
39

Modular Product Programs

MARCO EILERS, ETH Zurich, Switzerland

PETER MÜLLER, ETH Zurich, Switzerland

SAMUEL HITZ, ETH Zurich, Switzerland

Many interesting program properties like determinism or information flow security are hyperproperties, that

is, they relate multiple executions of the same program. Hyperproperties can be verified using relational logics,

but these logics require dedicated tool support and are difficult to automate. Alternatively, constructions such

as self-composition represent multiple executions of a program by one product program, thereby reducing

hyperproperties of the original program to trace properties of the product. However, existing constructions

do not fully support procedure specifications, for instance, to derive the determinism of a caller from the

determinism of a callee, making verification non-modular.

We present modular product programs, a novel kind of product program that permits hyperproperties in

procedure specifications and, thus, can reason about calls modularly. We provide a general formalization of

our product construction and prove it sound and complete. We demonstrate its expressiveness by applying

it to information flow security with advanced features such as declassification and termination-sensitivity.

Modular product programs can be verified using off-the-shelf verifiers; we have implemented our approach

for both secure information flow and general hyperproperties using the Viper verification infrastructure. Our

evaluation demonstrates that modular product programs can be used to prove hyperproperties for challenging

examples in reasonable time.

CCS Concepts: • Software and its engineering→Correctness; Software verification; Formal software
verification; • Security and privacy→ Information flow control;

Additional Key Words and Phrases: Hyperproperties, product programs

ACM Reference Format:
Marco Eilers, Peter Müller, and Samuel Hitz. 2010. Modular Product Programs. ACM Trans. Program. Lang.

Syst. 9, 4, Article 39 (March 2010), 38 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
The past decades have seen significant progress in automated reasoning about program behavior.

In the most common scenario, the goal is to prove trace properties of programs such as functional

correctness or termination. However, important program properties such as information flow

security, injectivity, and determinism cannot be expressed as properties of individual traces; these

so-called hyperproperties relate different executions of the same program. For example, proving

determinism of a program requires showing that any two executions from identical initial states

will result in identical final states.

An important attribute of reasoning techniques about programs is modularity. A technique is

modular if it allows reasoning about parts of a program in isolation, e.g., verifying each procedure

Authors’ addresses: Marco Eilers, Department of Computer Science, ETH Zurich, Zurich, Switzerland, marco.eilers@inf.ethz.

ch; Peter Müller, ETH Zurich, Zurich, Switzerland, peter.mueller@inf.ethz.ch; Samuel Hitz, ETH Zurich, Zurich, Switzerland,

samuel.hitz@inf.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

0164-0925/2010/3-ART39 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Marco Eilers, Peter Müller, and Samuel Hitz

separately and using only the specifications of other procedures. Modularity is vital for scalability

and to verify libraries without knowing all of their clients. Fully modular reasoning about hyper-

properties thus requires the ability to formulate relational specifications, which relate different

executions of a procedure, and to apply those specifications where the procedure is called. As an

example, the statement

if (x) then {y:=x} else {y:= call f(x)}

can be proved to be deterministic if f’s relational specification guarantees that its result determin-

istically depends on its input.

Relational program logics [10, 39, 41] allow directly proving general hyperproperties. How-

ever, automating relational logics is difficult and requires building dedicated tools. Alternatively,

self-composition [8] and product programs [6, 7] reduce a hyperproperty to an ordinary trace

property, thus making it possible to use off-the-shelf program verifiers for proving hyperproperties.

Both approaches construct a new program that combines the behaviors of multiple runs of the

original program. However, by the nature of their construction, neither approach supports modular

verification based on relational specifications: Procedure calls in the original program will be

duplicated, which means that there is no single program point at which a relational specification

can be applied. For the aforementioned example, self-composition yields the following program:

if (x) then {y:=x} else {y:= call f(x)};

if (x′) then {y′:=x′} else {y′:= call f(x′)}

Determinism can now be verified by proving the trace property that identical values for x and x′ in
the initial state imply identical values for y and y′ in the final state. However, such a proof cannot

make use of a relational specification for procedure f (expressing that f is deterministic). Such a

specification relates several executions of f, whereas each call in the self-composition belongs to a

single execution. Instead, verification requires a precise functional specification of f, which exactly

determines its result value in terms of the input. Verifying such precise functional specifications

increases the verification effort and is at odds with data abstraction (for instance, a collection might

not want to promise the exact iteration order); inferring them is beyond the state of the art for

most procedures [40]. Existing product programs allow aligning or combining some statements

and can thereby lift this requirement in some cases, but this requires manual effort during the

construction, depends on the used specifications, and does not solve the problem in general. Some

techniques for proving equivalence between different programs use product constructions that

enable using relational specifications between different functions. However, they cannot exploit

the inherent advantages resulting from combining a program with itself as opposed to an arbitrary

other program [22, 25].

In this paper, we present modular product programs, a novel kind of product programs that allows

modular reasoning about hyperproperties. Modular product programs enable proving k-safety
hyperproperties, i.e., hyperproperties that relate finite prefixes of k execution traces, for arbitrary

values of k [12]. We achieve this via a transformation that, unlike existing products, does not

duplicate loops or procedure calls, meaning that for any loop or call in the original program, there

is exactly one statement in the k-product at which a relational specification can be applied. Like

existing product programs, modular products can be reasoned about using off-the-shelf program

verifiers.

We demonstrate the expressiveness of modular product programs by applying them to prove

secure information flow, which can be expressed as a 2-safety hyperproperty. We show howmodular

products enable proving traditional non-interference using natural and concise information flow

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:3

procedure main (peop l e)

returns (count)

{

i : = 0 ;

count : = 0 ;

while (i < | peop l e |) {

c u r r e n t : = peop l e [i] ;

f : = i s _ f ema l e (c u r r e n t) ;

count : = count + f ;

i : = i + 1 ;

}

}

procedure i s _ f ema l e (person)

returns (r e s)

{

/ / g ende r encoded i n f i r s t b i t
gender = person mod 2 ;

i f (gender == 0) {

r e s : = 1 ;

} e l se {

r e s : = 0 ;

}

}

Fig. 1. Example program. The parameter people contains a sequence of integers that each encode attributes

of a person; the main procedure counts the number of females in this sequence.

specifications, and how to extend our approach for proving the absence of timing or termination

channels, and supporting declassification in an intuitive way.

To summarize, we make the following contributions:

• We introduce modular k-product programs, which enable modular proofs of arbitrary k-safety
hyperproperties for sequential programs using off-the-shelf verifiers.

• We prove soundness and completeness of the modular product program transformation.

• We demonstrate the usefulness of modular product programs by applying them to secure

information flow, with support for declassification and preventing different kinds of side

channels.

• We implement our product-based approach for verification of both secure information flow

and arbitrary other safety hyperproperties in the Viper verification infrastructure [29].

• We show that our tool can automatically prove information flow security and other hyper-

properties of challenging examples.

The current paper is an extended and revised version of a paper with the same title presented

at ESOP 2018 [18]. Compared to the earlier version, the current paper provides a full proof of

soundness and completeness of our approach, an extended evaluation covering hyperproperties

other than secure information flow, and various smaller changes like an extended language and an

extended overview of the related work.

The structure of this paper is as follows: After giving an informal overview of our approach

in Section 2 and introducing our programming and assertion language in Section 3, we formally

define modular product programs in Section 4. We prove the soundness and completeness of the

approach in Section 5. Section 6 demonstrates how to apply modular products for proving secure

information flow. We describe and evaluate our implementation in Section 7, discuss related work

in Section 8, and conclude in Section 9.

2 OVERVIEW
In this section, we will illustrate the core concepts behind modular k-products on an example

program. We will first show how modular products are constructed, and subsequently demonstrate

how they allow using relational specifications to modularly prove hyperproperties.

2.1 Relational Specifications
Consider the example program in Figure 1, which counts the number of female entries in a sequence

of people. Now assume we want to prove that the program is deterministic, i.e., that its output state

is completely determined by its input arguments. This can be expressed as a 2-safety hyperproperty

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 Marco Eilers, Peter Müller, and Samuel Hitz

which states that, for two terminating executions of the program with identical inputs, the outputs

will be the same. This hyperproperty can be expressed by stating that when main terminates from

two states that fulfill the relational (as opposed to unary) precondition people(1) = people(2), the
resulting two states fulfill the relational postcondition count(1) = count(2), where x (i) refers to
the value of the variable x in the ith execution. We write this relational specification of main as
main : people(1) = people(2) count(1) = count(2).
Intuitively, it is possible to prove this specification by giving is_female a precise functional

specification like is_female : true ⇝ res = 1 − person mod 2, meaning that is_female can be

invoked in any state fulfilling the precondition true and that res = 1 − person mod 2 will hold

if it returns. From this specification and an appropriate loop invariant, main can be shown to

be deterministic. However, this specification is unnecessarily strong. For proving determinism,

it is irrelevant what exactly the final value of count is; it is only important that it is uniquely

determined by the procedure’s inputs. Proving hyperproperties using only unary specifications,

however, critically depends on having exact specifications for every value returned by a called

procedure, as well as all heap locations modified by it. Not only are such specifications difficult

to infer and cumbersome to provide manually; this requirement also fundamentally removes the

option of underspecifying program behavior, which is often desirable in practice. Because of

these limitations, verification techniques that require precise functional specifications for proving

hyperproperties often do not work well in practice, as observed by Terauchi and Aiken for the case

of self-composition [40].

Proving determinism of the example program becomes much simpler if we are able to reason

about two program executions at once. If both runs start with identical values for people then

they will have identical values for people, i, and count when they reach the loop. Since the loop

guard only depends on i and people, it will either be true for both executions or false for both.

Assuming that is_female behaves deterministically, all three variables will again be equal in both

executions at the end of the loop body. This means that the program establishes and preserves the

relational loop invariant that people, i, and count have identical values in both executions, from

which we can deduce the desired relational postcondition. Our modular product programs enable

this modular and intuitive reasoning, as we explain next.

2.2 Modular Product Programs
Like other product programs, our modular k-product programs multiply the state space of the

original program by creating k renamed versions of all original variables. However, unlike other

product programs, they do not duplicate control structures like loops or procedure calls, while still

allowing different executions to take different paths through the program.

Modular product programs achieve this as follows: The set of transitions made by the execution

of a product is the union of the transitions made by the executions of the original program

it represents. This means that if two executions of an if-then-else statement execute different

branches, an execution of the product will execute the corresponding versions of both branches;

however, it will be aware of the fact that each branch is taken by only one of the original executions,

and the transformation of the statements inside each branch will ensure that the state of the other

execution is not modified by executing it.

For this purpose, modular product programs use boolean activation variables that store, for

each execution, whether it is currently active. All activation variables are initially true. For every

statement that directly changes the program state, the product performs the state change for all

active executions. Control structures update which executions are active (for instance based on the

loop condition) and pass this information down (into the branches of a conditional, the body of a

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:5

procedure main (p1 , p2 , peop le1 , peop l e2)

returns (count1 , count2)

{

i f (p1) { i 1 : = 0 ; }

i f (p2) { i 2 : = 0 ; }

i f (p1) { count1 : = 0 ; }

i f (p2) { count2 : = 0 ; }

while ((p1 && i 1 < | peop l e1 |) | |

(p2 && i 2 < | peop l e2 |)) {

l 1 : = p1 && i 1 < | peop l e1 | ;

l 2 : = p2 && i 2 < | peop l e2 | ;

i f (l 1) { c u r r e n t 1 : = peop l e1 [i 1] ; }

i f (l 2) { c u r r e n t 2 : = peop l e2 [i 2] ; }

i f (l 1 | | l 2) {

t1 , t 2 : = i s _ f ema l e (l 1 , l 2 ,

cu r r en t 1 , c u r r e n t 2) ;

}

i f (l 1) { f 1 : = t 1 ; }

i f (l 2) { f 2 : = t 2 ; }

i f (l 1) { count1 : = count1 + f 1 ; }

i f (l 2) { count2 : = count2 + f 2 ; }

i f (l 1) { i 1 : = i 1 + 1 ; }

i f (l 2) { i 2 : = i 2 + 1 ; }

}

}

procedure i s _ f ema l e (p1 , p2 ,

person1 ,

pe r son2)

returns (r e s1 , r e s 2)

{

i f (p1) {

gender1 : = per son1 mod 2 ;

}

i f (p2) {

gender2 : = per son2 mod 2 ;

}

t 1 : = p1 && gender1 == 0 ;

t 2 : = p2 && gender2 == 0 ;

f 1 : = p1 && ! (gender1 == 0) ;

f 2 : = p2 && ! (gender2 == 0) ;

i f (t 1) { r e s 1 : = 1 ; }

i f (t 2) { r e s 2 : = 1 ; }

i f (f 1) { r e s 1 : = 0 ; }

i f (f 2) { r e s 2 : = 0 ; }

}

Fig. 2. Modular 2-product of the program in Fig. 1 (slightly simplified). Parameters, local variables, and simple

statements like assignments have been duplicated, but control flow statements have not. Instead, they are

expressed by creating new sets of activation variables, and simple statements are conditional on their values.

The initial activation variables p1 and p2 of the main procedure can be thought of as true.

loop, or the callee of a procedure call) to the level of atomic statements; in this way, the activation

variables are similar to path conditions used in symbolic execution. This representation avoids

duplicating these control structures.

Figure 2 shows the modular 2-product of the program in Figure 1. Consider first the main
procedure. Its parameters have been duplicated, there are now two copies of all variables, one for

each execution. This is analogous to self-composition or existing product programs. In addition,

the transformed procedure has two boolean parameters p1 and p2; these variables are the initial
activation variables of the procedure. Since main is the entry point of the program, the initial

activation variables can be assumed to be true.

The product will first initialize i1 and i2 to zero, like it does with i in the original program,

and analogously for count1 and count2. The loop in the original program has been transformed

to a single loop in the product. Its condition is true if the original loop condition is true for any

active execution. This means that the loop will iterate as long as at least one execution of the

original program would. Inside the loop body, the fresh activation variables l1 and l2 represent
whether the corresponding executions would execute the loop body. That is, for each execution, the

respective activation variable will be true if the previous activation variable (p1 or p2, respectively)
is true, meaning that this execution actually reaches the loop, and the loop guard is true for that

execution. All statements in the loop body are then transformed using these new activation variables.

Consequently, the loop will keep iterating while at least one execution executes the loop, but as

soon as the loop guard is false for any execution, its activation variable will be false and the loop

body will have no effect on the variables of this execution.

Conceptually, procedure calls are handled very similarly to loops. For the call to is_female
in the original program, only a single call is created in the product. This call is executed if at

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:6 Marco Eilers, Peter Müller, and Samuel Hitz

least one activation variable is true, i.e., if at least one execution would perform the call in the

original program (without the conditional, the product would perform calls that do not correspond

to anything in the original executions, which could lead to non-termination). In addition to the

(duplicated) arguments of the original call, the current activation variables are passed to the called

procedure. In the transformed version of is_female, all statements are then made conditional on

those activation variables. Therefore, like with loops, a call in the product will be performed if at

least one execution would perform it in the original program, but it will have no effect on the state

of the executions that are not active when the call is made.

The transformed version of is_female shows how conditionals are handled. We introduce four

fresh activation variables t1, t2, f1, and f2, two for each execution. The first pair encodes whether

the then-branch should be executed by either of the two executions; the second encodes the same for

the else-branch. These activation variables are then used to transform the branches. Consequently,

neither branch will have an effect for inactive executions, and exactly one branch has an effect for

each active execution.

To summarize, our activation variables ensure that the sequence of state-changing statements

executed by each execution is the same in the product and the original program. We achieve this

without duplicating control structures or imposing restrictions on the control flow.

2.3 Interpretation of Relational Specifications
Since modular product programs do not duplicate calls, they provide a simple way of interpreting

relational procedure specifications: A precondition that requires some relation between the states

of different executions is required to hold before the call, and a relational postcondition can be

assumed to hold afterwards. However, a relational procedure specification should only apply if all

the executions it refers to actually perform the procedure call. If a call is performed by some of those

executions but not all, the relational specification are not meaningful, and thus cannot be required

to hold. To encode this intuition, we transform every relational pre- or postcondition Q̂ of the

original program that refers to some subset E of all executions into an implication (
∧

i ∈E pi) ⇒ Q̂ .

As a result, relational specifications will be trivially true if at least one execution it refers to is not

active at the call site.

In our example, we give is_female the relational specification is_female : person(1) =
person(2) res(1) = res(2), which expresses determinism. This specification will be trans-

formed into a unary specification of the product program: is_female : p1 ∧ p2 ⇒ person1 =
person2⇝ p1 ∧ p2 ⇒ res1 = res2.
Assume for the moment that is_female also has a unary precondition person ≥ 0. Such a

specification should hold for every call, and therefore for every active execution, even if other

executions are inactive. Therefore, its interpretation in the product program is (p1 ⇒ person1 ≥

0) ∧ (p2 ⇒ person2 ≥ 0). The translation of other unary assertions is analogous.

Note that it is possible (and useful) to give a procedure both a relational and a unary specification;

in the product this is encoded by simply conjoining the transformed versions of the unary and the

relational assertions.

2.4 Product Program Verification
We can now prove determinism of our example using the product program. Verifying is_female
is simple. For main, we want to prove the transformed specification main : (p1 ∧ p2 ⇒ people1 =
people2) ⇝ (p1 ∧ p2 ⇒ count1 = count2). We use the relational loop invariant i(1) = i(2) ∧
count(1) = count(2) ∧ people(1) = people(2), encoded as p1 ∧ p2 ⇒ i1 = i2 ∧ count1 =
count2 ∧ people1 = people2. The loop invariant holds trivially if p1 or p2 is false. Otherwise,

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:7

(Procedures) Proc ::= procedurem(x) returns (y){s}
(FStatements) Ûs ::= skip | error | magic
(RTStatements) ŝ ::= x :=e | ŝ; ŝ | if (e) then {ŝ} else {ŝ}

| while (e) do {ŝ} | x := callm(e)
| assert e | assume e | havoc x
| x :=framey (ŝ,σ) | Ûs

(Expressions) e ::= c | x | e ⊕ e where c ∈ Z and ⊕ ∈ {+,−,×,=, <}
| e ∧ e | e ∨ e | ¬e

(Assertions) P ::= P ∧ P | P ⇒ P | ∀x . P | e
(RelExpressions) ê ::= c | x (i) | ê ⊕ ê | ê ∧ ê | ê ∨ ê | ¬ê

(RelAssertions) P̂ ::= P̂ ∧ P̂ | P̂ ⇒ P̂ | ∀x (1), . . . ,x (k). P̂ | ê

(MixAssertions) P̌ ::= P ∧ P̂

Fig. 3. Supported programming language. Relational expressions and assertions generalize unary ones to refer

to the state of multiple different executions. We distinguish three kinds of statements: Runtime statements

(RTStatements) ŝ denote all statements that can occur in a trace, whereas final statements (FStatements) Ûs
denote finished computations. Programs initially consist only of program statements s , which are all runtime

statements that do not contain magic, error, or x :=framey (ŝ,σ). We write x to denote a vector of variables.

it ensures l1 = l2 and current1 = current2. Using the specification of is_female, we obtain
t1 = t2, which implies that the loop invariant is preserved. The loop invariant implies the

postcondition.

3 PRELIMINARIES
Figure 3 shows the language we use to define modular product programs. x ranges over the set of

local integer variable names Var.

Program configurations have the form ⟨ŝ,σ ⟩, where a store σ ∈ Σ is a partial function mapping

variable names to integer values. We use Ûs to range over the final statements skip, error, and
magic. A configuration is final if it has the form ⟨Ûs,σ ⟩. Executions ending in skip are regular

executions, whereas those ending with error represent failing executions caused by failing assert
statements. Similarly, an execution halts in a magic state if an assume statement assumes something

that does not hold in the current state (and the execution is therefore assumed, magically, not to

exist).

Our language supports non-determinism via havoc statements that assign an arbitrary value to

a variable; all other statements are deterministic. We distinguish between runtime statements ŝ and
program statements s : Program statements are runtime statements that do not syntactically contain

error, magic, or frame statements. Programs contain only program statements; error, magic, and
frame can occur only in the process of executing a program statement. frame statements are used

to model stack-like behaviors for procedure calls: x :=framey (ŝ,σ) executes the statement ŝ in the

framed store σ and, if it reaches a final configuration, returns the results to the original store by

assigning the value of yi in the framed store to the target variable xi in the original store.

The small-step transition relation for program configurations has the form ⟨ŝ,σ ⟩ → ⟨ŝ ′,σ ′⟩

and is defined in Fig. 4. We assume as given a procedure context Φ that maps procedure names to

triples (q, r , sm), where q is a vector of input parameter variables, r is a vector of return parameter

variables, and sm is the body of the procedure.

We denote that expression e evaluates to value v in store σ by e ⇓σ v . The inference rules for
expression evaluation are standard and therefore omitted. Expression evaluation is deterministic

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 Marco Eilers, Peter Müller, and Samuel Hitz

e ⇓σ v
(Assign)

⟨x :=e,σ ⟩ → ⟨skip,σ [x 7→ v]⟩

(Havoc)
⟨havoc x ,σ ⟩ → ⟨skip,σ [x 7→ v]⟩

e ⇓σ ⊤
(Assert1)

⟨assert e,σ ⟩ → ⟨skip,σ ⟩

e ⇓σ ⊥
(Assert2)

⟨assert e,σ ⟩ → ⟨error,σ ⟩

e ⇓σ ⊤
(Assume1)

⟨assume e,σ ⟩ → ⟨skip,σ ⟩

e ⇓σ ⊥
(Assume2)

⟨assume e,σ ⟩ → ⟨magic,σ ⟩

e ⇓σ ⊤
(Cond1)

⟨if (e) then {ŝ1} else {ŝ2},σ ⟩ → ⟨ŝ1,σ ⟩

e ⇓σ ⊥
(Cond2)

⟨if (e) then {ŝ1} else {ŝ2},σ ⟩ → ⟨ŝ2,σ ⟩

⟨ŝ1,σ ⟩ → ⟨ŝ ′
1
,σ ′⟩

(Seq1)
⟨ŝ1; ŝ2,σ ⟩ → ⟨ŝ ′

1
; ŝ2,σ

′⟩

(Seq2)
⟨skip; ŝ2,σ ⟩ → ⟨ŝ2,σ ⟩

(Seq3)
⟨error; ŝ2,σ ⟩ → ⟨error,σ ⟩

(Seq4)
⟨magic; ŝ2,σ ⟩ → ⟨magic,σ ⟩

e ⇓σ ⊤
(Whl1)

⟨while (e) do {ŝ1},σ ⟩ → ⟨ŝ1; while (e) do {ŝ1},σ ⟩

e ⇓σ ⊥
(Whl2)

⟨while (e) do {ŝ1},σ ⟩ → ⟨skip,σ ⟩

Φ(f) = ([p1, . . . ,pn], [r1, . . . , rm], sf) e1 ⇓σ v1 . . . en ⇓σ vn
(Call)

⟨x := call f (e1, . . . , en),σ ⟩ → ⟨x :=framer (sf , [][p1 7→ v1] . . . [pn 7→ vn]),σ ⟩

⟨ŝf ,σf ⟩ → ⟨ŝ ′f ,σ
′
f ⟩

(Frame1)
⟨x :=framer (ŝf ,σf),σ ⟩ → ⟨x :=framer (ŝ

′
f ,σ

′
f),σ ⟩

r1 ⇓σf v1 . . . rm ⇓σf vm
(Frame2)

⟨x1, . . . ,xm :=framer1, ...,rm (skip,σf),σ ⟩ → ⟨skip,σ [x1 7→ v1] . . . [xm 7→ vm]⟩

(Frame3)
⟨x :=framer (error,σf),σ ⟩ → ⟨error,σ ⟩

(Frame4)
⟨x :=framer (magic,σf),σ ⟩ → ⟨magic,σ ⟩

Fig. 4. Operational semantics. We denote the empty store as [].

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:9

and total, and variable names not present in the store evaluate to some default value. Programs

cannot get stuck in non-final configurations, but they can diverge. All variables and expression in

our language have type integer. When evaluating conditions, any non-zero value is interpreted

as true. For convenience, we write ⊤ and ⊥ to mean any arbitrary non-zero value and zero,

respectively; that is, ⊤ is not one fixed non-zero value but is used as a stand-in for any number

of potentially different values. As an example, we write e1 ⇓σ ⊤ ∧ e2 ⇓σ ⊤ as a shorthand for

∃v1,v2. e1 ⇓σ v1 ∧ e2 ⇓σ v2 ∧v1 , 0 ∧v2 , 0.

The judgment ⊨ s : P ⇝ Q denotes that statement s , when executed in a store fulfilling the

unary assertion P , will not fail, and if the execution terminates regularly, the resulting store will

fulfill the unary assertion Q . Formally, ⊨ s : P ⇝ Q if and only if for all σ ,σ ′, Ûs s.t. σ ⊨ P and

⟨s,σ ⟩ →∗ ⟨Ûs,σ ′⟩, we have either have Ûs = magic or (Ûs = skip ∧ σ ′ ⊨ Q).
In addition to standard unary expressions and assertions, we define relational expressions and

assertions. They differ from normal expressions and assertions in that they contain parameterized

variable references of the form x (i) and are evaluated over a tuple of stores instead of a single one.

A relational expression is k-relational if for all contained variable references x (i), we have that
1 ≤ i ≤ k . The definition of k-relational assertions is analogous. The value of a variable reference
x (i) with 1 ≤ i ≤ k in a tuple of stores (σ1, . . . ,σk) is σi (x); the evaluation of arbitrary relational

expressions and the validity of relational assertions (σ1, . . . ,σk) ⊨ P̂ are defined accordingly.

Definition 3.1. Ak-relational specification s : P̂ k Q̂ holds iff P̂ and Q̂ arek-relational assertions,
and for all σ1, . . . ,σk ,σ

′
1
, . . . ,σ ′

k , if (σ1, . . . ,σk) ⊨ P̂ and ∀i ∈ {1, . . . ,k}. ⟨s,σi ⟩ →
∗ ⟨skip,σ ′

i ⟩, then

(σ ′
1
, . . . ,σ ′

k) ⊨ Q̂ . ■

We write s : P̂ Q̂ for the most common case s : P̂ 2 Q̂ .
Mixed assertions combine unary and relational assertions and hold if the unary parts hold

for every single store, and the relational parts hold for the tuple of stores as a whole. Formally,

we define the validity of a mixed assertion P̌ = P ∧ P̂ , where P̂ is a k-relational assertion, as
(σ1, . . . ,σk) ⊨ P̌ ⇔ (∀i ∈ {1, . . . ,k}. σi ⊨ P) ∧ (σ1, . . . ,σk) ⊨ P̂ .

4 MODULAR k-PRODUCT PROGRAMS
In this section, we define the construction of modular products for arbitrary k . We will subsequently

define the transformation of both relational and unary specifications to modular products.

4.1 Product Construction
Assume as given an injective function ϕ : (Var,N) → Var that renames variables for different

executions. We write e(i) for the renaming of expression e for execution i . We write fresh(x1,x2, . . .)
to denote that the variable names x1,x2, . . . are fresh names that do not occur in the program and

have not yet been used during the transformation. e̊ is used to abbreviate e(1), . . . , e(k).
We denote the modulark-product of a program statement s that is parameterized by the activation

variables p(1), . . . ,p(k) as JsKp̊k . The product construction for procedures is defined as

Jprocedurem(x1, . . . ,xm) returns (y1, . . . ,yn){s}Kk

= procedurem(p̊, x̊1, . . . , ˚xm) returns (ẙ1, . . . , ẙn){JsK
p̊
k }

for fresh variable names p̊.
Figure 5 shows the product construction rules for statements, which generalize the transformation

explained in Section 2. We abbreviate if (e) then {s} else {skip} as if (e) then {s}, and use⊙k
i=1

si as a shorthand for the sequential composition of k statements s1; . . . ; sk .

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 Marco Eilers, Peter Müller, and Samuel Hitz

Js1; s2K
p̊
k = Js1K

p̊
k ; Js2K

p̊
k

JskipKp̊k = skip

Jx :=eKp̊k =
⊙k

i=1
if (p(i)) then {x (i):=e(i)}

Jassert eKp̊k =
⊙k

i=1
if (p(i)) then {assert e(i)}

Jassume eKp̊k =
⊙k

i=1
if (p(i)) then {assume e(i)}

Jhavoc xKp̊k =
⊙k

i=1
if (p(i)) then {havoc x (i)}

Jif (e) then {s1} else {s2}K
p̊
k =

⊙k
i=1

(p1

(i)
:=p(i) ∧ e(i));⊙k

i=1
(p2

(i)
:=p(i) ∧ ¬e(i));

Js1K
p̊1

k ; Js2K
p̊2

k

where

fresh(p̊1) ∧ fresh(p̊2)

Jwhile (e) do {s}Kp̊k = while (
∨k

i=1
(p(i) ∧ e(i))) do {⊙k

i=1
(p1

(i)
:=p(i) ∧ e(i));

JsKp̊1

k

}

where

fresh(p̊1)

Jx1, . . . ,xn := call f (e1, . . . , em)K
p̊
k = if (

∨k
i=1

p(i)) then {⊙k
i=1

if (p(i)) then {
⊙m

j=1
(aj

(i)
:=ej

(i))};

t:= call f (p(1), . . . ,p(k), a);⊙k
i=1

if (p(i)) then {
⊙n

j=1
(x j

(i)
:=tj

(i))}

}

where

fresh(å1, . . . , ˚am) ∧ fresh(t̊1, . . . , t̊n)

a = [å1, . . . , ˚am]

t = [t̊1, . . . , t̊n]

Fig. 5. Construction rules for statement products.

The core principle behind our encoding is that statements that directly change the state are

duplicated for each execution and made conditional under the respective activation variables,

whereas control statements are not duplicated and instead manipulate the activation variables to

pass activation information to their sub-statements. This enables us to assert or assume relational

assertions before and after any statement from the original program. The only state-changing

statements in our language, variable assignments and havocs, are therefore transformed to a

sequence of conditional assignments or havocs, one for each execution. Each one is executed only

if the respective execution is currently active. Similarly, assert and assume statements should

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:11

only check and assume that an assertion is true for active executions, and are therefore treated in

the same way.

Duplicating conditionals would also duplicate the calls and loops in their branches. To avoid that,

modular products eliminate top-level conditionals; instead, new activation variables are created and

assigned the values of the current activation variables conjoined with the guard for each branch.

The branches are then sequentially executed based on their respective activation variables.

A while loop is transformed to a single while loop in the product program that iterates as long as

the loop guard is true for any active execution. Inside the loop, fresh activation variables indicate

whether an execution reaches the loop and its loop condition is true. In particular, if the number of

iterations of a loop differs between executions, there will be iterations where the fresh activation

variables will be false for the executions that no longer iterate, but true for the others. The loop

body will then modify the state of an execution only if its activation variable is true. The resulting

construct affects the program state in the same way as a self-composition of the original loop would,

but the fact that our product contains only a single loop enables us to use relational loop invariants

instead of full functional specifications. In particular, we do not require that loops iterate the same

number of times for all executions in order to use relational loop invariants; it is sufficient that the

iterations that are performed by only some of the executions preserve the relational invariant.

Once the loop condition is false for all active executions, the loop in the product will no longer

be executed. As a result, the loop in the product is guaranteed to terminate if the loop execution

terminates in all executions of the original program.

For procedure calls, it is crucial that the product contains a single call for every call in the original

program, in order to be able to apply relational specifications at the call site. As explained before,

initial activation parameters are added to every procedure declaration, and all parameters are

duplicated k times. Procedure calls are therefore transformed such that the values of the current

activation variables are passed, and all arguments are passed once for each execution. The return

values are stored in temporary variables and subsequently assigned to the actual target variables

only for those executions that actually execute the call, so that for all other executions, the target

variables are not affected.

The transformation wraps the call in a conditional so that it is performed only if at least one

execution is active. This prevents the transformation from introducing infinite recursion that is not

present in the original program.

Note that for an inactive execution i , arbitrary argument values are passed in procedure calls,

since the passed variables aj
(i)

are not initialized. This is unproblematic because these values will

not be used by the procedure. It is important to not evaluate ej
(i)

for inactive executions, since this

could lead to false alarms for languages where expression evaluation can fail. Note that expression

evaluation in our language is side-effect free; for a language with effectful expression evaluation,

the product construction would have to be adapted slightly. In particular, the condition expressions

in loops and conditionals would have to be evaluated exactly once per execution of the loop or

conditional, which could easily be achieved by assigning them to additional auxiliary variables

before using them in the product.

4.2 Transformation of Assertions
We now define how to transform unary and relational assertions for use in a modular product.

Unary assertions such as ordinary procedure preconditions describe state properties that should

hold for every single execution. When checking or assuming that a unary assertion holds at a

specific point in the program, we need to take into account that it only makes sense to do so for

executions that actually reach that program point. We can express this by making the assertion

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 Marco Eilers, Peter Müller, and Samuel Hitz

conditional on the activation variable of the respective execution; as a result, any unary assertion

holds trivially for all inactive executions.

A k-relational assertion, on the other hand, describes the relation between the states of multiple

executions executions. Typically, to prove a k-relational property, assertions will relate all k execu-

tions; however, some intermediate assertions (e.g., loop invariants or postconditions of auxiliary

procedures) may need to relate some subset of the executions to summarize their relative behavior

in the case where other executions do not reach a program point. We say that an execution is

relevant w.r.t. a relational assertion if a variable from this execution is syntactically referenced in

the assertion. Checking or assuming a relational assertion at some point is meaningful only if all

relevant executions actually reach that point. This can be expressed by making relational assertions

conditional on the conjunction of the current activation variables of all relevant executions. If at

least one relevant execution does not reach the assertion, it holds trivially.

Assertions can be transformed for use in a k-product as follows:

• The transformation ⌊P⌋
p̊
k of a unary assertion P is

∧k
i=1

(p(i) ⇒ P (i)).

• The transformation ⌊P̂⌋
p̊
k of ak-relational assertion P̂ with the activation variablesp(1), . . . ,p(k)

and relevant executions R ⊆ {1, . . . ,k} is (
∧

i ∈R p
(i)) ⇒ P̂ .

Importantly, our approach allows using mixed assertions and specifications, which represent

conjunctions of unary and relational assertions. For example, it is common to combine a unary

precondition that ensures that a procedure will not raise an error with a relational postcondition

that states that it is deterministic.

A mixed assertion Ř of the form P ∧ Q̂ means that the unary assertion P holds for every single

execution, and if all relevant executions are currently active, the relational assertion Q̂ holds as

well. The transformation of mixed assertions is straightforward: ⌊Ř⌋
p̊
k = ⌊P⌋

p̊
k ∧ ⌊Q̂⌋

p̊
k .

4.3 Heap-Manipulating Programs
The approach outlined so far can easily be extended to programs that work on a mutable heap,

assuming that object references are opaque, i.e., they cannot be inspected or used in arithmetic.

In order to create a distinct state space for each execution represented in the product, allocation

statements are duplicated and made conditional like assignments, and therefore create a different

object for each active execution. The renaming of a field dereference e . f is then defined as e(i). f .
As a result, the heap of a k-product will consist of k partitions that do not contain references to

each other, and execution i will only ever interact with objects from its partition of the heap.

The verification of modular products of heap-manipulating programs does not depend on any

specific way of achieving framing. Our implementation is based on implicit dynamic frames [37],

but other approaches, in particular flavors of separation logic, are feasible as well, provided that

procedures can be specified in such a way that the caller knows the heap stays unmodified for all

executions whose activation variables are false.

Since the handling of the heap is largely orthogonal to our main technique, we will not go into

further detail here, but we do support heap-manipulating programs in our implementation.

4.4 Discussion
One obvious property of the product construction is that it introduces a high number of branching

statements into the transformed programs, which can make it expensive to reason about them

using some analysis and verification techniques. However, since the product construction enables

modular reasoning about loops and procedure calls, verifiers have to reason only about small pieces

of code at a time and can check different procedures independently from one another. Moreover,

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:13

the ability to use relational specifications tends to make specifications simpler (and therefore easier

to prove) in many cases. Additionally, the specific structure of the generated program (e.g., many

branches on the same condition, many identical statements on mirrored states) makes it very

efficient to reason about the generated program using some standard techniques, as we will show

in Section 7.

A limitation of our approach is that, while the product construction is complete in principle,

relational specifications can only be used to relate the same loop or procedure call in multiple execu-

tions, but not different loops or calls. As an example, for the program if (e) then {m()} else {m()},

relational specifications form cannot be used to relate the behavior of the call in the then-branch

to the one in the else-branch. Note, however, that in this case, a full functional specification ofm
will still be sufficient to prove any relational property of the program; modular product programs

are therefore never weaker or require more specification than self-composition. Some approaches

from the related field of program equivalence are able to relate different calls and loops [22, 25].

However, this ability comes at a cost (e.g., losing the ability to reason about the resulting program

using separation logic, or to perform standard static analyses on it), which we discuss in more

detail in Section 8.

5 SOUNDNESS AND COMPLETENESS
A product construction is sound if an execution of a k-product mirrors k separate executions of

the original program such that a property of a product execution reflects a hyperproperty of the

original program. Similarly, the construction is complete if for any hyperproperty of the original

program, the corresponding property holds for the product.

In this section, we first prove, based on the operational semantics of our language, that every

execution of a k-product is simulated by k executions of the original program. In particular, if

the product of a statement is executed from a store that mirrors k original stores and terminates

normally then executing the original statement from any of the k original stores will also terminate

normally, and the final store of the product will mirror the final original stores. Subsequently, we

show the reverse, namely that any set of k executions can be simulated by a product execution.

Additionally, we show that the termination behavior of modular product programs mirrors that of

the underlying original executions: If a set of executions terminates, the product execution that

mirrors it is guaranteed to terminate as well; conversely, normally-terminating product executions

correspond to sets of terminating executions. We discuss the remaining case (the product terminates

abnormally) below. Finally, we show how properties of a product program relate to hyperproperties

of the original program. In particular, we prove that if a transformed relational specification holds for

a product program, the original relational specification holds for the original program (soundness),

and, conversely, that if a relational specification holds for a program, the transformed specification

holds for its product program (completeness).

5.1 Preliminaries
Throughout this section, we will denote statements, stores and procedure mappings of product

programs by s,σ , and Φ, respectively, and statements, stores and mappings of the original (non-

product) executions by s,σ , and Φ.
We first define what it means for the store of a product program to mirror the stores of multiple

original executions. Stores in product executions contain renamed versions of the stores of the

original program executions. By σ ∈i σ we denote that σ contains an i-renamed version of all

variables in σ and no other i-renamed program variables, and the values of those variables agree in

both stores.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:14 Marco Eilers, Peter Müller, and Samuel Hitz

Definition 5.1. σ ∈i σ if and only if (∀x ∈ PVar. (x (i) ∈ dom(σ) ⇔ x ∈ dom(σ)) ∧ (x (i) ∈

dom(σ) ⇒ σ (x) = σ (x (i)))). where PVar is the set of variable names used in the original program.

We call RPVar the set of all renamed versions of all variables in PVar; i.e., x ∈ PVar ⇔ (∀i . x (i) ∈
RPVar.) ■

We assume that all fresh variable names picked during the product construction are not in RPVar,

so that this definition allows σ to contain i-renamed auxiliary or activation variables that have no

counterpart in σ .
Similarly, we use the notion σ ≼V

i σ ′
, where V is a set of variable names, to say that σ ′

contains

all variables in σ that belong to the i-th execution and maps them to the same values, except for

the variables in V :

Definition 5.2. σ ≼V
i σ ′

if and only if ∀x . x (i) < V ⇒ (x (i) ∈ dom(σ) ⇒ x (i) ∈ dom(σ ′)∧σ (x (i)) =

σ ′(x (i))). By σ ≼V σ ′
we denote that this is true for all executions, i.e., σ ≼V σ ′ ⇔ ∀i ∈

{1, . . . ,k}. σ ≼V
i σ ′

. ■

Note that both of these notions are reflexive.

We call freshvars(s), where s = JsKp̊k for some k, p̊, and s , the set of variables used as fresh

variables in the construction of s . For convenience, we abbreviate σ ≼freshvars(s) σ ′
as σ ≼s σ ′

and σ ≼
freshvars(s)
i σ ′

as σ ≼
s
i σ ′

. Additionally, we denote σ ≼RPVar∪freshvars(s) σ ′
as σ ≾s σ ′

and

σ ≼
RPVar∪freshvars(s)
i σ ′

as σ ≾
s
i σ

′
.

Finally, we denote the free variables in a mixed assertion P̌ as fv(P̌).
We prove soundness and completeness under the assumption that all procedures referenced by

our product program have been transformed to their modular products. This means that for an

original program with procedures Φ, the product has procedures Φ such that

∀f .Φ(f) = ([q1, . . . ,qn], [r1, . . . , rm], s) ⇔ Φ(f) = (arдs, rets, JsKp̊k)

where args = p̊, q̊1, . . . , q̊n and rets = r̊1, . . . , ˚rm , and the parameters p̊ corresponding to activation

variables are not in RPVar. If this is the case, we say thatmatch(Φ,Φ).
We start by showing that our notion of mirrored stores has the intended effect, namely, that

evaluating an expression in a store results in the same value as evaluating a renamed expression in

a store that mirrors the original store:

Lemma 5.3. If σ ∈i σ and fv(e) ⊆ PVar then e(i) ⇓σ v ⇔ e ⇓σ v .

Proof. By induction on the structure of e . For the case e = x , the proof follows trivially from

the definition of ∈i ; for all others, it is either immediate or follows from applying the induction

hypothesis to the subexpressions. □

5.2 Properties of Product Executions
We can now establish properties of modular product programs on the level of the operational

semantics.

5.2.1 Normal executions simulate product executions. The first result we prove is that each

execution of a product that terminates normally is simulated by a normally-terminating execution

of the original statement for the executions whose activation variables are true, and the parts of

the product’s store belonging to executions whose activation variables are false do not change.

Theorem 5.4. Assume thatmatch(Φ,Φ) and that for some setsA ⊆ {1, . . . ,k} and I = {1, . . . ,k}\A

we have that ∀i ∈ A.p(i) ⇓σ ⊤ ∧ σi ∈i σ and ∀i ∈ I .p(i) ⇓σ ⊥. Let {p(1), . . . ,p(k)} ∩ (RPVar ∪

freshvars(s)) = ∅ and s = JsKp̊k and ⟨s,σ ⟩ →l ⟨skip,σ ′⟩ under Φ.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:15

Then

(a) for all i ∈ A, ⟨s,σi ⟩ →
∗ ⟨skip,σ ′

i ⟩ under Φ for some σ ′
i s.t. σ

′
i ∈i σ

′
, and σ ≾

s
i σ

′
,

(b) for all i ∈ I , σ ≼
s
i σ

′
.

Proof. The proof goes by strong induction on the length l of the derivation ⟨JsKp̊k ,σ ⟩ →l

⟨skip,σ ′⟩. We perform a case split on the structure of s , which determines the structure of the

product s . The cases for assignments, havocs, assumes, and assertions are simple using Lemma 5.3.

For other statements, we generally perform as many steps of s as necessary to get to a configu-

ration where the statement is again a product program. We show that the product state in these

configuration mirrors the states of (some of) the original executions, so that we can apply the

induction hypothesis. Subsequently, we construct complete derivations of the original executions

and show that the final states mirror the final state of the product. □

We also prove that products always terminate and do not modify existing state (except for fresh

variables) if all activation variables are false:

Lemma 5.5. If, for all i ∈ {1, ...,k}, p(i) ⇓σ ⊥, then for some σ ′
, ⟨s = JsKp̊k ,σ ⟩ →

∗ ⟨skip,σ ′⟩ and

σ ≼s σ ′
.

Proof. By induction on the structure of s . For simple statements the proof is immediate. For

loops, the condition of the loop in the product must be false if all activation variables are false,

and the product immediately steps to skip. The same is true for procedure calls and the condition

of the conditional that wraps the call in the product. The cases for sequential composition and

conditionals follow immediately from applying the induction hypothesis to the substatements. □

We now show that a product execution terminating abnormally is simulated by a set of executions

of which at least one terminates abnormally.

Lemma 5.6. Assume thatmatch(Φ,Φ) and that for some setsA ⊆ {1, . . . ,k} and I = {1, . . . ,k} \A

we have that ∀i ∈ A.p(i) ⇓σ ⊤ ∧ σi ∈i σ and ∀i ∈ I .p(i) ⇓σ ⊥. If ⟨s,σ ⟩ →l ⟨Ûs,σ ′⟩, where s = JsKp̊k
and Ûs , skip, under Φ, then for at least one ie ∈ A, ⟨s,σie ⟩ →

∗ ⟨Ûs,σ ′
ie ⟩ under Φ for some σ ′

ie .

Proof. The proof goes by strong induction on l and follows roughly the same outline as the

proof for Thm. 5.4. We again perform a case split on the structure of s . We show that the cases

for assignments and havocs always terminate normally, and that product assertions and assumes

terminate abnormally if at least one corresponding assert or assume terminates abnormally in an

original execution (using Lemma 5.3). For all other statements, we perform case splits on which

part of the product leads to abnormal termination. We use Thm. 5.4 to reason about the effects of

all parts that are products and terminate normally, and apply the induction hypothesis to those

that do not. □

As a corollary of the previous theorem and lemma, we observe that terminating product exe-

cutions are simulated by sets of original executions that either all terminate, or of which at least

one fails. An example of the latter is a program assert e1; while (e2) do {skip}: If the assertion
fails for one of the original executions but succeeds for all others, the other executions will diverge,

whereas the product execution fails while executing the product of the assertion.

5.2.2 Product executions simulate normal executions. Now we prove that any set of terminating

executions is simulated by a terminating execution of a modular product. The active executions of

the product each mirror one of the original executions, and its inactive executions’ state does not

change (modulo assignments to fresh variables). We assume that we can map each of the executions

to a distinct index in the range 1, . . . ,k .

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:16 Marco Eilers, Peter Müller, and Samuel Hitz

Theorem 5.7. Assume that match(Φ,Φ) and that for a set of indices A ⊆ {1, . . . ,k} there is a

derivation di = ⟨s,σi ⟩ →
li ⟨skip,σ ′

i ⟩ under Φ for each i ∈ A. Assume also that σi ∈i σ and p(i) ⇓σ ⊤

for all i ∈ A, and p(i) ⇓σ ⊥ for any i ∈ I , where I = {1, . . . ,k} \A.

Then ⟨s,σ ⟩ →∗ ⟨skip,σ ′⟩, where s = JsKp̊k , under Φ for some σ ′
s.t. for all i ∈ A, σ ′

i ∈i σ
′
and

σ ≾
s
i σ

′
, and for all i ∈ I , σ ≼

s
i σ

′
.

Proof. The proof goes by strong induction on the sum of the lengths of derivations l =
∑

i ∈A li .
For l = 0 and |A| = 0, the conclusion follows from Lemma 5.5. If l = 0 and |A| , 0 then s = skip
and the conclusion follows trivially. For l > 0 we perform a case split on the structure of s . The
cases for assignments, asserts, assumes, and havocs are essentially the reverse of the corresponding

cases in the proof of Thm. 5.4. For all other statements, we identify sets of traces that proceed in

the same way and show using the induction hypothesis that the product executes subproducts that

mirror the executions for those sets. □

Similarly to before, we now show that any set of terminating traces, at least one of which ends

abnormally, is mirrored by a product execution that ends abnormally.

Lemma 5.8. Assume that for a set of indices A s.t. |A| = j and 1 ≤ j ≤ k and A ⊆ {1, . . . ,k}
there is a derivation di = ⟨s,σi ⟩ →li ⟨Ûsi ,σ

′
i ⟩, where Ûsi ∈ {skip, error, magic}, under Φ for each

i ∈ A. Assume given As ⊂ A and Ae = A \ As s.t. for all i ∈ Ae , Ûsi , skip, and for all i ∈ As ,

Ûsi = skip. Assume also that σi ∈i σ and σ (p(i)) = ⊤ for all i ∈ A, and σ (p(i)) = ⊥ for any i ∈ I ,
where I = {1, . . . ,k} \A.

Then ⟨s,σ ⟩ →∗ ⟨Ûs,σ ′⟩ under Φ, where s = JsKp̊k , for some σ ′
and Ûs s.t. ∃i ∈ Ae . Ûsi = Ûs .

Proof. The proof follows roughly the same outline as the proof for Thm. 5.7. We again perform a

case split on the structure of s , and a further case split on which part of the original executions lead

to errors. We use Thm. 5.7 to reason about successful executions of substatements that are products,

and apply the induction hypothesis to the executions of failing product substatements. □

As a corollary, we observe that if a set of executions terminates, the corresponding product

execution always terminates as well.

5.3 Provable Properties
We now show that since product executions mirror sets of executions of the original program,

it follows that properties that hold for product programs correspond to hyperproperties of the

original programs.

In particular, we prove soundness, i.e., if a transformed relational specification holds for a

product program then the relational specification holds for sets of executions of the original

program. Conversely, we show completeness, i.e., for any hyperproperty which holds for multiple

executions of a program, the transformed property holds for its product.

First, we lift the correspondence of expression evaluation in product stores and original stores

to unary assertions, and show that a product store that mirrors the original stores of all active

executions fulfills a transformed assertion if and only if the original stores fulfill the original

assertion.

Lemma 5.9. If A ⊆ {1, . . . ,k} and ∀i ∈ A. σi ∈i σ ∧ p(i) ⇓σ ⊤ and ∀i ∈ {1, . . . ,k} \A.p(i) ⇓σ ⊥

and fv(P) ⊆ PVar then (
∧

i ∈A σi ⊨ P) ⇔ σ ⊨ ⌊P⌋
p̊
k .

Proof. Both directions of the proof go by induction on the structure of P . Cases relating to

expressions follow from Lemma 5.3; all others follow from using the induction hypothesis on

subassertions. □

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:17

Second, we show that the same property holds for tuples of stores and mixed assertions (and

therefore relational assertions as well).

Lemma 5.10. If ∀i ∈ {1, . . . ,k}. σi ∈i σ ∧ p(i) ⇓σ ⊤ and fv(P̌) ⊆ PVar then (σ1, . . . ,σk) ⊨ P̌ ⇔

σ ⊨ ⌊P̌⌋
p̊
k .

Proof. Both directions of the proof go by induction on the structure of P̌ . Cases relating to

unary assertions are covered by Lemma 5.9; cases relating to expressions follow from Lemma 5.3;

all others follow from the induction hypothesis on subassertions. □

We can now prove the soundness theorem: If a transformed relational specification holds for

a modular k-product program, then the relational specification holds for any k executions of the

original program.

Theorem 5.11. If ⊨ JsKp̊k : ⌊P̌⌋
p̊
k ⇝ ⌊Q̌⌋

p̊
k then ⊨ s : P̌ k Q̌

Proof. We have to show that for all (σ1, . . . ,σk) s.t. (σ1, . . . ,σk) ⊨ P̌ , if for all i ∈ {1, . . . ,k}
⟨s,σi ⟩ →

∗ ⟨Ûsi ,σ
′
i ⟩ for some σ ′

i and Ûsi ∈ {skip, error}, then all Ûsi = skip and (σ ′
1
, . . . ,σ ′

k) ⊨ Q̌ .

Since we have ⊨ JsKp̊k : ⌊P̌⌋
p̊
k ⇝ ⌊Q̌⌋

p̊
k , we know that if σ ⊨ ⌊P̌⌋

p̊
k and ⟨JsKp̊k ,σ ⟩ →

∗ ⟨Ûs,σ ′⟩ where

Ûs ∈ {skip, error, magic}, then either Ûs = magic or Ûs = skip ∧ σ ′ ⊨ ⌊Q̌⌋
p̊
k .

We choose σ s.t. p(i) ⇓σ ⊤ and σi ∈i σ for all i ∈ {1, . . . ,k}. By Lemma 5.10 we have that

σ ⊨ ⌊P̌⌋
p̊
k .

Assume that for all i we have ⟨s,σi ⟩ →
∗ ⟨Ûsi ,σ

′
i ⟩ (otherwise the proof goal is trivially true).

• If all Ûsi = skip, then by Thm. 5.7 this implies that there is a product execution ⟨JsKp̊k ,σ ⟩ →
∗

⟨skip,σ ′⟩ for someσ ′
. By Thm. 5.4 we then have that thatσ ′ ⊨ ⌊Q̌⌋

p̊
k and for all i ∈ {1, . . . ,k},

σ ′(p(i)) = ⊤ and σ ′
i ∈i σ

′
. By Lemma 5.10 we have (σ ′

1
, . . . ,σ ′

k) ⊨ Q̌ .
• Otherwise: If all Ûsi , error, we must have that some Ûsi = magic, in which case we are done.

If some Ûsi = error we case split on the structure of the precondition P̌ :
– If P̌ = P̂ ′

for some P̂ ′
: Then we trivially have that ⊨ s : P̌ k Q̌ .

– If P̌ = P ′
for some P ′

: Then we can choose some σ ′′
s.t. σ (p(i)) = ⊤ and σi ∈i σ

′′
and

σ (p(j)) = ⊥ for all j , i . By Lemma 5.9 we have that σ ′′ ⊨ ⌊P̌⌋
p̊
k . Then by Thm. 5.8 this

implies that there is a product execution ⟨JsKp̊k ,σ
′′⟩ →∗ ⟨error,σ ′′′⟩ for some σ ′′′

, which

is impossible because ⊨ JsKp̊k : ⌊P̌⌋
p̊
k ⇝ ⌊Q̌⌋

p̊
k .

– If P̌ = P̂ ′ ∧ P ′′
for some P̂ ′, P ′′

: Then this case is impossible for the same reason as in the

previous case.

□

Similarly, we prove completeness: If some unary precondition P guarantees that a program

executes without errors, and some relational specification expressing a hyperproperty holds for the

program, then the transformed version of the resulting mixed specification holds for the modular

product program.

The unary precondition P is necessary to guarantee that the product program does not fail in

executions where some activation variables are false and a k-relational precondition is therefore not

required to hold. As an example, the program s = assert x > 0 fulfills the relational specification

s : x (1) > 0∧x (2) > 0 2 true; however, ⌊x
(1) > 0∧x (2) > 0⌋

p̊
2
= (p(1) ∧p(2) ⇒ x (1) > 0∧x (2) > 0),

and a store [p(1) 7→ ⊥,p(2) 7→ ⊤,x (1) 7→ 0,x (2) 7→ 0] therefore fulfills the transformed precondition

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:18 Marco Eilers, Peter Müller, and Samuel Hitz

but raises an error when the product is executed. This is not a limitation in practice, since the

unary precondition that guarantees error-free execution can always be extracted from a relational

specification; in the example, we can replace the relational precondition x (1) > 0 ∧ x (2) > 0 by a

unary precondition x > 0.

Theorem 5.12. If P̂ and Q̂ are k-relational assertions, and ⊨ s : P ⇝ true and ⊨ s : P̂ k Q̂

then ⊨ JsKp̊k : ⌊P ∧ P̂⌋
p̊
k ⇝ ⌊Q̂⌋

p̊
k .

Proof. We first show that for all σ s.t. σ ⊨ ⌊P ∧ P̂⌋
p̊
k , if ⟨JsK

p̊
k ,σ ⟩ →

∗ ⟨Ûs,σ ′⟩ for some Ûs,σ ′
, then

Ûs = magic or Ûs = skip ∧ σ ′ ⊨ ⌊Q̂⌋
p̊
k .

Assume that σ ⊨ ⌊P ∧ P̂⌋
p̊
k and ⟨JsKp̊k ,σ ⟩ →

∗ ⟨Ûs,σ ′⟩ (otherwise the goal is trivially true).

• If Ûs , skip then we get by Lemma 5.6 that for some i ∈ {1, . . . ,k}, σ (p(i)) = ⊤, and for any

σi s.t. σi ∈i σ we have ⟨s,σi ⟩ →
∗ ⟨Ûs,σ ′

i ⟩ for some σ ′
i .

– If Ûs = magic then the specification holds trivially.

– If Ûs = error then we choose some such σi and by Lemma 5.9 we get that σi ⊨ P . But since
⊨ s : P ⇝ true we have that if ⟨s,σi ⟩ →

∗ ⟨Ûs ′i ,σ
′
i ⟩ then Ûs ′i , error. Therefore we cannot

have that ⟨s,σi ⟩ →
∗ ⟨error,σ ′

i ⟩, and this case is impossible.

• If Ûs = skip, then we have by Thm. 5.4 that for all i s.t. σ (p(i)) = ⊤, ⟨s,σi ⟩ →
∗ ⟨skip,σ ′

i ⟩ for

some σ ′
i s.t. σ

′
i ∈i σ

′
and σ ′(p(i)) = ⊤.

– If ∀i ∈ {1, . . . ,k}. σ (p(i)) = ⊤, then we have that also ∀i ∈ {1, . . . ,k}. σ ′(p(i)) = ⊤. Then

by Lemma 5.10, we have that σ ′ ⊨ ⌊Q̂⌋
p̊
k .

– If ∃i ∈ {1, . . . ,k}. σ (p(i)) = ⊥, then we have that for said i , σ ′(p(i)) = ⊥. Since ⌊Q̂⌋
p̊
k =

(
∧k

i=1
p(i)) ⇒ Q̂ , we trivially have that σ ′ ⊨ ⌊Q̂⌋

p̊
k .

Therefore we have ⊨ JsKp̊k : ⌊P ∧ P̂⌋
p̊
k ⇝ ⌊Q̂⌋

p̊
k . □

6 MODULAR VERIFICATION OF SECURE INFORMATION FLOW
In this section, we demonstrate the expressiveness of modular product programs by showing how

they can be used to verify non-interference, an important hyperproperty which can be used to

express information flow security. We first concentrate on secure information flow in the classical

sense [8], and later demonstrate how the ability to check relational assertions at any point in the

program can be exploited to prove advanced properties like the absence of timing and termination

channels, and to encode declassification.

6.1 Non-Interference
Secure information flow, i.e., the property that secret information is not leaked to the public outputs

of a program, can be expressed as a 2-safety hyperproperty of a program called non-interference.

Non-interference states that, if a program is run twice, with the public (often called low) inputs

being equal in both runs but the secret (or high) inputs possibly being different, the public outputs

of the program must be equal in both runs [8]. This property guarantees that the high inputs do

not influence the low outputs.

We can formalize non-interference as follows:

Definition 6.1. A statement s that operates on a set of variables X = {x1, . . . ,xn}, of which some

subset Xl ⊆ X is low, satisfies non-interference iff for all σ1,σ2 and σ
′
1
,σ ′

2
, if ∀x ∈ Xl . σ1(x) = σ2(x)

and ⟨s,σ1⟩ →
∗ ⟨skip,σ ′

1
⟩ and ⟨s,σ2⟩ →

∗ ⟨skip,σ ′
2
⟩ then ∀x ∈ Xl .σ

′
1
(x) = σ ′

2
(x). ■

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:19

Since our definition of non-interference describes a hyperproperty, we can verify it using modular

product programs:

Theorem 6.2. A statement s that operates on a set of variables X = {x1, . . . ,xn}, of which some

subset Xl ⊆ X is low, satisfies non-interference under a unary precondition P if ⊨ JsKp̊
2

: ⌊P⌋
p̊
2
∧

(
∧

x ∈Xl
x (1) = x (2))⇝ ∀x ∈ Xl . x

(1) = x (2)

Proof. Since non-interference can be expressed using a 2-relational specification, the theorem

follows directly from Theorem 5.11. □

An expanded notion of secure information flow considers observable events in addition to regular

program outputs [21]. An event is a statement that has an effect that is visible to an outside observer,

but may not necessarily affect the program state. The most important examples of events are output

operations like printing a string to the console or sending a message over a network. Programs that

cause events can be considered information flow secure only if the sequence of produced events is

not influenced by high data. One way to verify this using our approach is to track the sequence

of produced events in a ghost variable and verify that its value never depends on high data. This

approach requires substantial amounts of additional specifications.

Modular product programs offer an alternative approach for preventing leaks via events, since

they allow formulating assertions about the relation between the activation variables of different

executions. In particular, if a given event has the precondition that all activation variables are equal

when the event statement is reached then this event will either be executed by both executions or

be skipped by both executions. As a result, the sequence of events produced by a program will be

equal in all executions.

6.2 Information Flow Specifications
The relational specifications required for modularly proving non-interference with the previously

described approach have a specific pattern: they can contain functional specifications meant to be

valid for both executions (e.g., to make sure both executions run without errors), they may require

that some information is low, which is equivalent to the two renamings of the same expression

being equal, and, in addition, they may assert that the control flow at a specific program point is

low.

We therefore introduce modular information flow specifications, which can express properties

required for proving secure information flow but are transparent w.r.t. the encoding or the verifica-

tion methodology, i.e., they allow expressing that a given event or value must not be secret without

knowledge of the encoding of this fact into an assertion about two different program executions.

We define information flow specifications as follows:

(SIFAssertions) P̃ ::= P̃ ∧ P̃ | e | low(e) | lowEvent | ∀x . P̃
| e ⇒ e | e ⇒ low(e) | low(e) ⇒ low(e) | e ⇒ lowEvent

low(e) specifies that the value of the expression e is not influenced by high data. Note that e can
be any expression and is not limited to variable references; this reflects the fact that our approach

can label secrecy in a more fine-grained way than, e.g., a type system; one can, for example, declare

to be public whether a number is odd while keeping its value secret.

lowEvent specifies that high data must not influence if and how often the current program point

is reached by an execution, which is a sufficient precondition of any statement that causes an

observable event. In particular, if a procedure outputs an expression e , the precondition lowEvent ∧

low(e) guarantees that no high information will be leaked via this procedure.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:20 Marco Eilers, Peter Müller, and Samuel Hitz

⌈e⌉p̊ = (p(1) ⇒ e(1)) ∧ (p(2) ⇒ e(2))

⌈low(e)⌉p̊ = p(1) ∧ p(2) ⇒ e(1) = e(2)

⌈lowEvent⌉p̊ = p(1) = p(2)

⌈P̃1 ∧ P̃2⌉
p̊ = ⌈P̃1⌉

p̊ ∧ ⌈P̃2⌉
p̊

⌈e1 ⇒ e2⌉
p̊ = (p(1) ∧ e1

(1) ⇒ e2

(1)) ∧ (p(2) ∧ e1

(2) ⇒ e2

(2))

⌈e1 ⇒ low(e2)⌉
p̊ = p(1) ∧ e1

(1) ∧ p(2) ∧ e1

(2) ⇒ e2

(1) = e2

(2)

⌈e1 ⇒ lowEvent⌉p̊ = (p(1) ∧ e(1) ∨ p(2) ∧ e(2)) ⇒ p(1) = p2

(2)

⌈low(e1) ⇒ low(e2)⌉
p̊ = p(1) ∧ p(2) ∧ e1

(1) = e1

(2) ⇒ e2

(1) = e2

(2)

⌈∀x . P̃⌉p̊ = ∀x (1),x (2). x (1) = x (2) ⇒ ⌈P̃⌉p̊

Fig. 6. Translation of information flow specifications. The intuition behind the translation of universal

quantifiers is that we quantify over a single variable x but give it two different names x (1) and x (2) so that we
can transform the body of the quantifier like any other assertion.

Information flow specifications can express complex properties. e1 ⇒ low(e2), for example,

expresses that if e1 is true, e2 must not depend on high data; e1 ⇒ lowEvent says the same about

the current control flow. A possible use case of these assertions is the precondition of a library

function that prints e2 to a low-observable channel if e1 is true, and to a secure channel otherwise.

In addition to the two primitives low() and lowEvent, information flow specifications can also

contain ordinary functional specifications for single executions. These can be used as a fallback

if said primitives are not expressive enough. As an example, for proving that the statement

if (e) then {x .m()} else {x .n()} ends with x being low, it may be necessary to give a descrip-

tion of the functional behavior ofm and n. Similarly, if bothm and n perform the same output,

requiring the calls to be a lowEvent (which is sufficient but generally not necessary) is too strong a

requirement, and their functional contracts must model the output explicitly instead.

Note that high-ness of some expression is not modelled by its renamings being definitely unequal,

but by leaving underspecified whether they are equal or not, meaning that high-ness is simply the

absence of the knowledge of low-ness. As a result, it is never necessary (or possible) to specify

explicitly that an expression is high. This approach (which is also used in self-composition) is

analogous to the way type systems encode security levels, where low is typically a subtype of high.

The encoding ⌈P̃⌉p̊ of an information flow assertion P̃ under the activation variables p(1) and
p(2) is defined in Figure 6. For the example in Figure 1, a possible, very precise information flow

specification could say that the results of main are low if the first bit of all entries in people is low.

We can write this as main : low(|people|) ∧ ∀i ∈ {0, . . . , |people| − 1}. low(people[i] mod 2) ⇝
low(count). In the product, this will be translated to

main : p1 ∧ p2 ⇒ (|people1| = |people2|∧
∀i ∈ {0, . . . , |people1| − 1}. (people1[i] mod 2) = (people2[i] mod 2))

⇝ p1 ∧ p2 ⇒ count1 = count2

In this scenario, the loop in main could have the simple invariant low(i) ∧ low(count), and
the procedure is_female could have the contract is_female : true ⇝ (low(person mod 2) ⇒

low(res)). This contract follows a useful pattern where, instead of requiring an input to be low and

promising that an output will be low for all calls, the output is decribed as conditionally low based

on the level of the input, which is more permissive for callers.

The example shows that the information required for proving secure information flow can in

many cases be expressed concisely, without requiring any knowledge about the methodology used

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:21

procedure check (password , i npu t)

returns (r e s u l t)

{

r e s u l t : = | password | == | i npu t | ;

i : = 0 ;

while (i < | password | && r e s u l t) {

r e s u l t : = r e s u l t && password [i] == inpu t [i] ;

i : = i + 1 ;

}

}

Fig. 7. Password check example: Leaking secret data is desired.

for verification. Modular product programs therefore enable the verification of the information

flow security of main based solely on modular, relational specifications, and without depending on

functional specifications.

6.3 Secure Information Flow with Arbitrary Security Lattices
The definition of secure information flow used in Definition 6.1 is a special case in which there are

exactly two possible classifications of data, high and low. In the more general case, classifications

come from an arbitrary lattice ⟨L,⊑⟩ of security levels s.t. for some l1, l2 ∈ L, information from an

input with level l1 may influence an output with level l2 only if l1 ⊑ l2. Instead of the specification

low(e), information flow assertions can therefore have the form levelBelow(e, l), meaning that the

security level of expression e is at most l .
It is well-known that techniques for verifying information flow security with two levels can

conceptually be used to verify programs with arbitrary finite security lattices [30] by splitting

the verification task into |L| different verification tasks, one for each element of L. Instead, we

propose to combine all these verification tasks into a single task by using a symbolic value for l , i.e.,
declaring an unconstrained global constant representing l . Specifications can then be translated as

follows:

levelBelow(e, l ′) =̂ l ′ ⊑ l ⇒ e(1) = e(2)

Since no information about l is known, verification will only succeed if all assertions can be

proven for all possible values of l , which is equivalent to proving them separately for each possible

value of l .

6.4 Declassification
In practice, non-interference is too strong a property for many use cases. Often, some leakage of

secret data is required for a program to work correctly. Consider the case of a password check (see

Figure 7): A secret internal password is compared to a non-secret user input. While the password

itself must not be leaked, the information whether the user input matches the password should

influence the public outcome of the program, which is forbidden by non-interference.

To incorporate this intention, the part of the secret information that should be leaked by the

program can be declassified [35], e.g., via a declassification statement declassify e in the style of

delimited information release [34] that declares an arbitrary expression e to be low. With modular

products (as with self-composition [40]), declassification can be encoded via a simple assumption

stating that, if the declassification is executed in both executions, the expression is equal in both

executions:

Jdeclassify eKp̊
2
= assume p(1) ∧ p(2) ⇒ e(1) = e(2)

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:22 Marco Eilers, Peter Müller, and Samuel Hitz

procedure main (h : I n t)

{

while (h ! = 0) {

h : = h − 1 ;

}

}

procedure main (h : I n t)

{

i : = 0 ;

while (i < h) {

i : = i + 1

}

print (0)
}

Fig. 8. Programs with a termination channel (left), and a timing channel (right). In both cases, h is high.

Importantly, an assumptions of this form can never contradict current knowledge (i.e., assume

false) if the information flow specifications from Section 6.2 are used to specify the program.

Recall that high-ness is encoded as the absence of the knowledge that an expression is equal in

both executions, not by the knowledge that they are different. In fact, the format of information

flow specifications makes it impossible to specify that an expression is definitely not equal in

both executions, since low(e) can only occur in positive positions, i.e., not on the left side of

an implication; the only exception, low(e1) ⇒ low(e2), implies that e1

(1) , e1

(2)
only under the

condition that one can already prove e2

(1) , e2

(2)
, which as just argued can never happen. As a

result, there is no danger that assuming equality will contradict current knowledge, since any such

assumption (and any combination of such assumptions) will always be fulfilled if the state of both

executions represented in the product program is completely identical. Nevertheless, assumptions

outside of procedure contracts can obfuscate what property was actually proved. In order to get

better formal guarantees, one could for example generate declassification statements based on some

declassification policy. The exact process of doing this, however, is orthogonal our approach. As in

the information flow specifications, the declassified expression can be arbitrarily complex, so that

it is for example possible to declassify the parity of a number while keeping all other information

about it secret.

The example in Fig. 7 becomes valid if we add declassify result at the end of the procedure,

or declassify equal(password, input) at some earlier point. The latter would arguably be safer

because it specifies exactly the information that is intended to be leaked, and would therefore

prevent accidentally leaking more if the implementation of the checking loop was faulty.

This kind of declassification has the following interesting properties: First, it is imperative,

meaning that the declassified information may be leaked (e.g., via a print statement) after the

execution of the declassification statement, but not before. Second, it is semantic, meaning that the

declassification affects the value of the declassified expression as opposed to, e.g., syntactically the

declassified variable. As a result, it will be allowed to leak any expression whose value contains the

same (or a part of the) secret information which was declassified, e.g., the expression f (e) if f is a

deterministic function and e has been declassified.

6.5 Preventing Termination Channels
In Definition 6.1, we have considered only terminating program executions. In practice, however,

termination is a possible side-channel that can leak secret information to an outside observer.

Figure 8 (left) shows an example of a program that verifies under the methodology presented so far,

but leaks information about the secret input h to an observer: If h is initially negative, the program

will enter an endless loop. Anyone who can observe the termination behavior of the program can

therefore conclude if h was negative or not.

To prevent leaking information via a termination side channel, it is necessary to verify that

the termination of a program depends only on public data. We will show that modular product

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:23

programs are expressive enough to encode and check this property. We will focus on preventing

non-termination caused by infinite loops here; preventing infinite recursion works analogously. In

particular, we want to prove that if a loop iterates forever in one execution, any other execution

with the same low inputs will also reach this loop and iterate forever. More precisely, this means

that

(A) if a loop does not terminate, then whether or not an execution reaches that loop must not

depend on high data.

(B) whether a loop that is reached by both executions terminates must not depend on high data.

We propose to verify these properties by requiring additional specifications that state, for

every loop, an exact condition under which it terminates. This condition may neither over- nor

underapproximate the termination behavior; the loop must terminate if and only if the condition

is true. For Figure 8 (left) the condition is h ≥ 0. We also require a ranking function for the cases

when the termination condition is true. We can then prove the following:

(a) If the termination condition of a loop evaluates to false, then any two executions with identical

low inputs either both reach the loop or both do not reach the loop (i.e., reaching the loop is a

low event). This guarantees property (A) above.

(b) For loops executed by both executions, the loop’s termination condition is low. This guarantees

property (B) under the assumption that the termination condition is exact.

(c) The termination condition is sound, i.e., every loop terminates if its termination condition is

true. We prove this by showing that if the termination condition is true, we can prove the

termination of the loop using the supplied ranking function.

(d) The termination condition is complete, i.e., every loop terminates only if its termination con-

dition is true. We prove this by showing that if the condition is false, the loop condition will

always remain true. This check, along with the previous proof obligation, ensures that the

termination condition is exact.

(e) Every statement in a loop body terminates if the loop’s termination condition is true, i.e., the

loop’s termination condition implies the termination conditions of all statements in its body.

We introduce an annotated while loop while (e) terminates(ec , er) do {s}, where ec is the exact
termination condition and er is the ranking function, i.e., an integer expression whose value

decreases with every loop iteration but never becomes negative if the termination condition is

true. Based on these annotations, we present a program instrumentation term(s, c) that inserts the
checks outlined above for every while loop in s . c is the termination condition of the outside scope,

i.e., for the instrumentation of a nested loop, it is the termination condition ec of the outer loop.
The instrumentation is defined for annotated while loops in Figure 9; for all other statements, it

does not make any changes except instrumenting all subnodes. The instrumentation guarantees

that if the product of the instrumented program verifies, the original program does not leak secret

information via a termination channel. We slightly abuse the notation and use assert statements

with information flow assertions (as defined in Section 6.2) instead of expressions; the intented

meaning is that the product of such a statement is a statement that asserts the encoded version

of said assertion (which can be written as an expression). Again, we make use of the fact that

modular products allow checking relational assertions at arbitrary program points and formulating

assertions about the control flow.

We now prove that if an instrumented statement verifies under some 2-relational precondition

then any two runs from a pair of states fulfilling that precondition will either both terminate or

both loop forever.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:24 Marco Eilers, Peter Müller, and Samuel Hitz

term(w, c) = cond :=ec ;

assert ¬cond ⇒ lowEvent; // checks (a)

assert low(cond); // checks (b)

assert cond ⇒ 0 ≤ er ; // checks (c)

assert c ⇒ cond ; // checks (e)

assert ¬cond ⇒ e; // checks (d)

while (e) do {

if (cond) then {rank :=er };
term(s, cond);
assert cond ⇒ 0 ≤ er ∧ er < rank // checks (c)

assert ¬cond ⇒ e; // checks (d)

}

Fig. 9. Program instrumentation for termination leak prevention. We abbreviate

while (e) terminates(ec , er) do {s} as w . If Jterm(s, false)Kp̊
2
verifies under some precondition, s does not

have a termination side channel under this precondition. Statements of the form assert P̃ are to be

interpreted as asserting the encoding assert ⌈P̃⌉p̊ in the product program.

Theorem 6.3. Assume that s = Jterm(s, false)Kp̊
2
and ⊨ s : ⌊P̌⌋

p̊
2
⇝ true and (σ1,σ2) ⊨ P̌ and s

does not terminate with magic from σ1 and σ2 and s does not contain calls to (mutually) recursive

procedures.

Then either s always terminates from both σ1 and σ2 or s never terminates from both σ1 and σ2.

Proof. We first prove lemmas that state that if the product of an instrumented loop does not fail

from a state, single executions of this loop from states that mirror the product state terminate (1) if

and (2) only if their termination condition is true. We show (1) by a standard termination proof

using the provided ranking function, and (2) by showing that the loop condition never becomes

false. We then extend these lemmas to general instrumented statements. The main proof then

goes by induction on the structure of s; we show that if the product of an instrumented statement

does not fail from a state, pairs of executions from states that mirror the product state either both

terminate or both diverge. □

Note that, while this approach is sound, it is incomplete, since it requires that the termination

of every single loop by itself does not leak information. It will therefore reject, for example, a

program consisting two consecutive loops, if the first terminates depending on secret data, and

the second never terminates at all. Assuming that an attacker can only observe the termination

of the program as a whole, no information is leaked since the program never terminates, and the

program should be accepted. This incompleteness is similar to the one that occurs when specifying

method invocations to be low events (discussed in Section 6.2).

6.6 Preventing Timing Channels
A program has a timing channel if high input data influences the program’s execution time, meaning

that an attacker who can observe the time the program executes can gain information about those

secrets. Timing channels can occur in combination with observable events; the time at which an

event occurs may depend on a secret even if the overall execution time of a program does not.

Consider the example in Figure 8 (right). Assuming main receives a positive secret h, both the

print statement and the end of the program execution will be reached later for larger values of h.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:25

Using modular product programs, we can verify the absence of timing side channels by adding

ghost state to the program that tracks the time passed since the program has started; this could,

for example, be achieved via a simple step counting mechanism, or by tracking the sequence of

previously executed bytecode statements. This ghost state is updated separately for both executions.

We can then assert anywhere in the program that the passed time does not depend on high data

in the same way we do it for program variables. In particular, we can enforce that the passed

time is equal whenever an observable event occurs, and we can enable users to write relational

specifications that compare the time passed in both executions of a loop or a procedure.

7 IMPLEMENTATION AND EVALUATION
We have implemented both the general modular product program transformation and our approach

for secure information flow in the Viper verification infrastructure [29] and applied it to a number

of example programs from the literature. Both the implementation and examples are available at

http://viper.ethz.ch/modularproducts/.

7.1 Viper Overview
We first give a brief overview of the Viper verification infrastructure. Viper provides an intermediate

verification languagewhich is essentially a simple imperative programming languagewith amutable

heap and built-in support for specifications, such as pre- and postconditions and loop invariants.

Viper uses implicit dynamic frames [37], a flavor of separation logic [33], to locally reason

about heap-manipulating programs. This means that every heap location is associated with a

permission, and reading or modifying a heap location requires having the respective permission.

Procedure specifications can declare which permissions are required via a predicate of the form

acc(x . f) representing the permission to field f of the object referenced by x (similar to a points-to

predicate in separation logic). A procedure call then transfers the permission required in the callee’s

precondition to the callee, and subsequently transfers the permissions specified in the postcondition

back to the caller. Procedures therefore know that heap locations whose permissions they do not

give away cannot be modified by said callee, and must therefore be unchanged after the call.

For supporting unbounded heap data structures like lists or trees, Viper offers quantified permis-

sion assertions of the form forall x ∈ s . acc(x . f), which represent the permissions to the f fields

for all references in set s [28].
Viper provides two different backend verifiers that can verify programs written in the Viper

language (both ultimately using the SMT solver Z3 [16]). One is based on symbolic execution (SE),

and the other is based on verification condition generation (VGC) and encodes a Viper program

into a Boogie [5] program.

7.2 Implementation in Viper
Our implementation supports a version of the Viper language that adds the following features:

(1) Expressions of the form rel(x, i) that represent a reference x (i) to variable x from execution

i and can be used to express general relational specifications

(2) The assertions low(e) and lowEvent for information flow specifications

(3) A declassify statement

(4) Variations of the existing method declarations and while loops that include the termination

annotations shown in Section 6.5

The implementation transforms a program in this extended language into a modular k-product
for arbitrary k in the original language, which can then be verified by the (unmodified) Viper

back-end verifiers. Error messages are automatically translated back to the original program.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://viper.ethz.ch/modularproducts/

39:26 Marco Eilers, Peter Müller, and Samuel Hitz

In the resulting language, users can use unary, relational, and mixed assertions in method pre-

and postconditions as well as loop invariants, and can therefore specify any hyperproperty that is

expressible in the framework we presented so far.

Alternatively, if k = 2, specifications can be provided as information flow specifications (see

Section 6.2) such that users need no knowledge about the transformation or the methodology

behind information flow verification.

Declassification is implemented as described in Section 6.4. Our implementation optionally

verifies the absence of timing channels; the metric chosen for tracking execution time is simple

step-counting.

For languages with opaque object references, secure information flow can require proving that

pointers are low, i.e., equal up to a consistent renaming of addresses. To avoid the complexity

of reasoning about such a renaming, our approach to duplicating the heap state space in the

implementation differs from that described in Section 4.3: Instead of duplicating objects, our

implementation creates a single new statement for every new in the original program, but duplicates

the fields each object has. As a result, if both executions execute the same new statement, the newly

created object will be considered low afterwards (but the values of its fields might still be high).

7.3 Evaluation: Secure Information Flow
We have evaluated our approach for verifying secure information flow by verifying a number

of examples in the extended Viper language using our implementation. The examples are listed

in Table 1 and include all code snippets shown in this paper as well as a number of examples

from the literature [2, 3, 6, 14, 15, 21, 24, 30, 38, 40]. They combine complex language features like

mutable state on the heap, arrays and procedure calls, as well as timing and termination channels,

declassification, and non-trivial information flows (e.g., flows whose legality depends on semantic

information not available in a standard information flow type system). We manually added pre-

and postconditions as well as loop invariants; for those examples that have forbidden flows and

therefore should not verify, we also added a legal version that declassifies the leaked information.

7.3.1 Qualitative Evaluation. Our implementation returns the correct result for all examples.

In all cases but one, our approach allows us to express all information flow related assertions, i.e.,

procedure specifications and loop invariants, purely as relational specifications in terms of low and

lowEvent assertions (see Table 1). For all these examples, we completely avoid the need to specify

the functional behavior of the program.

The only exception is an example that, depending on a high input, executes different loops with

identical behavior, and for which we need to prove that the execution time is low. In this case we

have to provide invariants for both loops that exactly specify their execution time in order to prove

that the overall execution time after the conditional is low. Nevertheless, the specification of the

procedure containing the loop is again expressed with a relational specification using only low.

For all other examples, unary specifications were only needed to verify the absence of runtime

errors (e.g., out-of-bounds array accesses), which Viper verifies by default. Consequently, a verified

program cannot leak low data through such errors, which is typically not guaranteed by type

systems or static analyses.

7.3.2 Performance. For all but one example, the runtime (averaged over 10 runs on a Lenovo

ThinkPad T450s with an Intel Core i7-5600U CPU running at 3.2 GHz with 12GB RAM on Ubuntu)

with both the Symbolic Execution (SE) and the Verification Condition Generation (VCG) verifiers

is under or around one second (see Table 1). The one exception, which makes extensive use of

unbounded heap data structures, takes ca. five seconds when verified using VCG, and 15 in the SE

verifier. This is likely a result of inefficiencies in our encoding: As noted before, the created product

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:27

File Ev. Hp. Arr. Decl. Call Ter. Tm. LOC Ann/SF/NI/TM/F TVCG TSE
antopolous1 [2] x 25 7/3/3/0/2 0.78 1.10

antopolous2 [2] x x 61 14/0/14/0/0 0.72 0.91

banerjee [3] x x x 76 17/11/6/0/0 1.02 0.61

constanzo [14] x x 22 7/2/5/0/0 0.67 0.28

darvas [15] x x 33 12/8/4/0/0 0.67 0.35

example x x 31 7/1/6/0/0 0.73 0.59

example_decl x x 19 5/2/3/0/0 0.72 0.77

example_term x x 31 8/4/2/2/0 0.77 0.43

example_time x x x x 32 9/0/9/0/0 0.70 0.38

joana_1_tl [21] x x x 28 1/0/1/0/0 0.62 0.23

joana_2_bl [21] x x 18 2/0/2/0/0 0.63 0.25

joana_2_t [21] x 15 1/0/1/0/0 0.62 0.20

joana_3_bl [21] x x x x 47 5/1/2/2/0 0.77 0.47

joana_3_br [21] x x x x 43 8/0/2/6/0 0.83 0.60

joana_3_tl [21] x x x 33 8/2/2/4/0 0.75 0.53

joana_3_tr [21] x x x x 35 8/4/2/2/0 0.76 0.51

joana_13_l [21] x 12 1/0/1/0/0 0.62 0.24

kusters [24] x x 29 9/6/3/0/0 0.64 0.44

naumann [30] x x 20 6/3/6/0/0 0.81 0.88

product [6] x x x 65 30/21/21/0/0 5.47 15.73

smith [38] x x 43 12/6/8/0/0 0.87 0.89

terauchi1 [40] 14 2/0/2/0/0 0.62 0.26

terauchi2 [40] x x 21 4/0/4/0/0 0.63 0.30

terauchi3 [40] 24 5/1/4/0/0 0.66 0.40

Table 1. Evaluated examples for secure information flow.We show the used language features (Ev. = observable

events, Hp. = mutable heap, Arr. = arrays, Decl. = declassification, Call = procedure calls) and proved properties

(Ter. = absence of termination channels, Tm. = absence of timing channels), lines of code including specifications

(LOC), overall lines used for specifications (Ann), unary specifications for safety (SF), relational specifications

for non-interference (NI), specifications for termination (TM), and functional specifications required for

non-interference (F). Note that some lines contain specifications belonging to multiple categories. Columns

TSE andTVCG show the running times of the verifiers for the SE backend and the VCG backend, respectively,

in seconds.

has a high number of branching instructions, and some properties have to be proved more than

once, two issues which have a much larger performance impact for SE than for VCG. We believe

that it is feasible to remove much of this overhead by optimizing the encoding; we leave this as

future work.

7.4 Evaluation: Other Hyperproperties
For the second part of our evaluation, we evaluated our approach and implementation for other

hyperproperties and compared them to Descartes
1
, a specialized tool by Sousa and Dillig that

automates a relational logic and handles loops by guessing and checking possible invariants [39],

as well as Synonym
2
, a version of Descartes by Pick et al. with additional optimizations to speed

up the verification process [31].

We considered 34 Java implementations of comparators, taken from the evaluation of Descartes.

The examples were originally taken from posts on websites like Stackoverflow, where developers

asked questions about buggy comparators and other users responded with proposed fixes. Addi-

tionally, we considered all eight correct expanded examples from the evaluation of Synonym; these

are variations of correct comparators from Descartes that were artificially made more complex by

Pick et al. Instead of comparing two objects, they take three objects and decide which one is the

greatest according to the defined comparison metric. These implementations are generally both

1
https://github.com/marcelosousa/descartes

2
https://github.com/lmpick/synonym

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://github.com/marcelosousa/descartes
https://github.com/lmpick/synonym

39:28 Marco Eilers, Peter Müller, and Samuel Hitz

public c l a s s AInt

implements Comparator <AInt > {

in t l e ng th ;

in t ge t (in t pos) { . . . }

public in t compare (A Int o1 , A Int o2) {

in t index , aent ry , ben t ry ;

i ndex = 0 ;

while ((i ndex < o1 . l e ng th) &&

(index < o2 . l e ng th)) {

a en t ry = o1 . ge t (i ndex) ;

b en t ry = o2 . ge t (i ndex) ;

i f (a en t ry < ben t ry) {

return −1;

}

i f (a en t ry > ben t ry) {

return 1 ;

}

i ndex ++ ;

}

return 0 ;

}

}

public c l a s s AInt

implements Comparator <AInt > {

in t l e ng th ;

in t ge t (in t pos) { . . . }

public in t compare (A Int o1 , A Int o2) {

in t index , aent ry , ben t ry ;

i ndex = 0 ;

while ((i ndex < o1 . l e ng th) &&

(index < o2 . l e ng th)) {

a en t ry = o1 . ge t (i ndex) ;

b en t ry = o2 . ge t (i ndex) ;

i f (a en t ry < ben t ry) {

return −1;

}

i f (a en t ry > ben t ry) {

return 1 ;

}

i ndex ++ ;

}

i f (o1 . l e ng th < o2 . l e ng th) {

return −1;

}

i f (o1 . l e ng th > o2 . l e ng th) {

return 1 ;

}

return 0 ;

}

}

Fig. 10. Example of a faulty comparator implementation (left) and a fixed version (right) [39]. The left

implementation fulfills properties P1 and P2 but violates property P3, the right version fulfills all three

properties.

longer than the original versions (the longest, PokerHand, is 297 LOC long in the original Java

version) and contain more branching, and can thus be used to test the scalability of our verification

approach. Since the examples are derived from real-world code, they have a number of challenging

properties: Many of them call the compare methods of other classes, many have deeply nested

conditional structures, and many loop over some data structure on both objects to compare them.

Comparators have a single method compare that has to fulfill, among others, the following

hyperproperties:

• P1: ∀x ,y. sдn(compare(x ,y)) = −sдn(compare(y,x))
• P2: ∀x ,y, z. compare(x ,y) > 0 ∧ compare(y, z) > 0 ⇒ compare(x , z) > 0

• P3: ∀x ,y, z. compare(x ,y) = 0 ⇒ sдn(compare(x , z)) = sдn(compare(y, z))

For the modified pick methods, we want to check the following hyperproperties (retaining the

naming by Pick et al.):

• P13: ∀x ,y, z. pick(x ,y, z) = pick(y,x , z)
• P14: ∀x ,y, z. pick(x ,y, z) = pick(y,x , z) ∧ pick(x ,y, z) = pick(z,y,x)

Since all implementations have the signatures int compare(T x, T y) and int pick(T x, T y, T z),
respectively, where T is the class whose objects are being compared, these properties can be

expressed as follows in our specification language:

• P1: compare : x (1) = y(2) ∧ y(1) = x (2) 2 sдn(res
(1)) = −sдn(res(2))

• P2: compare : y(1) = x (2) ∧ x (3) = x (1) ∧ y(3) = y(2) ∧ res(1) > 0 ∧ res(2) > 0) 3 res
(3) > 0

• P3: compare : x (1) = x (2) ∧ y(1) = x (3) ∧ y(3) = y(2) ∧ res(1) = 0 3 sдn(res
(2)) = sдn(res(3))

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:29

• P13: pick : true s (x
(1) = y(2) ∧ x (2) = y(1) ∧ z(1) = z(2)) ⇒ res(1) = res(2)

• P14: pick : true s ((x
(1) = y(2) ∧ x (2) = y(1) ∧ z(1) = z(2)) ∨ (x (1) = z(2) ∧ y(1) = y(2) ∧ z(1) =

x (2))) ⇒ res(1) = res(2)

For each comparator example, Sousa and Dillig provide a version of the comparator that was

initially reported as broken, as well as (both successful and incorrect) attempts at fixed versions.

Like them, we check all three hyperproperties for all versions of the examples. Fig. 10 shows an

example of one of the simpler faulty comparator implementations from the data set as well as

a fixed version. For the modified examples by Pick et al., we verify both properties only for the

correct implementations.

Our encoding is based on the examples as encoded by Sousa and Dillig and Pick et al., since

the original versions of some of the examples are no longer available. In particular, this means

that we adopt some simplifications performed by them; however, where we could find the original

versions, we tried to stay as close to them as possible. As an example, in several cases, Sousa and

Dillig exchanged loops that iterate over a list by loops with a statically fixed number of iterations,

and with the current element in each iteration being the result of calling an unspecified function;

we reverted this change.

Since the examples were originally written in Java, they contain return statements, which do not

exist in the Viper language. We manually emulate them in the standard way by declaring an output

parameter res as well as a boolean flag returned, which is initially not set. return statements are

then encoded by assigning the returned expression to the result variable, setting the returned flag,

and making subsequent statements conditional on returned not being set. Additionally, we add
the conjunct ¬returned to the guards of loops whose bodies contain return statements.

As before, we manually added pre- and postconditions as well as loop invariants to all examples.

7.4.1 Qualitative Evaluation. Our implementation returns the correct results (i.e., verifies correct

implementations and shows errors for incorrect ones) for all of the original comparator examples (see

Table 2). In that, it behaves identically to Descartes. For the modified examples, our implementation

can correctly verify all examples with the VCG backend, but fails to verify four cases with the

SE backend due to timeouts. Synonym times out on one example and is unable to infer sufficient

invariants in two other cases, and Descartes times out seven times and does not find sufficient

invariants in one case. Note, however, that the feature set of the different tools is quite different and

comparing the performance can therefore only give an indication of their respective scalability; we

discuss the differences in detail in the next section.

In all cases, we were able to use purely relational specifications for other comparemethods called

by the comparators to be verified. This is vital, since doing otherwise would require information

about the precise behavior and therefore the contents and internal data structures of referenced

classes (some of which are presumably quite complex), which clearly violates information hiding.

By using relational specifications, we were able to prove the desired hyperproperties of each

comparator only assuming that the same hyperproperties hold for called comparators of other

classes.

For loop invariants, we followed a mixed approach for specifications. For proving P1, we had

to use only simple, relational loop invariants. For P2 and P3, where k = 3, we opted to use unary

loop invariants (i.e., full functional specifications of the loop behavior) for some loops with simple

functional behavior. The main reason for this choice was that the proof would otherwise have

required invariants that describe both the relative behavior of all three executions if they all execute

the loop, and the relative behavior of any pair of executions if two executions reach the loop and

one does not. This is therefore an example where some of the used specifications are relational but

not all executions are relevant for them.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:30 Marco Eilers, Peter Müller, and Samuel Hitz

P1 P2 P3

V TVCG TSE TDC V TVCG TSE TDC V TVCG TSE TDC
ArrayInt ✓ 1.22 1.23 0.06 ✓ 1.65 21.11 0.06 ✗ 1.79 11.87 0.11

ArrayInt † ✓ 1.25 1.52 0.11 ✓ 1.91 23.21 0.16 ✓ 3.43 23.43 0.11

CatBPos ✗ 1.25 1.09 0.26 ✗ 1.50 15.39 5.85 ✗ 1.52 7.90 1.71

Chromosome ✓ 1.18 0.91 0.11 ✗ 1.22 2.48 0.15 ✗ 1.31 1.08 0.22

Chromosome † ✓ 1.25 1.20 0.06 ✓ 1.61 22.41 2.02 ✓ 1.39 9.48 0.28

CollItem ✗ 1.19 0.43 0.06 ✗ 1.27 2.21 0.11 ✗ 1.27 1.85 0.16

CollItem † ✓ 1.15 1.94 0.06 ✓ 1.22 26.89 0.16 ✓ 1.25 27.13 0.13

Contact ✓ 1.38 5.91 0.11 ✗ 2.30 15.37 0.78 ✗ 1.92 2.41 1.34

ContainerV1 ✗ 1.15 0.30 0.06 ✗ 1.17 1.08 0.03 ✗ 1.25 0.88 0.06

ContainerV2 ✗ 1.15 0.31 0.06 ✗ 1.21 1.34 0.03 ✗ 1.22 1.02 0.06

Container † ✓ 1.19 0.94 0.16 ✓ 1.31 4.17 2.32 ✓ 1.25 2.99 0.94

DataPoint ✗ 1.30 0.78 0.21 ✗ 1.63 16.20 0.67 ✗ 1.61 38.80 0.42

FileItem ✓ 1.14 0.63 0.03 ✓ 1.37 4.58 0.03 ✗ 1.23 0.72 0.11

FileItem † ✓ 1.20 1.52 0.06 ✓ 1.34 11.29 0.06 ✓ 1.30 9.44 0.06

IsoSpriteV1 ✗ 1.16 0.33 0.06 ✗ 1.19 1.13 0.03 ✗ 1.21 1.01 0.06

IsoSpriteV2 ✗ 1.35 0.58 0.31 ✗ 2.13 32.94 1.22 ✓ 2.13 168.62 0.12

Match ✗ 1.16 0.47 0.04 ✓ 1.14 5.33 0.03 ✗ 1.19 1.72 0.06

Match † ✓ 1.17 0.96 0.03 ✓ 1.20 7.16 0.06 ✓ 1.22 7.29 0.06

NameComparator ✗ 1.24 0.74 0.07 ✓ 1.77 17.17 0.11 ✓ 1.70 16.44 0.10

NameComparator † ✓ 1.31 1.63 0.10 ✓ 1.66 24.10 0.11 ✓ 1.66 24.31 0.16

Node ✓ 1.13 0.77 0.03 ✓ 1.16 5.13 0.03 ✗ 1.20 1.37 0.07

Node † ✓ 1.13 0.77 0.03 ✓ 1.19 4.90 0.06 ✓ 1.21 5.01 0.06

NzbFile ✗ 1.39 0.56 0.11 ✓ 1.96 121.60 0.21 ✓ 1.76 108.31 0.11

NzbFile † ✓ 1.35 3.05 0.16 ✓ 2.39 71.57 0.21 ✓ 2.38 65.09 0.42

PokerHand ✓ 1.56 5.83 0.26 ✗ 9.19 118.18 0.37 ✗ 8.67 120.81 0.99

PokerHand † ✓ 1.62 6.94 0.27 ✓ 9.15 237.42 0.37 ✓ 9.09 233.72 0.66

Solution ✓ 1.17 0.86 0.16 ✓ 1.22 4.29 0.37 ✗ 1.24 1.25 0.52

Solution † ✓ 1.16 0.96 0.31 ✓ 1.29 4.84 0.97 ✓ 1.23 4.53 0.92

TextPosition ✓ 1.24 1.84 0.01 ✗ 1.37 7.77 0.01 ✗ 1.43 6.87 0.01

TextPosition † ✓ 1.28 1.99 0.11 ✓ 1.33 26.29 0.37 ✓ 1.42 24.98 0.16

Time ✗ 1.15 0.43 0.11 ✓ 1.34 6.23 0.32 ✓ 1.21 3.80 0.02

Time † ✓ 1.11 0.45 0.06 ✓ 1.28 3.92 0.26 ✓ 1.19 1.90 0.16

Word ✗ 1.30 0.61 0.23 ✗ 1.60 3.73 4.43 ✓ 1.65 34.68 0.03

Word † ✓ 1.26 1.54 0.11 ✓ 1.65 23.93 0.17 ✓ 1.77 24.41 0.11

Table 2. Evaluated examples of Java comparators. We show the verification outcomes for all three hyper-

properties for the original version(s) and the fixed versions (marked with †) of each example. Columns TVCG ,
TSE , and TDC show the running times of the verifiers for the VCG backend, the SE backend, and Descartes,

respectively, in seconds.

As a result, relational loop invariants would in these cases have been more verbose and arguably

more complex. Additionally, we subjectively found it non-trivial to find the required relational loop

invariants in some cases: Unlike in the case of secure information flow, where relational invariants

translate straightforwardly to high-level concepts like some data being low, finding relational

invariants for properties 2 and 3 actually required thinking in terms of multiple executions and

was thus more complex. We proved properties P13 and P14 on the modified examples also using a

combination of relational of unary specifications for similar reasons.

Nevertheless, we benefited from the ability to use relational loop invariants in several cases. In

particular, in examples where other comparators are called inside loop bodies, using functional

specifications in the invariant is not possible without also requiring them for the called comparator,

which, as pointed out before, is undesirable and not modular. In one example, a loop called another

comparator under a condition and performed some simple computation by itself under a different

condition; in this case we found it easiest to use a mixed specification that describes the behavior

of the comparator in relational terms and the alternative functional behavior in unary terms.

7.4.2 Performance. Table 2 shows the timings measured to verify all original comparator exam-

ples using Viper’s VCG backend, its SE backend, and the Descartes tool by Sousa and Dillig. The

times for the modified examples are shown in Table 3. All times were measured under the same

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:31

P13 P14

TVCG TSE TDC TSY TVCG TSE TDC TSY
ArrayInt-pick3-simple † 3.49 18.08 2.16 0.82 3.48 22.60 TO 292.90

ArrayInt-pick3 † 3.53 51.95 2.03 1.01 3.64 58.95 TO 210.71

Chromosome-pick3-simple † 3.52 55.65 1.12 0.68 3.47 78.28 TO 177.69

Chromosome-pick3 † 3.66 28.12 3.15 1.97 3.63 34.02 TO 980.77

PokerHand-pick3-part1 † 4.61 202.41 6.96 2.86 5.19 188.74 TO 1548.27

PokerHand-pick3-part2 † 7.14 1082.14 11.90 5.18 9.73 1125.56 TO -

PokerHand-pick3 † 12.05 TO 20.63 8.63 18.07 TO - -

Solution-pick3 † 4.79 TO 84.92 19.01 5.28 TO TO TO

Table 3. Evaluated modified examples. All examples fulfill both properties and verify successfully in every

configuration for which a time is shown. Columns TVCG , TSE , TDC , and TSY show the running times of

the verifiers for the VCG backend, the SE backend, Descartes, and Synonym, respectively, in seconds. "TO"

indicates that the test times out after one hour, "-" means that the tool reports that it could not infer sufficient

invariants.

conditions as the timings for secure information flow. In particular, our timings for Descartes and

Synonym were measured using the version of the tools currently on Github; in virtually all cases,

they are similar to the timings reported by Sousa and Dillig [39] and Pick et al. [31], respectively.

We first observe that our implementation generally achieves good performance when using the

VCG backend. The average verification time for the original comparators is under two seconds

for all three properties. With maximal verification times of under ten seconds even for the most

complex comparator examples and 18 seconds for the most complex modified example, we conclude

that our technique can be used to verify hyperproperties of realistic code in very reasonable time.

When using our tool with Viper’s SE backend, we observe considerably worse performance

than with VCG. While the average verification times for the original comparators are comparable

for the first property, the SE backend performs much worse for the two 3-safety hyperproperties,

particularly for the examples that have deeply nested conditionals, where the worst case is an

example taking almost four minutes to verify. For the larger modified examples, performance

becomes considerably worse; two of the examples do not verify within one hour. This confirms our

earlier suspicion that the performance with SE (which considers each branch separately) is impaired

by the large amount of branching in modular product programs: Since our product transformation

introduces many branches into the program (more for k = 3 than for k = 2), the SE backend has to

consider a large number of possible paths through the program. While the SE backend struggles

with this, the VCG backend is able to exploit the fact that many of those branches are on the same

or related conditions, and the actual number of feasible paths through the program is therefore

much smaller than it seems.

We can now compare the performance of our implementation to that of Descartes and Synonym.

While this leads to some interesting conclusions, we stress that the feature sets supported by the

tools are quite different. Viper is a mature, general purpose verification tool with built-in support

for mutable heap datastructures and several basic datatypes; it performs several additional tasks

like type checking, well-definedness checking of specifications, and proving memory safety, all of

which are not performed by Descartes and Synonym. The latter, on the other hand, are specialized

prototype implementations that do not support heap mutation or data types beyond integers, but,

unlike Viper, are able to automatically infer loop invariants via a guess-and-check-approach.

Compared to Descartes and Synonym, our implementation using the VCG backend is generally

slower for small examples (the original comparators) but faster for the more complex modified

examples; in fact, all verifiers except for VCG time out on at least one example. This is likely at least

partly due to the aforementioned differences between the tools; while Viper has a higher constant

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:32 Marco Eilers, Peter Müller, and Samuel Hitz

overhead for each program due to startup time and additional checks, the additional work needed

by Descartes and Synonym for guessing and checking loop invariants becomes more of a factor

for more complex examples. SE has a lower constant overhead than VCG
3
and is more competitive

than VCG on small examples (though still slower than Descartes and Synonym) but scales much

worse in most cases and is thus the slowest tool for most (though not all) of the more complex

examples.

We conclude that while our technique creates programs that lead to bad performance with

some verification techniques (SE), it can be combined with other standard verification techniques

(in particular, VCG) to verify arbitrary hyperproperties of real-world code in reasonable time.

Compared to existing more automated tools, our technique delivers better performance on very

complex examples when used with VCG. In particular, since our approach allows modular (and

therefore independent) verification of different procedures, we expect it to scale to large programs.

One advantage of using a program transformation approach for verifying hyperproperties is that

one can freely choose which tool to use to reason about the resulting program, based on the desired

level of automation and required language features. In contrast, adding mutable heap support to

Descartes would require changes to the underlying logic itself.

8 RELATEDWORK
The notion of k-safety hyperproperties was originally introduced by Clarkson and Schneider [12].

Here, we focus on statically proving hyperproperties for imperative and object-oriented programs;

much more work exists for testing or monitoring hyperproperties like secure information flow at

runtime, or for reasoning about hyperproperties in different programming paradigms.

Relational logics such as Relational Hoare Logic [10], Relational Separation Logic [41] and

others [1, 9] allow reasoning directly about relational properties of two different program executions.

Unlike our approach, they usually allow reasoning about the executions of two different programs;

as a result, they do not give special support for two executions of the same program calling the

same procedure with a relational specification. Recently, Banerjee et al. [4] introduced biprograms,

which allow explicitly expressing alignment between executions and using relational specifications

to reason about aligned calls; however, this approach requires that procedures with relational

specifications are always called by both executions, which is for instance not the case if a call occurs

under a high guard in secure information flow verification. We handle such cases by interpreting

relational specifications as trivially true; one can then still resort to functional specifications to

complete the proof. Their work also does not allow mixed specifications, which are easily supported

in our product programs. Relational program logics are generally difficult to automate. Recent work

by Sousa and Dillig [39] presents a logic that can be applied automatically by an algorithm that

implicitly constructs different product programs that align some identical statements, but does not

fully support relational specifications. Pick et al. [31] use similar ideas but exploit symmetries in

the verification problem and further align the execution of loops for improved performance. Both

approaches require dedicated tool support, whereas our modular product programs can be verified

using off-the-shelf tools.

The approach of reducing hyperproperties to ordinary trace properties was introduced by

self-composition [8]. While self-composition is theoretically complete, it does not allow modular

reasoning with relational specifications. The resulting problem of having to fully specify program

behavior was pointed out by Terauchi and Aiken [40]; since then, there have been a number of

different attempts to solve this problem by allowing (parts of) programs to execute in lock-step.

3
In the VCG backend, each verification task requires starting a .NET runtime for running the Boogie [5] verifier in the

background, which leads to some constant amount of overhead.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:33

Terauchi and Aiken [40] did this for secure information flow by relying on information from a type

system; other similar approaches exist [30].

Product programs [6, 7] allow different interleavings of program executions. The initial product

program approach [6] would in principle allow the use of relational specifications for procedure

calls, but only under the restriction that both program executions always follow the same control

flow. The generalized approach [7] allows combining different programs and arbitrary numbers of

executions. This product construction is non-deterministic and usually interactive; in some (but not

all) cases, it allows avoiding duplicated calls and loops and thereby using relational specifications.

However, the construction requires manual work by the programmer, and whether the product

can be constructed in such a way that call is not duplicated depends on the used specification,

meaning that the product construction and verification are intertwined and a new product has to be

constructed when specifications change. In contrast, our product construction is fully deterministic

and automatic, allows arbitrary control flows while still being able to use relational specifications

for all loops and calls, and therefore avoids the issue of requiring full functional specifications.

Techniques for proving program equivalence, whose goal is to prove relational properties about

pairs of programs, can be used to prove hyperproperties of a single program as well. In particular,

Hawblitzel et al. [22] and Lahiri et al. [25] propose two different techniques for modularly proving

and using mutual summaries that relate the behavior of two different procedures. Compared to

our work, both techniques have the advantage of being able to relate arbitrary pairs of procedure

calls. In the former approach [22], this is achieved by axiomatically assuming mutual summaries

for any pair of calls and subsequently generating verification conditions that check the mutual

summary of one pair of procedures assuming these axioms for all calls. In contrast to modular

product programs, this approach does not allow checking relational preconditions, and it does

not work with standard static analysis tools, since those typically cannot make use of the axioms

that are used to assume relational postconditions. In the latter approach [25], mutual summaries

are used via a product construction that stores the local and global state before and after each

procedure call in auxiliary variables, sequentially composes the bodies of both different procedures,

and subsequently assumes or asserts relational properties about the stored information for each

pair of related calls. As a result, the technique is limited in the presence of non-termination (since

no relational properties are checked if one of the programs does not terminate) and, for example,

cannot support reasoning about termination channels. Importantly, both of the aforementioned

approaches require that dependencies on global variables are statically known and finite (since their

values need to be mentioned in axioms or stored for each call, respectively) and therefore do not

easily extend to programs with dynamic heap allocation and to separation logics, unlike modular

product programs. Additionally, both approaches rely on eliminating loops by transforming them

to tail recursion. This is always possible but can require additional specifications from the user to

carry information about local variables into procedure calls inserted by the transformation. Felsing

et al. [20] present a weakest precondition calculus for showing (conditional) program equivalence

as well as an encoding into Horn clauses for automation. Their approach to loop verification is

based on similar ideas as our loop encoding and they also support mutual function summaries. In

contrast to our approach, Felsing et al. consider only terminating programs in a language without

arrays or a mutable heap, and their approach requires dedicated tool support. Similar ideas for loop

fusion have been used for other purposes, e.g., to simplify loop invariants in a single program and

for program optimization [23].

The equivalence checking approach by Hawblitzel et al. [22] also supports checking relative

termination under some relational precondition, which is similar but not identical to the absence of

termination channels; it asserts that if one execution terminates, the other can terminate as well.

The presented approach requires fewer annotations than ours, in particular, it does not require

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:34 Marco Eilers, Peter Müller, and Samuel Hitz

ranking functions, but as a result it is less precise and does not allow any loops or procedure calls

under high conditions. Similarly, Elenbogen et al. [19] provide an algorithm for proving mutual

termination, which can be used for proving the absence of termination channels, via a product

construction. It, too, is less precise than our approach but requires less user input.

Reducing control flow to straight-line code with conditional statements, also called predicated

execution, is sometimes performed as a performance optimization to avoid branching. The principle

is also employed in modern GPUs, which execute multiple threads at once in a SIMD fashion, and

implement diverging control flow by deactivating some threads while a branch they do not take is

executed. Betts et al. [11] exploit this and present an encoding similar to our product construction

to prove trace properties of (concurrently executed) GPU kernels, but do not explore its application

to hyperproperties of sequential programs. Collingbourne et al. [13] build on this work to present

an encoding for GPU kernels with arbitrary reducible control flow graphs; the main ideas behind

this extended encoding could likely also be used to create modular product programs based on

control flow graphs.

Considerable work has been invested into proving specific hyperproperties like secure infor-

mation flow. One popular approach is the use of type systems [38]; while those are modular and

offer good performance, they overapproximate possible program behaviors and are therefore less

precise than approaches using logics. In particular, they require labeling any single value as either

high or low, and do not allow distinctions like the one we made for the example in Fig. 1, where

only the first bits of a sequence of integers were low. In addition, type systems typically struggle to

prevent information leaks via side channels like termination or program aborts. There have been

attempts to create type systems that handle some of these limitations (e.g. [17]).

Static analyses [2, 21] enable fully-automatic reasoning. They are typically not modular and,

similarly to type systems, need to abstract semantic information, which can lead to false positives.

They strike a trade-off different from our solution, which requires specifications, but enables precise,

modular reasoning.

A number of logic-based approaches to proving specific hyperproperties exist. As an example,

Darvas et al. use dynamic logic for proving non-interference [15]; this approach offers some

automation, but requires user interaction for most realistic programs. Leino et al. [26] verify

determinism up to equivalence using self-composition, which suffers from the drawbacks explained

above. Prabawa et al. [32] present a logic for proving secure information flow. While their approach,

like ours, enables modular verification, it can only track secrecy on a more coarse-grained level,

does not take into account semantic information, and will therefore produce more false alarms.

The approach of declassifying data via special statements or expressions has been introduced

by Sabelfeld and Myers [34]. An extended version of JML by Scheben and Schmitt [36] supports

declassification expressions as parts of method contracts that can be verified using self-composition.

Other kinds of declassification have been studied extensively; Sabelfeld and Sands [35] provide a

good overview. Li and Zdancewic [27] introduce downgrading policies that describe which informa-

tion can be declassified and, similar to our approach, can do so for arbitrary expressions. Costanzo

and Shao [14] define a similar system that allows users to define program preconditions to describe

which parts of the secret data may be released. Our approach allows for similar specifications that

describe that some aspects of some data are low (and everything else is high by default).

9 CONCLUSION AND FUTUREWORK
We have presented modular product programs, a novel form of product programs that enable

modular reasoning about k-safety hyperproperties using relational specifications with off-the-shelf

verifiers. We have proved our approach sound and complete for arbitrary values of k . We showed

that modular products are expressive enough to handle advanced aspects of secure information

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Modular Product Programs 39:35

flow verification. They can prove the absence of termination and timing side channels and encode

declassification. Our implementation shows that our technique works in practice on a number of

challenging examples from both the literature and real user code, and exhibits good performance

even without optimizations.

For future work, we plan to infer hyperproperties by using standard program analysis techniques

on the products. We also plan to generalize our technique to prove probabilistic secure information

flow for concurrent program by combining our encoding with ideas from concurrent separation

logic. Finally, we plan to optimize our encoding to further improve performance.

ACKNOWLEDGMENTS
We would like to thank Toby Murray and David Naumann for helpful discussions. We are grateful

to the TOPLAS and ESOP reviewers for their valuable comments. We also gratefully acknowledge

support from the Zurich Information Security and Privacy Center (ZISC).

REFERENCES
[1] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A relational logic for

higher-order programs. PACMPL 1, ICFP (2017), 21:1–21:29.

[2] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and ShiyiWei. 2017. Decomposition

instead of self-composition for proving the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017.

362–375.

[3] Anindya Banerjee and David A. Naumann. 2002. Secure Information Flow and Pointer Confinement in a Java-like

Language. In 15th IEEE Computer Security Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova

Scotia, Canada. 253.

[4] Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. 2016. Relational Logic with Framing and Hypotheses.

In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS

2016, December 13-15, 2016, Chennai, India. 11:1–11:16.

[5] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In FMCO (Lecture Notes in Computer Science), Vol. 4111. Springer,

364–387.

[6] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification Using Product Programs. In FM 2011:

Formal Methods - 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.

200–214.

[7] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2013. Beyond 2-Safety: Asymmetric Product Programs for

Relational Program Verification. In Logical Foundations of Computer Science, International Symposium, LFCS 2013, San

Diego, CA, USA, January 6-8, 2013. Proceedings. 29–43.

[8] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2011. Secure information flow by self-composition. Mathematical

Structures in Computer Science 21, 6 (2011), 1207–1252. https://doi.org/10.1017/S0960129511000193

[9] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2009, Savannah, GA, USA, January 21-23, 2009. 90–101.

[10] Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In Proceedings

of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January

14-16, 2004. 14–25.

[11] Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for

GPU kernels. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. 113–132.

https://doi.org/10.1145/2384616.2384625

[12] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010), 1157–1210.

[13] Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-Step

Semantics for Analysis and Verification of GPU Kernels. In Programming Languages and Systems - 22nd European

Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 270–289. https://doi.org/10.1007/978-3-642-37036-6_16

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1007/978-3-642-37036-6_16

39:36 Marco Eilers, Peter Müller, and Samuel Hitz

[14] David Costanzo and Zhong Shao. 2014. A Separation Logic for Enforcing Declarative Information Flow Control

Policies. In Principles of Security and Trust - Third International Conference, POST 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. 179–198.

[15] Ádám Darvas, Reiner Hähnle, and David Sands. 2005. A Theorem Proving Approach to Analysis of Secure Information

Flow. In Security in Pervasive Computing, Second International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005,

Proceedings. 193–209.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.

337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[17] Zhenyue Deng and Geoffrey Smith. 2004. Lenient Array Operations for Practical Secure Information Flow. In 17th

IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. 115.

[18] Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In Programming Languages and Systems

- 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 502–529.

[19] Dima Elenbogen, Shmuel Katz, and Ofer Strichman. 2015. Proving mutual termination. Formal Methods in System

Design 47, 2 (2015), 204–229. https://doi.org/10.1007/s10703-015-0234-3

[20] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. 2014. Automating regression

verification. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden -

September 15 - 19, 2014. 349–360. https://doi.org/10.1145/2642937.2642987

[21] Dennis Giffhorn and Gregor Snelting. 2015. A new algorithm for low-deterministic security. Int. J. Inf. Sec. 14, 3 (2015),

263–287.

[22] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebêlo. 2013. Towards Modularly Compar-

ing Programs Using Automated Theorem Provers. In Automated Deduction - CADE-24 - 24th International Confer-

ence on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. 282–299. https://doi.org/10.1007/

978-3-642-38574-2_20

[23] Akifumi Imanishi, Kohei Suenaga, and Atsushi Igarashi. 2018. A guess-and-assume approach to loop fusion for

program verification. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,

Los Angeles, CA, USA, January 8-9, 2018. 2–14.

[24] Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns, Michael Kirsten, and Martin Mohr. 2015. A Hybrid

Approach for Proving Noninterference of Java Programs. In IEEE 28th Computer Security Foundations Symposium, CSF

2015, Verona, Italy, 13-17 July, 2015. 305–319.

[25] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential assertion checking.

In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013. 345–355. https://doi.org/

10.1145/2491411.2491452

[26] K. Rustan M. Leino and Peter Müller. 2008. Verification of Equivalent-Results Methods. In Programming Languages

and Systems, 17th European Symposium on Programming, ESOP 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. 307–321.

[27] Peng Li and Steve Zdancewic. 2005. Downgrading policies and relaxed noninterference. In Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA,

January 12-14, 2005. 158–170.

[28] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Automatic Verification of Iterated Separating

Conjunctions Using Symbolic Execution. In Computer Aided Verification - 28th International Conference, CAV 2016,

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I. 405–425.

[29] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-

Based Reasoning. In Verification, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI

2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. 41–62.

[30] David A. Naumann. 2006. From Coupling Relations to Mated Invariants for Checking Information Flow. In Computer

Security - ESORICS 2006, 11th European Symposium on Research in Computer Security, Hamburg, Germany, September

18-20, 2006, Proceedings. 279–296.

[31] Lauren Pick, Grigory Fedyukovich, and Aarti Gupta. 2018. Exploiting Synchrony and Symmetry in Relational

Verification. In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated

Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. 164–182.

[32] Adi Prabawa, Mahmudul Faisal Al Ameen, Benedict Lee, and Wei-Ngan Chin. 2018. A Logical System for Modular

Information Flow Verification. In Verification, Model Checking, and Abstract Interpretation - 19th International Conference,

VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018, Proceedings. 430–451.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10703-015-0234-3
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1145/2491411.2491452

Modular Product Programs 39:37

[33] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on

Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society,

55–74.

[34] Andrei Sabelfeld and Andrew C. Myers. 2003. A Model for Delimited Information Release. In Software Security -

Theories and Systems, Second Mext-NSF-JSPS International Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003,

Revised Papers. 174–191.

[35] Andrei Sabelfeld and David Sands. 2005. Dimensions and Principles of Declassification. In 18th IEEE Computer Security

Foundations Workshop, (CSFW-18 2005), 20-22 June 2005, Aix-en-Provence, France. 255–269.

[36] Christoph Scheben and Peter H. Schmitt. 2011. Verification of Information Flow Properties of Java Programs without

Approximations. In Formal Verification of Object-Oriented Software - International Conference, FoVeOOS 2011, Turin,

Italy, October 5-7, 2011, Revised Selected Papers. 232–249. https://doi.org/10.1007/978-3-642-31762-0_15

[37] Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM Trans. Program. Lang. Syst. 34, 1

(2012), 2:1–2:58.

[38] Geoffrey Smith. 2007. Principles of Secure Information Flow Analysis. In Malware Detection. 291–307.

[39] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,

June 13-17, 2016. 57–69.

[40] Tachio Terauchi and Alexander Aiken. 2005. Secure Information Flow as a Safety Problem. In Static Analysis, 12th

International Symposium, SAS 2005, London, UK, September 7-9, 2005, Proceedings. 352–367.

[41] Hongseok Yang. 2007. Relational separation logic. Theor. Comput. Sci. 375, 1-3 (2007), 308–334.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1007/978-3-642-31762-0_15

39:38 Marco Eilers, Peter Müller, and Samuel Hitz

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, Article 39. Publication date: March 2010.

	Abstract
	1 Introduction
	2 Overview
	2.1 Relational Specifications
	2.2 Modular Product Programs
	2.3 Interpretation of Relational Specifications
	2.4 Product Program Verification

	3 Preliminaries
	4 Modular k-Product Programs
	4.1 Product Construction
	4.2 Transformation of Assertions
	4.3 Heap-Manipulating Programs
	4.4 Discussion

	5 Soundness and Completeness
	5.1 Preliminaries
	5.2 Properties of Product Executions
	5.3 Provable Properties

	6 Modular Verification of Secure Information Flow
	6.1 Non-Interference
	6.2 Information Flow Specifications
	6.3 Secure Information Flow with Arbitrary Security Lattices
	6.4 Declassification
	6.5 Preventing Termination Channels
	6.6 Preventing Timing Channels

	7 Implementation and Evaluation
	7.1 Viper Overview
	7.2 Implementation in Viper
	7.3 Evaluation: Secure Information Flow
	7.4 Evaluation: Other Hyperproperties

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

