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Information flow security ensures that the secret data manipulated by a program does not influence its
observable output. Proving information flow security is especially challenging for concurrent programs, where
operations on secret data may influence the execution time of a thread and, thereby, the interleaving between
threads. Such internal timing channels may affect the observable outcome of a program even if an attacker
does not observe execution times. Existing verification techniques for information flow security in concurrent
programs attempt to prove that secret data does not influence the relative timing of threads. However, these
techniques are often restrictive (for instance because they disallow branching on secret data) and make strong
assumptions about the execution platform (ignoring caching, processor instructions with data-dependent
execution time, and other common features that affect execution time).

In this paper, we present a novel verification technique for secure information flow in concurrent programs
that lifts these restrictions and does not make any assumptions about timing behavior. The key idea is to prove
that all mutating operations performed on shared data commute, such that different thread interleavings do
not influence its final value. Crucially, commutativity is required only for an abstraction of the shared data
that contains the information that will be leaked to a public output. Abstract commutativity is satisfied by
many more operations than standard commutativity, which makes our technique widely applicable.

We formalize our technique in CommCSL, a relational concurrent separation logic with support for
commutativity-based reasoning, and prove its soundness in Isabelle/HOL. We have implemented Comm-
CSL in HyperViper, an automated verifier based on the Viper verification infrastructure, and demonstrate its
ability to verify challenging examples.

1 INTRODUCTION

Reasoning about information flow is important to ensure the confidentiality and integrity of data.
The main goal of information flow security is to ensure the absence of value channels, that is,
unwanted information flows through the result values computed by a program. For sequential
programs, preventing value channels is conceptually simple, and is enabled by various existing
type systems, program logics, and static analyses.
Depending on the application scenario, it is sometimes desirable to also prevent side channels

that let an attacker obtain information about secret values indirectly, by observing parameters such
as execution time. Preventing timing channels requires ruling out all possible sources of secret-
dependent timing differences, which may depend on complex (but standard) hardware features like
caching [Stefan et al. 2013] and speculative execution [Kocher et al. 2019; Lipp et al. 2018].
For sequential programs, proving the absence of value channels does not involve reasoning

about timing. Thus, for the many scenarios where attackers cannot observe execution time at all
(e.g., because the time when data is made public is decoupled from its computation time, which
is common for batch processing) or not with sufficient precision (e.g., because execution time is
hidden by a laggy network), simple reasoning about values is sufficient even on standard hardware.
However, this is not the case for concurrent programs with shared memory, where timing

differences may result in value channels, which can be observed even by attackers that cannot
observe execution time. The program in Figure 1 illustrates this problem.
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𝑡1, 𝑡2 := 0
while (𝑡1 < 100) do {
𝑡1 := 𝑡1 + 1

}

while (𝑡2 < ℎ) do {
𝑡2 := 𝑡2 + 1

}
𝑠:=3 𝑠:=4

print (𝑠)

Fig. 1. Example program: Timing channels become value channels.

Since no information about the secret value ℎ is leaked to the output 𝑠 through direct assignments
or explicit control flow, each thread individually does not leak secret information. However, the
execution time of the loop in the right thread depends on the value of ℎ. This timing may affect
the order in which the threads perform their assignment to 𝑠 and, thus, which value is printed in
the end. With a deterministic round-robin scheduler, the printed value leaks whether or not ℎ is
greater than 100. With a non-deterministic scheduler with a known probability distribution, the
entire value of ℎ is leaked probabilistically over multiple executions.
Information leaks that turn secret-dependent timing differences between threads into observ-

able differences in the program state have long been recognized and are called internal timing
channels [Volpano and Smith 1998]. Some existing solutions to this problem essentially eliminate
shared memory between threads [Giffhorn and Snelting 2015; Vechev et al. 2010], which rules out
many useful concurrent programming patterns. Others employ the techniques used to prevent
standard timing channels. They forbid programs from including operations whose execution time
depends on secret inputs [Murray et al. 2018; Sabelfeld and Sands 2000; Schoepe et al. 2020; Smith
2007]; in our example, they would reject the loop in the right thread. However, these techniques
typically assume idealized hardware, where secret-depending branching is the only source of timing
channels. In principle, they can be extended to standard hardware (e.g., one commonly prevents
timing leaks through cache effects by forbidding all secret-dependent memory accesses [Jancar
et al. 2022]). However, attempting to rule out all sources of timing differences requires information
about compilers [Barthe et al. 2018] and the hardware on which code is to be executed [Andrysco
et al. 2018; Cleemput et al. 2012], including hardware details manufacturers usually do not make
public. As a result, it is virtually impossible to rule out timing channels with absolute certainty,
and thus, existing techniques cannot rule out value channels in concurrent programs on standard
hardware with certainty either, since they require eliminating timing channels.

This work. We present a novel technique to prove the absence of value channels in concurrent
programs that does not require reasoning about timing and, thus, is sound even in the presence of
complex modern hardware features. In the common case that attackers cannot observe execution
time, our technique enables conceptually simple information flow security proofs.When the attacker
can observe timing to a degree, our technique can be combined with orthogonal techniques to try
to rule out timing channels. Crucially, our technique is modular, i.e., it does not require explicit
reasoning about thread interleavings, which would make verification computationally infeasible.

Our technique is based on the observation that different, secret-dependent interleavings of shared
data mutations lead to the same final result if the mutating operations on shared data performed by
different threads commute. For instance, the program above is (rightfully) rejected by our technique
because the two assignments to the shared variable 𝑠 do not commute; however, a variation of this
example where the concurrent assignments are modified so that the left thread atomically assigns
𝑠 + 3 to 𝑠 , and the right thread assigns 𝑠 + 4, is allowed: This program always increases 𝑠 by 7, since
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the additions performed by the two threads commute and their (secret-dependent) order therefore
does not influence the final result. Consequently, the adapted program contains no value channels.

Standard commutativity is a strong requirement that is satisfied only by a minority of operations
of typical data structures. A key insight of our work is to restrict the commutativity requirement
to those parts of the shared data that are required to be non-secret (or public). In our example, if
𝑠 were secret (and consequently not printed at the end of the program) then the program would
be information flow secure even though the assignments to 𝑠 do not commute. To this end, we
allow programmers to specify abstract views of shared data structures that contain the information
that must remain public; all information not included in the abstraction is considered secret. It is
then sufficient to prove abstract commutativity, that is, the order of two operations does not affect
the abstract view of a data structure, but it may affect other aspects. For instance, two list-append
operations commute under a set- or length-abstraction of the list, but do not commute on the
concrete list (unless they append the same element).
Many programs expose public views on data structures that contain secret information. One

common case is maintaining internal data that intentionally contains secret information (e.g., an
employee database with individual salaries), and then exposing only a part of it (e.g., average
salaries for reporting purposes); in this case, our technique allows specifying the projection to
averages as the abstraction. Another common case is maintaining data that is intended to be public,
but inadvertently tainted with secret information as a result of timing differences in a concurrent
computation. For instance, a program may maintain a list of anonymized accounts, but the order in
the list depends on the time it took to process the (secret) purchases of each account. In this case,
we can use the multiset view of the list as the abstraction, and prove, for instance, that a sorted
version of the list can be exposed without creating a value channel.

We formalize our technique as a relational concurrent separation logic with special constructs for
reasoning about abstract commutativity of concurrent operations. This logic, CommCSL, enables
modular proofs of information flow security, does not require reasoning about the timing behavior
of threads, and is amenable to automation via SMT solvers. Our logic supports an expressive
assertion language that can express concepts like value-dependent secrecy [Murray et al. 2018]. In
addition to proving existing applications secure, the ideas behind our technique can also be used as
a guiding principle when building concurrent applications that deal with secret data.

Contributions and outline. We make the following contributions:
• We show how commutativity can be used to prove information flow security in shared-

memory concurrent programs. Our verification technique allows threads to flexibly manip-
ulate secret data and does not require reasoning (nor make assumptions) about the timing
of executions, such that it is directly applicable to programs running on standard hardware.

• We introduce the generalized notion of abstract commutativity, which requires opera-
tions to commute only relative to a user-defined abstraction of the shared state. Abstract
commutativity applies to a much wider set of common scenarios.

• We incorporate these techniques into CommCSL, a novel concurrent separation logic that
enables modular proofs of information flow security using abstract commutativity.

• We formalize our logic and prove its soundness in Isabelle/HOL [Nipkow et al. 2002].
• We implement CommCSL in an automated, SMT-based verification tool called HyperViper
based on the Viper verification infrastructure [Müller et al. 2016].

• We evaluate our logic and tool by verifying the information flow security of several chal-
lenging, realistic examples.

This paper is organized as follows: Sec. 2 provides an informal overview of our technique. We
formally define CommCSL in Sec. 3, and summarize its soundness proof in Sec. 4. In Sec. 5, we
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procedure t a r g e t S i z e ( househo lds ) {
/ / e n s u r e s : c i s low
n : = | househo lds |
c : = c r ea t eCoun t e r ( 0 )
( worker ( households , 0 , n / 2 , c )

| |
worker ( households , n / 2 , n , c ) )
return c

}

procedure worker ( households , f , t , c ) {
for ( i in f . . t −1 ) {

t a r g e t s : = coun tTa r g e t s ( househo ld [ i ] )
atomic :

c . add ( t a r g e t s )
}

}

procedure coun tTa r g e t s ( househo ld : map[ s t r , in t ] ) {
return househo ld [ " nAdu l t s " ]

}

Fig. 2. Example program: Multiple threads add values to a shared counter. households is an array containing
customer data per household. The result of countTargets is low, but its execution time may be high, here
due to potential hash collisions with other keys whose presence in the households map is secret.

describe the implementation of the logic in HyperViper and use it to verify several challenging
programming patterns. We discuss related work in Sec. 6 and conclude in Sec. 7.

2 OVERVIEW

In this section, we explain the central concepts behind CommCSL informally. We occasionally omit
details for simplicity; the full logic with all features and checks will be presented in Sec. 3.

2.1 Problem Statement

Our goal in this paper is to prove that concurrent programs that have both high-sensitivity (high)
and low-sensitivity (low) inputs do not leak information about the high inputs in their low output
values1. Formally, this can be expressed as non-interference [Volpano et al. 1996], a 2-safety hyper-
property [Clarkson and Schneider 2010], i.e., a property of pairs of finite execution traces of the
program (𝑠 (𝑥) denotes the value of variable 𝑥 in program store 𝑠):

Definition 2.1. A program 𝑐 with a set of input variables 𝐼 and output variables 𝑂 , of which
some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies non-interference iff for all 𝑠1, 𝑠2 and 𝑠′1, 𝑠

′
2, if ∀𝑥 ∈

𝐼𝑙 . 𝑠1 (𝑥) = 𝑠2 (𝑥) and ⟨𝑐, 𝑠1⟩ →∗ ⟨skip, 𝑠′1⟩ and ⟨𝑐, 𝑠2⟩ →∗ ⟨skip, 𝑠′2⟩, then ∀𝑥 ∈ 𝑂𝑙 . 𝑠
′
1 (𝑥) = 𝑠′2 (𝑥).

This definition captures value channels. As explained in the introduction, timing side channels
can potentially be prevented using orthogonal techniques if necessary.
The example in Fig. 2 illustrates this property. The targetSize procedure determines the size

of the target audience for a marketing campaign as the number of people in a given array of
households that satisfy certain criteria. The procedure uses two worker threads that each iterate
over half of the households, determine the number of target persons in each household, and add
that number to a shared counter c. We assume that the number of households in the input as
well as how many members of a household are in the target audience (i.e., the result value of
countTargets) is low. However, the execution time of countTargets may depend on high data
for a variety of reasons. For example, the implementation in Fig. 2 consists of a simple look-up in a
hash map. Nevertheless its execution time may depend on hash collisions with other keys whose
presence in the map is secret. Our goal is to prove that the output of targetSize is low.

2.2 Commutativity-Based Information Flow Reasoning

1We limit our presentation to two security labels, high and low, instead of the general case of having arbitrary lattices of
labels; however, techniques for verifying information flow security with two levels can be used to verify programs with
arbitrary finite lattices by performing the verification multiple times, once for every element of the lattice.
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procedure t a r g e t s ( househo lds ) returns ( r e s ) {
/ / e n s u r e s : r e s i s low
n : = | househo lds |
m : = createMap ( )
( worker ( households , 0 , n / 2 , m)

| |
worker ( households , n / 2 , n , m) )
r e s : = s o r t ( t o L i s t ( keys (m) ) )

}

procedure worker ( households , f , t , m) {
for ( i in f . . t −1 ) {

adr , r sn : = s e l e c t ( househo ld [ i ] )
atomic :

m. put ( adr , r sn )
}

}

Fig. 3. Example program: Multiple threads add values to a shared map.

The high data accessed in countTargets may affect the execution time of the procedure and,
thereby, the thread schedule and the intermediate values of the shared counter c. Due to this
internal timing channel, the value of c must be considered high during the execution of the worker
threads. However, after the worker threads have terminated, the counter value can safely be
considered to be low for two reasons. First, as per our assumption, each individual value added
is low. Second, although high information may have affected the order in which different values
are added to the counter, this order does not affect the final counter value because the updates
commute. This example illustrates the central insight of this paper: Internal timing channels do not
affect the final outputs of a program if the modifications performed by different threads commute.
Building on this insight, we present a verification technique for proving non-interference of

concurrent programs. This technique enforces four central properties (in addition to standard
checks that are sufficient to ensure non-interference for sequential programs):

(1) Low initial value: For any shared data structure that is to be modified by multiple threads,
the initial contents of the data structure is low.

(2) Modifications are low: High data does not influence whether or not a thread performs a
modification of the shared data at any given point in the program.

(3) Modification arguments are low: Any data inserted into the shared data structure is low.
(4) Commutativity: The modifications performed by different threads commute with each other.
These four properties are sufficient to ensure that, for any pair of executions of the verified

program with identical low but potentially different high inputs, the final value of any shared data
structure is identical after all threads have finished modifying it.

To understand why, consider two such executions: By property (1), the data structure will have
the same contents in both executions when it is initially shared. By property (2), in both executions,
the same number of modifications will be performed on the data structure (e.g., in our example, the
same number of values will be added). By property (3), for each modification in the first execution,
there is a matching modification in the second execution that uses the same arguments (e.g., if the
value 𝑥 has been added to the counter in the first execution at some point, then 𝑥 is also added at
some point in the second execution); the only difference is in the order of modifications. However,
by property (4), reordering the modifications leaves the final value unchanged. Consequently, the
final contents of the data structure are the result of performing the same commutative operations
with the same arguments on the same initial value, and must therefore be identical.

These four properties form the basis of our verification technique. In the rest of this section,
we will build on and expand on this basic idea: We will relax some of the properties to make our
verification technique more complete and more widely applicable, and we will explain how we
check each of the four properties on the program to be verified.

2.3 Abstract Commutativity
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The methodology described so far is sound, but not sufficiently complete: First, it requires that all
information stored in shared data structures must be low after all concurrent modifications, even
information that is never leaked to a public output. Second, most mutating operations on common
data structures do not commute and therefore do not satisfy our property (4) above.
As an example, consider a variation of the previous example in Fig. 3: Now, the shared data

structure is a map, and each worker extracts a key-value pair per household, where the address
(the key) is low, but the reason why an address was selected (the value) is high. Here, different
invocations of put do not always commute: If two threads put the same key but different values,
then the later put-operation will “win”, and its value will overwrite the previous value for said key.
As a result, the final contents of the map allow an observer to conclude which put happened later
and, thereby, draw conclusions about the secrets that cause the different thread interleavings.

However, the procedure targets does not actually return the entire contents of the map, but only
(a sorted list representation of) its key set. Therefore, differences in values do not affect targets’
public output. Scenarios where programs expose some public views on the data they maintain are
common in practice. To accommodate them, we allow programmers to define an abstract view of the
shared data structure that is guaranteed to be low and, therefore, allowed to be leaked. By focusing
on the relevant part of a shared data structure, we no longer have to demand commutativity of
all concurrent modifications, but only abstract commutativity: commutativity modulo the abstract
view. That is, we require that, if the abstract view of the shared data is low initially, then switching
the order of any two modifications on the data does not affect the final abstract view of the data
structure. This is fulfilled for the example in Fig. 3: Different put-operations do not commute w.r.t.
the entire contents of the map, but they do commute w.r.t. the map’s key set.

Since we require only the abstract view of shared data to be low, we no longer have to demand
that all arguments of map modifications have to be low: arguments that do not affect the abstract
view of the data may contain high information. In the example, this allows us to insert high values
into the map as long as all inserted keys are low, since values do not affect the key set. We use
preconditions on mutating operations to specify which arguments must be low to ensure that the
abstract view of the data remains low.

To summarize, we relax our four central properties as follows:
(1) Low initial abstract value: The abstract view of the shared data is low when first shared.
(2) Modifications are low: Unchanged2.
(3) Modification arguments fulfill sufficient precondition: (a) Arguments of each modification

fulfill a given precondition that (b) ensures that the abstract view of the shared data remains
low after the modification.

(4) Abstract Commutativity: All modifications commute w.r.t. the abstract view of shared data.
By enabling these relaxations, abstract commutativity allows us to handle many more practical

examples than standard commutativity. To demonstrate that the relaxed conditions are sufficient,
we can make a similar argument as before to argue that the abstract view of each shared data
structure will be low after all concurrent modifications on it have been performed.

2.4 Resource Specifications

Proving our four properties directly on the level of heap-manipulating programs is difficult: For
example, showing that two modifications commute (even without an abstraction) on actual program
states means proving the equivalence of two programs that perform the modifications in a different

2One could in principle restrict property (2) to modifications that affect the abstract view of the shared data structure.
We omit this optimization since operations that do not affect the abstract value commute trivially and, therefore, do not
complicate verification significantly.
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typeMK (𝑣) ≡ 𝐾 ⇀ 𝑉

𝛼MK (𝑣) ≡ dom(𝑣)
SharedActionsMK ≡ {Put}
UniqueActionsMK ≡ ∅
𝑓Put (𝑣, ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡𝑚[𝑘 ↦→ 𝑣]
prePut (⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡ Low(𝑘𝑒𝑦)

typeMD (𝑣) ≡ 𝐾 ⇀ 𝑉

𝛼MD (𝑣) ≡ 𝑣
SharedActionsMD ≡ ∅
UniqueActionsMD ≡ {Put1, Put2}
𝑓Put𝑖 (𝑣, ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡𝑚[𝑘 ↦→ 𝑣]
prePut𝑖 (⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡ Low(𝑘𝑒𝑦) ∧ Low(𝑣𝑎𝑙)

∧ 𝑘𝑒𝑦 ∈ range𝑖
Fig. 4. Left: Complete resource specification for the map example in Fig. 3, where 𝐾 and𝑉 are the types of the
keys and values in the map, respectively. Right: Alternative resource specification that allows two different
threads to perform updates only in their own range of keys, which does not overlap with that of the other
thread. We assume here that range1 and range2 do not overlap.

order. If these operations contain complex steps like pointer arithmetic, loops, or memory allocation
(all of which might potentially be performed in real implementations of put methods on maps), it
is non-trivial to even define equivalence of states (e.g., because of non-deterministic allocation),
and even more difficult to perform such proofs [Koskinen and Bansal 2021].
We therefore do not check all of our properties directly on program states, but instead on pure

mathematical values. We exploit the fact that, when working with separation logics, it is standard
practice in the specification of data structures to use separation logic predicates that relate the
contents of data structures to pure values [Parkinson and Bierman 2005]. For example, linked lists
are typically specified using a predicate of the form list (𝑝, 𝑠), where 𝑝 is the pointer to the start of
the list and 𝑠 is a mathematical sequence describing the contents of the list; list (𝑝, 𝑠) holds iff 𝑝
points to a list whose contents are 𝑠 . Methods that manipulate the data structures are then specified
in terms of those pure values: for example, an append method of a list implementation would
usually require the list predicate in its precondition for some abstract value 𝑠 , and return it in its
postcondition, with an abstract value that was extended by the appended value. We will assume
that such specifications exist, and require additionally that the predicate uniquely determines
the abstract value, which is typically the case for existing definitions. Thus, we exploit existing
standard verification constructs to map our used data structures to pure values, enabling us to
check properties (3) and (4) on the level of those pure values.

To check property (4), we must first determine which modifications are performed on the shared
data. Scanning the entire program for such modifications would not be modular. Instead, we
associate a set of legal operations with a data structure when we share it, and subsequently enforce
that all modifications that are performed by any thread correspond to one of the legal operations.
We express these aspects of a shared data structure using a novel specification construct: a

resource specification declares a pure data type (for the contents of a data structure in the standard
separation logic style), an abstract view in the form of an abstraction function 𝛼 that maps a value
of the pure data type to another mathematical value that characterizes which aspects of the data
structure ultimately have to be public, and a set of actions that may be performed on the shared
data structure. Each action comes with a function that defines how the action modifies the (pure)
value of the data structure and with a (relational) precondition that restricts the arguments of the
action such that, after performing the action, the abstract view of the data structure remains low.
Fig. 4 (left) shows a resource specification for our map example: Its type is a partial mapping

from keys to values, its only legal action is Put, which updates the mapping, and the precondition
of Put requires the argument key (but not the value) to be low using an assertion which we will
formally introduce later. We will discuss later what it means for an action to be shared or unique.
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Crucially, such a resource specification is independent of any specific client program and of any
specific implementation of a map data structure; it can be used in any program that uses a shared
map whose key set is low in the end, and it can be combined with any separation logic predicate
for arbitrary map implementations (e.g., tree-based, list-based, hash-based, etc.).
A resource specification is valid if all its actions commute modulo its abstraction function

(property (4)), and every action’s precondition suffices to ensure the low-ness of the abstract view
of the data (property (3b)); a formal definition of validity will follow in Sec. 4. The proof of validity
has to be done only once per resource specification, and can be reused for different programs.

Crucially, our commutativity criterion (property (4)) enforces (abstract) pairwise commutativity
of the actions in the resource specification, which avoids the (huge) effort of enumerating and
comparing all possible interleavings of actions in a program.

2.5 Program Verification

Given a program and a resource specification that satisfies properties (3b) and (4), it remains to
check properties (1), (2), and (3a) to prove that the program adheres to its resource specification.
Our logic for doing so, CommCSL, is a concurrent separation logic (CSL) [O’Hearn 2004]. To

enable reasoning about low and high values, we phrase CommCSL as a relational logic that proves
properties of two executions of the same program3. Like other concurrent separation logics, it
requires showing that programs are data race free, by proving that each thread operates on its own
partial heap separate from those of all other threads.

Invariants. As is standard in separation logics, heap locations that may be modified by different
threads must be part of a shared resource, which is associated with an invariant that describes and
constrains the resource’s partial heap. In addition, we use the invariant to also map the shared data
to some pure value, as described before; that is, the invariant is used to connect a heap-based shared
data structure in the verified program to a value of the type defined in the resource specification.
We denote the invariant as 𝐼 (𝑣), where 𝑣 denotes the pure value the invariant maps its heap to. As
explained before, for a linked list, 𝐼 (𝑣) would typically be some predicate list (𝑝, 𝑣) for some pointer
𝑝 and sequence 𝑣 . When initially sharing the resource, the invariant 𝐼 (𝑣) must be established for
some 𝑣 . We check property (1) by enforcing that at this point, 𝛼 (𝑣) is low.

Atomic modifications. As explained in Sec. 2.4, we check property (4) on the level of abstract
actions rather than concrete implementations. For this to be sound, all modifications of a shared
data structure must be reflected by one of its actions, which we verify as follows.

In CommCSL (as in normal CSL), threads may modify the shared resource only in atomic-blocks;
when entering such a block, they obtain the invariant, and on leaving the block, they have to
re-establish the invariant and give it up again4. We use this mechanism to check that a program
modifies a shared data structure only via the legal actions of the associated resource specification.
Since a shared data structure may be modified only within an atomic-block, we can impose the
following proof obligation: If, at the beginning of an atomic-block, 𝐼 (𝑣) holds for some 𝑣 , then at
its end, 𝐼 (𝑣 ′) holds for some 𝑣 ′ that is the result of applying one of the legal actions to the old value
𝑣 , i.e., 𝑣 ′ = 𝑓𝑎 (𝑣, arg) for some action 𝑎 and argument arg.

3While our technique could in principle also reason about more than two executions at a time, we focus only on pairs of
executions, since that is sufficient for proving non-interference.
4Obtaining the invariant adds the partial heap described by the invariant to the current heap; giving it up amounts to
checking that the current heap can be split into a partial heap that satisfies the invariant and a remainder, and removing the
former. These logical steps are sometimes called producing and consuming, or inhaling and exhaling the invariant.
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Guards. Let’s turn to the remaining two properties, (2) and (3a). We could enforce property (2)
by proving that there are no atomic-blocks under high guards (i.e., inside conditionals or loops
whose conditions are high). However, this check would be overly conservative because it rules out
implementations where the final value of a shared data structure is low even though intermediate
states depend on a secret; our evaluation demonstrates that such examples occur in practice.

Therefore, we follow an alternative approach: we record which actions are performed on a shared
resource, and then check property (2) retroactively on the recorded actions when the resource is
unshared (and all concurrent modifications must therefore have finished). We will follow the same
approach for property (3a) and, thus, also record the arguments of each performed action, such
that we can check action preconditions later.
For each action, we introduce a separation logic resource, which we call a guard, to record

how often and with which arguments this action has been performed. Like other separation logic
resources, guards can be transferred between methods, split into fractional parts such that they
can be shared between threads, and subsequently be recombined. Guards are parameterized with a
multiset of arguments, which records the arguments of the actions performed on a shared resource
so far. These parameters reflect which actions have been performed (as well as their arguments),
but not their order, which is not known due to the influence of scheduling.

When sharing a resource, we obtain a guard for each action that is legal according to the resource
specification. The parameters of these guards are initially empty because no actions have been
performed yet. Performing an action then imposes a proof obligation that some fraction of the
respective guard is held, and adds the argument to the guard’s multiset.
Guards allow us to check properties (2) and (3a) at the time when a resource is unshared.

Unsharing requires all guards to be held, so that all performed actions are known. Unsharing then
consumes the guards, so that no threads have the ability to perform any actions after this point.
We show property (2) simply by proving that the cardinality of the argument multiset (i.e., how
often each action has been performed) is low.

To ensure property (3a), we need to prove that each execution of an action satisfies its precondition.
Since these preconditions are in general relational (requiring, for instance, an argument to be low),
this proof must match the execution of an action in one run of the program with an execution in
the other run. Proving preconditions retroactively when we unshare a resource gives the proof
more freedom which executions of an action to match, which makes the proof technique more
complete. Retroactive checking of preconditions is possible because they are expressed only over
argument values and therefore state-independent.
Concretely, when unsharing, we require showing for each action 𝑎 that there is a bijection

between the elements of the multiset of arguments 𝑠 in one program execution and its elements in
the other execution, such that each pair of elements together fulfills the relational precondition of
the action. We denote this fact via the assertion PRE𝑎 (𝑠). For the Put action of the map example,
this means checking that there is a bijection that maps every key-value pair in the multiset in
the first execution to a pair with the same key (but potentially a different value) in the second
execution, since the precondition of Put requires the keys to be low (but not the values).

2.6 Verification of the Map Example

We now show the entire proof for the map example from Fig. 3 in Fig. 5 (where we assume that our
resource specification from Fig. 4 (left) is valid). The code indentation in targets indicates where
the resource is shared. When sharing the resource, we must establish and give up the invariant
𝐼 (𝑣), which we instantiate to Map(𝑚, 𝑣) (a separation logic predicate for a map, which relates the
map’s contents to the pure partial mapping 𝑣), and show that 𝛼 (𝑣) is low (property (1)), which is
the case because the map is empty in both executions. We then share the map, meaning that we
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1 procedure t a r g e t s ( househo lds ) {
2 / / e n s u r e s ∃𝑣′ . List (𝑟𝑒𝑠, 𝑣′ ) ∗ Low(𝑣′ )
3 n : = | househo lds |
4 m := createMap ( )
5 {Map (𝑚, empty) }
6 |= {Map (𝑚, empty) ∗ Low(dom(empty) ) }
7 / / s h a r e
8 { guardPut (∅#, 1) }
9 |= {guardPut (∅#, 12 ) ∗ guardPut (∅

#, 12 ) }
10 worker ( households , 0 , n / 2 , m) | |
11 worker ( households , n / 2 , n , m)
12 { ∃𝑠1, 𝑠2 . guardPut (𝑠1, 12 ) ∗ PREPut (𝑠1 )∗
13 guardPut (𝑠2, 12 ) ∗ PREPut (𝑠2 ) }
14 |= {∃𝑠. guardPut (𝑠, 1) ∗ PREPut (𝑠 ) }
15 / / un sha r e
16 {∃𝑣.Map (𝑚, 𝑣) ∗ Low(dom(𝑣) ) }
17 return s o r t ( t o L i s t ( keys (m) ) )
18 {∃𝑣, 𝑣′ .Map (𝑚, 𝑣) ∗ Low(dom(𝑣) ) ∗ List (𝑟𝑒𝑠, 𝑣′ ) ∗ Low(𝑣′ ) }
19 }

1 procedure worker ( households , f , t , m) {
2 / / r e q u i r e s guardPut (∅#, 12 )
3 / / e n s u r e s ∃𝑠′ . guardPut (𝑠′, 12 ) ∗ PREPut (𝑠

′ )
4 {guardPut (∅#, 12 ) }
5 |= {guardPut (∅#, 12 ) ∗ PREPUT (∅

# ) }
6 for ( i in f . . t −1 ) {
7 {∃𝑠′ . guardPut (𝑠′, 12 ) ∗ PREPUT (𝑠

′ ) }
8 adr , r sn : = s e l e c t ( househo ld [ i ] )
9 {∃𝑠′ . guardPut (𝑠′, 12 ) ∗ PREPUT (𝑠

′ ) ∗ Low(𝑎𝑑𝑟 ) }
10 atomic :
11 {∃𝑣.Map (𝑚, 𝑣) }
12 m. put ( adr , r sn )
13 {∃𝑣.Map (𝑚, 𝑣 [𝑎𝑑𝑟 ↦→ 𝑟𝑠𝑛] ) }
14 |= {Map (𝑚, 𝑓Put (𝑣, ⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩) ) }
15 {∃𝑠′ . guardPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}#, 12 )∗
16 PREPut (𝑠′ ) ∗ prePut (⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩) }
17 |= {∃𝑠′ . guardPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}#, 12 )∗
18 PREPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}# ) }
19 }
20 }

Fig. 5. Proof outline for the example from Fig. 3, verified against the resource specification from Fig. 4
(left). 𝐼 (𝑣) is defined to be Map(𝑚, 𝑣), where Map is assumed to be a pre-existing separation logic predicate
that relates the contents of a map𝑚 to a mathematical value 𝑣 . Superscript # denotes multiset operations.
guardPut (𝑠, 𝑓 ) denotes an 𝑓 -fraction of the guard for action Put with argument multiset 𝑠 .

obtain the guard for the Put action (the only action in our resource specification), with an empty
argument multiset. We split this guard into two parts and give each part to a worker.

Inside worker, we prove the loop invariant guardPut (𝑠′, 12 )∗PREPut (𝑠
′) for some 𝑠′ (the argument

multisets in proofs are typically existentially quantified, s.t. it is not necessary to track actual values
in specifications). That is, we collect all arguments with which we performed the Put action in 𝑠′
and show that each such argument satisfies Put’s precondition. As explained above, we are required
to prove PREPut (𝑠′) only later when we unshare the resource, but in this example, it is convenient
to maintain this property throughout. Initially, PREPut (𝑠′) holds trivially since 𝑠′ is empty.
When the worker enters an atomic-block, it obtains the invariant 𝐼 (𝑣) for some 𝑣 (that is,

Map(𝑚, 𝑣)), and has to show at the end of the block that 𝐼 (𝑣 ′) holds, where 𝑣 ′ = 𝑓Put (𝑣, arg) and
arg = ⟨adr, rsn⟩. We assume that the specification of the put-method is sufficiently strong to prove
this. The proof rule for atomic-blocks adds arg to the argument multiset of the guard. Since we can
prove at this point that prePut (arg) holds (i.e., adr is low), and PREPut (𝑠′) held for the old argument
multiset 𝑠′, we can show that the new argument multiset 𝑠′′ = 𝑠′ ∪# {arg}# also fulfills PREPut (𝑠′′),
and thus we maintain our loop invariant (which is also the postcondition of worker).
Back in targets, we unshare the resource, which consumes the guard. To do so, we must

recombine the fractional guards into a single one, whose argument multiset 𝑠 is the union of the
argument multisets of the individual guards, 𝑠1 and 𝑠2. Now we must prove that PREPut (𝑠) holds,
which follows from the postcondition of the workers, once the guards are combined. We may now
assume that the abstract view 𝛼 (𝑣) of the new value 𝑣 of the shared map is low, i.e., we know that
the map’s key set is low and can prove the postcondition of targets (assuming an appropriate
specification for the procedures that extract the key set from the map and turn it into a sorted list).

2.7 Unique Actions

The technique we presented so far requires that all modifications of the shared resource commute
(modulo abstraction). However, in asymmetric thread collaborations, there are often actions that
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𝑐 ::= 𝑥 :=𝑒 | 𝑥 :=[𝑒] | [𝑒]:=𝑒 | 𝑥 :=alloc(𝑒) | skip | 𝑐; 𝑐 | if (𝑏) then {𝑐} else {𝑐}
| while (𝑏) do {𝑐} | 𝑐 | |𝑐 | atomic 𝑐

Fig. 6. Programming language. 𝑒 ranges over integer-typed expressions, 𝑏 over boolean-typed ones.

are performed by only one thread (e.g., in a producer-consumer scenario, a single producer thread
might add values to a queue, whereas multiple consumer threads read and remove values from the
queue); we call such actions unique actions (as opposed to shared actions that are performed by
multiple threads). Since the order of applications of a unique action does not depend on scheduling,
it is not necessary for unique actions to commute with themselves.
As an example, consider a variation of the map example where different workers work on

different ranges of keys, and where both the keys and values Put into the map are low. In such a
program, it is never the case that a Put of one thread overwrites a value that was Put by a different
thread, and therefore differences in timing do not lead to different final map contents.

We can support such examples by defining an alternative resource specification that declares 𝑛
different Put actions, where the precondition of each action Put𝑖 requires its argument key to be
in a range separate from that of all other Put actions (and both key and value to be low), as shown
in Fig. 4 (right) for 𝑛 = 2. We declare each of these actions to be unique, which means that they
may be performed only by a single thread. For resource specification validity, unique actions are
required to (abstractly) commute with all actions except themselves. That is, for example, Put1 has
to commute with Put2, but not with itself. We can now define 𝛼 to be the identity function (i.e.,
use no abstraction at all), and prove programs secure even if they leak the entire map5.
During program verification, we do not allow splitting the guards for unique actions, which

ensures that only a single thread may perform them. In addition, guards for unique actions record
the sequence of previous arguments, since their overall order is now no longer dependent on
scheduling, and PRE𝑎 (𝑠) for a unique action 𝑎 and argument sequence 𝑠 requires that the length of
𝑠 is low, and for each index 𝑖 , the values of 𝑠 [𝑖] in both executions fulfill the action’s precondition.

3 LOGIC

In this section, we formalize our technique in CommCSL, a relational concurrent separation logic
with support for commutativity-based reasoning.

3.1 Language

We formalize our logic for an imperative, concurrent language with a mutable heap, whose com-
mands are defined in Fig. 6. We assume as given some expression language for integer-typed
expressions 𝑒 and boolean expressions 𝑏, with the usual operations. Commands like assignments,
conditionals, loops, parallel composition and sequential composition are standard. Programs inter-
act with the heap via read and store commands 𝑥 :=[𝑒] and [𝑒]:=𝑒 , as well as 𝑥 :=alloc(𝑒), which
allocates a single heap location, initializes its value to 𝑒 , and assigns the resulting pointer to 𝑥 ;
an extension to allocating multiple heap locations at once is straightforward. Like other CSLs,
we formalize our logic for a single shared resource; threads can use the command atomic 𝑐 to
atomically execute the command 𝑐 while having access to the shared resource. However, our
approach is not limited to having a single shared resource, and multiple resources are supported in
our implementation analogous to other CSLs [Brookes 2004; O’Hearn 2004].

5As an aside, this example also shows that the same data structure can have different resource specifications that have
different demands and give different guarantees for the sensitivity of the final result.
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Program states have the form ⟨𝑠, ℎ⟩, where the store 𝑠 is a map from names to (integer) values
and the heap ℎ is a partial map from locations (natural numbers) to integer values. Expression
evaluation is deterministic and total, meaning in particular that references to uninitialized variables
evaluate to some default value; we denote the value of expression 𝑒 in store 𝑠 by ⟦𝑒⟧(𝑠). Program
configurations have the form 𝑐, ⟨𝑠, ℎ⟩ or abort; the latter represents a failed computation (which
will never be reachable for verified programs). We use a small-step semantics with transitions of
the form 𝑐, ⟨𝑠, ℎ⟩ → 𝑐′, ⟨𝑠′, ℎ′⟩ (for non-aborting steps). Our semantics is identical to that of other
concurrent separation logics [Vafeiadis 2011]; its rules are shown in App. A.1.

3.2 Resource Specifications

To simplify the formalization, we assume that our resource specification allows arbitrarily many
unique actions but only one shared action, which is not restrictive, since one can merge multiple
shared actions into one s.t. the argument selects which action to perform. Given this assumption,
a resource specification for a resource value of type 𝑇 has the form ⟨𝛼, 𝑓𝑎𝑠 , 𝐹𝑎𝑢 ⟩, where 𝛼 is the
abstraction function of type 𝑇 → 𝑇𝛼 (for some mathematical type 𝑇𝛼 ), 𝑓𝑎𝑠 is the shared action,
whose precondition we denote as pre𝑎𝑠 , and 𝐹𝑎𝑢 is a family of unique actions, indexed by some finite
type 𝐼 ; we will generally write 𝑓𝑎𝑖 as a synonym for 𝐹𝑎𝑢 (𝑖) for all 𝑖 ∈ 𝐼 , and denote the precondition
of unique action 𝑓𝑎𝑖 by pre𝑎𝑖 . For each action 𝑎, 𝑓𝑎 is a function of type 𝑇 → 𝑇arg𝑎 → 𝑇 , where
𝑇arg𝑎 is the argument type of the function. Both preconditions are relational preconditions on the
argument of the action, i.e., they can require that (aspects of) the arguments are low. Thus, they are
boolean-typed functions that take two arguments of type 𝑇arg𝑎 , where the two arguments denote
the values of the argument in the two executions. Note that the preconditions cannot constrain the
resource value itself; we explain this limitation and show how to work around it in App. D.
A resource specification is valid iff (A) every action’s relational precondition is sufficient to

preserve the low-ness of the abstract view of the resource value (property (3b) from Sec. 2), and (B)
all relevant pairs of actions commute w.r.t. the abstract view (property (4) from Sec. 2). Relevant
pairs of execution are the shared action paired with all actions including itself, and every unique
action paired with all unique actions except itself; this reflects the fact that unique actions do not
have to commute with themselves. Formally, we define validity as follows:

Definition 3.1. A resource specification ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 ⟩ is valid iff

(A) For all actions 𝑎, values 𝑣 , 𝑣 ′, and arguments arg, arg′, if 𝛼 (𝑣) = 𝛼 (𝑣 ′) and pre𝑎 (arg, arg′),
then 𝛼 (𝑓𝑎 (𝑣, arg)) = 𝛼 (𝑓𝑎 (𝑣 ′, arg′)).

(B) For all pairs of actions 𝑎, 𝑎′ in {(𝑎𝑠 , 𝑎𝑠 )} ∪ {(𝑎𝑠 , 𝑎𝑖 ) |𝑖 ∈ 𝐼 } ∪ {(𝑎𝑖 , 𝑎 𝑗 ) |𝑖, 𝑗 ∈ 𝐼 ∧ 𝑖 ≠ 𝑗} and all
arguments arg, arg′, if 𝛼 (𝑣) = 𝛼 (𝑣 ′) then 𝛼 (𝑓𝑎′ (𝑓𝑎 (𝑣, arg), arg′)) = 𝛼 (𝑓𝑎 (𝑓𝑎′ (𝑣, arg′), arg)).

3.3 Extended Heaps

While our semantics works on ordinary program heaps ℎ, we define our assertions and our logic
on extended heaps, an enriched notion of heaps that represent both fractional permissions [Boy-
land 2003] and guards: An extended heap gh is a triple ⟨ph, gs,Gu⟩. ph is a standard permission
heap [Bornat et al. 2005; Vafeiadis 2011] that can express partial ownership of a heap location, that
is, a partial map from locations to pairs ⟨𝑟, 𝑣⟩ of positive rational numbers of at most 1 and values 𝑣 .
For example, a permission heap that maps location 𝑙 to ⟨𝑣, 12 ⟩ denotes a half permission to the heap
location 𝑙 , where value 𝑣 is stored. Partial ownership allows multiple threads to concurrently read
the same heap location, since reading a location requires only some positive permission amount,
whereas modifying its value requires a permission of 1.
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The shared action guard state gs and the family of unique action guard states Gu, where Gu(𝑖) =
gu𝑖 , are specific to our technique. A guard for an action represents the right to perform that action,
and it tracks the arguments with which said action has already been performed.
Every unique guard state gu𝑖 is either ⊥ or a sequence of argument values of the unique action

𝑎𝑖 , and represents (when a resource is shared) the entire sequence of arguments with which the
unique action has been performed. Since only one thread is allowed to execute a unique action,
the order of executions is known and, thus, we can track the arguments in a sequence (as opposed
to a multiset for shared actions). Moreover, unique guard states cannot be split or combined; that
is, the thread that performs the unique action will have the entire sequence of argument values
in its unique guard state, and all other threads will have a guard state of ⊥. Thus, when adding
two unique guard states, if one has a non-⊥ value, then the other must be ⊥, otherwise addition is
undefined (see App. B.1 for the formal definition of guard heap addition).

Addition of guard heap families is defined pointwise. We write ⊥ for guard heap families that are
⊥ for all 𝑖 , and [𝑖 ↦→ gu] for a guard heap family whose value is gu for 𝑖 , and ⊥ for all other indices.
The shared guard state gs is either ⊥ or a pair ⟨𝑟, args𝑠⟩, where 𝑟 is a positive rational number

of at most 1 and args𝑠 is a multiset of argument values. The shared action may be performed by
multiple threads if each of those threads has a positive fractional shared guard state. Thus, the
shared guard state represents the (potentially partial) knowledge of the multiset of arguments with
which the shared action has been executed so far. If 𝑟 is 1, then args𝑠 denotes all arguments with
which the action has been performed so far. On the other hand, two threads might have guard states
with 𝑟 = 1

2 each and respective arguments args1 and args2, which each contain all arguments with
which that thread has performed the shared action; then, in total, the action has been performed
with the union of the multisets args1∪# args2. In general, when adding the arguments of two non-⊥
shared guard states, we take the union of the argument multisets, or of one state if the other is
⊥ (see App. B.1). The sum of two permission heaps ph ⊕ ph′ is standard and shown in App. B.1;
intuitively, permission amounts are added (to a value of at most one) and values are unchanged.

The sum of two extended heaps ⟨ph, gs, gu⟩⊕⟨ph′, gs′, gu′⟩ is defined as ⟨ph⊕ph′, gs⊕gs′, gu⊕gu′⟩
iff the sums of all its components are defined. Finally, an extended heap can be normalized to a
normal heap (which we denote by norm(gh)), by taking the permission heap and removing the
permission amounts. That is, the normalized form of ⟨ph, gs, gu⟩ has the domain dom(ph), and for
each location 𝑙 ∈ dom(ph), the normalized heap has the value 𝑣 s.t. ph(𝑙) = ⟨_, 𝑣⟩.

3.4 Assertions

Our assertion language is defined as follows:

𝑃,𝑄 ::=emp | 𝑏 | 𝑒 ↦→𝑟 𝑒 | 𝑃 ∗𝑄 | 𝑃 ∧𝑄 | ∃𝑥 . 𝑃 | sguard (𝑟, 𝑒) | uguard𝑖 (𝑒) | 𝑏 ⇒ 𝑃 | Low(𝑒)

where 𝑃 and𝑄 range over assertions, 𝑟 ranges over positive rationals up to 1, 𝑏 ranges over boolean
expressions, and 𝑒 ranges over expressions (including sequence- and multiset-typed expression, to
describe the arguments of the two kinds of guard-assertions). Assertions are relational, i.e., their
validity (Fig. 7) is defined over pairs of states, allowing them to express that expressions are low,
that is, equal in both states.
All basic separation logic assertions have their usual meaning, but applied to both states. For

instance, standard points-to-assertions 𝑒1 ↦→𝑟 𝑒2 represent a permission amount of 𝑟 to location 𝑒1
with a value of 𝑒2. Separating conjunctions 𝑃 ∗𝑄 hold if the extended heaps of both states can be
separated into partial extended heaps that fulfill the conjuncts. Existentials are interpreted such
that there can be different values for the quantified variable in both states, that is, ∃𝑥 . 𝑒 ↦→1 𝑥

expresses that 𝑒 points to potentially different values in the two states (i.e., it might be high).
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(𝑠1, gh1 ), (𝑠2, gh2 ) |= emp ⇐⇒ dom(ph1 ) = ∅ ∧ dom(ph2 ) = ∅
(𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑏 ⇐⇒ [[𝑏 ]]𝑠1 = 1 ∧ [[𝑏 ]]𝑠2 = 1
(𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑒1 ↦→𝑟 𝑒2 ⇐⇒ gh1 = { [[𝑒1 ]]𝑠1 ↦→ ⟨𝑟, [[𝑒2 ]]𝑠1 ⟩} ∧ gh2 = { [[𝑒1 ]]𝑠2 ↦→ ⟨𝑟, [[𝑒2 ]]𝑠2 ⟩}
(𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑃 ∗𝑄 ⇐⇒ ∃gh′1, gh′′1 , gh′2, gh′′2 . gh1 = gh′1 ⊕ gh′′1 ∧ gh2 = gh′2 ⊕ gh′′2 ∧

(𝑠1, gh′1 ), (𝑠2, gh′2 ) |= 𝑃 ∧ (𝑠1, gh′′1 ), (𝑠2, gh′′2 ) |= 𝑄

(𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑃 ∧𝑄 ⇐⇒ (𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑃 ∧ (𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑄

(𝑠1, gh1 ), (𝑠2, gh2 ) |= ∃𝑥. 𝑃 ⇐⇒ ∃𝑣1, 𝑣2 . (𝑠1 [𝑥 ↦→ 𝑣1 ], gh1 ), (𝑠2 [𝑥 ↦→ 𝑣2 ], gh2 ) |= 𝑃

(𝑠1, gh1 ), (𝑠2, gh2 ) |= sguard (𝑟, 𝑒 ) ⇐⇒ gs1 = ⟨𝑟, [[𝑒 ]]𝑠1 ⟩ ∧ gs2 = ⟨𝑟, [[𝑒 ]]𝑠2 ⟩∧
Gu1 = ⊥ ∧ Gu2 = ⊥ ∧ dom(ph1 ) = ∅ ∧ dom(ph2 ) = ∅

(𝑠1, gh1 ), (𝑠2, gh2 ) |= uguard𝑖 (𝑒 ) ⇐⇒ Gu1 = [𝑖 ↦→ [[𝑒 ]]𝑠1 ] ∧ Gu2 = [𝑖 ↦→ [[𝑒 ]]𝑠2 ]∧
gs1 = ⊥ ∧ gs2 = ⊥ ∧ dom(ph1 ) = ∅ ∧ dom(ph2 ) = ∅

(𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑏 ⇒ 𝑃 ⇐⇒ [[𝑏 ]]𝑠1 = [[𝑏 ]]𝑠2 ∧ [[𝑏 ]]𝑠1 ⇒ (𝑠1, gh1 ), (𝑠2, gh2 ) |= 𝑃

(𝑠1, gh1 ), (𝑠2, gh2 ) |= Low(𝑒 ) ⇐⇒ [[𝑒 ]]𝑠1 = [[𝑒 ]]𝑠2

Fig. 7. Assertion validity, where gh𝑖 = ⟨ph𝑖 , gs𝑖 ,Gu𝑖 ⟩.

The assertion sguard (𝑟, 𝑒𝑎) represents a fractional amount 𝑟 of the guard for the shared action
with the multiset of arguments 𝑒𝑎 ; it holds in a state with store 𝑠 iff the shared guard state is
⟨𝑟, [[𝑒𝑎]]𝑠⟩, the permission heap is empty, and the unique guard state is ⊥. Thus, a state fulfilling
sguard (𝑟, 𝑒𝑎) can be added to any other state with a compatible shared guard state. Similarly,
uguard𝑖 (𝑒𝑎) represents the guard for the unique action with index 𝑖 and holds iff the sequence of
arguments is [[𝑒𝑎]]𝑠 , the shared guard state is ⊥, and the permission heap is empty.

Finally, the relational assertion Low(𝑒) states that expression 𝑒 is low. When used in an implica-
tion 𝑏 ⇒ Low(𝑒), it can also express value-dependent sensitivity [Murray et al. 2018]. For example,
a data structure might contain pairs of booleans and other values, where the boolean expresses the
sensitivity of the other value; then, at runtime, clients could retrieve values from the data structure
and e.g. output them to different channels based on their sensitivity.

We define PRE (𝑒) in terms of other assertion constructs6. PRE𝑠 (𝑒), for the shared action, expresses
that there is a bijection between the elements of the multiset-typed expression 𝑒 in one state and
the elements of 𝑒 in the other state, s.t. each element in one state and its corresponding element
in the other state together fulfill the relational precondition pre𝑎𝑠 of the shared action. Formally,
we define this notion recursively, by stating that there is an element 𝑥 in 𝑒 in one execution, and
an element 𝑥 ′ in 𝑒 in the second execution, s.t. they together fulfill pre𝑎𝑠 , and after removing both
values from their respective multisets, PRE (𝑒) holds again for the resulting smaller multisets:

Definition 3.2. If the argument type of the shared action is 𝑇arg𝑠 , and 𝑒 is a multiset of 𝑇arg𝑠 , then

PRE𝑠 (𝑒) =
{
true if 𝑒 = ∅#

∃𝑥 ∈ 𝑒. pre𝑎𝑠 (𝑥) ∧ PRE𝑠 (𝑒 \# {𝑥}#) otherwise
(1)

Since pre𝑎𝑠 is relational, PRE𝑠 (𝑒) is also relational. Moreover, since the existential quantifier may be
interpreted differently in both executions, PRE𝑠 (𝑒) expresses the existence of a bijection between
the argument multiset, as discussed in Sec. 2.5.
For each unique action, we require that for the sequence of arguments 𝑒 , the elements at each

index fulfill the relational precondition of the unique action:

PRE𝑖 (𝑒) = Low( |𝑒 |) ∧
∧

𝑗∈[0, |𝑒 | )
pre𝑎𝑖 (𝑒 [ 𝑗]) (2)

We call an assertion unary if it does not restrict pairs of state relative to one another. That
is, 𝑃 is unary if for all 𝑠1, gh1, 𝑠2, gh2, if (𝑠1, gh1), (𝑠1, gh1) |= 𝑃 and (𝑠2, gh2), (𝑠2, gh2) |= 𝑃 then
6In our Isabelle formalization, PRE (𝑒 ) is actually defined as another assertion in the assertion language.



CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 1:15

also (𝑠1, gh1), (𝑠2, gh2) |= 𝑃 . Note that all assertions that do not syntactically contain any Low(𝑒)-
assertions (or PRE (𝑒)-assertions that are defined in terms of Low(𝑒)) are unary.

Finally, noguard (𝑃) states that the assertion 𝑃 holds only for states whose guard states are all ⊥.

3.5 Resource Contexts

A resource context combines a resource specification with an assertion that defines the shared heap
data structure and maps it to a single mathematical value. That is, a resource context Γ has the
form ⟨𝛼, 𝑓𝑎𝑠 , 𝐹𝑎𝑢 , 𝐼 (𝑥)⟩, where the invariant 𝐼 (𝑥) is a parameterized unary assertion defining a valid
state of the shared data structure with the value 𝑥 . The value of 𝑥 must be uniquely defined by the
invariant, i.e., we require that if (𝑠1, gh1), (𝑠2, gh2) |= 𝐼 (𝑣) and (𝑠1, gh1), (𝑠2, gh2) |= 𝐼 (𝑣 ′) then 𝑣 = 𝑣 ′.
Given a resource context Γ, we can now formally connect the value of the guard states to the

permission heap, using the notion of consistency. Consistency expresses that the value of the shared
data structure on the heap is a possible result of applying the recorded actions with the recorded
arguments in some order. We say that a state with shared guard state ⟨𝑟, args𝑠⟩ and unique guard
states args𝑖 for every unique action 𝑎𝑖 is consistent with a context Γ from an initial value 𝑣0 iff
(1) its shared guard state is complete (i.e., 𝑟 = 1), (2) 𝐼 (𝑣) holds in the state, for some 𝑣 , and (3) if 𝐹𝑈𝑖

is the sequence of applications of 𝑓𝑎𝑖 with the arguments in args𝑖 (i.e., the first application in 𝐹𝑈𝑖

applies 𝑓𝑎𝑖 with argument args𝑖 [0], etc.) for all 𝑖 , and similarly, 𝐹𝑆 is the sequence of applications
of 𝑓𝑎𝑠 with the arguments in some permutation of args𝑠 , then there is some interleaving of 𝐹𝑆 and
all 𝐹𝑈𝑖 s.t. applying this interleaving to the initial value 𝑣0 results in a final value of 𝑣 .

3.6 Proof Rules

Our proof rules define a judgment of the form Γ⊥ ⊢ {𝑃}𝑐{𝑄}, where Γ⊥ is either ⊥ or some resource
context Γ. Intuitively, it expresses that a command 𝑐 , when executed from two states that fulfill 𝑃
and either no initial shared resource (if Γ⊥ is ⊥) or a shared resource fulfilling Γ, will not abort, and
if they terminate, the resulting states will fulfill 𝑄 . The formal definition will follow in Sec. 4.
Figure 8 shows the proof rules of CommCSL. All rules for basic commands, e.g., those for

assignments, heap accesses, as well as sequential and parallel composition, and the rules for
framing, existentials, and consequence, are standard. The rules for loops and conditionals are
similar to other relational logics, as they have to take into account the possibility of two executions
taking different branches (discussed below).
The share rule captures both the share and unshare operation. It can be used only when the

current resource context is ⊥, i.e., when there is no shared data structure. Once the share rule is
used, threads can access a shared data structure, and must use guards to justify their actions on
it and record the arguments of the actions they perform. The share rule enforces that the new
context’s resource specification is valid, the resource invariant initially holds, and the value 𝑥 of the
resource is low modulo abstraction (property (1) from Sec. 2.3). The postcondition of the conclusion
expresses that the invariant will hold again, with a new value 𝑥 ′, whose abstract view is also low.
In its premise, it gives access to the guards for the shared and the unique actions, initially with an
empty argument multiset resp. argument sequences. It requires that after executing 𝑐 , the guards
are present again; in particular, the guard for the shared action must be present in its entirety, and
therefore record all arguments of the shared action in its multiset. It also requires that PRE holds
for both the sequences of arguments of the unique actions and the multiset of arguments of the
shared action, meaning that we can now, retroactively, show that for each application of an action,
the relational precondition was fulfilled (property (3a)).
There are two (very similar) atomic-rules, one for the shared action and one for the unique

actions. Both require that the resource context is not ⊥, i.e., there is currently a shared resource.
Both also require that the guard for the respective action is initially present, which ensures that no
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thread can modify the shared data structure without holding the appropriate guard. For the shared
action, any positive fraction of the guard is sufficient; for the unique actions, the whole unsplittable
guard is required. In the postcondition of the conclusion, the guard records the new argument with
which the action has been performed in its multiset or sequence, respectively. The rule’s premise
requires showing that, assuming the invariant holds initially for some value 𝑥𝑣 , it holds again after
the atomic modification, with a new value that is the result of applying the respective action with
the respective argument. We impose side conditions that require the assertions 𝑃 and 𝑄 to not
contain any guards (that is, any guards held before the atomic block must be framed away using
the frame rule), and that the invariant 𝐼 (𝑥) is precise [O’Hearn et al. 2004], i.e., fulfilled by at most
one sub-heap of any given heap. This condition is not limiting in practice, see App. B.2.

The remaining main difference between our logic and standard CSL is in the rules for conditionals
and loops. There are two rules for conditionals: The first can be used if the condition can be shown
to be low, i.e., both executions will use the same branch. If this is not the case, the second rule must
be used, which limits the postcondition 𝑄 to be unary. This restriction prevents indirect flows;
for example, for the command if (ℎ) then {𝑥 :=1} else {𝑥 :=0}, where ℎ is high, this rule does not
allow proving the postcondition Low(𝑥), which holds for each branch individually, but does not
hold if one execution executes the then-branch and the other execution chooses the else-branch.
The same approach is used for loops: If the loop condition can be shown to be low initially

and to remain low after each loop iteration, one can use a relational (non-unary) loop invariant.
Alternatively, if the loop condition may be high, we restrict the invariant to be unary7.

4 SOUNDNESS

We have formalized CommCSL and proved it sound in Isabelle/HOL ; here, we give a high-level
overview of our proof.

We build on Vafeiadis’s soundness proof of CSL [Vafeiadis 2011] and extend it to enable relational
reasoning. Its basic idea is to define a predicate safe𝑛 (𝑃, 𝑐,𝑄), which (ignoring frames and the
resource invariant for now) intuitively expresses that 𝑐 , when executed for 𝑛 steps from any state
satisfying 𝑃 , will not abort and, if it terminates after those 𝑛 steps, will end up satisfying 𝑄 . Hoare
triples are then defined to hold if safe𝑛 holds for all𝑛. The same idea is used in the soundness proof for
SecCSL [Ernst and Murray 2019], a concurrent separation logic for non-interference. As explained
before, the central difference between our logic and SecCSL is that SecCSL enforces that two
executions with identical low inputs have the same control flow, s.t. the scheduler makes the same
decisions in both executions, and therefore (in an idealized scenario) no internal timing channels
exist. Since we allow high data to influence control flow and therefore timing and scheduling,
we have to prove that, given two executions with identical low inputs with arbitrary, potentially
different schedules (and different control flow per thread), the program’s public output will be low.
As a result, the inductive argument used in existing proofs does not work for our setting. We

solve this problem by formally separating the proof of safety from the proof of relational properties.
We define a predicate safe𝑛 (Γ⊥, 𝑐, 𝜎, Σ), where Γ⊥ is, as before, either ⊥ or a resource context Γ, 𝜎
ranges over program states with extended heaps of the form ⟨𝑠, gh⟩, and Σ is a set of such program
states. Intuitively, safe𝑛 expresses (1) that executing 𝑐 from 𝜎 , extended with a heap satisfying the
resource invariant, for 𝑛 steps will not abort, (2) that if it terminates, will result in one of the states
in Σ (since, due to non-deterministic thread scheduling, there may be more than one final state),
and (3) that if there is a shared resource, the state remains consistent w.r.t. some initial value 𝑣0, i.e.,

7It is possible to generalize these rules to a more complete rule that allows using a relational invariant for some prefix of
the loop iterations [Sousa and Dillig 2016], but we do not do this here because loop handling is orthogonal to our main
contribution.
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Γ⊥ = Γ ⇒ 𝑥 ∉ fv (Γ)
(Assign)

Γ⊥ ⊢ {𝑃 [𝑒/𝑥 ] }𝑥 :=𝑒 {𝑃 }
𝑥 ∉ fv (𝑒 ) Γ⊥ = Γ ⇒ 𝑥 ∉ fv (Γ)

(New)
Γ⊥ ⊢ {emp}𝑥 :=alloc(𝑒 ) {𝑥 ↦→1 𝑒 }

𝑥 ∉ fv (𝑒1, 𝑒2 ) Γ⊥ = Γ ⇒ 𝑥 ∉ fv (Γ)
(Read)

Γ⊥ ⊢ {𝑒1 ↦→𝑟 𝑒2}𝑥 :=[𝑒 ] {𝑒1 ↦→𝑟 𝑒2 ∗ 𝑥 = 𝑒2}
(Write)

Γ⊥ ⊢ {𝑒1 ↦→1 _} [𝑒1 ]:=𝑒2{𝑒1 ↦→1 𝑒2}

Γ⊥ ⊢ {𝑃 ∧ 𝑏}𝑐1{𝑄 } Γ⊥ ⊢ {𝑃 ∧ ¬𝑏}𝑐2{𝑄 }
(If1)

Γ⊥ ⊢ {𝑃 ∧ Low(𝑏 ) }if (𝑏 ) then {𝑐1} else {𝑐2}{𝑄 }

Γ⊥ ⊢ {𝑃 ∧ 𝑏}𝑐1{𝑄 } Γ⊥ ⊢ {𝑃 ∧ ¬𝑏}𝑐2{𝑄 } unary 𝑄
(If2)

Γ⊥ ⊢ {𝑃 }if (𝑏 ) then {𝑐1} else {𝑐2}{𝑄 }

Γ⊥ ⊢ {𝑃 ∧ 𝑏}𝑐𝑙 {𝑃 ∧ Low(𝑏 ) }
(While1)

Γ⊥ ⊢ {𝑃 ∧ Low(𝑏 ) }while (𝑏 ) do {𝑐𝑙 }{𝑃 ∧ ¬𝑏}
Γ⊥ ⊢ {𝑃 ∧ 𝑏}𝑐𝑙 {𝑃 } unary 𝑃

(While2)
Γ⊥ ⊢ {𝑃 }while (𝑏 ) do {𝑐𝑙 }{𝑃 ∧ ¬𝑏}

Γ⊥ ⊢ {𝑃 }𝑐1{𝑅} Γ⊥ ⊢ {𝑅}𝑐2{𝑄 }
(Seq)

Γ⊥ ⊢ {𝑃 }𝑐1;𝑐2{𝑄 }
(Skip)

Γ⊥ ⊢ {𝑃 }skip{𝑃 }

Γ⊥ ⊢ {𝑃1}𝑐1{𝑄1} Γ⊥ ⊢ {𝑃2}𝑐2{𝑄2} fv (𝑃1, 𝑐1,𝑄1 ) ∩mod (𝑐2 ) = ∅ fv (𝑃2, 𝑐2,𝑄2 ) ∩mod (𝑐1 ) = ∅
Γ⊥ = Γ ⇒ fv (Γ) ∩mod (𝑐1, 𝑐2 ) = ∅ 𝑃1 is precise or 𝑃2 is precise (Par)

Γ⊥ ⊢ {𝑃1 ∗ 𝑃2}𝑐1 | |𝑐2{𝑄1 ∗𝑄2}

𝑃 ⇒ 𝑃 ′ Γ⊥ ⊢ {𝑃 ′ }𝑐 {𝑄 ′ } 𝑄 ′ ⇒ 𝑄
(Cons)

Γ⊥ ⊢ {𝑃 }𝑐 {𝑄 }

fv (𝑅) ∩mod (𝑐 ) = ∅ Γ⊥ ⊢ {𝑃 }𝑐 {𝑄 }
𝑃 is precise or 𝑅 is precise

(Frame)
Γ⊥ ⊢ {𝑃 ∗ 𝑅}𝑐 {𝑄 ∗ 𝑅}

𝑥 ∉ fv (𝑐 ) Γ⊥ = Γ ⇒ 𝑥 ∉ fv (Γ) Γ⊥ ⊢ {𝑃 }𝑐 {𝑄 }
(Exists)

Γ⊥ ⊢ {∃𝑥. 𝑃 }𝑐 {∃𝑥.𝑄 }

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥 ) ⟩ Γ is valid 𝐼 (𝑥 ) is unary and precise
Γ ⊢ {𝑃 ∗ sguard (1, ∅# ) ∗ UniqueEmpty}𝑐 {𝑄 ∗ sguard (1, 𝑥𝑠 ) ∗ PRE𝑠 (𝑥𝑠 ) ∗ UniquePre} (Share)

⊥ ⊢ {𝐼 (𝑥 ) ∗ Low(𝛼 (𝑥 ) ) ∗ 𝑃 }𝑐 {∃𝑥 ′ . 𝐼 (𝑥 ′ ) ∗ Low(𝛼 (𝑥 ′ ) ) ∗𝑄 }

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥 ) ⟩ 𝐼 (𝑥 ) is unary and precise
𝑥𝑣 ∉ fv (𝑃 ) ∪ fv (𝑄 ) ∪ fv (𝐼 (𝑥 ) ) 𝑥𝑠 , 𝑥𝑎, 𝑥𝑣 ∉ mod (𝑐 ) noguard (𝑃 ) noguard (𝑄 )

⊥ ⊢ {𝑃 ∗ 𝐼 (𝑥𝑣 ) }𝑐 {𝑄 ∗ 𝐼 (𝑓𝑎𝑠 (𝑥𝑣, 𝑥𝑎 ) ) } (AtomicShr)
Γ ⊢ {𝑃 ∗ sguard (𝑟, 𝑥𝑠 ) }atomic 𝑐 {𝑄 ∗ sguard (𝑟, 𝑥𝑠 ∪# {𝑥𝑎 }# ) }

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥 ) ⟩ 𝐼 (𝑥𝑣 ) is unary and precise
𝑥𝑣 ∉ fv (𝑃 ) ∪ fv (𝑄 ) ∪ fv (𝐼 (𝑥 ) ) 𝑥𝑠 , 𝑥𝑎, 𝑥𝑣 ∉ mod (𝑐 ) noguard (𝑃 ) noguard (𝑄 )

⊥ ⊢ {𝑃 ∗ 𝐼 (𝑥𝑣 ) }𝑐 {𝑄 ∗ 𝐼 (𝑓𝑎𝑖 (𝑥𝑣, 𝑥𝑎 ) ) } (AtomicUnq)
Γ ⊢ {𝑃 ∗ uguard𝑖 (𝑥𝑠 ) }atomic 𝑐 {𝑄 ∗ uguard𝑖 (𝑥𝑠 + +[𝑥𝑎 ] ) }

Fig. 8. Proof rules of CommCSL. The Share rule and the two Atomic rules implement all checks specific
to our technique. The rules for conditionals and loops have been adjusted for information flow reasoning.
All other rules are as in standard CSL. Recall that the family of unique actions 𝑓𝑎𝑢 is indexed by a (finite)
type 𝐼 , and let us denote the elements of 𝐼 by 𝑖0, . . . , 𝑖𝑛 . We write UniqueEmpty as an abbreviation for
uguard𝑖0 ( [])∗· · ·∗uguard𝑖𝑛 ( []), andUniquePre as an abbreviation for ∃𝑥𝑖0 , . . . , 𝑥𝑖𝑛 . uguard𝑖0 (𝑥𝑖0 )∗PRE𝑢 (𝑥𝑖0 )∗
· · · ∗ uguard𝑖0 (𝑥𝑖𝑛 ) ∗ PRE𝑢 (𝑥𝑖𝑛 ). We use fv(𝑃) to denote the free variables in the assertion P, and mod (𝑐) for
the set of variables modified by command 𝑐 .
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that the state of the resource heap continues to be a possible result of applying the actions with the
arguments specified in the guards to the initial value 𝑣0. We provide the formal definition of safety
in App. C. Crucially, this predicate makes a statement only about an individual execution.

We can now define the validity of a Hoare triple Γ⊥ |= {𝑃}𝑐{𝑄} by stating that any two executions
from a pair of states satisfying 𝑃 are safe for an arbitrary number of steps, and any pair of final
states from those two executions will fulfill 𝑄 . More precisely, the Hoare triple holds if there is
some function Ψ that maps any initial state 𝜎 to a set of all possible final states Σ, and for any 𝜎1, 𝜎2
fulfilling 𝑃 , all pairs of states in Ψ(𝜎1) × Ψ(𝜎2) fulfill 𝑄 :

Definition 4.1. Γ⊥ |= {𝑃}𝑐{𝑄} holds iff there is some Ψ s.t. for all 𝑛, 𝜎 , if 𝜎, 𝜎 |= 𝑃 , we have
safe(𝑛, Γ⊥, 𝑐, 𝜎,Ψ(𝜎)), and for all 𝜎1, 𝜎2, 𝜎 ′1, 𝜎

′
2, if 𝜎1, 𝜎2 |= 𝑃 and 𝜎 ′1 ∈ Ψ(𝜎1) and 𝜎 ′2 ∈ Ψ(𝜎 ′2), then

𝜎 ′1, 𝜎
′
2 |= 𝑄 .

Theorem 4.2. (Soundness) If Γ⊥ ⊢ {𝑃}𝑐{𝑄} then Γ⊥ |= {𝑃}𝑐{𝑄}.

As a corollary, we prove that this theorem actually implies that Hoare triples make true statements
about pairs of program executions from an initial state without a shared resource, using ĝh to range
over extended heaps whose guard states are ⊥ and whose permission heaps have full permission of
every location in their domain:

Corollary 4.3. If ⊥ ⊢ {𝑃}𝑐{𝑄} and ⟨𝑠1, ĝh1⟩, ⟨𝑠2, ĝh2⟩ |= 𝑃 , then 𝑐 does not abort from any
⟨𝑠𝑖 , norm(ĝh𝑖 )⟩, and if 𝑐, ⟨𝑠𝑖 , norm(ĝh𝑖 )⟩ →∗ skip, ⟨𝑠′𝑖 , ℎ𝑖⟩ for some 𝑠′𝑖 , ℎ𝑖 and ℎ𝑖 = norm(ĝh

′
𝑖 ) for

some ĝh
′
𝑖 , then ⟨𝑠′1, ĝh

′
1⟩, ⟨𝑠′2, ĝh

′
2⟩ |= 𝑄 .

5 IMPLEMENTATION AND EVALUATION

We have implemented our technique in HyperViper, an automated prototype verifier based on the
Viper verification infrastructure [Müller et al. 2016]. HyperViper supports a richer language than
the one we use in this paper; in particular, instead of parallel composition commands, it allows
dynamic thread creation using fork and join commands. Additionally, HyperViper supports
multiple resources in a single program (which can each be associated with different resource
specifications) and allows threads to explicitly acquire and release different resources.

HyperViper’s level of automation is similar to existing automated verifiers: Users must provide
method pre- and postcondition as well as loop invariants, in an assertion language that is similar to
the one shown in this paper, and additionally have to declare resource specifications. Given these
specifications and some annotations indicating key proof steps (e.g., which action is performed by
an atomic block, and how to split and merge shared action guards; see App. E for an example), our
tool automatically either verifies the program or indicates potential errors.

Internally, HyperViper encodes the validity constraints for all resource specifications as well as
all other proof obligations imposed by our logic into the Viper intermediate language. To encode
relational proof obligations, it uses a modular product program construction [Eilers et al. 2018],
and combines it with existing encodings for concurrent programs [Leino and Müller 2009] in a
sound way [Eilers et al. 2021]. Subsequently, it automatically verifies the generated program using
one of Viper’s backend verifiers and, ultimately, the Z3 SMT solver [de Moura and Bjørner 2008].
To demonstrate the practical usefulness of our verification technique, we have applied Hyper-

Viper to a number of example programs that represent a variety of applications that concurrently
manipulate shared data structures with secret data. The first 15 examples model specific applica-
tions, which have in common that they spawn a number of worker threads to modify some shared
data structure and subsequently output the abstract view of the shared data structure. All examples
explicitly model data structures containing different kinds of secret information (e.g., employee
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Example Data structure Abstraction LOC Ann. 𝑇

Count-Vaccinated Counter, increment None 44 46 10.15
Figure 2 Integer, add None 129 95 10.90
Count-Sick-Days Integer, add None 52 45 13.67
Figure 1 Integer, arbitrary Constant 29 20 1.52
Mean-Salary List, append Mean 80 84 14.10
Email-Metadata List, append Multiset 82 75 16.70
Patient-Statistic List, append Length 73 70 4.92
Debt-Sum List, append Sum 76 81 14.45
Sick-Employee-Names Treeset, add None 105 113 28.43
Website-Visitor-IPs Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 10.37
Sales-By-Region HashMap, disjoint put None 129 104 12.37
Salary-Histogram HashMap, increment value None 135 109 13.78
Count-Purchases HashMap, add value None 137 109 11.73
Most-Valuable-Purchase HashMap, conditional put None 140 118 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 3.23
Pipeline Two queues Consumed sequences 122 100 3.66
2-Producers-2-Consumers Queue Produced multiset 130 134 8.45

Table 1. Evaluated examples. We show the used data structure and the operation(s) we allow on it; for the last
three examples, these are producing and consuming data. LOC are lines of code, not including specifications,
Ann. are only specifications and proof annotations.𝑇 is the verification time in seconds, averaged over 5 runs.

names and salaries, patient health data, or user activity on a website). Depending on the example,
the data contains some low parts (e.g., whether or not a patient has been vaccinated), or some
aspect of the secret data is low (e.g., the range of an employee’s salary or the number of—otherwise
secret—purchases they have made).
The last three examples model variations of general parallel programming patterns; here, we

leave the data and computation abstract and show instead that the pattern is safe for all possible
implementations where the individual roles do not directly leak secret data themselves. Table 1
shows, for each example, the total lines of code (not including whitespace), the number of lines
used for annotations (i.e., specifications and proof annotations), and the verification time in seconds
(measured on an 8-core AMD Ryzen 6850U with 32GB of RAM running Ubuntu 22.04 on a warmed-
up JVM, averaged over five runs), as well as the used data structure and abstraction. The examples
range from 29 to 140 lines of code, with a similar number of lines of specifications and proof
annotations. Typical verification times are between 3 and 30 seconds. Thus, we conclude that
commutativity-based reasoning can be automated efficiently. In the remainder of this section, we
will discuss how different aspects of our technique allow us to verify the diverse set of examples.

Precise action definitions. For several examples, we can prove that the actions of all threads
commute by carefully defining the legal actions. For example, while puts on maps with the same
keys do not commute in general, in the example Salary-Histogram, each put increments the value
for the key it is modifying (i.e., it increments the number of employees that fall within the specific
salary range represented by the key). As a result, the updates commute. Similarly, the example
Most-Valuable-Purchase iterates through purchase records and finds the highest price each user
has ever paid: Here, each thread updates the map from user IDs to prices only if its purchase value
is greater than the one currently in the map, which again results in commuting map updates.
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Abstraction. In half of our examples, we use an abstraction to relax the commutativity requirement.
For most examples, this abstraction states which part of the computed internal (and partially secret)
data we want to make public. For example, we compute a list of employee names and salaries but
leak only the mean salary, and we collect a list of individual debts of a person but leak only the
overall sum of their debt, not individual amounts or creditors. In one example (Email-Metadata), we
abstract a list to a multiset to prove that we may leak the list after sorting it, which eliminates the
secret-dependent item order. For the producer-consumer and pipeline examples, our abstraction
does not return a view on the actual shared data, but on ghost data added for verification purposes:
It does not state that the current data in the queue is low, which is not of interest, since the final
state of the queue will always be empty, but that the sequence of consumed items must be low (or,
if there are multiple producers and consumers, the multiset view of that sequence). We also show
that we can support the original version of Figure 1 where each thread sets the shared variable to a
different value, but only if said value is not leaked.

Resource specifications. The examples Sick-Employee-Names and Website-Visitor-IPs both add
low values to sets (names of sick employees and IP addresses of website visitors, respectively), but use
different set implementations. Since resource specifications abstract over concrete implementations
of data structures, we can reuse the same resource spec for both examples.

Unique actions. In three examples, we use unique actions to exploit that some actions are per-
formed only by a single thread, and their order is therefore not affected by thread interleavings. In
the example Sales-By-Region, different threads process data from different regions, and add it to a
shared map. Since the keys are region-specific, writes from different threads never conflict, and
thus all updates commute. For the single producer-consumer and the pipeline examples, we exploit
that there is only a single producer and a single consumer thread per shared queue to prove that
the sequence of consumed values is low; if there were multiple such threads (as is the case in the
multiple producer-consumer example), the order of consumed items could be affected by secret
data (and thus, only its multiset view is low).

Retroactive checking of action arguments. For the multiple producer-consumer example, the
number of items consumed by each individual consumer depends on scheduling and therefore
potentially high data. However, the total number of consumed items is low. Thus, checking that the
number of performed consume actions is low after joining all threads, when the overall number
of consume actions is known, allows us to prove this example secure. In the pipeline example, a
thread produces low data into a first queue, a middle thread consumes this data, transforms it, and
produces the result into a second queue, from where a third thread consumes it. While all threads
are executing, the middle thread does not know that the data it reads from the first queue is low;
we learn that only once the first queue is unshared. Thus, we would not be able to prove that the
middle thread fulfills the second queue’s precondition (that produced data is low) while all threads
are running, but we can prove this precondition retroactively after unsharing the first queue.

High branches. Circa half of our examples have secret-dependent execution time due to branches
on high data, and would thus be rejected by all existing techniques, even if the attacker cannot
observe timing.

6 RELATEDWORK

Researchers have developed a plethora of type systems [Smith 2007], static analyses [Giffhorn
and Snelting 2015], program transformations [Eilers et al. 2021], and program logics [Ernst and
Murray 2019; Murray et al. 2018] to verify information flow security of concurrent programs,
as well as multiple definitions of information flow security in this setting. Bisimulation-based
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properties [Focardi and Gorrieri 1995] and observational determinism [Zdancewic and Myers 2003]
are properties of (sets of) traces, which assume that attackers can observe either low program
variables or low events during the execution of the program, unlike our setting, where we assume
that the attacker can observe only the public output of the program.

In our setting, the standard property is non-interference (which is what our logic guarantees), or
weaker versions of it like possibilistic [Smith and Volpano 1998] and probabilistic [Sabelfeld and
Sands 2000] non-interference, which guarantee, respectively, that secret data does not influence
either the set of possible final outputs or their probabilities. Since possibilistic non-interference
is too weak in practice, most existing techniques target either traditional or probabilistic non-
interference. As discussed previously, they achieve this goal by entirely preventing secret-dependent
execution time differences, under the idealized assumption that only high branches can lead to
such differences [Eilers et al. 2021; Ernst and Murray 2019; Murray et al. 2018; Schoepe et al. 2020;
Smith 2006, 2007]. These techniques can be applied to more realistic settings by also preventing
other sources of timing differences, but preventing them entirely on standard hardware is very
complex and requires strong assumptions about the used compiler and hardware. Our technique
has the unique advantage of not requiring any reasoning about execution time in order to prove
information flow security for output values, which makes it applicable independently of the used
hardware. Our technique can also be used to complement existing approaches in order to verify
programs where secret data does lead to timing differences (and therefore cannot be verified with
existing techniques), but these timing differences do not influence the final output.
Most of the aforementioned techniques either do not support a mutable heap (e.g. [Murray

et al. 2018; Smith 2007] or work for programs using locks to protect shared memory like our logic
(e.g. [Eilers et al. 2021; Ernst and Murray 2019]), but some recent logics target more complex settings,
like fine-grained concurrency [Frumin et al. 2021] or relaxed memory models [Yan and Murray
2021]. We believe that our approach also extends to fine-grained concurrency, since the general
idea of making sure that concurrent changes commute also applies in this setting.
Instead of statically proving that a program does not leak high data, some techniques aim to

prevent unwanted information leakage for arbitrary programs at runtime, including leakage as a
result of internal timing channels by modifying the language runtime [Vassena et al. 2019], using
information flow aware concurrency primitives [Stefan et al. 2012], or by transforming the original
program [Russo et al. 2006]. Such techniques can allow running programs that would be rejected by
static techniques, but at the cost of requiring specific runtimes or affecting execution performance.

Commutativity-based reasoning has been used for other applications, particularly in the context
of parallelization. Bansal et al. [2018] infer commutativity conditions on data types, and Brutschy
et al. [2017] use commutativity to check if concurrent database accesses of an application are
serializable [Bernstein et al. 1987]. In both cases, it is useful to distinguish between the concrete
representation of data in memory (and the respective individual reads and writes) and the higher-
level data structure it represents (and its higher-level operations, like appending to a list), which
is a kind of abstraction. In contrast, we use abstraction to exclude secret parts of the high-level
state of a data structure from our commutativity requirement. Additionally, we show only that the
final state of shared data is identical (modulo abstraction) after all modifications, whereas in other
contexts, it is also important that queries in intermediate states return the same results.

7 CONCLUSION AND FUTUREWORK

We have presented CommCSL, a concurrent separation logic for verifying non-interference using
abstract commutativity. We proved CommCSL sound in Isabelle/HOL, and our evaluation shows
that CommCSL can be automated efficiently and is able to verify common examples. For future
work, we suggest applying reasoning based on (abstract) commutativity to other settings like
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fine-grained concurrency, and to explore when it is sound to assume that shared data is low while
threads are still performing concurrent updates.
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A APPENDIX

A.1 Operational semantics

Fig. 9 shows the operational small-step semantics of our language, which are standard and taken
from Vafeiadis [2011].

B FULL LOGIC

In this section, we provide additional definitions and explanations not shown in the main part of
the paper.

B.1 Additional Definitions

The sum of two guard heaps for a unique action 𝑎𝑖 is defined as follows:

gu𝑖 ⊕ gu′𝑖 =


gu𝑖 if gu′𝑖 = ⊥
gu′𝑖 if gu𝑖 = ⊥
undefined otherwise

(3)
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ℎ (⟦𝑒⟧(𝑠 ) ) = 𝑣
(Read)

⟨𝑥 :=[𝑒 ], (𝑠,ℎ) ⟩ → ⟨skip, (𝑠 [𝑥 ↦→ 𝑣 ], ℎ) ⟩
⟦𝑒⟧(𝑠 ) ∉ dom(ℎ)

(ReadA)
⟨𝑥 :=[𝑒 ], (𝑠, ℎ) ⟩ → abort

⟦𝑒1⟧(𝑠 ) ∈ dom(ℎ)
(Write)

⟨ [𝑒1 ]:=𝑒2, (𝑠,ℎ) ⟩ → ⟨skip, (𝑠,ℎ[⟦𝑒1⟧(𝑠 ) ↦→ ℎ⟦𝑒2⟧(𝑠 ) ] ) ⟩
⟦𝑒1⟧(𝑠 ) ∉ dom(ℎ)

(WriteA)
⟨ [𝑒1 ]:=𝑒2, (𝑠, ℎ) ⟩ → abort

𝑙 ∉ dom(ℎ)
(Alloc)

⟨𝑥 :=alloc(𝑒 ), (𝑠, ℎ) ⟩ → ⟨skip, (𝑠 [𝑥 ↦→ 𝑙 ], ℎ[𝑙 ↦→ ⟦𝑒⟧(𝑠 ) ) ⟩

(Seq1)
⟨skip;𝑐2, (𝑠,ℎ) ⟩ → ⟨𝑐2, (𝑠,ℎ) ⟩

⟨𝑐1, (𝑠, ℎ) ⟩ → ⟨𝑐′1, (𝑠′, ℎ′ ) ⟩ (Seq2)
⟨𝑐1;𝑐2, (𝑠, ℎ) ⟩ → ⟨𝑐′1;𝑐2, (𝑠′, ℎ′ ) ⟩

(SeqA)
⟨abort;𝑐2, (𝑠,ℎ) ⟩ → abort

(Assign)
⟨𝑥 :=𝑒, (𝑠,ℎ) ⟩ → ⟨skip, (𝑠 [𝑥 ↦→ ⟦𝑒⟧(𝑠 ) ], ℎ) ⟩

⟦𝑏⟧(𝑠 )
(If1)

⟨if (𝑏 ) then {𝑐1} else {𝑐2}, (𝑠,ℎ) ⟩ → ⟨𝑐1, (𝑠,ℎ) ⟩
¬⟦𝑏⟧(𝑠 )

(If2)
⟨if (𝑏 ) then {𝑐1} else {𝑐2}, (𝑠,ℎ) ⟩ → ⟨𝑐2, (𝑠, ℎ) ⟩

(Loop)
⟨while (𝑒 ) do {𝑐 }, (𝑠, ℎ) ⟩ → ⟨if (𝑏 ) then {𝑐 ; while (𝑒 ) do {𝑐 }} else {skip}, (𝑠, ℎ) ⟩

⟨𝑐1, (𝑠, ℎ) ⟩ → ⟨𝑐′1, (𝑠′, ℎ′ ) ⟩ (Par1)
⟨𝑐1 | |𝑐2, (𝑠, ℎ) ⟩ → ⟨𝑐′1 | |𝑐2, (𝑠′, ℎ′ ) ⟩

⟨𝑐2, (𝑠,ℎ) ⟩ → ⟨𝑐′2, (𝑠′, ℎ′ ) ⟩ (Par2)
⟨𝑐1 | |𝑐2, (𝑠, ℎ) ⟩ → ⟨𝑐1 | |𝑐′2, (𝑠′, ℎ′ ) ⟩

(Par3)
⟨skip | |skip, (𝑠, ℎ) ⟩ → ⟨skip, (𝑠, ℎ) ⟩

⟨𝑐1, (𝑠, ℎ) ⟩ → abort
(ParA1)

⟨𝑐1 | |𝑐2, (𝑠,ℎ) ⟩ → abort

⟨𝑐2, (𝑠, ℎ) ⟩ → abort
(ParA2)

⟨𝑐1 | |𝑐2, (𝑠, ℎ) ⟩ → abort

⟨𝑐, (𝑠,ℎ) ⟩ →∗ ⟨skip, (𝑠′, ℎ′ ) ⟩
(Atom)

⟨atomic 𝑐, (𝑠,ℎ) ⟩ → ⟨skip, (𝑠′, ℎ′ ) ⟩
⟨𝑐, (𝑠,ℎ) ⟩ →∗ abort

(AtomA)
⟨atomic 𝑐, (𝑠, ℎ) ⟩ → abort

Fig. 9. Operational semantics.

That is, at least one guard heap must have value ⊥, and the sum simply contains the non-⊥ value
(if any exists).

Addition of shared guard heaps computes the multiset union of the respective argument multisets
of the two summands:

gs ⊕ gs′ =


⟨𝑟 + 𝑟 ′, args ∪# args′⟩ if gs = ⟨𝑟, args⟩ ∧ gs = ⟨𝑟 ′, args′⟩ ∧ 𝑟 + 𝑟 ′ ≤ 1
gs if gs′ = ⊥
gs′ if gs = ⊥
undefined otherwise

(4)

Finally, as stated before, permission heap addition is standard:

(ph ⊕ ph′) (𝑙) =


ph(𝑙) ⊕ ph′ (𝑙) if 𝑙 ∈ dom(ph) ∩ dom(ph′)
ph(𝑙) if 𝑙 ∈ dom(ph) ∧ 𝑙 ∉ dom(ph′)
ph′ (𝑙) if 𝑙 ∈ dom(ph′) ∧ 𝑙 ∉∈ dom(ph)

(5)
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where

⟨𝑟, 𝑣⟩ ⊕ ⟨𝑟 ′, 𝑣 ′⟩ =
{
⟨𝑟 + 𝑟 ′, 𝑣⟩ if 𝑟 + 𝑟 ′ ≤ 1 ∧ 𝑣 = 𝑣 ′

undefined otherwise
(6)

B.2 Precision Side Conditions

Rules Frame, Par, Share, AtomicShr, and AtomicUnq contain precision requirements that do
not exist in their standard CSL equivalents. While we believe these restrictions can be lifted to
something weaker, some restrictions on the assertions are necessary in our setting; existing logics
do not require them because they do not reason about pairs of executions with potentially different
schedules.

The actual condition we require at different points in the proof (e.g., in the frame rule for 𝑃1 = 𝑃
and 𝑃2 = 𝑅) is the following: If gh, gh′ |= 𝑃1 ∗ 𝑃2 and gh = gh1 ⊕ gh2, where gh1, gh1 |= 𝑃1 and
gh2, gh2 |= 𝑃2, and similarly gh′ = gh′1 ⊕ gh′2, where gh

′
1, gh

′
1 |= 𝑃1 and gh′2, gh

′
2 |= 𝑃2 then we must

have gh1, gh
′
1 |= 𝑃1 and gh2, gh

′
2 |= 𝑃2.

While this condition does not hold in general, it holds if 𝑃1 or 𝑃2 is precise, which is why
we introduce the precision requirements. These requirements could be omitted throughout the
logic by instead restricting the assertion language (in particular, allowing only specific forms of
disjunctions and existential quantification that always fulfill the condition); this is what we do in
our implementation, meaning that no such side condition has to be checked there. In our experience,
restricting the assertion language does not limit the expressiveness of assertions in a practically
meaningful way.

B.3 Noguard Side Conditions

The noguard restrictions in the atomic rules are required as a result of our definition of safety
(Definition C.1), which is essentially trivially true for states with an empty resource context but
non-empty guard states, since generally guards are meaningful only if there is a shared resource.
However, in the atomic-rules, if 𝑃 were to contain a guard assertion, then its premise would be a
Hoare triple with an empty resource context and a guard in the precondition. Thus, an induction
proof would fail at this point, since the premise does not guarantee anything about the execution
of 𝑐 .
To prevent this problem without having to complicate the definition of safety only for this

one case, we enforce that 𝑃 and 𝑄 contain no guards here. In practice, this side condition is not
restrictive; for any atomic statement, all guards held by the current thread that are not used for the
action performed by the atomic statement can be framed around it, and it is never necessary to
have another guard in 𝑃 to verify the body of the atomic statement.

C DETAILS ON SOUNDNESS

Here, we provide our formal definition of the safety predicate safe𝑛 . We use ĝh to range over
extended heaps whose guard states are ⊥ and whose permission heaps have full permission of
every location in their domain, and g̃h to range over extended heaps whose permission heaps have
full permission of every location in their domain (but who may have arbitrary guard states):

Definition C.1. safe0 (Γ⊥, 𝑐, ⟨𝑠, gh⟩, Σ) holds always.
safe𝑛+1 (⊥, 𝑐, ⟨𝑠, gh⟩, Σ) holds iff
(1) If 𝑐 = skip then ⟨𝑠, gh⟩ ∈ Σ.
(2) 𝑐 will never abort from any state ⟨𝑠, norm(ĝh)⟩ s.t. ĝh = gh ⊕ gh𝑓 for some gh𝑓 .
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(3) For all ĝh, gh𝑓 , 𝑐′, 𝑠′, ℎ′, where ĝh = gh ⊕ gh𝑓 , if 𝑐, ⟨𝑠, norm(ĝh)⟩ → 𝑐′, ⟨𝑠′, ℎ′⟩, then there is
some gh′ and some ĝh

′
s.t. gh′ = norm(ĝh

′
) and ĝh

′
= gh′⊕gh𝑓 , and safe𝑛 (⊥, 𝑐′, ⟨𝑠′, gh′⟩, Σ).

safe𝑛+1 (Γ, 𝑐, ⟨𝑠, gh⟩, Σ) holds iff
(1) If 𝑐 = skip then ⟨𝑠, gh⟩ ∈ Σ.
(2) 𝑐 will never abort from any state ⟨𝑠, norm(g̃h)⟩ s.t. g̃h = gh ⊕ gh𝐼 ⊕ gh𝑓 for some gh𝑓 , gh𝐼

s.t. gh𝐼 satisfies 𝐼 (𝑣) for some 𝑣 and g̃h is consistent with Γ from some 𝑣0.
(3) For all g̃h, gh𝑓 , gh𝐼 , 𝑐′, 𝑠′, ℎ′, 𝑣0, where g̃h = gh ⊕ gh𝐼 ⊕ gh𝑓 and gh𝐼 satisfies 𝐼 (𝑣) for some

𝑣 and g̃h is consistent with Γ from 𝑣0, if 𝑐, ⟨𝑠, norm(g̃h)⟩ → 𝑐′, ⟨𝑠′, ℎ′⟩, then there is some
gh′, gh′𝐼 , g̃h

′
s.t. gh′𝐼 fulfills 𝐼 (𝑣 ′) for some 𝑣 ′, g̃h is consistent with Γ from 𝑣0, gh′ = norm(g̃h′)

and g̃h
′
= gh′ ⊕ gh′𝐼 ⊕ gh𝑓 , and safe𝑛 (Γ, 𝑐′, ⟨𝑠′, gh′⟩, Σ).

That is, the two non-trivial cases where 𝑛 ≠ 0 both contain three almost identical clauses: The
first requires that if the state is final, it is contained in Σ; the second requires that the program
will not abort from the current state extended with an arbitrary frame gh𝑓 and, if there is a shared
resource, a resource heap gh𝐼 that satisfies the invariant. The extension by an arbitrary heap is
standard in CSL and necessary to prove the frame rule; additionally, here, it is used to “complete”
the permission heap to contain full permissions for every location in its domain. Additionally, recall
that, since the operational semantics is defined on ordinary heaps without permissions or guard
states, we have to normalize the extended heap first before talking about executions from this state.
The third clause requires that performing a single step from the given state (again, extended with
an arbitrary frame gh𝑓 and, if there is a shared resource, a resource heap gh𝐼 , and normalized to
get a normal heap) preserves the frame, and that recursively, the next 𝑛 steps will also be safe
from the new state. Additionally, in the second case (where there is a shared resource), it requires
that the state remains consistent w.r.t. some initial value 𝑣0, i.e., that the state of the resource heap
continues to be a possible result of applying the actions with the arguments specified in the guards
to the initial value 𝑣0.

To prove soundness of the rule Share, we prove a lemma that expresses that, for a valid resource
specification, any possible order of actions in two executions that fulfills the precondition predicates
PRE𝑠 and PRE𝑖 for all 𝑖 will lead to the same final abstract value:

Lemma C.2. If Γ is valid, 𝛼 (𝑣0) = 𝛼 (𝑣 ′0), 𝑣 is consistent with 𝑣0 through some sequence of shared
action applications with argument multiset args𝑠 and unique action applications with argument
sequences args𝑖 for all 𝑖 , and similarly 𝑣 ′ is consistent with Γ from 𝑣 ′0 through some sequence of shared
action applications with argument multiset args′𝑠 and unique action applications with argument
sequences args′𝑖 s.t. PRE𝑠 (args𝑠 , args′𝑠 ) and PRE𝑖 (args𝑖 , args′𝑖 ) for all 𝑖 , then 𝛼 (𝑣) = 𝛼 (𝑣 ′).

D PARTIAL ACTIONS

Our actions have to be total w.r.t. the value of the shared resource. In this section, we will explain the
reason for this requirement, and how restrictive it is in practice. Consider an example consisting of
two producer threads which produce some data and put it in a shared queue, and a single consumer
thread that reads the data from the queue and subsequently processes it in some way. For illustration
purposes, we limit the size of the buffer to one.
Both producing and consuming an item are now possible only in certain states of the shared

resource: The consumer can consume an item only when the queue is non-empty, and the producers
can produce an item only when it is empty (since we limited the size of the buffer to 1). Thus, in
such an implementation, threads would have to block before acquiring the shared resource until
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:  prod(1)

[_], []

[1], [1]
:  cons()
[_], [1]
:  prod(3)

[3], [1, 3]
:  cons()

[_], [1, 3]

:  prod(3)

[_], []

[3], [3]
:  cons()
[_], [3]
:  prod(1)

[1], [3, 1]
:  cons()

[_], [3, 1]

:  cons()

[_], []

-1, []
:  prod(1)
[_], [1]
:  prod(3)

[3], [1, 3]
:  cons()

[_], [1, 3]

:  cons()

[_], []

-1, []
:  prod(3)
[_], [3]
:  prod(1)

[1], [3, 1]
:  cons()

[_], [3, 1]

:  prod(1)

[_], []

[1], [1]
:  prod(3)

[1, 3], [1, 3]
:  cons()

[3], [1, 3]
:  cons()

[_], [1, 3]

:  prod(3)

[_], []

[3], [3]
:  prod(1)

[3, 1], [3, 1]
:  cons()

[1], [3, 1]
:  cons()

[_], [3, 1]

Fig. 10. Two executions of a producer-consumer example (left and right). When using pairwise swaps to
permute one into the other, some resulting intermediate states (marked in red) are impossible (single-element
buffers with more than one or less than zero elements).

they can execute their action; this could be supported e.g. using a command atomic𝑐when𝑒 that
waits until 𝑒 is true before executing 𝑐 atomically. As a result, the natural definitions of the produce
and consume actions are partial functions, which is not allowed by our framework.

The reason for this is that, if onewere to allow partial actions and adapt the abstract commutativity
requirement s.t. it requires actions to commute only when all involved function applications are
defined, our technique would become unsound. as illustrated by the example in Figure 10, which
shows two possible traces of this program (left and right, ignore the rest of the figure for now),
where both producer threads produce only a single item (thread 𝜏1 produces the number 1, and
thread 𝜏3 produces the number 3, and the consumer thread 𝜏2 consumes both), starting from an
empty buffer. In the execution on the left, 𝜏1 produces its item first, whereas in the execution on the
right, 𝜏3 is faster. The depicted states have the form 𝑙, 𝑠 , where 𝑙 is the buffer (we write [_] when the
buffer is empty and [𝑣] for a buffer containing value 𝑣), and 𝑠 is the sequence of produced values.
Note that the multiset of the produced items is identical in both executions, whereas the sequence
of produced items is not.

In our scenario, the two executions, left and right, are the only possible executions of our program,
all other schedules are impossible: Since the buffer is initially empty, the first action has to be a
produce-action (the consumer would block until the queue is non-empty), and after a produce-
action has happened, the buffer is full, meaning that the next action can only be a consume-action.
However, as a result, if produce and consume are partial functions, it is impossible to use pairwise
swaps to permute one execution to the other using pairwise swaps: In fact, no swaps are possible
at all.
However, the soundness of our technique depends on the ability to permute one sequence of

actions into the other via pairwise swaps, since our commutativity criterion only requires pairwise
commutativity for all actions. The example illustrates this: A weakened abstract commutativity
criterion where any two actions 𝑓1 and 𝑓2 have to commute only when both orders of applications
𝑓1 (𝑓2 (𝑥)) and 𝑓2 (𝑓2 (𝑥)) are defined is unsound here, since it is trivially fulfilled for any abstraction,
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typePC (𝑣) ≡ ⟨𝐸𝑖𝑡ℎ𝑒𝑟 [𝑁𝑎𝑡, 𝑆𝑒𝑞[𝐼𝑛𝑡]], 𝑆𝑒𝑞[𝐼𝑛𝑡]⟩
𝛼PC (⟨𝑣1, 𝑣2⟩) ≡ ms(𝑣2)

SharedActionsPC ≡ {Prod}
UniqueActionsPC ≡ {Cons}

𝑓Prod (𝑣, 𝑎) ≡


⟨Right (𝑥𝑠 + +[𝑎]), 𝑠 + +[𝑎]⟩ if 𝑣 = ⟨Right (𝑥𝑠), 𝑠⟩
⟨Right ( []), 𝑠 + +[𝑎]⟩ if 𝑣 = ⟨Left (−1), 𝑠⟩
⟨Left (−𝑛), 𝑠 + +[𝑎]⟩ if 𝑣 = ⟨Left (−(𝑛 + 1)), 𝑠⟩

preProd (𝑎) ≡ Low(𝑎)

𝑓Cons (𝑣, 𝑎) ≡


⟨Right (𝑥𝑠), 𝑠⟩ if 𝑣 = ⟨Right (𝑥 :: 𝑥𝑠), 𝑠⟩
⟨Left (−1), 𝑠⟩ if 𝑣 = ⟨Right ( []), 𝑠⟩
⟨Left (−(𝑛 + 1)), 𝑠⟩ if 𝑣 = ⟨Left (−𝑛), 𝑠⟩

preCons (𝑎) ≡ true

Fig. 11. Producer-consumer resource specification. The second part of the tuple represents the sequence of
produced items, whereas the first part represents the current contents of the buffer/queue. We mark real
queue contents as right and queues with negative contents as left. The abstraction function returns the
multiset view of the sequence of produced items.

since it is never the case that both orders are defined: In particular, cons(cons(𝑥)) and prod (prod (𝑥))
are never defined, and for any 𝑥 , only one of prod (cons(𝑥)) and cons(prod (𝑥)) is defined. As a
result, no check would prevent us from, for example, declaring the entire sequence of produced
items (as opposed to its multiset abstraction) to be low, which would be unsound.
Thus, we require actions to be total functions on the resource value, but users can still support

examples like the shown one by artificially making actions total, possibly by modifying the type of
the shared state in such a way that it can represent orders of actions that cannot happen in reality.
In Figure 10 (and in the producer-consumer example in our evaluation), we did this by 1) allowing
the queue to be longer than one element, and 2) allowing it to contain less than zero elements (in
which case we only track the (negative) length of the sequence). That is, we define consuming in
such a way that consuming from an empty queue leaves its state as −1 (and consuming from a
queue whose size is already −𝑛 results in a state −(𝑛 + 1)). Conversely, producing when the queue
is full adds an item to the queue, producing an item when a queue has state −1 results in an empty
queue, and producing when the state is −(𝑛 + 1) results in state −𝑛. We show the resulting resource
specification, with its ghost state, in Figure 11.
We then prove that these definitions of the produce- and consume-actions commute modulo

our abstraction, which they do when using the multiset-abstraction (but not when using the set
of produced items directly). Now, conceptually, it is possible to permute the execution on the left
into the one on the right using swaps of neighboring actions, as shown in Figure 10 in the middle
(we show two possible sequences of swaps that have the same result). Both of these swaps lead to
intermediate states that cannot occur in any real run (highlighted in red), but the existence of these
sequences, along with our commutativity criterion, guarantees that each such swap will leave (the
abstract view of) the final state unchanged; therefore, we can conclude that both real executions,
left and right, will lead to end results that are equal modulo abstraction.
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Crucially, any way of making the action functions total is valid, as long as the functions result in
a resource specification that fulfills our validity criteria. In practice, we have found that there are
a few typical patterns that allow one to accomodate most relevant cases: For example, to model
reading from an empty data structure, it is generally sufficient to store its (negative) length instead
of its contents, as in our example.

E HYPERVIPER EXAMPLE

Here, we show a slightly simplified version of the relevant parts of an example similar to Figure 3
encoded into HyperViper. First, users have to declare resource specifications that define allowed
actions as well as the abstract view of the resource:
/ / R e s ou r c e s p e c i f i c a t i o n
specType MapLock {

type Map[ In t , I n t ]
invar iant ( l , v ) = [ l . lockMap | − > ?mp && isMap (mp) && v == mapValue (mp ) ]
a lpha ( v ) : Se t [ I n t ] = keys ( v )

a c t i o n s = [ ( Put , P a i r [ In t , I n t ] , d u p l i c a b l e ) ]

a c t i o n Put ( v , a rg )
requires low ( f s t ( a rg ) )

{ ( put ( v , f s t ( a rg ) , snd ( arg ) ) ) }

noLabe l s = N ( )
}

Then, the program itself is verified using said resource specifications. We first show the main
method which spawns a variable number of worker threads (using fork and join statements). Guard
assertions sguard correspond directly to the ones shown in this paper, but HyperViper uses a
function sguardArgs to refer to the argument of the current guard. Note that guards are explicitly
associated with resources, since HyperViper supports multiple shared resource in one program,
and that shared action guards have to be explicitly split (in the first loop) and merged (in the second
loop) using ghost statements. Sometimes, it is necessary to assert lemmas about e.g. multisets in
order to prove that specific splits are allowed, since the verifier cannot prove these completely
without user guidance.
/ / g e n e r a l d e f i n i t i o n s
f u n c t i o n N ( ) : I n t

en su r e s r e s u l t > 1

f un c t i o n nTa rge t s ( ) : I n t

/ / c l a s s T a r g e t I n f o
f i e l d addr : I n t
f i e l d reason : I n t

d e f i n e t a r g e t I n f o ( r ) (
[ r . addr | − > _ ] && [ r . r ea son | − > ? r && low ( r ) ]

)

f i e l d lockMap : Ref

method main ( i n pu t s : Seq [ Seq [ Ref ] ] )
requires lowEvent && low ( | i n pu t s | ) && | i n pu t s | == N ( )
requires f o r a l l i p : I n t : : i p >= 0 && ip < N ( ) ==> low ( | i n pu t s [ i p ] | )
requires f o r a l l i p : In t , j p : I n t : : i p >= 0 && ip < N ( ) && jp >= 0 && jp < | i n pu t s [ i p ] |

==> t a r g e t I n f o ( i n pu t s [ i p ] [ j p ] )
{

va r m : Ref
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m := createMap ( )
va r l : Lock
l : = new ( lockMap )
l . lockMap : = m
share [MapLock ] ( l , empty ( ) )
va r i : I n t : = 0
va r th r e ad s : Array
th r ead s : = emptyArray ( | i n pu t s | )
while ( i < | i n pu t s | )

invar iant i >= 0 && i <= | i n pu t s | && low ( i )
invar iant f o r a l l j : I n t : : j >= 0 && j < | i n pu t s | && j >= i

==> [ l o c ( th reads , j ) . a r r _ l o c | − > _ ]
invar iant f o r a l l j : I n t : : j >= 0 && j < i

==> j o i n a b l e ( l o c ( th reads , j ) , i n pu t s [ j ] , l , j )
invar iant sguard [MapLock , Put ] ( l , i n t e r v a l S e t ( i , N ( ) ) ) &&

sguardArgs [MapLock , Put ] ( l , i n t e r v a l S e t ( i , N ( ) ) ) == Mu l t i s e t [ P a i r [ In t , I n t ] ] ( )
invar iant f o r a l l i p : In t , j p : I n t : : i p >= i && ip < N ( ) && jp >= 0 && jp < | i n pu t s [ i p ] |

==> t a r g e t I n f o ( i n pu t s [ i p ] [ j p ] )
{

va r t : Thread
as se r t Se t ( i ) union i n t e r v a l S e t ( i +1 , N ( ) ) == i n t e r v a l S e t ( i , N ( ) )
s p l i t [MapLock , Put ] ( l , Se t ( i ) , i n t e r v a l S e t ( i +1 , N ( ) ) ,

Mu l t i s e t [ P a i r [ In t , I n t ] ] ( ) , Mu l t i s e t [ P a i r [ In t , I n t ] ] ( ) )
t : = fork worker ( i n pu t s [ i ] , l , i )
l o c ( th reads , i ) . a r r _ l o c : = t
f o l d j o i n a b l eA r r a y En t r y ( l o c ( th reads , i ) , i n pu t s [ i ] , l , i )
i : = i + 1

}

i : = 0
while ( i < | i n pu t s | )

invar iant i >= 0 && i <= | i n pu t s | && low ( i )
invar iant f o r a l l j : I n t : : j >= 0 && j < | i n pu t s | && j >= i

==> j o i n a b l e ( l o c ( th reads , j ) , i n pu t s [ j ] , l , j )
invar iant f o r a l l j : I n t : : j >= 0 && j < i ==> [ l o c ( th reads , j ) . a r r _ l o c | − > _ ]
invar iant sguard [MapLock , Put ] ( l , i n t e r v a l S e t ( 0 , i ) ) &&

a l l P r e [MapLock , Put ] ( sguardArgs [MapLock , Put ] ( l , i n t e r v a l S e t ( 0 , i ) ) )
{

un fo l d j o i n a b l eA r r a y En t r y ( l o c ( th reads , i ) , i n pu t s [ i ] , l , i )
j o i n [ worker ] ( l o c ( th reads , i ) . a r r _ l o c )
as se r t Se t ( i ) union i n t e r v a l S e t ( 0 , i ) == i n t e r v a l S e t ( 0 , i + 1 )
merge [MapLock , Put ] ( l , S e t ( i ) , i n t e r v a l S e t ( 0 , i ) )
i : = i + 1

}
unshare [MapLock ] ( l )

va r r e s : Seq [ I n t ]
r e s : = toSeq ( keys ( mapValue ( l . lockMap ) ) )
print ( r e s )

}

Finally, for the worker method, we prove that the invariant that all arguments of the Put action
fulfill its precondition is maintained. The with-command, which acquires a shared resource and
then atomically executes its body, has to be annotated with the action it is supposed to perform.
method worker ( i n pu t s : Seq [ Ref ] , l : Lock , l b l : I n t )

requires lowEvent && low ( | i n pu t s | ) && sguard [MapLock , Put ] ( l , S e t ( l b l ) ) &&
sguardArgs [MapLock , Put ] ( l , Se t ( l b l ) ) == Mu l t i s e t [ P a i r [ In t , I n t ] ] ( )

requires f o r a l l j p : I n t : : j p >= 0 && jp < | i n pu t s | ==> t a r g e t I n f o ( i n pu t s [ j p ] )
en su r e s sguard [MapLock , Put ] ( l , Se t ( l b l ) ) &&

a l l P r e [MapLock , Put ] ( sguardArgs [MapLock , Put ] ( l , S e t ( l b l ) ) )
{
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va r i : I n t : = 0
while ( i < | i n pu t s | )

invar iant i >= 0 && i <= | i n pu t s | && low ( i ) && sguard [MapLock , Put ] ( l , Se t ( l b l ) ) &&
a l l P r e [MapLock , Put ] ( sguardArgs [MapLock , Put ] ( l , S e t ( l b l ) ) )

invar iant f o r a l l j p : I n t : : j p >= 0 && jp < | i n pu t s | ==> t a r g e t I n f o ( i n pu t s [ j p ] )
{

va r k : I n t
va r v : I n t
k : = i npu t s [ i ] . addr
v : = i npu t s [ i ] . r ea son
with [MapLock ] l pe r fo rming Put ( p a i r ( k , v ) ) a t l b l {

va r tmp : Map[ In t , I n t ]
tmp : = mapValue ( l . lockMap )
mapPut ( l . lockMap , k , v )

}
i : = i + 1

}
}
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