy cannot lead to behaviors that
cannot also occur without re-entrancy (i.e., that contracts are effectively

callback-free (ECF) [92]). However, these techniques do not apply to the
increasing number of contracts that use re-entrant calls as an essential
part of their intended workflow (e.g., [151], which we explain Sec. 5.7). In
contrast, our methodology applies to all contracts, even if they are not
ECF: Its central feature is that it allows users to express and prove critical
properties of a contract despite the potential for arbitrary re-entrancy, as
we explain next.
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5.2.2. Specification and Verification Technique

We propose to use a two-pronged approach to smart contract specification
and verification: (1) We introduce a novel specification construct that lets
us specify constraints on how a contract directly manipulates its own
state. These constraints can be verified without considering external calls.
(2) We introduce two additional specification constructs that allow us to
reason about the effects of external calls, even when the callee functions
are unverified and potentially malicious and may potentially trigger
re-entrant calls. Both ingredients exploit a key feature of smart contracts:
All contract state is private, i.e., cannot be directly modified by functions
in other smart contracts. In particular, all updates to a contract’s local
state are performed by some function from the contract’s own code.

This feature provides a key distinction between smart contracts and most
standard object-oriented languages; however, there are some non-smart
contract languages (e.g. actors in Swift [147]) that do offer this feature
and can therefore also be verified using our approach. Generally, our
technique enables code verification in the presence of re-entrancy and
arbitrary unknown and unverified code in any language that offers
(1) objects (or contracts) with only object-private state, that is, the state of
an object can be modified only by methods of that object, and (2) non-
aliasing guarantees for object-private state, that is, there are never any
mutable outside references to private object state.

In this section, we will informally describe our proposed specification and
verification technique using concrete code examples; a formal definition
of the resulting proof obligations will be given in Sec. 5.6.

Reasoning about call-free code.

Since the state of a contract can be modified only by its own functions, one
can express many important properties as constraints on local code, that
is, the call-free code segments between (external) calls. For instance, if all

such code segments of a contract only ever increase the value of a counter,
its value will never get smaller, even when external, potentially re-entrant
functions are called. We refer to call-free sequences of statements as local

segments. In a sense, they represent the atomic operations a contract can
perform: Outsiders can observe a contract’s state between local segments,
but never in the middle of a segment. In Fig. 5.3, the local segments of
contract A are the ones between the state pairs (0, 1), (2, 3), (4, 5) and (6,
7).

One class of properties that can be enforced by imposing constraints only
on local segments is access control, i.e., restricting the right to perform
certain operations or modify certain data (indirectly, by calling a function
on the contract) to specific callers. Access control is particularly important
for smart contracts, since, unlike in standard object-oriented programs,
where each object typically manages its own data, smart contracts have to
store all the data of their clients in their own storage (e.g., the balances in
the token contract), making it vital to enforce that clients can only modify
parts of that storage that conceptually belong to them. Access control
restrictions are therefore a necessary part of the public specification of
a contract. For example, for the auction contract from Fig. 5.1 we may
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1 def end():
2 { msg.sender ≠ self.beneficiary ∧ self.ended = 𝑥1 }
3 assert not self.lock and not self.ended and msg.sender == self.beneficiary
4 self.ended = True
5 self.lock = True
6 { self.ended = 𝑥1 }
7 send(self.beneficiary, value=self.highestBid)
8 { msg.sender ≠ self.beneficiary ∧ self.ended = 𝑥2 }
9 self.lock = False

10 self.highestBid = 0
11 { self.ended = 𝑥2 }

Figure 5.4.: Proof obligations generated
by segment constraint msg.sender ≠

old(self.beneficiary) ⇒ self.ended =

old(self.ended) for function end; note
that, since msg.sender does not change
throughout the execution of the function,
this is equivalent to old(msg.sender) ≠

old(self.beneficiary) ⇒ self.ended =

old(self.ended). The function is divided
into two local segments by the call in the
middle; each segment is call-free and can
therefore be verified using standard tech-
niques. We use the logical variables 𝑥1
and 𝑥2 to represent the old values of the
ended field. The same property has to be
proved for every local segment in all other
functions in the contract.

want to prove that only the beneficiary can end the auction (by setting
the ended flag).

To express constraints on local segments, we introduce segment con-

straints—two-state assertions (i.e., assertions that can refer both to
the current state and an old state) on the local state of a contract
that must hold between the start and end states of each local seg-
ment in the contract. Segment constraints are specified per contract,
not per individual segment. In our auction example, we can express
the access restriction for the ended field using the segment constraint
msg.sender ≠ old(self.beneficiary) ⇒ self.ended = old(self.ended), i.e., if the
caller of the current function is not the beneficiary, then the value of the
ended field will not be modified by any local segment. Since, by definition,
there are no external calls between the start and end states of a local
segment, segment constraints are verified without considering external
(unverified) code. Figure 5.4 illustrates the proof obligations generated by
this example constraint for the end function from our auction contract.

Reasoning about (external) calls

An external call may modify the state of the calling contract 𝐴 only
via (one or several) re-entrant calls. These re-entrant calls perform the
modifications of 𝐴’s state by executing some number of 𝐴’s functions,
which in turn will execute some number of 𝐴’s local segments (in Fig. 5.3,
the segments (2, 3) and (4, 5)). Consequently, the reflexive and transitive
closure of constraints describing the effects of 𝐴’s functions and segments
can be used to soundly approximate the effects of an external call. In
the following, we introduce two complementary forms of such transitive
constraints, which are useful for expressing different kinds of common
properties. Both are auxiliary specifications in the sense that they typically
do not directly express vital correctness properties (unlike e.g., segment
constraints prescribing access control properties, which are important in
and of themselves), but instead allow us to preserve properties across
external calls.

Transitive segment constraints. A vital property the end function of
the auction contract must fulfill is that, when it returns, the contract’s
ended flag is set. Proving this requires showing that any re-entrant calls
resulting from the send-statement do not set the flag to false. We can show
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Figure 5.5.: Proof outline showing the
use of the transitive segment constraint
old(self.ended) ⇒ self.ended to prove the
postcondition self.ended. We use logical
variables 𝑥1 and 𝑥2 to represent the values
of the ended field at the beginning of each
local segment, and 𝑥3 to represent its value
before the send statement. The transitive
segment constraint must be proved for ev-
ery local segment of all functions (blue).
It can then be assumed to hold between
the pre- and post-states of the external call
(green), i.e., if self.ended is true before the
call, we may assume it is true after the
call. This is sufficient to prove the desired
postcondition (red).

1 def end():
2 { self.ended = 𝑥1 }
3 assert not self.lock and not self.ended and msg.sender == self.beneficiary
4 self.ended = True
5 self.lock = True
6 { (𝑥1 ⇒ self.ended) ∧ 𝑥3 = self.ended }
7 send(self.beneficiary, value=self.highestBid)
8 { self.ended = 𝑥2 ∧ (𝑥3 ⇒ self.ended)}
9 self.lock = False

10 self.highestBid = 0
11 { 𝑥2 ⇒ self.ended ∧ self.ended }}

[137]: Liskov et al. (1993), ‘Specifications
and Their Use in Defining Subtypes’

that this is the case because no local segment of the contract ever unsets
the flag once it has been set, a property which can be expressed as the
segment constraint old(self.ended) ⇒ self.ended.

The reflexive and transitive closure of all segment constraints of a contract
describes the effect of an arbitrary number of local segments. Thus, it is
known to hold between the pre-state and the post-state of any external
call (i.e., between states 1 and 6 in Fig. 5.3) and can be used to reason
about such calls. While, in our example, the single segment constraint
we have is already reflexive and transitive, it is generally not possible to
compute the reflexive, transitive closure of a set of segment constraints
automatically. Therefore, we allow programmers to explicitly specify
the transitive segment constraints of a contract. These are checked to be
reflexive and transitive, and are verified to hold across each local segment
of the contract. Like segment constraints, transitive segment constraints
are two-state assertions on the local state of a contract, similar to history
constraints [137]. Since we enforce that any sequence of local segments
satisfies the transitive segment constraints of a contract, they may soundly
be assumed to hold between the pre- and post-state of each external
call. Note that transitive segment constraints do not subsume ordinary
segment constraints, since typical segment constraints used for access
control (e.g., the restriction on who can end an auction, shown before)
are not transitive.

Transitive segment constraints are useful to express constancy proper-
ties, such as the fact that the auction’s beneficiary never changes, or
monotonicity properties like that of the ended field discussed before.
The latter can be expressed using the transitive segment constraint
old(self.ended) ⇒ self.ended; Figure 5.5 illustrates how this constraint can
be used to prove the desired postcondition for function end (even without
the lock, which we will discuss below).

Transitive segment constraints subsume single-state contract invariants,
which are often useful to specify consistency conditions on contract states,
which must hold whenever the contract relinquishes control to other
contracts (and, thus, its state becomes observable to the environment).
The verification of transitive segment constraints implies that single-
state contract invariants hold at the end of each local segment, which
includes the state before any call as well as the post-state of each function.
Consequently, each function may soundly assume such contract invariants
to hold in its pre-state, as well as after the return of each external call,
analogously to class or object invariants in object-oriented programs [63,
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[63]: Drossopoulou et al. (2008), ‘A Unified
Framework for Verification Techniques for
Object Invariants’
[122]: Leavens et al. (2008), JML reference

manual

122]. As an example, for the auction, an important invariant is that its funds
suffice to pay all its obligations, which can be written as the transitive
segment constraint self.balance ≥ sum(self.pendingReturns) + self.highestBid.

Function constraints. It is common that each individual function of a
contract as a whole satisfies a two-state property, even if some of its local
segments do not. Such situations occur for instance if some sequences of
local segments violate the property, but no function in the contract ever
executes such a sequence. The re-entrancy lock in the auction contract
is an example: The field self.lock is set to true by withdraw and end before
their calls to send, and reset to false afterwards. Since each function of the
contract reverts if the locks is set, this pattern ensures that each function
of the auction contract leaves the contract state completely unchanged if
the lock is set in its pre-state.

However, this property cannot be verified as a transitive segment con-
straint: Some local segments reset the lock, such that any subsequent
state change violates the property. That is, the property does not hold
for arbitrary sequences of local segments, but it does hold between the
pre-state and the post-state of each contract function. Note that any exter-
nal call can modify the contract state only by executing these contract
functions (via re-entrant calls) from start to finish.

To exploit this fact, we introduce function constraints: two-state assertions
on the local state of a contract that must hold between the pre- and
post-state of every function in the contract. In Fig. 5.3, this means they
have to hold between states 2 and 5 as well as states 0 and 7. Like transitive
segment constraints, function constraints are specified per contract; they
must be satisfied by all of its functions (reflecting that we do not know
statically which re-entrant calls are triggered by an external call). Since
external calls may trigger the execution of an arbitrary number of contract
functions, we require function constraints to be reflexive and transitive.
For the lock example, we can express the desired property as the function
constraint old(self.lock) ⇒ self = old(self), meaning that the entire state of
the self object (including its lock field) stays will be unchanged at the end
of each function, assuming that the lock field was set initially.

Note that function constraints do not subsume transitive segment con-
straints. For instance, in the special case of single-state assertions, transi-
tive segment constraints (that is, the contract invariants discussed above)
are known to hold before each call and may, thus, be assumed in the
pre-state of each function, whereas function constraints may not, since
they do not have to be established before calls. Neither do transitive
segment constraints subsume function constraints, as we illustrated with
the lock example above.

With these two specification constructs, we can modularly verify prop-
erties in the presence of calls to unverified and potentially malicious
contracts with arbitrary re-entrancy. In Sec. 5.4, we will complement
these constraints with effect specifications on a contract’s resources to
obtain even stronger guarantees.

5.3. Inter-Contract Invariants
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Figure 5.6.: Minimal interface of the token
contract in Fig. 5.2, and part of an adapted
auction contract that deals in tokens and
additionally has a function that distributes
excess tokens among previous bidders.

1 interface Token:
2 balances: map(address, uint256)
3
4 def transfer(from: address, to: address, amount: uint256):
5 pass
6
7 contract Auction:
8 token: Token
9

10 def withdraw():
11 assert not self.lock
12 toSend = self.pendingReturns[msg.sender]
13 self.pendingReturns[msg.sender] = 0
14 self.lock = True
15 self.token.transfer(self, msg.sender, toSend)
16 self.lock = False
17
18 def distributeExcess():
19 excess: int128 = self.token.balances[self] − sum(self.pendingReturns)
20 excess −= self.highestBid
21 assert excess != 0
22 perBidder: int128 = excess / size(self.pendingReturns)
23 for bidder in keys(self.pendingReturns):
24 self.pendingReturns[bidder] += perBidder

4: Interfaces actually contain constant
functions that guarantee not to modify
any state instead of fields, but we model
them as fields here to simplify the presen-
tation.

[220]: Vogelsteller et al. (2015), ‘EIP-20:
ERC-20 Token Standard’

5: We focus on single-state invariants here
for simplicity only: our technical solution
also supports two-state assertions.

Smart contract applications are frequently implemented via multiple
contracts which call one another. As in many programming languages,
the interfaces of the Vyper and Solidity languages are designed to facilitate
such collaborations. Interfaces declare that a contract offers at least some
set of functions and fields4, but do not give any information about their
implementation, or preclude the existence of additional functions in the
contract. Therefore, they decouple (in the software engineering sense)
client contracts from the concrete implementations of the contracts they
build on.

For example, an auction contract similar to our example from Figure 5.1
could, instead of Ether, deal in tokens conforming to e.g., the ERC20
standard interface [220]. Fig. 5.6 shows a minimal interface of the token
contract from Fig. 5.2 as well as (part of) a modified version of the
auction contract, where calls to send are replaced by calls to the token con-
tract’s transfer function (we will discuss the added function distributeExcess
later).

However, our techniques for equipping contracts with invariants and
proof obligations to maintain them no-longer suffice for collaborating
contracts, since such collaborations naturally give rise to invariants
that depend on the state of other contracts. For example, the modified
auction still needs an invariant that it has sufficient funds (now tokens)
to pay its obligations to all participants, which can be expressed in terms
of the states of both the auction and token contract by: self.highestBid +
sum(self.pendingReturns) ≥ self.token.balances[self]. In this section, we extend
the technique presented in Sec. 5.2 to such inter-contract invariants

5.

An inter-contract invariant has a single primary contract (the contract
depending directly on the property); any other contracts whose state
is mentioned are its secondary contracts. In the example, the modified
auction contract is the primary contract, since the auction’s funds must be
sufficient for the auction to function correctly, whereas the token contract
can have many (non-auction) clients with different functionality and is
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1 contract BadToken implements Token:
2
3 def steal(from: address, amount: uint256):
4 assert self.balances[from] >= amount
5 self.balances[msg.sender] += amount
6 self.balances[from] −= amount
7
8 def transfer(from: address, to: address, amount: uint256):
9 assert self.balances[from] >= amount and msg.sender == from

10 newAmount: uint256 = self.balances[from] − amount
11 self.balances[to] += amount
12 self.balances[from] = 0
13 thirdparty.notify()
14 assert self.balances[from] == 0
15 self.balances[from] = newAmount
16
17 contract ThirdParty:
18 auction: Auction
19
20 def notify():
21 auction.distributeExcess()

Figure 5.7.: Possible implementation of the
Token interface. The implementing con-
tract may offer additional functions, e.g.,
in this case, one that allows anyone to steal
tokens from any existing account.

not responsible for their correctness. This asymmetry is reflected in the
above invariant, where self is the auction contract.

Ensuring non-trivial inter-contract invariants requires that both the
primary and all secondary contracts are verified (and that the primary
contract trusts the secondary contracts to adhere to their specifications),
since the state of unverified, unknown and adversarial contracts may
change arbitrarily, which precludes the verification of invariants that
depend on it. However, all contracts other than the primary and secondary
ones are still regarded as untrusted, do not have to be verified, and can in
fact be malicious, and as before, verified contracts may still call functions
of unverified, untrusted ones. Additionally, we do not depend on having
access to the implementations of the secondary contracts. These may in
particular be hidden behind interfaces.

5.3.1. Challenges

Modular verification of inter-contract invariants in our setting poses two
main challenges:

Challenge 1: Missing encapsulation. The first challenge is that the
state that an inter-contract invariant depends on is not fully-encapsulated
in the way we have exploited so far. While, of course, the rules of the
programming language have not changed and each contract’s state can
only be modified by its own code, now, the invariants we aim to prove
involve the states of multiple contracts, but the primary contract directly
controls only its own state. In other words, it is now no longer the case
that the invariant can only be broken by code of the primary contract;
instead, it can be also be broken by the code of a secondary contract,
which may not be known.

To illustrate this challenge, consider a scenario in which the token contract
has a function steal that lets an arbitrary contract steal another contract’s
funds, as shown in Figure 5.7: If this function existed, a third party could
call it to steal the tokens of the auction contract; if the auction contract also
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has any pending returns, this would break our inter-contract invariant.
Note that there is nothing the primary contract can do to prevent this;
in fact, steal may be called in a transaction that does not involve the
primary contract at all. Additionally, one cannot conclude from the token
contract’s interface alone whether or not it has such a function (or any
other function that allows one contract to decrease another contract’s
funds).

Challenge 2: Temporarily-broken invariants. Second, secondary con-
tracts may temporarily break inter-contract invariants when called by the
primary contract in a way that makes the inconsistent state visible to
other contracts. Note that it is normal and unavoidable that invariants are
temporarily broken while a contract is executing its own code; however,
states in which this is the case must never be visible to outside contracts.

The challenge is illustrated in function transfer in Figure 5.7, which, when
used by the auction contract can lead to the invariant being broken. This
function performs a token transfer from one contract to another, as it
should, but (perhaps as an attempt to avoid a TheDAO-like re-entrancy
vulnerability) it temporarily sets the balance of the token sender to zero
and performs a call to the outside, before restoring the balances to the
desired end state. This can lead to problematic behavior: Assume that
the auction contract has non-zero pending returns for two contracts, A
and B, and that contract B is the ThirdParty contract shown in Figure 5.7.
If contract A calls withdraw, the auction contract will call transfer, which
will set its token balance to zero. Now the token contract calls function
notify of contract B. Note that, in this state, the inter-contract invariant
is broken: The auction contract still has pending returns for B, but its
current balance is zero. When B in turn calls the function distributeExcess
in the auction contract this state, this function does not work as designed:
The purpose of the function is to distribute any excess tokens the auction
contract may own among previous bidders (which may be part of some
intended functionality where third parties are rewarded for taking part
in the auction, or simply a failsafe in case someone accidentally transfers
tokens to the auction contract). It calculates the excess by subtracting the
sum of the pending returns and the current highest bid from the auction
contract’s token balance, assuming that the result will be non-negative,
which should be guaranteed by the invariant. As a result, since we assume
the invariants (transitive segment constraints) at the beginning of each
function, we could prove a postcondition here that states that pending
returns can only be increased by this function. Now, however, the result
can actually be negative, and as a result, the pending returns of all
previous bidders will be decreased, breaking the postcondition.

Note that, again, it is not possible to see from the interface that this
problem exists: If function transfer has a postcondition that describes its
behavior, it will state that (by the time the function returns) the transfer
has been executed as desired; nor is it possible to see from an interface
whether the function performs any calls to the outside. Thus, while one
may regard the behavior of transfer in our example as artificial or clumsy,
our point is that such behavior cannot be ruled out knowing only the token
contract’s interface. Therefore, a sound verification technique whose
goal is to ensure that states in which the inter-contract invariant is never
broken must account for cases like this and prevent them. Also note that,
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6: This pattern is often used in OO-
verification when proving invariants be-
tween multiple objects [129].

unlike the previous problem, this problem is unrelated to encapsulation:
Now, it is not third parties that can modify state in unintended ways,
but it is the primary contract itself (which must be able to modify the
state in the token contract that conceptually belongs to it) whose call has
unintended consequences.

We must therefore adjust our verification technique to ensure that this
invariant cannot be proved for this contract, since it does not hold in
practice. Subsequently, we will show that we can prove an alternative

invariant that still serves our purpose: we exploit that whenever both
contracts’ state may be out of sync, the lock is set and the auction contract
cannot be called. So, we require that the desired consistency criterion (that
the auction has sufficient funds to pay its obligations) is true whenever the
lock field is not set6, resulting in the invariant ¬self.lock ⇒ self.highestBid +
sum(self.pendingReturns) ≥ self.token.balances[self]. As we will show below,
this invariant actually holds, and makes explicit that distributeExcess can
rely on its funds being greater or equal the contract’s obligations only

when the lock is not set. As a result, when using the alternative invariant,
it will be impossible to prove a postcondition for this function stating
that it only increases pending returns, unless the function is fixed by
adding assert not self.lock at the beginning.

5.3.2. Solution

In order to enable modular verification of inter-contract invariants, we
build on our existing approach for proving transitive segment constraints,
introduce one additional specification construct, and add proof obliga-
tions that address both of the challenges mentioned above (as before,
we will informally discuss these proof obligations in this section, and
subsequently formalize them in Sec. 5.6). More concretely, transitive
segment constraints are now (unlike all other specification constructs
we introduced) allowed to express inter-contract invariants, i.e., they
may now refer to the state of other contracts that are reachable from the
primary contract. All existing proof obligations for transitive segment
constraints remain, that is, we check that they are reflexive and transitive,
prove that they are established by the primary contract’s constructor,
and verify that each local segment of the primary contract satisfies them.
Additionally, interfaces may declare both function postconditions and
transitive segment constraints, which all contracts implementing the
interface must adhere to.

We now address Challenge 1 by extending interfaces with specifications
that provide the missing guarantees: we allow annotating interfaces
with novel privacy constraints, which express which part of the contract
state conceptually belongs to specific clients and, thus, cannot be freely
manipulated by other clients. Essentially, a privacy constraint extends
the encapsulation guarantees that already exist for the state of the
primary contract to (parts of) the state of a secondary contract. Privacy
constraints are segment constraints of the form ∀𝑎.msg.sender ≠ 𝑎 ⇒ 𝑃,
where 𝑃 is reflexive and transitive. That is, they have exactly the form
of typical segment constraints that express access control properties,
as shown in the previous section (recall that the fact that only the
auction’s beneficiary can end the auction was expressed by the segment
constraint msg.sender ≠ old(self.beneficiary) ⇒ self.ended = old(self.ended)),



174 5. Rich Specifications for Modular Smart Contract Verification

with one crucial difference: Instead of stating what privileges are restricted
to specific callers, privacy constraints universally quantify over the
caller’s address, and thus express guarantees that hold for every arbitrary
caller. This is by design, as their purpose is to express which parts of a
secondary’s contract’s state is controlled only by the primary contract,
which, from the secondary contract’s perspective, may be an arbitrary
client it has no special relationship with. The privacy constraints specified
in an interface must be satisfied by all functions of a contract implementing
the interface, even those not mentioned in the interface.

On the token interface from Fig. 5.6, the privacy constraint∀𝑎.msg.sender ≠
𝑎 ⇒ self.balances[a] ≥ old(self.balances[a]) expresses that for any client, if
it does not directly call the token contract, its balance cannot decrease;
in other words, a caller may increase the balance of any contract, but
decrease only its own. Since the steal function from Figure 5.7 violates this
property, BadToken is now no longer a valid implementation of the Token
interface. In other words, the privacy constraint constitutes a promise
that the secondary contract does not contain any function that will allow
third parties to decrease the auction contract’s balance. This is exactly
the information needed to prove that calls on the token contract by third
parties cannot violate the inter-contract invariant stated at the beginning
of this section.

In general, assuming that all secondary contracts are annotated with pri-
vacy constraints, we prove that those privacy constraints re-encapsulate
the state our invariant depends on as follows: We enforce that each inter-
contract invariant is stable under state changes allowed by the privacy
constraints of all secondary contracts, i.e., that the privacy constraints
forbid all changes that could break the invariant. We formally define
the notion of assertion stability in Sec. 5.6 and illustrate it here with
our example: Assume that a function of the secondary token contract is
called by a party other than the primary contract. For any local segment
of the token contract, the token’s privacy constraint shown above guar-
antees that self.token.balances[self] ≥ old(self.token.balances[self]). If, in the old
state, the inter-contract invariant self.highestBid+ sum(self.pendingReturns) ≥
self.token.balances[self] held, then the privacy constraint (along with the
knowledge that the local segments of the secondary contract cannot
directly change the state of any other contracts) implies that the inter-
contract invariant also holds in the new state.

Challenge 2 is not addressed by the introduction of privacy constraints;
since the caller in this scenario is the primary contract itself, privacy
constraints offer no guarantees about the potential behavior of the
secondary contract. To address the second challenge, we require that,
in every state where the primary contract directly calls a secondary
contract, any changes that any local segment of the secondary contract
could possibly make cannot break the invariant. That is, we require that
we can prove a stronger version of the invariant at the call site, such that
this stronger invariant is stable under the conjunction of all function
constraints of the primary contract, all transitive segment constraints
of all secondary contracts, plus the privacy constraints of all secondary
contracts except the called one (see Sec. 5.6 for the precise stability
condition). This stability criterion is the same as before, except that we are
not using the privacy constraint of the called secondary contract (since
privacy constraints only give guarantees to contracts that are currently
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[35]: Blackshear et al. (2019), Move: A lan-

guage with programmable resources

not calling them, but the guarantees we get from all other secondary
contracts are unaffected by the primary contract’s call).

For our original invariant, this stability criterion does not hold; however,
we can show that it does hold for our adapted invariant from above
(stating that the auction has sufficient funds to pay its debts if the lock field
is not set) as follows: We show that whenever the primary contract calls
the secondary contract, the assertion self.lock holds, which is a stronger
version of our adapted invariant. This assertion is independent of the
token contract and so cannot be broken by any changes to its state. In
other words, when the lock flag is set, the adapted invariant trivially holds
independently of the secondary token contract’s state, and therefore
cannot possibly be broken by any changes the secondary contract might
make to its own state. We can also show that this stronger assertion is
preserved by calls to the primary contract by using a suitable function
constraint old(self.lock) ⇒ self.lock. This last point is also sufficient to fulfill
the stability criterion we just described.

The proof obligations we have outlined ensure that secondary contracts
cannot break inter-contract invariants when called by the primary con-
tract (Challenge 2) or anyone else (Challenge 1). Along with the proof
obligations that ensure that the primary contract establishes and main-
tains the invariant, which we described in the previous section, this is
sufficient to guarantee that the inter-contract invariant will hold at the
end of every local segment of any contract.

In summary, the added proof obligations generalize our previously-
introduced specification constructs to verify invariants of collaborating
contracts. This verification is fully modular, based on the implementation
of the primary contract and specified interfaces for all secondary contracts.
It is sound even when these contracts interact with unverified code, and
in the presence of arbitrary re-entrancy.

5.4. Resource-Based Specifications

The vast majority of smart contracts in some way model resources and
resource transfers, such as the token and auction contracts we have seen
before. Resources have a number of basic properties that are important
for the correctness of every contract that works with them: they cannot be

duplicated, they have an owner, and they cannot be taken away from that owner

without their consent. Successful smart contract exploits are often the result
of one or more of these key integrity properties being violated. Explicitly
specifying these properties for every smart contract that uses some sort of
resource is possible, but laborious and error-prone. Instead, we propose a
dedicated specification and verification technique that has basic resource
properties built-in and that offers high-level specification constructs to
declare resources and to describe resource transactions. The potential
of resource-based reasoning for smart contracts has been recognized
before; for instance, Move [35] has native support for resources in the
blockchain and language (but does not have built-in guarantees of all
the basic properties mentioned above). Compared to specifications that
express resource properties via changes of the contract state, our resource
specification system has three main advantages (note that Move, due to it
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Figure 5.8.: Operations on resources and
offers. Buckets represent resources owned
by addresses 𝐴 and 𝐵; the rectangles con-
tain the offers they have made. Big arrows
show the name of the resource operation;
the names under the arrows show who can
perform the operation (create-operations
may be performed by anyone who has a
special resource representing the right to
mint new resources). For example, only
𝐴 can transfer two of its three yellow re-
sources to 𝐵, or it can offer 𝐵 to exchange
two of its yellow resources against a green
one.
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having a different resource model, does not have these three advantages
built-in, see Sec. 5.8):

1. Guaranteed integrity: Basic integrity properties of resources, such
as the fact that they cannot be duplicated and cannot be taken away
from their current owner without their consent, are baked into the
system. Our verification approach ensures that these properties
hold by default, without developers having to specify them, so
that there is no danger that important properties are missing in the
specifications, and there is no need to write them down for every
contract.

2. Higher-level reasoning: Developers think about resources as an
abstract concept; for instance, they think of a token as a kind of
currency, not some contract whose state contains a map. Resource-
based specifications let developers describe their contracts’ states
and interactions on this abstraction level, leading to simpler and
more intuitive specifications.

3. Client documentation: Writing postcondition-based specifications
for smart contract functions is often difficult because of potentially
re-entrant calls with unbounded effects. Our resource system
enables users to prove novel effect-based function specifications
that give a caller an upper bound on the negative consequences it
may suffer from calling a function (e.g., losing some Ether) and a
lower bound on the positive consequences (e.g., receiving some
tokens).

In this section, we describe the basic attributes of our resources, the oper-
ations that can be performed on them, and how we connect the contract’s
actual state to the resource state. We show how effect-based function
specifications based on resources give callers extra information. Finally,
we describe advanced concepts such as derived resources, representing
titles to other resources. As in the last two sections, our explanations here
will be informal, and a formal description of all proof obligations will
follow in Sec. 5.6.
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5.4.1. Resource Model

In our system, a resource can represent anything that cannot be dupli-
cated, has an owner, and has some non-negative value. Resources are
owned by addresses on the blockchain. Ownership implies control of
the resource, i.e., only the owner of a resource can transfer or destroy it.
Receiving additional resources does not require consent. In this regard,
our resources are similar to Ethereum’s built-in Ether resource (which is
treated as a built-in resource in our system).

Fig. 5.8 shows the operations that can be performed on resources, and
who is allowed to perform them. Resources can be created by privileged
parties who have the right to do so (usually called minters). They can be
transferred to other addresses or destroyed by their owners (and by noone
else). In addition, addresses can make offers to exchange some resources
against others; when an offer from one address exists and a second party
makes a matching counter-offer, the exchange can be performed at an
arbitrary point in time, without further agreement by the involved parties
(consuming the offers). For maximum flexibility, an address need not
own the resources it offers at the point when it makes the offer, but an
exchange requires that both addresses actually hold the offered resources.
Addresses can revoke previous offers they have made. The resulting set of
operations is simple but sufficient to model the behavior of a wide range
of real smart contracts.

5.4.2. Resource State

Every smart contract may declare one or more resources that they
implement (e.g., token contracts would declare a token resource). For
each resource, all addresses implicitly have a balance (as for the built-in
Ether). Similarly, each address has a set of existing offers on the resources
it declares. These balances and offer sets are ghost state: state that exists
only for verification purposes, but is not present at execution time. Our
specifications can refer to this state, e.g., a postcondition can refer to
the caller’s balance for resource 𝑅 as balances𝑅[msg.sender]. Note that
specifications about resource state can be arbitrarily combined with the
other specification constructs we have introduced; for example, one could
write a segment constraint stating that a contract may perform some
operation only if it owns some minimum amount of a resource.

The resource ghost state can be changed only by executing ghost state-

ments, written in the verified contract, that each perform one of the
resource operations mentioned above. As an example, the ghost state-
ment transfer𝑅( 𝑓 , 𝑡 , 𝑎) transfers 𝑎 amount of resource 𝑅 from 𝑓 to 𝑡. This
ghost statement requires that 𝑓 has sufficient amounts of 𝑅, and that 𝑓

is the contract invoking the ghost statement, i.e., that 𝑓 has called the
function that contains it (modulo delegation, which we discuss later).
These conditions are checked by the verifier, and they enforce the basic
properties of the resource system; the latter check in particular enforces
ownership constraints. Similar ghost statements exist for the other basic
resource operations:

▶ Resource can be created by executing the ghost statement create𝑅(𝑒𝑐 , 𝑒𝑡 , 𝑒𝑎),
which means that 𝑒𝑐 creates 𝑒𝑎 amount of resource 𝑅 and allocates
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it to 𝑒𝑡 , and which has the effect create𝑅(𝑒𝑡 , 𝑒𝑎). Creating a resource
requires that 𝑒𝑐 is the current msg.sender, and additionally, that 𝑒𝑐
owns the right to do so, which we represent by a special resource
creator(𝑅).

▶ When executing the statement destroy𝑅(𝑒 𝑓 , 𝑒𝑎), 𝑒 𝑓 destroys 𝑒𝑎 amount
of its reserves of resource 𝑅, which requires that 𝑒 𝑓 actually has
that amount of resource, and, as before, that 𝑒 𝑓 is the msg.sender.

▶ The statement offer𝑅1↔𝑅2(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛) creates 𝑒𝑛 offers from
𝑒 𝑓 to contract 𝑒𝑡 to exchange 𝑒𝑎1 amount of 𝑅1 against 𝑒𝑎2 amount
of 𝑅2 if 𝑒 𝑓 is the msg.sender.

▶ The statement revoke𝑅1↔𝑅2(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛) revokes 𝑒𝑛 offers from
𝑒 𝑓 to contract 𝑒𝑡 to exchange 𝑒𝑎1 amount of 𝑅1 against 𝑒𝑎2 amount of
𝑅2 if 𝑒 𝑓 is the msg.sender, and requires that those offers exist before
its execution.

▶ The statement exchange𝑅1↔𝑅2(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2) performs an exchange
between 𝑒𝑎1 amount of 𝑅1 from 𝑒 𝑓 and 𝑒𝑎2 amount of 𝑅2 from 𝑒𝑡 .
Executing it requires that both 𝑒 𝑓 and 𝑒𝑡 have made an offer to
perform such an exchange, and consumes the offer. There is one
exception to this: if either 𝑒𝑎1 or 𝑒𝑎2 are zero, i.e., the exchange
simply gives a resource to one party without requiring anything in
return, no offer is required from the party receiving the resource.
Unlike any other ghost statement, there are no requirements as to
who can execute this statement (i.e., who the msg.sender is), since
its effect is one that all affected parties have already agreed to
previously.

The resource ghost state has the same encapsulation as ordinary contract
state, that is, the ghost statements in a contract can modify only the state
of the resources declared in that contract.

5.4.3. Connecting Resource State and Contract State

In order to be useful for verification, the resource ghost state must be
connected to the contract’s actual state. Our system achieves this by
letting developers write invariants (i.e., transitive segment constraints)
that relate the resource ghost state (i.e., balances and existing offers) to
the contract state. When verifying a contract, we then enforce that these
coupling invariants, like all transitive segment constraints, hold at the
end of every local segment. For the token contract, the invariant would
be balancestoken = self.balances, meaning that the balances of the resource
named “token” are recorded in the contract’s balances field.

This check essentially forces changes on the resource state and on the
contract state to happen in lockstep: If a change happens on the resource
state with no equivalent change on the contract state (or vice versa),
the invariant cannot be verified. As a result, the properties our system
guarantees for resources (like ownership) carry over to the actual contract
state. For instance, our system prevents the verification of a function steal
that allows arbitrary callers to steal some client’s funds: the modification
to the contract state must be mirrored in a corresponding change of the
resource state (by the coupling invariant). The ghost statement that makes
this change checks that the transferred funds belong to the function’s
caller, which would fail here.
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1 def transfer(from: address, to: address, amount: uint256):
2 { balancestoken = self.balances }
3 assert self.balances[from] >= amount and msg.sender == from
4 self.balances[to] += amount
5 self.balances[from] −= amount
6 transfertoken(from, to, amount)
7 { balancestoken = self.balances }
8 to.notify(from, self, amount)

Figure 5.9.: Example of contract state and
resource state moving in lockstep. In or-
der to re-establish the coupling invariant
(blue) at the end of the first local segment
of the token contract’s transfer function af-
ter modifying the contract state, one must
execute a transfer statement (red) that mod-
ifies the resource state accordingly. Verifi-
cation ensures that all conditions imposed
by the resource model are fulfilled when
transfer is executed.

As an example, in the transfer function of the token contract, we would
have to insert the ghost statement transfertoken(from, to, amount) before the
call to notify in order to re-establish the invariant, as shown in Figure 5.9.
Verifying the function requires proving that from is the msg.sender and that
from owns at least amount tokens, both of which we can prove because of
the assertion at the beginning of the function.

Similarly, in function mint of the token contract, which increases the
number of tokens in the contract state, we would have to insert the
statement create𝑅(self.minter, to, amount) to preserve the relation between
balancestoken and the contract state. Verifying mint then requires showing
that the caller is self.minter, which we know because of the assertion in the
first line, and that self.minter owns a creator resource for token. To show
the latter, we must create such a resource in the contract’s constructor,
and record the fact that the minter owns it in an additional invariant.

5.4.4. Client Specifications

The system described so far guarantees that others cannot take away
the resources owned by a contract. However, the contract itself may
perform operations that lead to a loss of resources, e.g., by transferring
or destroying them. Our rules for resource statements ensure that any
such operation is initiated by the owner calling a function on the contract
that declares the resource (e.g., a function on the token contract that
contains a transfer ghost statement). Therefore, it is vital that functions
provide callers with specifications describing how they affect the caller’s
resources.

We address this problem by introducing effects-clauses on contract func-
tions, which specify ghost statements that will be executed when the
function is called (assuming it does not revert). Each function has a
multiset of effects, and each effect corresponds directly to one of the
ghost statements introduced above, meaning that there are effects for
creating, transferring, and exchanging resources, etc. Effects-clauses are
unordered and do not give any information regarding when during the
call the effects occur. As an example, if a function’s effects-clause contains
transfer𝑅(msg.sender, 𝑡 , 4) and transfer𝑅(msg.sender, 𝑡 , 6), this means that af-
ter successful execution, it will have transferred 10 𝑅 (in two separate
steps of 4 and 6) from the caller to address 𝑡 at some point during the
call.

In contrast to traditional effects-systems, our effects-clauses are not

required to be transitive: the ghost operations performed directly by
the called contract’s function must be included, but those caused by
further external calls made by this contract need not be tracked. This
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non-standard design is motivated by the presence of calls to unknown
code; ultimately, there will be cases in which we could not know the
effects of arbitrary external code. The rules for checking effects clauses
are simple: (a) the effects-clause of a function must contain the effects
of all ghost statements directly in its body, and (b) it may declare any
additional known effects resulting from its own calls to other functions.

This might sound problematic: a caller of a function is only able to see
the effects clauses (and postcondition) to judge whether they consent to
these effects happening, but if the effects do not track all transitive calls,
one might expect that the caller could be tricked into allowing, e.g., more
of their resource to be transferred than they realize. Perhaps surprisingly,
due to the resource ownership principles built into our methodology,
our non-transitive effects actually remain powerful and useful: they
ultimately describe worst-case information about what could happen to
a caller’s resources by calling the function in question except possibly for

additional calls that go via the same original caller. In other words, the caller
is explicitly consenting to at most these effects happening, unless they
subsequently consent to additional effects by making a further call.

To see why this is the case, consider a function that may have a negative
effect on a calling contract’s resources. Since all ghost operations that have
a negative effect impose a proof obligation that the resources are owned
by msg.sender, the negative effect must occur either in the initially-called
function, or, after a sequence of additional calls, in some function that was
again called by the original caller. In the first case, according to check (a),
this effect will be included in the initially-called function’s effect clause:
the caller was aware of the effect and allowed it to happen by making
the call. In the second case, for the same reason, this effect must be
declared on the subsequently-called function called by the same caller,
who consents to the additional effects by making this subsequent call.
Note that it is possible that a call will cause effects that are positive or
neutral for the caller (e.g., an unknown contract giving them tokens)
which the called function did not declare; however, since those are not
negative for the caller, not knowing about them does not impact the
caller’s ability to consent to the call.

As a result, our effects-clauses enable each contract to know which
negative effects a call may have on its resources, such that it can refrain
from making calls with undesired effects. This solution gives strong
guarantees in the presence of arbitrary re-entrancy, when it is impossible
to give the called function a precise postcondition.

Figure 5.10 illustrates the use of resource specifications and effects- clauses
in a realistic setting, namely on the token contract from before, more
precisely, an extended version of the token contract that is close to a real
implementation of ERC20 in Vyper. Effects-clauses are introduced with
the keyword performs.

5.4.5. Derived Resources

As a final ingredient, our system contains one additional concept to model
the difference between physically having a resource and conceptually
being its rightful owner. As an example, consider the auction contract
again: Whenever a bidder sends some wei to it, that wei now physically
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belongs to the auction contract, which could in principle do with it
whatever it wants. However, conceptually, as long as the auction is
running, the bidder is still the owner of the wei it sent, and it rightfully
expects to either be able to get it back later (if someone else makes a higher
bid) or to exchange it for the auctioned good when the auction ends. That
is, after a bid and before the end of the auction, the physical owner of
that wei (the auction contract) is different from the conceptual owner
(the bidder). This is a relatively common notion that occurs whenever
some contract (temporarily) manages another contract’s resources, and
it obviously comes with certain expectations (e.g., the auction contract
should not be able to give the wei it has to anyone but its rightful
owners).

Our system has support for this scenario in the form of derived resources,
representing conceptual ownership of a resource physically owned by
someone else; essentially, a kind of title. In our example, the auction
contract could declare a resource wei_in_auction derived from the built-in
wei resource, as shown in Figure 5.11. When a bidder sends wei to the
auction contract by calling function bid, it transfers its wei to it, but gets
the same amount of wei_in_auction in return, signifying that it is owed
that amount of wei from the auction contract. If another higher bid
comes in and the bidder gets its wei back by calling withdraw, its titles
are destroyed again. In contrast, the winner of the auction exchanges its
titles against the auctioned good, so that their bid is now owed to the
beneficiary of the auction. At any given point, the amount of titles address
𝑐 has in the auction contract is self.pendingReturns[𝑐] + (self.highestBidder =
𝑐?self.highestBid : 0), meaning that this is also the amount of wei_in_auction
contract 𝑐 owns.

Derived resource creation and destruction. The existence of an instance
of a derived resource is always bound to an instance of the resource it
is derived from. That is, if a contract declares resource 𝐷 derived from
another resource 𝑅, then an instance of 𝐷 comes into existence for every
instance of 𝑅 it receives (via a transfer operation or an exchange), and
is automatically allocated to the sender of the 𝑅; there is no way to
create an instance of 𝐷 without receiving an instance of 𝑅. Similarly,
whenever the contract sends some amount of 𝑅 to another contract, this
destroys the same number of 𝐷 instances said other contract currently
owns. This mechanism ensures that the contract always owns enough of
the original resource to “pay back” its title loans. The reader may recall
that this fact was an invariant of the auction contract that we explicitly
mentioned in Sec. 5.2; now, with derived resources, this invariant is
checked automatically and does not have to be specified explicitly.

Derived resource transfers. In order to ensure that contracts do not give
away resources that (according to an existing title) belong to someone else,
our system enforces that the contract may transfer 𝑅 to another contract
only if that other contract already owns a sufficient amount of 𝐷, i.e., the
original contract already owes the second contract at least the amount to
be transferred. As an example, when the auction contract sends some
amount of wei to a previous bidder of the auction in line 18, this is allowed
only if the bidder currently owns an equal amount of wei_in_auction, and if
the beneficiary has offered to exchange its wei_in_auction back to ordinary
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[71]: Entriken et al. (2018), ‘EIP-721: ERC-
721 Non-Fungible Token Standard’

wei. If this is the case, then, the moment the send executes, that amount
of the beneficiary’s wei_in_auction is automatically destroyed, and the offer
to exchange it is consumed.

Apart from the aforementioned restrictions, derived resources behave just
like other resources. In particular, they can be traded like other resources
(e.g., someone could pay for some good in wei_in_auction, meaning that
they give the right to get wei back from the auction contract to someone
else). This is relevant for some DeFi contracts that give out tokens that
represent ownership of some other goods (i.e., derived resources), but
are traded as tokens on their own.

Proof technique. Our proof technique enforces the properties listed
above by automatically creating and/or destroying instances of the
derived resource whenever a contract calls an external function that
declares (in its effects-clause) that it performs a transfer or exchange
of the underlying resource to or from the calling contract. Sending or
receiving wei is a special case but is treated analogously, i.e., when
sending wei, this is handled as if the called function declared that it
transfers wei away from the calling contract. To avoid that a contract
loses resources that conceptually belong to others without its knowledge
(which would mean that it cannot perform the aforementioned checks),
our system enforces that the contract declaring 𝐷 cannot make offers
to give away 𝑅, since such offers could result in the contract losing
𝑅-instances (when the exchange happens) at an arbitrary point in the
future.

Figure 5.12 shows the entire (slightly simplified) auction contract with
derived resource specifications. Note that in our tool, a derived resource
for wei is declared automatically (meaning that by default, the assumption
is that wei sent to a contract should still conceptually belong to the sender,
i.e., they get a title for it); here, we have explicitly declared it with the
name wei_in_auction for illustration purposes.

5.4.6. Further Extensions

Our system contains a few more features that we have not described so
far. The most important is the notion of delegation: It is sometimes useful
or necessary for collaborating contracts to be able to act in each others’
names when interacting with other contracts (in fact, this functionality is
built into the core of many existing token standards, like ERC 721 [71]).
To enable this, we allow a contract 𝐴 to decide to trust another contract
𝐵 w.r.t. outside contract 𝐶 (by calling a function on 𝑐 that executes the
ghost statement trust(𝐵, true), which sets the current caller’s trust to the
contract at address 𝐵 to true), meaning that when 𝐵 interacts with 𝐶 (and
only then), it can perform actions that normally only 𝐴 would be able
to perform (e.g., transfer 𝐴’s resources to someone else). As a result, all
restrictions on who may execute certain ghost statement that we have
discussed so far are implemented modulo trust. Since trusting someone
weakens the guarantees one has for one’s own resources, users must use
this feature with caution; however, as with all other potentially negative
effects, functions that establish new trust relations must always state that
they do so in their effects-clause.
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[71]: Entriken et al. (2018), ‘EIP-721: ERC-
721 Non-Fungible Token Standard’

Our core methodology is easily extended in several further ways; our
implementation e.g., has support for resources with identifiers (resources
whose instances can be distinguished from one another) useful for
modeling non-fungible tokens (NFTs) [71]. Other generalizations are
possible, e.g., for some contracts it may be useful to have derived resources
that represent ownership not of a single resource of a different type,
but of different amounts of other resources. This feature (like many
others) does not have to be built into the system; it can be emulated
by using the existing resource model in combination with additional
invariants, segment constraints etc. that represent the additional rights
and constraints that would result from such resources. As we show in
Sec. 5.7, the set of features we have described gives users a sufficiently
expressive model to be able to verify real contracts, while being simple
enough for users to reason about.
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Figure 5.10.: Complete token contract, an-
notated with resource specifications. Tran-
sitive segment constraints in lines 10-12
link contract state and resource state. Re-
source ghost statements (red) manipulate
the resource state. Performs-clauses de-
clare the effects of each contract function.

1 minter: address
2 balances: map(address, int256)
3 allowances: map(address, map(address, int256))
4
5 resource: token()
6
7 transitive segment constraint: self.minter == old(self.minter)
8 transitive segment constraint: self.total_supply == sum(self.balances)
9

10 transitive segment constraint: balances[token] == self.balances
11 transitive segment constraint: forall(o: address, s: address,
12 self.allowances[o][s] == offered[token <-> token](1, 0, o, s))
13
14
15 performs: create[token](_value, to=_to)
16 def mint(_to: address, _value: uint256):
17 assert msg.sender == self.minter
18 assert _to != ZERO_ADDRESS
19 self.total_supply += _value
20 create[token](_value, to=_to)
21 self.balanceOf[_to] += _value
22 log.Transfer(ZERO_ADDRESS, _to, _value)
23
24 performs: transfer[token](_value, to=_to)
25 def transfer(_to: address, _value: uint256) −> bool:
26 self.balanceOf[msg.sender] −= _value
27 transfer[token](_value, to=_to)
28 self.balanceOf[_to] += _value
29 log.Transfer(msg.sender, _to, _value)
30 return True
31
32 performs: exchange[token <-> token](1, 0, _from, msg.sender, times=_value)
33 performs: transfer[token](_value, to=_to)
34 def transferFrom(_from: address, _to: address, _value: uint256) −> bool:
35 self.balanceOf[_from] −= _value
36 self.balanceOf[_to] += _value
37 self.allowances[_from][msg.sender] −= _value
38 exchange[token <-> token](1, 0, _from, msg.sender, times=_value)
39 transfer[token](_value, to=_to)
40 log.Transfer(_from, _to, _value)
41 return True
42
43 performs: revoke[token <-> token](1, 0, to=_spender)
44 performs: offer[token <-> token](1, 0, to=_spender, times=_value)
45 def approve(_spender: address, _value: uint256) −> bool:
46 revoke[token <-> token](1, 0, msg.sender, _spender,
47 offered[token <-> token](1, 0, msg.sender, _spender))
48 self.allowances[msg.sender][_spender] = _value
49 offer[token <-> token](1, 0, to=_spender, times=_value)
50 log.Approval(msg.sender, _spender, _value)
51 return True

Figure 5.11.: Example usage of derived
resources in a part of the auction contract.
Ghost statements are red and specifica-
tions like effects-clauses (using the performs
keyword) and resource declarations are
green. Since the contract declares a re-
source wei_in_auction derived from wei,
sending some wei to it when calling func-
tion bid will implicitly create the same
amount of wei_in_auction, which then be-
longs to the bidder. Every bidder offers
to exchange their wei_in_auction for the
auctioned good if they win the auction.
When calling withdraw, previous bidders
get back the wei they sent, implicitly de-
stroying their wei_in_auction.

1 resource: good()
2 resource: wei_in_auction() derived from wei
3
4 performs: create[wei_in_auction](msg.value)
5 performs: offer[wei_in_auction <-> good](msg.value, 1, to=self.beneficiary, times=1)
6 def bid():
7 assert block.timestamp < self.auctionEnd and not self.ended
8 assert msg.value > self.highestBid and msg.sender != self.beneficiary
9 offer[wei_in_auction <-> good](msg.value, 1, to=self.beneficiary, times=1)

10 self.pendingReturns[self.highestBidder] += self.highestBid
11 self.highestBidder = msg.sender
12 self.highestBid = msg.value
13
14 performs: destroy[wei_in_auction](self.pendingReturns[msg.sender])
15 def withdraw():
16 pending_amount: wei_value = self.pendingReturns[msg.sender]
17 self.pendingReturns[msg.sender] = 0
18 send(msg.sender, pending_amount)
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1 beneficiary: address
2 highestBid: int256
3 highestBidder: address
4 ended: bool
5 pendingReturns: map(address, int256)
6
7 resource: good()
8 wei_in_auction() derived from wei
9

10 transitive segment constraint: ... # relate contract state and resource state
11
12 segment constraint: msg.sender != self.beneficiary ==> self.ended == old(self.ended)
13 transitive segment constraint: self.beneficiary == old(self.beneficiary)
14 transitive segment constraint: old(self.ended) ==> self.ended
15
16 performs: create[wei_in_auction](msg.value)
17 performs: offer[wei_in_auction <-> good](msg.value, 1, to=self.beneficiary, times=1)
18 def bid():
19 assert block.timestamp < self.auctionEnd and not self.ended
20 assert msg.value > self.highestBid and msg.sender != self.beneficiary
21
22 offer[wei_in_auction <-> good](msg.value, 1, to=self.beneficiary, times=1)
23
24 self.pendingReturns[self.highestBidder] += self.highestBid
25 self.highestBidder = msg.sender
26 self.highestBid = msg.value
27
28
29 performs: destroy[wei_in_auction](self.pendingReturns[msg.sender])
30 def withdraw():
31 pending_amount: wei_value = self.pendingReturns[msg.sender]
32 self.pendingReturns[msg.sender] = 0
33 send(msg.sender, pending_amount)
34
35
36 performs: exchange[wei_in_auction <-> good](self.highestBid, 1, self.highestBidder,
37 self.beneficiary, times=1)
38 performs: destroy[wei_in_auction](self.highestBid, actor=self.beneficiary)
39 def endAuction():
40 assert block.timestamp >= self.auctionEnd and not self.ended
41 self.ended = True
42
43 exchange[wei_in_auction <-> good](self.highestBid, 1, self.highestBidder,
44 self.beneficiary, times=1)
45
46 send(self.beneficiary, self.highestBid)

Figure 5.12.: Complete auction contract
annotated with resource specifications.
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5.5. Availability

So far, we have focused on proving integrity properties; in this section,
we will briefly describe how our technique can also prove availability
properties of smart contracts.

As mentioned in the introduction, for smart contracts, the blockchain
itself is responsible for guaranteeing that clients can always invoke
transactions on contracts. However, for each individual contract, it is
still possible for functionality to become essentially unavailable, or even
for third parties to perform a kind of denial-of-service attack (we will
show an example below). In particular, since any transaction can abort, it
is possible that some intended contract functionality can no longer be
executed because any attempt to do so results in an aborted transaction.

Thus, to reason about contract availability, it is vital to be able to reason
about successful contract execution as well as transaction abortion. In
particular, it can be important to reason about the possible causes for
transaction abortion.

Smart contracts can abort for four distinct reasons: (1) because an assertion
statement assert 𝑒 fails, if 𝑒 is not true, (2) in Vyper’s case, because some
check performed implicitly by the language fails, e.g., because of an
integer overflow, (3), because a call to an outside contract fails, terminating
the entire transaction, or (4) because a transaction runs out of gas.

At least the latter two can potentially be influenced by third parties: A
called contract can intentionally abort, can intentionally use up gas when
called, or can influence the original contract’s state in a way that leads
to higher gas consumption for certain functions. These factors can be
used by third parties to intentionally block another contract’s ability to
execute, i.e., to perform a denial-of-service attack.

In Fig. 5.13, we show an alternative way of paying out outstanding debts
for the auction contract that is vulnerable to denial-of-service attacks.
Imagine that our auction contract does not have the withdraw function
shown before, and instead, the shown function payAllPending, which can
be called by anyone, and is used to pay out all outstanding debts at
once. This function iterates through all previous bidders with pending
returns, and sends the owed Ether to each of them. However, if even
one of those send operations aborts, the entire transaction will revert.
As a result, any malicious contract can essentially prevent all existing
bidders from getting their bid back by simply placing a bid itself, and
subsequently ensuring that any attempt by the auction to send Ether back
to the malicious contract aborts. This problem is the reason why most
contracts that implement similar functionality offer withdraw functions

Figure 5.13.: Alternative function for pay-
ing outstanding debts in the auction con-
tract, which is vulnerable to denial-of-
service attacks. Note that the Vyper lan-
guage does not actually allow iterating
over maps in the pictured way, but we
write the code as shown to simplify the
presentation.

1 def payAllPending():
2 assert not self.lock
3 for recipient in self.pendingReturns:
4 toSend = self.pendingReturns[recipient]
5 self.pendingReturns[recipient] = 0
6 self.lock = True
7 send(recipient, value=toSend)
8 self.lock = False
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7: Since there is an upper limit to the
amount of gas a transaction may use, it
may actually be impossible to successfully
execute a function that consumes too much
gas. While our tool does not explicitly
model gas consumption, in principle, one
can prove that this is not the case by show-
ing that the maximum gas construction of
a function is always below this limit.

[198]: Sierra (2019), ‘Verification of
Ethereum Smart Contracts Written in
Vyper’

like the one shown in the original auction contract, which pay out only a
single client at a time.

The central problem here is that functionality that is important for
multiple clients can be blocked by others. Thus, we propose that the
central property that should be proved for important functions of smart
contracts is the following: If some (satisfiable) function precondition is
fulfilled by a caller, then the function’s execution either succeeds, or fails
because of a reason that is controlled exclusively by the caller.

For example, for the withdraw function in the auction code, it would be too
strict to demand that it must always succeed: The caller might provide
too little gas, or it might fail when receiving Ether. However, both of those
potential sources of transaction abortion are under the control of the
caller itself7, and cannot be influenced by third parties. For payAllPending,
however, this is not the case, since any contract in the map of pending
returns can force the transaction to revert.

In our implementation (though not in our formalization in the next sec-
tion, where we only model successful executions), we offer a specification
construct success(), which can be used in function postconditions and
specifies whether a function has executed successfully. That is, one can
prove postconditions of the form 𝑃 ⇒ success(), stating that some condi-
tion guarantees that the function will execute successfully. Additionally,
we offer variations of this specification construct to model success modulo
other factors. For example, the assertion success(unless=out_of_gas) is true
if the function either executed successfully or ran out of gas (but did not
fail for other reasons), and the crucial property mentioned before, that a
function will succeed unless it fails because of lack of gas or a failed call
to its own caller, can be written as success(unless=sender_failed). Proving
postconditions including such a construct is possible using standard
techniques, since it simply requires accurately modeling that (and why)
different statements in a contract can abort.

As in the example of the auction contract shown above, a vital property of
many contracts is that the functionality that enables other contracts to get
resources (e.g., tokens or Ether) they are owed back from a contract, must
not be vulnerable to denial-of-service attacks. Since this case is so common,
our implementation also adds an additional specification construct for this
case: the assertion accessible[R](amount, recipient), to be used in invariants,
is true for a contract if there is some way for the recipient to receive the
specified amount of resource 𝑅 from the contract (in a way that cannot
be prevented by third parties). This specification construct is essentially
useful for any contract that declares derived resources and may therefore
owe resources to some of its clients. Expressing this property as an
invariant makes it possible to state more directly that, in any public state
of the contract (or potentially under some conditions, e.g., after a certain
point in time), clients can access owed resources in a way that cannot be
blocked by others. To prove such an invariant, we simply translate it into a
postcondition of the function that performs this transfer (which can often
be inferred using heuristics, and will otherwise require additional user
input to identify). More information on the handling of the success and
accessible predicates can be found in the thesis of Robin Sierra [198].
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5.6. Proof Technique

In this section, we formalize our specification and verification technique
for a simple smart contract language. Since our focus in this chapter is on
novel specification constructs, we will not provide a proof of soundness
here; the purpose of our formalization is to describe the proof obligations
we have so far described informally in an unambiguous and formal
way.

For a potential soundness proof, we envision the following steps: The
first step is to prove the soundness of our general verification technique
in the presence of untrusted code (Sections 5.2 and 5.3), by showing that
the imposed proof obligations are sufficient to ensure that (transitive)
segment constraints and function constraints hold, by induction of the
size of the call stack of a transaction. From this, the soundness of our
basic resource-based specification techniques follows immediately, since
a sound proof of a coupling invariant linking resource state to contract
state is sufficient to ensure that the contract state follows the rules of
the resource system. Subsequently, one could (separately) prove the
guarantees of the effects-system (in particular, the fact that negative
effects for the caller are overapproximated by the declared effects of a
function) and the consistency of the derived resource system (ensuring
that owed resources are never illegally spent). We leave such a proof as
future work.

Our language has the following statements:
𝑠 ::= skip | 𝑥 := 𝑒 | self. 𝑓 := 𝑒 | 𝑥 := 𝑒.fun(𝑒 , value = 𝑒) | 𝑠; 𝑠 | assert 𝑒

To reflect the design of Ethereum smart contracts, only fields of self (the
current contract) can be assigned; function calls take a second argument
representing the amount of wei to send along with a call. We assume a
standard expression language with a reserved result identifier (to refer to
function results in postconditions); field lookups include those on the
implicit msg and block arguments. To express two-state assertions such
as our segment constraints, our formalization includes labels 𝑙 denoting
earlier points in execution, and expressions old𝑙(𝑒) denoting the value
𝑒 had at label 𝑙. We use three labels: pre, representing the pre-state of
the current function, last, representing the pre-state of the current local
segment, and call, representing the pre-state of the last call to another
contract.

A state Σ has the form ⟨H,R, E,O, 𝜎⟩, where H is the heap (a partial
map from contract addresses and fields to their values), and 𝜎 is the
current variable store. E is a multiset of effects produced so far by the
current function and R is a record containing the state of all resources
declared in the current contract. In particular, for every such resource 𝑅,
R.balances𝑅 maps addresses to their balances, and R.offered𝑅↔𝑅′ tracks
the offers to exchange 𝑅 against another resource 𝑅′ declared in the
contract. R.trusted is a partial map from pairs of addresses to boolean
values that represent whether the first address currently trusts the second;
expressions can refer to these maps. Finally, Omaps label names to pairs
(H,R) that represent the heap and resource state at label 𝑙.

Expression evaluation in a state, denoted by J𝑒K(𝜎,H,R,O), is largely stan-
dard; most interestingly, the evaluation of Jold𝑙(𝑒)K(𝜎,H,R,O) is J𝑒K(𝜎,H′ ,R′ ,O),
where (H′,R′) = O[𝑙].
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[180]: Reynolds (2002), ‘Separation Logic:
A Logic for Shared Mutable Data Struc-
tures’
8: Note that it would be entirely possi-
ble to describe the heap using standard
separation logic points-to predicates and
separating conjunctions as well, but unlike
in other programs, there is not benefit in
doing so.

We now define our assertion language as follows:
𝑃, 𝑄 ::= emp | 𝑒 | 𝑃 ∗ 𝑃 | 𝑃 ∧ 𝑃 | 𝑃 −−∗ 𝑃 | 𝑃 ∨ 𝑃 |

perf(𝐸) | owns𝑅(𝑒 , 𝑒) | offers𝑅↔𝑅(𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒) | trusts(𝑒 , 𝑒 , 𝑒)

Assertion truth in a state is defined by a judgement ⟨H,R, E,O, 𝜎⟩ |= 𝑃

whose cases are given in Fig. 5.14. In contrast to traditional separation
logics [180], we do not use the linear/separating aspects of the ∗ and −−∗
connectives to govern access to the (already encapsulated) heap, but rather
for the resource state and effects concepts added by our methodology8.
The separating conjunction 𝑃 ∗𝑄 splits the resource state and the effects
into two parts; the first described by 𝑃 and the second by 𝑄. Descriptions
of constituent parts of the resource state come via assertions such as
owns𝑅(𝑒𝑜 , 𝑒𝑎), which prescribes that R is empty (no offers, no trust, and
all balances are zero) except for the balance of 𝑒𝑜 , which owns exactly
𝑒𝑎 of resource 𝑅, and that E is empty (no effects). The (multiplicative)
separating conjunction builds up larger descriptions of these states; e.g.,
owns𝑅(𝑒𝑜 , 𝑒𝑎1) ∗ owns𝑅(𝑒𝑜 , 𝑒𝑎2) is equivalent to owns𝑅(𝑒𝑜 , 𝑒𝑎1 + 𝑒𝑎2). The
assertions offers𝑅1↔𝑅2(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛) and trusts(𝑒𝑐1 , 𝑒𝑐2 , 𝑒𝑣) form the
analogous base cases prescribing offers and trust. Similarly, perf(𝐸) states
that exactly the effects in multiset 𝐸 have been performed and no others
(and the resource state is empty). Note that owns𝑅(𝑒𝑜 , 𝑒𝑎) can be used
alongside assertions containing references to the balances𝑅 map; both are
useful in different contexts. For example, an invariant that states that the
allocation of token in the resource state is stored in the contract in the field
self.tokens can be easily expressed as balancestoken = self.tokens, whereas the
proof rules for framing and resource statements, which we will show
later, are much easier to express using the exact assertion owns𝑅(𝑒𝑜 , 𝑒𝑎).
The interpretation of other assertions is standard for a classical separation
logic; in particular, an assertion 𝑒 is true only if there are no effects in
the current state. As a result, assertions always have to describe the
effects-state precisely: If a state containing E fulfills 𝑃 ∗ perf(𝐸), and 𝑃

does not syntactically contain any perf()-assertions, then we must have
that E= 𝐸. This is important to ensure that functions report all effects
they directly cause.

We write CS𝑎 to refer to the entire state, including the resource state, of
the contract at address 𝑎. We denote (the conjunction of) the primary con-
tract’s transitive segment constraints (which may refer to other contracts’
states) by TSC, its segment constraints by SC, and its function constraints
by FC. The latter two may only refer to the primary contract’s state. By
ITSC, we denote the conjunction of the transitive segment constraints
of all known interfaces. By PC(𝑒1 , 𝑒2), we denote the conjunction of the
reflexive and transitive assertions 𝑃 from the privacy constraints of all
known interfaces except those in set 𝑒2, instantiated for 𝑒1. In all those
specification constructs, the old state is referred to without a label (simply
as old(𝑒)), since the kind of specification construct determines which old
state it refers to.

To handle the various kinds of two-state specifications our method-
ology employs (in each of which old(𝑒) is used to denote evaluation
in the appropriate “old” state), we define a judgement Σ1 ,Σ2 |= 𝑃 in
which Σ1 represents the appropriate state to use as the old one (e.g.,
for local segment constraints we use the state at the start of the local
segment):
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⟨H,R, E,O, 𝜎⟩ |= emp ⇔ R = Rempty ∧ E= ∅#

⟨H,R, E,O, 𝜎⟩ |= 𝑒 ⇔ J𝑒K(𝜎,H,R,O) ∧ E= ∅#

⟨H,R, E,O, 𝜎⟩ |= 𝑃 ∗𝑄 ⇔ ∃R1 ,R2 , E1 , E2.R = R1 ⊎R2 ∧ E= E1 ∪# E2∧
⟨H,R1 , E1 ,O, 𝜎⟩ |= 𝑃 ∧ ⟨H,R2 , E2 ,O, 𝜎⟩ |= 𝑄

⟨H,R, E,O, 𝜎⟩ |= 𝑃 ∧𝑄 ⇔ ⟨H,R, E,O, 𝜎⟩ |= 𝑃 ∧ ⟨H,R, E,O, 𝜎⟩ |= 𝑄

⟨H,R, E,O, 𝜎⟩ |= 𝑃 −−∗𝑄 ⇔ ∀R′, E′. ⟨H,R′, E′,O, 𝜎⟩ |= 𝑃 ⇒
⟨H,R⊎R′, E∪# E′,O, 𝜎⟩ |= 𝑄

⟨H,R, E,O, 𝜎⟩ |= 𝑃 ∨𝑄 ⇔ ⟨H,R, E,O, 𝜎⟩ |= 𝑃 ∨ ⟨H,R, E,O, 𝜎⟩ |= 𝑄

⟨H,R, E,O, 𝜎⟩ |= perf(𝐸) ⇔ R = Rempty ∧ E= 𝐸

⟨H,R, E,O, 𝜎⟩ |= owns𝑅(𝑒𝑜 , 𝑒𝑎) ⇔ R = Rempty[balances𝑅 := 𝑏] ∧ E= ∅#

where 𝑏 = [𝑜 ↦→ 𝑎, _ ↦→ 0],
𝑜 = J𝑒𝑜K(𝜎,H,R,O) , 𝑎 = J𝑒𝑎K(𝜎,H,R,O)

⟨H,R, E,O, 𝜎⟩ |= offers𝑅1↔𝑅2 (𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛) ⇔ R = Rempty[offered𝑅1↔𝑅2 := 𝑜] ∧ E= ∅#

where 𝑜 = [( 𝑓 , 𝑡 , 𝑎1 , 𝑎2) ↦→ 𝑛, _ ↦→ 0],
𝑓 = J𝑒 𝑓 K(𝜎,H,R,O) , 𝑡 = J𝑒𝑡K(𝜎,H,R,O)
𝑎1 = J𝑒𝑎1K(𝜎,H,R,O) , 𝑎2 = J𝑒𝑎2K(𝜎,H,R,O) ,
𝑛 = J𝑒𝑛K(𝜎,H,R,O)

⟨H,R, E,O, 𝜎⟩ |= trusts(𝑒𝑐1 , 𝑒𝑐2 , 𝑒𝑣) ⇔ R = Rempty[trusted := 𝑡] ∧ E= ∅#

where 𝑡 = [(𝑐1 , 𝑐2) ↦→ 𝑣], 𝑣 = J𝑒𝑣K(𝜎,H,R,O) ,
𝑐1 = J𝑒𝑐1K(𝜎,H,R,O) , 𝑐2 = J𝑒𝑐2K(𝜎,H,R,O)

Figure 5.14.: Definition of assertion truth in a state. If 𝑟 is a record, 𝑟[ 𝑓 := 𝑣] updates field 𝑓 of the record to value 𝑣. Operator ⊎ for resource
states is defined s.t. it performs pointwise addition for balance and offer maps, and combination of partial functions with disjoint domains
for the trusted map. Rempty denotes an empty resource state (i.e., all balances are zero, there are no offers, and the domain of the partial
trust map is empty). We write ∅# for the empty multiset and ∪# for multiset union.

Definition 5.6.1 For any two statesΣ1 andΣ2 s.t.Σ1 = ⟨H1 ,R1 , E1 ,O1 , 𝜎1⟩
and Σ2 = ⟨H2 ,R2 , E2 ,O2 , 𝜎2⟩, we define Σ1 ,Σ2 |= 𝑃 to hold if and only if

⟨H2 ,R2 , E2 ,O2[last ↦→ (H1 ,R1)], 𝜎2⟩ |= 𝑃[old𝑙𝑎𝑠𝑡(_)/old(_)]

Using this notion, we can define two-state assertion reflexivity and
transitivity as follows:

Definition 5.6.2 An assertion 𝑃 is reflexive if, for allΣ0 ,Σ1, ifΣ0 ,Σ1 |= 𝑃,

then Σ1 ,Σ1 |= 𝑃. An assertion 𝑃 is transitive if, for all Σ0 ,Σ1 ,Σ2, if

Σ0 ,Σ1 |= 𝑃 and Σ1 ,Σ2 |= 𝑃, then Σ0 ,Σ2 |= 𝑃.

We can now also define assertion stability, i.e., the fact that an assertion is
preserved by another:

Definition 5.6.3 An assertion 𝑃 is stable under 𝑄, written stable(𝑃, 𝑄),
if, for all Σ0 ,Σ1 , . . . ,Σ𝑛 , if Σ0 ,Σ1 |= 𝑃 and Σ𝑖 ,Σ𝑖+1 |= 𝑄 for all 𝑖 ∈
{1, . . . , 𝑛 − 1}, then Σ0 ,Σ𝑛 |= 𝑃.

Finally, we need to define the notion of a stateless assertion:

Definition 5.6.4 An assertion 𝑃 is stateless if it does not refer to the current

state (including resource state) or an old state except for the pre-state (i.e.,

only old-expressions with label 𝑝𝑟𝑒 are allowed).

We define our proof technique via a Hoare Logic formulation, whose
details are given in Fig. 5.16 and Fig. 5.17. Since the rule for calls is quite
complex, we also show a simplified version (SCall) of it in Figure 5.15,
which we will use for illustration purposes. FV(𝑃) are the free variables in
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𝑒𝑟 : 𝑇 𝑇.fun(𝑥) ensures 𝑄 performs 𝑆 𝑆′ ⊆ 𝑆
(SCall)

⊢


TSC[old𝑙𝑎𝑠𝑡/old]
∧SC[old𝑙𝑎𝑠𝑡/old]

∧𝑒𝑂

 𝑥 := 𝑒𝑟 .fun
(𝑒𝑎 , value = 𝑒𝑣)



perf(𝑆′)[𝑒𝑟/self][𝑥/result]
[self/msg.𝑠𝑒𝑛𝑑𝑒𝑟][𝑒𝑎/𝑥]∗

old𝑐𝑎𝑙𝑙(𝑒𝑂 )∧
TSC[old𝑐𝑎𝑙𝑙/old]∧
FC[old𝑐𝑎𝑙𝑙/old]∧

𝑄[𝑒𝑟/self][𝑥/result]
[self/msg.𝑠𝑒𝑛𝑑𝑒𝑟][𝑒𝑎/𝑥]∧

𝑒𝑁 ⇒ old𝑙𝑎𝑠𝑡 (𝑒𝑁 )


Figure 5.15.: Simplified proof rule for calls.

𝑃, mods(𝑠) are the variables modified by 𝑠. We write 𝑒[𝑒1/𝑒2] to substitute
all occurrences of 𝑒2 in 𝑒 by 𝑒1.

The rules for ordinary statements are standard; the bulk of the work
happens in the rule for calls, as well as in the rules for resource statements.
We will explain the checks for every element of our methodology step by
step.

We will first explain the entire proof system with the simplified rule
(SCall) for calls, and will subsequently explain the additions made by the
actual rule (Call). To ensure that ordinary (SC) and transitive segment
constraints (TSC) hold at the end of every local segment, the function rule
requires them to be true at the end of each function, and the simplified
call rule requires them to be true in the precondition of the Hoare triple,
using the state labeled “last” as old state. This notion of “last” state is
reset in the postcondition to the new current state (we begin a new local
segment), as indicated by 𝑒𝑁 ⇒ old𝑙𝑎𝑠𝑡(𝑒𝑁 ) which can be instantiated for
any 𝑒𝑁 . A similar connection can be made to any facts known before the
call via 𝑒𝑂 .

The frame rule (Frame) is non-standard in that it ensures that no infor-
mation about the last state or the current state can be framed around
calls; this represents the fact that the entire contract state can change
with every call, since calls to unverified outside contracts can result in
arbitrary, unknown callbacks. After a call, one may however assume the
transitive segment constraints and function constraints w.r.t. the call’s
pre-state. To remember information about said pre-state, we use the same
trick as before, and allow assuming any expression 𝑒𝑂 after a call about
its pre-state that was known to be true before the call.

In constructors, no calls are allowed, and we check at the end that
transitive segment constraints hold in the current state w.r.t. itself, which
ensures that all single-state invariants contained in the transitive segment
constraints are established. The rule for constructors also performs the
necessary checks of transitivity and reflexivity of transitive segment
and function constraints, and ensures that transitive segment constraints
fulfill stability criteria described previously.

The proof obligations for function constraints work in a similar way: They
must be shown to hold at the end of each function w.r.t. to its pre-state
(which may again be remembered by assuming that everything that
holds in the beginning of the function holds in its pre-state), and may be
assumed after a call w.r.t. to the call’s pre-state.
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Each ghost statement of Sec. 5.4 gets a corresponding Hoare Logic
rule. These rules are mostly intuitive: Each of them (a) checks that the
participant for whom the statement has a negative effect (e.g., giving away
resource) trusts the current msg.sender (typically, this is simply who they
are), (b) checks that required resources for the statement are available,
consuming them, (c) adds appropriate new resources in the postcondition
assertion, and (d) records the effect that was performed. A transfer, for
example, requires that the sender initially has the resources that are to
be transferred, and ends in a state where the recipient has them. It also
requires that the caller of the function is trusted by the address whose
resources are being transferred (everybody always trusts themselves).
Finally, the conclusion states that a transfer-effect has occurred. Rules
for other resource statements are analogous; for example, the rule for
exchanges requires two compatible offers (unless the offered amount of a
party is zero) and consumes them, switches ownership of the involved
resources, and records that an exchange-effect has occurred.

The rule for resource creation requires that 𝑒𝑐 (the party who is creat-
ing the new resource of type 𝑅) owns a creator-resource for 𝑅, which
represents the right to create new resources. These creator resources
can be created and given to arbitrary addresses in the contract’s con-
structor: In the constructor rule, the caller of the constructor is given
the right to create such creator-resources for any resource the contract
declares. This is denoted by CREATORS, which, for a contract with re-
sources 𝑅0 , . . . , 𝑅𝑛 , is defined as ownscreator(creator(𝑅0))(msg.sender, 1)∗ · · · ∗
ownscreator(creator(𝑅𝑛 ))(msg.sender, 1).

The function and constructor rules ensure that, at the end of the function
or constructor, the multiset of recorded effects is exactly that which has
been declared.

This concludes the description of our system with the simplified call rule;
the actual call rule considers three additional points:

▶ Since calls can send wei and therefore decrease the balance of the
current contract, the actual call rule checks that segment constraints
and transitive segment constraints hold in the updated state after
removing 𝑒𝑎 wei from the contract’s balance.

▶ The actual call rule considers the fact that calls can also interact
with the resource state. First, any subset 𝑆′ of the effects declared by
the called function may be recorded by the caller. Second, if a called
function declares resource effects w.r.t. a resource 𝑅 s.t. the current
contract has a resource 𝐷 derived from 𝑅, then these effects lead to
implicit effects on the derived resources. For example, transferring
𝑅 away to someone implicitly destroys the same number of 𝐷

they must currently own, and requires that they have offered to
exchange that amount of 𝐷 for the same amount of 𝑅. This is
captured by the functions derCreated() and derDestroyed(), the former
of which defines which derived resources are implicitly created
by an effect, and the latter defines which derived resources are
implicitly destroyed. Their definitions can be found in Fig. 5.18. The
premise of the call rule ensures that transitive segment constraints
etc. hold in a state where destroyed derived resources have already
been removed and created derived resources have already been
added. The derDestroyed() clause also ensures that no offers are made
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(Assert)
⊢ {true} assert 𝑒 {𝑒}

(Assign)
⊢ {𝑄[𝑒/𝑥]} 𝑥 := 𝑒 {𝑄}

(Write)
⊢
{
𝑄[(𝑒′ = 𝑒1?𝑒2 : 𝑒′. 𝑓 )/𝑒′. 𝑓 ]

}
𝑒1. 𝑓 := 𝑒2 {𝑄}

TSC′ = TSC[old𝑙𝑎𝑠𝑡 (_)/old(_)]
[(𝑒′ = self?(self.balance − 𝑒𝑎) : 𝑒′.balance)/𝑒′.balance]

SC′ = SC[old𝑙𝑎𝑠𝑡 (_)/old(_)][(𝑒′ = self?(self.balance − 𝑒𝑎) : 𝑒′.balance)/𝑒′.balance]
𝑒𝑟 : 𝑇 𝑇.fun(𝑥) ensures 𝑄 performs 𝑆 𝑆′ ⊆ 𝑆′′

𝑆′′ = 𝑆[𝑒𝑟/self][𝑥/result][self/msg.𝑠𝑒𝑛𝑑𝑒𝑟][𝑒𝑎/𝑥]
secondary(𝑒𝑟 ) ⇒ stable(TSC ∧ 𝑒𝑆 , ITSC ∧ PC(self, {𝑒𝑟}) ∧ CSself = old(CSself))

secondary(𝑒𝑟 ) ⇒ stable(TSC ∧ 𝑒𝑆 , ITSC ∧ FC) (Call)

⊢


derDestroyed(𝑆′′)∗
(derCreated(𝑆′′)−−∗

(TSC′ ∧ SC′

∧𝑒𝑂 ∧ 𝑒𝑆))


𝑥 := 𝑒𝑟 .fun

(𝑒𝑎 , value = 𝑒𝑣)



perf(derPerformed(𝑆′′))∗
perf(𝑆′) ∗ (old𝑐𝑎𝑙𝑙(𝑒𝑂 )∧
TSC[old𝑐𝑎𝑙𝑙(_)/old(_)]∧
FC[old𝑐𝑎𝑙𝑙(_)/old(_)]∧
𝑄[𝑒𝑟/self][𝑥/result]

[self/msg.𝑠𝑒𝑛𝑑𝑒𝑟][𝑒𝑎/𝑥]
[old𝑐𝑎𝑙𝑙(_)/old(_)]∧
𝑒𝑁 ⇒ old𝑙𝑎𝑠𝑡 (𝑒𝑁 ))


⊢ {𝑃} 𝑠1 {𝑅} ⊢ {𝑅} 𝑠2 {𝑄}

(Seq)
⊢ {𝑃} 𝑠1; 𝑠2 {𝑄}

⊢
{
𝑃′} 𝑠 {𝑄′} 𝑃 |= 𝑃′ 𝑄′ |= 𝑄

(Cons)
⊢ {𝑃} 𝑠 {𝑄}

FV(𝑅) ∩ mods(𝑠) = ∅ ⊢ {𝑃} 𝑠 {𝑄}
𝑅 is stateless if 𝑠 contains a call (Frame)

⊢ {𝑃 ∗ 𝑅} 𝑠 {𝑄 ∗ 𝑅}

⊢


∃𝑙.TSC[old𝑙(_)/old(_)]∧
𝑒𝑁1 ⇒ old𝑙𝑎𝑠𝑡 (𝑒𝑁1 )∧
𝑒𝑁2 ⇒ old𝑝𝑟𝑒 (𝑒𝑁2 )

 𝑠


𝑄[old𝑝𝑟𝑒 (_)/old(_)]∧
FC[old𝑝𝑟𝑒 (_)/old(_)]

∧TSC[old𝑙𝑎𝑠𝑡 (_)/old(_)]
∧SC[old𝑙𝑎𝑠𝑡 (_)/old(_)]

∗perf(𝑆)

 (Func)
def 𝑓 (𝑥) : 𝑇 {𝑠} ensures 𝑄 performs 𝑆

⊢
{
CREATORS ∗ default(CSself)

}
𝑠

{
TSC[_/old(_)] ∧𝑄

∗perf(𝑆)

}
TSC precisely determines resource state.

TSC, FC are reflexive and transitive.
𝑠 does not contain any calls.

stable(TSC, ITSC ∧ PC(self, ∅) ∧ CSself = old(CSself)) (Init)
def init(𝑥) {𝑠} ensures 𝑄 performs 𝑆

Figure 5.16.: Statement, function and constructor proof rules.

to give away resource 𝑅 by a contract that defines 𝐷, and that the
contract cannot trust someone w.r.t. to the contract that declares 𝑅;
either of these could lead to some amount of 𝑅 being removed from
the contract without the appropriate checks that the receiver has
sufficient amounts of the derived resource 𝐷. Finally, the call-rule
ensures that all such implicit effects on derived resources (defined
by derPerformed()) are also recorded.

▶ The actual call also performs additional checks in the case where
the call target is a secondary contract, i.e., a trusted outside contract
which may be constrained by an inter-contract invariant. For calls
to secondary contracts, the call rule requires that the transitive
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𝑅 ≠ wei 𝑅 is not derived
(Create)

⊢


(𝑒𝑎 ≠ 0 ⇒

trusts(𝑒𝑐 ,msg.sender, true))∗
ownscreator(𝑅)(𝑒𝑐 , 1)

∧𝑒𝑎 ≥ 0

 create𝑅(𝑒𝑐 , 𝑒𝑡 , 𝑒𝑎)


(𝑒𝑎 ≠ 0 ⇒

trusts(𝑒𝑐 ,msg.sender, true))∗
owns𝑅(𝑒𝑡 , 𝑒𝑎)∗

perf(create𝑅(𝑒𝑡 , 𝑒𝑎))∗
ownscreator(𝑅)(𝑒𝑐 , 1)


𝑅 ≠ wei 𝑅 is not derived

(Destroy)

⊢


(𝑒𝑎 ≠ 0 ⇒
trusts(𝑒 𝑓 ,msg.sender, true))∗

owns𝑅(𝑒 𝑓 , 𝑒𝑎) ∧ 𝑒𝑎 ≥ 0

 destroy𝑅(𝑒 𝑓 , 𝑒𝑎)


(𝑒𝑎 ≠ 0 ⇒
trusts(𝑒 𝑓 ,msg.sender, true))∗

perf(destroy𝑅(𝑒 𝑓 , 𝑒𝑎))


(Transfer)

⊢


𝑒𝑎 ≥ 0∗
(𝑎 ≠ 0 ⇒

trusts(𝑒 𝑓 ,msg.sender, true))∗
owns𝑅(𝑒 𝑓 , 𝑒𝑎) ∧ 𝑒𝑎 ≥ 0

 transfer𝑅(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎)


owns𝑅(𝑒𝑡 , 𝑒𝑎)∗
(𝑒𝑎 ≠ 0 ⇒

trusts(𝑒 𝑓 ,msg.sender, true))
∗perf(transfer𝑅( 𝑓 , 𝑡 , 𝑎))


(Trust)

⊢
{

trusts(msg.sender, 𝑒𝑐 , _)
}

trust(𝑒𝑐 , 𝑒𝑣)
{

trusts(msg.sender, 𝑒𝑐 , 𝑒𝑣)
∗perf(trustself(msg.sender, 𝑒𝑐 , 𝑒𝑣))

}
𝑅1 ≠ wei No resource derived from 𝑅1.

(Offer)

⊢


𝑒𝑎1 ≥ 0 ∧ 𝑒𝑎2 ≥ 0
∧𝑒𝑛 ≥ 0 ∧ emp∗

(𝑒𝑛 ≠ 0 ⇒
trusts(𝑒 𝑓 ,msg.sender, true))


offer𝑅1↔𝑅2

(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛)


offers𝑅1↔𝑅2 (𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛)

∗perf(offer𝑅1↔𝑅2
(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛))

∗(𝑒𝑎 ≠ 0 ⇒
trusts(𝑒 𝑓 ,msg.sender, true))


(Revoke)

⊢


𝑒𝑎1 ≥ 0 ∧ 𝑒𝑎2 ≥ 0
∧𝑒𝑛 ≥ 0 ∧ emp∗

(𝑒𝑛 ≠ 0 ⇒
trusts(𝑒 𝑓 ,msg.sender, true))

∗offers𝑅1↔𝑅2 (𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛)


revoke𝑅1↔𝑅2

(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛)


(𝑒𝑎 ≠ 0 ⇒

trusts(𝑒 𝑓 ,msg.sender, true))∗
perf(revoke𝑅1↔𝑅2
(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 𝑒𝑛))


(Exchange)

⊢



𝑒𝑎1 ≥ 0 ∗ 𝑒𝑎2 ≥ 0
∗(𝑒𝑎1 > 0 ⇒

offers𝑅1↔𝑅2 (𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 1))
∗(𝑒𝑎2 > 0 ⇒

offers𝑅2↔𝑅1 (𝑒𝑡 , 𝑒 𝑓 , 𝑒𝑎2 , 𝑒𝑎1 , 1))
∗owns𝑅1 (𝑒 𝑓 , 𝑒𝑎1 ) ∗ owns𝑅2 (𝑒𝑡 , 𝑒𝑎2 )


exchange𝑅1↔𝑅2
(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 )


owns𝑅1 (𝑒𝑡 , 𝑒𝑎1 )∗
owns𝑅2 (𝑒 𝑓 , 𝑒𝑎2 )∗

perf(exchange𝑅1↔𝑅2
(𝑒 𝑓 , 𝑒𝑡 , 𝑒𝑎1 , 𝑒𝑎2 , 1))


Figure 5.17.: Rules for resource ghost statements.

segment constraints, potentially strengthened by conjoining them
with some arbitrary information 𝑒𝑆 that is known about the current
state (like the fact that self.lock is set in the example in Sec. 5.3), are
stable under each of the following two assertions:

1. The conjunction of the transitive segment constraints of all
interfaces, the knowledge that the primary contract’s state
does not change, and the privacy constraints of all secondary
contracts except the called one (which is now trivial).

2. The conjunction of the transitive segment constraints of all
interfaces and the function constraints of the primary contract.

Fig. 5.19 illustrates the scenario where the primary contract calls a
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derCreated(transfer𝑅( 𝑓 , self, 𝑎)) = owns𝐷( 𝑓 , 𝑎)
derCreated(exchange𝑅↔𝑅′( 𝑓 , self, 𝑎1 , 𝑎2 , 𝑛)) = owns𝐷( 𝑓 , 𝑛 ∗ 𝑎1)

derCreated(create𝑅(self, 𝑎)) = owns𝐷(msg.sender, 𝑎)
derCreated(_) = emp

derDestroyed(transfer𝑅(self, 𝑡 , 𝑎)) = owns𝐷(𝑡 , 𝑎) ∗ offers𝐷↔𝑅(𝑡 , self, 1, 1, 𝑎)
derDestroyed(destroy𝑅(self, 𝑎)) = owns𝐷(msg.sender, 𝑎)∗

offers𝐷↔𝑅(msg.sender, self, 1, 1, 𝑎)
derDestroyed(offer𝑅↔𝑅′(self, 𝑡 , 𝑎1 , 𝑎2 , 𝑛)) = false

derDestroyed(trust𝑐(self, 𝑡 , 𝑣)) = false if 𝑐 declares 𝑅
derDestroyed(_) = emp

derPerformed(transfer𝑅( 𝑓 , self, 𝑎)) = {create𝐷( 𝑓 , 𝑎)}#

derPerformed(exchange𝑅↔𝑅′( 𝑓 , self, 𝑎1 , 𝑎2 , 𝑛)) = {create𝐷( 𝑓 , 𝑛 ∗ 𝑎1)}#

derPerformed(create𝑅(self, 𝑎)) = {create𝐷(msg.sender, 𝑎)}#

derPerformed(transfer𝑅(self, 𝑡 , 𝑎)) = {destroy𝐷(𝑡 , 𝑎)}#

derPerformed(destroy𝑅(self, 𝑎)) = {destroy𝐷(msg.sender, 𝑎)}#

derPerformed(_) = ∅#

Figure 5.18.: Functions describing the implicit consequences of the effects of called functions on derived resources. 𝐷 is assumed a resource
derived from 𝑅. We write {...}# for multiset literals.
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Figure 5.19.: Example showing a call from
a primary to a secondary contract that
leads to a re-entrant call to the primary
contract.

9: https://github.com/viperproject/

2vyper

[159]: Müller et al. (2016), ‘Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning’

[156]: Moura et al. (2008), ‘Z3: An Efficient
SMT Solver’

secondary contract. The strengthened invariant is known to hold
in state 1. Whatever local changes the secondary contract performs
cannot break the strengthened invariant, since it is stable under
the first assertion (e.g., in the example, changes in the secondary
contract cannot break the strengthened invariant that remains
true as long as self.lock is set). Any contracts executing between
states 2 and 5 cannot break the original non-strengthened invariant
by the reasoning laid out in Sec. 5.3. Additionally, because the
strengthened invariant is stable under the second assertion, it will
also be re-established by the time any re-entrant calls the secondary
contract may (transitively) make on the primary contract return
(states 3 and 4); in the example, a function constraint guarantees
that self.lock will again be set when such a re-entrant call returns.
As a result, again because of stability under the first assertion, the
secondary contract again cannot break the invariant after the return
(between states 5 and 6) either.

5.7. Implementation and Evaluation

We have implemented our work in 2Vyper, an automated verification tool
for the Vyper language that is available open source9. Since the Vyper
language is syntactically similar to Python, 2Vyper is able to reuse parts
of the implementation of Nagini; additionally, it uses the standard Vyper
compiler to type-check input programs. It encodes Vyper programs and
specifications into the Viper intermediate verification language [159],
and uses Viper’s infrastructure and ultimately the SMT-solver Z3 [156] to
verify the program or otherwise return errors and counterexamples.

https://github.com/viperproject/2vyper
https://github.com/viperproject/2vyper
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Figure 5.20.: Simplified code example
showing the functionality of ERC1363
payments. Function approveAndCall also
shows the specification syntax used by
2Vyper. The client calls approveAndCall
on the token contract and supplies as
arguments both the service provider
and the input for the requested ser-
vice. The token contract stores that the
service provider may take tokens from
the client (in field allowances), and then
invokes onApprovalReceived on the ser-
vice provider, which re-entrantly calls
transferFrom to take its tokens and then per-
forms the service. This architecture inten-
tionally uses re-entrancy to allow clients to
do in one transaction what would usually
require two (one for setting the allowance,
one for invoking the service).

1 contract Client:
2 def client():
3 self.token.approveAndCall(self.service, amount, data
4
5 contract Token:
6 def transferFrom(from : address, amount: uint256):
7 # transfer ’amount’ from ’from’ to msg.sender
8 # if msg.sender has a sufficient allowance
9

10 #@ performs: revoke[token <−> token](1, 0, to=spender)
11 #@ performs: offer[token <−> token](1, 0, to=spender, times=amount)
12 def approveAndCall(spender: address, amount: uint256, data: bytes[1024]):
13 #@ revoke[token <−> token](1, 0, to=spender)
14 self.allowances[msg.sender][spender] = amount
15 #@ offer[token <−> token](1, 0, to=spender, times=amount)
16 ERC1363Spender(spender).onApprovalReceived(msg.sender, amount, data)
17
18 contract Service implements ERC1363Spender:
19
20 def onApprovalReceived(sender: address, amount: uint256, data: bytes[1024]):
21 self.token.transferFrom(sender, amount)
22 self.performService(sender, amount, data)

[198]: Sierra (2019), ‘Verification of
Ethereum Smart Contracts Written in
Vyper’

[42]: Bräm (2020), ‘Verification of Ad-
vanced Properties for Real World Vyper
Contracts’

While less commonly used than Solidity, Vyper puts a stronger focus
on correctness and simplicity, by preventing some errors on the lan-
guage level (such as over- or underflows, which automatically revert
the transaction, unlike in Solidity) and omitting some language features
that make code more difficult to reason about (such as inheritance).
2Vyper supports the entire Vyper language as of version 0.2.0 as well as
several previous versions, and is intended for full-fledged verification of
real-world contracts.

2Vyper specifications are written as ♯@ comments in the source code,
and use Vyper syntax wherever possible. Fig. 5.20 shows a simplified
excerpt of a function annotated with specifications and containing ghost
statements for resource manipulation. In addition to the core correctness
properties we have focused on in this chapter, 2Vyper also supports
reasoning about additional language features (e.g., events), additional
abstraction functions for commonly-used cases (e.g., to refer to the sum
of all values in a map), special support for reasoning about non-linear
arithmetic (which is difficult for SMT solvers but commonly used in
real-world contracts), and support for trading off automation versus
verification performance in several ways, e.g. by choosing whether
to unroll loops or verify them using user-specified invariants. More
information about 2Vyper’s additional features can be found in the theses
of Robin Sierra [198] and Christian Bräm [42].

Like Nagini, 2Vyper is able to provide counterexamples when a contract’s
verification fails. Here, we show an error for an incorrect version of the
auction contract:

1 Verification failed
2 Errors:
3 Invariant not preserved by bid. Assertion (not self.ended ==>
4 sum(self.pendingReturns) + self.highestBid == sum(received()) −
5 sum(sent())) might not hold. (auction_fail.vy@79.1,
6 via invariant at auction_fail.vy@46.15)
7 Counterexample:
8 block.coinbase = 0x0000000000000000000000000000000000029b
9 block.difficulty = 160

10 block.number = 0
11 block.prevhash = [ _ −> 0 ]: 32
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[10]: Arumugam (2019), Serenuscoin con-

tract

[37]: Blockchains LLC (2016), Decentralized

Autonomous Organization (DAO) Framework

[73]: Ethereum (2021), Solidity by example

[76]: Ethereum (2021), Vyper example con-

tracts

[152]: Minacori (2021), ERC-1363 Payable

Token

[173]: Permenev et al. (2019), VerX smart

contract verification benchmarks

[214]: Uniswap (2019), Uniswap version 1

12 block.timestamp = 0
13 chain.id = 48
14 msg.gas = 244
15 msg.sender = 0x0000000000000000000000000000000000005e
16 msg.value = 4683
17 old(received()) = { 0x00000000000000000000000000000000000009 −> 913,
18 0x0000000000000000000000000000000000005e −> 462, _ −> 0 }
19 old(self.auctionEnd) = 161
20 old(self.auctionStart) = 191
21 old(self.balance) = 912
22 old(self.beneficiary) = 0x0000000000000000000000000000000000005d
23 old(self.codesize) = −542
24 old(self.ended) = False
25 old(self.highestBid) = 1
26 old(self.highestBidder) = 0x00000000000000000000000000000000000009
27 old(self.is_contract) = False
28 old(self.pendingReturns) = { 0x00000000000000000000000000000000005e −> 462,
29 0x00000000000000000000000000000000000009 −> 911, _ −> 0 }
30 old(selfdestruct()) = False
31 old(sent()) = { 0x00000000000000000000000000000000000009 −> 1, _ −> 0 }
32 out_of_gas() = False
33 overflow() = False
34 received() = { _ −> 0 }
35 self.auctionEnd = 161
36 self.auctionStart = 191
37 self.balance = 13095
38 self.beneficiary = 0x0000000000000000000000000000000000005d
39 self.codesize = −542
40 self.ended = False
41 self.highestBid = 4683
42 self.highestBidder = 0x0000000000000000000000000000000000005e
43 self.is_contract = False
44 self.pendingReturns = { 0x00000000000000000000000000000000005e −> 462,
45 0x00000000000000000000000000000000000009 −> 911, _ −> 0 }
46 selfdestruct() = False
47 sent() = { 0x00000000000000000000000000000000000009 −> 1, _ −> 0 }
48 success() = True
49 tx.origin = 0x00000000000000000000000000000000000032
50 Verification took 12.72 seconds.
51

Users can use counterexample information to infer, for example, why

a condition does not hold (e.g., if success() is False, this could be due to
an overflow, out-of-gas error, or a failed call; the counterexample lists
separate flags for each of these cases). Additionally, they can often be
used to locate the program path on which an error occurs, by manually
inspecting branches in the function that fails to verify and evaluating
branch conditions using the values in the counterexample. Furthermore,
as in the example, Vyper states often contain a number of maps and
lists, which the verifier cannot always reason about precisely without
programmer guidance (e.g., in the form of additional assertions). If
a counterexample shows a state that is impossible, this is a sign that
verification failed due to incompleteness, and additional programmer
intervention is needed.

5.7.1. Evaluation Examples

We have evaluated our approach on a number of real-world smart
contracts focusing on existing contracts written in Vyper as well as those
involving pertinent features such as inter-contract collaboration or re-
entrancy bugs [10, 37, 73, 76, 152, 173, 214]. We manually translated some
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Table 5.1.: Evaluated examples. LOC are total lines of code, including specification, excluding comments and whitespace. Ann. are lines of
specification. IF LOC and IF Ann. have the same meaning for the interfaces that were required to verify the contract, and𝑇 is verification time
in seconds. Contracts marked with a star are simplified versions of the original; applications marked with one or two daggers collaborate
with an external ERC20 or ERC1363 contract, respectively (accessed through an interface).

Application Contract LOC Ann. IF LOC IF Ann. 𝑇

auction auction 63 30 - - 12.72
auction_token auction_token†† 96 37 88 33 23.67
TheDAO TheDAO* 17 2 - - 5.13
ERC20 ERC20 98 31 67 25 11.51
ERC721 ERC721 178 32 - - 15.95
ERC1363 ERC1363 142 31 88 33 22.59
ICO gv_option_token 98 26 86 36 10.03

gv_token 121 24 107 49 15.21
gv_option_program* 86 12 154 67 29.19
ico_alloc* 159 30 261 116 101.86

Mana token* 18 3 50 25 2.78
crowdsale* 42 14 50 25 5.77
continuous_sale* 36 8 50 25 3.88

VerX_overview escrow 60 11 65 33 6.36
crowdsale 41 9 65 33 6.35

safe_remote_purchase safe_remote_purchase 71 29 - - 16.84
serenuscoin serenuscoin 103 4 - - 6.40
Uniswap V1 Uniswap† 398 115 105 45 112.81

examples without Vyper implementations from Solidity to Vyper.

Table 5.1 shows the examples; while many consist of a single contract,
several either consist of multiple collaborating contracts or of a single
contract interacting with external contracts via interfaces. We include
several examples of complex code used in practice, e.g., ERC tokens, the
first version of the Uniswap contract (the largest decentralized exchange
and fourth-largest cryptocurrency exchange overall), and an application
used to implement the Genesis Vision ICO, which raised 2.8 million USD
in 2017. Most contracts were verified in their entirety; for the ICO, we
made some small simplifications (in particular, we cut out two option
tokens that behaved exactly like a third one and so added nothing of
interest); for the Mana and TheDAO contracts, we focused on specific
parts demonstrating inter-contract invariants and a re-entrancy bug,
respectively.

5.7.2. Verified Properties

We now describe the functionality, verified properties, and used specifi-
cation constructs for our examples; if no specific properties are stated,
we verified a full functional specification.

ERC20, auction and auction_token: We have verified an extended
version of the auction contract from Fig. 5.1 and proved all properties
mentioned throughout this chapter. We have also verified the widely-
used standard Vyper ERC20 implementation, which is a more complex
version of the token contract in Fig. 5.2, by declaring a token resource
and annotating all functions with the resource operations they perform.
We also used segment constraints to specify when the contract triggers
events, which are a means for the contract to log which transactions have
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[151]: Minacori (2020), ‘EIP-1363: ERC-
1363 Payable Token’

[94]: Güçlütürk (2018), The DAO Hack Ex-

plained: Unfortunate Take-off of Smart Con-

tracts

[174]: Permenev et al. (2020), ‘VerX: Safety
Verification of Smart Contracts’

happened in a way that is visible outside the blockchain, and which can
easily be specified using segment constraints.

Finally, we have verified a variant of the auction that deals in custom
tokens instead of wei against an ERC1363 interface [151] (see below)
annotated with resource-based specifications.

TheDAO: We extracted the buggy part of the DAO contract that led
to the loss of ca. 50 million USD [94]. Our implementation declares a
derived resource for Ether by default (i.e., it assumes that Ether sent to a
contract should still conceptually belong to the sender unless otherwise
specified). As a result, when the contract tries to send Ether to an address,
an error is reported by default, since our resource model requires the
user to justify this action by showing that Ether is only sent to its rightful
owner. Since this is not always the case, the contract will be rejected.

ICO: We verified four contracts that implement the Initial Coin Offering
(ICO) for Genesis Vision. The ICO progresses in stages, first selling options,
then starting the ICO for option holders, and subsequently for the public.
Verification required all specification constructs we have presented, e.g.,
function constraints to describe guarantees made by locks, transitive
segment constraints to preserve information across calls (e.g., that the
main token, once unfrozen, will never be frozen again), and resource
specifications modeling the option token and main token. We used trust
to allow that an administrator can freely access other’s tokens, which
our technique normally rules out. Importantly, we required proving
multiple inter-contract invariants to coordinate the four contracts that
implement the ICO, e.g., to prove that the main token will be frozen in
its first stages.

Some (inter-contract) properties of this example have also been verified
in VerX [174]. Notably however, VerX requires the code of all involved
contracts at once and does not allow using interface abstractions. In
contrast, we use interfaces annotated with specifications to verify each
contract modularly. Additionally, while we prove every property proved
by VerX, we also proved additional properties (e.g., all standard resource
properties such as non-duplicability and ownership, and that the resource
operations the contract performs are the expected ones).

Uniswap V1: Uniswap is a popular application that consists of many
different exchanges, which together allow clients to exchange different
tokens against each other, using Ether as an intermediary. A single
exchange is responsible for a single token and, if it wants to buy other
tokens, contacts the respective exchange contracts for those other tokens.
We declared the desired resource-effects for each function and proved the
exchange contract correct w.r.t. them. Again, we did so modularly, using
a standard ERC20 interface for its token contract and another interface
for other exchanges.
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[151]: Minacori (2020), ‘EIP-1363: ERC-
1363 Payable Token’

VerX overview: We verified the crowdsale application (consisting of
two contracts) from the VerX paper, which again included an inter-
contract invariant that we verified modularly using interfaces and privacy
constraints. Additionally, since one of the involved contracts implements
a state machine, we used transitive segment constraints to define valid
transitions between states (e.g., once the contract is in the “refund” state,
it remains in this state).

ERC1363: ERC1363 is a new token standard [151] that combines into
one transaction what ERC20 does in several. Fig. 5.20 illustrates how this
contract intentionally uses re-entrancy in a way that is not ECF and thus
cannot be verified using approaches such as VerX.

ERC721: ERC721 is a more complex token standard than ERC20. We
declared that it implements a token resource whose tokens have identifiers
(non-fungible tokens, NFTs), and specified its functions in terms of token
transfers and exchanges. Like ERC20, this required using offers and
exchanges, but in addition, it also required using trust, since ERC721
allows users to name other users as “operators” who can act on their
behalf.

Serenuscoin: Here we use segment constraints prove both access control
properties (only the owner may change the factory) and that the correct
events are triggered under the right circumstances.

Mana: We verified a simplified version of the Mana application from
the VerX paper, where we focused on the parts necessary to show inter-
contract invariants between the three collaborating contracts that were
also verified (non-modularly) by VerX. Some of these are not single-state
invariants but two-state inter-contract transitive segment constraints; one
example is that once the token contract’s owner has been set to be the
continuous_sale contract, its owner will never change again.

Safe remote purchase: This smart contract sells a good to an arbitrary
buyer and holds the buyer’s funds in escrow until they acknowledge that
they have received the good. The contract gives both parties an incentive
not to block the other party from receiving funds by holding a deposit
from each of them. We use a derived resource for wei (which, as we stated
above, our tool declares by default) to model the fact both buyer and
seller conceptually own their deposits until the transaction is finalized,
at which point the buyer’s wei-titles are exchanged for the good, and the
deposits can be paid back.

Conclusion: Our evaluation shows that our specification constructs
allow specifying and verifying a wide variety of different properties for
real-world contracts. In particular, we can modularly prove inter-contract
properties, we can model the resources and resource transactions of
different, complex contracts using our resource system (and find typical
errors by default), and we can give guarantees for functional correctness
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and access control even in the presence of unbounded re-entrancy, which
allows us to support contracts that employ re-entrancy by design.

5.7.3. Performance and Annotation Overhead

Table 5.1 shows the total lines of code of each contract (excluding com-
ments and whitespace, including specification) as well as the lines of
annotations we require, and the lines of code and specifications of all
interfaces required to verify each contract, as well as the verification time
required by 2Vyper. Times were measured by averaging over ten runs,
running on a warmed-up JVM.

On our test system (a 12-core Ryzen 3900X with 32GB RAM running
Ubuntu 20.04), most contracts can be automatically verified in 5-25
seconds; the two contracts with the longest verification time, both of
which are from complex real-world applications, take between 1.5 and 2
minutes. Considering the strong guarantees afforded by our methodology
and tool, we believe even the longest of these times is quite acceptable in
practice.

The number of lines required for specifications is less than the number
of lines of actual code for every contract. This comparatively modest
specification overhead is partly due to our domain-specific resource
specifications that allow users to express complex properties in a concise
way, and partly due to the design of Vyper, which simplifies verification.
Overall, considering the potential financial losses resulting from incorrect
smart contracts, writing this amount of specification in exchange for
strong functional correctness guarantees is clearly worthwhile.

In conclusion, our technique enables concisely specifying complex correct-
ness properties of (collaborating) contracts, while allowing for modular
verification that can be automated efficiently.

5.8. Related work

Much recent work has focused on finding problems in smart contracts
and proving their absence. Atzei et al. [13] and Luu et al. [141] list different
kinds of attacks and problems specific to smart contracts. A number of
tools have been built to automatically find such problems (e.g., resulting
from re-entrancy) using either syntactic patterns [120, 212, 213], bounded
symbolic execution [5, 141, 155, 167] or data flow analyses [79]. However,
most of these tools are unsound by design and can miss errors in real
contracts [79, 212, 213]. Additionally, none of these tools allow proving
custom functional properties.

Recent work has studied the difference between harmless re-entrant
executions and re-entrancy vulnerabilities [44]. Grossman et al. [92]
have introduced the notion of effectively callback free objects, for which
re-entrancy does not introduce any behaviors that are not present in
executions without re-entrancy. They provide an algorithm for dynami-
cally checking for ECF-violations and study the decidability of statically
proving that a contract is ECF. More recently, Albert et al. [3] show a static
analysis for deciding ECF based on commutativity and projection.
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As already mentioned in the introduction of this chapter, existing verifica-
tion tools either forbid or limit re-entrancy completely, or are simply very
imprecise in the presence of re-entrancy. One exception, SmartPulse [210],
which was published concurrently with the work shown in this chapter,
uses model checking to automatically check liveness properties of smart
contracts, and can do so using different attacker models, including one
that permits a single re-entrant call, and one that permits arbitrarily
many; that last setting is equivalent to our setting.

A number of tools aim to achieve verification of custom functional proper-
ties for Ethereum contracts, either on the level of the Solidity language [96,
113, 225] or on the level of EVM bytecode [103] - to the best of our knowl-
edge, 2Vyper is the first verifier specifically aimed at Vyper. EVM-based
verification is not specific to any source language and does not rely on the
correctness of the compiler; however, specifications tend to be much more
complex on the EVM-level, where high-level abstractions of the source
language are lost. Verification tools are either based on SMT solvers [96,
174], model checking [146], matching logic [103], CHC solving [113], inter-
active theorem provers [104], which offer different levels of automation
and expressiveness, or a mix of different techniques [200, 225]. Existing
verification tools that offer dedicated, higher level specification languages
(e.g., [96]) typically support single-state contract invariants, but offer no
special support for reasoning in the presence of arbitrary re-entrancy
beyond that, resulting in imprecision. VerX [174] and VeriSolid [146] can
express temporal properties, which subsume ordinary history constraints;
however, VerX explicitly only targets contracts that are ECF, and VeriSolid
prevents all re-entrancy by generating code that uses locks throughout.
No existing Ethereum verifiers support resource-based specifications.

To our knowledge, the only tools able to prove user-defined inter-contract
properties are VerX and VeriSolid. VerX requires the source code of
all involved contracts and is therefore not contract-modular, unlike our
approach. VeriSolid uses model checking to prove temporal properties
on a higher-level model of the contracts and their interactions, and
generates correct-by-design Solidity code from this model [166]. Unlike
our approach, it does not allow reasoning directly about the code of an
existing contract (though contracts can be imported into the model).

Researchers have proposed new smart contract languages that aim to
simplify verification and/or make it easier to write correct code [7, 35,
47, 196]. In particular, the Move language [35] offers resources on the
programming language level. Unlike our resources, these resources are
stateful (in fact, all state in Move is stored in resources) and do not have a
one-to-one correspondence to physical goods or currency: For example,
receiving 𝑛 coins in Move means adding 𝑛 to the value stored in one’s
existing single coin resource, since every address can have at most one
resource of every kind. A linear type system ensures that resources are
not duplicated in third party code, but the module that defines a resource
can modify resource state in arbitrary ways. As a result, incorrect module
implementations in Move can violate the properties guaranteed by our
resource system (e.g., that resources cannot be taken away from their
owners); however, Move’s system allows users to manually implement
resource models more complex than ours. An SMT-based verifier for
custom properties of Move programs exists [234] but currently offers
no special support for specifying resource transfers. While it does offer
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so-called update invariants, which are similar to our transitive segment
constraints in that they are also two-state assertions that allow users to
specify properties of valid state updates, these cannot be used to reason
about possible changes of outside calls, since they are not required to be
reflexive and transitive [61], and the Move languages does not allow for
re-entrant calls in the first place.

Contract Specification Language (CSL) [7] is a declarative language
targeting the speficition of contracts in typical smart contract domain
like finance, and sufficiently simple to be amenable to static analysis [101].
It allows specification of contracts in terms of resource transfers, and is,
in that sense, similar to our resource-based specification. That is, while
CSL uses transfers to define contracts themselves, our resource-based
specifications can be seen as a way of specifying contract implementations
written in a more complex language like Solidity or Vyper in such terms.

Recent work by different researchers also proposes analyzing smart
contracts in terms of fairness [101, 139], which, instead of directly specifying
and verifying functional properties, focuses on defining limits on the
utility any client can gain from one or several contracts; exploits then
lead to negative utility for honest clients and vastly positive utility for
attackers.

To the best of our knowledge, there are three existing approaches for
reasoning about (object-oriented) programs in the presence of unverified
code. First, Drossopoulou t al. [64] have introduced holistic specifications,
which (unlike traditional ones) express necessary conditions for an effect
to happen, in a setting with arbitrary re-entrancy. They can express e.g.,
that if a user’s token balance decreases, then they either asked to transfer
tokens themselves, or another user with a sufficient allowance must
have done so. While this kind of property is similar to ones ensured by
our resource system, it is not built-in and must be specified manually.
Additionally, holistic specifications do not provide support for reasoning
about the post-state of calls with arbitrary re-entrancy, and the required
(non-standard) reasoning has not been automated, whereas the proof
obligations generated by our approach can be checked and automated
using standard techniques.

Second, software architectures based on object capabilities [149] and
object capability patterns [150] can be used to encapsulate object state
so that properties can be maintained even in an unverified environment.
The central idea of object capabilities is to withhold the reference to an
encapsulated object from unauthorized third parties, and thereby control
who may invoke operations on the object. It is therefore crucial that
third parties cannot forge capabilities and thereby obtain unintended
access to the encapsulated object. However, since this is not the case
in typical smart contract languages (contract addresses are not opaque
and can be obtained in various ways, not only by receiving them as an
intended capability from another contract), the conditions required for
capability-based reasoning are not satisfied in this setting.

Third, Agten et al. [1] apply separation logic in a context with unverified
code by using runtime checks at the boundary between verified and
unverified code to ensure that the unverified code has not modified
memory it was not permitted to modify. In contrast, our work relies
on language encapsulation to ensure this property and therefore does
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not require runtime checks, which are especially undesirable in a smart
contract setting due to the associated gas cost.

5.9. Conclusion

We have presented a novel approach for specification and verification
of Ethereum smart contracts. Our methodology exploits the features
of Ethereum, such as strong encapsulation, to provide guarantees even
in the presence of arbitrary re-entrancy, and provides domain-specific
specification constructs for resources that make specification both more
intuitive and less error-prone. Our evaluation shows that out methology
can be implemented efficiently and is capable of expressing and proving
complex functional specifications for real-world contracts.



Conclusions and Future Work 6.

6.1. Conclusion

In this thesis, we have proposed several novel ways of proving security-
related program properties, or of extending existing techniques to
previously-unsupported languages and environment.

We have introduced modular product programs, a product construction
that allows proving arbitrary hypersafety properties for imperative
languages. Modular product programs are the first general product
construction that can be constructed fully automatically and allows
for modular specification and verification of such properties, whereas
previously existing products either required user input, did not enable
modular verification, or restricted program control flow. Furthermore,
we have shown how modular product programs can encode information
flow specifications, which can express non-interference properties (i.e.,
confidentiality and integrity properties) in a modular way, enable precise
specifications including value-dependent sensitivity, declassification,
and termination-sensitive non-interference, and allow for proofs that do
not require knowledge about the underlying product encoding.

Furthermore, we have shown how the presented product construction
(and other similar ones) can be applied to more complex source languages
when used in the common framework of IVL-based verifiers, by applying
the product construction on the level of the simple IVL program. This
approach makes it possible to extend existing IVL-based verifiers for
hyperproperty verification with comparatively low effort, and thus makes
product constructions substantially more useful for the verification of
programs written in mainstream languages for which standard verifiers
already exist. Crucially, we are the first to examine when such an approach
is sound; we show that this is not always the case, but provide a simple
criterion on the IVL encoding that can be used to identify parts of the
encoding that may have to be adapted. Additionally, we show that this
system can also be used to prove different kinds of non-interference
properties for concurrent source programs, without requiring a product
construction for concurrent programs, which is important since modular
verification of information flow security for concurrent programs is still
very rarely supported by existing automated verification tools.

Additionally, we considered two mainstream programming languages
that fall outside of the spectrum of C- and Java-like languages commonly
supported by existing verification tools, and provided verification tech-
niques that enable security property verification for these and similar
ones.

First, we provided a verification technique for the dynamic Python
language. Here, we enriched existing verification techniques for object-
oriented programs with additional checks and information (e.g., per-
forming type checking partly on the verifier level), as well as additional
specification constructs, while slightly simplifying the used language
model; as a result, we do not support all Python language features, but
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can specify and verify typical client code in a modular way. Crucially,
our approach can be combined with existing techniques for the modular
verification of security-related properties like progress properties and
input-output behavior, as well as our own technique for non-interference
verification; thus, we enable the modular verification of these properties
for typical Python code for the first time.

Second, we considered the domain of Ethereum smart contracts, which
are prime targets for attackers and therefore must be shown to be free of
potential exploits. Here, we introduce novel specification constructs that
allow for the modular specification and verification of smart contracts in
an adversarial environment, where many standard verification techniques
do not apply. The resulting technique is the first one that is modular and
does not impose limits on re-entrancy, and the first one that allows for
the modular verification of sets of collaborating contracts in this setting.
In particular, we also allow specifying contract behavior on the level of
resources and resource transfers, which are the main purpose of most
real smart contracts. As a result, standard properties can be checked by
default, and custom contract behavior can be specified on the higher
level of abstraction that most programmers and users of smart contracts
tend to use when thinking about contracts (instead of the low-level of the
contract implementation itself), thus reducing the likelihood of errors in
specifications.

While we focused on Python programs and Ethereum contracts specifi-
cally, (parts of) our techniques transfer to other languages: For example,
the idea of using optimistic static typing by default but letting users opt
out and delegate parts of the type checking to the verifier applies to
other dynamic languages, and our technique for modular verification
in an adversarial environment applies to other languages that provide
strong encapsulation guarantees, like for example some actor-based
languages.

6.2. Future Work

The presented work can be extended in a number of ways not discussed
before. Obvious extensions are soundness proofs for our verification
techniques for Python programs and smart contracts, as well as various
improvements in the developed tools. Here, we make four suggestions to
go beyond these.

6.2.1. General Relational Property Verification

While modular product programs compose a program with copies of
itself, the core idea behind the product construction can be extended to
allow the composition of two (or more) different programs, which would
enable the verification of general relational properties like program
equivalence.

As a basic idea, clearly two different programs can be combined into a
product program by simply executing each on its respective renamed
version of the program variables, and under the condition that the re-
spective activation variable is true. Crucially, however, control structures
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in the different programs can be combined: For example, if each program
contains a loop, the loops can be combined into one in the product
program, which uses different loop conditions and different loop bodies
for the two executions; similarly, two calls to different (but potentially
related) methods can be combined as well, enabling the use of relational
specifications.

Such a combination requires information on which parts of programs to
combine in the product, which can be expressed for example in the form of
biprograms [17], though this information will either have to be provided
by a user or inferred using a separate technique. However, there are many
applications for verifying relational properties (in particular, equivalence
modulo some parts of the state space) of pairs of programs that have a
similar structure by construction, so that alignment information is trivial
to extract. One example is proving a slice of a program equivalent to the
original program for relevant parts of the state; here, one program is
typically a copy of the other program with some parts being removed.
The same applies when removing ghost code from a program (which
should not affect the the non-ghost part of the program state), or when
adding an instrumentation to a program.

When manually proving two programs with different structures equiv-
alent, one could, as a first step, use proven equivalence-preserving
program transformations (e.g. partially unrolling a loop, or transforming
a loop into recursive calls) to partially align program structure, and
subsequently use a modular product construction to prove equivalence
using relational specifications.

6.2.2. Extended Python Object Model

As explained in Sec. 2.2.4 in Chapter 2, our verification technique for
Python uses a simplified model of attribute lookups and modifications in
order to enable modular verification with a reasonable annotation over-
head and acceptable verification performance; we then forbid overriding
and directly calling so-called magic methods and attributes that could
expose Python’s actual, more complex object model.

Obviously, this comes at the cost of not being able to verify code that
makes use of the actual internal model of Python attributes. Currently,
we only support manually modeling the resulting behavior of such code
on the level of the simplified object model by building said behavior into
the verifier, meaning that some high-level behavior of the code is simply
assumed by the verifier, but not actually verified to correspond to the
actual implementation.

One way of approaching this problem is to allow selectively modeling
Python’s actual behavior when verifying specific classes or methods,
and subsequently proving that the actual behavior of the code that uses
low-level attribute behavior can be soundly approximated by some model
of its behavior on the level of the simplified object model. Such a proof
would be a kind of refinement proof: All attribute accesses that are valid
on the level of the simplified object model must also be valid (i.e., execute
without errors) in the actual low-level code, and must return the same
results.
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Since this is essentially a relational property (the program with the
simplified object model behaves like a program with the actual, more
complex object model) of two closely-related programs, one could use
modular product programs to prove this equivalence. In combination
with a proof that shows that for ordinary attribute lookups, our model is
accurate if all relevant magic methods are not overridden, such a proof
would remove any uncertainty about the soundness of working with a
simplified object model when verifying other code.

6.2.3. Quantitative Information Flow Verification

As we showed in Sec. 3.5.4 in Chapter 3, modular product programs can
easily be used to implement a simple but powerful model of declassi-
fication. In particular, the declassified information can be specified in
arbitrarily precise terms: For example, instead of declassifying an entire
high integer value ℎ, one can also declassify only its third least significant
bit by declassifying ℎ/4 mod 2, or e.g. whether the information if its
digit sum is equal to three, by declassifying the expression dsv(ℎ) = 3.
Information flow specifications subsequently allow passing this detailed
sensitivity information throughout the rest of the program.

This precise modeling of sensitivity, combined with a permission logic,
can easily be used to soundly (but very imprecisely) verify quantitative

information flow properties like “statement 𝑠 leaks no more than 𝑛 bits
of its high input”, as follows:

1. First, we prove non-interference of the program as usual, but allow
declassifying secret values. Once a non-interference proof succeeds,
we know that the program leaks high information only through its
declassification operations.

2. Second, we restrict declassification operations to apply only to
boolean values and to not happen in branches under high con-
ditions. This has the result that a single declassification action
can leak at most a single bit of information (but possibly less).
As an example, if ℎ is a high 32-bit integer with a uniform value
distribution, then declassifying ℎ mod 2 leaks exactly one bit of
information, but declassifying ℎ = 25612 leaks substantially less
(in terms of Shannon entropy).
That is, to leak the entire 32 bits of ℎ, one would have to declassify
every single one of its bits, which would require at least 32 declassi-
fication actions. However, if one chooses to inefficiently declassify
its equality to every single possible value instead (i.e., first declas-
sify ℎ = 0, then ℎ = 1, etc.), the number of declassification actions
could instead be 232. Crucially, there is no way to leak ℎ entirely
using less than 32 declassification operations.

3. Finally, we require a permission to perform a single declassification
operation. That is, we give a declassification operation the specifica-
tion ⊨ {leak(1)}declassify 𝑒{low(𝑒)}, where leak(𝑚) represents a
permission to leak at most 𝑚 bits of information, and 𝑒 is a boolean
value. We then give the program the permission leak(𝑛) in its pre-
condition, allowing it to leak at most 𝑛 bits of high information,
and thereby limiting the number of declassification operations the
program may perform.
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This simple approach to limiting the amount of leaked information is
sound, but imprecise: First, as already discussed, declassifying a boolean
expression may leak less than a bit; second, declassification under high
conditions does not have to be forbidden if the information flow resulting
from high branches can be modeled precisely. Interestingly, high branches
can even lower the amount of information leaked by a declassification
action. As an example, the program if (ℎ = 256) {declassify ℎ} (where
we write declassify ℎ as a short hand for declassifying all its bits) leaks
substantially less than 32 bits when considering Shannon entropy. On
the other hand, however, if (ℎ1) {declassify ℎ2} will leak more than
just ℎ2.

As future work, one could investigate how this approach can be made
sufficiently precise to verify realistic properties in real code. In particular,
one could first investigate if (even with this crude approach) a smart
placement and usage of declassification operations can already avoid
some of its pitfalls, e.g. by declassifying ℎ = 256 in the previously-
shown program, to avoid having to conditionally declassify all bits in
ℎ and therefore be able to show that at most one bit is leaked instead.
Subsequently, one could then extend the approach to more precisely
calculate how much information is leaked by a particular declassification
operation in cases where the basic approach is insufficient.

6.2.4. Verification in the Presence of Untrusted Code

In Chapter 5, we presented a verification technique for smart contracts
that addresses the problem that such contracts generally run in the
presence of untrusted code, ruling out (or requiring adaptations to) the
use of traditional verification techniques like separation logic. However,
the problem of executing verified code in the presence of other, untrusted
code is by no means limited to smart contracts: Many applications consist
of several components, and often verification is restricted to some subset
of those components. For example, in a large application, one may only
verify a specific, security-critical part of the code, simply because verifying
the entire application would be too resource intensive. In other cases,
applications that have a plugin infrastructure are built to be extensible
with arbitrary outside code as long as said code implements a specific
interface; thus, when verifying (parts of) the main component or a specific
plugin, other code that will be running as part of the application is simply
unknown.

Our solution for smart contracts also applies to some actor-based lan-
guages, but crucially depends on the fact that object data cannot be
modified by outside code, which is not the case by default in most object-
oriented languages. For individual programs, however, it may well be the
case that a class’ internal data is protected because its implementation
ensures that no references to its internal state are ever leaked to the
untrusted outside world, and that, conversely, the object itself does not
capture any state to which pre-existing outside references may exist.

Thus, to make our technique applicable to ordinary object-oriented
languages, one could supplement it with a verification technique for
proving that internal object state is never modifiable from the outside,
by ensuring that no references that would allow such modifications ever
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become reachable from outside state. The exact requirements of such a
technique would of course be language-specific, and depend on the kind
of guarantees a programming language provides: For example, in this
setting, it is crucial to know if “private” object data can be accessed by
outside objects in some way or not (e.g., using reflection), or if pointers
can be forged, e.g. by performing pointer arithmetic (which would make
such an approach entirely impossible).
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Proofs for Chapter 3 A.

A.1. Appendix

A.1.1. Preliminaries

In this section, we establish some general properties of the relations we
defined as well as our language semantics. The proofs for virtually all of
them are obvious (and we only describe them briefly); nevertheless, we
explicitly name the properties that we rely on in the subsequent proofs
of our main lemmas and theorems.

We start by defining two properties of the ∈𝑖 relation w.r.t. store substitu-
tions that follow immediately from its definition:

First, the relation is preserved by matching store substitutions:

Proposition A.1.1 If 𝜎𝑖 ∈𝑖 𝜎 then 𝜎𝑖[𝑥 ↦→ 𝑣] ∈𝑖 𝜎[𝑥(𝑖) ↦→ 𝑣].

Second, the relation is preserved by substitions of variables belonging to
other executions:

Proposition A.1.2 If 𝜎𝑖 ∈𝑖 𝜎 and 𝑗 ≠ 𝑖 then 𝜎𝑖 ∈𝑖 𝜎[𝑥(𝑗) ↦→ 𝑣] .

Similarly, we define the following three properties for the ≼𝑉
𝑖

relation
that also follow from its definition and, in the second case, the injectivity
of the renaming:

First, the relation is transitive:

Proposition A.1.3 If 𝜎 ≼𝑉1
𝑖

𝜎′′ ∧ 𝜎′′ ≼𝑉2
𝑖

𝜎′, where 𝑉1 ⊆ 𝑉 and 𝑉2 ⊆ 𝑉 ,

then 𝜎 ≼𝑉
𝑖
𝜎′.

Second, it is preserved by substitions of variables belonging to other
executions:

Proposition A.1.4 If 𝜎 ≼𝑉
𝑖
𝜎′ then 𝜎 ≼𝑉

𝑖
𝜎′[𝑥(𝑗) ↦→ 𝑣] for any 𝑗 ≠ 𝑖.

Third, the relation always holds for a store holding only the excluded
variables:

Proposition A.1.5 If {𝑥1 , . . . , 𝑥𝑛} ⊆ 𝑉 then 𝜎 ≼𝑉
𝑖
𝜎[𝑥1 ↦→ 𝑣1] . . . [𝑥𝑛 ↦→

𝑣𝑛] for any 𝑖 , 𝑣1 , . . . , 𝑣𝑛 .

Finally, we prove a lemma stating that the latter relation preserves the
former:
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Lemma A.1.6 If 𝜎 ∈𝑖 𝜎 and 𝜎 ≼
𝑠

𝑖
𝜎′ then 𝜎 ∈𝑖 𝜎′.

Proof. Since all names in freshvars(𝑠) are distinct from all names in PVar,
and 𝜎 and 𝜎′ therefore agree on the values of the 𝑖-renamed variables in
RPVar by the definition of ≼𝑉

𝑖
, this follows from the definition of ∈𝑖 . □

Throughout the proofs of the following theorems and lemmas, we repeat-
edly make use of the following properties of our language semantics.

Firstly, the (normal or abnormal) termination of a sequential composition
of statements implies the (normal or abnormal) termination of the
substatements and vice versa:

Lemma A.1.7

1. ⟨𝑠1; 𝑠2 , 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩ implies that for some 𝑙1 , 𝑙2 , 𝜎′′, we have

⟨𝑠1; 𝑠2 , 𝜎⟩ →𝑙1 ⟨skip; 𝑠2 , 𝜎′′⟩ → ⟨𝑠2 , 𝜎′′⟩ →𝑙2 ⟨skip, 𝜎′⟩ and

𝑙 = 1 + 𝑙1 + 𝑙2.

2. ⟨𝑠1; 𝑠2 , 𝜎⟩ →𝑙 ⟨skip; 𝑠2 , 𝜎′⟩ implies that ⟨𝑠1 , 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩.
3. If ⟨𝑠1; 𝑠2 , 𝜎⟩ →𝑙 ⟨¤𝑠, 𝜎′⟩ and ¤𝑠 ≠ skip then either ⟨𝑠1 , 𝜎⟩ →𝑙−1

⟨¤𝑠, 𝜎′⟩ or ⟨𝑠1 , 𝜎⟩ →𝑙1 ⟨skip, 𝜎′′⟩ ∧ ⟨𝑠2 , 𝜎′′⟩ →𝑙2 ⟨¤𝑠, 𝜎′⟩ for some

𝑙1 , 𝑙2 s.t. 𝑙 = 𝑙1 + 𝑙2 + 1 and 𝑙1 ≥ 0 and 𝑙2 ≥ 0.

Proof. All three statements are proved by induction on 𝑙. For the first
statement, the total number 𝑙 of steps results from 𝑙1 steps using Seq1,
one step using Seq2, and the subsequent execution of 𝑠2 in 𝑙2 steps. □

Similarly, we show that the (normal or abnormal) termination of a frame

statement implies that the framed statement terminates (normally or
abnormally) from the framed store:

Lemma A.1.8

1. ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑝1 ,...,𝑝𝑚 (𝑠, 𝜎 𝑓 ), 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩ implies that

𝑙 > 0 and ⟨𝑠, 𝜎 𝑓 ⟩ →𝑙−1 ⟨skip, 𝜎′
𝑓
⟩ for some 𝜎′

𝑓
s.t. 𝜎′ = 𝜎[𝑥1 ↦→

𝜎′
𝑓
(𝑝1)] . . . [𝑥𝑚 ↦→ 𝜎′

𝑓
(𝑝𝑚)].

2. ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑝1 ,...,𝑝𝑚 (𝑠, 𝜎 𝑓 ), 𝜎⟩ →𝑙 ⟨¤𝑠, 𝜎′⟩, where ¤𝑠 ≠ skip,
implies that 𝑙 > 0 and ⟨𝑠, 𝜎 𝑓 ⟩ →𝑙−1 ⟨¤𝑠, 𝜎′

𝑓
⟩ for some 𝜎′

𝑓
and 𝜎′ = 𝜎.

Proof. By induction on 𝑙. □

Finally, we have a simple fact about expression evaluation:

Lemma A.1.9 If 𝑒 ⇓𝜎 𝑣 and 𝑥 ∉ fv(𝑒) then 𝑒 ⇓𝜎[𝑥 ↦→𝑣′] 𝑣

Proof. By induction on the structure of 𝑒. □
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The next lemmas describe properties of sequential compositions of a
number of (conditional) assignments, havocs, assertions, and assumes,
as they are used in the product construction. For each, we show first that
any such statement always has a terminating trace, and subsequently,
that all traces of such statements end in configurations that have certain
properties. It is necessary to make this distinction because our language
is non-deterministic, and showing that there is one terminating trace
that has certain properties is not equivalent to showing properties of all

possible traces of a statement.

First, we have two lemmas about a sequence of 𝑘 assignments.

Lemma A.1.10 For all 𝑥, 𝑒 , 𝑘 and 𝜎, ⟨⊙𝑘
𝑖=𝑖0

𝑥(𝑖):=𝑒(𝑖) , 𝜎⟩ →∗ ⟨skip, 𝜎′⟩
for some 𝜎′.

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0. □

Lemma A.1.11 For all 𝑥, 𝑒 , 𝑘, ¤𝑠, 𝜎 and 𝜎′, if ⟨⊙𝑘
𝑖=𝑖0

𝑥(𝑖):=𝑒(𝑖) , 𝜎⟩ →∗

⟨¤𝑠, 𝜎′⟩ then ¤𝑠 = skip and 𝜎′ = 𝜎[𝑥(𝑖0) ↦→ 𝑣𝑖0] . . . [𝑥(𝑘) ↦→ 𝑣𝑘] and

∀𝑖 ∈ {𝑖0 , . . . , 𝑘}. 𝑒(𝑖) ⇓𝜎 𝑣𝑖 .

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0, using Lemma A.1.9 and
injectivity of the renaming function. □

Next, we have two lemmas about a sequence of 𝑘 conditional assign-
ments.

Lemma A.1.12 Let 𝐴 ⊆ {1, . . . , 𝑘} and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴 and

𝜎(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴.

Then ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {𝑥(𝑖):=𝑒(𝑖)}, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ for some 𝜎′.

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0. □

Lemma A.1.13 Let 𝐴 ⊆ {1, . . . , 𝑘} and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴 and

𝜎(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴.

Further assume that ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {𝑥(𝑖):=𝑒(𝑖)}, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩.

Then ¤𝑠 = skip and 𝜎′ = 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ] for

{ 𝑗1 , . . . , 𝑗𝑛} = 𝐴 s.t. 𝑗𝑖 < 𝑗𝑖+𝑖 and 𝑒(𝑗𝑛 ) ⇓𝜎 𝑣 𝑗𝑛 .

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0, using Lemma A.1.9 and
injectivity of the renaming function. □
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Now, we have the analogous two lemmas about a sequence of 𝑘 condi-
tional havoc statements, which of course behave like non-deterministic
assignments.

Lemma A.1.14 Let 𝐴 ⊆ {1, . . . , 𝑘} and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴 and

𝜎(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴.

Then ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {havoc 𝑥(𝑖)}, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ for some 𝜎′.

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0. □

Lemma A.1.15 Let 𝐴 ⊆ {1, . . . , 𝑘} and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴 and

𝜎(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴.

Further assume that ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {havoc 𝑥(𝑖)}, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩.

Then ¤𝑠 = skip and 𝜎′ = 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ] for

{ 𝑗1 , . . . , 𝑗𝑛} = 𝐴 and any 𝑣 𝑗1 , . . . , 𝑣 𝑗𝑛 .

Proof. If 𝑖0 > 𝑘 then (⊙𝑘
𝑖=𝑖0

𝑠) ≡ skip and the conclusion holds trivially.
Otherwise the proof goes by induction on 𝑘 − 𝑖0, using injectivity of the
renaming function. □

Now two lemmas about a sequence of 𝑘 assert statements.

Lemma A.1.16 ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {assert 𝑒(𝑖)}, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ for some

¤𝑠 ≠ error if and only if 𝜎′ = 𝜎 and ¤𝑠 = skip and for all 𝑖 ∈ {𝑖0 , . . . , 𝑘}
s.t. 𝑝(𝑖) ⇓𝜎 ⊤ we have 𝑒(𝑖) ⇓𝜎 ⊤.

Proof. Both directions of the biimplication are straightforward by induc-
tion on 𝑘 − 𝑖0. □

Lemma A.1.17 ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {assert 𝑒(𝑖)}, 𝜎⟩ →∗ ⟨error, 𝜎′⟩ if and

only if 𝜎′ = 𝜎 and for some non-empty set 𝐴 ⊆ {𝑖0 , . . . , 𝑘} we have

∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤ ∧ 𝑒(𝑖) ⇓𝜎 ⊥.

Proof. Like for the previous lemma, both directions of the biimplication
are proved by induction on 𝑘 − 𝑖0. □

And we have the analogous two lemmas about a sequence of 𝑘 assume
statements.

Lemma A.1.18 ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {assume 𝑒(𝑖)}, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ for some

¤𝑠 ≠ magic if and only if 𝜎′ = 𝜎 and ¤𝑠 = skip and for all 𝑖 ∈ {𝑖0 , . . . , 𝑘}
s.t. 𝑝(𝑖) ⇓𝜎 ⊤ we have 𝑒(𝑖) ⇓𝜎 ⊤.

Proof. Analogous to the proof of Lemma A.1.16, by induction on 𝑘− 𝑖0. □
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Lemma A.1.19 ⟨⊙𝑘
𝑖=𝑖0
if (𝑝(𝑖)) {assume 𝑒(𝑖)}, 𝜎⟩ →∗ ⟨magic, 𝜎′⟩ if and

only if 𝜎′ = 𝜎 and for some non-empty set 𝐴 ⊆ {𝑖0 , . . . , 𝑘} we have

∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤ ∧ 𝑒(𝑖) ⇓𝜎 ⊥.

Proof. Analogous to the proof of Lemma A.1.17, by induction on 𝑘− 𝑖0. □

A.1.2. Proof of Thm. 3.4.2

Theorem 3.4.2 Assume that match(Φ,Φ) and that for some sets 𝐴 ⊆
{1, . . . , 𝑘} and 𝐼 = {1, . . . , 𝑘}\𝐴 we have that∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤∧𝜎𝑖 ∈𝑖 𝜎

and ∀𝑖 ∈ 𝐼. 𝑝(𝑖) ⇓𝜎 ⊥. Let {𝑝(1) , . . . , 𝑝(𝑘)} ∩ (RPVar ∪ freshvars(𝑠)) = ∅
and 𝑠 = J𝑠K�̊�

𝑘
and ⟨𝑠, 𝜎⟩ →𝑙 ⟨skip, 𝜎′⟩ under Φ.

Then

1. for all 𝑖 ∈ 𝐴, ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′
𝑖
⟩ under Φ for some 𝜎′

𝑖
s.t. 𝜎′

𝑖
∈𝑖 𝜎′,

and 𝜎 ≾
𝑠

𝑖
𝜎′,

2. for all 𝑖 ∈ 𝐼, 𝜎 ≼
𝑠

𝑖
𝜎′.

Proof. By strong induction on the length 𝑙 of the derivation ⟨J𝑠K�̊�
𝑘
, 𝜎⟩ →𝑙

⟨skip, 𝜎′⟩.

We perform a case split on the structure of 𝑠, which determines the
structure of the product 𝑠. Note that our theorem only applies to traces
of statements that are modular products of some statements, not to
arbitrary statements. We therefore generally perform as many steps of
𝑠 as necessary to get to a configuration where the statement is again a
product program, so that we can apply the induction hypothesis.

▶ 𝑠 ≡ 𝑥:=𝑒: Then 𝑠 has the form ⊙𝑘
𝑖=1 if (𝑝(𝑖)) {𝑥(𝑖):=𝑒(𝑖)}. By

Lemma A.1.13, we have that 𝜎′ = 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ] for
{ 𝑗1 , . . . , 𝑗𝑛} = 𝐴 s.t. 𝑒(𝑗𝑛 ) ⇓𝜎 𝑣 𝑗𝑛 .
For any 𝑖 ∈ 𝐴, we then have for some 𝑜 that 𝑗𝑜 = 𝑖 and therefore
𝑒(𝑖) ⇓𝜎 𝑣𝑖 . Since we also have that fv(𝑒) ⊆ PVar, by Lemma 3.4.1
we have that 𝑒 ⇓𝜎𝑖 𝑣𝑖 . Then by Assign, we get that ⟨𝑥:=𝑒 , 𝜎𝑖⟩ →
⟨skip, 𝜎𝑖[𝑥 ↦→ 𝑣𝑖]⟩.
We therefore have to show that 𝜎𝑖[𝑥 ↦→ 𝑣𝑖] ∈𝑖 𝜎[𝑥(𝑗1) ↦→
𝑣 𝑗1] . . . [𝑥(𝑗𝑜 ) ↦→ 𝑣 𝑗𝑜 ] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ]:

𝜎𝑖 ∈𝑖 𝜎

⇒𝜎𝑖 ∈𝑖 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑜−1) ↦→ 𝑣 𝑗𝑜−1] (Prop. A.1.2)

⇒𝜎𝑖[𝑥 ↦→ 𝑣𝑖] ∈𝑖 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑜 ) ↦→ 𝑣 𝑗𝑜 ] (Prop. A.1.1)

⇒𝜎𝑖[𝑥 ↦→ 𝑣𝑖] ∈𝑖 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑜 ) ↦→ 𝑣 𝑗𝑜 ] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ]
(Prop. A.1.2)

Since 𝑥(𝑖) ∈ RPVar, we also have 𝜎 ≾
𝑠

𝑖
𝜎′ by Prop. A.1.5 (a).

For all 𝑖 ∈ 𝐼, we have that 𝜎 ≼𝑠

𝑖
𝜎′ by Prop. A.1.4 (b).

▶ 𝑠 ≡ havoc 𝑥: Largely analogous to the previous case.
𝑠 must have the form ⊙𝑘

𝑖=1 if (𝑝(𝑖)) {havoc 𝑥(𝑖)}. By Lemma A.1.15,
we have that 𝜎′ = 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ] for { 𝑗1 , . . . , 𝑗𝑛} =
𝐴 and some 𝑣 𝑗1 , . . . , 𝑣 𝑗𝑛 . For any 𝑖 ∈ 𝐴, we then have for some
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𝑜 that 𝑗𝑜 = 𝑖. Then by Havoc, choosing the value 𝑣𝑖 , we get
that ⟨havoc 𝑥, 𝜎𝑖⟩ → ⟨skip, 𝜎𝑖[𝑥 ↦→ 𝑣𝑖]⟩. By the same argument
as above, we get that 𝜎𝑖[𝑥 ↦→ 𝑣𝑖] ∈𝑖 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑜 ) ↦→
𝑣 𝑗𝑜 ] . . . [𝑥(𝑗𝑛 ) ↦→ 𝑣 𝑗𝑛 ]. Since 𝑥(𝑖) ∈ RPVar, we also have 𝜎 ≾

𝑠

𝑖
𝜎′ by

Prop. A.1.5 (a).
For all 𝑖 ∈ 𝐼, we have that 𝜎 ≼𝑠

𝑖
𝜎′ by Prop. A.1.4, since there is no

𝑗𝑜 s.t. 𝑗𝑜 = 𝑖 (b).
▶ 𝑠 ≡ skip: Then we must have that 𝑠 = skip, and therefore 𝜎′ = 𝜎.

Additionally, for all 𝑖 ∈ 𝐴, we have 𝜎𝑖 = 𝜎′
𝑖
and therefore 𝜎′

𝑖
∈𝑖 𝜎′,

and we have 𝜎 ≾
𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
(a). Similarly, we have

𝜎 ≼
𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐼 because of reflexivity of ≼𝑉

𝑖
(b).

▶ 𝑠 ≡ assert 𝑒: Then 𝑠 has the form ⊙𝑘
𝑖=1 if (𝑝(𝑖)) {assert 𝑒(𝑖)}. By

Lemma A.1.16, we have 𝜎′ = 𝜎 and for all 𝑖 ∈ 𝐴 that 𝑒(𝑖) ⇓𝜎 ⊤. Then
for all such 𝑖, since fv(𝑒) ⊆ PVar, we have 𝑒 ⇓𝜎𝑖 ⊤ by Lemma 3.4.1.
Then by Assert1 we can construct ⟨assert 𝑒 , 𝜎𝑖⟩ → ⟨skip, 𝜎𝑖⟩.
Therefore 𝜎′

𝑖
= 𝜎𝑖 which trivially implies that 𝜎′

𝑖
∈𝑖 𝜎′. Additionally,

we have 𝜎 ≾
𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
(a).

For all 𝑖 ∈ 𝐼, we have 𝜎 ≼
𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
(b).

▶ 𝑠 ≡ assume 𝑒: This case is analogous to the previous case, using
Lemma A.1.18 and Assume1 instead of Lemma A.1.16 and Assert1.

▶ 𝑠 ≡ if (𝑒) {𝑠1} else {𝑠2}:
Then 𝑠 =

⊙𝑘
𝑖=1(𝑡(𝑖):=𝑝(𝑖)∧ 𝑒(𝑖));⊙𝑘

𝑖=1( 𝑓 (𝑖):=𝑝(𝑖)∧¬𝑒(𝑖)); 𝑠1; 𝑠2, where

𝑠1 = J𝑠1K𝑡𝑘 and 𝑠2 = J𝑠2K
𝑓

𝑘
and freshvars(𝑠) = {𝑡 , 𝑓 } ∪ freshvars(𝑠1) ∪

freshvars(𝑠2).
Then by repeated application of Lemma A.1.7.1 we must have that

⟨
𝑘⊙

𝑖=1
(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));

𝑘⊙
𝑖=1

( 𝑓 (𝑖):=𝑝(𝑖) ∧ ¬𝑒(𝑖)); 𝑠1; 𝑠2 , 𝜎⟩

→𝑙1 ⟨skip;
𝑘⊙

𝑖=1
( 𝑓 (𝑖):=𝑝(𝑖) ∧ ¬𝑒(𝑖)); 𝑠1; 𝑠2 , 𝜎

′′⟩ (for some 𝑙1 , 𝜎′′)

→1⟨
𝑘⊙

𝑖=1
( 𝑓 (𝑖):=𝑝(𝑖) ∧ ¬𝑒(𝑖)); 𝑠1; 𝑠2 , 𝜎

′′⟩

→𝑙2 ⟨skip; 𝑠1; 𝑠2 , 𝜎
′′′⟩ (for some 𝑙2 , 𝜎′′′)

→1⟨𝑠1; 𝑠2 , 𝜎
′′′⟩

→𝑙3 ⟨skip; 𝑠2 , 𝜎
′′′′⟩

→1⟨𝑠2 , 𝜎
′′′′⟩ (for some 𝑙3 , 𝜎′′′′)

→𝑙4 ⟨skip, 𝜎′⟩ (for some 𝑙4)

s.t. 𝑙 = 𝑙1 + 𝑙2 + 𝑙3 + 𝑙4 + 3 and all 𝑙𝑖 ≥ 0.
We first identify properties of 𝜎′′′ in order to be able to ap-
ply the induction hypothesis. By Lemma A.1.7.2, we get that
⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)), 𝜎⟩ →𝑙1 ⟨skip, 𝜎′′⟩. By Lemma A.1.11 𝜎′′ =

𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑘) ↦→ 𝑣𝑘] where ∀𝑖 ∈ {1, . . . , 𝑘}. 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 .
By the same argument, we get that 𝜎′′′ = 𝜎′′[ 𝑓 (1) ↦→ 𝑣′1] . . . [ 𝑓 (𝑘) ↦→
𝑣′
𝑘
] where ∀𝑖 ∈ {1, . . . , 𝑘}. 𝑝(𝑖) ∧ ¬𝑒(𝑖) ⇓𝜎′′ 𝑣

′
𝑖
. By Lemma A.1.9, we

also have ∀𝑖 ∈ {1, . . . , 𝑘}. 𝑝(𝑖) ∧ ¬𝑒(𝑖) ⇓𝜎′ 𝑣
′
𝑖
, since 𝑡 and 𝑓 are not

in fv(𝑝(𝑖) ∧ ¬𝑒(𝑖)). Since 𝑡 and 𝑓 are in freshvars(𝑠), by Prop. A.1.5
we have 𝜎 ≾

𝑠

𝑖
𝜎′′′ for all 𝑖 ∈ {1, . . . , 𝑘}. Therefore by Lemma A.1.6

we have that 𝜎𝑖 ∈𝑖 𝜎′′′ for all 𝑖 ∈ 𝐴.
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Let 𝐴1 = {𝑖 |𝑖 ∈ 𝐴∧ 𝑒(𝑖) ⇓𝜎 ⊤} and 𝐴2 = {𝑖 |𝑖 ∈ 𝐴∧ 𝑒(𝑖) ⇓𝜎 ⊥}. Note
that 𝐴 = 𝐴1 ∪ 𝐴2. Let 𝐼1 = 𝐼 ∪ 𝐴2 and 𝐼2 = 𝐼 ∪ 𝐴1. By the rules for
expression evaluation, we have that for all 𝑖 ∈ 𝐴1, 𝑝(𝑖)∧𝑒(𝑖) ⇓𝜎 ⊤ and
therefore 𝑡(𝑖) ⇓𝜎′′′ ⊤, and for all 𝑖 ∈ 𝐼1, 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 ⊥ and therefore
𝑡(𝑖) ⇓𝜎′′′ ⊥. Likewise, we have for all 𝑖 ∈ 𝐴2, 𝑝(𝑖) ∧ ¬𝑒(𝑖) ⇓𝜎 ⊤
and therefore 𝑓 (𝑖) ⇓𝜎′′′ ⊤ and for all 𝑖 ∈ 𝐼2, 𝑝(𝑖) ∧ ¬𝑒(𝑖) ⇓𝜎 ⊥ and
therefore 𝑓 (𝑖) ⇓𝜎′′′ ⊥.
We can now apply the induction hypothesis twice. By
Lemma A.1.7.2, ⟨𝑠1 , 𝜎′′′⟩ →𝑙3 ⟨skip, 𝜎′′′′⟩. Then for 𝑠1 , 𝜎′′′, 𝐴1 , 𝐼1
we may assume the induction hypothesis (IH1) and get that for all
𝑖 ∈ 𝐴1, 𝜎′′′ ≾

𝑠1

𝑖
𝜎′′′′, and for all 𝑖 ∈ 𝐼1, 𝜎′′′ ≼

𝑠1

𝑖
𝜎′′′′. Therefore we

have that for all 𝑖 ∈ {1, . . . , 𝑘}, 𝜎′′′′( 𝑓 (𝑖)) = 𝜎′′′( 𝑓 (𝑖)). Therefore for
all 𝑖 ∈ 𝐴2, 𝜎′′′′( 𝑓 (𝑖)) = ⊤ and by Lemma A.1.6 𝜎𝑖 ∈𝑖 𝜎′′′′, and for
all 𝑖 ∈ 𝐼2, 𝜎′′′′( 𝑓 (𝑖)) = ⊥. Therefore we may assume the induction
hypothesis for 𝑠2 , 𝜎′′′′, 𝐴2 , 𝐼2 (IH2).
Based on this, we first show (b). We have for all 𝑖 ∈ 𝐼 that 𝜎(𝑝(𝑖)) = ⊥,
and since 𝐼 ⊆ 𝐼1 and 𝐼 ⊆ 𝐼2, 𝜎′′′(𝑡(𝑖)) = ⊥ and 𝜎′′′( 𝑓 (𝑖)) = ⊥. By (IH1),
we have that 𝜎′′′ ≼

𝑠1

𝑖
𝜎′′′′ and therefore 𝜎′′′′( 𝑓 (𝑖)) = ⊥. By (IH2), we

have that 𝜎′′′′ ≼
𝑠2

𝑖
𝜎′. Since 𝑡(𝑖) ∈ freshvars(𝑠) and 𝑓 (𝑖) ∈ freshvars(𝑠),

we have 𝜎 ≼
𝑠

𝑖
𝜎′′′ by Prop. A.1.5. By Prop. A.1.3, we get 𝜎 ≼𝑠

𝑖
𝜎′.

We proceed to show (a) for all 𝑖 ∈ 𝐴1. For all 𝑖 ∈ 𝐴1, we have
𝑒(𝑖) ⇓𝜎 ⊤ and 𝜎′′′(𝑡(𝑖)) = ⊤ and 𝜎′′′( 𝑓 (𝑖)) = ⊥. Since 𝐴1 ⊆ 𝐴,
we also have 𝜎𝑖 ∈𝑖 𝜎. Since 𝜎𝑖 ∈𝑖 𝜎′′′, by Lemma 3.4.1 we get
𝑒 ⇓𝜎𝑖 ⊤. By Cond1, we get that ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠1 , 𝜎𝑖⟩. By (IH1), we
get ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′′′

𝑖
⟩ for some 𝜎′′′′

𝑖
s.t. 𝜎′′′′

𝑖
∈𝑖 𝜎′′′′, and

𝜎′′′′( 𝑓 (𝑖)) = ⊥. By (IH2), we have 𝜎′′′′ ≼
𝑠2

𝑖
𝜎′, and because of

Lemma A.1.6, this implies 𝜎′
𝑖
∈𝑖 𝜎′. We still need to show that

𝜎 ≾
𝑠

𝑖
𝜎′: Since 𝜎 ≼

𝑠

𝑖
𝜎′′′, by (IH1) we have that 𝜎′′′ ≾

𝑠1

𝑖
𝜎′′′′. By

(IH2) we have 𝜎′′′′ ≼
𝑠2

𝑖
𝜎′. Then by using Prop. A.1.3 twice, we get

𝜎 ≾
𝑠

𝑖
𝜎′.

We now show (a) for all 𝑖 ∈ 𝐴2, after which we are done because
𝐴 = 𝐴1 ∪ 𝐴2. For all 𝑖 ∈ 𝐴2 we have 𝑒(𝑖) ⇓𝜎 ⊥ and 𝜎′′′(𝑡(𝑖)) = ⊥
and 𝜎′′′( 𝑓 (𝑖)) = ⊤. Since 𝐴2 ⊆ 𝐴, we also have 𝜎𝑖 ∈𝑖 𝜎. Since
𝜎𝑖 ∈𝑖 𝜎′′′, by Lemma 3.4.1 we get that 𝑒 ⇓𝜎𝑖 ⊥. Therefore by
Cond2 ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠2 , 𝜎𝑖⟩. By (IH1), 𝜎′′′ ≼

𝑠1

𝑖
𝜎′′′′, which implies

𝜎′′′′( 𝑓 (𝑖)) = ⊤ and 𝜎𝑖 ∈𝑖 𝜎′′′′ by Lemma A.1.6. Then by (IH2),
⟨𝑠2 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩ for some 𝜎′

𝑖
s.t. 𝜎′1 ∈𝑖 𝜎′. Additionally, as

above, we have 𝜎 ≼
𝑠

𝑖
𝜎′′′. By (IH1), we get 𝜎′′′ ≼

𝑠1

𝑖
𝜎′′′′, and by

(IH2), 𝜎′′′′ ≾
𝑠2

𝑖
𝜎′. Again, we get 𝜎 ≾𝑠

𝑖
𝜎′ by twice using Prop. A.1.3.

▶ 𝑠 ≡ while (𝑒) {𝑠𝑙}:
Then 𝑠 must have the formwhile (∨𝑘

𝑖=1(𝑝(𝑖)∧𝑒(𝑖))) {
⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖)∧
𝑒(𝑖)); 𝑠𝑙} where 𝑠𝑙 = J𝑠𝑙K𝑡𝑘 and freshvars(𝑠) = {𝑡} ∪ freshvars(𝑠𝑙).
𝑠 must therefore progress by either Whl1 or Whl2.

• If it progresses by Whl2, then ∨𝑘
𝑖=1(𝑝(𝑖) ∧ 𝑒(𝑖)) ⇓𝜎 ⊥ and

⟨𝑠, 𝜎⟩ → ⟨skip, 𝜎⟩ and therefore 𝜎′ = 𝜎. Then by the rules
of expression evaluation, for all 𝑖 ∈ {1, . . . , 𝑘} we must have
that 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 ⊥, and therefore for all 𝑖 ∈ 𝐴, we have that
𝑒(𝑖) ⇓𝜎 ⊥. By Lemma 3.4.1, since fv(𝑒) ⊆ PVar, we have 𝑒 ⇓𝜎𝑖 ⊥.
Then using Whl2 we can construct ⟨while (𝑒) {𝑠𝑙}, 𝜎𝑖⟩ →
⟨skip, 𝜎𝑖⟩. Then we have 𝜎′

𝑖
= 𝜎𝑖 and therefore trivially 𝜎′

𝑖
∈𝑖
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𝜎′ as well as 𝜎 ≾
𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
. Similarly, for all

𝑖 ∈ 𝐼, we have 𝜎 ≼
𝑠

𝑖
𝜎′ because of reflexivity of ≼𝑉

𝑖
, and we

are done.
• If the product progresses by Whl1 then ∨𝑘

𝑖=1(𝑝(𝑖) ∧ 𝑒(𝑖)) ⇓𝜎 ⊤
and ⟨𝑠, 𝜎⟩ → ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩.
We must then have that ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩ →𝑙−1

⟨skip, 𝜎′⟩ and by repeated application of Lemma A.1.7.1, we
must have

⟨
𝑘⊙

𝑖=1
(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩

→𝑙1 ⟨skip; 𝑠𝑙 ; 𝑠, 𝜎′′⟩ (for some 𝑙1 , 𝜎′′)

→1⟨𝑠𝑙 ; 𝑠, 𝜎′′⟩
→𝑙2 ⟨skip; 𝑠, 𝜎′′′⟩ (for some 𝑙2 , 𝜎′′′)

→1⟨𝑠, 𝜎′′′⟩
→𝑙3 ⟨skip, 𝜎′⟩ (for some 𝑙3)

s.t. 𝑙 = 3 + 𝑙1 + 𝑙2 + 𝑙3 and all 𝑙𝑖 ≥ 0.
Our goal is to apply the induction hypothesis twice, once
to the execution of 𝑠𝑙 and once to the execution of 𝑠 from
𝜎′′′. By Lemma A.1.7.2 we get ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)), 𝜎⟩ →𝑙1

⟨skip, 𝜎′′⟩. Therefore by Lemma A.1.11 we get that 𝜎′′ =

𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑘) ↦→ 𝑣𝑘] and ∀𝑖 ∈ {1, . . . , 𝑘}. 𝑡(𝑖) ⇓𝜎 𝑣𝑖 . By
Prop. A.1.5 we have that 𝜎 ≼𝑠 𝜎′′, since 𝑡 are in freshvars(𝑠).
Let 𝐴𝑙 = {𝑖 |𝑖 ∈ 𝐴 ∧ 𝑒(𝑖) ⇓𝜎 ⊤} and 𝐼𝑙 = {1, . . . , 𝑘} \ 𝐴𝑙 .
We have that for all 𝑖 ∈ 𝐴𝑙 , 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 ⊤ and therefore
𝜎′′(𝑡(𝑖)) = ⊤. Additionally, since 𝜎 ≼𝑠 𝜎′′ we have 𝜎𝑖 ∈𝑖 𝜎′′ by
Lemma A.1.6. For all 𝑖 ∈ 𝐼𝑙 , 𝜎′′(𝑡(𝑖)) = ⊥. By Lemma A.1.7.2, we
have ⟨𝑠𝑙 , 𝜎′′⟩ →𝑙2 ⟨skip, 𝜎′′′⟩ and can assume the induction
hypothesis for this and 𝐴𝑙 (IH1), from which we get that
𝜎′′ ≾

𝑠𝑙

𝑖
𝜎′′′ for all 𝑖 ∈ 𝐴𝑙 and 𝜎′′ ≼

𝑠𝑙

𝑖
𝜎′′′ for all 𝐼𝑙 . As a result,

for all 𝑖 ∈ 𝐴, 𝜎′′′(𝑝(𝑖)) = ⊤, and for all 𝑖 ∈ 𝐼, 𝜎′′′(𝑝(𝑖)) = ⊥.
Subsequently, we can assume the induction hypothesis for
⟨𝑠, 𝜎′′′⟩ →𝑙3 ⟨skip, 𝜎′⟩ and 𝐴 (IH2).
We first show (b). For all 𝑖 ∈ 𝐼 we have that 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 ⊥
and therefore 𝜎′′(𝑡(𝑖)) = ⊥. By (IH1), we get that 𝜎′′ ≼

𝑠𝑙

𝑖
𝜎′′′

and 𝜎′′′(𝑝(𝑖)) = ⊥. By (IH2) we get that 𝜎′′′ ≼
𝑠

𝑖
𝜎′. Since

freshvars(𝑠𝑙) ⊆ freshvars(𝑠), by Prop. A.1.3, 𝜎 ≼𝑠

𝑖
𝜎′.

We now show (a) for all 𝑖 ∈ 𝐴𝑙 . For all 𝑖 ∈ 𝐴𝑙 we have 𝑒(𝑖) ⇓𝜎 ⊤.
By Lemma 3.4.1, 𝑒 ⇓𝜎𝑖 ⊤, and therefore by Whl1, ⟨𝑠, 𝜎𝑖⟩ →
⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩. Since 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 ⊤ and therefore 𝜎′′(𝑡(𝑖)) = ⊤, we
get from (IH1) that ⟨𝑠𝑙 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′′

𝑖
⟩ for some 𝜎′′′

𝑖
s.t.

𝜎′′′
𝑖

∈𝑖 𝜎′′′, and that 𝜎′′ ≾
𝑠𝑙

𝑖
𝜎′′′ and therefore 𝜎′′′(𝑝(𝑖)) = ⊤.

Then by (IH2) we get ⟨𝑠, 𝜎′′′
𝑖
⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩ s.t. 𝜎′

𝑖
∈𝑖 𝜎′.

We can construct ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →∗ ⟨skip; 𝑠, 𝜎′′′
𝑖
⟩ →

⟨𝑠, 𝜎′′′
𝑖
⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩. Additionally, we have 𝜎 ≼

𝑠

𝑖
𝜎′′ and

𝜎′′ ≾
𝑠𝑙

𝑖
𝜎′′′ and 𝜎′′′ ≾

𝑠

𝑖
𝜎′, which by Prop. A.1.3 gives us

𝜎 ≾
𝑠

𝑖
𝜎′.

We now show (a) for all 𝑖 ∈ 𝐴 \ 𝐴𝑙 . For all 𝑖 ∈ 𝐴 \ 𝐴𝑙 we
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have 𝜎(𝑝(𝑖)) = ⊤ and 𝑒(𝑖) ⇓𝜎 ⊥, and therefore 𝜎′′(𝑡(𝑖)) =

⊥. Therefore by (IH1) we have 𝜎′′ ≼
𝑠𝑙

𝑖
𝜎′′′, which implies

𝜎′′′(𝑝(𝑖)) = ⊤. By Lemma A.1.6, since 𝜎𝑖 ∈𝑖 𝜎′′, we get that
𝜎𝑖 ∈𝑖 𝜎′′′. Then by (IH2), ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩. Additionally,

since 𝜎 ≼
𝑠

𝑖
𝜎′′ and 𝜎′′ ≼

𝑠𝑙

𝑖
𝜎′′′ and 𝜎′′′ ≾

𝑠

𝑖
𝜎′, by Prop. A.1.3

we get 𝜎 ≾𝑠
𝑖
𝜎′.

▶ 𝑠 ≡ 𝑥1 , . . . , 𝑥𝑚 := 𝑚(𝑒1 , . . . , 𝑒𝑛): Then 𝑠 has the form

if (∨𝑘
𝑖=1 𝑝

(𝑖)) {⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

}

where 𝑎 𝑗 and 𝑡 𝑗 are in freshvars(𝑠) and ts =

[𝑡1(1) , . . . , 𝑡1(𝑘) , . . . , 𝑡𝑚 (1) , . . . , 𝑡𝑚 (𝑘)] and as =

[𝑎1
(1) , . . . , 𝑎1

(𝑘) , . . . , 𝑎𝑛 (1) , . . . , 𝑎𝑛 (𝑘)].
𝑠 can proceed either by Cond1 or by Cond2.

• If it proceeds by Cond2, we have that ∨𝑘
𝑖=1 𝑝

(𝑖) ⇓𝜎 ⊥ and
⟨𝑠, 𝜎⟩ → ⟨skip, 𝜎⟩, and therefore 𝜎′ = 𝜎. By the rules of
expression evaluation, ∨𝑘

𝑖=1 𝑝
(𝑖) ⇓𝜎 ⊥ implies that for all

𝑖 ∈ {1, . . . , 𝑘} we have 𝑝(𝑖) ⇓𝜎 ⊥, which implies that 𝐴 = ∅. (a)
is therefore trivially true and we must only show (b), which
we get by reflexivity of ≼𝑉

𝑖
.

• If the product proceeds by Cond1 then ∨𝑘
𝑖=1 𝑝

(𝑖) ⇓𝜎 ⊤ and we
must have the following by repeated use of Lemma A.1.7.1:

⟨𝑠, 𝜎⟩

→1

〈 ⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

, 𝜎

〉

→𝑙1

〈 skip;
ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘

𝑖=1 if (𝑝(𝑖)) {
⊙𝑚

𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}
, 𝜎′′

〉
(for some 𝑙1 , 𝜎′′)

→1
〈

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

, 𝜎′′
〉

→𝑙2

〈
skip;⊙𝑘

𝑖=1 if (𝑝(𝑖)) {
⊙𝑚

𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}
, 𝜎′′′

〉
(for some 𝑙2 , 𝜎′′′)

→1⟨
𝑘⊙

𝑖=1
if (𝑝(𝑖)) {

𝑚⊙
𝑗=1

(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}, 𝜎′′′⟩

→𝑙3 ⟨skip, 𝜎′⟩ (for some 𝑙3)

where 𝑙 = 3 + 𝑙1 + 𝑙2 + 𝑙3, and all 𝑙𝑖 ≥ 0.
By Lemma A.1.7.2 and Lemma A.1.13 we have that for all 𝑖 ∈ 𝐴

and 1 ≤ 𝑗 ≤ 𝑛, 𝜎′′(𝑎 𝑗 (𝑖)) = 𝑣𝑖 , 𝑗 for some 𝑣𝑖 , 𝑗 s.t. 𝑒 𝑗 (𝑖) ⇓𝜎 𝑣𝑖 , 𝑗 .
Moreover, since 𝑎1 , . . . , 𝑎𝑛 are in freshvars(𝑠), we have 𝜎 ≼𝑠 𝜎′′

by Prop. A.1.5.
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Let Φ(𝑚) = ([𝑞1 , . . . , 𝑞𝑛], [𝑟1 , . . . , 𝑟𝑚], 𝑠𝑚). Then
because of match(Φ,Φ), we know Φ(𝑚) =

([𝑝′(1) , . . . , 𝑝′(𝑘) , 𝑞1
(1) , . . . , 𝑞1

(𝑘) , . . . , 𝑞𝑛 (1) , . . . , 𝑞𝑛 (𝑘)], 𝑟𝑠, 𝑠𝑚)
where 𝑠𝑚 = J𝑠𝑚K𝑝

′

𝑘
and 𝑟𝑠 =

[𝑟1
(1) , . . . , 𝑟1

(𝑘) , . . . , 𝑟𝑚 (1) , . . . , 𝑟𝑚 (𝑘)].
By Lemma A.1.7.2 and Call we must have that

⟨ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as), 𝜎′′⟩
→⟨𝑡𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ), 𝜎

′′⟩

→𝑙2−1⟨skip, 𝜎′′⟩

where

𝜎 𝑓 = [𝑝′(1) ↦→ 𝜎′′(𝑝(1)), . . . , 𝑝′(𝑘) ↦→ 𝜎′′(𝑝(𝑘)),

𝑞1
(1) ↦→ 𝑣1,1 , . . . , 𝑞𝑛

(1) ↦→ 𝑣1,𝑛 , . . . ,

𝑞1
(𝑘) ↦→ 𝑣𝑘,1 , . . . , 𝑞𝑛

(𝑘) ↦→ 𝑣𝑘,𝑛]

and 𝑎 𝑗
(𝑖) ⇓𝜎′′ 𝑣𝑖 , 𝑗 .

For all 𝑖 ∈ 𝐴, since 𝜎(𝑎 𝑗 (𝑖)) = 𝑣𝑖 , 𝑗 and therefore 𝑒 𝑗
(𝑖) ⇓𝜎 𝑣𝑖 , 𝑗 ,

we have by Lemma 3.4.1 that 𝑒 𝑗 ⇓𝜎𝑖 𝑣𝑖 , 𝑗 . By Call, we have
⟨𝑠, 𝜎𝑖⟩ → ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩, where
𝜎(𝑖 , 𝑓 ) = [𝑞1 ↦→ 𝑣𝑖 ,1 , . . . , 𝑞𝑛 ↦→ 𝑣𝑖 ,𝑛], for all 𝑖 ∈ 𝐴.
We now show that for all 𝑖 ∈ 𝐴 we have 𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎 𝑓 ; we
denote the empty store as [] and abbreviate 𝜎𝑝′ = [𝑝′(1) ↦→
_, . . . , 𝑝′(𝑘) ↦→ _]:

[] ∈𝑖 [] ∧ [] ≼𝑠𝑚

𝑖
[] (by definitions of ∈𝑖 and ≼𝑉

𝑖
)

⇒[] ∈𝑖 [] ∧ [] ≼𝑠𝑚

𝑖
[][𝑝′(1) ↦→ 𝜎′′(𝑝(1)), . . . , 𝑝′(𝑘) ↦→ 𝜎′′(𝑝(𝑘))]

(Prop. A.1.5)

⇒[] ∈𝑖 𝜎𝑝′ (Lemma A.1.6)

⇒[] ∈𝑖 𝜎𝑝′[𝑞1
(1) ↦→ 𝑣1,1 , . . . , 𝑞𝑛

(1) ↦→ 𝑣1,𝑛 , . . . ,

𝑞1
(𝑖−1) ↦→ 𝑣𝑖−1,1 , . . . , 𝑞𝑛

(𝑖−1) ↦→ 𝑣𝑖−1,𝑛]
(Prop. A.1.2)

⇒𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎𝑝′[𝑞1
(1) ↦→ 𝑣1,1 , . . . , 𝑞𝑛

(1) ↦→ 𝑣1,𝑛 , . . . ,

𝑞1
(𝑖) ↦→ 𝑣𝑖 ,1 , . . . , 𝑞𝑛

(𝑖) ↦→ 𝑣𝑖 ,𝑛] (Prop. A.1.1)

⇒𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎𝑝′[𝑞1
(1) ↦→ 𝑣1,1 , . . . , 𝑞𝑛

(1) ↦→ 𝑣1,𝑛 , . . . ,

𝑞1
(𝑘) ↦→ 𝑣𝑘,1 , . . . , 𝑞𝑛

(𝑘) ↦→ 𝑣𝑘,𝑛] (Prop. A.1.2)
⇒𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎 𝑓

By Lemma A.1.8.1 we know that ⟨𝑠𝑚 , 𝜎 𝑓 ⟩ →𝑙2−2 ⟨skip, 𝜎′
𝑓
⟩

for some 𝜎′
𝑓

s.t. 𝜎′′′(𝑡 𝑗 (𝑖)) = 𝜎′
𝑓
(𝑟 𝑗 (𝑖)) for all 1 ≤ 𝑗 ≤ 𝑚 and

𝑖 ∈ 𝐴∪ 𝐼. We may apply the induction hypothesis to this trace
and 𝐴 (IH). By Lemma A.1.13 we get that for all 𝑖 ∈ 𝐴 and
1 ≤ 𝑗 ≤ 𝑚, 𝜎′(𝑥 𝑗 (𝑖)) = 𝜎′′′(𝑡 𝑗 (𝑖)).
We now prove (a). For all 𝑖 ∈ 𝐴, since 𝜎 𝑓 (𝑝′

(𝑖)) = ⊤, we know
by (IH) that ⟨𝑠𝑚 , 𝜎(𝑖 , 𝑓 )⟩ →∗ ⟨skip, 𝜎′(𝑖 , 𝑓 )⟩ for some 𝜎′(𝑖 , 𝑓 ) s.t.
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𝜎′(𝑖 , 𝑓 ) ∈𝑖 𝜎′𝑓 . We can therefore construct

⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩
→∗⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (skip, 𝜎′(𝑖 , 𝑓 )), 𝜎𝑖⟩

using Frame1 and ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (skip, 𝜎′(𝑖 , 𝑓 )), 𝜎𝑖⟩ →
⟨skip, 𝜎′

𝑖
⟩ by Frame2, where 𝜎′

𝑖
= 𝜎𝑖[𝑥1 ↦→

𝜎′(𝑖 , 𝑓 )(𝑟1)] . . . [𝑥𝑚 ↦→ 𝜎′(𝑖 , 𝑓 )(𝑟𝑚)] and therefore 𝜎′
𝑖

∈𝑖 𝜎′

by Prop. A.1.2 and Prop. A.1.1. By Prop. A.1.5, we also get
𝜎′′ ≾

𝑠

𝑖
𝜎′′′ since the assigned variables ts are in freshvars(𝑠),

and 𝜎′′′ ≾
𝑠

𝑖
𝜎′ since the assigned variables 𝑝 𝑗 are in RPVar.

Because of this and 𝜎 ≼𝑠 𝜎′′ we get by Prop. A.1.3 that
𝜎 ≾

𝑠

𝑖
𝜎′.

We now prove (b). For all 𝑖 ∈ 𝐼, we also have 𝜎 ≼
𝑠

𝑖
𝜎′ by

Prop. A.1.3 since 𝜎 ≼𝑠 𝜎′′, 𝜎′′ ≼𝑠

𝑖
𝜎′′′ by Prop. A.1.5 and

𝜎′′′ ≼
𝑠

𝑖
𝜎′ by Prop. A.1.4.

▶ 𝑠 = 𝑠1; 𝑠2: Then 𝑠 must have the form 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K
�̊�

𝑘
and

𝑠2 = J𝑠2K
�̊�

𝑘
. By Lemma A.1.7.1, we get that

⟨𝑠, 𝜎⟩
→𝑙1 ⟨skip; 𝑠2 , 𝜎

′′ (for some 𝑙1 , 𝜎′′)

→1⟨𝑠2 , 𝜎
′′⟩

→𝑙2 ⟨skip, 𝜎′⟩ (for some 𝑙2)

where 𝑙 = 1 + 𝑙1 + 𝑙2 and all 𝑙𝑖 ≥ 0.
Then by Lemma A.1.7.2, we have ⟨𝑠1 , 𝜎⟩ →𝑙1 ⟨skip, 𝜎′′⟩, and we
can apply the induction hypothesis to this and 𝐴 (IH1). We get
that 𝜎 ≾

𝑠1

𝑖
𝜎′′ for all 𝑖 ∈ 𝐴 and 𝜎 ≼

𝑠1

𝑖
𝜎′′ for all 𝑖 ∈ 𝐼. Therefore

𝜎′′(𝑝(𝑖)) = 𝜎(𝑝(𝑖)) for all 𝑖 ∈ {1, . . . , 𝑘}. Subsequently we can apply
the induction hypothesis to ⟨𝑠2 , 𝜎′′⟩ →𝑙2 ⟨skip, 𝜎′⟩ and 𝐴 (IH2).
We first prove (a): For all 𝑖 ∈ 𝐴, we have 𝜎(𝑝(𝑖)) = ⊤ and
𝜎𝑖 ∈𝑖 𝜎. By (IH1) we get ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′

𝑖
⟩ for some 𝜎′′

𝑖

s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′, and 𝜎 ≾

𝑠1

𝑖
𝜎′′. Then since 𝜎′′(𝑝(𝑖)) = ⊤, by (IH2)

we get ⟨𝑠2 , 𝜎′′𝑖 ⟩ →∗ ⟨skip, 𝜎′
𝑖
⟩ s.t. 𝜎′

𝑖
∈𝑖 𝜎′ and we can construct

⟨𝑠, 𝜎𝑖⟩ →∗ ⟨skip; 𝑠2 , 𝜎′′𝑖 ⟩ → ⟨𝑠2 , 𝜎′′𝑖 ⟩ →∗ ⟨skip, 𝜎′
𝑖
⟩. Additionally,

we get 𝜎′′ ≾
𝑠2

𝑖
𝜎′ by (IH2), and by Prop. A.1.3, we get 𝜎 ≾𝑠

𝑖
𝜎′, and

we are done.
We now prove (b): For all 𝑖 ∈ 𝐼 we get that 𝜎 ≼

𝑠1

𝑖
𝜎′′ from (IH1) and

𝜎′′ ≼
𝑠2

𝑖
𝜎′ from (IH2), and by Prop. A.1.3, we get 𝜎 ≼𝑠

𝑖
𝜎′ and are

done.

□

A.1.3. Proof of Lemma 3.4.4

Lemma A.1.20 Assume that match(Φ,Φ) and that for some sets 𝐴 ⊆
{1, . . . , 𝑘} and 𝐼 = {1, . . . , 𝑘}\𝐴 we have that∀𝑖 ∈ 𝐴. 𝑝(𝑖) ⇓𝜎 ⊤∧𝜎𝑖 ∈𝑖 𝜎

and ∀𝑖 ∈ 𝐼. 𝑝(𝑖) ⇓𝜎 ⊥. If ⟨𝑠, 𝜎⟩ →𝑙 ⟨¤𝑠, 𝜎′⟩, where 𝑠 = J𝑠K�̊�
𝑘

and ¤𝑠 ≠ skip,
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under Φ, then for at least one 𝑖𝑒 ∈ 𝐴, ⟨𝑠, 𝜎𝑖𝑒 ⟩ →∗ ⟨¤𝑠, 𝜎′
𝑖𝑒
⟩ under Φ for some

𝜎′
𝑖𝑒

.

Proof. We prove the lemma separately for the two possible cases ¤𝑠 =

error and ¤𝑠 = magic. Here we show only the case for ¤𝑠 = error, since
the other case is completely analogous, with the cases for asserts and
assumes being swapped.

The proof goes by strong induction on 𝑙. We perform a case split on the
structure of 𝑠.

▶ 𝑠 = 𝑥:=𝑒: This case is impossible by Lemma A.1.13.
▶ 𝑠 = havoc 𝑥: This case is impossible by Lemma A.1.15.
▶ 𝑠 = assert 𝑒: Then by Lemma A.1.17 we have some non-empty set

𝐴𝑒 ⊆ 𝐴 s.t. for all 𝑖 ∈ 𝐴𝑒 , 𝑒(𝑖) ⇓𝜎 ⊥. By Lemma 3.4.1, this implies that
𝑒 ⇓𝜎𝑖 ⊥, and by Assert2 we therefore have ⟨𝑠, 𝜎𝑖⟩ → ⟨error, 𝜎𝑖⟩
for all 𝑖 ∈ 𝐴𝑒 .

▶ 𝑠 = assume 𝑒: This case is impossible by Lemma A.1.18 and
Lemma A.1.19.

▶ 𝑠 = if (𝑒) {𝑠1} else {𝑠2}:
Then 𝑠 has the form ⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));⊙𝑘
𝑖=1( 𝑓 (𝑖):=𝑝(𝑖) ∧

¬𝑒(𝑖)); 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K𝑡𝑘 and 𝑠2 = J𝑠2K
𝑓

𝑘
and 𝑡 and 𝑓 are

fresh variable names.
By Lemma A.1.7.3 and Lemma A.1.11 we must have that ⟨𝑠, 𝜎⟩ →∗

⟨𝑠1; 𝑠2 , 𝜎′′⟩, where 𝜎′′ = 𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑘) ↦→ 𝑣𝑘][ 𝑓 (1) ↦→
𝑣′1] . . . [ 𝑓 (𝑘) ↦→ 𝑣′

𝑙
], s.t. 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 and 𝑝(𝑖) ∧ ¬𝑒(𝑖) ⇓𝜎 𝑣′

𝑖
. Then

by repeated use of Seq1 and Seq2 we have ⟨𝑠, 𝜎⟩ →∗ ⟨𝑠1; 𝑠2 , 𝜎′′⟩.
For some 𝐴1 ⊆ 𝐴 and 𝐴2 = 𝐴 \ 𝐴1 we have that for all 𝑖 ∈ 𝐴1,
𝑒(𝑖) ⇓𝜎 ⊤ and therefore 𝜎′′(𝑡(𝑖)) = ⊤, and 𝜎′′(𝑡(𝑖)) = ⊥ for all 𝑖 ∈ 𝐴2.
We must then have that ⟨𝑠1; 𝑠2 , 𝜎′′⟩ →𝑙′ ⟨error, 𝜎′⟩ for some 𝑙′ < 𝑙.
By Lemma A.1.7.3 this means that either ⟨𝑠1 , 𝜎′′⟩ →𝑙′−1 ⟨error, 𝜎′⟩
or ⟨𝑠1 , 𝜎′′⟩ →𝑙1 ⟨skip, 𝜎′′′⟩ ∧ ⟨𝑠2 , 𝜎′′′⟩ →𝑙2 ⟨error, 𝜎′⟩ for some
𝜎′′′, 𝑙1 , 𝑙2 s.t. 𝑙′ = 1 + 𝑙1 + 𝑙2.

• In the former case, we get by the induction hypothesis that
for some 𝑖 ∈ 𝐴1, ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ for some 𝜎′

𝑖
. Since

we also have that 𝑒(𝑖) ⇓𝜎 ⊤ and therefore by Lemma 3.4.1
𝑒 ⇓𝜎𝑖 ⊤, we get by Cond1 and Seq1 and Seq3 that ⟨𝑠, 𝜎𝑖⟩ →∗

⟨error; 𝑠2 , 𝜎′𝑖⟩ → ⟨error, 𝜎′
𝑖
⟩, and we are done.

• In the latter case, we get by Thm. 3.4.2 that for all 𝑖 ∈ 𝐴1,
𝜎′′′( 𝑓 (𝑖)) = ⊥ and ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′′

𝑖
⟩ for some 𝜎′′′

𝑖
s.t.

𝜎′′′
𝑖

∈𝑖 𝜎′′′, and for all 𝑖 ∈ 𝐴2, 𝜎′′′( 𝑓 (𝑖)) = ⊤ and 𝜎′′ ≼
𝑠1

𝑖
𝜎′′′,

which implies 𝜎𝑖 ∈𝑖 𝜎′′ by Lemma A.1.6, and for all 𝑖 ∈ 𝐼,
𝜎′′′( 𝑓 (𝑖)) = ⊥. By the induction hypothesis, we get that for
some 𝑖 ∈ 𝐴2, ⟨𝑠2 , 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ for some 𝜎′

𝑖
. Since 𝑒(𝑖) ⇓𝜎

⊥, we know that 𝑒 ⇓𝜎𝑖 ⊥ by Lemma 3.4.1, and we can use
Cond2 to construct ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠2 , 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩.

▶ 𝑠 ≡ while (𝑒) {𝑠𝑙}:
Then 𝑠 must have the formwhile (∨𝑘

𝑖=1(𝑝(𝑖)∧𝑒(𝑖))) {
⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖)∧
𝑒(𝑖)); 𝑠𝑙} where 𝑠𝑙 = J𝑠𝑙K𝑡𝑘 and freshvars(𝑠) = {𝑡} ∪ freshvars(𝑠𝑙).
𝑠 must progress via Whl1, since if it progressed by Whl2, we
would have ⟨𝑠, 𝜎⟩ → ⟨skip, 𝜎⟩. Therefore we have ⟨𝑠, 𝜎⟩ →
⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩ →𝑙−1 ⟨error, 𝜎′⟩.
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Then by Lemma A.1.7.3, Lemma A.1.7.2 and Lemma A.1.11 we
have ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)), 𝜎⟩ →∗ ⟨skip; 𝑠𝑙 ; 𝑠, 𝜎′′⟩ for 𝜎′′ =

𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑘) ↦→ 𝑣𝑘] s.t. 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 , and ⟨𝑠𝑙 ; 𝑠, 𝜎′′⟩ →𝑙′

⟨error, 𝜎′⟩ for some 𝑙′ < 𝑙. We define 𝐴𝑡 = {𝑖 |𝑖 ∈ 𝐴 ∧ 𝑒(𝑖) ⇓𝜎 ⊤}
and 𝐼𝑡 = {1, . . . , 𝑘} \ 𝐴𝑡 . We have that for all 𝑖 ∈ 𝐴𝑡 , 𝜎′′(𝑡(𝑖)) = ⊤,
and for all 𝑖 ∈ 𝐼𝑡 , 𝜎′′(𝑡(𝑖)) = ⊥. Since 𝑡 are in freshvars(𝑠), we have
that 𝜎 ≼𝑠 𝜎′′ by Prop. A.1.5. Therefore by Lemma A.1.6 we have
that 𝜎𝑖 ∈𝑖 𝜎′′ for all 𝑖 ∈ 𝐴.
Then by Lemma A.1.7.3 we have that either ⟨𝑠𝑙 , 𝜎′′⟩ →𝑙′−1

⟨error, 𝜎′⟩ or ⟨𝑠𝑙 , 𝜎′′⟩ →𝑙1 ⟨skip, 𝜎′′′⟩ ∧ ⟨𝑠, 𝜎′′′⟩ →𝑙2 ⟨error, 𝜎′⟩
for some 𝜎′′′, 𝑙1 , 𝑙2 s.t. 𝑙′ = 1 + 𝑙1 + 𝑙2.

• In the first case, we can apply the induction hypothesis to
⟨𝑠𝑙 , 𝜎′′⟩ →𝑙′−1 ⟨error, 𝜎′⟩ and 𝐴 and get that for some 𝑖 ∈
𝐴𝑡 , ⟨𝑠𝑙 , 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ for some 𝜎′

𝑖
. Since we also have

𝑒 ⇓𝜎𝑖 ⊤ by Lemma 3.4.1, we can use Whl1 and Seq1 and
Seq3 to construct ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →∗ ⟨error; 𝑠, 𝜎′

𝑖
⟩ →

⟨error, 𝜎′
𝑖
⟩, and we are done.

• In the second case, by Thm. 3.4.2, we have that for all 𝑖 ∈ 𝐴𝑡 ,
𝜎′′ ≾

𝑠𝑙

𝑖
𝜎′′′ and ⟨𝑠𝑙 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′

𝑖
⟩ for some 𝜎′′

𝑖
s.t. 𝜎′′

𝑖
∈𝑖

𝜎′′′, and for all 𝑖 ∈ 𝐼𝑡 , 𝜎′′ ≼
𝑠𝑙

𝑖
𝜎′′′. Therefore for all 𝑖 ∈ 𝐴 we

have 𝜎′′′(𝑝(𝑖)) = ⊤ and for all 𝑖 ∈ 𝐼 𝜎′′′(𝑝(𝑖)) = ⊥. Additionally,
by Lemma A.1.6 we have for all 𝑖 ∈ 𝐴 \ 𝐴𝑡 that 𝜎𝑖 ∈𝑖 𝜎′′′.
Therefore by applying the induction hypothesis to ⟨𝑠, 𝜎′′′⟩ →𝑙2

⟨error, 𝜎′⟩ and 𝐴, we get that for some 𝑖 ∈ 𝐴, ⟨𝑠, 𝜎′′′
𝑖
⟩ →∗

⟨error, 𝜎′
𝑖
⟩ for some 𝜎′

𝑖
and 𝜎′′′

𝑖
= 𝜎′′

𝑖
if 𝑖 ∈ 𝐴𝑡 and 𝜎′′′

𝑖
= 𝜎𝑖

otherwise.
* If 𝑖 ∈ 𝐴𝑡 then we can construct ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →∗

⟨skip; 𝑠, 𝜎′′
𝑖
⟩ → ⟨𝑠, 𝜎′′

𝑖
⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ by Seq1 and

Seq2, and we are done.
* Otherwise we already have ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ and

we are also done.

▶ 𝑠 ≡ 𝑥1 , . . . , 𝑥𝑚 := 𝑚(𝑒1 , . . . , 𝑒𝑛): Then 𝑠 has the form

if (∨𝑘
𝑖=1 𝑝

(𝑖)) {⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

}

where 𝑎 𝑗 and 𝑡 𝑗 are in freshvars(𝑠) and ts =

[𝑡1(1) , . . . , 𝑡1(𝑘) , . . . , 𝑡𝑚 (1) , . . . , 𝑡𝑚 (𝑘)] and as =

[𝑎1
(1) , . . . , 𝑎1

(𝑘) , . . . , 𝑎𝑛 (1) , . . . , 𝑎𝑛 (𝑘)].
Then by Lemma A.1.7.3, Lemma A.1.7.2 and Lemma A.1.13, we
must have that

⟨𝑠, 𝜎⟩ →∗ ⟨ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);
𝑘⊙

𝑖=1
if (𝑝(𝑖)) {

𝑚⊙
𝑗=1

(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}, 𝜎′′⟩

for some 𝜎′′, and ⟨ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as), 𝜎′′⟩ →𝑙′ ⟨error, 𝜎′⟩
for some 𝑙′ ≤ 𝑙. Assuming the same form of Φ and Φ

as in the previous proof, we must then have that by Call,
⟨ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as), 𝜎′′⟩ → ⟨𝑡𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ), 𝜎′′⟩ →𝑙′−1
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⟨error, 𝜎′⟩ for some 𝜎 𝑓 . Then by Lemma A.1.8.2 we get that
⟨𝑠𝑚 , 𝜎 𝑓 ⟩ →𝑙′−2 ⟨error, 𝜎′

𝑓
⟩ for some 𝜎′

𝑓
.

For all 𝑖 ∈ 𝐴, we get by Call that ⟨𝑠, 𝜎𝑖⟩ →
⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩ for some 𝜎(𝑖 , 𝑓 ), and by
the same argument as in the proof for Thm. 3.4.2, we have that
𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎 𝑓 and 𝜎 𝑓 (𝑝′

(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴, and 𝜎 𝑓 (𝑝′
(𝑖)) = ⊥

for all 𝑖 ∈ 𝐼. Therefore by applying the induction hypothesis to
⟨𝑠𝑚 , 𝜎 𝑓 ⟩ →𝑙′−2 ⟨error, 𝜎′

𝑓
⟩ and 𝐴 we get for some 𝑖 ∈ 𝐴 that

⟨𝑠𝑚 , 𝜎(𝑖 , 𝑓 )⟩ →∗ ⟨error, 𝜎′(𝑖 , 𝑓 )⟩ for some 𝜎′(𝑖 , 𝑓 ).
Then we can construct ⟨𝑠, 𝜎𝑖⟩ →
⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩
→∗ ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (error, 𝜎′(𝑖 , 𝑓 )), 𝜎𝑖⟩ → ⟨error, 𝜎𝑖⟩ us-
ing Frame1 and Frame3 and we are done.

▶ 𝑠 ≡ 𝑠1; 𝑠2: Then 𝑠 = 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K
�̊�

𝑘
and 𝑠2 = J𝑠2K

�̊�

𝑘
. By

Lemma A.1.7.3 we must have that ⟨𝑠1 , 𝜎⟩ →𝑙−1 ⟨error, 𝜎′⟩ or
that ⟨𝑠1 , 𝜎⟩ →𝑙1 ⟨skip, 𝜎′′⟩ ∧ ⟨𝑠2 , 𝜎′′⟩ →∗ ⟨error, 𝜎′⟩𝑙2 for some
𝜎′′, 𝑙1 , 𝑙2 s.t. 𝑙 = 1 + 𝑙1 + 𝑙2.

• In the former case, we get by the induction hypothesis that
⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨error, 𝜎′

𝑖
⟩ for some 𝑖 ∈ 𝐴 and some 𝜎′

𝑖
. We can

construct ⟨𝑠1; 𝑠2 , 𝜎𝑖⟩ →∗ ⟨error; 𝑠2 , 𝜎′𝑖⟩ → ⟨error, 𝜎′
𝑖
⟩ using

Seq1 and Seq3 and we are done.
• In the latter case, we get by Thm. 3.4.2 that for all 𝑖 ∈ 𝐴,

𝜎′′(𝑝(𝑖)) = ⊤ and ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′
𝑖
⟩ for some 𝜎′′

𝑖
s.t.

𝜎′′
𝑖
∈𝑖 𝜎′′, and that for all 𝑖 ∈ 𝐼, 𝜎′′(𝑝(𝑖)) = ⊥. We then get

by the induction hypothesis that ⟨𝑠2 , 𝜎′′𝑖 ⟩ →∗ ⟨error, 𝜎′
𝑖
⟩

for some 𝑖 ∈ 𝐴 and some 𝜎′
𝑖
. We can construct ⟨𝑠, 𝜎𝑖⟩ →∗

⟨skip; 𝑠2 , 𝜎′′𝑖 ⟩ → ⟨𝑠2 , 𝜎′′𝑖 ⟩ →∗ ⟨error, 𝜎′
𝑖
⟩ by Seq1, Seq2, and

Seq3, and we are done.

□

A.1.4. Proof of Thm. 3.4.5

Theorem 3.4.5 Assume that match(Φ,Φ) and that for a set of indices

𝐴 ⊆ {1, . . . , 𝑘} there is a derivation 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ⟨skip, 𝜎′
𝑖
⟩ under Φ

for each 𝑖 ∈ 𝐴. Assume also that 𝜎𝑖 ∈𝑖 𝜎 and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴, and

𝜎(𝑝(𝑖)) = ⊥ for any 𝑖 ∈ 𝐼, where 𝐼 = {1, . . . , 𝑘} \ 𝐴.

Then ⟨𝑠, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩, where 𝑠 = J𝑠K�̊�
𝑘
, under Φ for some 𝜎′ s.t. for all

𝑖 ∈ 𝐴, 𝜎′
𝑖
∈𝑖 𝜎′ and 𝜎 ≾

𝑠

𝑖
𝜎′, and for all 𝑖 ∈ 𝐼, 𝜎 ≼

𝑠

𝑖
𝜎′.

Proof. The proof goes by strong induction on the sum of the lengths of
traces 𝑙 = ∑

𝑖∈𝐴 𝑙𝑖 .

▶ Case 𝑙 = 0: Then either |𝐴| = 0 or |𝐴| > 0.
If |𝐴| = 0 then we need to show that for all 𝑖 ∈ {1, . . . , 𝑘} we
have ⟨𝑠, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ for some 𝜎′ s.t. 𝜎 ≼𝑠

𝑖
𝜎′, which we get by

Lemma 3.4.3.
If |𝐴| > 0 we must have that 𝑠 = skip, since all other statements
require a trace of length at least 1 to step to skip and the sum of
𝑗 such lengths would therefore be greater than zero. Therefore
𝜎𝑖 = 𝜎′

𝑖
for all 𝑖 ∈ 𝐴. Since 𝑠 = skip, we know that 𝜎′ = 𝜎 and
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therefore for all 𝑖 ∈ 𝐴 𝜎′
𝑖
∈𝑖 𝜎′ and 𝜎 ≾

𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
. For

all 𝑖 ∈ 𝐼, we get that 𝜎 ≼𝑠

𝑖
𝜎′ by reflexivity of ≼𝑉

𝑖
.

▶ Case 𝑙 > 0: We make a case distinction based on the structure of 𝑠.

• 𝑠 ≡ 𝑥:=𝑒: Then 𝑠 has the form ⊙𝑘
𝑖=1 if (𝑝(𝑖)) {𝑥(𝑖):=𝑒(𝑖)}.

By Assign, for each 𝑖 ∈ 𝐴 we have 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →
⟨skip, 𝜎𝑖[𝑥 ↦→ 𝑣𝑖]⟩ s.t. 𝑒 ⇓𝜎𝑖 𝑣𝑖 , and therefore 𝜎′

𝑖
= 𝜎𝑖[𝑥 ↦→ 𝑣𝑖].

By Lemma 3.4.1, since fv(𝑒) ∈ PVar, we get that 𝑒(𝑖) ⇓𝜎 𝑣𝑖 for
each 𝑖 ∈ 𝐴. By Lemma A.1.12 and Lemma A.1.13 we have that
⟨𝑠, 𝜎⟩ →∗ ⟨skip, 𝜎′⟩ where 𝜎′ = 𝜎[𝑥(𝑗1) ↦→ 𝑣 𝑗1] . . . [𝑥(𝑗𝑛 ) ↦→
𝑣 𝑗𝑛 ] for { 𝑗1 , . . . , 𝑗𝑛} = 𝐴 s.t. 𝑒(𝑗𝑛 ) ⇓𝜎 𝑣 𝑗𝑛 . Like in the corre-
sponding case in the proof for Thm. 3.4.2, we get that 𝜎′

𝑖
∈𝑖 𝜎′

for all 𝑖 ∈ 𝐴 by repeated use of Prop. A.1.2 and Prop. A.1.1, and
since all 𝑥(𝑖) ∈ RPVar, we also have that 𝜎 ≾𝑠

𝑖
𝜎′ by Prop. A.1.5.

Similarly, we have 𝜎 ≼
𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐼 by Prop. A.1.4.

• 𝑠 ≡ havoc 𝑥: Then 𝑠 has the form ⊙𝑘
𝑖=1 if (𝑝(𝑖)) {havoc 𝑥(𝑖)}.

By Havoc, for each 𝑖 ∈ 𝐴 we have 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →
⟨skip, 𝜎𝑖[𝑥 ↦→ 𝑣𝑖]⟩ for some 𝑣𝑖 , and therefore 𝜎′

𝑖
= 𝜎𝑖[𝑥 ↦→ 𝑣𝑖].

By Lemma A.1.14 and Lemma A.1.15 we get that ⟨𝑠, 𝜎⟩ →∗

⟨skip, 𝜎′⟩ where 𝜎′ = 𝜎[𝑥(𝑖1) ↦→ 𝑣𝑖1] . . . [𝑥(𝑖𝑛 ) ↦→ 𝑣𝑖𝑛 ] for
{𝑖1 , . . . , 𝑖𝑛} = 𝐴. Like in the corresponding case in the proof
for Thm. 3.4.2, we get that 𝜎′

𝑖
∈𝑖 𝜎′ for all 𝑖 ∈ 𝐴 by repeated

use of Prop. A.1.2 and Prop. A.1.1, and since all 𝑥(𝑖) ∈ RPVar,
we also have that 𝜎 ≾𝑠

𝑖
𝜎′ by Prop. A.1.5. Similarly, we have

𝜎 ≼
𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐼 by Prop. A.1.4.

• 𝑠 ≡ skip: This is impossible, since any trace for 𝑠 = skip

has length zero, and therefore the sum of the lengths of such
traces is zero as well.

• 𝑠 ≡ assert 𝑒: Then 𝑠 must have the form⊙𝑘
𝑖=1 if (𝑝(𝑖)) {assert 𝑒(𝑖)}. We must have that for all

𝑖 ∈ 𝐴, 𝑑𝑖 proceeds with Assert1 and therefore 𝑒 ⇓𝜎𝑖 ⊤, and
by Lemma 3.4.1, 𝑒(𝑖) ⇓𝜎 ⊤. Since for all 𝑖 ∈ 𝐼, 𝜎(𝑝(𝑖)) = ⊥,
by Lemma A.1.16, we have that ⟨𝑠, 𝜎⟩ →∗ ⟨skip, 𝜎⟩ and
therefore 𝜎′ = 𝜎, which trivially implies 𝜎′

𝑖
∈𝑖 𝜎′ for all 𝑖 ∈ 𝐴,

as well as 𝜎 ≾𝑠
𝑖
𝜎′ because of reflexivity of ≼𝑉

𝑖
. Similarly, for

all 𝑖 ∈ 𝐼, we have 𝜎 ≼
𝑠

𝑖
𝜎′ because of reflexivity.

• 𝑠 ≡ assume 𝑒: This case is analogous to the previous one.
• 𝑠 ≡ if (𝑒) {𝑠1} else {𝑠2}:

Then 𝑠 has the form ⊙𝑘
𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));⊙𝑘

𝑖=1( 𝑓 (𝑖):=𝑝(𝑖) ∧
¬𝑒(𝑖)); 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K𝑡𝑘 and 𝑠2 = J𝑠2K

𝑓

𝑘
and 𝑡 and 𝑓 are

fresh variable names.
We first identify the sets of subtraces to which we can apply
the induction hypothesis. We define 𝐴1 = {𝑖 |𝑖 ∈ 𝐴 ∧ 𝑒 ⇓𝜎𝑖 ⊤}
and 𝐴2 = {𝑖 |𝑖 ∈ 𝐴 ∧ 𝑒 ⇓𝜎𝑖 ⊥}. Note that 𝐴1 ∪ 𝐴2 = 𝐴.
We must then have that for all 𝑖 ∈ 𝐴1, 𝑑𝑖 progresses by Cond1
and therefore has the form ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠1 , 𝜎𝑖⟩ followed by a
subtrace 𝑑′

𝑖
= ⟨𝑠1 , 𝜎𝑖⟩ →𝑙𝑖−1 ⟨skip, 𝜎′

𝑖
⟩. We apply the induc-

tion hypothesis to𝐴1 and the subtraces 𝑑′
𝑖
(IH1). Conversely, for

all 𝑖 ∈ 𝐴2, 𝑑𝑖 progresses by Cond2 and therefore has the form
⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠2 , 𝜎𝑖⟩ followed by 𝑑′′

𝑖
= ⟨𝑠2 , 𝜎𝑖⟩ →𝑙𝑖−1 ⟨skip, 𝜎′

𝑖
⟩.

We again apply the induction hypothesis to 𝐴2 and the traces
𝑑′′
𝑖

(IH2).
We now construct a corresponding product execution.
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By Lemma A.1.10 and Lemma A.1.11 we know that
⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)), 𝜎⟩ →∗ ⟨skip, 𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑖) ↦→
𝑣𝑘]⟩ s.t. 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 . By repeated use of Seq1
and Seq2, we get that ⟨𝑠, 𝜎⟩ →∗ ⟨⊙𝑘

𝑖=1( 𝑓 (𝑖):=𝑝(𝑖) ∧
¬𝑒(𝑖)); 𝑠1; 𝑠2 , 𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑖) ↦→ 𝑣𝑘]⟩. By the same
argument, we get ⟨⊙𝑘

𝑖=1( 𝑓 (𝑖):=𝑝(𝑖) ∧ ¬𝑒(𝑖)); 𝑠1; 𝑠2 , 𝜎[𝑡(1) ↦→
𝑣1] . . . [𝑡(𝑖) ↦→ 𝑣𝑘]⟩ →∗ ⟨𝑠1; 𝑠2 , 𝜎′′⟩ where 𝜎′′ = 𝜎[𝑡(1) ↦→
𝑣1] . . . [𝑡(𝑖) ↦→ 𝑣𝑘][ 𝑓 (1) ↦→ 𝑣′1] . . . [ 𝑓 (𝑘) ↦→ 𝑣′

𝑘
] s.t. 𝑝(𝑖)∧¬𝑒(𝑖) ⇓𝜎

𝑣′
𝑖
.

Now we have for all 𝑖 ∈ 𝐴1 that 𝑒 ⇓𝜎𝑖 ⊤ and by Lemma 3.4.1
that 𝑒(𝑖) ⇓𝜎 ⊤. Since 𝜎(𝑝(𝑖)) = ⊤, we also have that 𝜎′′(𝑡(𝑖)) = ⊤
and 𝜎′′( 𝑓 (𝑖)) = ⊥ by the rules of expression evaluation. On
the other hand, we have for all 𝑖 ∈ 𝐴2 that 𝜎′′(𝑡(𝑖)) = ⊥ and
𝜎′′( 𝑓 (𝑖)) = ⊤, and for all 𝑖 ∈ 𝐼 we have 𝜎′′(𝑡(𝑖)) = ⊥ and
𝜎′′( 𝑓 (𝑖)) = ⊥.
Then by (IH1) we have that ⟨𝑠1 , 𝜎′′⟩ →∗ ⟨skip, 𝜎′′′⟩ for some
𝜎′′′ s.t. for all 𝑖 ∈ 𝐴1 𝜎′

𝑖
∈𝑖 𝜎′′′ and 𝜎′′ ≾

𝑠1

𝑖
𝜎′′′, and for all

𝑖 ∈ {1, . . . , 𝑘} \ 𝐴1, 𝜎′′ ≼
𝑠1

𝑖
𝜎′′′ and therefore by Lemma A.1.6,

𝜎𝑖 ∈𝑖 𝜎′′′.
By (IH2), we have that ⟨𝑠2 , 𝜎′′′⟩ →∗ ⟨skip, 𝜎′⟩ s.t. for all 𝑖 ∈ 𝐴2,
𝜎′
𝑖
∈𝑖 𝜎′ and 𝜎′′′ ≾

𝑠2

𝑖
𝜎′. Additionally, for all 𝑖 ∈ {1, . . . , 𝑘}\𝐴2,

𝜎′′′ ≼
𝑠2

𝑖
𝜎′ and therefore by Lemma A.1.6 we have for all 𝑖 ∈ 𝐴1

that 𝜎′
𝑖
∈𝑖 𝜎′. Since 𝐴 = 𝐴1 ∪ 𝐴2, we therefore have 𝜎′

𝑖
∈𝑖 𝜎′

for all 𝑖 ∈ 𝐴.
We still need to show that 𝜎 ≾𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐴 and 𝜎 ≼

𝑠

𝑖
𝜎′

for all 𝑖 ∈ 𝐼:
By Prop. A.1.5 we have 𝜎 ≼

𝑠

𝑖
𝜎′′ for all 𝑖 ∈ {1, . . . , 𝑘}. Addi-

tionally, we have 𝜎′′ ≾
𝑠1

𝑖
𝜎′′′ for all 𝑖 ∈ 𝐴1 and 𝜎′′ ≼

𝑠1

𝑖
𝜎′′′ for

all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴1. Similarly, we have 𝜎′′′ ≾
𝑠2

𝑖
𝜎′ for all

𝑖 ∈ 𝐴2 and 𝜎′′′ ≼
𝑠2

𝑖
𝜎′ for all 𝑖 ∈ {1, . . . , 𝑘} \ 𝐴2. By repeated

use of Prop. A.1.3 we therefore have 𝜎 ≾
𝑠

𝑖
𝜎′.

Since 𝐼 ⊆ {1, . . . , 𝑘} and 𝐼 ⊆ ({1, . . . , 𝑘} \ 𝐴1) and 𝐼 ⊆
({1, . . . , 𝑘} \ 𝐴2), we also have 𝜎 ≼

𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐼 by

Prop. A.1.3.
• 𝑠 ≡ while (𝑒) {𝑠𝑙}:

Then 𝑠 must have the form while (∨𝑘
𝑖=1(𝑝(𝑖) ∧

𝑒(𝑖))) {⊙𝑘
𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙} where 𝑠𝑙 = J𝑠𝑙K𝑡𝑘 and

freshvars(𝑠) = {𝑡} ∪ freshvars(𝑠𝑙).
We define 𝐴𝑙 = {𝑖 |𝑖 ∈ 𝐴 ∧ 𝑒 ⇓𝜎𝑖 ⊤} and 𝐼𝑙 = 𝐴 \ 𝐴𝑙 . Then
we have that for all 𝑖 ∈ 𝐴𝑙 , ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ by Whl1 and
subsequently ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →𝑙𝑖−1 ⟨skip, 𝜎′

𝑖
⟩, and for all 𝑖 ∈ 𝐼𝑙 ,

⟨𝑠, 𝜎𝑖⟩ → ⟨skip, 𝜎𝑖⟩ (and therefore 𝜎′
𝑖
= 𝜎𝑖) by Whl2.

* If 𝐴𝑙 = ∅, then for all 𝑖 ∈ 𝐴, we have 𝑒 ⇓𝜎𝑖 ⊥. By
Lemma 3.4.1 we get that 𝑒(𝑖) ⇓𝜎 ⊥ and since we also have
for all 𝑖 ∈ 𝐼 that 𝑝(𝑖) ⇓𝜎 ⊥, we have that∨𝑘

𝑖=1(𝑝(𝑖)∧ 𝑒(𝑖)) ⇓𝜎

⊥. Therefore by Whl2 we get that ⟨𝑠, 𝜎⟩ → ⟨skip, 𝜎⟩,
and therefore 𝜎′ = 𝜎. We therefore trivially have 𝜎′

𝑖
∈𝑖 𝜎′

and 𝜎 ≾
𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐴, and 𝜎 ≼

𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐼.

* If 𝐴𝑙 ≠ ∅, then for at least one 𝑖 ∈ 𝐴, we have 𝑒 ⇓𝜎𝑖 ⊤.
By Lemma 3.4.1 this means that 𝑒(𝑖) ⇓𝜎 ⊤, and since we
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also have 𝑝(𝑖) ⇓𝜎 ⊤, we get that ∨𝑘
𝑖=1(𝑝(𝑖) ∧ 𝑒(𝑖)) ⇓𝜎 ⊤. We

therefore have that 𝑠 progresses by Whl1 s.t. ⟨𝑠, 𝜎⟩ →
⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩. By Lemma A.1.10 and
Lemma A.1.11, we have that ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖)∧ 𝑒(𝑖)), 𝜎⟩ →∗

⟨skip, 𝜎′′⟩, where 𝜎′′ = 𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑖) ↦→ 𝑣𝑘] s.t.
𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 . Therefore by Seq1 and Seq2 we get
⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩ →∗ ⟨skip; 𝑠𝑙 ; 𝑠, 𝜎′′⟩ →
⟨𝑠𝑙 ; 𝑠, 𝜎′′⟩. Note that 𝑣𝑖 = ⊤ ⇔ 𝑖 ∈ 𝐴𝑙 .
By repeated use of Lemma A.1.7.1 we also have
that ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →𝑙(𝑖 ,1) ⟨skip; 𝑠, 𝜎′′′

𝑖
⟩ →

⟨𝑠, 𝜎′′′
𝑖
⟩ →𝑙(𝑖 ,2) ⟨skip, 𝜎′

𝑖
⟩, for some 𝑙(𝑖 ,1) , 𝑙(𝑖 ,2) , 𝜎

′′′
𝑖

s.t.
𝑙𝑖 = 2 + 𝑙(𝑖 ,1) + 𝑙(𝑖 ,2), for every 𝑖 ∈ 𝐴𝑙 . By Lemma A.1.7.2
this implies that ⟨𝑠𝑙 , 𝜎𝑖⟩ →𝑙(𝑖 ,1) ⟨skip, 𝜎′′′

𝑖
⟩. We can apply

the induction hypothesis to 𝐴𝑙 and these subderivations
(IH1). We get that ⟨𝑠𝑙 , 𝜎′′⟩ →∗ ⟨skip, 𝜎′′′⟩ for some 𝜎′′′ s.t.
for each 𝑖 ∈ 𝐴𝑙 , 𝜎′′′𝑖 ∈𝑖 𝜎′′′ and 𝜎′′ ≾

𝑠𝑙

𝑖
𝜎′′′, which implies

that 𝜎′′′(𝑝(𝑖)) = ⊤. For each 𝑖 ∈ 𝐴 \ 𝐴𝑙 , since 𝑖 ∈ 𝐼𝑙 , we
have 𝜎′′ ≼

𝑠𝑙

𝑖
𝜎′′′ and therefore 𝜎𝑖 ∈𝑖 𝜎′′′ by Lemma A.1.6

and 𝜎′′′(𝑝(𝑖)) = ⊤. Furthermore, for each 𝑖 ∈ 𝐼, we have
𝜎′′ ≼

𝑠𝑙

𝑖
𝜎′′′ and therefore 𝜎′′′(𝑝(𝑖)) = ⊥. We can therefore

apply the induction hypothesis again to A and the sub-
derivations ⟨𝑠, 𝜎′′′

𝑖
⟩ →𝑙(𝑖 ,2) ⟨skip, 𝜎′

𝑖
⟩ for all 𝑖 ∈ 𝐴𝑙 and

⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ⟨skip, 𝜎′
𝑖
⟩ for all 𝑖 ∈ 𝐴 \ 𝐴𝑙 (IH2). Since 𝐴𝑙 is

non-empty, the sum of trace lengths for the resulting set
is lower than 𝑙.
We know by (IH1) that ⟨𝑠𝑙 , 𝜎′′⟩ →∗ ⟨skip, 𝜎′′′⟩ for some
𝜎′′′ s.t. 𝜎′′′

𝑖
∈𝑖 𝜎′′′ and 𝜎′′ ≾

𝑠𝑙

𝑖
𝜎′′′ for all 𝑖 ∈ 𝐴𝑙 and

𝜎′′ ≼
𝑠𝑙

𝑖
𝜎′′′ for all 𝑖 ∈ 𝐼𝑙 .

By (IH2) we get that ⟨𝑠, 𝜎′′′⟩ →∗ ⟨skip, 𝜎′⟩ s.t. 𝜎′
𝑖
∈𝑖 𝜎′

and 𝜎′′′ ≾
𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐴, and 𝜎′′′ ≼

𝑠

𝑖
𝜎′ for all

𝑖 ∈ 𝐼. By repeated use of Seq1 and Seq2 we can con-
struct a trace ⟨𝑠, 𝜎⟩ → ⟨⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩
→∗ ⟨skip; 𝑠𝑙 ; 𝑠, 𝜎′′⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎′′⟩ →∗ ⟨skip; 𝑠, 𝜎′′′⟩ →
⟨𝑠, 𝜎′′′⟩ →∗ ⟨skip, 𝜎′⟩. We already have that 𝜎′

𝑖
∈𝑖 𝜎′ for

all 𝑖 ∈ 𝐴.
We still need to show that 𝜎 ≾𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐴 and 𝜎 ≼

𝑠

𝑖
𝜎′

for all 𝑖 ∈ 𝐼. We have that 𝜎 ≼𝑠

𝑖
𝜎′′ for all 𝑖 ∈ {1, . . . , 𝑘}.

Then for all 𝑖 ∈ 𝐴𝑙 , we have that 𝜎′′ ≾
𝑠𝑙

𝑖
𝜎′′′ and 𝜎′′′ ≾

𝑠

𝑖
𝜎′,

so we get that 𝜎 ≾𝑠
𝑖
𝜎′ by Prop. A.1.3. For all 𝑖 ∈ 𝐴\𝐴𝑙 , we

have that 𝜎′′ ≼
𝑠𝑙

𝑖
𝜎′′′ and 𝜎′′′ ≾

𝑠

𝑖
𝜎′, so we get that 𝜎 ≾𝑠

𝑖
𝜎′

by Prop. A.1.3. For all 𝑖 ∈ 𝐼, we have that 𝜎′′ ≼
𝑠𝑙

𝑖
𝜎′′′ and

𝜎′′′ ≼
𝑠

𝑖
𝜎′, so we get that 𝜎 ≼𝑠

𝑖
𝜎′ by Prop. A.1.3.

• 𝑠 ≡ 𝑥1 , . . . , 𝑥𝑚 := 𝑚(𝑒1 , . . . , 𝑒𝑛): Then 𝑠 has the form

if (∨𝑘
𝑖=1 𝑝

(𝑖)) {⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

}

where 𝑎 𝑗 and 𝑡 𝑗 are in freshvars(𝑠) and ts =
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[𝑡1(1) , . . . , 𝑡1(𝑘) , . . . , 𝑡𝑚 (1) , . . . , 𝑡𝑚 (𝑘)] and as =

[𝑎1
(1) , . . . , 𝑎1

(𝑘) , . . . , 𝑎𝑛 (1) , . . . , 𝑎𝑛 (𝑘)]. In the following text, we
will abbreviate assas =

⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))}

and c = ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as) and assxs =⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}.

Let Φ(𝑚) = ([𝑞1 , . . . , 𝑞𝑛], [𝑟1 , . . . , 𝑟𝑚], 𝑠𝑚). Then
because of match(Φ,Φ), we know Φ(𝑚) =

([𝑝′(1) , . . . , 𝑝′(𝑘) , 𝑞1
(1) , . . . , 𝑞1

(𝑘) , . . . , 𝑞𝑛 (1) , . . . , 𝑞𝑛 (𝑘)], rs, 𝑠𝑚)
where 𝑠𝑚 = J𝑠𝑚K𝑝

′

𝑘
and rs =

[𝑟1
(1) , . . . , 𝑟1

(𝑘) , . . . , 𝑟𝑚 (1) , . . . , 𝑟𝑚 (𝑘)].
All 𝑖 ∈ 𝐴 must progress via Call, so we must have

⟨𝑠, 𝜎𝑖⟩ → ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩ →𝑙𝑖−1 ⟨skip, 𝜎′𝑖⟩,

where 𝜎(𝑖 , 𝑓 ) = [𝑞1 ↦→ 𝑣(𝑖 ,1)] . . . [𝑞𝑛 ↦→ 𝑣(𝑖 ,𝑛)] and 𝑒 𝑗 ⇓𝜎𝑖 𝑣(𝑖 , 𝑗).
By Lemma A.1.8.1 we get that ⟨𝑠𝑚 , 𝜎(𝑖 , 𝑓 )⟩ →𝑙𝑖−2 ⟨skip, 𝜎′(𝑖 , 𝑓 )⟩
for some 𝜎′(𝑖 , 𝑓 ) and 𝜎′

𝑖
= 𝜎𝑖[𝑥1 ↦→ 𝜎′(𝑖 , 𝑓 )(𝑟1)] . . . [𝑥𝑚 ↦→

𝜎′(𝑖 , 𝑓 )(𝑟𝑚)]. We apply the induction hypothesis to these deriva-
tions and 𝐴 (IH).
Since 𝐴 ≠ ∅, we have 𝑝(𝑖) ⇓𝜎 ⊤ for some 𝑖 ∈
𝐴, and therefore ⟨𝑠, 𝜎⟩ → ⟨assas; c; assxs , 𝜎⟩ by Cond1.
By Lemma 3.4.1 we get that 𝑒 𝑗

(𝑖) ⇓𝜎 𝑣(𝑖 , 𝑗) for all
𝑖 ∈ 𝐴. By Lemma A.1.12 and Lemma A.1.13 we get
that ⟨⊙𝑘

𝑖=1 if (𝑝(𝑖)) {
⊙𝑛

𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))}, 𝜎⟩ →∗ ⟨skip, 𝜎′′⟩ s.t.
𝜎′′ = 𝜎[𝑎1

(𝑖1) ↦→ 𝑣(𝑖1 ,1)] . . . [𝑎𝑛 (𝑖1) ↦→ 𝑣(𝑖1 ,𝑛)] . . . [𝑎1
(𝑖 𝑗 ) ↦→

𝑣(𝑖 𝑗 ,1)] . . . [𝑎𝑛 (𝑖 𝑗 ) ↦→ 𝑣(𝑖 𝑗 ,𝑛)] for {𝑖1 , . . . , 𝑖 𝑗} = 𝐴. By repeated
use of Seq1 and Seq2 we therefore have ⟨assas; c; assxs , 𝜎⟩ →∗

⟨skip; c; assxs , 𝜎′′⟩ → ⟨c; assxs , 𝜎′′⟩. Then by Call and Seq1
we get that ⟨c; assxs , 𝜎′′⟩ → ⟨𝑡𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ); assxs , 𝜎′′⟩
where

𝜎 𝑓 = [𝑝′(1) ↦→ 𝜎′′(𝑝(1)), . . . , 𝑝′(𝑘) ↦→ 𝜎′′(𝑝(𝑘)),

𝑞1
(1) ↦→ 𝑣(1,1) , . . . , 𝑞𝑛

(1) ↦→ 𝑣(1,𝑛) , . . . ,

𝑞1
(𝑘) ↦→ 𝑣(𝑘,1) , . . . , 𝑞𝑛

(𝑘) ↦→ 𝑣(𝑘,𝑛)]

and 𝑟𝑠 = [𝑟1
(1) , . . . , 𝑟1

(𝑘) , . . . , 𝑟𝑚 (1) , . . . , 𝑟𝑚 (𝑘)]. Then for all
𝑖 ∈ 𝐴 we have that that 𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎 𝑓 by the same argument as
in the corresponding case of the proof for Thm. 3.4.2.
By (IH) we therefore get that ⟨𝑠𝑚 , 𝜎 𝑓 ⟩ →∗ ⟨skip, 𝜎′

𝑓
⟩ for

some 𝜎 𝑓 s.t. for all 𝑖 ∈ 𝐴 we have 𝜎′(𝑖 , 𝑓 ) ∈𝑖 𝜎′𝑓 . By repeated use
of Frame1 we get that ⟨𝑡𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ), 𝜎′′⟩ →∗

⟨𝑡𝑠:=frame𝑟𝑠(skip, 𝜎′𝑓 ), 𝜎
′′⟩, and by Frame2 that

⟨𝑡𝑠:=frame𝑟𝑠(skip, 𝜎′𝑓 ), 𝜎
′′⟩ → ⟨skip, 𝜎′′′⟩ where

𝜎′′′ = 𝜎′′[𝑡1(1) ↦→ 𝜎′
𝑓
(𝑟1

(1))] . . . [𝑟1
(𝑘) ↦→ 𝜎′

𝑓
(𝑟1

(𝑘))] . . . [𝑡𝑚 (1) ↦→
𝜎′
𝑓
(𝑟𝑚 (1))] . . . [𝑡𝑚 (𝑘) ↦→ 𝜎′

𝑓
(𝑟𝑚 (𝑘))]. We get that 𝜎 ≼𝑠 𝜎′′′ by

Prop. A.1.5.
By repeated use of Seq1 and Seq2 we get that
⟨𝑡𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ); assxs , 𝜎′′⟩ →∗ ⟨skip; assxs , 𝜎′′′⟩. Then
by Lemma A.1.12 and Lemma A.1.13 we get that
⟨assxs , 𝜎′′⟩ →∗ ⟨skip, 𝜎′⟩ for some 𝜎′ s.t. 𝜎′ =



A.1. Appendix 257

𝜎′′′[𝑥1
(𝑖1) ↦→ 𝜎′

𝑓
(𝑟1

(𝑖1))] . . . [𝑥1
(𝑖 𝑗 ) ↦→ 𝜎′

𝑓
(𝑟1

(𝑖 𝑗 ))] . . . [𝑥𝑚 (𝑖1) ↦→
𝜎′
𝑓
(𝑟𝑚 (𝑖1))] . . . [𝑥𝑚 (𝑖 𝑗 ) ↦→ 𝜎′

𝑓
(𝑟𝑚 (𝑖 𝑗 ))] where {𝑖1 , . . . , 𝑖 𝑗} = 𝐴,

and we have 𝜎′
𝑖
∈𝑖 𝜎′ for all 𝑖 ∈ 𝐴 by repeated use of

Prop. A.1.1 and Prop. A.1.2. Since we have that 𝜎′ = 𝜎[𝑎1
(𝑖1) ↦→

_] . . . [𝑎𝑛 (𝑖1) ↦→ _] . . . [𝑎1
(𝑖 𝑗 ) ↦→ _] . . . [𝑎𝑛 (𝑖 𝑗 ) ↦→ _][𝑥1

(𝑖1) ↦→
_] . . . [𝑥1

(𝑖 𝑗 ) ↦→ _] . . . [𝑥𝑚 (𝑖1) ↦→ _] . . . [𝑥𝑚 (𝑖 𝑗 ) ↦→ _], and all
𝑎 𝑗

(𝑖) ∈ freshvars(𝑠) and all 𝑥 𝑗 (𝑖) ∈ RPVar we also have that
𝜎 ≾

𝑠

𝑖
𝜎′ for all 𝑖 ∈ 𝐴 by Prop. A.1.5. Similarly, for all 𝑖′ ∈ 𝐼,

we have that 𝜎 ≼𝑠

𝑖′ 𝜎
′ by Prop. A.1.5 and Prop. A.1.4 since all

𝑎 𝑗
(𝑖) ∈ freshvars(𝑠) and there is no 𝑖 ∈ 𝐴 s.t. 𝑖 = 𝑖′.

• 𝑠 ≡ 𝑠1; 𝑠2: Then 𝑠 has the form 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K
�̊�

𝑘
and

𝑠2 = J𝑠2K
�̊�

𝑘
. By Lemma A.1.7.1 we get that for all 𝑖 ∈ 𝐴,

⟨𝑠, 𝜎𝑖⟩ →𝑙(𝑖 ,1) ⟨skip; 𝑠2 , 𝜎′′𝑖 ⟩ → ⟨𝑠2 , 𝜎′′𝑖 ⟩ →𝑙(𝑖 ,2) ⟨skip, 𝜎′
𝑖
⟩ for

some 𝑙(𝑖 ,1) , 𝑙(𝑖 ,2) , 𝜎
′′
𝑖

s.t. 𝑙𝑖 = 1 + 𝑙(𝑖 ,1) + 𝑙(𝑖 ,2). By Lemma A.1.7.2
we get that ⟨𝑠1 , 𝜎𝑖⟩ →𝑙(𝑖 ,1) ⟨skip, 𝜎′′

𝑖
⟩.

We apply the induction hypothesis to 𝐴 and the deriva-
tions ⟨𝑠1 , 𝜎𝑖⟩ →𝑙(𝑖 ,1) ⟨skip, 𝜎′′

𝑖
⟩ (IH1). We get that ⟨𝑠1 , 𝜎⟩ →∗

⟨skip, 𝜎′′⟩ for some 𝜎′′ s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′ and 𝜎 ≾

𝑠1

𝑖
𝜎′′ for all 𝑖 ∈ 𝐴,

and 𝜎 ≼
𝑠1

𝑖
𝜎′′ for all 𝑖 ∈ 𝐼. Therefore 𝜎′′(𝑝(𝑖)) = 𝜎(𝑝(𝑖)) for all

𝑖 ∈ {1, . . . , 𝑘}. By repeated use of Seq1 and a single use of
Seq2 we get that ⟨𝑠, 𝜎⟩ →∗ ⟨skip; 𝑠2 , 𝜎′′⟩ → ⟨𝑠2 , 𝜎′′⟩.
Subsequently, we apply the induction hypothesis to 𝐴 and the
derivations ⟨𝑠2 , 𝜎′′𝑖 ⟩ →

𝑙(𝑖 ,2) ⟨skip, 𝜎′
𝑖
⟩. We get that ⟨𝑠2 , 𝜎′′⟩ →∗

⟨skip, 𝜎′⟩ for some 𝜎′ s.t. 𝜎′
𝑖
∈𝑖 𝜎′ and 𝜎′′ ≾

𝑠2

𝑖
𝜎′ for all 𝑖 ∈ 𝐴,

and 𝜎′′ ≼
𝑠2

𝑖
𝜎′ for all 𝑖 ∈ 𝐼. We use Prop. A.1.3 to get 𝜎 ≾𝑠

𝑖
𝜎′

for all 𝑖 ∈ 𝐴. We also use Prop. A.1.3 to get 𝜎 ≼𝑠

𝑖
𝜎′ for all

𝑖 ∈ 𝐼.

□

A.1.5. Proof of Lemma 3.4.6

Lemma A.1.20 Assume that for a set of indices 𝐴 s.t. |𝐴| = 𝑗 and 1 ≤ 𝑗 ≤ 𝑘

and 𝐴 ⊆ {1, . . . , 𝑘} there is a derivation 𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ⟨¤𝑠𝑖 , 𝜎′𝑖⟩, where

¤𝑠𝑖 ∈ {skip, error, magic}, under Φ for each 𝑖 ∈ 𝐴. Assume given 𝐴𝑠 ⊂ 𝐴

and 𝐴𝑒 = 𝐴\𝐴𝑠 s.t. for all 𝑖 ∈ 𝐴𝑒 , ¤𝑠𝑖 ≠ skip, and for all 𝑖 ∈ 𝐴𝑠 , ¤𝑠𝑖 = skip.
Assume also that 𝜎𝑖 ∈𝑖 𝜎 and 𝜎(𝑝(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴, and 𝜎(𝑝(𝑖)) = ⊥ for

any 𝑖 ∈ 𝐼, where 𝐼 = {1, . . . , 𝑘} \ 𝐴.

Then ⟨𝑠, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩ under Φ, where 𝑠 = J𝑠K�̊�
𝑘
, for some 𝜎′ and ¤𝑠 s.t.

∃𝑖 ∈ 𝐴𝑒 . ¤𝑠𝑖 = ¤𝑠

Proof. The proof goes by strong induction on the sum of the lengths of
traces 𝑙 = ∑

𝑖∈𝐴 𝑙𝑖 .

▶ Case 𝑙 = 0: This case is impossible. If 𝑗 = 0 then 𝐴 = ∅ and we
cannot have that 𝐴𝑠 ⊂ 𝐴. If 𝑗 > 0 we must have that 𝑠 = skip and
therefore all ¤𝑠𝑖 = skip, and we again cannot have that 𝐴𝑠 ⊂ 𝐴.

▶ Case 𝑙 > 0: We perform a case split on the structure of 𝑠.

• 𝑠 ≡ 𝑥:=𝑒: This case is impossible, since all 𝑑𝑖 must progress
by Assign, and then ¤𝑠𝑖 = skip for all 𝑖 ∈ 𝐴.
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• 𝑠 ≡ havoc 𝑥: This case is impossible, since all 𝑑𝑖 must progress
by Havoc, and then ¤𝑠𝑖 = skip for all 𝑖 ∈ 𝐴.

• 𝑠 ≡ assert 𝑒: Then all 𝑖 ∈ 𝐴𝑠 must progress by Assert1 and
we must therefore have 𝑒 ⇓𝜎𝑖 ⊤ and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊤.
Conversely, all 𝑖 ∈ 𝐴𝑒 must progress by Assert2 and we must
therefore have 𝑒 ⇓𝜎𝑖 ⊥, and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊥.
𝑠 must have the form ⊙𝑘

𝑖=1 if (𝑝(𝑖)) {assert 𝑒(𝑖)}, and by
Lemma A.1.17, since 𝐴𝑒 ≠ ∅, we have that ⟨𝑠, 𝜎⟩ →∗

⟨error, 𝜎⟩.
• 𝑠 ≡ assume 𝑒: Then all 𝑖 ∈ 𝐴𝑠 must progress by Assume1 and

we must therefore have 𝑒 ⇓𝜎𝑖 ⊤ and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊤.
Conversely, all 𝑖 ∈ 𝐴𝑒 must progress by Assume2 and we must
therefore have 𝑒 ⇓𝜎𝑖 ⊥, and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊥.
𝑠 must have the form ⊙𝑘

𝑖=1 if (𝑝(𝑖)) {assume 𝑒(𝑖)}, and by
Lemma A.1.19, since 𝐴𝑒 ≠ ∅, we have that ⟨𝑠, 𝜎⟩ →∗

⟨magic, 𝜎⟩.
• 𝑠 ≡ if (𝑒) {𝑠1} else {𝑠2}:

Then 𝑠 has the form ⊙𝑘
𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖));⊙𝑘

𝑖=1( 𝑓 (𝑖):=𝑝(𝑖) ∧
¬𝑒(𝑖)); 𝑠1; 𝑠2, where 𝑠1 = J𝑠1K𝑡𝑘 and 𝑠2 = J𝑠2K

𝑓

𝑘
and 𝑡 and 𝑓 are

fresh variable names.
Let 𝐴1 ⊆ 𝐴 and 𝐴2 = 𝐴 \ 𝐴1 s.t. all 𝑖 ∈ 𝐴1 progress by Cond1
and we therefore have 𝑒 ⇓𝜎𝑖 ⊤ and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊤,
and all 𝑖 ∈ 𝐴2 progress by Cond2 and we therefore have
𝑒 ⇓𝜎𝑖 ⊥ and by Lemma 3.4.1 𝑒(𝑖) ⇓𝜎 ⊥.
By Lemma A.1.10 and Lemma A.1.11 and repeated use of Seq1
and Seq2 we must have that ⟨𝑠, 𝜎⟩ →∗ ⟨𝑠1; 𝑠2 , 𝜎′′⟩, where 𝜎′′ =
𝜎[𝑡(1) ↦→ 𝑣1] . . . [𝑡(𝑘) ↦→ 𝑣𝑘] s.t. 𝑝(𝑖) ∧ 𝑒(𝑖) ⇓𝜎 𝑣𝑖 . In particular,
we have that for all 𝑖 ∈ 𝐼, 𝜎′′(𝑡(𝑖)) = ⊥ and 𝜎′′( 𝑓 (𝑖)) = ⊥; for
all 𝑖 ∈ 𝐴1, we have 𝜎′′(𝑡(𝑖)) = ⊤ and 𝜎′′( 𝑓 (𝑖)) = ⊥, and for all
𝑖 ∈ 𝐴2, we have 𝜎′′(𝑡(𝑖)) = ⊥ and 𝜎′′( 𝑓 (𝑖)) = ⊤.

* If for some non-empty 𝐴′
1 ⊆ 𝐴1 we have for all 𝑖 ∈

𝐴′
1, ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ where ¤𝑠𝑖 ≠ skip, then by the

induction hypothesis we get that ⟨𝑠1 , 𝜎′′⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩ for
some 𝜎′, 𝑖 and we are done by Seq3 or Seq4.

* If there is no such 𝑖 ∈ 𝐴2, we must have for some non-
empty 𝐴′

2 ∈ 𝐴2 that for all 𝑖 ∈ 𝐴′
2, ⟨𝑠2 , 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩

where ¤𝑠𝑖 ≠ skip. In this case, by Thm. 3.4.5 we get
⟨𝑠1 , 𝜎′′⟩ →∗ ⟨skip, 𝜎′′′⟩ for some 𝜎′′′ s.t. 𝜎′′′( 𝑓 (𝑖)) = ⊤
and 𝜎𝑖 ∈𝑖 𝜎′′′ for all 𝑖 ∈ 𝐴2, and 𝜎′′′( 𝑓 (𝑖)) = ⊥ for
all 𝑖 ∈ {1, . . . , 𝑙} \ 𝐴2. By repeated use of Seq1 and
Seq2 this gives us ⟨𝑠1; 𝑠2 , 𝜎′′⟩ →∗ ⟨skip; 𝑠2 , 𝜎′′′⟩ →
⟨𝑠2 , 𝜎′′′⟩. Subsequently, by the induction hypothesis, we
get ⟨𝑠2 , 𝜎′′′⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩, for some 𝑖 and we are done
again.

• 𝑠 ≡ while (𝑒) {𝑠𝑙}:
Then 𝑠 must have the form while (∨𝑘

𝑖=1(𝑝(𝑖) ∧
𝑒(𝑖))) {⊙𝑘

𝑖=1(𝑡(𝑖):=𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙} where 𝑠𝑙 = J𝑠𝑙K𝑡𝑘 and
freshvars(𝑠) = {𝑡} ∪ freshvars(𝑠𝑙).
Then we must have that for some non-empty𝐴𝑡 ⊆ 𝐴, all 𝑖 ∈ 𝐴𝑡

progress by Whl1, since otherwise for all 𝑖 ∈ 𝐴 we have ¤𝑠𝑖 =
skip by Whl2. We therefore have ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑠𝑙 ; 𝑠, 𝜎𝑖⟩ →𝑙𝑖−1

⟨¤𝑠𝑖 , 𝜎′𝑖⟩ and 𝑒 ⇓𝜎𝑖 ⊤ for all 𝑖 ∈ 𝐴𝑡 , and ⟨𝑠, 𝜎𝑖⟩ → ⟨skip, 𝜎𝑖⟩
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and 𝑒 ⇓𝜎𝑖 ⊥ for all 𝑖 ∈ 𝐴 \ 𝐴𝑡 .
By Lemma 3.4.1 we have 𝑒(𝑖) ⇓𝜎 ⊤ for all 𝑖 ∈ 𝐴𝑡 . Since we also
have 𝑝(𝑖) ⇓𝜎 ⊤ for all 𝑖 ∈ 𝐴, we have that ∨𝑘

𝑖=1(𝑝(𝑖)∧ 𝑒(𝑖)) ⇓𝜎 ⊤
and therefore ⟨𝑠, 𝜎⟩ → ⟨∨𝑘

𝑖=1(𝑝(𝑖) ∧ 𝑒(𝑖)); 𝑠𝑙 ; 𝑠, 𝜎⟩ by Whl1.
By Lemma A.1.7.3 we get that for each 𝑖 ∈ 𝐴𝑡 ∩ 𝐴𝑒 , either
⟨𝑠𝑙 , 𝜎𝑖⟩ →∗ ⟨¤𝑠,𝜎′𝑖⟩ or ⟨𝑠𝑙 , 𝜎𝑖⟩ →∗ ⟨skip, 𝜎′′

𝑖
⟩ ∧ ⟨𝑠, 𝜎′′

𝑖
⟩ →∗

⟨¤𝑠𝑖 , 𝜎′𝑖⟩ for some 𝜎′′
𝑖

and some ¤𝑠𝑖 ≠ skip. Let 𝐴𝑡1 ⊆ 𝐴𝑡 ∩ 𝐴𝑒

be the set of executions for which the former is true.
* If 𝐴𝑡1 is non-empty, then by the induction hypothesis,
⟨𝑠𝑙 , 𝜎′′⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩ for some 𝜎′, 𝑖, and we are done by
Seq3 or Seq4.

* If 𝐴𝑡1 is empty, then by Thm. 3.4.5 we get ⟨𝑠𝑙 , 𝜎′′⟩ →∗

⟨skip, 𝜎′′′⟩ for some 𝜎′′′ s.t. 𝜎′′′(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ 𝐼,
𝜎′′′(𝑝(𝑖)) = ⊤ and 𝜎′′

𝑖
∈𝑖 𝜎′′′ for all 𝑖 ∈ 𝐴𝑡 , and 𝜎′′′(𝑝(𝑖)) =

⊤ and 𝜎𝑖 ∈𝑖 𝜎′′′ for all 𝑖 ∈ 𝐴 \ 𝐴𝑡 . We must then have
⟨𝑠, 𝜎′′

𝑖
⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ for some ¤𝑠𝑖 ≠ skip for each 𝑖 in some

non-empty 𝐴𝑡2 ⊆ 𝐴𝑡 ∩ 𝐴𝑒 and ⟨𝑠, 𝜎′′
𝑖
⟩ →∗ ⟨skip, 𝜎′

𝑖
⟩ for

each 𝑖 ∈ 𝐴𝑡 \𝐴𝑡2 . By the induction hypothesis we get that
⟨𝑠, 𝜎′′′⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩ for some 𝜎′, 𝑖, and we are done.

• 𝑠 ≡ 𝑥1 , . . . , 𝑥𝑚 := 𝑚(𝑒1 , . . . , 𝑒𝑛): Then 𝑠 has the form

if (∨𝑘
𝑖=1 𝑝

(𝑖)) {⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑛
𝑗=1(𝑎 𝑗 (𝑖):=𝑒 𝑗 (𝑖))};

ts:= 𝑚(𝑝(1) , . . . , 𝑝(𝑘) , as);⊙𝑘
𝑖=1 if (𝑝(𝑖)) {

⊙𝑚
𝑗=1(𝑥 𝑗 (𝑖):=𝑡 𝑗 (𝑖))}

}

where 𝑎 𝑗 and 𝑡 𝑗 are in freshvars(𝑠) and ts =

[𝑡1(1) , . . . , 𝑡1(𝑘) , . . . , 𝑡𝑚 (1) , . . . , 𝑡𝑚 (𝑘)] and as =

[𝑎1
(1) , . . . , 𝑎1

(𝑘) , . . . , 𝑎𝑛 (1) , . . . , 𝑎𝑛 (𝑘)].
Each 𝑑𝑖 must progress by Call s.t.

𝑑𝑖 = ⟨𝑠, 𝜎𝑖⟩ → ⟨𝑥1 , . . . , 𝑥𝑚 :=frame𝑟1 ,...,𝑟𝑚 (𝑠𝑚 , 𝜎(𝑖 , 𝑓 )), 𝜎𝑖⟩ →𝑙𝑖−1 ⟨¤𝑠𝑖 , 𝜎′𝑖⟩.

By Lemma A.1.8.2 and Lemma A.1.8.1 we know that
⟨𝑠𝑚 , 𝜎(𝑖 , 𝑓 )⟩ →𝑙𝑖−2 ⟨¤𝑠𝑖 , 𝜎′(𝑖 , 𝑓 )⟩ for some 𝜎′(𝑖 , 𝑓 ) and some ¤𝑠𝑖 ≠

skip for all 𝑖 ∈ 𝐴𝑒 , and ⟨𝑠𝑚 , 𝜎(𝑖 , 𝑓 )⟩ →𝑙𝑖−2 ⟨skip, 𝜎′(𝑖 , 𝑓 )⟩ for
some 𝜎′(𝑖 , 𝑓 ) for all 𝑖 ∈ 𝐴𝑠 . By the induction hypothesis we get

that for all 𝜎 𝑓 s.t. 𝜎(𝑖 , 𝑓 ) ∈𝑖 𝜎 𝑓 and 𝜎 𝑓 (𝑝′
(𝑖)) = ⊤ for all 𝑖 ∈ 𝐴

and 𝜎 𝑓 (𝑝′
(𝑖)) = ⊥ for all 𝑖 ∈ 𝐼, we have ⟨𝑠𝑚 , 𝜎 𝑓 ⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑓 ⟩

for some 𝜎′
𝑓

and some 𝑖.
By the same argument as in the proof for Thm. 3.4.5, we get for
some 𝑥𝑠, 𝑟𝑠, 𝜎′′ and some 𝜎 𝑓 that fulfills these conditions that
⟨𝑠, 𝜎⟩ →∗ ⟨𝑥𝑠:=frame𝑟𝑠(𝑠𝑚 , 𝜎 𝑓 ), 𝜎′′⟩. Therefore by repeated
use of Frame1 and Frame3 or Frame4 we are done.

• 𝑠 ≡ 𝑠1; 𝑠2: For all 𝑖 ∈ 𝐴𝑠 , we have by Lemma A.1.7.1 that
⟨𝑠, 𝜎𝑖⟩ →𝑙𝑖 ,1 ⟨skip; 𝑠2 , 𝜎′′𝑖 ⟩ → ⟨𝑠2 , 𝜎′′𝑖 ⟩ →𝑙𝑖 ,2 ⟨skip, 𝜎′

𝑖
⟩ for

some 𝜎′′
𝑖
, and therefore by Lemma A.1.7.2 that ⟨𝑠1 , 𝜎𝑖⟩ →𝑙𝑖 ,1

⟨skip, 𝜎′′
𝑖
⟩. On the other hand, for all 𝑖 ∈ 𝐴𝑒 we have by

Lemma A.1.7.3 that either ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ or ⟨𝑠1 , 𝜎𝑖⟩ →∗

⟨skip, 𝜎′′
𝑖
⟩ ∧ ⟨𝑠2 , 𝜎′′𝑖 ⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩, for some 𝜎′′

𝑖
and some ¤𝑠𝑖 ≠

skip.
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* If the former is the case for at least one 𝑖 ∈ 𝐴𝑒 , then by
the induction hypothesis, we get that ⟨𝑠1 , 𝜎⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩
for some 𝑖 and by Seq3 or Seq4 we are done.

* Otherwise, by Thm. 3.4.5 we get that ⟨𝑠1 , 𝜎⟩ →∗

⟨skip, 𝜎′′⟩ for some 𝜎′′ s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′ and 𝜎′′(𝑝(𝑖)) = ⊤ for

all 𝑖 ∈ 𝐴, and 𝜎′′(𝑝(𝑖)) = ⊥ for all 𝑖 ∈ {1, . . . , 𝑘} \𝐴. Then
by the induction hypothesis we get ⟨𝑠2 , 𝜎′′⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′⟩
for some 𝑖 and we are done.

□

A.1.6. Proof of Thm. 3.5.2

In this section, we consider programs written in our ordinary language
but with all while loops being annotated with termination annotations
of the form while (𝑒) terminates(𝑒𝑐 , 𝑒𝑟) {𝑠} (but unchanged operational
semantics). Since we prove our technique correct with respect to non-
termination resulting from loops, we consider only programs that do
not contain (mutually) recursive method calls, since those could result in
non-termination resulting from infinite recursion.

We first define some terminology:

▶ We say that 𝑠 always terminates from 𝜎 if there exists some 𝑛 s.t. if
⟨𝑠, 𝜎⟩ →𝑘 ⟨𝑠′, 𝜎′⟩ for some 𝑠′, 𝜎′ and 𝑘 then 𝑘 ≤ 𝑛.

▶ We say that 𝑠 never terminates from 𝜎 if for any trace ⟨𝑠, 𝜎⟩ →𝑘 ⟨𝑠, 𝜎′⟩
we have that 𝑠 is not final.

▶ We say that 𝑠 does not fail from 𝜎 if for all ¤𝑠, 𝜎′ s.t. ⟨𝑠, 𝜎⟩ →∗ ⟨¤𝑠, 𝜎′⟩
we have ¤𝑠 ≠ error.

▶ We say that the termination of 𝑠 coincides from stores 𝜎1 , 𝜎2 if 𝑠
either always terminates from both 𝜎1 and 𝜎2 or never terminates
from both 𝜎1 and 𝜎2.

As noted in Section 3.5.5, our definition of the termination instrumenta-
tion slightly abuses the notation in that it uses assert statements with
information flow assertions �̃� instead of expressions 𝑒 for convenience.
Since the intention is that in the product, said assertions assert the
encoded version of the information flow assertion, we define

Jassert �̃�K�̊�2 = assert ⌈�̃�⌉ �̊�

where we use the following encoding of information flow assertions �̃�
into expressions 𝑒:

⌈𝑒⌉ �̊� = (¬𝑝(1) ∨ 𝑒(1)) ∧ (¬𝑝(2) ∧ 𝑒(2))
⌈low(𝑒)⌉ �̊� = ¬(𝑝(1) ∧ 𝑝(2)) ∨ 𝑒(1) = 𝑒(2)

⌈lowEvent⌉ �̊� = 𝑝(1) = 𝑝(2)

⌈�̃�1 ∧ �̃�2⌉ �̊� = ⌈�̃�1⌉ �̊� ∧ ⌈�̃�2⌉ �̊�
⌈𝑒1 ⇒ 𝑒2⌉ �̊� = (¬(𝑝(1) ∧ 𝑒1

(1)) ∨ 𝑒2
(1)) ∧ (¬(𝑝(2) ∧ 𝑒1

(2)) ∨ 𝑒2
(2))

⌈𝑒1 ⇒ low(𝑒2)⌉ �̊� = ¬(𝑝(1) ∧ 𝑝(2) ∧ 𝑒1
(1) ∧ 𝑒1

(2)) ∨ 𝑒2
(1) = 𝑒2

(2)

⌈𝑒 ⇒ lowEvent⌉ �̊� = ¬((𝑝(1) ∧ 𝑒(2)) ∨ (𝑝(2) ∧ 𝑒(2))) ∨ 𝑝(1) = 𝑝(2)

⌈low(𝑒1) ⇒ low(𝑒2)⌉ �̊� = ¬(𝑝(1) ∧ 𝑝(2) ∧ 𝑒1
(1) = 𝑒1

(2)) ∨ 𝑒2
(1) = 𝑒2

(2))
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Note that this encoding is equivalent to the one presented in Fig. 3.9
(except that quantification, which is not used in the termination instru-
mentation, is not supported) in the sense that if 𝜎 ⊨ ⌈�̃�⌉ �̊� according to
Fig. 3.9, then ⌈�̃�⌉ �̊� ⇓𝜎 ⊤ according to this encoding.

As a result, the originally presented loop instrumentation

term(𝑤, 𝑐) = cond:=𝑒𝑐 ;
assert ¬cond ⇒ lowEvent;
assert low(cond);
assert cond ⇒ 𝑒𝑟 ≥ 0;
assert 𝑐 ⇒ cond;
assert ¬cond ⇒ 𝑒;
while (𝑒)
do {
if (cond) {rank:=𝑒𝑟};
term(𝑠, cond);
assert cond ⇒ 0 ≤ 𝑒𝑟 ∧ 𝑒𝑟 < rank

assert ¬cond ⇒ 𝑒;
}

will be encoded as follows in the product:
J𝑤K�̊�2 ≡ if (𝑝(1)) {cond

(1):=𝑒𝑐 (1)}
if (𝑝(2)) {cond

(2):=𝑒𝑐 (2)}
assert ¬((𝑝(1) ∧ ¬cond

(1)) ∨ (𝑝(2) ∧ ¬cond
(2))) ∨ 𝑝(1) = 𝑝(2)

assert ¬(𝑝(1) ∧ 𝑝(2)) ∨ cond
(1)

= cond
(2)

assert (¬(𝑝(1) ∧ cond
(1)) ∨ (𝑒𝑟 (1) ≥ 0))∧

(¬(𝑝(2) ∧ cond
(2)) ∨ (𝑒𝑟 (2) ≥ 0))

assert (¬(𝑝(1) ∧ 𝑐(1)) ∨ cond
(1)) ∧ (¬(𝑝(2) ∧ 𝑐(2)) ∨ cond

(2))
assert (¬(𝑝(1) ∧ ¬cond

(1)) ∨ 𝑒(1)) ∧ (¬(𝑝(2) ∧ ¬cond
(2)) ∨ 𝑒(2))

while (𝑝(1) ∧ 𝑒(1) ∨ 𝑝(2) ∧ 𝑒(2))
do {

𝑝𝑙
(1):=𝑝(1) ∧ 𝑒(1)

𝑝𝑙
(2):=𝑝(2) ∧ 𝑒(2)

𝑝𝑐
(1):=𝑝𝑙 (1) ∧ cond

(1)

𝑝𝑐
(2):=𝑝𝑙 (2) ∧ cond

(2)

if (𝑝𝑐 (1)) {rank
(1):=𝑒𝑟 (1)}

if (𝑝𝑐 (2)) {rank
(2):=𝑒𝑟 (2)}

Jterm(𝑠, cond)K𝑝𝑙2
assert (¬(𝑝(1) ∧ cond

(1)) ∨ (0 ≤ 𝑒𝑟
(1) ∧ 𝑒𝑟

(1) < rank
(1)))∧

(¬(𝑝(2) ∧ cond
(2)) ∨ (0 ≤ 𝑒𝑟

(2) ∧ 𝑒𝑟
(2) < rank

(2)))
assert (¬(𝑝(1) ∧ ¬cond

(1)) ∨ (𝑒(1)))∧
(¬(𝑝(2) ∧ ¬cond

(2)) ∨ (𝑒(2)))
}

We start by proving that if the ordinary product of a statement terminates
from some store, then the product of the instrumentation of this statement
either terminates from the same store in an equivalent state (which is
identical modulo added fresh variables), or it fails (due to one of the
assertions added in the instrumentation):
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Lemma A.1.20 If 𝑠 = J𝑠K�̊�2 and 𝑠′ = Jterm(𝑠, cond)K�̊�2 and ⟨𝑠, 𝜎⟩ →𝑘

⟨¤𝑠, 𝜎′⟩ then ⟨𝑠′, 𝜎⟩ →∗ ⟨¤𝑠′, 𝜎′′⟩ for some 𝜎′′, ¤𝑠′ s.t. either ¤𝑠′ = ¤𝑠∧𝜎′′ ≾𝑠
′
𝜎′

or ¤𝑠′ = error.

Proof. The proof goes by strong induction on 𝑘. After a case split on the
structure of 𝑠, the cases for assignments, havocs, asserts and assumes
are trivial because 𝑠 ≡ 𝑠′. The cases for sequential composition and
conditionals follow directly from applying the induction hypothesis on
the traces of the substatements. For the loop case, in any single iteration
either an added assertion in 𝑠′ fails, in which case 𝑠′ ends in an error state,
or the added assertions succeed, in which case the conclusion follows
from applying the induction hypothesis to the traces of the statement in
the loop body and the next iteration. The additional variables assigned
to in 𝑠′ are fresh and therefore preserve that 𝜎′′ ≾𝑠′ 𝜎′. □

We first prove that in the conditions ensured by the initial assertions of
our loop encoding, if the termination condition is true, executions of the
actual program must always terminate:

Lemma A.1.21 Assume that

𝑤 = while (𝑒)
do {
if (cond) {rank:=𝑒𝑟};
term(𝑠, cond);
assert cond ⇒ 0 ≤ 𝑒𝑟 ∧ 𝑒𝑟 < rank

assert ¬cond ⇒ 𝑒

}

and𝑤 = J𝑤K�̊�2 ,𝑤 never fails from 𝜎, either 𝑝(1) ⇓𝜎 ⊥ or 𝜎1 ∈1 𝜎∧cond
(1) ⇓𝜎

⊤, either 𝑝(2) ⇓𝜎 ⊥ or 𝜎2 ∈2 𝜎 ∧ cond
(2) ⇓𝜎 ⊤, 𝑠 never terminates with

magic from 𝜎1 and 𝜎2, term(𝑠, cond) does not assign to cond or rank, and for

all 𝑖 ∈ {1, 2}, 𝜎′′, 𝜎′′
𝑖
, if cond

(𝑖) ⇓𝜎′′ ⊤ and 𝑝𝑙
(𝑖) ⇓𝜎′′ ⊤ and 𝜎′′

𝑖
∈𝑖 𝜎′′ and

Jterm(𝑠, cond)K𝑝𝑙2 does not fail from 𝜎′′, then 𝑠 always terminates from 𝜎′′
𝑖
.

Then

1. if 𝑝(1) ⇓𝜎 ⊤ and 𝑒𝑟
(1) ⇓𝜎 𝑣1 for some 𝑣1 ≥ 0 then while (𝑒) {𝑠}

always terminates from 𝜎1
2. if 𝑝(2) ⇓𝜎 ⊤ and 𝑒𝑟

(2) ⇓𝜎 𝑣2 for some 𝑣2 ≥ 0 then while (𝑒) {𝑠}
always terminates from 𝜎2

Proof. We show the proof for (1), the proof for (2) is completely analogous.
We have 𝑝(1) ⇓𝜎 ⊤ and therefore 𝜎1 ∈1 𝜎. We show that there is some 𝑛

s.t. all traces from 𝜎1 terminate within at most 𝑛 steps. The proof goes by
strong induction on 𝑣1.

𝑤 must have the form



A.1. Appendix 263

while (𝑝(1) ∧ 𝑒(1) ∨ 𝑝(2) ∧ 𝑒(2))
do {

𝑝𝑙
(1):=𝑝(1) ∧ 𝑒(1)

𝑝𝑙
(2):=𝑝(2) ∧ 𝑒(2)

𝑝𝑐
(1):=𝑝𝑙 (1) ∧ cond

(1)

𝑝𝑐
(2):=𝑝𝑙 (2) ∧ cond

(2)

if (𝑝𝑐 (1)) {rank
(1):=𝑒𝑟 (1)}

if (𝑝𝑐 (2)) {rank
(2):=𝑒𝑟 (2)}

Jterm(𝑠, cond)K𝑝𝑙2
assert (¬(𝑝(1) ∧ cond

(1)) ∨ (0 ≤ 𝑒𝑟
(1) ∧ 𝑒𝑟

(1) < rank
(1)))∧

(¬(𝑝(2) ∧ cond
(2)) ∨ (0 ≤ 𝑒𝑟

(2) ∧ 𝑒𝑟
(2) < rank

(2)))
assert (¬(𝑝(1) ∧ ¬cond

(1)) ∨ (𝑒(1))) ∧ (¬(𝑝(2) ∧ ¬cond
(2)) ∨ (𝑒(2)))

}
We perform a case split on the value of 𝑒 in 𝜎1:

▶ If 𝑒 ⇓𝜎1 ⊥ then all traces from ⟨while (𝑒) {𝑠}, 𝜎⟩ must progress to
skip by Whl2 in one step, and therefore 𝑛 = 1 and we are done.

▶ If 𝑒 ⇓𝜎1 ⊤ then we must have ⟨while (𝑒) {𝑠}, 𝜎1⟩ →
⟨𝑠; while (𝑒) {𝑠}, 𝜎1⟩ by Whl1. Additionally, we have 𝑒(1) ⇓𝜎 ⊤
by Lemma 3.4.1 and therefore 𝑝(1) ∧ 𝑒(1) ∨ 𝑝(2) ∧ 𝑒(2) ⇓𝜎 ⊤. There-
fore all traces of the product must progress by Whl1. We perform
another case split:

• If 𝑝(2) ⇓𝜎 ⊤∧ 𝑒(2) ⇓𝜎 ⊤ any trace of the product must continue
by executing the following assignments of 𝑝𝑙 and 𝑝𝑐 as well
as cond to create a new store

𝜎′′ = 𝜎[𝑝𝑙 (1) ↦→ ⊤][𝑝𝑙 (2) ↦→ ⊤][𝑝𝑐 (1) ↦→ ⊤]
[𝑝𝑐 (2) ↦→ ⊤][rank

(1) ↦→ 𝑣1][rank
(2) ↦→ 𝑣2]

for some 𝑣2 s.t. 𝑒𝑟 (2) ⇓𝜎 𝑣2. By Lemma A.1.6 we still have
𝜎1 ∈1 𝜎′′ and 𝜎2 ∈2 𝜎′′. Since we still have that 𝑝𝑙 (1) ⇓𝜎′′ ⊤ and
𝑝𝑙

(2) ⇓𝜎′′ ⊤ and cond
(1) ⇓𝜎′′ ⊤ and cond

(2) ⇓𝜎′′ ⊤, we get that
𝑠 always terminates from 𝜎1 and 𝜎2, and in particular, that
there is some number 𝑛′ s.t. 𝑠 terminats from 𝜎1 in at most 𝑛′

steps.
By Thm. 3.4.5 and Lemma 3.4.6 and Lemma A.1.20 we
get that for each pair of traces ending in some stores 𝜎′′1
and 𝜎′′2 of the original program, we get a terminating trace
⟨Jterm(𝑠, cond)K𝑝𝑙2 , 𝜎′′⟩ →∗ ⟨¤𝑠′, 𝜎′′′⟩ for some 𝜎′′′. We cannot
have that ¤𝑠′ = error since 𝑤 does not fail from 𝜎, can we have
that ¤𝑠′ = magic by Lemma 3.4.4 since 𝑠 does not terminate
with magic from either 𝜎1 or 𝜎2. We must therefore have that
¤𝑠′ = skip, and that 𝜎′′1 ∈1 𝜎′′′ and 𝜎′′2 ∈2 𝜎′′′ by Thm. 3.4.5.
Since term(𝑠, cond) does not assign to rank, we must still have
that rank

(1) ⇓𝜎′′′ 𝑣1. Since the following assertions do not fail
from 𝜎′′′ and cond

(1) is also not modified by term(𝑠, cond), we
must have that 𝑒𝑟

(1) ⇓𝜎′′′ 𝑣′1 for some 𝑣′1 s.t. 0 ≤ 𝑣′1 < 𝑣1.
The product must then step to ⟨𝑤, 𝜎′′′⟩, and by the induction
hypothesis, we get that there is some number 𝑛′′ s.t. 𝑤 always
terminates from 𝜎′′1 in at most 𝑛′′ steps. Then we can conclude
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that 𝑤 terminates from 𝜎1 in at most 2 + 𝑛′ + 𝑛′′ steps (one
step using Whl2 and one using Seq2).

• Otherwise the trace must step to a state with a store

𝜎′′ = 𝜎[𝑝𝑙 (1) ↦→ ⊤][𝑝𝑙 (2) ↦→ ⊥]
[𝑝𝑐 (1) ↦→ ⊤][𝑝𝑐 (2) ↦→ ⊥][rank

(1) ↦→ 𝑣1]

The argument from here is the same as before except that the
second execution is inactive inside the loop.

□

We can conclude from this that if the product of the termination instru-
mentation of any statement is guaranteed not to fail from a product state
with only one execution being active, the statement is guaranteed to
terminate from a store that mirrors that of the active execution:

Lemma A.1.22 Assume that 𝑠 = Jterm(𝑠, 𝑐)K�̊�2 , 𝑠 is not and does not

syntactically contain a method call, 𝑠 never fails from 𝜎, 𝑝(𝑎) ⇓𝜎 ⊤ and

𝑝(𝑏) ⇓𝜎 ⊥, where 𝑎, 𝑏 ∈ {1, 2}, 𝜎𝑎 ∈𝑎 𝜎, and 𝑠 never terminates with magic

from 𝜎𝑎 . Then 𝑠 always terminates from 𝜎𝑎 .

Proof. By induction on the structure of 𝑠.

▶ Assignments, havocs, assumes and asserts always terminate in one
step, so these cases are trivial.

▶ The case for method calls is impossible because 𝑠 is not a method
call.

▶ Case 𝑠 ≡ 𝑠1; 𝑠2: Then we must have that 𝑠 ≡
Jterm(𝑠1 , 𝑐)K�̊�2 ; Jterm(𝑠2 , 𝑐)K�̊�2 . By the induction hypothesis, 𝑠1 al-
ways terminates from 𝜎𝑎 in at most 𝑛1 steps (for some 𝑛1). For
any such trace ⟨𝑠1 , 𝜎𝑎⟩ →∗ ⟨¤𝑠′′𝑎 , 𝜎′′𝑎 ⟩, we get by Thm. 3.4.5 and
Lemma 3.4.6 and Lemma A.1.20 that ¤𝑠′′𝑎 = skip and there is a trace
⟨Jterm(𝑠1 , 𝑐)K�̊�2 , 𝜎⟩ →∗ ⟨skip, 𝜎′′⟩ for some 𝜎′′ s.t. 𝑝(1) and 𝑝(2) are
unchanged and 𝜎′′𝑎 ∈𝑎 𝜎′′. By the same argument, 𝑠2 always termi-
nates from 𝜎′′𝑎 , in some maximal number 𝑛2 of steps. Therefore 𝑠

terminates from 𝜎𝑎 in at most 1 + 𝑛1 + 𝑛2 steps (one step resulting
from Seq2).

▶ Case 𝑠 ≡ if (𝑒) {𝑠1} else {𝑠2}:
Then we must have 𝑠 ≡ 𝑝𝑡

(1):=𝑝(1) ∧
𝑒(1); 𝑝𝑡 (2):=𝑝(2) ∧ 𝑒(2); 𝑝 𝑓

(1):=𝑝(1) ∧ ¬𝑒(1); 𝑝 𝑓
(2):=𝑝(2) ∧

¬𝑒(2); Jterm(𝑠1 , 𝑐)K𝑝𝑡2 ; Jterm(𝑠2 , 𝑐)K
𝑝 𝑓

2 .
The product must then execute the assignments of the
new activation variables, leading to a trace ⟨𝑠, 𝜎⟩ →∗

⟨Jterm(𝑠1 , 𝑐)K𝑝𝑡2 ; Jterm(𝑠2 , 𝑐)K
𝑝 𝑓

2 , 𝜎′′⟩ for some 𝜎′′.

• If 𝑒 ⇓𝜎𝑎 ⊤ then by Lemma 3.4.1 we have that 𝑝𝑡 (1) ⇓𝜎′′ ⊤ and
𝑝𝑡

(2) ⇓𝜎′′ ⊥. We then get by the induction hypothesis that 𝑠1
terminates from 𝜎𝑎 in some maximal number 𝑛1 of steps, and
𝑠 therefore terminates in at most 𝑛1 + 1 steps (one step using
Cond1).
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• Otherwise we have that 𝑝𝑡
(1) ⇓𝜎′′ ⊥ and 𝑝𝑡

(2) ⇓𝜎′′ ⊥
and 𝑝 𝑓

(1) ⇓𝜎′′ ⊤ and 𝑝 𝑓
(2) ⇓𝜎′′ ⊥ and therefore get from

Lemma 3.4.3 that ⟨Jterm(𝑠1 , 𝑐)K𝑝1
2 , 𝜎′′⟩ →∗ ⟨skip, 𝜎′′′⟩ for

some store 𝜎′′′, s.t. we still have 𝜎𝑎 ∈𝑎 𝜎′′′. Since 𝑝 𝑓
(1) and 𝑝 𝑓

(2)

are unchanged in 𝜎′′′, we have the same situation as before;
𝑠2 therefore always terminates from 𝜎𝑎 in some number 𝑛2 of
steps by the induction hypothesis, and therefore 𝑠 terminates
in at most 𝑛2 + 1 steps from 𝜎𝑎 (using one step for Cond2).

▶ Case 𝑠 ≡ while (𝑒) terminates(𝑒𝑐 , 𝑒𝑟) {𝑠𝑙}: Then we must have
𝑠 ≡ if (𝑝(1)) {cond

(1):=𝑒𝑐 (1)}
if (𝑝(2)) {cond

(2):=𝑒𝑐 (2)}
assert ¬((𝑝(1) ∧ ¬cond

(1)) ∨ (𝑝(2) ∧ ¬cond
(2))) ∨ 𝑝(1) = 𝑝(2)

assert ¬(𝑝(1) ∧ 𝑝(2)) ∨ cond
(1)

= cond
(2)

assert (¬(𝑝(1) ∧ cond
(1)) ∨ (𝑒𝑟 (1) ≥ 0))∧

(¬(𝑝(2) ∧ cond
(2)) ∨ (𝑒𝑟 (2) ≥ 0))

assert (¬(𝑝(1) ∧ 𝑐(1)) ∨ cond
(1)) ∧ (¬(𝑝(2) ∧ 𝑐(2)) ∨ cond

(2))
assert (¬(𝑝(1) ∧ ¬cond

(1)) ∨ 𝑒(1)) ∧ (¬(𝑝(2) ∧ ¬cond
(2)) ∨ 𝑒(2))

𝑤
where 𝑤 has the same form as in the proof of Lemma A.1.21.
By the induction hypothesis, we have that if Jterm(𝑠𝑙 , cond)K𝑝𝑙2 does
not fail from some store 𝜎′′′ in which only one execution 𝑎 is active,
𝑠𝑙 always terminates from a store 𝜎′′′𝑎 s.t. 𝜎′′′𝑎 ∈𝑎 𝜎′′′. After executing
the assignments, 𝑠 executes assertions that fail if 𝑒𝑟 (𝑎) is negative or
if 𝑒𝑟 (𝑎) is not true in 𝜎. Since they cannot fail from 𝜎, we have the
conditions required to apply Lemma A.1.21 and we are done.

□

Similarly, we can conclude that if the product of the termination instru-
mentation term(𝑠, 𝑐) of a statement 𝑠 is guaranteed not to fail from a
product state in which 𝑐 is true for both executions, the statement is
guaranteed to terminate from any pair of stores that mirror that of the
product:

Lemma A.1.23 Assume that 𝑠 = Jterm(𝑠, 𝑐)K�̊�2 , 𝑠 is not and does not

syntactically contain a method call, 𝑠 never fails from 𝜎, 𝑝(2) ⇓𝜎 ⊤ and

𝑝(2) ⇓𝜎 ⊤, 𝑐(2) ⇓𝜎 ⊤ and 𝑐(2) ⇓𝜎 ⊤, 𝜎1 ∈1 𝜎 and 𝜎2 ∈2 𝜎, and 𝑠 never

terminates with magic from 𝜎1 or 𝜎2. Then 𝑠 always terminates from 𝜎1 and

𝜎2

Proof. By induction on the structure of 𝑠. The cases for basic statements
are again trivial and the case for method calls is impossible. The case
for sequential composition follows directly from using the induction
hypothesis on the substatements. For conditionals, we use Lemma A.1.22
in case the executions take different branches, and otherwise use the
induction hypothesis on the branch that is executed and Lemma 3.4.3. For
loops, similar to the previous proof, the assertion at the beginning of the
product must fail if its termination 𝑒𝑐 is not true for both executions, which
cannot happen. We therefore have the conditions to apply Lemma A.1.21
and we are done. □
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Next, we prove that in the conditions ensured by the initial assertions of
our loop encoding, if the termination condition is false, executions of the
actual program never terminate:

Lemma A.1.24 Assume that

𝑤 = while (𝑒)
do {
if (cond) {rank:=𝑒𝑟};
term(𝑠, cond);
assert 𝑐𝑜𝑛𝑑 ⇒ 0 ≤ 𝑒𝑟 ∧ 𝑒𝑟 < rank

assert ¬𝑐𝑜𝑛𝑑 ⇒ 𝑒

}

and 𝑤 = J𝑤K�̊�2 , 𝑤 never fails from 𝜎, 𝑝(1) ⇓𝜎 ⊤ and 𝜎1 ∈1 𝜎 and 𝑝(2) ⇓𝜎 ⊤
and 𝜎2 ∈2 𝜎, cond

(1) ⇓𝜎 ⊥ and cond
(2) ⇓𝜎 ⊥, 𝑒(1) ⇓𝜎 ⊤ and 𝑒(2) ⇓𝜎 ⊤,

𝑠 never terminates with magic from 𝜎1 and 𝜎2, term(𝑠, cond) s does not

assign to cond, and for all 𝜎′′, 𝜎′′1 , 𝜎
′′
2 , if 𝑝(1) ⇓𝜎′′ ⊤ and 𝑝(2) ⇓𝜎′′ ⊤ and

𝜎′′1 ∈1 𝜎′′ and 𝜎′′2 ∈2 𝜎′′ and Jterm(𝑠, cond)K�̊�2 does not fail from 𝜎′′, then the

termination of 𝑠 from 𝜎′′1 and 𝜎′′2 coincides.

Then

1. if ⟨while (𝑒) {𝑠}, 𝜎1⟩ →𝑘1 ⟨𝑠′1 , 𝜎′1⟩ for some 𝑠′1 , 𝜎
′
1 then 𝑠′1 is not

final.

2. if ⟨while (𝑒) {𝑠}, 𝜎2⟩ →𝑘2 ⟨𝑠′2 , 𝜎′2⟩ for some 𝑠′2 , 𝜎
′
2 then 𝑠′2 is not

final.

Proof. We prove both conclusions separately. We show the proof
for (1), the one for (2) is analogous. We take an arbitrary trace
⟨while (𝑒) {𝑠}, 𝜎1⟩ →𝑘1 ⟨𝑠′1 , 𝜎′1⟩. The proof goes by strong induction
on 𝑘1. 𝑤 must have the same form as described in the proof for
Lemma A.1.21. If 𝑘1 = 0 we are done. Since 𝑒(1) ⇓𝜎 ⊤ and 𝑒(2) ⇓𝜎 ⊤
we have that 𝑒 ⇓𝜎1 ⊤ and 𝑒 ⇓𝜎2 ⊤ by Lemma 3.4.1. Therefore by
Whl1 we have that ⟨while (𝑒) {𝑠}, 𝜎1⟩ → ⟨𝑠; while (𝑒) {𝑠}, 𝜎1⟩ and
⟨while (𝑒) {𝑠}, 𝜎2⟩ → ⟨𝑠; while (𝑒) {𝑠}, 𝜎2⟩ and we are done if 𝑘1 = 1.
Now either 𝑠 terminates from both 𝜎1 and 𝜎2 or from none of them. If it
does not, we are done, since no final state will be reached from here. We
consider the case where both terminate with some new stores 𝜎′′1 , 𝜎

′′
2 and

assume the first execution terminates from 𝜎1 in 𝑘′1 steps. If 𝑘1 < 𝑘′1+1 we
are again done because none of the intermediate configurations are final.
After executing the assignments of new activation variables as well as the
rank variable the product must reach a configuration with a new store 𝜎′′

as in the proof for Lemma A.1.21. By Thm. 3.4.5 and Lemma 3.4.6 we get
that J𝑠K𝑝𝑙2 terminates from 𝜎 in some 𝜎′′. By Lemma A.1.20 we get that the
instrumented product terminates with some 𝜎′′′ s.t. 𝜎′′′ ≾𝑤 𝜎′′. Since cond

is unchanged in 𝜎′′′, the product must subsequently assert that 𝑒(1) ⇓𝜎′′′ ⊤
and 𝑒(2) ⇓𝜎′′′ ⊤. Since the assertion cannot fail and both activation vari-
ables are still active, we must have that 𝑝(1) ∧ 𝑒(1) ∧ 𝑝(2) ∧ 𝑒(2) ⇓𝜎′′′ ⊤.
The product must then step to a configuration ⟨𝑤, 𝜎′′′⟩, and similarly
the original executions step to ⟨𝑤, 𝜎′′1 ⟩ and ⟨𝑤, 𝜎′′2 ⟩, respectively, by Seq2.
By the induction hypothesis, 𝑠 never terminates from 𝜎′′1 , and we are
done. □
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Finally, we can prove our main theorem:

Theorem 3.5.2 If 𝑠 = Jterm(𝑠, false)K�̊�2 and ⊨ {⌊�̌�⌋ �̊�2 }𝑠{true} and (𝜎1 , 𝜎2) ⊨
�̌� and 𝑠 does not terminate with magic from 𝜎1 and 𝜎2 and 𝑠 does not contain

calls to (mutually) recursive methods then the termination of 𝑠 from 𝜎1 and

𝜎2 coincides.

Proof. Since 𝑠 does not contain calls to (mutually) recursive methods,
any calls in it can be inlined without changing the program semantics.
We assume that this has happened, and 𝑠 therefore does not contain
any method calls whatsoever. We pick 𝜎 s.t. 𝑝(1) ⇓𝜎 ⊤ and 𝑝(2) ⇓𝜎 ⊤ and
𝜎1 ∈1 𝜎 and 𝜎2 ∈2 𝜎. Because ⊨ {⌊�̌�⌋ �̊�2 }𝑠{true} by Lemma 3.4.8 we know
that 𝑠 does not fail from 𝜎.

We have to prove that for both combinations of 𝑖 , 𝑗 s.t. {𝑖 , 𝑗} = {1, 2}, if
⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠, 𝜎′

𝑖
⟩ for some ¤𝑠, 𝜎′

𝑖
then 𝑠 also always terminates from 𝜎𝑗 .

We now prove the following statement by induction on the structure of 𝑠:

If 𝑠′ = term(𝑠, 𝑐), 𝑠 = J𝑠′K�̊�2 , 𝑠 never fails from 𝜎, 𝑝(1) ⇓𝜎 ⊤ and 𝑝(2) ⇓𝜎 ⊤,
𝜎1 ∈1 𝜎, 𝜎2 ∈2 𝜎, 𝑠 never terminates with magic from 𝜎1 and 𝜎2, and 𝑠

does not contain method calls.

Then if ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ for some ¤𝑠𝑖 , 𝜎′𝑖 then 𝑠 always terminates from
𝜎𝑗 .

We assume that ⟨𝑠, 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ (otherwise we are done) and need to
show that 𝑠 always terminates from 𝜎𝑗 .

▶ The cases for skip, assignments, havoc, assume, and assert are
trivial since those statements always terminate.

▶ The case for method calls is impossible.
▶ Case 𝑠 ≡ 𝑠1; 𝑠2: Then 𝑠 ≡ Jterm(𝑠1 , 𝑐)K�̊�2 ; Jterm(𝑠2 , 𝑐)K�̊�2 . By

Lemma A.1.7.2 and Lemma A.1.7.3 we get that ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′′𝑖 ⟩
for some 𝜎′′

𝑖
and ¤𝑠𝑖 ≠ magic. By Lemma A.1.7.3 we also get that

Jterm(𝑠1 , 𝑐)K�̊�2 does not fail from 𝜎. By the induction hypothesis,
we then get that 𝑠1 always terminates from 𝜎𝑗 in some configura-
tion ⟨¤𝑠 𝑗 , 𝜎′′𝑗 ⟩. By Lemma 3.4.6 and Lemma A.1.20 we then get that
¤𝑠𝑖 = skip, and by Thm. 3.4.5 we have that for any such 𝜎′′

𝑖
and

𝜎′′
𝑗

there is some 𝜎′′ s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′ and 𝜎′′

𝑗
∈𝑗 𝜎′′ and the activation

variables are still true. We can then apply the induction hypothesis
again to 𝑠2 and we are done.

▶ Case 𝑠 ≡ if (𝑒) {𝑠1} else {𝑠2}: Then 𝑠 ≡ 𝑝𝑡
(1):=𝑝(1) ∧

𝑒(1); 𝑝𝑡 (2):=𝑝(2) ∧ 𝑒(2); 𝑝 𝑓
(1):=𝑝(1) ∧ ¬𝑒(1); 𝑝 𝑓

(2):=𝑝(2) ∧
¬𝑒(2); Jterm(𝑠1 , 𝑐)K𝑝𝑡2 ; Jterm(𝑠2 , 𝑐)K

𝑝 𝑓

2 . The product begins by
assigning the new activation variables, resulting in a store 𝜎′′

modified in the obvious way. We perform a case split on the value
of the condition expression in both executions:

• If 𝑒(𝑖) ⇓𝜎 ⊤ and 𝑒(𝑗) ⇓𝜎 ⊤ then also 𝑒 ⇓𝜎𝑖 ⊤ and 𝑒 ⇓𝜎𝑗
⊤ by

Lemma 3.4.1 and both executions must proceed by Cond1.
We then have that ⟨𝑠1 , 𝜎𝑖⟩ →∗ ⟨¤𝑠𝑖 , 𝜎′𝑖⟩ for some 𝜎′

𝑖
and that

Jterm(𝑠1 , 𝑐)K𝑝𝑡2 does not fail from 𝜎′′. Since 𝑝𝑡
(𝑖) ⇓𝜎′′ ⊤ and

𝑝𝑡
(𝑗) ⇓𝜎′′ ⊤, we get that 𝑠1 always terminates from 𝜎𝑗 by the

induction hypothesis.
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• If 𝑒(𝑖) ⇓𝜎 ⊥ and 𝑒(𝑗) ⇓𝜎 ⊥we have that 𝑝𝑡 (𝑖) ⇓𝜎′′ ⊥ and 𝑝𝑡
(𝑖) ⇓𝜎′′

⊥. We use Lemma 3.4.3 to get that ⟨Jterm(𝑠1 , 𝑐)K𝑝𝑡2 , 𝜎′′⟩ →∗

⟨skip, 𝜎′′′⟩ for some store 𝜎′′′ that still mirrors the stores of
both single executions. Then the argument goes as in the
previous case.

• If 𝑒(𝑖) ⇓𝜎 ⊤ and 𝑒(𝑗) ⇓𝜎 ⊥ we have that 𝑝𝑡
(𝑖) ⇓𝜎′′ ⊤ and

𝑝𝑡
(𝑗) ⇓𝜎′′ ⊥ and 𝑝 𝑓

(𝑖) ⇓𝜎′′ ⊥ and 𝑝 𝑓
(𝑗) ⇓𝜎′′ ⊤. By Lemma A.1.22

we get that 𝑠1 always terminates from 𝜎𝑖 . By Thm. 3.4.5 and
Lemma 3.4.6 and Lemma A.1.20 we get for any trace of 𝑠1

from 𝜎𝑖 that Jterm(𝑠1 , 𝑐)K𝑝𝑡2 terminates from 𝜎′′ in some 𝜎′′′

with 𝑝 𝑓
(1) and 𝑝 𝑓

(2) unchanged and 𝜎𝑗 ∈𝑗 𝜎′′′. Then we can
apply Lemma A.1.22 again to get that 𝑠2 always terminates
from 𝜎𝑗 and we are done.

• If 𝑒(𝑖) ⇓𝜎 ⊥ and 𝑒(𝑗) ⇓𝜎 ⊤ the argument goes as in the previous
case.

▶ Case 𝑠 ≡ while (𝑒) terminates(𝑒𝑐 , 𝑒𝑟) {𝑠𝑙}: Then
𝑠 ≡ if (𝑝(1)) {cond

(1):=𝑒𝑐 (1)}
if (𝑝(2)) {cond

(2):=𝑒𝑐 (2)}
assert ¬((𝑝(1) ∧ ¬cond

(1)) ∨ (𝑝(2) ∧ ¬cond
(2))) ∨ 𝑝(1) = 𝑝(2)

assert ¬(𝑝(1) ∧ 𝑝(2)) ∨ cond
(1)

= cond
(2)

assert (¬(𝑝(1) ∧ cond
(1)) ∨ (𝑒𝑟 (1) ≥ 0)) ∧ (¬(𝑝(2) ∧ cond

(2)) ∨ (𝑒𝑟 (2) ≥ 0))
assert (¬(𝑝(1) ∧ 𝑐(1)) ∨ cond

(1)) ∧ (¬(𝑝(2) ∧ 𝑐(2)) ∨ cond
(2))

assert (¬(𝑝(1) ∧ ¬cond
(1)) ∨ 𝑒(1)) ∧ (¬(𝑝(2) ∧ ¬cond

(2)) ∨ 𝑒(2))
𝑤

where 𝑤 has the same form as in the proof of Lemma A.1.21. We
case split on the value of 𝑒𝑐 for both executions:

• If 𝑒𝑐
(𝑖) ⇓𝜎 ⊤ and 𝑒𝑐

(𝑗) ⇓𝜎 ⊤ then cond
(𝑖) and cond

(𝑗) both
become true in the product store. By Lemma A.1.23 𝑠𝑙 always
terminates from any stores 𝜎′′

𝑖
, 𝜎′′

𝑗
if there is a product store 𝜎′′

s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′ and 𝜎′′

𝑗
∈𝑗 𝜎′′ and cond

(1) ⇓𝜎′′ ⊤ and cond
(2) ⇓𝜎′′ ⊤

and from which Jterm(𝑠𝑙 , cond)K𝑝𝑙2 never fails. We can therefore
use Lemma A.1.21 and we are done.

• If 𝑒𝑐
(𝑖) ⇓𝜎 ⊥ and 𝑒𝑐

(𝑗) ⇓𝜎 ⊥ then cond
(𝑖) and cond

(𝑗) both
become false in the product store. We must therefore have
that 𝑒(1) ⇓𝜎 ⊤ and 𝑒(2) ⇓𝜎 ⊤, since otherwise the last assertion
will fail. By the induction hypothesis, the termination of 𝑠𝑙
coincides from any stores 𝜎′′

𝑖
, 𝜎′′

𝑗
if there is a product store 𝜎′′

s.t. 𝜎′′
𝑖
∈𝑖 𝜎′′ and 𝜎′′

𝑗
∈𝑗 𝜎′′ and cond

(1) ⇓𝜎′′ ⊥ and cond
(2) ⇓𝜎′′ ⊥

and from which Jterm(𝑠𝑙 , cond)K𝑝𝑙2 never fails. Therefore by
Lemma A.1.24 𝑠 never terminates from 𝜎1 and this case is
impossible.

• If 𝑒𝑐 (𝑖) ⇓𝜎 ⊤ and 𝑒𝑐
(𝑗) ⇓𝜎 ⊥ we must get cond

(𝑖) ⇓𝜎′′ ⊤ and
cond

(𝑗) ⇓𝜎′′ ⊥ in the product store after the initial assignments.
Then the assertion ¬(𝑝(1) ∧ 𝑝(2)) ∨ cond

(1)
= cond

(2) must fail
during the product execution, which cannot happen, so this
case is impossible.

• If 𝑒𝑐 (𝑖) ⇓𝜎 ⊥ and 𝑒𝑐
(𝑗) ⇓𝜎 ⊥ then the same assertion will fail,

so this case is also impossible.

□
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Chapter 4 B.

B.1. Benchmarks from Functional Test Suite

Name 𝑇 𝑇𝑆𝐼𝐹 Factor
empty.py 3.42 3.50 1.02
examples/cav_example.py 7.64 90.46 11.83
examples/iap_bst.py 6.49 83.72 12.90
examples/parkinson_recell.py 3.74 4.05 1.09
examples/rosetta_qsort.py 6.94 120.87 17.41
examples/test_student_enroll_preds.py 5.74 34.40 5.99
issues/00001.py 3.49 3.50 1.00
issues/00003.py 3.74 4.69 1.25
issues/00005.py 3.92 3.67 0.94
issues/00007.py 3.67 3.80 1.04
issues/00008.py 3.67 3.50 0.95
issues/00010.py 3.60 3.67 1.02
issues/00015.py 3.82 4.00 1.05
issues/00016.py 3.42 3.47 1.01
issues/00017.py 4.92 5.27 1.07
issues/00019.py 4.35 4.62 1.06
issues/00021.py 3.50 3.54 1.01
issues/00022.py 3.55 3.54 1.00
issues/00023_2.py 3.92 3.89 0.99
issues/00023.py 3.67 3.80 1.04
issues/00027.py 3.52 3.69 1.05
issues/00031.py 4.42 4.94 1.12
issues/00032.py 3.45 3.60 1.04
issues/00033.py 3.57 3.65 1.02
issues/00041.py 3.57 3.52 0.99
issues/00043.py 3.49 3.47 1.00
issues/00044.py 3.60 3.64 1.01
issues/00045.py 3.65 3.60 0.99
issues/00046.py 4.35 4.27 0.98
issues/00047.py 4.49 4.61 1.03
issues/00048.py 4.44 7.41 1.67
issues/00049.py 3.79 4.56 1.20
issues/00053.py 3.69 3.77 1.02
issues/00054.py 3.59 3.60 1.00
issues/00055.py 3.60 3.54 0.98
issues/00056.py 4.29 4.32 1.01
issues/00057.py 4.39 4.27 0.97
issues/00059.py 6.02 57.77 9.59
issues/00071.py 3.42 3.59 1.05
issues/00112.py 3.60 3.59 1.00
issues/00113.py 3.87 3.85 1.00
issues/00115.py 4.45 5.89 1.32
issues/00118.py 3.89 4.47 1.15
issues/00120.py 4.10 4.50 1.10
issues/00141.py 4.02 5.87 1.46
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test_adt_1.py 4.56 5.46 1.20
test_adt_2.py 3.92 3.92 1.00
test_adt_3.py 4.29 5.01 1.17
test_assign.py 6.19 11.38 1.84
test_behavioural_subtyping_classmethod.py 3.82 4.37 1.14
test_behavioural_subtyping_predicates.py 3.95 4.02 1.02
test_behavioural_subtyping_static.py 3.82 3.92 1.03
test_behavioural_subtyping.py 5.59 11.15 1.99
test_boolop.py 4.64 5.77 1.24
test_boxing.py 4.89 6.63 1.36
test_builtin_functions.py 3.89 4.10 1.06
test_builtin_globals_1.py 3.40 3.55 1.04
test_builtin_globals_2.py 3.55 3.89 1.09
test_bytes.py 4.35 4.82 1.11
test_cast.py 3.82 4.34 1.14
test_classmethod.py 4.02 4.34 1.08
test_constructor.py 3.60 4.05 1.13
test_conversion.py 4.96 6.42 1.30
test_default_return.py 5.12 22.01 4.30
test_definedness.py 3.64 3.72 1.02
test_dict_pred.py 5.09 7.26 1.43
test_dicts.py 4.44 6.17 1.39
test_dynamic_field_creation.py 4.05 4.49 1.11
test_enumerate.py 5.44 13.94 2.56
test_exception_loop.py 4.02 6.54 1.63
test_exception.py 5.46 8.33 1.53
test_exists.py 4.54 4.69 1.03
test_field_deletion.py 3.80 3.87 1.02
test_fields.py 4.02 5.04 1.25
test_float.py 3.92 3.97 1.01
test_forall.py 5.32 6.98 1.31
test_funcs_and_methods.py 4.59 5.21 1.13
test_function_basics.py 4.20 4.29 1.02
test_generic_classes.py 4.72 6.49 1.37
test_generic_methods.py 4.35 5.27 1.21
test_global_definedness_1.py 3.70 3.72 1.00
test_global_definedness_10.py 3.50 3.59 1.02
test_global_definedness_11.py 3.70 3.67 0.99
test_global_definedness_2.py 3.59 3.65 1.02
test_global_definedness_3.py 3.47 3.65 1.05
test_global_definedness_4.py 3.74 4.24 1.13
test_global_definedness_5.py 3.64 3.79 1.04
test_global_definedness_6.py 3.84 4.45 1.16
test_global_definedness_7.py 3.65 3.65 1.00
test_global_definedness_8.py 3.49 3.57 1.02
test_global_definedness_9.py 3.54 3.64 1.03
test_global_mutable_1.py 3.70 4.09 1.10
test_global_mutable_2.py 3.64 3.84 1.06
test_global_program.py 4.16 5.79 1.39
test_global_scopes.py 4.07 4.24 1.04
test_global_stateful.py 3.84 4.12 1.07
test_global_vars.py 3.75 3.79 1.01
test_havoced_types.py 5.14 18.33 3.57
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test_identity.py 4.09 4.14 1.01
test_import_execution.py 4.97 8.73 1.76
test_imports_2.py 3.55 3.79 1.07
test_imports_cyclic.py 3.77 4.02 1.07
test_imports.py 3.82 4.12 1.08
test_isinstance.py 3.39 3.87 1.14
test_iterator_dict.py 6.57 26.99 4.11
test_iterator_list.py 8.76 65.56 7.48
test_iterator_set.py 6.39 30.10 4.71
test_let.py 3.89 4.04 1.04
test_list_comprehension.py 4.91 7.28 1.48
test_list_pred.py 4.45 5.39 1.21
test_lists.py 5.39 6.74 1.25
test_loop_break.py 5.32 26.51 4.98
test_loop_continue.py 4.30 7.86 1.83
test_magic_methods.py 3.95 4.07 1.03
test_method_calls.py 4.59 5.47 1.19
test_named_args.py 4.09 4.77 1.17
test_namespace.py 4.27 5.31 1.24
test_operator_overloading.py 4.05 4.55 1.12
test_operators.py 4.09 6.22 1.52
test_optional_types.py 4.37 5.14 1.18
test_pmultiset.py 4.00 4.24 1.06
test_predicate_families.py 4.07 4.61 1.13
test_predicate.py 3.72 4.09 1.10
test_property.py 4.07 4.51 1.11
test_pseq.py 4.37 5.16 1.18
test_pset.py 3.99 3.92 0.98
test_raised_exception.py 3.74 4.72 1.26
test_range.py 5.29 10.45 1.98
test_set_pred.py 4.50 4.96 1.10
test_set.py 3.97 4.64 1.17
test_slicing.py 5.41 21.05 3.89
test_starred.py 3.99 4.72 1.18
test_static_calls.py 4.39 6.47 1.48
test_static_class_members.py 4.07 4.40 1.08
test_string.py 3.59 3.65 1.02
test_super.py 3.69 3.90 1.06
test_tuples.py 4.09 4.64 1.13
test_type_aliases.py 3.79 4.17 1.10
test_union_contracts.py 5.24 10.42 1.99
test_union_types.py 4.12 4.57 1.11
test_varargs.py 4.46 5.37 1.21
test_while.py 4.05 5.66 1.40
test_wildcard_permissions.py 4.00 4.64 1.16
test_with.py 4.67 5.86 1.25

Table B.1.: Evaluated tests from Nagini’s functional test suite. For all tests, the same errors
are reported with and without enabling the information flow option. 𝑇 and 𝑇𝑆𝐼𝐹 represent
the average verification time without and with the information flow, respectively, in seconds.
Factor describes the slowdown factor introduced by enabling the information flow option.
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