Nagini: A Static Verifier for Python

Marco Eilers and Peter Miller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{marco.eilers, peter.mueller}@inf.ethz.ch

Abstract. We present Nagini, an automated, modular verifier for stat-
ically-typed, concurrent Python 3 programs, built on the Viper veri-
fication infrastructure. Combining established concepts with new ideas,
Nagini can verify memory safety, functional properties, termination, dead-
lock freedom, and input/output behavior. Our experiments show that
Nagini is able to verify non-trivial properties of real-world Python code.

1 Introduction

Dynamic languages have become widely used because of their expressiveness
and ease of use. The Python language in particular is popular in domains like
teaching, prototyping, and more recently data science. Python’s lack of safety
guarantees can be problematic when, as is increasingly the case, it is used for
critical applications with high correctness demands. The Python community has
reacted to this trend by integrating type annotations and optional static type
checking into the language [20]. However, there is currently virtually no tool
support for reasoning about Python programs beyond type safety.

We present Nagini, a sound verifier for statically-typed, concurrent Python
programs. Nagini can prove memory safety, data race freedom, and user-supplied
assertions. Nagini performs modular verification, which is important for verifi-
cation to scale and to be able to verify libraries, and automates the verification
process for programs annotated with specifications.

Nagini builds on many techniques established in existing tools: (1) Like Ver-
iFast [10] and other tools [4,19,22], it uses separation logic style permissions [16]
in order to locally reason about concurrent programs. (2) Like NET Code Con-
tracts [7], it uses a contract library to enable users to write code-level speci-
fications. (3) Like many verification tools [2,6,11,13], it verifies programs by
encoding the program and its specification into an intermediate verification lan-
guage [1,8], namely Viper [14], for which automatic verifiers already exist.

Nagini combines these techniques with new ideas in order to verify advanced
properties and handle the dynamic aspects of Python. In particular, Nagini im-
plements a comprehensive system for verifying finite blocking [5] and input/out-
put behavior [18], and builds on Mypy [12] to verify safety while also supporting
important dynamic language features. Nagini is intended for verifying substan-
tial, real-world code, and is currently used to verify the Python implementation
of the SCION internet architecture [3]. To our knowledge, it is the first tool to en-
able automatic verification of Python code. Existing tools for JavaScript [21,24]



2 Marco Eilers and Peter Miller

also target a dynamic language, but focus on faithfully modeling JavaScript’s
complex semantics rather than practical verification of high-level properties.
Due to its wide range of verifiable properties, Nagini has applications in
many domains: In addition to memory safety, programmers can choose to prove
that a server implementation will stay responsive, that data science code has
desired functional properties, or that algorithms terminate and preserve certain
invariants, for example in a teaching context. Nagini is open-source and available
online!, and can be used from the popular PyCharm IDE via a prototype plugin.
In this paper, we describe Nagini’s supported Python subset and specification
language, give an overview of its implementation and the encoding from Python
to Viper, and provide an experimental evaluation of Nagini on real-world code.

2 Language and Specifications

Python Subset: Nagini requires input programs to comply to the static, nom-
inal type system defined in PEP 484 [20] as implemented in the Mypy type
checker [12], which requires type annotations for function parameters and re-
turn types, but can normally infer types of local variables. Nagini fully supports
the non-gradual part of Mypy’s type system, including generics and union types.

The Python subset accepted by Mypy and Nagini can accomodate most
real Python programs, potentially via some workarounds like using union types
instead of structural typing. While our subset is statically typed, it includes many
features and potential pitfalls not found in static languages, such as dynamic
addition and removal fields from objects. Some other features like reflection and
dynamic code generation are not supported.

Where compromises are necessary, Nagini aims for modularity, performance,
and completeness for features typically found in user code over general sup-
port for all language features. As an example, Nagini works with a simplified
model of Python’s object attribute lookup behavior: A simple attribute access
in Python leads to the invocation of several “magic” methods, which, if mod-
elled correctly, would result in an overhead that would likely make automatic
verification intractable. Nagini exploits the fact that these methods are mostly
used to implement decorators, metaclasses, and system libraries, but rarely in
user code. It assumes the default behavior of those methods, and implements
direct support for frequently-used decorators and metaclasses that change their
behavior. Importantly, Nagini flags an error if verified programs override these
methods or are otherwise outside the supported subset, and is therefore sound.

Specification Language: Nagini includes a library of specification functions sim-
ilar to .NET Code Contracts [7] to express pre- and postconditions, loop invari-
ants, and other assertions. Calls to these functions are interpreted as specifica-
tions by Nagini, but can be automatically removed before execution. Users can
annotate Mypy-style type stub files for external libraries with specifications; the

! https://github.com/marcoeilers/nagini



O~ Uk WN—

Nagini: A Static Verifier for Python 3

from nagini_contracts.contracts import x
from typing import List

import db
class Ticket:
def __init__(self, show: int, row: int, seat: int) —> None:
self.show_id = show
self.row, self.seat = row, seat
Fold(self.state())
Ensures(self.state() and MayCreate(self , 'discount_code’))
©@Predicate

def state(self) —> bool:
return Acc(self.show_id) and Acc(self.row) and Acc(self.seat)

def order_tickets(num: int, show_id: int, code: str=None) —> List[Ticket]:
Requires(num > 0)
Exsures(SoldoutException, True)
seats = db.get_seats(show_id, num)
res = [] # type: List[Ticket]
for row, seat in seats:
Invariant(list_pred(res))
Invariant( Forall(res, lambda t: t.state() and
Implies(code is not None, Acc(t.discount_code))))
Invariant(MustTerminate(len(seats) — len(res)))
ticket = Ticket(show_id, row, seat)
if code:
ticket .discount_code = code
res.append(ticket)
return res

Fig.1. Example program demonstrating Nagini’s specification language. Contract
functions are highlighted in italics. Note that functional specifications and postcon-
ditions are largely omitted to highlight the different specification constructs.

program will then be verified assuming they are correct. A detailed explanation
of the specification language can be found in Nagini’s WikiZ.

An example of an annotated program is shown in Fig. 1. The first two lines
import the contract library and Python’s library for type annotations. Pre- and
postconditions are declared via calls to the contract functions Requires and En-
sures in lines 17 and 10, respectively. The arguments of these functions are inter-
preted as assertions, which can be side-effect free boolean Python expressions or
calls to other contract functions. Similarly, loops must be annotated with invari-
ants (line 22), and special exceptional postconditions specify which exceptions a
method may raise, and what postconditions must hold in this case. The Exsures
annotation in line 18 states that a SoldoutException may be raised and makes
no guarantees in this case. The invariant MustTerminate in line 25 specifies that
the loop terminates; the argument represents a ranking function [5].

Like the underlying Viper language, Nagini uses Implicit Dynamic Frames
(IDF) [23], a variation of separation logic [16], to achieve framing and allow local
reasoning in the presence of concurrency. IDF establishes a system of permis-
sions for heap locations that roughly corresponds to separation logic’s points-to
predicates. Methods may only read or write heap locations they currently hold

2 https://github.com/marcoeilers/nagini/wiki



4 Marco Eilers and Peter Miller

a permission for, and can specify which permissions they require from and give
back to their caller in their pre- and postconditions. Since there is only ever a
single permission per heap location, holding a permission guarantees that neither
other threads nor called methods can modify the respective location.

In Nagini, a permission is created when a field is assigned to for the first time;
e.g., when executing line 9, the __init___ method will have permission to three
fields. Permission assertions are expressed using the Acc function (line 14). As-
sertions can be abstracted over using predicates [17], declared in Nagini by using
annotated functions (line 12). In the example, the constructor of Ticket bundles
all available permissions in the predicate state using the ghost statement Fold in
line 9 and subsequently returns this predicate to its caller via its postcondition.

In addition, Nagini offers a second kind of permission that allows creating a
field that does not currently exist, but cannot be used for reading (since that
would cause a runtime error). Constructors implicitly get this kind of permis-
sion for every field mentioned in a class; in the example, such a permissions is
returned to the caller (line 10) and used in line 28. The loop invariant contains
the permission to modify the res list using one of several built-in predicates for
Python’s standard data types (line 22) as well as permissions to the fields of all
objects in the list (line 23). This kind of quantified permission [15], correspond-
ing to separation logic’s iterated separating conjunction, is one of two supported
ways to express permissions over unbounded numbers of heap locations.

Other contract functions allow specifying, e.g., I/O behavior, and some have
variations for advanced users, e.g., the Forall function can take trigger expressions
to specify when the underlying SMT solver should instantiate the quantifier.

Verified properties: Nagini verifies some safety properties by default: Verified
programs will not raise runtime errors or undeclared exceptions. The permission
system guarantees that verified code is memory safe and free of data races.
Nagini also verifies some properties that Mypy only checks optimistically, e.g.,
that referenced names are defined before they are used. As an example, if the
Ticket class were defined after the order_ tickets function, Nagini would not allow
calls to the function before the class definition, because of the call in line 26.

Beyond this, Nagini can verify 1) functional properties, 2) input/output prop-
erties, i.e., which I/O operations may or must occur, using a generalization of the
method by Penninckx et al. [18], and 3) finite blocking [5], i.e., that no thread
blocks indefinitely when trying to acquire a lock or join another thread, which
includes deadlock freedom and termination. Verification is modular in the sense
that adding code to a program only requires verifying the added parts; any code
that verified before is guaranteed to still verify. Top level statements are an ex-
ception and have to be reverified when any part of the program changes, since
Python’s import mechanism is inherently non-modular.

3 Implementation

Nagini’s verification workflow is depicted in Fig. 2. After parsing, Nagini invokes
the Mypy type checker on the input and rejects the program if errors are found.



Nagini: A Static Verifier for Python 5

Python AST

Nagini ™ Viper AST Viper
: Translator | ! : 73
7 A YAy
: : : vea
X H Python Program : X H
: Model ; \

Viper Error

Fig. 2. Nagini verification workflow.

It then analyzes the input program and extracts structural information into an
internal model, which is then encoded into a Viper program. The program is
verified using one of the two Viper backends, based on either symbolic execu-
tion (SE) or verification condition generation (VCG), respectively. Any resulting
Viper-level error messages are mapped back to a Python-level error.

Encoding: Nagini encodes Python programs into Viper programs that verify only
if the original program was correct. At the top level, Viper programs consist
of methods, whose bodies contain imperative code, side-effect free functions,
and the aforementioned predicates, as well as domains, which can be used to
declare and axiomatize custom data types. The structure of a created Viper
program roughly follows the structure of the Python program: Each function in
the Python program corresponds to either a method, a function, or a predicate
in the Viper program, depending on its annotation. Additional Viper methods
are generated to check proof obligations like behavioral subtyping and to model
the execution of all top level statements.

Nagini maintains various kinds of ghost state, e.g., for verifying finite blocking
and to represent which names are currently defined. It models Python’s type sys-
tem using a Viper domain axiomatized to reflect subtype relations. Nagini desug-
ars complex Python language constructs into simple ones that exist in Viper, but
subtle language differences often require additional effort in the encoding. As an
example, Viper distinguishes references from primitive values whereas Python
does not, requiring boxing and unboxing operations in the encoding.

Tool interaction: Nagini is invoked on an annotated Python file, and verifies this
file and all (transitive) imports without user interaction. It then outputs either
a success message or Python-level error messages that indicate type or verifica-
tion errors, use of unsupported features, or invalid specifications, along with the
source location. As an example, removing the Fold statement in line 9 of Fig. 1
yields the error message “Postcondition of _ init_ might not hold. There
might be insufficient permission to access self.state(). (example.py@10.16)”.

4 Evaluation

In addition to having a comprehensive test suite of over 12,500 lines of code, we
have evaluated Nagini on a set of examples containing (parts of) implementations



6 Marco Eilers and Peter Miller

Example LOC / Spec.|Viper LOC|SF|FC|FB|IO| Tseq| TPar
1|rosetta/quicksort 31/ 10 635 V|- |/ |-] 848] 831
2|interactivepython/bst 145 / 65 947 V|V | - |- |57.44]41.80
3|keon/knapsack 33 /10 864 V|- | -|-119.39/14.49
4|wikipedia/duck typing 19 /0 486 V-] -]-] 182 1.92
5|scion/path__store 207 / 94 2133 X| -|-1-|51.37|35.26
6|example 40 / 19 736 |- |/ |-]6.11] 591
7|verifast/brackets_ checker 143 / 82 1081 IV |/ |/ T.66] 6.63
8|verifast/putchar with buffer| 139 / 88 865 VI - | /|| 474] 4.29
9|chalice2viper/watchdog 66 / 22 769 V|- |/ |- 366 341

10|parkinson /recell 46 / 25 561 VIV |- |-]209 207

Fig. 3. Experiments. For each example, we list the lines of code (excluding whitespace
and comments), the number of those lines that are used for specifications, the length
of the resulting Viper program, properties (SF = safety, FC = functional correctness,
FB = finite blocking, IO = input/output behavior) that could be verified (v'), could
not be verified (X) or were not attempted (-), and the verification times with Viper’s
SE backend, sequential and parallelized, in seconds.

of standard algorithms from the internet®, the example from Fig. 1, a class from
the SCION implementation, as well as examples from other verifiers translated
to Python. Fig. 3 shows the examples and which properties were verified; the
functional property we proved for the binary search tree implementation is that
it maintains a sorted tree. The examples cover language features like inheritance
(example 10), comprehensions (3), dynamic field addition (6), operator overload-
ing (3), union types (4), threads and locks (9), as well as specification constructs
like quantified permissions (6) and predicate families (10). Nagini correctly finds
an error in the SCION example and successfully verifies all other examples.

The runtimes shown in Fig. 3 were measured by averaging over ten runs on
a Lenovo Thinkpad T450s running Ubuntu 16.04, Python 3.5 and OpenJDK 8
on a warmed-up JVM. They show that Nagini can effectively verify non-trivial
properties of real-life Python programs in reasonable time. Due to modular veri-
fication, parts of a program can be verified independently and in parallel (which
Nagini does by default), so that larger programs will not inherently lead to
performance problems. This is demonstrated by the speedup achieved via par-
allelization on the two larger examples; for the smaller ones, verification time is
dominated by a single complex method. Additionally, the annotation overhead
is well within the range of other verification tools [9].

Acknowledgements. Thanks to Vytautas Astrauskas, Samuel Hitz, and Fébio
Pakk Selmi-Dei for their contributions to Nagini. We gratefully acknowledge
support from the Zurich Information Security and Privacy Center (ZISC).

3 We chose examples that do not make use of dynamic features or external libraries
from rosettacode.org, interactivepython.org and github.com/keon/algorithms.



Nagini: A Static Verifier for Python 7

References

10.

11.

12.

13.

14.

15.

16.

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs, pp. 364-387. Springer
Berlin Heidelberg, Berlin, Heidelberg (2006)

Barnett, M., Fahndrich, M., Leino, K.R.M., Miiller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Commun. ACM 54(6), 81-91
(Jun 2011)

Barrera, D., Chuat, L., Perrig, A., Reischuk, R.M., Szalachowski, P.: The scion
internet architecture. Commun. ACM 60(6), 56-65 (May 2017)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.P. (eds.) Formal Methods for Components and Objects. pp. 115-137.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

Bostréom, P., Miiller, P.: Modular Verification of Finite Blocking in Non-terminating
Programs. In: Boyland, J.T. (ed.) European Conference on Object-Oriented Pro-
gramming (ECOOP). LIPIcs, vol. 37, pp. 639-663. Schloss Dagstuhl (2015)
Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-
based modular verification of concurrent c. In: 2009 31st International Conference
on Software Engineering - Companion Volume. pp. 429-430 (May 2009)
Fahndrich, M., Barnett, M., Logozzo, F. Code contracts.
http://research.microsoft.com/contracts (2008)

Filliatre, J.C., Paskevich, A.: Why3 — Where Programs Meet Provers, pp. 125—
128. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.:
Ironclad apps: End-to-end security via automated full-system verification. In: 11th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014. pp. 165-181 (2014)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java, pp. 41-55.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c: A
software analysis perspective. Formal Aspects of Computing 27(3), 573-609 (May
2015)

Lehtosalo, J., et al.: Mypy - optional static typing for python. http://mypy-lang.org
(2017)

Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness,
pp. 348-370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

Miiller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 9583, pp. 41—
62. Springer-Verlag (2016)

Miiller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated
separating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A.
(eds.) Computer Aided Verification. pp. 405-425. Springer International Publish-
ing, Cham (2016)

O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Computer Science Logic, 15th International Workshop,
CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13,
2001, Proceedings. pp. 1-19 (2001)



17.

18.

19.

20.

21.

22.

23.

24.

Marco Eilers and Peter Miller

Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings of
the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 247-258. POPL ’05, ACM, New York, NY, USA (2005)
Penninckx, W., Jacobs, B., Piessens, F.: Sound, Modular and Compositional Ver-
ification of the Input/Output Behavior of Programs, pp. 158-182. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

Piskac, R., Wies, T., Zufferey, D.: Grasshopper. In: Abraham, E., Havelund, K.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
124-139. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

van Rossum, G, Lehtosalo, J., Langa, f..: Type Hints.
https://www.python.org/dev/peps/pep-0484/ (2014)

Santos, J.F., Maksimovic, P., Naudziuniene, D., Wood, T., Gardner, P.: JaVert:
JavaScript verification toolchain. PACMPL 2(POPL), 50:1-50:33 (2018)

Smans, J., Jacobs, B., Piessens, F.: Vericool: An automatic verifier for a concurrent
object-oriented language. In: Barthe, G., de Boer, F.S. (eds.) Formal Methods for
Open Object-Based Distributed Systems. pp. 220-239. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 2:1-2:58 (May 2012)

Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program
verifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016. pp. 74-91 (2016)



