
175

CommCSL: Proving Information Flow Security for Concurrent

Programs using Abstract Commutativity

MARCO EILERS, ETH Zurich, Switzerland
THIBAULT DARDINIER, ETH Zurich, Switzerland
PETER MÜLLER, ETH Zurich, Switzerland

Information flow security ensures that the secret data manipulated by a program does not influence its
observable output. Proving information flow security is especially challenging for concurrent programs, where
operations on secret data may influence the execution time of a thread and, thereby, the interleaving between
threads. Such internal timing channels may affect the observable outcome of a program even if an attacker
does not observe execution times. Existing verification techniques for information flow security in concurrent
programs attempt to prove that secret data does not influence the relative timing of threads. However, these
techniques are often restrictive (for instance because they disallow branching on secret data) and make strong
assumptions about the execution platform (ignoring caching, processor instructions with data-dependent
execution time, and other common features that affect execution time).

In this paper, we present a novel verification technique for secure information flow in concurrent programs
that lifts these restrictions and does not make any assumptions about timing behavior. The key idea is to prove
that all mutating operations performed on shared data commute, such that different thread interleavings do
not influence its final value. Crucially, commutativity is required only for an abstraction of the shared data
that contains the information that will be leaked to a public output. Abstract commutativity is satisfied by
many more operations than standard commutativity, which makes our technique widely applicable.

We formalize our technique in CommCSL, a relational concurrent separation logic with support for
commutativity-based reasoning, and prove its soundness in Isabelle/HOL. We have implemented Comm-
CSL in HyperViper, an automated verifier based on the Viper verification infrastructure, and demonstrate its
ability to verify challenging examples.

CCS Concepts: • Security and privacy → Logic and verification; Information flow control; • Software
and its engineering→ Formal software verification.

Additional Key Words and Phrases: Commutativity, information flow, separation logic, concurrency

ACM Reference Format:
Marco Eilers, Thibault Dardinier, and Peter Müller. 2023. CommCSL: Proving Information Flow Security for
Concurrent Programs using Abstract Commutativity. Proc. ACM Program. Lang. 7, PLDI, Article 175 (June 2023),
26 pages. https://doi.org/10.1145/3591289

1 INTRODUCTION

Reasoning about information flow is important to ensure the confidentiality and integrity of data.
The main goal of information flow security is to ensure the absence of value channels, that is,
unwanted information flows through the result values computed by a program. For sequential

Authors’ addresses: Marco Eilers, Department of Computer Science, ETH Zurich, Zurich, Switzerland, marco.eilers@inf.ethz.
ch; Thibault Dardinier, Department of Computer Science, ETH Zurich, Zurich, Switzerland, thibault.dardinier@inf.ethz.ch;
Peter Müller, Department of Computer Science, ETH Zurich, Zurich, Switzerland, peter.mueller@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART175
https://doi.org/10.1145/3591289

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-4891-6950
HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0000-0001-7001-2566
https://doi.org/10.1145/3591289
https://orcid.org/0000-0003-4891-6950
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0001-7001-2566
https://doi.org/10.1145/3591289

175:2 Marco Eilers, Thibault Dardinier, and Peter Müller

𝑡1, 𝑡2 := 0
while (𝑡1 < 100) do {
𝑡1 := 𝑡1 + 1

}

while (𝑡2 < ℎ) do {
𝑡2 := 𝑡2 + 1

}
𝑠:=3 𝑠:=4

print (𝑠)

Fig. 1. Example program: Timing channels become value channels.

programs, preventing value channels is conceptually simple, and is enabled by various existing
type systems, program logics, and static analyses.
Depending on the application scenario, it is sometimes desirable to also prevent side channels

that let an attacker obtain information about secret values indirectly, by observing parameters such
as execution time. Preventing timing channels requires ruling out all possible sources of secret-
dependent timing differences, which may depend on complex (but standard) hardware features like
caching [Stefan et al. 2013] and speculative execution [Kocher et al. 2019; Lipp et al. 2018].
For sequential programs, proving the absence of value channels does not involve reasoning

about timing. Thus, for the many scenarios where attackers cannot observe execution time at all
(e.g., because the time when data is made public is decoupled from its computation time, which
is common for batch processing) or not with sufficient precision (e.g., because execution time is
hidden by a laggy network), simple reasoning about values is sufficient even on standard hardware.
However, this is not the case for concurrent programs with shared memory, where timing

differences may result in value channels, which can be observed even by attackers that cannot
observe execution time. The program in Figure 1 illustrates this problem.

Since no information about the secret value ℎ is leaked to the output 𝑠 through direct assignments
or explicit control flow, each thread individually does not leak secret information. However, the
execution time of the loop in the right thread depends on the value of ℎ. This timing may affect
the order in which the threads perform their assignment to 𝑠 and, thus, which value is printed in
the end. With a deterministic round-robin scheduler, the printed value leaks whether or not ℎ is
greater than 100. With a non-deterministic scheduler with a known probability distribution, the
entire value of ℎ is leaked probabilistically over multiple executions.
Information leaks that turn secret-dependent timing differences between threads into observ-

able differences in the program state have long been recognized and are called internal timing

channels [Volpano and Smith 1998]. Some existing solutions to this problem essentially eliminate
shared memory between threads [Giffhorn and Snelting 2015; Vechev et al. 2010], which rules out
many useful concurrent programming patterns. Others employ the techniques used to prevent
standard timing channels. They forbid programs from including operations whose execution time
depends on secret inputs [Murray et al. 2018; Sabelfeld and Sands 2000; Schoepe et al. 2020; Smith
2007]; in our example, they would reject the loop in the right thread. However, these techniques
typically assume idealized hardware, where secret-depending branching is the only source of timing
channels. In principle, they can be extended to standard hardware (e.g., one commonly prevents
timing leaks through cache effects by forbidding all secret-dependent memory accesses [Jancar
et al. 2022]). However, attempting to rule out all sources of timing differences requires information
about compilers [Barthe et al. 2018] and the hardware on which code is to be executed [Andrysco
et al. 2018; Cleemput et al. 2012], including hardware details manufacturers usually do not make
public. As a result, it is virtually impossible to rule out timing channels with absolute certainty,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:3

and thus, existing techniques cannot rule out value channels in concurrent programs on standard

hardware with certainty either, since they require eliminating timing channels.

This work. We present a novel technique to prove the absence of value channels in concurrent
programs that does not require reasoning about timing and, thus, is sound even in the presence of
complex modern hardware features. In the common case that attackers cannot observe execution
time, our technique enables conceptually simple information flow security proofs.When the attacker
can observe timing to a degree, our technique can be combined with orthogonal techniques to try
to rule out timing channels. Crucially, our technique is modular, i.e., it does not require explicit
reasoning about thread interleavings, which would make verification computationally infeasible.

Our technique is based on the observation that different, secret-dependent interleavings of shared
data mutations lead to the same final result if the mutating operations on shared data performed by
different threads commute. For instance, the program above is (rightfully) rejected by our technique
because the two assignments to the shared variable 𝑠 do not commute; however, a variation of this
example where the concurrent assignments are modified so that the left thread atomically assigns
𝑠 + 3 to 𝑠 , and the right thread assigns 𝑠 + 4, is allowed: This program always increases 𝑠 by 7, since
the additions performed by the two threads commute and their (secret-dependent) order therefore
does not influence the final result. Consequently, the adapted program contains no value channels.

Standard commutativity is a strong requirement that is satisfied only by a minority of operations
of typical data structures. A key insight of our work is to restrict the commutativity requirement
to those parts of the shared data that are required to be non-secret (or public). In our example, if
𝑠 were secret (and consequently not printed at the end of the program) then the program would
be information flow secure even though the assignments to 𝑠 do not commute. To this end, we
allow programmers to specify abstract views of shared data structures that contain the information
that must remain public; all information not included in the abstraction is considered secret. It is
then sufficient to prove abstract commutativity, that is, the order of two operations does not affect
the abstract view of a data structure, but it may affect other aspects. For instance, two list-append
operations commute under a set- or length-abstraction of the list, but do not commute on the
concrete list (unless they append the same element).
Many programs expose public views on data structures that contain secret information. One

common case is maintaining internal data that intentionally contains secret information (e.g., an
employee database with individual salaries), and then exposing only a part of it (e.g., average
salaries for reporting purposes); in this case, our technique allows specifying the projection to
averages as the abstraction. Another common case is maintaining data that is intended to be public,
but inadvertently tainted with secret information as a result of timing differences in a concurrent
computation. For instance, a program may maintain a list of anonymized accounts, but the order in
the list depends on the time it took to process the (secret) purchases of each account. In this case,
we can use the multiset view of the list as the abstraction, and prove, for instance, that a sorted
version of the list can be exposed without creating a value channel.

We formalize our technique as a relational concurrent separation logic with special constructs for
reasoning about abstract commutativity of concurrent operations. This logic, CommCSL, enables
modular proofs of information flow security, does not require reasoning about the timing behavior
of threads, and is amenable to automation via SMT solvers. Our logic supports an expressive
assertion language that can express concepts like value-dependent secrecy [Murray et al. 2018]. In
addition to proving existing applications secure, the ideas behind our technique can also be used as
a guiding principle when building concurrent applications that deal with secret data.

Contributions and outline. We make the following contributions:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:4 Marco Eilers, Thibault Dardinier, and Peter Müller

• We show how commutativity can be used to prove information flow security in shared-
memory concurrent programs. Our verification technique allows threads to flexibly manipu-
late secret data and does not require reasoning (nor make assumptions) about the timing of
executions, such that it is directly applicable to programs running on standard hardware.

• We introduce the generalized notion of abstract commutativity, which requires operations to
commute only relative to a user-defined and application-specific abstraction of the shared
state. Abstract commutativity applies to a much wider set of common scenarios.

• We incorporate these techniques into CommCSL, a novel concurrent separation logic that
enables modular proofs of information flow security using abstract commutativity.

• We formalize our logic and prove its soundness in Isabelle/HOL [Nipkow et al. 2002].
• We implement CommCSL in an automated, SMT-based verification tool called HyperViper
based on the Viper verification infrastructure [Müller et al. 2016].

• We evaluate our tool by proving several challenging examples information flow secure.
This paper is organized as follows: Sec. 2 provides an informal overview of our technique. We

formally define CommCSL in Sec. 3, and summarize its soundness proof in Sec. 4. In Sec. 5, we
describe the implementation of the logic in HyperViper and use it to verify several challenging
programming patterns. We discuss related work in Sec. 6 and conclude in Sec. 7.

2 OVERVIEW

In this section, we explain the central concepts behind CommCSL informally. We occasionally omit
details for simplicity; the full logic with all features and checks will be presented in Sec. 3.

2.1 Problem Statement

Our goal in this paper is to prove that concurrent programs that have both high-sensitivity (high)
and low-sensitivity (low) inputs do not leak information about the high inputs in their low output
values1. Formally, this can be expressed as (termination-insensitive) non-interference [Volpano et al.
1996], a 2-safety hyperproperty [Clarkson and Schneider 2010], i.e., a property of pairs of finite
execution traces of the program (𝑠 (𝑥) denotes the value of variable 𝑥 in program store 𝑠):

Definition 2.1. A program 𝑐 with a set of input variables 𝐼 and output variables 𝑂 , of which
some subsets 𝐼𝑙 ⊆ 𝐼 and 𝑂𝑙 ⊆ 𝑂 are low, satisfies non-interference iff for all 𝑠1, 𝑠2 and 𝑠′1, 𝑠

′
2, if ∀𝑥 ∈

𝐼𝑙 . 𝑠1 (𝑥) = 𝑠2 (𝑥) and ⟨𝑐, 𝑠1⟩ →∗ ⟨skip, 𝑠′1⟩ and ⟨𝑐, 𝑠2⟩ →∗ ⟨skip, 𝑠′2⟩, then ∀𝑥 ∈ 𝑂𝑙 . 𝑠
′
1 (𝑥) = 𝑠′2 (𝑥).

This definition captures value channels. As explained in the introduction, timing side channels
can potentially be prevented using orthogonal techniques if necessary.
The example in Fig. 2 illustrates this property. The targetSize procedure determines the size

of the target audience for a marketing campaign as the number of people in a given array of
households that satisfy certain criteria. The procedure uses two worker threads that each iterate
over half of the households, determine the number of target persons in each household, and add
that number to a shared counter c. We assume that the number of households in the input as
well as how many members of a household are in the target audience (i.e., the result value of
countTargets) is low. However, the execution time of countTargets may depend on high data
for a variety of reasons. For example, the implementation in Fig. 2 consists of a simple look-up in a
hash map. Nevertheless, its execution time may depend on hash collisions with other keys whose
presence in the map is secret. Our goal is to prove that the output of targetSize is low.

1We limit our presentation to two security labels, high and low, instead of the general case of having arbitrary lattices of
labels; however, techniques for verifying information flow security with two levels can be used to verify programs with
arbitrary finite lattices by performing the verification multiple times, once for every element of the lattice.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:5

procedure t a r g e t S i z e (househo lds) {
/ / e n s u r e s : c i s low
n : = | househo lds |
c : = c r ea t eCoun t e r (0)
(worker (households , 0 , n / 2 , c)

| |
worker (households , n / 2 , n , c))
return c

}

procedure worker (households , f , t , c) {
for (i in f . . t −1) {

t a r g e t s : = coun tTa r g e t s (househo ld [i])
atomic :

c . add (t a r g e t s)
}

}

procedure coun tTa r g e t s (househo ld : map[s t r , in t]) {
return househo ld [" nAdu l t s "]

}

Fig. 2. Example program: Multiple threads add values to a shared counter. households is an array containing
customer data per household. The result of countTargets is low, but its execution time may be high, here
due to potential hash collisions with other keys whose presence in the households map is secret.

2.2 Commutativity-Based Information Flow Reasoning

The high data accessed in countTargets may affect the execution time of the procedure and,
thereby, the thread schedule and the intermediate values of the shared counter c. Due to this
internal timing channel, the value of c must be considered high during the execution of the worker
threads. However, after the worker threads have terminated, the counter value can safely be
considered to be low for two reasons. First, as per our assumption, each individual value added
is low. Second, although high information may have affected the order in which different values
are added to the counter, this order does not affect the final counter value because the updates
commute. This example illustrates the central insight of this paper: Internal timing channels do not

affect the final outputs of a program if the modifications performed by different threads commute.

Building on this insight, we present a verification technique for proving non-interference of
concurrent programs. This technique enforces four central properties (in addition to standard
checks that are sufficient to ensure non-interference for sequential programs):
(1) Low initial value: For any shared data structure that is to be modified by multiple threads,

the initial contents of the data structure is low.
(2) Number of modifications is low: High data does not influence if or how often a thread

performs a modification of the shared data at any given point in the program.
(3) Modification arguments are low: Any data inserted into the shared data structure is low.
(4) Commutativity: The modifications performed by different threads commute with each other.
These four properties are sufficient to ensure that, for any pair of executions of the verified

program with identical low but potentially different high inputs, the final value of any shared data
structure is identical after all threads have finished modifying it.

To understand why, consider two such executions: By property (1), the data structure will have
the same contents in both executions when it is initially shared. By property (2), in both executions,
the same number of modifications will be performed on the data structure (e.g., in our example, the
same number of values will be added). By property (3), for each modification in the first execution,
there is a matching modification in the second execution that uses the same arguments (e.g., if the
value 𝑥 has been added to the counter 𝑛 times in the first execution, then 𝑥 is also added 𝑛 times in
the second execution); the only difference is in the order of modifications. However, by property
(4), reordering the modifications leaves the final value unchanged. Consequently, the final contents
of the data structure are the result of performing the same commutative operations with the same
arguments on the same initial value, and must therefore be identical.

The basic idea behind our verification technique is thus to prove these four properties for every
shared data structure, which then allows us to treat the final contents of the data structure after

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:6 Marco Eilers, Thibault Dardinier, and Peter Müller

procedure t a r g e t s (househo lds) returns (r e s) {
/ / e n s u r e s : r e s i s low
n : = | househo lds |
m : = createMap ()
(worker (households , 0 , n / 2 , m)

| |
worker (households , n / 2 , n , m))
r e s : = s o r t (t o L i s t (keys (m)))

}

procedure worker (households , f , t , m) {
for (i in f . . t −1) {

adr , r sn : = s e l e c t (househo ld [i])
atomic :

m. put (adr , r sn)
}

}

Fig. 3. Example program: Multiple threads add values to a shared map.

concurrent modifications have finished to be low (whereas all intermediate values read during
concurrent modification will always have to be treated as high). In the rest of this section, we will
build on and expand on this basic idea: We will relax some of the properties to make our verification
technique more complete and more widely applicable, and we will explain how we check each of
the four properties on the program to be verified.

2.3 Abstract Commutativity

The methodology described so far is sound, but not sufficiently complete: First, it requires that all
information stored in shared data structures must be low after all concurrent modifications, even
information that is never leaked to a public output. Second, most mutating operations on common
data structures do not commute and therefore do not satisfy our property (4) above.
As an example, consider a variation of the previous example in Fig. 3: Now, the shared data

structure is a map, and each worker extracts a key-value pair per household, where the address
(the key) is low, but the reason why an address was selected (the value) is high. Here, different
invocations of put do not always commute: If two threads put the same key but different values,
then the later put-operation will “win”, and its value will overwrite the previous value for said key.
As a result, the final contents of the map allow an observer to conclude which put happened later
and, thereby, draw conclusions about the secrets that cause the different thread interleavings.

However, the procedure targets does not actually return the entire contents of the map, but only
(a sorted list representation of) its key set. Therefore, differences in values do not affect targets’
public output. Scenarios where programs expose some public views on the data they maintain are
common in practice; to accommodate them, we allow programmers to define an abstract view of the
shared data structure that is guaranteed to be low and, therefore, allowed to be leaked. By focusing
on the relevant part of a shared data structure, we no longer have to demand commutativity of
all concurrent modifications, but only abstract commutativity: commutativity modulo the abstract
view. That is, we require that, if the abstract view of the shared data is low initially, then switching
the order of any two modifications on the data does not affect the final abstract view of the data
structure. This is fulfilled for the example in Fig. 3: Different put-operations do not commute
w.r.t. the entire contents of the map, but they do commute w.r.t. the map’s key set. Note that our
abstraction does not simply abstract away implementation details of the data structure to get a
logical view of the data, but instead intentionally abstracts away all parts of the data structure that
may contain high data, including otherwise vital parts of the data (like here the values in a map).

Since we require only the abstract view of shared data to be low, we no longer have to demand
that all arguments of map modifications have to be low: arguments that do not affect the abstract
view of the data may contain high information. In the example, this allows us to insert high values

into the map as long as all inserted keys are low. We use preconditions on mutating operations to
specify which arguments must be low to ensure that the abstract view of the data remains low.

To summarize, we relax our four central properties as follows:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:7

(1) Low initial abstract value: The abstract view of the shared data is low when first shared.
(2) Number of modifications is low: Unchanged2.
(3) Modification arguments fulfill sufficient precondition: (a) Arguments of each modification

fulfill a given precondition that (b) ensures that the abstract view of the shared data remains
low after the modification.

(4) Abstract Commutativity: All modifications commute w.r.t. the abstract view of shared data.
By enabling these relaxations, abstract commutativity allows us to handle many more practical

examples than standard commutativity, at the cost of weakening the resulting guarantee: Now we
may consider only the abstraction of the final value of the data structure to be low after concurrent
modifications have been performed (all its intermediate values read during concurrent modification
must still be treated as high). To demonstrate that the relaxed conditions are sufficient, we can
make a similar argument as before to argue that the abstract view of each shared data structure
will be low after all concurrent modifications on it have been performed.

2.4 Resource Specifications

Proving our four properties directly on the level of heap-manipulating programs is difficult: For
example, showing that two modifications commute (even without an abstraction) on actual program
states means proving the equivalence of two programs that perform the modifications in a different
order. If these operations contain complex steps like pointer arithmetic, loops, or memory allocation
(all of which might potentially be performed in real implementations of put methods on maps), it
is non-trivial to even define equivalence of states (e.g., because of non-deterministic allocation),
and even more difficult to perform such proofs [Koskinen and Bansal 2021].
We therefore do not check all of our properties directly on program states, but instead on pure

mathematical values. We exploit the fact that, when working with separation logics, it is standard
practice in the specification of data structures to use separation logic predicates that relate the
contents of data structures to pure values [Parkinson and Bierman 2005]. For example, linked lists
are typically specified using a predicate of the form list (𝑝, 𝑠), where 𝑝 is the pointer to the start of
the list and 𝑠 is a mathematical sequence describing the contents of the list; list (𝑝, 𝑠) holds iff 𝑝
points to a list whose contents are 𝑠 . Methods that manipulate the data structures are then specified
in terms of those pure values: for example, an append method of a list implementation would
usually require the list predicate in its precondition for some abstract value 𝑠 , and return it in its
postcondition, with an abstract value that was extended by the appended value. We will assume
that such specifications exist, and require additionally that the predicate uniquely determines
the abstract value, which is typically the case for existing definitions. Thus, we exploit existing
standard verification constructs to map our used data structures to pure values, enabling us to
check properties (3) and (4) on the level of those pure values.

To check property (4), we must first determine which modifications are performed on the shared
data. Scanning the entire program for such modifications would not be modular. Instead, we
associate a set of legal operations with a data structure when we share it, and subsequently enforce
that all modifications that are performed by any thread correspond to one of the legal operations.
We express these aspects of a shared data structure using a novel specification construct: a

resource specification declares a pure data type (for the contents of a data structure in the standard
separation logic style), an abstract view in the form of an abstraction function 𝛼 that maps a value
of the pure data type to another mathematical value that characterizes which aspects of the data

2One could in principle restrict property (2) to modifications that affect the abstract view of the shared data structure.
We omit this optimization since operations that do not affect the abstract value commute trivially and, therefore, do not
complicate verification significantly.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:8 Marco Eilers, Thibault Dardinier, and Peter Müller

typeMK (𝑣) ≡ 𝐾 ⇀ 𝑉

𝛼MK (𝑣) ≡ dom(𝑣)
SharedActionsMK ≡ {Put}
UniqueActionsMK ≡ ∅
𝑓Put (𝑣, ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡𝑚[𝑘 ↦→ 𝑣]
prePut (⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡ Low(𝑘𝑒𝑦)

typeMD (𝑣) ≡ 𝐾 ⇀ 𝑉

𝛼MD (𝑣) ≡ 𝑣
SharedActionsMD ≡ ∅
UniqueActionsMD ≡ {Put1, Put2}
𝑓Put𝑖 (𝑣, ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡𝑚[𝑘 ↦→ 𝑣]
prePut𝑖 (⟨𝑘𝑒𝑦, 𝑣𝑎𝑙⟩) ≡ Low(𝑘𝑒𝑦) ∧ Low(𝑣𝑎𝑙)

∧ 𝑘𝑒𝑦 ∈ range𝑖

Fig. 4. Left: Complete resource specification for the map example in Fig. 3, where 𝐾 and𝑉 are the types of the
keys and values in the map, respectively. Right: Alternative resource specification that allows two different
threads to perform updates only in their own range of keys, which does not overlap with that of the other
thread. We assume here that range1 and range2 do not overlap.

structure ultimately have to be public, and a set of actions that may be performed on the shared
data structure. Each action comes with a function that defines how the action modifies the (pure)
value of the data structure and with a (relational) precondition that restricts the arguments of the
action such that, after performing the action, the abstract view of the data structure remains low.
Fig. 4 (left) shows a resource specification for our map example: Its type is a partial mapping

from keys to values, its only legal action is Put, which updates the mapping, and the precondition
of Put requires the argument key (but not the value) to be low using an assertion which we will
formally introduce later. We will discuss later what it means for an action to be shared or unique.

Crucially, such a resource specification is independent of any specific client program and of any
specific implementation of a map data structure; it can be used in any program that uses a shared
map whose key set is low in the end, and it can be combined with any separation logic predicate
for arbitrary map implementations (e.g., tree-based, list-based, hash-based, etc.).
A resource specification is valid if all its actions commute modulo its abstraction function

(property (4)), and every action’s precondition suffices to ensure the low-ness of the abstract view
of the data (property (3b)); a formal definition of validity will follow in Sec. 3. The proof of validity
has to be done only once per resource specification, and can be reused for different programs.

Crucially, our commutativity criterion (property (4)) enforces (abstract) pairwise commutativity
of the actions in the resource specification, which avoids the (huge) effort of enumerating and
comparing all possible interleavings of actions in a program: Pairwise commutativity of all actions
is sufficient to permute the schedule of one execution into any possible schedule of a second
execution with the same results (modulo abstraction).

2.5 Program Verification

Given a program and a resource specification that satisfies properties (3b) and (4), it remains to
check properties (1), (2), and (3a) to prove that the program adheres to its resource specification.
Our logic for doing so, CommCSL, is a concurrent separation logic (CSL) [O’Hearn 2004]. To

enable reasoning about low and high values, we phrase CommCSL as a relational logic that proves
properties of two executions of the same program3. Like other concurrent separation logics, it
requires showing that programs are data race free, by proving that each thread operates on its own
partial heap separate from those of all other threads.

3While our technique could in principle also reason about more than two executions at a time, we focus only on pairs of
executions, since that is sufficient for proving non-interference.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:9

Invariants. As is standard in separation logics, heap locations that may be modified by different
threads must be part of a shared resource, which is associated with an invariant that describes and
constrains the resource’s partial heap. In addition, we use the invariant to also map the shared data
to some pure value, as described before; that is, the invariant is used to connect a heap-based shared
data structure in the verified program to a value of the type defined in the resource specification.
We denote the invariant as 𝐼 (𝑣), where 𝑣 denotes the pure value the invariant maps its heap to. As
explained before, for a linked list, 𝐼 (𝑣) would typically be some predicate list (𝑝, 𝑣) for some pointer
𝑝 and sequence 𝑣 . When initially sharing the resource, the invariant 𝐼 (𝑣) must be established for
some 𝑣 . We check property (1) by enforcing that at this point, 𝛼 (𝑣) is low. The invariant itself must
not express any low-ness constraint.

Atomic modifications. As explained in Sec. 2.4, we check property (4) on the level of abstract
actions rather than concrete implementations. For this to be sound, all modifications of a shared
data structure must be reflected by one of its actions, which we verify as follows.

In CommCSL (as in normal CSL), threads may modify the shared resource only in atomic-blocks.
When entering such a block, they obtain the invariant, and on leaving the block, they have to
re-establish the invariant and give it up again4. We use this mechanism to check that a program
modifies a shared data structure only via the legal actions of the associated resource specification.
Since a shared data structure may be modified only within an atomic-block, we can impose the
following proof obligation: If, at the beginning of an atomic-block, 𝐼 (𝑣) holds for some 𝑣 , then at
its end, 𝐼 (𝑣 ′) holds for some 𝑣 ′ that is the result of applying one of the legal actions to the old value
𝑣 , i.e., 𝑣 ′ = 𝑓𝑎 (𝑣, arg) for some action 𝑎 and argument arg.

Guards. Let’s turn to the remaining two properties, (2) and (3a). We could enforce property (2)
by proving that there are no atomic-blocks under high guards (i.e., inside conditionals or loops
whose conditions are high). However, this check would be overly conservative because it rules out
implementations where the final value of a shared data structure is low even though intermediate
states depend on a secret; our evaluation demonstrates that such examples occur in practice.
Therefore, we follow an alternative approach: we record all actions that are performed on the

shared resource, and then check property (2) retroactively on the recorded actions when the resource
is unshared (and all concurrent modifications must therefore have finished). We will follow the
same approach for property (3a) and, thus, also record the arguments of each performed action,
such that we can check action preconditions later.
For each action, we introduce a separation logic resource, which we call a guard, to record

how often and with which arguments this action has been performed. Like other separation logic
resources, guards can be transferred between methods, split into fractional parts such that they
can be shared between threads, and subsequently be recombined. Guards are parameterized with a
multiset of arguments, which records the arguments of the actions performed on a shared resource
so far. These parameters reflect which actions have been performed, how often, and with which
arguments, but not their order, which is not known due to the influence of scheduling.

When sharing a resource, we obtain a guard for each action that is legal according to the resource
specification. The parameters of these guards are initially empty because no actions have been
performed yet. Performing an action then imposes a proof obligation that some fraction of the
respective guard is held, and adds the argument to the guard’s multiset.

4
Obtaining the invariant adds the partial heap described by the invariant to the current heap; giving it up amounts to
checking that the current heap can be split into a partial heap that satisfies the invariant and a remainder, and removing the
former. These logical steps are sometimes called producing and consuming, or inhaling and exhaling the invariant.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:10 Marco Eilers, Thibault Dardinier, and Peter Müller

1 procedure t a r g e t s (househo lds) {
2 / / e n s u r e s ∃𝑣′ . List (𝑟𝑒𝑠, 𝑣′) ∗ Low(𝑣′)
3 n : = | househo lds |
4 m := createMap ()
5 {Map (𝑚, empty) }
6 ⇒ {Map (𝑚, empty) ∗ Low(dom(empty)) }
7 / / s h a r e
8 { guardPut (∅#, 1) }
9 ⇒ {guardPut (∅#, 12) ∗ guardPut (∅

#, 12) }
10 worker (households , 0 , n / 2 , m) | |
11 worker (households , n / 2 , n , m)
12 { ∃𝑠1, 𝑠2 . guardPut (𝑠1, 12) ∗ PREPut (𝑠1)∗
13 guardPut (𝑠2, 12) ∗ PREPut (𝑠2) }
14 ⇒ {∃𝑠. guardPut (𝑠, 1) ∗ PREPut (𝑠) }
15 / / un sha r e
16 {∃𝑣.Map (𝑚, 𝑣) ∗ Low(dom(𝑣)) }
17 return s o r t (t o L i s t (keys (m)))
18 {∃𝑣, 𝑣′ .Map (𝑚, 𝑣) ∗ Low(dom(𝑣))∗
19 List (𝑟𝑒𝑠, 𝑣′) ∗ Low(𝑣′) }
20 }

1 procedure worker (households , f , t , m) {
2 / / r e q u i r e s guardPut (∅#, 12)
3 / / e n s u r e s ∃𝑠′ . guardPut (𝑠′, 12) ∗ PREPut (𝑠

′)
4 {guardPut (∅#, 12) }
5 ⇒ {guardPut (∅#, 12) ∗ PREPUT (∅

) }
6 for (i in f . . t −1) {
7 {∃𝑠′ . guardPut (𝑠′, 12) ∗ PREPUT (𝑠

′) }
8 adr , r sn : = s e l e c t (househo ld [i])
9 {∃𝑠′ . guardPut (𝑠′, 12) ∗ PREPUT (𝑠

′) ∗ Low(𝑎𝑑𝑟) }
10 atomic :
11 {∃𝑣.Map (𝑚, 𝑣) }
12 m. put (adr , r sn)
13 {∃𝑣.Map (𝑚, 𝑣 [𝑎𝑑𝑟 ↦→ 𝑟𝑠𝑛]) }
14 ⇒ {Map (𝑚, 𝑓Put (𝑣, ⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩)) }
15 {∃𝑠′ . guardPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}#, 12)∗
16 PREPut (𝑠′) ∗ prePut (⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩) }
17 ⇒ {∃𝑠′ . guardPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}#, 12)∗
18 PREPut (𝑠′ ∪# {⟨𝑎𝑑𝑟, 𝑟𝑠𝑛⟩}#) }
19 }
20 }

Fig. 5. Proof outline for the example from Fig. 3, verified against the resource specification from Fig. 4
(left). 𝐼 (𝑣) is defined to be Map(𝑚, 𝑣), where Map is assumed to be a pre-existing separation logic predicate
that relates the contents of a map𝑚 to a mathematical value 𝑣 . Superscript # denotes multiset operations.
guardPut (𝑠, 𝑓) denotes an 𝑓 -fraction of the guard for action Put with argument multiset 𝑠 .

Guards allow us to check properties (2) and (3a) at the time when a resource is unshared.
Unsharing requires all guards to be held, so that all performed actions are known. Unsharing then
consumes the guards, so that no threads have the ability to perform any actions after this point.
We show property (2) simply by proving that the cardinality of the argument multiset (i.e., how
often each action has been performed) is low.

To ensure property (3a), we need to prove that each execution of an action satisfies its precondition.
Since these preconditions can be relational (e.g., requiring an argument to be low), this proof must
match the execution of an action in one run of the program with an execution in the other run.
Proving preconditions retroactively when unsharing a resource gives the proof more freedomwhich
executions of an action to match, which makes the proof technique more complete, and is possible
because preconditions are expressed only over argument values and therefore state-independent.
Concretely, when unsharing, we require showing for each action 𝑎 that there is a bijection

between the elements of the multiset of arguments 𝑠 in one program execution and its elements in
the other execution (ensuring that their number is the same, i.e., the action has been performed the
name number of times in both executions), such that each pair of elements fulfills the relational
precondition of the action. We denote this fact via the assertion PRE𝑎 (𝑠). For the Put action of the
map example, this means checking that there is a bijection that maps every key-value pair in the
multiset in the first execution to a pair with the same key (but potentially a different value) in the
second execution, since the precondition of Put requires the keys to be low (but not the values).

2.6 Verification of the Map Example

We now show the entire proof for the map example from Fig. 3 in Fig. 5 (where we assume that our
resource specification from Fig. 4 (left) is valid). The code indentation in targets indicates where
the resource is shared. When sharing the resource, we must establish and give up the invariant
𝐼 (𝑣), which we instantiate to Map(𝑚, 𝑣) (a separation logic predicate for a map, which relates the
map’s contents to the pure partial mapping 𝑣), and show that 𝛼 (𝑣) is low (property (1)), which is

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:11

the case because the map is empty in both executions. We then share the map, meaning that we
obtain the guard for the Put action (the only action in our resource specification), with an empty
argument multiset. We split this guard into two parts and give each part to a worker.

Inside worker, we prove the loop invariant guardPut (𝑠′, 12)∗PREPut (𝑠
′) for some 𝑠′ (the argument

multisets in proofs are typically existentially quantified, s.t. it is not necessary to track actual values
in specifications). That is, we collect all arguments with which we performed the Put action in 𝑠′
(which also tracks how often we have performed the action) and show that each such argument
satisfies Put’s precondition. As explained above, we are required to prove PREPut (𝑠′) only later
when we unshare the resource, but in this example, it is convenient to maintain this property
throughout. Initially, PREPut (𝑠′) holds trivially since 𝑠′ is empty.
When the worker enters an atomic-block, it obtains the invariant 𝐼 (𝑣) for some 𝑣 (that is,

Map(𝑚, 𝑣)), and has to show at the end of the block that 𝐼 (𝑣 ′) holds, where 𝑣 ′ = 𝑓Put (𝑣, arg) and
arg = ⟨adr, rsn⟩. We assume that the specification of the put-method is sufficiently strong to
prove this. Note that, since inside the atomic-block only the invariant (which cannot contain any
low-ness constraints) is known about the shared data, if the code were to read shared data inside
the block, the data would be implicitly treated as high. The proof rule for atomic-blocks adds arg to
the argument multiset of the guard. Since we can prove at this point that prePut (arg) holds (i.e., adr
is low), and PREPut (𝑠′) held for the old argument multiset 𝑠′, we can show that the new argument
multiset 𝑠′′ = 𝑠′ ∪# {arg}# also fulfills PREPut (𝑠′′), and thus we maintain our loop invariant (which
is also the postcondition of worker).

Back in targets, we unshare the resource, which consumes the guard. To do so, we recombine
the fractional guards into a single one, whose argument multiset 𝑠 is the union of the argument
multisets of the individual guards, 𝑠1 and 𝑠2. Now we must prove that PREPut (𝑠) holds, which
follows from the postcondition of the workers, once the guards are combined. We may now assume
that the abstract view 𝛼 (𝑣) of the current value 𝑣 of the shared map is low, i.e., we know that the
map’s key set is low and have to prove the postcondition of targets, which states that the contents
of the returned list are entirely low. We prove this using appropriate specifications of the procedures
keys, toList, and sort that are called in the last line. For example, we use a postcondition for
keys stating that if the key set of its input map is low, then the contents of the set it returns are low.

2.7 Unique Actions

The technique we presented so far requires that all modifications of the shared resource commute
(modulo abstraction). However, in asymmetric thread collaborations, there are often actions that
are performed by only one thread (e.g., in a producer-consumer scenario, a single producer thread
might add values to a queue, whereas multiple consumer threads read and remove values from the
queue); we call such actions unique actions (as opposed to shared actions that are performed by
multiple threads). Since the order of applications of a unique action does not depend on scheduling,
it is not necessary for unique actions to commute with themselves.
As an example, consider a variation of the map example where different workers work on

different ranges of keys, and where both the keys and values Put into the map are low. In such a
program, it is never the case that a Put of one thread overwrites a value that was Put by a different
thread, and therefore differences in timing do not lead to different final map contents.

We can support such examples by defining an alternative resource specification that declares 𝑛
different Put actions, where the precondition of each action Put𝑖 requires its argument key to be
in a range separate from that of all other Put actions (and both key and value to be low), as shown
in Fig. 4 (right) for 𝑛 = 2. We declare each of these actions to be unique, which means that they
may be performed only by a single thread. For resource specification validity, unique actions are
required to (abstractly) commute with all actions except themselves. That is, for example, Put1 has

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:12 Marco Eilers, Thibault Dardinier, and Peter Müller

𝑐 ::= 𝑥 :=𝑒 | 𝑥 :=[𝑒] | [𝑒]:=𝑒 | 𝑥 :=alloc(𝑒) | skip | 𝑐; 𝑐 | if (𝑏) then {𝑐} else {𝑐}
| while (𝑏) do {𝑐} | 𝑐 | |𝑐 | atomic 𝑐

Fig. 6. Programming language. 𝑒 ranges over integer-typed expressions, 𝑏 over boolean-typed ones.

to commute with Put2, but not with itself. We can now define 𝛼 to be the identity function (i.e.,
use no abstraction at all), and prove programs secure even if they leak the entire map5.
During program verification, we do not allow splitting the guards for unique actions, which

ensures that only a single thread may perform them. In addition, guards for unique actions record
the sequence of previous arguments, since their overall order is now no longer dependent on
scheduling, and PRE𝑎 (𝑠) for a unique action 𝑎 and argument sequence 𝑠 requires that the length of
𝑠 is low, and for each index 𝑖 , the values of 𝑠 [𝑖] in both executions fulfill the action’s precondition.

3 LOGIC

In this section, we formalize our technique in CommCSL, a relational concurrent separation logic
with support for commutativity-based reasoning.

3.1 Language

We formalize our logic for an imperative, concurrent language with a mutable heap, whose com-
mands are defined in Fig. 6. We assume as given some expression language for integer-typed
expressions 𝑒 and boolean expressions 𝑏, with the usual operations. Commands like assignments,
conditionals, loops, parallel composition and sequential composition are standard; parallel com-
positions can be nested to create programs with more than two concurrent threads. Programs
interact with the heap via read and store commands 𝑥 :=[𝑒] and [𝑒]:=𝑒 , as well as 𝑥 :=alloc(𝑒),
which allocates a single heap location, initializes its value to 𝑒 , and assigns the resulting pointer
to 𝑥 ; an extension to allocating multiple heap locations at once is straightforward. Like other
CSLs, we formalize our logic for a single shared resource; threads can use the command atomic 𝑐
to atomically execute the command 𝑐 while having access to the shared resource. However, our
approach is not limited to having a single shared resource, and multiple resources are supported in
our implementation analogous to other CSLs [Brookes 2004; O’Hearn 2004].
Program states have the form ⟨𝑠, ℎ⟩, where the store 𝑠 is a map from names to (integer) values

and the heap ℎ is a partial map from locations (natural numbers) to integer values. Expression
evaluation is deterministic and total, meaning in particular that references to uninitialized variables
evaluate to some default value; we denote the value of expression 𝑒 in store 𝑠 by ⟦𝑒⟧(𝑠). Program
configurations have the form 𝑐, ⟨𝑠, ℎ⟩ or abort; the latter represents a failed computation (which
will never be reachable for verified programs). We use a small-step semantics with transitions of
the form 𝑐, ⟨𝑠, ℎ⟩ → 𝑐′, ⟨𝑠′, ℎ′⟩ (for non-aborting steps). Our semantics is identical to that of other
concurrent separation logics [Vafeiadis 2011]; its rules are shown in Eilers et al. [2022] .

3.2 Resource Specifications

To simplify the formalization, we assume that our resource specification allows arbitrarily many
unique actions but only one shared action, which is not restrictive, since one can merge multiple
shared actions into one s.t. the argument selects which action to perform. Given this assumption,
a resource specification for a resource value of type 𝑇 has the form ⟨𝛼, 𝑓𝑎𝑠 , 𝐹𝑎𝑢 ⟩, where 𝛼 is the
abstraction function of type𝑇 → 𝑇𝛼 (for somemathematical type𝑇𝛼), 𝑓𝑎𝑠 is the shared action, whose
5As an aside, this example also shows that the same data structure can have different resource specifications that have
different demands and give different guarantees for the sensitivity of the final result.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:13

precondition we denote as pre𝑎𝑠 , and 𝐹𝑎𝑢 is a family of unique actions, indexed by a finite type 𝐼 ; we
will write 𝑓𝑎𝑖 as a synonym for 𝐹𝑎𝑢 (𝑖) for all 𝑖 ∈ 𝐼 , and denote the precondition of unique action 𝑓𝑎𝑖
by pre𝑎𝑖 . For each action 𝑎, 𝑓𝑎 is a function of type𝑇 → 𝑇arg𝑎 → 𝑇 , where𝑇arg𝑎 is the argument type
of the function. Both preconditions are relational preconditions on the argument of the action, i.e.,
they can require that (aspects of) the arguments are low. Thus, they are boolean-typed functions
that take two arguments of type𝑇arg𝑎 , where the two arguments denote the values of the argument
in the two executions. Note that the preconditions cannot constrain the resource value itself; we
explain this limitation and show how to work around it in Eilers et al. [2022] .
A resource specification is valid iff (A) every action’s relational precondition is sufficient to

preserve the low-ness of the abstract view of the resource value (property (3b) from Sec. 2), and (B)
all relevant pairs of actions commute w.r.t. the abstract view (property (4) from Sec. 2). Relevant
pairs of execution are the shared action paired with all actions including itself, and every unique
action paired with all unique actions except itself; this reflects the fact that unique actions do not
have to commute with themselves. Formally, we define validity as follows:

Definition 3.1. A resource specification ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 ⟩ is valid iff
(A) For all actions 𝑎, values 𝑣 , 𝑣 ′, and arguments arg, arg′, if 𝛼 (𝑣) = 𝛼 (𝑣 ′) and pre𝑎 (arg, arg′),

then 𝛼 (𝑓𝑎 (𝑣, arg)) = 𝛼 (𝑓𝑎 (𝑣 ′, arg′)).
(B) For all pairs of actions 𝑎, 𝑎′ in {(𝑎𝑠 , 𝑎𝑠)} ∪ {(𝑎𝑠 , 𝑎𝑖) |𝑖 ∈ 𝐼 } ∪ {(𝑎𝑖 , 𝑎 𝑗) |𝑖, 𝑗 ∈ 𝐼 ∧ 𝑖 ≠ 𝑗} and all

arguments arg, arg′, if 𝛼 (𝑣) = 𝛼 (𝑣 ′) then 𝛼 (𝑓𝑎′ (𝑓𝑎 (𝑣, arg), arg′)) = 𝛼 (𝑓𝑎 (𝑓𝑎′ (𝑣 ′, arg′), arg)).

3.3 Extended Heaps

While our semantics works on ordinary program heaps ℎ, we define our assertions and our logic
on extended heaps, an enriched notion of heaps that represent both fractional permissions [Boy-
land 2003] and guards. An extended heap gh is a triple ⟨ph, gs,Gu⟩. ph is a standard permission

heap [Bornat et al. 2005; Vafeiadis 2011] that can express partial ownership of a heap location, that
is, a partial map from locations to pairs ⟨𝑟, 𝑣⟩ of positive rational numbers of at most 1 and values 𝑣 .
For example, a permission heap that maps location 𝑙 to ⟨𝑣, 12 ⟩ denotes a half permission to the heap
location 𝑙 , where value 𝑣 is stored. Partial ownership allows multiple threads to concurrently read

the same heap location, since reading a location requires only some positive permission amount,
whereas modifying its value requires a permission of 1.

The shared action guard state gs and the family of unique action guard states Gu, where Gu(𝑖) =
gu𝑖 , are specific to our technique. A guard for an action represents the right to perform that action,
and it tracks the arguments with which said action has already been performed.
Every unique guard state gu𝑖 is either ⊥ or a sequence of argument values of the unique action

𝑎𝑖 , and represents (when a resource is shared) the entire sequence of arguments with which the
unique action has been performed. Since only one thread is allowed to execute a unique action,
the order of executions is known and, thus, we can track the arguments in a sequence (as opposed
to a multiset for shared actions). Moreover, unique guard states cannot be split or combined; that
is, the thread that performs the unique action will have the entire sequence of argument values
in its unique guard state, and all other threads will have a guard state of ⊥. Thus, when adding
two unique guard states, if one has a non-⊥ value, then the other must be ⊥, otherwise addition is
undefined (see Eilers et al. [2022] for the formal definition of guard heap addition).

Addition of guard heap families is defined pointwise. We write ⊥ for guard heap families that are
⊥ for all 𝑖 , and [𝑖 ↦→ gu] for a guard heap family whose value is gu for 𝑖 , and ⊥ for all other indices.
The shared guard state gs is either ⊥ or a pair ⟨𝑟, args𝑠⟩, where 𝑟 is a positive rational number

of at most 1 and args𝑠 is a multiset of argument values. The shared action may be performed by
multiple threads if each of those threads has a positive fractional shared guard state. Thus, the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:14 Marco Eilers, Thibault Dardinier, and Peter Müller

(𝑠1, gh1), (𝑠2, gh2) |= emp ⇐⇒ dom(ph1) = ∅ ∧ dom(ph2) = ∅
(𝑠1, gh1), (𝑠2, gh2) |= 𝑏 ⇐⇒ [[𝑏]]𝑠1 = 1 ∧ [[𝑏]]𝑠2 = 1
(𝑠1, gh1), (𝑠2, gh2) |= 𝑒1 ↦→𝑟 𝑒2 ⇐⇒ gh1 = { [[𝑒1]]𝑠1 ↦→ ⟨𝑟, [[𝑒2]]𝑠1 ⟩} ∧ gh2 = { [[𝑒1]]𝑠2 ↦→ ⟨𝑟, [[𝑒2]]𝑠2 ⟩}
(𝑠1, gh1), (𝑠2, gh2) |= 𝑃 ∗𝑄 ⇐⇒ ∃gh′1, gh′′1 , gh′2, gh′′2 . gh1 = gh

′
1 ⊕ gh

′′
1 ∧ gh2 = gh

′
2 ⊕ gh

′′
2 ∧

(𝑠1, gh′1), (𝑠2, gh′2) |= 𝑃 ∧ (𝑠1, gh′′1), (𝑠2, gh′′2) |= 𝑄

(𝑠1, gh1), (𝑠2, gh2) |= 𝑃 ∧𝑄 ⇐⇒ (𝑠1, gh1), (𝑠2, gh2) |= 𝑃 ∧ (𝑠1, gh1), (𝑠2, gh2) |= 𝑄

(𝑠1, gh1), (𝑠2, gh2) |= ∃𝑥. 𝑃 ⇐⇒ ∃𝑣1, 𝑣2 . (𝑠1 [𝑥 ↦→ 𝑣1], gh1), (𝑠2 [𝑥 ↦→ 𝑣2], gh2) |= 𝑃

(𝑠1, gh1), (𝑠2, gh2) |= sguard (𝑟, 𝑒) ⇐⇒ gs1 = ⟨𝑟, [[𝑒]]𝑠1 ⟩ ∧ gs2 = ⟨𝑟, [[𝑒]]𝑠2 ⟩∧
Gu1 = ⊥ ∧ Gu2 = ⊥ ∧ dom(ph1) = ∅ ∧ dom(ph2) = ∅

(𝑠1, gh1), (𝑠2, gh2) |= uguard𝑖 (𝑒) ⇐⇒ Gu1 = [𝑖 ↦→ [[𝑒]]𝑠1] ∧ Gu2 = [𝑖 ↦→ [[𝑒]]𝑠2]∧
gs1 = ⊥ ∧ gs2 = ⊥ ∧ dom(ph1) = ∅ ∧ dom(ph2) = ∅

(𝑠1, gh1), (𝑠2, gh2) |= 𝑏 ⇒ 𝑃 ⇐⇒ [[𝑏]]𝑠1 = [[𝑏]]𝑠2 ∧ [[𝑏]]𝑠1 ⇒ (𝑠1, gh1), (𝑠2, gh2) |= 𝑃

(𝑠1, gh1), (𝑠2, gh2) |= Low(𝑒) ⇐⇒ [[𝑒]]𝑠1 = [[𝑒]]𝑠2

Fig. 7. Assertion validity, where gh𝑖 = ⟨ph𝑖 , gs𝑖 ,Gu𝑖 ⟩.

shared guard state represents the (potentially partial) knowledge of the multiset of arguments with
which the shared action has been executed so far. If 𝑟 is 1, then args𝑠 denotes all arguments with
which the action has been performed so far. On the other hand, two threads might have guard states
with 𝑟 = 1

2 each and respective arguments args1 and args2, which each contain all arguments with
which that thread has performed the shared action; then, in total, the action has been performed
with the union of the multisets args1∪#

args2. In general, when adding the arguments of two non-⊥
shared guard states, we take the union of the argument multisets, or that of one state if the other
is ⊥. The sum of two permission heaps ph ⊕ ph

′ is standard; intuitively, permission amounts are
added (to a value of at most one) and values are unchanged (see Eilers et al. [2022]).

The sum of two extended heaps ⟨ph, gs, gu⟩⊕⟨ph′, gs′, gu′⟩ is defined as ⟨ph⊕ph′, gs⊕gs′, gu⊕gu′⟩
iff the sums of all its components are defined. Finally, an extended heap can be normalized to a
normal heap (which we denote by norm(gh)), by taking the permission heap and removing the
permission amounts. That is, the normalized form of ⟨ph, gs, gu⟩ has the domain dom(ph), and for
each location 𝑙 ∈ dom(ph), the normalized heap has the value 𝑣 s.t. ph(𝑙) = ⟨_, 𝑣⟩.

3.4 Assertions

Our assertion language is defined as follows:

𝑃,𝑄 ::=emp | 𝑏 | 𝑒 ↦→𝑟 𝑒 | 𝑃 ∗𝑄 | 𝑃 ∧𝑄 | ∃𝑥 . 𝑃 | sguard (𝑟, 𝑒) | uguard𝑖 (𝑒) | 𝑏 ⇒ 𝑃 | Low(𝑒)

where 𝑃 and 𝑄 range over assertions, 𝑟 over positive rationals up to 1, 𝑏 ranges over boolean and 𝑒
over all expressions (including sequence- and multiset-typed expression, to describe the arguments
of the two kinds of guard-assertions). Assertions are relational: their validity (Fig. 7) is defined over
pairs of states, allowing them to express that expressions are low, i.e., equal in both states.
All basic separation logic assertions have their usual meaning, but applied to both states. For

instance, standard points-to-assertions 𝑒1 ↦→𝑟 𝑒2 represent a permission amount of 𝑟 to location 𝑒1
with a value of 𝑒2. Separating conjunctions 𝑃 ∗𝑄 hold if the extended heaps of both states can be
separated into partial extended heaps that fulfill the conjuncts. Existentials are interpreted such
that there can be different values for the quantified variable in both states, that is, ∃𝑥 . 𝑒 ↦→1 𝑥

expresses that 𝑒 points to potentially different values in the two states (i.e., it might be high).
The assertion sguard (𝑟, 𝑒𝑎) represents a fractional amount 𝑟 of the guard for the shared action

with the multiset of arguments 𝑒𝑎 ; it holds in a state with store 𝑠 iff the shared guard state is
⟨𝑟, [[𝑒𝑎]]𝑠⟩, the permission heap is empty, and the unique guard state is ⊥. Thus, a state fulfilling
sguard (𝑟, 𝑒𝑎) can be added to any other state with a compatible shared guard state. Similarly,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:15

uguard𝑖 (𝑒𝑎) represents the guard for the unique action with index 𝑖 and holds iff the sequence of
arguments is [[𝑒𝑎]]𝑠 , the shared guard state is ⊥, and the permission heap is empty.

Finally, the relational assertion Low(𝑒) states that expression 𝑒 is low. When used in an implica-
tion 𝑏 ⇒ Low(𝑒), it can also express value-dependent sensitivity [Murray et al. 2018]. For example,
a data structure might contain pairs of booleans and other values, where the boolean expresses the
sensitivity of the other value; then, at runtime, clients could retrieve values from the data structure
and e.g. output them to different channels based on their sensitivity.

We define PRE (𝑒) in terms of other assertion constructs6. PRE𝑠 (𝑒), for the shared action, expresses
that there is a bijection between the elements of the multiset-typed expression 𝑒 in one state and
the elements of 𝑒 in the other state, s.t. each element in one state and its corresponding element
in the other state together fulfill the relational precondition pre𝑎𝑠

of the shared action. Formally,
we define this notion recursively, by stating that there is an element 𝑥 in 𝑒 in one execution, and
an element 𝑥 ′ in 𝑒 in the second execution, s.t. they together fulfill pre𝑎𝑠 , and after removing both
values from their respective multisets, PRE (𝑒) holds again for the resulting smaller multisets:

Definition 3.2. If the argument type of the shared action is 𝑇arg𝑠 and 𝑒 is a multiset of 𝑇arg𝑠 , then

PRE𝑠 (𝑒) =
{
true if 𝑒 = ∅#

∃𝑥 ∈ 𝑒. pre𝑎𝑠 (𝑥) ∧ PRE𝑠 (𝑒 \# {𝑥}#) otherwise
(1)

Since pre𝑎𝑠 is relational, PRE𝑠 (𝑒) is also relational. Moreover, since the existential quantifier may be
interpreted differently in both executions, PRE𝑠 (𝑒) expresses the existence of a bijection between
the argument multiset, as discussed in Sec. 2.5.
For each unique action, we require that for the sequence of arguments 𝑒 , the length of the

sequence is low and the elements at each index fulfill the action’s relational precondition:

PRE𝑖 (𝑒) = Low(|𝑒 |) ∧
∧

𝑗∈[0, |𝑒 |)
pre𝑎𝑖

(𝑒 [𝑗]) (2)

We call an assertion unary if it does not restrict pairs of state relative to one another. That
is, 𝑃 is unary if for all 𝑠1, gh1, 𝑠2, gh2, if (𝑠1, gh1), (𝑠1, gh1) |= 𝑃 and (𝑠2, gh2), (𝑠2, gh2) |= 𝑃 then
also (𝑠1, gh1), (𝑠2, gh2) |= 𝑃 . Note that all assertions that do not syntactically contain any Low(𝑒)-
assertions (or PRE (𝑒)-assertions that are defined in terms of Low(𝑒)) are unary.

Finally, noguard (𝑃) states that the assertion 𝑃 holds only for states whose guard states are all ⊥.

3.5 Resource Contexts

A resource context combines a resource specification with an assertion that defines the shared heap
data structure and maps it to a single mathematical value. That is, a resource context Γ has the
form ⟨𝛼, 𝑓𝑎𝑠 , 𝐹𝑎𝑢 , 𝐼 (𝑥)⟩, where the invariant 𝐼 (𝑥) is a parameterized unary assertion defining a valid
state of the shared data structure with the value 𝑥 . The value of 𝑥 must be uniquely defined by the
invariant, i.e., we require that if (𝑠1, gh1), (𝑠2, gh2) |= 𝐼 (𝑣) and (𝑠1, gh1), (𝑠2, gh2) |= 𝐼 (𝑣 ′) then 𝑣 = 𝑣 ′.
Given a resource context Γ, we can now formally connect the value of the guard states to the

permission heap, using the notion of consistency. Consistency expresses that the value of the shared
data structure on the heap is a possible result of applying the recorded actions with the recorded
arguments in some order. We say that a state with shared guard state ⟨𝑟, args𝑠⟩ and unique guard
states args𝑖 for every unique action 𝑎𝑖 is consistent with a context Γ from an initial value 𝑣0 iff
(1) its shared guard state is complete (i.e., 𝑟 = 1), (2) 𝐼 (𝑣) holds in the state, for some 𝑣 , and (3) if 𝐹𝑈𝑖

is the sequence of applications of 𝑓𝑎𝑖 with the arguments in args𝑖 (i.e., the first application in 𝐹𝑈𝑖

applies 𝑓𝑎𝑖 with argument args𝑖 [0], etc.) for all 𝑖 , and similarly, 𝐹𝑆 is the sequence of applications
6In our Isabelle formalization, PRE (𝑒) is actually defined as another assertion in the assertion language.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:16 Marco Eilers, Thibault Dardinier, and Peter Müller

of 𝑓𝑎𝑠 with the arguments in some permutation of args𝑠 , then there is some interleaving of 𝐹𝑆 and
all 𝐹𝑈𝑖 s.t. applying this interleaving to the initial value 𝑣0 results in a final value of 𝑣 .

3.6 Proof Rules

Our proof rules define a judgment of the form Γ⊥ ⊢ {𝑃}𝑐{𝑄}, where Γ⊥ is either ⊥ or some resource
context Γ. Intuitively, it expresses that a command 𝑐 , when executed from two states that fulfill 𝑃
and either no initial shared resource (if Γ⊥ is ⊥) or a shared resource fulfilling Γ, will not abort, and
if they terminate, the resulting states will fulfill 𝑄 . The formal definition will follow in Sec. 4.
Figure 8 shows the most important proof rules of CommCSL, those for sharing and unsharing,

as well as for atomic actions. All other rules, e.g., those for assignments, heap accesses, as well as
sequential and parallel composition, and the rules for framing, existentials, and consequence, are
standard and shown in Eilers et al. [2022] . The rules for loops and conditionals are similar to other
relational logics but, crucially, do not require conditions to be low, and thus allow secret-dependent
branching. If branch conditions are high, then postconditions have to be unary, which prevents
indirect flows by making it impossible to have Low(𝑒) in the postcondition.
The share rule captures both the share and unshare operation. It can be used only when the

current resource context is ⊥, i.e., when there is no shared data structure. Once the share rule is
used, threads can access a shared data structure, and must use guards to justify their actions on
it and record the arguments of the actions they perform. The share rule enforces that the new
context’s resource specification is valid, the resource invariant initially holds, and the value 𝑥 of the
resource is low modulo abstraction (property (1) from Sec. 2.3). The postcondition of the conclusion
expresses that the invariant will hold again, with a new value 𝑥 ′, whose abstract view is also low
(and thus allows assuming that the abstract view of the current value of the shared data structure is
low after concurrent modification has finished). In its premise, it gives access to the guards for the
shared and the unique actions, initially with an empty argument multiset resp. argument sequences.
It requires that after executing 𝑐 , the guards are present again; in particular, the guard for the shared
action must be present in its entirety, and therefore record all arguments of the shared action in its
multiset. It also requires that PRE holds for both the sequences of arguments of the unique actions
and the multiset of arguments of the shared action, meaning that we can now, retroactively, show
that for each application of an action, the relational precondition was fulfilled (property (3a)).
There are two similar atomic-rules, one for the shared action and one for the unique actions.

Both require that the resource context is not ⊥, i.e., there is currently a shared resource, and that
the guard for the respective action is initially present, which ensures that no thread can modify the
shared data structure without holding the appropriate guard. For the shared action, any positive
fraction of the guard is sufficient; for the unique actions, the whole unsplittable guard is required.
In the postcondition of the conclusion, the guard records the new argument with which the action
has been performed in its multiset or sequence, respectively. The rule’s premise requires showing
that, assuming the invariant holds initially for some value 𝑥𝑣 (which, since the invariant is unary
and thus no low-ness assumptions can be made, forces one to treat all shared data as high), it holds
again after the atomic modification, with a new value that is the result of applying the respective
action with the respective argument. We impose side conditions that require the assertions 𝑃 and𝑄
to not contain any guards (i.e., any guards held before the atomic block must be framed away using
the frame rule), and that the invariant 𝐼 (𝑥) is precise [O’Hearn et al. 2004], i.e., fulfilled by at most
one sub-heap of any given heap. This condition is not limiting in practice, see Eilers et al. [2022] .

3.7 Limitations

CommCSL is not complete and can be extended in multiple ways. Its central limitations are that (1)
it does not support information security proofs based on the absence of secret-dependent timing

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:17

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥) ⟩ Γ is valid 𝐼 (𝑥) is unary and precise
Γ ⊢ {𝑃 ∗ sguard (1, ∅#) ∗ UniqueEmpty}𝑐 {𝑄 ∗ sguard (1, 𝑥𝑠) ∗ PRE𝑠 (𝑥𝑠) ∗ UniquePre} (Share)

⊥ ⊢ {𝐼 (𝑥) ∗ Low(𝛼 (𝑥)) ∗ 𝑃 }𝑐 {∃𝑥 ′ . 𝐼 (𝑥 ′) ∗ Low(𝛼 (𝑥 ′)) ∗𝑄 }

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥) ⟩ 𝐼 (𝑥) is unary and precise
𝑥𝑣 ∉ fv (𝑃) ∪ fv (𝑄) ∪ fv (𝐼 (𝑥)) 𝑥𝑠 , 𝑥𝑎, 𝑥𝑣 ∉ mod (𝑐) noguard (𝑃) noguard (𝑄)

⊥ ⊢ {𝑃 ∗ 𝐼 (𝑥𝑣) }𝑐 {𝑄 ∗ 𝐼 (𝑓𝑎𝑠 (𝑥𝑣, 𝑥𝑎)) } (AtomicShr)
Γ ⊢ {𝑃 ∗ sguard (𝑟, 𝑥𝑠) }atomic 𝑐 {𝑄 ∗ sguard (𝑟, 𝑥𝑠 ∪# {𝑥𝑎 }#) }

Γ = ⟨𝛼, 𝑓𝑎𝑠 , 𝑓𝑎𝑢 , 𝐼 (𝑥) ⟩ 𝐼 (𝑥𝑣) is unary and precise
𝑥𝑣 ∉ fv (𝑃) ∪ fv (𝑄) ∪ fv (𝐼 (𝑥)) 𝑥𝑠 , 𝑥𝑎, 𝑥𝑣 ∉ mod (𝑐) noguard (𝑃) noguard (𝑄)

⊥ ⊢ {𝑃 ∗ 𝐼 (𝑥𝑣) }𝑐 {𝑄 ∗ 𝐼 (𝑓𝑎𝑖 (𝑥𝑣, 𝑥𝑎)) } (AtomicUnq)
Γ ⊢ {𝑃 ∗ uguard𝑖 (𝑥𝑠) }atomic 𝑐 {𝑄 ∗ uguard𝑖 (𝑥𝑠 + +[𝑥𝑎]) }

Fig. 8. The central proof rules: the Share rule and the two Atomic rules implement all checks specific to our
technique. Recall that the family of unique actions 𝑓𝑎𝑢 is indexed by a (finite) type 𝐼 ; we denote the elements
of 𝐼 by 𝑖0, . . . , 𝑖𝑛 . We write UniqueEmpty to abbreviate uguard𝑖0 ([]) ∗ · · · ∗ uguard𝑖𝑛 ([]), and UniquePre to
abbreviate ∃𝑥𝑖0 , . . . , 𝑥𝑖𝑛 . uguard𝑖0 (𝑥𝑖0) ∗ PRE𝑢 (𝑥𝑖0) ∗ · · · ∗ uguard𝑖0 (𝑥𝑖𝑛) ∗ PRE𝑢 (𝑥𝑖𝑛). We use fv(𝑃) to denote
the free variables in the assertion P, and mod (𝑐) for the set of variables modified by command 𝑐 .

and thus cannot prove shared data low while it is being concurrently modified, (2) for programs
that enforce an ordering between concurrent modifications, requiring commutativity of all actions
is unnecessarily strong, (3) in specific situations, it would be sound to treat intermediate values
of shared data as low, which CommCSL does not allow, and (4) it focuses on proving the output
values of a program low and has no support for reasoning about the sensitivity of I/O (e.g., calls to
print-procedures). Limitation (1) can be mitigated by combining CommCSL with existing logics
like SecCSL and limitation (4) can be lifted via a simple extension of the logic (which we do in our
implementation). Addressing limitations (2) and (3) is possible and left as future work.
In addition, CommCSL does not change the fact that concurrent code handling secret data

has to be specifically designed to be secure. While with existing techniques, code must avoid all
secret-dependent timing, our technique provides a new pattern for designing secure code based on
commutativity. It is well-suited for programs that concurrently compute and return data in the
presence of secrets, but other techniques are more complete for programs that output values during
concurrent modifications, if their assumptions about timing are fulfilled.

4 SOUNDNESS

We have formalized CommCSL and proved it sound in Isabelle/HOL; here, we give a high-level
overview of our proof (which is part of our artifact [Eilers et al. 2023] and available in the Archive
of Formal Proofs [Dardinier 2023]). We build on Vafeiadis’s soundness proof of CSL [Vafeiadis
2011], whose basic idea is to define a predicate safe𝑛 (𝑃, 𝑐,𝑄), which (ignoring frames and resources
for now) expresses that 𝑐 , when executed for 𝑛 steps from any state satisfying 𝑃 , will not abort and,
if it terminates after those 𝑛 steps, will end up satisfying 𝑄 . Hoare triples are then defined to hold
if safe𝑛 holds for all 𝑛. The same idea is used in the soundness proof for SecCSL [Ernst and Murray
2019], a concurrent separation logic for non-interference. SecCSL enforces that two executions
with identical low inputs have the same control flow, s.t. the scheduler makes the same decisions in
both executions, and therefore (in an idealized scenario) no internal timing channels exist. Since
we allow high data to influence control flow and therefore timing and scheduling, we have to prove
that, given two executions with identical low inputs with arbitrary, potentially different schedules
(and different control flow per thread), the program’s public output will be low.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:18 Marco Eilers, Thibault Dardinier, and Peter Müller

As a result, the inductive argument used in existing proofs does not work for our setting. We
solve this problem by separating the proof of safety from the proof of relational properties. We
define a predicate safe𝑛 (Γ⊥, 𝑐, 𝜎, Σ), where Γ⊥ is, as before, either⊥ or a resource context Γ, 𝜎 ranges
over program states with extended heaps of the form ⟨𝑠, gh⟩, and Σ is a set of such program states.
Intuitively, safe𝑛 expresses (1) that executing 𝑐 from 𝜎 , extended with a heap satisfying the resource
invariant, for 𝑛 steps will not abort, (2) that if it terminates, will result in one of the states in Σ
(since, due to non-deterministic scheduling, there may be more than one final state), and (3) that if
there is a shared resource, the state remains consistent w.r.t. some initial value 𝑣0, i.e., that the state
of the resource heap continues to be a possible result of applying the actions with the arguments
specified in the guards to the initial value 𝑣0. We provide the formal definition of safety in Eilers
et al. [2022] . Crucially, this predicate makes a statement only about an individual execution.

We can now define the validity of a Hoare triple Γ⊥ |= {𝑃}𝑐{𝑄} by stating that any two executions
from a pair of states satisfying 𝑃 are safe for an arbitrary number of steps, and any pair of final
states from those two executions will fulfill 𝑄 . More precisely, the Hoare triple holds if there is
some function Ψ that maps any initial state 𝜎 to a set of all possible final states Σ, and for any 𝜎1, 𝜎2
fulfilling 𝑃 , all pairs of states in Ψ(𝜎1) × Ψ(𝜎2) fulfill 𝑄 :
Definition 4.1. Γ⊥ |= {𝑃}𝑐{𝑄} holds iff there is some Ψ s.t. for all 𝑛, 𝜎 , if 𝜎, 𝜎 |= 𝑃 , we have

safe(𝑛, Γ⊥, 𝑐, 𝜎,Ψ(𝜎)), and for all 𝜎1, 𝜎2, 𝜎 ′1, 𝜎
′
2, if 𝜎1, 𝜎2 |= 𝑃 and 𝜎 ′1 ∈ Ψ(𝜎1) and 𝜎 ′2 ∈ Ψ(𝜎 ′2), then

𝜎 ′1, 𝜎
′
2 |= 𝑄 .

Our soundness proof uses a lemma stating, essentially, that the conditions (1)–(4) from Sec. 2 are
sufficient to ensure the abstraction of the final shared value is low:

Lemma 4.2. If Γ is valid, 𝛼 (𝑣0) = 𝛼 (𝑣 ′0), 𝑣 is consistent with 𝑣0 through some sequence of shared

action applications with argument multiset args𝑠 and unique action applications with argument

sequences args𝑖 for all 𝑖 , and similarly 𝑣 ′ is consistent with Γ from 𝑣 ′0 through some sequence of shared

action applications with argument multiset args
′
𝑠 and unique action applications with argument

sequences args
′
𝑖 s.t. PRE𝑠 (args𝑠 , args′𝑠) and PRE𝑖 (args𝑖 , args′𝑖) for all 𝑖 , then 𝛼 (𝑣) = 𝛼 (𝑣 ′).

Here, condition (1) is 𝛼 (𝑣0) = 𝛼 (𝑣 ′0), conditions (2) and (3a) are expressed by the PRE-constraints,
and the validity of Γ represents conditions (3b) and (4). Using this lemma, we prove:

Theorem 4.3. (Soundness) If Γ⊥ ⊢ {𝑃}𝑐{𝑄} then Γ⊥ |= {𝑃}𝑐{𝑄}.
It follows that intermediate assertions proved at some program point will actually hold at this

point for any pair of executions that reaches it, since it is always possible to cut off the rest of the
program (and the proof) after such a point and apply the soundness theorem to the part of interest.

Thus, Hoare triples make true statements about pairs of program executions from an initial state
with no shared resource (using ĝh to range over extended heaps whose guard states are ⊥ and
whose permission heaps have full permission of every location in their domain):

Corollary 4.4. If ⊥ ⊢ {𝑃}𝑐{𝑄} and ⟨𝑠1, ĝh1⟩, ⟨𝑠2, ĝh2⟩ |= 𝑃 , then 𝑐 does not abort from any

⟨𝑠𝑖 , norm(ĝh𝑖)⟩, and if 𝑐, ⟨𝑠𝑖 , norm(ĝh𝑖)⟩ →∗ skip, ⟨𝑠′𝑖 , ℎ𝑖⟩ for some 𝑠′𝑖 , ℎ𝑖 and ℎ𝑖 = norm(ĝh
′
𝑖) for

some ĝh

′
𝑖 , then ⟨𝑠′1, ĝh

′
1⟩, ⟨𝑠′2, ĝh

′
2⟩ |= 𝑄 .

Finally, we can prove non-interference according to Def. 2.1 by proving that if all low input
variables 𝐼𝑙 have low values initially, then all low output variables 𝑂𝑙 have low values in the end:

Corollary 4.5. If ⊥ ⊢ {𝑃 ∗ ∧
𝑥∈𝐼𝑙 Low(𝑥)}𝑐{∧𝑥∈𝑂𝑙

Low(𝑥)} for some unary 𝑃 and we have

⟨𝑠1, ĝh1⟩, ⟨𝑠2, ĝh2⟩ |= 𝑃 ∗
∧

𝑥∈𝐼𝑙 Low(𝑥), then if 𝑐, ⟨𝑠𝑖 , norm(ĝh𝑖)⟩ →∗ skip, ⟨𝑠′𝑖 , ℎ𝑖⟩ for some 𝑠′𝑖 , ℎ𝑖 and

ℎ𝑖 = norm(ĝh
′
𝑖) for some ĝh

′
𝑖 , then ⟨𝑠′1, ĝh

′
1⟩, ⟨𝑠′2, ĝh

′
2⟩ |=

∧
𝑥∈𝑂𝑙

Low(𝑥).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:19

Example Data structure Abstraction LOC Ann. 𝑇

Count-Vaccinated Counter, increment None 44 46 10.15
Figure 2 Integer, add None 129 95 10.90
Count-Sick-Days Integer, add None 52 45 13.67
Figure 1 Integer, arbitrary Constant 29 20 1.52
Mean-Salary List, append Mean 80 84 14.10
Email-Metadata List, append Multiset 82 75 16.70
Patient-Statistic List, append Length 73 70 4.92
Debt-Sum List, append Sum 76 81 14.45
Sick-Employee-Names Treeset, add None 105 113 28.43
Website-Visitor-IPs Listset, add None 74 69 6.20
Figure 3 HashMap, put Key set 129 96 10.37
Sales-By-Region HashMap, disjoint put None 129 104 12.37
Salary-Histogram HashMap, increment value None 135 109 13.78
Count-Purchases HashMap, add value None 137 109 11.73
Most-Valuable-Purchase HashMap, conditional put None 140 118 17.87
1-Producer-1-Consumer Queue Consumed sequence 82 88 3.23
Pipeline Two queues Consumed sequences 122 100 3.66
2-Producers-2-Consumers Queue Produced multiset 130 134 8.45

Table 1. Evaluated examples. We show the used data structure and the operation(s) we allow on it; for the last
three examples, these are producing and consuming data. LOC are lines of code, not including specifications,
Ann. are only specifications and proof annotations.𝑇 is the verification time in seconds, averaged over 5 runs.

5 IMPLEMENTATION AND EVALUATION

We have implemented our technique in HyperViper, an automated prototype verifier based on the
Viper verification infrastructure [Müller et al. 2016], which is available as open source7 and part of
our artifact [Eilers et al. 2023]. HyperViper supports a richer language than the one used in this
paper; in particular, instead of parallel composition commands, it allows dynamic thread creation
using fork and join commands. Additionally, HyperViper supports multiple resources in a single
program (which can be associated with different resource specifications).

HyperViper’s level of automation is similar to existing automated verifiers: Users must provide
method pre- and postcondition as well as loop invariants, in an assertion language that is similar to
the one shown in this paper, and additionally have to declare resource specifications. Given these
specifications and some annotations indicating key proof steps (e.g., which action is performed by
an atomic block, and how to split and merge shared action guards; see Eilers et al. [2022] for an
example), our tool automatically either verifies the program or indicates potential errors.

Internally, HyperViper encodes the validity constraints for all resource specifications as well as
all other proof obligations imposed by our logic into the Viper intermediate language. To encode
relational proof obligations, it uses a modular product program construction [Eilers et al. 2018],
and combines it with existing encodings for concurrent programs [Leino and Müller 2009] in a
sound way [Eilers et al. 2021]. Subsequently, it automatically verifies the generated program using
one of Viper’s backend verifiers and, ultimately, the Z3 SMT solver [de Moura and Bjørner 2008].
To demonstrate the practical usefulness of our verification technique, we have applied Hyper-

Viper to a number of example programs that represent a variety of applications that concurrently
manipulate shared data structures with secret data. The first 15 examples model specific applications,
which spawn a number of worker threads to modify some shared data structure and subsequently

7https://github.com/viperproject/hyperviper

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

https://github.com/viperproject/hyperviper

175:20 Marco Eilers, Thibault Dardinier, and Peter Müller

output the abstract view of the shared data structure. All examples explicitly model data structures
containing different kinds of secret information (e.g., employee names and salaries, patient health
data, or user activity on a website). Depending on the example, the data contains some low parts
(e.g., whether or not a patient has been vaccinated), or some aspect of the secret data is low (e.g.,
the range of an employee’s salary or the number of—otherwise secret—purchases they have made).
The last three examples model variations of general parallel programming patterns; here, we

leave the data and computation abstract and show instead that the pattern is safe for all possible
implementations where the individual roles do not directly leak secret data themselves. Table 1
shows, for each example, the total lines of code (not including whitespace), the number of lines
used for annotations (i.e., specifications and proof annotations), and the verification time in seconds
(measured on an 8-core AMD Ryzen 6850U with 32GB of RAM running Ubuntu 22.04 on a warmed-
up JVM, averaged over five runs), as well as the used data structure and abstraction. The examples
range from 29 to 140 lines of code, with a similar number of lines of specifications and proof
annotations. Typical verification times are between 3 and 30 seconds. Thus, we conclude that
commutativity-based reasoning can be automated efficiently. In the remainder of this section, we
will discuss how different aspects of our technique allow us to verify the diverse set of examples.

Precise action definitions. For several examples, we can prove that the actions of all threads
commute by carefully defining the legal actions. For example, while puts on maps with the same
keys do not commute in general, in the example Salary-Histogram, each put increments the value
for the key it is modifying (i.e., it increments the number of employees that fall within the specific
salary range represented by the key). As a result, the updates commute. Similarly, the example
Most-Valuable-Purchase iterates through purchase records and finds the highest price each user
has ever paid: Here, each thread updates the map from user IDs to prices only if its purchase value
is greater than the one currently in the map, which again results in commuting map updates.

Abstraction. In half of our examples, we use an abstraction to relax the commutativity requirement.
For example, we compute a list of employee names and salaries but leak only the mean salary, and
we collect a list of individual debts of a person but leak only the overall sum of their debt, not
individual amounts or creditors. In example Email-Metadata, we abstract a list to a multiset to prove
that we may leak the list after sorting it, which eliminates the secret-dependent item order. For the
producer-consumer and pipeline examples, our abstraction does not return a view on the actual
shared data, but on ghost data added for verification purposes: It does not state that the current
data in the queue is low, which is not of interest, since the final state of the queue will always
be empty, but that the sequence of consumed items is low (or, if there are multiple producers and
consumers, the multiset view of that sequence). We also prove that the original version of Figure 1,
where each thread sets the shared variable to a different value, is correct if said value is not leaked.

Resource specifications. The examples Sick-Employee-Names and Website-Visitor-IPs both add
low values to sets (names of sick employees and IP addresses of website visitors, respectively), but use
different set implementations. Since resource specifications abstract over concrete implementations
of data structures, we can reuse the same resource spec for both examples.

Unique actions. In three examples, we use unique actions to exploit that some actions are per-
formed only by one thread, and thus their order is unaffected by thread interleavings. In Sales-By-
Region, different threads process data from different regions and add it to a shared map. Since the
keys are region-specific, writes from different threads never conflict, and all updates commute. For
the single-producer-consumer and pipeline examples, we exploit that there is only one producer
and one consumer thread per shared queue to prove that the sequence of consumed values is low;

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:21

if there were multiple such threads (like in the multiple-producer-consumer example), the order of
consumed items could be affected by secret data (and thus, only its multiset view is low).

Retroactive checking of action arguments. For the multiple producer-consumer example, the
number of items consumed by each individual consumer depends on scheduling and therefore
potentially high data. However, the total number of consumed items is low. Thus, checking that the
number of performed consume actions is low after joining all threads, when the overall number
of consume actions is known, allows us to prove this example secure. In the pipeline example, a
thread produces low data into a first queue, a middle thread consumes this data, transforms it, and
produces the result into a second queue, from where a third thread consumes it. While all threads
are executing, the middle thread does not know that the data it reads from the first queue is low;
we learn that only once the first queue is unshared. Thus, we would not be able to prove that the
middle thread fulfills the second queue’s precondition (that produced data is low) while all threads
are running, but we can prove this precondition retroactively after unsharing the first queue.

High branches. Ca. half of our examples have secret-dependent timing due to branches on high
data, and would thus be rejected by existing techniques, even if the attacker cannot observe timing.

6 RELATEDWORK

Researchers have developed a plethora of type systems [Smith 2007], static analyses [Giffhorn
and Snelting 2015], program transformations [Eilers et al. 2021], and program logics [Ernst and
Murray 2019; Murray et al. 2018] to verify information flow security of concurrent programs,
as well as multiple definitions of information flow security in this setting. Bisimulation-based
properties [Focardi and Gorrieri 1995] and observational determinism [Zdancewic and Myers 2003]
are properties of (sets of) traces, which assume that attackers can observe either low program
variables or low events during the execution of the program, unlike our setting, where we assume
that the attacker can observe only the public output of the program.

In our setting, the standard property is non-interference (which is what our logic guarantees), or
weaker versions of it like possibilistic [Smith and Volpano 1998] and probabilistic [Sabelfeld and
Sands 2000] non-interference, which guarantee, respectively, that secret data does not influence
either the set of possible final outputs or their probabilities. Since possibilistic non-interference
is too weak in practice, most existing techniques target either traditional or probabilistic non-
interference. As discussed previously, they achieve this goal by entirely preventing secret-dependent
execution time differences, under the idealized assumption that only high branches can lead to
such differences [Eilers et al. 2021; Ernst and Murray 2019; Murray et al. 2018; Schoepe et al.
2020; Smith 2006, 2007]. These techniques can be applied to realistic settings by also preventing
other sources of timing differences, but preventing them entirely on standard hardware is complex
and requires strong assumptions about compilers and hardware. Our technique has the unique
advantage of not requiring any reasoning about execution time in order to prove information
flow security for output values, which makes it applicable independently of the used hardware.
In settings where it is possible to precisely reason about execution time, CommCSL complements

existing techniques like SecCSL, and their relative completeness will vary from example to example
(see Sec. 3.7). In principle, it is also possible to verify concurrent programs by rewriting them as
sequential programs with non-deterministic scheduling and reasoning about them using techniques
for sequential program. However, this approach would require explicitly considering the possible
interleavings of all threads, which is not modular and does not scale in practice.
Most of the aforementioned techniques either do not support a mutable heap (e.g. [Murray

et al. 2018; Smith 2007] or work for programs using locks to protect shared memory like our logic
(e.g. [Eilers et al. 2021; Ernst and Murray 2019]), but some recent logics target more complex settings,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

175:22 Marco Eilers, Thibault Dardinier, and Peter Müller

like fine-grained concurrency [Frumin et al. 2021] or relaxed memory models [Yan and Murray
2021]. We believe that our approach also extends to fine-grained concurrency, since the general
idea of making sure that concurrent changes commute also applies in this setting.

Some techniques prevent unwanted information leakage (including leakage as a result of internal
timing channels) at runtime by modifying the language runtime [Vassena et al. 2019], using
information flow aware concurrency primitives [Stefan et al. 2012], or by transforming the original
program [Russo et al. 2006]. Such techniques can allow running programs that would be rejected by
static techniques, but at the cost of requiring specific runtimes or affecting execution performance.
There are many use cases of commutativity in the literature, particularly in the context of

parallelization. CommCSL is the first technique that applies commutativity to information flow
security in a concurrent setting. Benton et al. [2007] present a relational semantics that can prove

that two operations commute if the locations one reads and the other modifies do not overlap,
whereas we use commutativity of actions to prove noninterference for programs that perform these
actions. Additionally, we consider cases where different threads do modify the same shared data,
and thus Benton et al. [2007]’s reasoning principles do not apply to our setting.
Some related work uses commutativity coupled with an abstraction, in particular, it uses data

structures that expose a kind of abstract view and define commutativity on the basis of such a
view. For example, Kim and Rinard [2011] verify commutativity conditions in this context for
specific data structures, and Bansal et al. [2018] automatically infer them. A lot of existing work uses
commutativity with such abstractions to reason about or transform programs. For example, Golan-
Gueta et al. [2015] use commutativity to parallelize sequential programs, Dimitrov et al. [2014] use
commutativity to detect races in traces of concurrent programs, and Brutschy et al. [2017] use it
to prove serializability. Kragl and Qadeer [2021] use commutativity to simplify reasoning about
concurrent programs, and Pincus [2022] uses it to parallelize code automatically and additionally
infers commutativity conditions. All of them use a notion of abstraction that is more akin to our
pure (mathematical) representations of the data structure (e.g., a partial function for a hash map).
Our notion of “abstract view” is an additional layer of abstraction on top of the pure mathematical
value which is application-specific and intentionally abstracts away high data (e.g., by further
abstracting the partial function to its domain). That is, existing work still uses and proves actual
commutativity of data structure operations that ignores only internal implementation details of
the data structure, whereas our abstractions allow operations that actually do not commute, if the
result of this non-commutativity is not visible in public outputs. Thus, given a data structure and its
pure representation, we may use different abstractions for different usages in the same program.

Finally, Farzan et al. [2023] abstract statements (e.g., a concrete assignment to a non-deterministic
one) and reason about the commutativity of two abstracted statements on concrete states, whereas
we abstract states and check whether actions commute w.r.t. these abstracted states.

7 CONCLUSION AND FUTUREWORK

We have presented CommCSL, a concurrent separation logic for verifying non-interference using
abstract commutativity. We proved CommCSL sound and showed that it can be automated efficiently
and is able to verify common examples. For future work, we plan to apply reasoning based on
(abstract) commutativity to other settings like fine-grained concurrency, and to explore when it is
sound to assume that shared data is low while threads are still performing concurrent updates.

ACKNOWLEDGMENTS

We gratefully acknowledge support by the Werner Siemens-Stiftung (WSS), and by the Swiss
National Science Foundation (SNSF) under Grant No. 197065. We thank the reviewers and especially
our shepherd, Toby Murray, for their insightful comments that significantly improved this paper.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:23

8 DATA AVAILABILITY STATEMENT

The formalization, implementation and evaluation of this paper are available in its artifact [Eilers
et al. 2023]. The formalization is also available in the Archive of Formal Proofs [Dardinier 2023].

REFERENCES

Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian Stefan. 2018. Towards Verified, Constant-time Floating
Point Operations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS

2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang
(Eds.). ACM, 1369–1382. https://doi.org/10.1145/3243734.3243766

Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Generation of Precise and Useful Commutativity Conditions.
In Tools and Algorithms for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,

2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10805), Dirk Beyer and Marieke Huisman (Eds.). Springer,
115–132. https://doi.org/10.1007/978-3-319-89960-2_7

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures: The
Case of Cryptographic "Constant-Time". In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United

Kingdom, July 9-12, 2018. IEEE Computer Society, 328–343. https://doi.org/10.1109/CSF.2018.00031
Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based program

transformations with dynamic allocation. In Proceedings of the 9th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming, July 14-16, 2007, Wroclaw, Poland, Michael Leuschel and Andreas Podelski (Eds.).
ACM, 87–96. https://doi.org/10.1145/1273920.1273932

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in separation
logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2005, Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 259–270. https:
//doi.org/10.1145/1040305.1040327

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, 10th International Symposium,

SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot
(Ed.). Springer, 55–72. https://doi.org/10.1007/3-540-44898-5_4

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, 15th

International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,

Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 16–34. https://doi.org/10.1007/978-3-540-28644-8_2
Lucas Brutschy, Dimitar K. Dimitrov, Peter Müller, and Martin T. Vechev. 2017. Serializability for eventual consistency:

criterion, analysis, and applications. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 458–472.
https://doi.org/10.1145/3009837.3009895

Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010), 1157–1210.
Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. 2012. Compiler mitigations for time attacks on modern x86

processors. TACO 8, 4 (2012), 23:1–23:20. https://doi.org/10.1145/2086696.2086702
Thibault Dardinier. 2023. Formalization of CommCSL: A Relational Concurrent Separation Logic for Proving Information

Flow Security in Concurrent Programs. Archive of Formal Proofs (March 2023). https://isa-afp.org/entries/CommCSL.html,
Formal proof development.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings

(Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https:
//doi.org/10.1007/978-3-540-78800-3_24

Dimitar Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koskinen. 2014. Commutativity race detection. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June

09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 305–315. https://doi.org/10.1145/2594291.2594322
Marco Eilers, Thibault Dardinier, and Peter Müller. 2022. CommCSL: Proving Information Flow Security for Concurrent

Programs using Abstract Commutativity. CoRR abs/2211.08459 (2022). https://doi.org/10.48550/arXiv.2211.08459
arXiv:2211.08459

Marco Eilers, Thibault Dardinier, and Peter Müller. 2023. CommCSL: Proving Information Flow Security for Concurrent

Programs using Abstract Commutativity (Artifact). https://doi.org/10.5281/zenodo.7709911
Marco Eilers, Severin Meier, and Peter Müller. 2021. Product Programs in the Wild: Retrofitting Program Verifiers to Check

Information Flow Security. In Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

https://doi.org/10.1145/3243734.3243766
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1145/1273920.1273932
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/2086696.2086702
https://isa-afp.org/entries/CommCSL.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2594291.2594322
https://doi.org/10.48550/arXiv.2211.08459
https://arxiv.org/abs/2211.08459
https://doi.org/10.5281/zenodo.7709911

175:24 Marco Eilers, Thibault Dardinier, and Peter Müller

20-23, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, 718–741. https://doi.org/10.1007/978-3-030-81685-8_34

Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In Programming Languages and Systems -

27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,

Vol. 10801), Amal Ahmed (Ed.). Springer, 502–529. https://doi.org/10.1007/978-3-319-89884-1_18
Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent Separation Logic. In Computer Aided Verification - 31st

International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II (Lecture Notes in Computer

Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer, 208–230. https://doi.org/10.1007/978-3-030-25543-5_13
Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. 2023. Stratified Commutativity in Verification Algorithms for

Concurrent Programs. Proc. ACM Program. Lang. 7, POPL (2023), 1426–1453. https://doi.org/10.1145/3571242
Riccardo Focardi and Roberto Gorrieri. 1995. A Taxonomy of Security Properties for Process Algebras. J. Comput. Secur. 3, 1

(1995), 5–34. https://doi.org/10.3233/JCS-1994/1995-3103
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. Compositional Non-Interference for Fine-Grained Concurrent

Programs. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
1416–1433. https://doi.org/10.1109/SP40001.2021.00003

Dennis Giffhorn and Gregor Snelting. 2015. A new algorithm for low-deterministic security. Int. J. Inf. Sec. 14, 3 (2015),
263–287. https://doi.org/10.1007/s10207-014-0257-6

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv, and Eran Yahav. 2015. Automatic scalable atomicity via semantic locking.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015, San

Francisco, CA, USA, February 7-11, 2015, Albert Cohen and David Grove (Eds.). ACM, 31–41. https://doi.org/10.1145/
2688500.2688511

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque,
and Yasemin Acar. 2022. “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About
Timing Attacks. In 2022 IEEE Symposium on Security and Privacy, S&P 2022.

Deokhwan Kim and Martin C. Rinard. 2011. Verification of semantic commutativity conditions and inverse operations
on linked data structures. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 528–541.
https://doi.org/10.1145/1993498.1993561

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution.
In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 1–19. https:
//doi.org/10.1109/SP.2019.00002

Eric Koskinen and Kshitij Bansal. 2021. Decomposing Data Structure Commutativity Proofs with𝑚𝑛-Differencing. In
Verification, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen,

Denmark, January 17-19, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12597), Fritz Henglein, Sharon Shoham,
and Yakir Vizel (Eds.). Springer, 81–103. https://doi.org/10.1007/978-3-030-67067-2_5

Bernhard Kragl and Shaz Qadeer. 2021. The Civl Verifier. In Formal Methods in Computer Aided Design, FMCAD 2021, New

Haven, CT, USA, October 19-22, 2021. IEEE, 143–152. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23
K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In Programming Languages

and Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science,

Vol. 5502), Giuseppe Castagna (Ed.). Springer, 378–393. https://doi.org/10.1007/978-3-642-00590-9_27
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard,

Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck
and Adrienne Porter Felt (Eds.). USENIX Association, 973–990. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based
Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.

Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann
and K. Rustan M. Leino (Eds.). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

Toby C. Murray, Robert Sison, and Kai Engelhardt. 2018. COVERN: A Logic for Compositional Verification of Information
Flow Control. In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April

24-26, 2018. IEEE, 16–30. https://doi.org/10.1109/EuroSP.2018.00010
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.

Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

https://doi.org/10.1007/978-3-030-81685-8_34
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1145/3571242
https://doi.org/10.3233/JCS-1994/1995-3103
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1145/2688500.2688511
https://doi.org/10.1145/2688500.2688511
https://doi.org/10.1145/1993498.1993561
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/978-3-030-67067-2_5
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23
https://doi.org/10.1007/978-3-642-00590-9_27
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1109/EuroSP.2018.00010
https://doi.org/10.1007/3-540-45949-9

CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity 175:25

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th

International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,

Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. https://doi.org/10.1007/978-3-540-28644-8_4
Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. 2004. Separation and Information Hiding. In Proceedings of the

31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association
for Computing Machinery, New York, NY, USA, 268–280. https://doi.org/10.1145/964001.964024

Matthew J. Parkinson and Gavin M. Bierman. 2005. Separation logic and abstraction. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA, January

12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 247–258. https://doi.org/10.1145/1040305.1040326
Jared Pincus. 2022. Commutativity Reasoning for the Heap. Master’s thesis. Stevens Institute of Technology.
Alejandro Russo, John Hughes, David A. Naumann, and Andrei Sabelfeld. 2006. Closing Internal Timing Channels by

Transformation. In Advances in Computer Science - ASIAN 2006. Secure Software and Related Issues, 11th Asian Computing

Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 4435),
Mitsu Okada and Ichiro Satoh (Eds.). Springer, 120–135. https://doi.org/10.1007/978-3-540-77505-8_10

Andrei Sabelfeld and David Sands. 2000. Probabilistic Noninterference for Multi-Threaded Programs. In Proceedings of the

13th IEEE Computer Security Foundations Workshop, CSFW ’00, Cambridge, England, UK, July 3-5, 2000. IEEE Computer
Society, 200–214. https://doi.org/10.1109/CSFW.2000.856937

Daniel Schoepe, Toby Murray, and Andrei Sabelfeld. 2020. VERONICA: Expressive and Precise Concurrent Information
Flow Security (Extended Version with Technical Appendices). CoRR abs/2001.11142 (2020). arXiv:2001.11142 https:
//arxiv.org/abs/2001.11142

Geoffrey Smith. 2006. Improved typings for probabilistic noninterference in a multi-threaded language. J. Comput. Secur. 14,
6 (2006), 591–623. http://content.iospress.com/articles/journal-of-computer-security/jcs273

Geoffrey Smith. 2007. Principles of Secure Information Flow Analysis. In Malware Detection, Mihai Christodorescu, Somesh
Jha, Douglas Maughan, Dawn Song, and Cliff Wang (Eds.). Advances in Information Security, Vol. 27. Springer, 291–307.
https://doi.org/10.1007/978-0-387-44599-1_13

Geoffrey Smith and Dennis M. Volpano. 1998. Secure Information Flow in aMulti-Threaded Imperative Language. In POPL ’98,
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA, USA,

January 19-21, 1998, David B. MacQueen and Luca Cardelli (Eds.). ACM, 355–364. https://doi.org/10.1145/268946.268975
Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejandro Russo, and David Mazières. 2013. Eliminating

Cache-Based Timing Attacks with Instruction-Based Scheduling. In Computer Security - ESORICS 2013 - 18th European

Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings (Lecture Notes in Computer

Science, Vol. 8134), Jason Crampton, Sushil Jajodia, and Keith Mayes (Eds.). Springer, 718–735. https://doi.org/10.1007/978-
3-642-40203-6_40

Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières. 2012. Addressing covert
termination and timing channels in concurrent information flow systems. In ACM SIGPLAN International Conference on

Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, Peter Thiemann and Robby Bruce Findler
(Eds.). ACM, 201–214. https://doi.org/10.1145/2364527.2364557

Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. In Twenty-seventh Conference on the

Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic Notes

in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 335–351. https:
//doi.org/10.1016/j.entcs.2011.09.029

Marco Vassena, Gary Soeller, Peter Amidon, Matthew Chan, John Renner, and Deian Stefan. 2019. Foundations for Parallel
Information Flow Control Runtime Systems. In Principles of Security and Trust - 8th International Conference, POST 2019,

Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,

April 6-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11426), Flemming Nielson and David Sands (Eds.).
Springer, 1–28. https://doi.org/10.1007/978-3-030-17138-4_1

Martin T. Vechev, Eran Yahav, Raghavan Raman, and Vivek Sarkar. 2010. Automatic Verification of Determinism for
Structured Parallel Programs. In Static Analysis - 17th International Symposium, SAS 2010, Perpignan, France, September

14-16, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6337), Radhia Cousot and Matthieu Martel (Eds.). Springer,
455–471. https://doi.org/10.1007/978-3-642-15769-1_28

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.

Secur. 4, 2/3 (1996), 167–188. https://doi.org/10.3233/JCS-1996-42-304
Dennis M. Volpano and Geoffrey Smith. 1998. Probabilistic Noninterference in a Concurrent Language. In Proceedings of

the 11th IEEE Computer Security Foundations Workshop, Rockport, Massachusetts, USA, June 9-11, 1998. IEEE Computer
Society, 34–43. https://doi.org/10.1109/CSFW.1998.683153

Pengbo Yan and Toby Murray. 2021. SecRSL: security separation logic for C11 release-acquire concurrency. Proc. ACM
Program. Lang. 5, OOPSLA (2021), 1–26. https://doi.org/10.1145/3485476

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1145/964001.964024
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1007/978-3-540-77505-8_10
https://doi.org/10.1109/CSFW.2000.856937
https://arxiv.org/abs/2001.11142
https://arxiv.org/abs/2001.11142
https://arxiv.org/abs/2001.11142
http://content.iospress.com/articles/journal-of-computer-security/jcs273
https://doi.org/10.1007/978-0-387-44599-1_13
https://doi.org/10.1145/268946.268975
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1007/978-3-642-40203-6_40
https://doi.org/10.1145/2364527.2364557
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-030-17138-4_1
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1109/CSFW.1998.683153
https://doi.org/10.1145/3485476

175:26 Marco Eilers, Thibault Dardinier, and Peter Müller

Steve Zdancewic and Andrew C. Myers. 2003. Observational Determinism for Concurrent Program Security. In 16th IEEE

Computer Security Foundations Workshop (CSFW-16 2003), 30 June - 2 July 2003, Pacific Grove, CA, USA. IEEE Computer
Society, 29. https://doi.org/10.1109/CSFW.2003.1212703

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 175. Publication date: June 2023.

https://doi.org/10.1109/CSFW.2003.1212703

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Statement
	2.2 Commutativity-Based Information Flow Reasoning
	2.3 Abstract Commutativity
	2.4 Resource Specifications
	2.5 Program Verification
	2.6 Verification of the Map Example
	2.7 Unique Actions

	3 Logic
	3.1 Language
	3.2 Resource Specifications
	3.3 Extended Heaps
	3.4 Assertions
	3.5 Resource Contexts
	3.6 Proof Rules
	3.7 Limitations

	4 Soundness
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	8 Data Availability Statement
	References

