
Verification Algorithms for Automated
Separation Logic Verifiers

Marco Eilers, Malte Schwerhoff, and Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
{marco.eilers, malte.schwerhoff, peter.mueller}@inf.ethz.ch

Abstract. Most automated program verifiers for separation logic use
either symbolic execution or verification condition generation to extract
proof obligations, which are then handed over to an SMT solver. Exist-
ing verification algorithms are designed to be sound, but differ in perfor-
mance and completeness. These characteristics may also depend on the
programs and properties to be verified. Consequently, developers and
users of program verifiers have to select a verification algorithm carefully
for their application domain. Taking an informed decision requires a sys-
tematic comparison of the performance and completeness characteristics
of the verification algorithms used by modern separation logic verifiers,
but such a comparison does not exist.
This paper describes five verification algorithms for separation logic,
three that are used in existing tools and two novel algorithms that com-
bine characteristics of existing symbolic execution and verification con-
dition generation algorithms. A detailed evaluation of implementations
of these five algorithms in the Viper infrastructure assesses their perfor-
mance and completeness for different classes of input programs. Based on
the experimental results, we identify candidate portfolios of algorithms
that maximize completeness and performance.

Keywords: Symbolic execution, verification condition generation, sep-
aration logic, heap representation, SMT solver, portfolio

1 Introduction

Given a program and a specification, automated deductive program verifiers
such as Boogie [34], Corral [33], Dafny [35], and Why3 [25] compute proof obli-
gations whose validity implies the correctness of the input program. These proof
obligations are typically checked using SMT solvers, such as CVC5 [5] or Z3 [39].

For program verifiers based on separation logic [48] or related permission
logics [57], proof obligations are computed using two prevalent verification algo-
rithms: symbolic execution (SE) and verification condition generation (VCG).
For instance, Caper [17], Gillian [38], JaVerT [54], SecC [24], Smallfoot [8],
and VeriFast [30] are separation logic verifiers based on symbolic execution,
whereas Chalice [37] and GrassHopper [46] use verification condition generation.
Viper [42] provides two backend-verifiers, one based on SE and one on VCG.



2 M. Eilers et al.

Even though these tools differ in many aspects of the supported programming
language, separation logic, and proof automation, they employ fairly uniform SE
and VCG algorithms. Their SE algorithms use a symbolic heap representation
based on separation logic’s partial-heap semantics [44]: a symbolic heap maps
those separation logic resources (in particular, heap locations) to symbolic values
that are owned in a given program state. Each owned resource is represented by
one or more heap chunks, which map resources to ownership and value informa-
tion. In contrast, the VCG algorithms implemented in separation logic verifiers
use a total-heap representation, in which the heap is a total map from memory
locations to values, and the currently-owned resources are tracked in a separate
data structure. These two different ways of internally modeling the heap both
implement the same source-level language semantics.

These verification algorithms, and their variations implemented in various
tools, are all designed to be sound, but strike different trade-offs between perfor-
mance and completeness. For instance, SE verifies each path through a method
separately, whereas VCG typically generates one proof obligation for the entire
method. Therefore, VCG produces fewer, but larger proof obligations, which
may affect the effectiveness and performance of the underlying SMT solver.

Consequently, developers of program verifiers need to choose the verification
algorithm carefully, depending on the intended application area of their tools.
For verifiers that support several algorithms, such as the verifiers built on top
of the Viper infrastructure [9, 22, 63], this choice needs to be made by users.
Taking an informed decision requires a systematic comparison of the performance
and completeness characteristics of the verification algorithms used by modern
separation logic verifiers. Such a comparison necessitates implementations of all
relevant algorithms for the same programming language, verification logic, and
tool because comparisons across different settings would not yield meaningful
results. To the best of our knowledge, such implementations and, consequently,
a comprehensive comparison do not exist.

This Work. This paper describes the following five verification algorithms and
performs a detailed comparison.

1. SE-PS: An SE algorithm that looks up information in the partial symbolic
heap by trying to identify a single heap chunk to provide the required in-
formation. This algorithm is used in JaVerT, SecC, VeriFast, and Viper’s
SE-backend.

2. SE-PC: An SE partial heap algorithm that performs look-ups by combin-
ing the information available in all heap chunks. Combining different heap
chunks may provide additional information, for instance, by summing up
fractional permissions [12] or by using disjunctive properties.

3. SE-TR: An SE algorithm that uses a total heap representation per individ-
ual resource, akin to VCG-TR below.

4. VCG-TR: A VCG total heap algorithm that uses a separate map per re-
source. This representation is used by GrassHopper.



Verification Algorithms for Automated Separation Logic Verifiers 3

5. VCG-TA: A VCG total heap algorithm that stores the information for all
resources in a single map. This representation is used in Chalice and Viper’s
VCG-backend.

SE-PC and SE-TR are novel algorithms, which introduce characteristics of
existing VCG algorithms into SE, namely simultaneous reasoning about multi-
ple chunks of the (partial) heap, and a total heap representation, respectively.
Thereby, they offer different trade-offs than existing algorithms.

To enable a fair comparison, we implemented all five algorithms for Viper.
We evaluated them on a diverse benchmark suite that includes existing Viper
examples and code produced by different Viper frontends, which allows us to
draw conclusions for different kinds of input programs.

Our comparison identifies SE-PS as the best algorithm overall, but shows that
the different verification algorithms have complementary strengths. Based on our
findings, we identify and discuss several portfolios of algorithms, which maximize
completeness across the benchmark suite. In deductive verification, portfolio
approaches have been used successfully for the underlying SMT solver [25, 40],
but, to our knowledge, not for the equally-important verification algorithms.

Contributions and Outline. We make the following contributions:

– We survey the SE and VCG algorithms used in existing separation logic
verifiers and propose two new algorithms, which combine characteristics of
existing SE and VCG algorithms (Sec. 2).

– We provide the first systematic comparison of verification algorithms for
separation logic. A diverse set of benchmarks provides insights into the per-
formance and completeness for different classes of input programs (Sec. 3).

– We identify candidate portfolios of verification algorithms to maximize per-
formance and completeness, several of which include SE-TR, one of the novel
algorithms we propose (Sec. 4).

2 Verification Algorithms

In this section, after providing necessary background on the Viper language, we
discuss the two main design dimensions for verification algorithms for separation
logic (SE vs. VCG, and total vs. partial heap representations), give an overview
of the considered algorithms, and discuss various design trade-offs.

2.1 Viper Verification Language

The Viper language [42] is a simple object-based imperative language with spec-
ification features like pre- and postconditions and loop invariants. Viper is based
on implicit dynamic frames [57], a variant of separation logic, and supports



4 M. Eilers et al.

advanced separation logic features such as fractional permissions [12], predi-
cates [43], magic wands, and quantified resources [41] (also called iterated sep-
arating conjunctions). Verification algorithms for Viper have to support all of
these features, which makes Viper an interesting target for a comparison.

A Viper state consists of local variables and a built-in heap that maps loca-
tions (consisting of a reference and a field) to values. Control flow is expressed
via conditionals, loops, method calls, and gotos. Whereas statements may have
side effects, expressions are always side-effect free and include calls to (partial)
functions, which may inspect the heap.

Following the implicit dynamic frames approach, Viper assertions express
resource ownership separately from value information. For example, the asser-
tion acc(x.f) ∗ x.f = 1 (corresponding to separation logic’s points-to predi-
cate x.f 7→ 1) includes an accessibility predicate acc(x.f), expressing exclusive
ownership of the heap location, and a heap-dependent expression to constrain its
value. The general shape of accessibility predicates is acc(R, p), where R de-
notes a resource and p a fractional permission. Resources can be heap locations,
predicate instances, and magic wands; all resources can be universally quanti-
fied over. Predicates abstract over (possibly unbounded) heap data structures,
whereas magic wands are used to express partial data structure, which occur,
for instance, during iterative traversals.

2.2 Design Dimensions

Verification algorithms for separation logic can be classified according to the
technique they use to compute proof obligations (SE or VCG) and according
to their heap representation (total or partial). In the following, we survey these
dimensions and their main trade-offs.

SE vs. VCG. Verification in separation logic is modular, that is, each method
is verified independently, using method specifications to reason about calls. SE
and VCG differ in how they compute the proof obligations for each method.

SE uses a symbolic state, typically a triple of symbolic store, heap, and path
conditions. It explores each path through a method body separately (using loop
invariants to represent a statically-unknown number of loop iterations). State-
ments on the path may update the symbolic state; in particular, the conditions
of if-statements and loops are recorded in the path conditions. Expressions and
assertions are evaluated in the symbolic state. Proof obligations, for instance, to
show that an assertion holds, are expressed over the current symbolic state and
discharged on the fly via an SMT query. Consequently, SE typically generates
many SMT queries for each method body.

In contrast, VCG uses a predicate transformer, usually weakest preconditions,
to produce (typically) a single proof obligation (and, thus, SMT query) per
method body. This predicate transformer is based on a state model that, in the
context of separation logic, must encode heap and ownership information (e.g.,
via a map axiomatization, see below).



Verification Algorithms for Automated Separation Logic Verifiers 5

There are two fundamental differences between SE and VCG. First, SE gen-
erates many, but comparably small and simple SMT queries, whereas VCG pro-
duces a single, more complicated query. This difference may affect verification
times. Moreover, the complexity of the SMT queries can affect the SMT solver’s
ability to discharge (valid) queries. Second, for a rich verification logic such as
Viper’s, an SE algorithm is complex and performs substantial work for main-
taining the symbolic state, whereas VCG delegates most of the heavy lifting
to the SMT solver. This makes SE more difficult to implement, but also offers
the potential for many optimizations (possibly with the use of additional SMT
queries), whereas it is more difficult to direct the proof search of an SMT solver.
Our evaluation in the next section explores these trade-offs and others.

Partial vs. Total Heaps. Both SE and VCG need to represent heap and own-
ership information. Existing SE algorithms do that by maintaining an internal
map data structure, typically a collection of heap chunks (also called heaplets).
A heap chunk is typically a tuple (x, f, v, p), denoting p permission to memory
location x.f at which value v is stored. Resources that are not owned in a state
have no corresponding heap chunk (or a chunk with permission amount p = 0).
Consequently, these internal map data structures represent partial heaps, which
represent value and ownership information simultaneously.

In contrast, VCG algorithms use an external representation that tracks heap
information only as part of the SMT queries. Since maps in SMT are total,
value and ownership need to be encoded separately as two total maps H and
M . The heap H : Resource 7→ Value maps resources to their values, whereas the
permission mask M : Resource 7→ Permission tracks ownership by mapping each
resource to the permission amount currently held (1 for exclusive ownership, and
0 if the resource is not owned in the current state). Suitable proof obligations
ensure that H is accessed only at resources for which M contains the necessary
permission. That is, the mask effectively represents the domain of a partial heap.
We call this representation total heaps.

We highlight three key differences between partial and total heaps here. First,
total heaps generally lead to more complex SMT queries. In particular, each
change of the heap (or mask) leads to an SMT term that relates the new heap
to the previous one, leading to increasingly large formulas, whereas the data
structure for partial heaps can be updated destructively. Moreover, encoding
the heap information in an SMT query typically uses many universal quantifiers
for total heaps, whereas partial heaps are finite collections whose content can be
described in quantifier-free formulas.

Second, partial heaps generally require more complex algorithms to perform
heap look-ups and modifications, possibly involving SMT queries. In contrast,
total heaps delegate much of the heavy lifting to the SMT solver. This difference
is especially prominent for resources that represent an unbounded number of
heap locations, such as recursive predicates and iterated separating conjunction.
These require dedicated data structures and operations in partial heaps [41], but
fairly trivial encodings with total heaps.



6 M. Eilers et al.

Third, total heaps greatly simplify the encoding of heap-dependent functions
to SMT, as uninterpreted functions of the total heap and corresponding ax-
ioms [29]. In contrast, partial heaps require non-trivial algorithms to extract the
information needed to determine a function’s value [55].

2.3 Algorithms

In this subsection, we sketch five verification algorithms that occupy different
spots in the design space described above and, thus, have different performance
and completeness characteristics. Note that these algorithms do not directly
correspond to the four combinations of heap representation and technique used
to compute proof obligations explained before: First, there is no algorithm com-
bining VCG and partial heaps, since VCG algorithms necessarily require an
external heap representation. Second, we discuss two different algorithms that
combine SE with partial heaps. Three of the algorithms are used in existing tools,
whereas two are novel SE algorithms, including the first SE algorithm that uses
total heaps. We will see later in Sec. 4 that these new algorithms complement
existing ones, which makes them especially useful for portfolio approaches.

We focus the following presentation on two core operations: evaluating an
expression, as well as consuming an assertion, which includes checking that it
holds and removing its resources from the current state.

SE-PS. This algorithm combines symbolic execution with the partial heap
model and is used by the existing SE tools for separation logic. Evaluating a
source-level heap read x.f is performed by trying to find a chunk (y, f, v, p) in
the symbolic heap such that x = y and 0 < p. If such a chunk can be found, the
result of the symbolic evaluation is v. Otherwise, verification fails. Analogously,
consuming q permissions to a heap location x.f is implemented by finding a
chunk (y, f, v, p) such that x = y and q ≤ p. If found, the chunk is replaced by
(y, f, v, p − q); otherwise, verification fails. Finding matching chunks in general
requires SMT queries to account for aliasing; in practice, however, syntactical
checks often suffice, and can significantly reduce the number of SMT queries.

Note that both operations are performed on a single heap chunk, which may
lead to incomplete heap information and, thus, spurious errors. For instance,
when the permission to a heap location is split over several chunks, this algorithm
will use only one of them (rather than computing the total sum of permission
amounts) and might, thus, report a verification error if the permission amount in
that one chunk is not sufficient to perform an operation. To reduce the number
of such spurious errors, the algorithm performs various state consolidation steps
at heuristically determined points (e.g., triggered by an imminent verification
failure). For instance, it may merge two heap chunks (i.e., add their permission
amounts) if the SMT solver can prove that they refer to the same resource. State
consolidation may also introduce non-aliasing constraints, i.e., assume for any
pair of chunks (x1, f, v1, p1) and (x2, f, v2, p2) that x1 ̸= x2 if p1 + p2 > 1.

State consolidation eliminates some spurious errors, but performing opera-
tions on a single heap chunk remains incomplete, for instance, in situations with



Verification Algorithms for Automated Separation Logic Verifiers 7

disjunctive aliasing. In a state where x = y∨x = z and where permissions to both
y.f and z.f are available, consuming permission to a location x.f fails because
the algorithm cannot find a single chunk that definitely provides the necessary
permission. To work around this issue, users can force the SE to branch on the
disjunction (e.g., by inserting if-statements), such that a single chunk can be
found on each branch.

SE-PC. To address the shortcomings of SE-PS, we designed a novel varia-
tion that also uses partial heaps, but consults and combines information from
all chunks. Evaluating a source-level heap read x.f summarizes facts scattered
across all relevant heap chunks (y1, f, v1, p1), . . . , (yn, f, vn, pn): The effective
value of x.f is denoted by a fresh symbol v that is defined by the new path
condition (x = y1 ⇒ v = v1) ∧ . . . ∧ (x = yn ⇒ v = vn). Analogously, the
effective permission to x.f is denoted by a fresh symbol p that is defined by the
symbolic expression p = (x = y1 ? p1 : 0) + . . . + (x = yn ? pn : 0). Consuming
q permission to a heap location x.f similarly may remove fractions of q from
different heap chunks.

Compared to SE-PS, SE-PC effectively shifts work from the SE algorithm
to the SMT solver: it reduces the number of state consolidation steps (but does
not entirely eliminate them), at the price of more complex path conditions and
SMT queries. The next algorithm pushes this trade-off even further.

SE-TR. Even though all existing SE algorithms for separation logic use partial
heaps, SE is also compatible with total heaps, as this novel algorithm shows. It
uses a heap/mask pair (HR,MR) for each kind of resource (i.e., field or predi-
cate) R. Evaluating a source-level heap read x.f simply asserts 0 < Mf [x] and
produces the symbolic look-up expression Hf [x], where Hf and Mf are the cur-
rent heap and mask component of the symbolic state. Consuming q permission
checks q ≤ Mf [x] and then replaces the symbolic state’s mask Mf with an up-
dated version M ′

f = Mf [x 7→ Mf [x]− q]. The necessary map update axioms are
part of the heap’s background axiomatization that is given to the SMT solver.
To prevent the verifier from unsoundly framing information about heap locations
for which no permission is held and which may thus be modified by whoever has
obtained the permission, they are assigned non-deterministic values.

Using a total heap eliminates the need for state consolidation because all
information about a resources is represented by a single heap/mask pair, rather
than multiple chunks. Non-aliasing can be assumed using a global axiom stating
that for all masks MR and receivers x, MR[x] ≤ 1. Nevertheless, the algorithm
retains some of the key benefits of SE, such as cheap syntactical comparisons,
which are sufficient in many cases. However, compared to partial heap algo-
rithms, it complicates SMT queries, which now require a theory for maps or a
suitable axiomatization.

VCG-TR. VCG algorithms do not have an internal representation of the
heap and, therefore, they necessarily use total heaps, which can be encoded



8 M. Eilers et al.

in SMT. One option, implemented in GrassHopper, is to use a heap/mask pair
per resource, like in the previous algorithm. Evaluating source-level heap reads,
or consuming permissions, are incorporated into the verification condition as de-
scribed for the previous algorithm. Doing that in a VCG algorithm leads to the
advantages and disadvantages outlined in Sec. 2.2.

VCG-TA. A variation of VCG-TR that uses a single heap/mask pair across all
resources. It is used, for instance, in VeriCool [57] and Viper’s VCG-backend.
Heap reads and mask updates are encoded as described for SE-TR, with the
only change that the field becomes another index into the single heap or mask.

Using a single heap simplifies, for example, the encoding of predicates (see
Sec. 2.1) but, on the other hand, complicates framing for heap-dependent func-
tions, since updating any resource changes the (only) heap and, thus, requires
proof steps to show that other resources are not affected.

The discussion of these five algorithms illustrates various design choices,
which may affect performance, for instance, by shifting work between the veri-
fication algorithm and the SMT solver. These choices also affect completeness.
Most prominently, algorithms using total heaps make heavy use of universal
quantifiers, making the SMT queries undecidable. In practice, verification tools
use the SMT solver’s E-matching [16], which allows them to guide quantifier
instantiations by specifying matching patterns (also called triggers). However,
making those too strict can prevent necessary instantiations (causing spurious
errors), whereas making them too permissive may cause too many unnecessary
instantiations (and, thus, bad performance). It is thus crucial to assess perfor-
mance and completeness of verification algorithms empirically, as we do next.

3 Evaluation

This section presents our empirical evaluation. We first discuss relevant imple-
mentation details of the algorithms, introduce the benchmarks, and describe our
set-up. We then present and interpret our evaluation results, in terms of com-
pleteness and performance of the different algorithms. Finally, we conclude by
discussing potential threats to the validity of our results.

3.1 Implementations

Viper’s two existing backends implement SE-PS and VCG-TA, respectively. We
have extended Viper to implement the remaining three algorithms (for the full
Viper language as of version 23.07), reusing parts of the existing implementations
where possible: We based SE-PC on Viper’s SE-PS backend, which allowed us
to reuse the entire SE engine and the state representation, but required re-
implementing all heap-related parts of the algorithm. We also based SE-TR on
Viper’s SE-PS backend. Here, we could still re-use the SE engine, but had to re-
implement the heap representation, all heap-manipulating operations, and code



Verification Algorithms for Automated Separation Logic Verifiers 9

for axiomatizing heap-dependent functions. Lastly, we based VCG-TR on Viper’s
VCG-TA backend, which encodes a Viper program into a Boogie [6] program;
Boogie then computes a verification condition and interacts with Z3. We reused
this entire mechanism and the general encoding of statements and expressions,
but had to adapt all heap-handling code. All SE algorithms implement various
optimizations: they perform syntactic equality checks (e.g., in SE-PS to find
a matching heap chunk) to avoid SMT queries, they simplify terms on the fly
(e.g., SE-TR, to keep mask terms simple, simplifies a mask MR to which the same
permission has been added and later removed to be just MR again), they cache
values (e.g., the term resulting from reading a field in SE-PC), they actively
query the SMT solver to check if paths can be pruned, and they optimize their
communication with the SMT solver to avoid repeating large terms. Some of
these optimizations are crucial for scaling the algorithms to large examples, while
others are only relevant for corner cases. In the VCG algorithms, most of these
optimizations are not possible; thus, they mainly rely on Boogie to generate
efficient verification conditions [7].

3.2 Benchmark Selection

For our comparison, we selected a total of 537 example programs to be verified.
About 80% of these were generated by one of several Viper frontends from pro-
grams written in different source languages, the other programs were manually
written in Viper. Each example represents a meaningful verification task (e.g.,
from a publication’s case study or verification competition): in particular, we
excluded programs that represent regression tests or that test specific features
in isolation. The majority of the examples (388) is expected to verify; for the
remainder, the expected result is some set of verification failures.

The examples vary along several dimensions: source level language (e.g., Rust,
Java, Python), frontend verifier (e.g., we obtained Viper programs from differ-
ent Rust verifiers), application area and complexity (ranging from individual
functions to large case studies, e.g., to verify cryptographic security of network
protocols), verified properties (e.g., memory safety, complex functional specifi-
cations, or hyperproperties such as secure information flow), Viper features used
to encode source languages and properties, and code size (ranging from 15 to
99,110 lines of Viper code, with a mean/median of 2400/495 LOC).

To observe the effect that these variations have on the completeness or per-
formance of different verification algorithms, we partitioned the examples into
different groups, listed below. We first grouped by frontend verifiers, which we
then further refined: e.g., by application area or typical usage patterns of Viper
features. This resulted in the following groups:

– Ru1 represents Rust programs verified using Prusti [4], which heavily use
predicates and magic wands but no quantified resources.

– Ru2 and Ru3 contain unsafe Rust code encoded by prototype versions of
two different Viper frontends [3, 47]; the former heavily mutates the heap,
whereas the latter does not use Viper’s heap at all.



10 M. Eilers et al.

– Go contains smaller Go programs encoded by Gobra [63]. GoC contains
larger examples from two case studies that prove correctness and security of
real-world implementations of security protocols [2, 45].

– RSL contains weak-memory programs generated by a frontend [59] for Re-
laxed Separation Logic [62].

– SC and SCR contain smart contracts encoded to Viper by 2vyper [13]; the
former group does not use Viper’s heap at all, whereas the latter uses quan-
tified resources, and additionally generates a lot of branches.

– PP contains a product program encoding [23] that is used to prove a 3-safety
hyperproperty. The generated programs lightly use the heap and heavily
utilize branching.

– Py contains Python programs encoded by Nagini [22, 20], including two
case studies [58, 26] that prove complex functional properties. PyP contains
Nagini-generated programs that additionally use a product program encod-
ing to prove information flow security of the original Python programs [21].

– Rea proves reachability properties about graph-manipulating programs [61];
it heavily relies on heap-dependent functions and quantified resources.

– Vi contains various programs directly written in Viper, including examples
from publications on quantified resources [41] and magic wands [56], and
from the VerifyThis verification challenge [18].

– VeC contains examples encoded by VerCors [9] that stem from larger case
studies that verify properties of Java [1] and CUDA [51] programs as well as
examples written in VerCors’s custom (Java-like) PVL language [50]. VeV
contains VerCors-encoded examples from VerifyThis.

– DaV and DaG contain Viper [27] and Gobra versions [19], respectively, of
examples from a verification textbook [35, 36].

– Vo contains examples that heavily manipulate the heap, generated by Voila [64],
a frontend automating the fine-grained concurrency logic TaDA [49].

In all groups, the examples combine several Viper features to encode the
desired language semantics and properties; some groups use certain features very
prominently, while others are more heterogeneous. Overall, we believe that our
examples and groups form a good representation of the many different usages of
Viper, and that our results can be transferred to other separation logic verifiers.

3.3 Experimental Setup

We evaluated completeness and performance of the different algorithms for each
of the examples. Our test system uses an AMD Ryzen 5900X with 32GB of RAM
running Ubuntu 23.10. For the VCG algorithms, we use Boogie 2.15.9. Our SMT
solver is Z3 4.8.71. All algorithms run with the same Z3 options and the same
axiomatization for background theories other than the heap (e.g., sequences).

We ran each algorithm five times on each example on a warmed-up JVM, each
time with a timeout of ten minutes. We let each algorithm report all errors for
1 While this is an older version of Z3, it is the default version used with Viper 23.07.



Verification Algorithms for Automated Separation Logic Verifiers 11

Σ SE-PS SE-PC SE-TR VCG-TR VCG-TA
All 537 5.4 3.7 5.4 3.7 7.4 3.7 8.8 3.7 13.8 7.8
Ru1 156 0.0 0.0 0.6 0.6 3.8 0.0 9.0 0.6 18.6 5.1
Ru2 11 0.0 0.0 0.0 0.0 45.5 45.5 54.5 54.5 63.6 63.6
Go 11 18.2 9.1 0.0 0.0 18.2 0.0 0.0 0.0 0.0 0.0
GoC 17 5.9 0.0 0.0 0.0 17.6 17.6 29.4 11.8 35.3 29.4
RSL21 19.0 14.3 19.0 14.3 0.0 0.0 38.1 28.6 33.3 28.6
SC 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCR13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PP 38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Py 23 8.7 8.7 13.0 4.3 4.3 4.3 13.0 0.0 21.7 8.7
PyP 18 16.7 11.1 11.1 5.6 11.1 0.0 5.6 5.6 5.6 5.6
Rea 16 93.8 62.5 93.8 62.5 37.5 37.5 12.5 0.0 18.8 6.3
Vi 46 2.2 2.2 2.2 2.2 4.3 0.0 4.3 4.3 8.7 6.5
VeC 19 0.0 0.0 10.5 10.5 42.1 5.3 10.5 5.3 10.5 10.5
VeV 5 0.0 0.0 0.0 0.0 20.0 0.0 20.0 0.0 0.0 0.0
DaG8 0.0 0.0 0.0 0.0 0.0 0.0 25.0 12.5 25.0 12.5
DaV 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vo 34 2.9 2.9 2.9 2.9 11.8 11.8 0.0 0.0 20.6 17.6
Ru3 52 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 1.9 0.0

Table 1. Incompletenesses per algorithm per example group. Σ is the total across
all groups. For each algorithm, we show first the percentage of examples where it was
incomplete for any reason, and then the percentage of examples where it was incomplete
due to timeouts and inconsistent results.

every example (i.e., we did not stop after some number of errors were found). To
ensure that we measure the total workload, we disabled all parallelization along
the tool chains. To account for the heuristics-driven nature of SMT solvers, we
consistently varied Z3’s random seeds: we picked five fixed seeds and always used
the ith seed for the ith run of every algorithm-example combination. Lastly, we
measured the verification time of each algorithm on an empty Viper program to
obtain their fixed startup overhead (e.g., from starting Boogie), and subtracted,
from all times of a given algorithm, the difference between its own overhead and
the overall lowest overhead. In practice, this difference was at most 320ms.

3.4 Completeness Results

Table 1 shows the number of incompletenesses per algorithm and example group,
i.e., the number of examples for which the algorithm reported unexpected er-
rors, timed out, or reported inconsistent results over the five runs. The latter
is typically caused by differences in the SMT solver’s proof search, e.g., due to
different random seeds.

Overall Results. Every algorithm is able to report the desired result for over
86% of the examples. However, there is a clear distinction: VCG-TA has the



12 M. Eilers et al.

most incompletenesses with 13.8% (and the most timeouts by far), followed by
VCG-TR with 8.8% and SE-TR with 7.4%. The two partial heap algorithms
perform the best with 5.4% each.

Thus, our first, perhaps surprising observation is that for our test set, (suf-
ficiently optimized) partial heap algorithms are more complete than to-
tal heap algorithms. That is, performing heap reasoning in the verification
algorithm is more effective than leaving it entirely to the SMT solver. This
conclusion is supported by further observations: (1) SE algorithms, with their
greater potential for optimizations, generally outperform the VCG algorithms;
(2) SE-PS, despite its conceptual incompleteness, performs identically to SE-
PC overall, which produces more complex SMT queries by summarizing heap
chunks; (3) VCG-TA, with its single heap, has a much higher number of timeouts
than VCG-TR with its separate heaps per resource.

Impact of Optimizations. To evaluate how much SE-PS’s completeness de-
pends on optimizations, we re-ran all examples with a version of SE-PS with
the majority of its optimizations disabled. The resulting algorithm performs no-
tably worse, with 59 (instead of 29) incompletenesses. We thus conclude that the
good performance of SE-PS is due to significant optimization efforts.

Complementarity. A pairwise comparison shows that, for each algorithm,
there are a number of examples that this algorithm is incomplete on, but another
algorithm is not. For example, while SE-PC and SE-PS perform identically in
overall numbers, SE-PC is complete on three examples where SE-PS is not and
vice versa. Other pairs differ more strongly, with SE-PS and VCG-TA forming
the extreme pair: there are in total 75 examples for which only one of the two
algorithms is complete. We thus conclude that being able to use more than
one algorithm is advantageous in practice, and we explore this further in
Sec. 4.

Differences Between Groups. While comparisons of the different algorithms
for our overall test set can give us an indication of their overall performance,
their results may be skewed due to over- or underrepresentation of different
patterns in our test set. Thus, a more important observation is that the number
of incompletenesses per algorithm differs significantly between example groups.
The two algorithms using partial heaps (SE-PS, SE-PC) are both incomplete on
15 out of 16 examples in the Rea group, making them essentially unusable for
this group. This indicates that the heavy use of heap-dependent functions
framed by quantified resources is problematic for partial heap algorithms.
All total heap algorithms perform better: SE-TR is incomplete on 6 out of 16
examples, the VCG algorithms on 2 and 3.

The opposite is the case for group Ru2, where all total heap algorithms
time out for at least 5 out of 11 examples, while both partial heap algorithms
are complete for all examples. Other groups that also heavily manipulate the



Verification Algorithms for Automated Separation Logic Verifiers 13

heap are Ru1 and Vo; both exhibit the similar tendencies, and likewise for GoC
with its large and complex case studies. These observations suggest that total
heap algorithms can struggle with a large number of heap updates.
Correspondingly, the heap representation does not affect completeness for the
two groups that do not use the heap at all (Ru3 and SC ).

Conclusions. Given the previous observations and interpretations, we can draw
three final conclusions regarding completeness: First, the heap representation
has a bigger impact on completeness than the verification mechanism
(SE or VCG), since all groups that have large differences in completeness num-
bers have the largest difference between the partial heap and the total heap
algorithms. Second, certain example groups effectively require specific
combinations (e.g., VCG + total for Rea, SE + partial for Ru2). Third, a
general-purpose separation logic verifier should implement at least two al-
gorithms to be reasonably complete.

3.5 Performance Results

To compare the performance of different verification algorithms, we measured
the run time of each of the five algorithms on each of the examples five times,
as explained in Sec. 3.3. We discarded the shortest and longest run times and
computed the mean of the remaining three, leading to one data point for each
algorithm-example combination.

Comparison Method. Comparing algorithms on an example is sensible only if
each algorithm reports the same verification result (otherwise, an algorithm that
always immediately fails would be the fastest). Therefore, we compare pairs of
algorithms on examples for which both report the same result; using pairs instead
of all five algorithms minimizes the number of examples to discard.

For each pair of algorithms and example, we compute the relative percentage
difference (RPD) of the two mean run times t1 and t2, defined as (t2 − t1)/(0.5 ·
(t2+t1))·100, which relates the run time difference to the average run time of the
example. Consequently, RPDs are independent of the absolute run times, which
allows us to compare algorithms across examples with vastly different run times.
An RPD of 0 means equal performance, a positive value means that the first
algorithm was faster, with higher values indicating bigger differences: e.g., +66.6
indicates that the first algorithm took half the time of the second. The maximum
RPD is +200, obtained when the first algorithm is essentially instant compared
to the second. Conversely, negative values mean that the second algorithm was
faster.

Overview. Fig. 1 shows box plots of the RPDs of the two extreme points in the
design space, SE-PS vs. VCG-TA. Fig. 2 shows the RDPs of the closely related
pairs (a) SE-PS vs. SE-PC, (b) SE-PS vs. SE-TR, (c) SE-TR vs. VCG-TR, and



14 M. Eilers et al.

All (
42

9)

Ru
1 (

12
6)

Ru
2 (

4)
Go (

8)

GoC
 (8

)

RSL 
(13

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(16

)

PyP
 (1

4)

Re
a (

0)
Vi 

(41
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (6

)

DaV
 (4

1)

Vo
 (2

6)

Ru
3 (

51
)

200

150

100

50

0

50

100

150

200 SE-PS vs. VCG-TA

Fig. 1. Box plot of relative percentage difference (RPD) of mean performance per group
for the two extreme points in the design space, SE-PS vs. VCG-TA. Values greater than
zero indicate that the first algorithm in the pair is faster, values less than zero that
the second is faster; the orange line denotes the median and the dashed green line the
mean.

(d) VCG-TR vs. VCG-TA. The orange line indicates the median, the dashed
green line the mean. The lower and upper ends of the box signify the first and
third quartiles (Q1 and Q3), respectively. The whiskers show the 1.5 interquartile
range (IQR) values, i.e., the lowest point in the range between Q1−1.5×IQR and
Q1 and the highest point between Q3 and Q3+1.5×IQR, where IQR = Q3−Q1.

Extreme Designs. We first compare the two extreme points, SE-PS and VCG-
TA, which show significant performance differences across many groups (see
Fig. 1): SE-PS performs better for most groups, in particular for Ru1, Ru2, RSL,
Py , DaG, DaV , and Vo, while VCG-TA performs significantly better for PP ,
and to a lesser extent for PyP , SCR, and VeC . Only SC shows essentially the
same performance for both algorithms, and Vi contains examples that favor each
of the two algorithms. For PP and SCR, VCG-TA’s advantage is likely due to
a high amount of branching: they have an average of 133 and 7.5 branches per
method, respectively, whereas all other groups have an average of 2 branches per
method. PyP also results from product program constructions; the verification
work again stems mostly from branching, even if the average is only 2.5 branches
per method. For VeC , VCG-TA’s advantage cannot be explained with branching,
and we will revisit this group further below. Thus, we conclude that SE-PS
usually outperforms VCG-TA, but VCG-TA performs much better on
branch-heavy programs.

Related Designs. To asses the impact of individual design decisions, we com-
pare each algorithm to the most similar alternative(s); all comparisons can be
found in Fig. 2.

Comparing SE-PS vs. SE-PC, we observe that the two algorithms exhibit very
similar performance, with some small advantages for SE-PS, and a few outliers



Verification Algorithms for Automated Separation Logic Verifiers 15

All (
49

4)

Ru
1 (

14
9)

Ru
2 (

11
)

Go (
8)

GoC
 (1

3)

RSL 
(18

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(20

)

PyP
 (1

5)

Re
a (

7)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

200

150

100

50

0

50

100
SE-PS vs. SE-PC

All (
46

6)

Ru
1 (

14
7)

Ru
2 (

6)
Go (

7)

GoC
 (1

0)

RSL 
(17

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(19

)

PyP
 (1

4)

Re
a (

1)
Vi 

(43
)

Ve
C (1

0)

Ve
V (2

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

0)

Ru
3 (

52
)

200

150

100

50

0

50

100

150

200 SE-PS vs. SE-TR

All (
45

4)

Ru
1 (

13
4)

Ru
2 (

10
)

Go (
7)

GoC
 (1

0)

RSL 
(13

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(17

)

PyP
 (1

6)

Re
a (

6)
Vi 

(42
)

Ve
C (1

0)

Ve
V (2

)

DaG
 (6

)

DaV
 (4

1)

Vo
 (3

0)

Ru
3 (

51
)

200

150

100

50

0

50

100

150

200
SE-TR vs. VCG-TR

All (
45

5)

Ru
1 (

13
2)

Ru
2 (

10
)

Go (
8)

GoC
 (1

1)

RSL 
(13

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(18

)

PyP
 (1

6)

Re
a (

6)
Vi 

(42
)

Ve
C (1

3)

Ve
V (2

)

DaG
 (6

)

DaV
 (4

1)

Vo
 (2

6)

Ru
3 (

52
)

50

0

50

100

150

200 VCG-TR vs. VCG-TA

Fig. 2. Box plots of relative percentage difference (RPD) of mean performance per
group. From top to bottom: (a) SE-PS vs. SE-PC, (b) SE-PS vs. SE-TR, (c) SE-TR
vs. VCG-TR, (d) VCG-TR vs. VCG-TA. As before, values greater than zero indicate
that the first algorithm in the pair is faster, values less than zero that the second is
faster. The orange line denotes the median, the dashed green line the mean.



16 M. Eilers et al.

where SE-PC is significantly faster, in particular from Ru2. This is in line with
our completeness evaluation, where the two partial heap algorithms were also
the most similar pair. Analogous to completeness, the existence of outliers again
allows concluding that being able to use more than one algorithm can
result in performance advantages for individual examples, even if the
alternatives perform similar on average.

Moving from a partial heap algorithm (SE-PS) to a total heap algorithm (SE-
TR), we observe the following: both SE algorithms exhibit similar performance
for most groups; but SE-PS performs minimally better on Ru1, Ru2, and GoC ,
while SE-TR has an advantage on RSL and VeV . This leads to the surprising
conclusion that the choice of heap representation has a comparably small
impact on the average performance of an SE verifier, whereas it had a
large impact on completeness. Exceptions exist, however, and they exhibit a
pattern: when SE-TR outperforms SE-PS, it is almost exclusively on examples
that heavily use quantified resources. Conversely, when SE-PS is much faster, it
tends to be on Ru1 examples, which do not use quantified resources but whose
heap access patterns are amenable to SE-PS’s optimizations.

Comparing SE-TR and VCG-TR shows that the biggest difference in
average performance is caused by the switch from SE to VCG (while
keeping the same heap model). As for the two extremes (SE-PS vs. VCG-TA),
the branch-heavy groups (PP , PyP , and SCR), as well as Rea (and the aforemen-
tioned VeC2), show a significant advantage for VCG-TR, whereas Py , GoC , DaG,
DaV and Vo are faster with SE-TR (which also slightly outperforms VCG-TR
on most of the other groups).

Finally, comparing VCG-TR (heap per resource) to VCG-TA (single heap)
shows very similar performance for many groups, with some exceptions (Go,
GoC , RSL, Ru1 and Vo) that show a significant advantage for VCG-TR and
no significant advantages for VCG-TA. From that, we conclude that one total
heap per resource generally performs better than a single total heap.

3.6 Recommendation

The overall winner of our comparison in terms of both completeness and perfor-
mance is SE-PS, which makes SE-PS a good default algorithm, followed closely
by SE-PC. However, for both metrics, we have also found that (1) on individual
examples, any of the other algorithms may outperform SE-PS, (2) some amount
of optimization is required to achieve this performance and a less-optimized
version of SE-PS would perform worse, and, most importantly, (3) there are

2 We investigated this group in more detail, and observed that the run time in SE
algorithms is dominated by certain SMT queries that involve heap-dependent func-
tions and mathematical sequences, and that non-deterministically take a long time
to be answered. It is ultimately unclear to us why VCG should pose a conceptual
advantage here, but it is plausible that for example slightly different function axiom-
atizations accidentally influence how the SMT solver instances the sequence axioms,
which are known to be challenging for performance.



Verification Algorithms for Automated Separation Logic Verifiers 17

entire categories of examples where SE-PS is substantially less complete than a
total-heap algorithm (Rea), or where SE-PS is substantially slower than a VCG
algorithm (PP). We thus recommend to either choose the algorithm based on the
expected examples (e.g., for domain-specific applications), or to combine SE-PS
with other algorithms, as discussed in Sec. 4.

Our novel SE-TR algorithm, combining total heaps and SE, has shown that
it provides a different and useful trade-off compared to existing algorithms. Its
completeness is comparable to (and often slightly better than) existing total-heap
algorithms (which use VCG), while its performance is comparable to (albeit in
general slightly slower than) existing SE algorithms (which use partial heaps).

Our SE-PC algorithm performs very similarly to SE-PS, i.e., very well, with
some exceptions in both directions. SE-PC is thus also a good default algorithm,
in particular, if SE-PS’s disjunctive aliasing incompleteness is not acceptable.

VCG-TA is almost universally worse than VCG-TR and we thus recommend
VCG-TR when developing a VCG verifier.

3.7 Threats to Validity

Benchmark Selection. Our evaluation covers a wide range of use cases and
feature combinations, but cannot be representative of all existing (and future)
examples. Our recommendation to use multiple algorithms (see also Sec. 4) in-
creases the robustness of a verifier against unexpected examples.

We focused on verifying complex examples (often with quantifier-heavy spec-
ifications), whose verification time is between tenths of seconds and several min-
utes. As demonstrated by other tools (e.g., VeriFast), simpler settings (e.g.,
without fractional permissions and quantified resources) can lead to substantially
shorter verification times, in which case the differences between the algorithms
might be much less pronounced. Our Ru1 group (comparably few quantifiers, no
quantified resources) comes closest to such a setting, so our results for this group
should be transferable: here, the clear result is that SE-PS performs the best in
terms of both completeness and performance.

Verification examples are typically developed while getting feedback from
the verification tool. In our case, the algorithms used by this tool were (earlier
versions of) SE-PS, SE-PC, or VCG-TA, since SE-TR and VCG-TR were not yet
implemented when any of the examples used in our evaluation were developed.
This may skew the results in favor of these algorithms, because developers might
have chosen designs that are handled well in the used algorithm.

Impact of Optimizations and Implementation Maturity. The complete-
ness and performance of the different implementations can be influenced both
by optimizations they perform and by bugs they may contain. Of the algorithms
we used, the implementations of SE-PS and VCG-TA are the most mature (in
terms of development time); since these are the two best and worst performing
implementations in terms of completeness, we conclude that our results are not
a consequence of implementation maturity but of the algorithms themselves. It



18 M. Eilers et al.

is, however, possible that the remaining three algorithms with less mature im-
plementations could be further improved with more development time. The fact
that SE-PS and SE-PA perform the largest amount of explicit optimization is
mostly because, as said before, partial-state SE-algorithms offer more potential
for optimization, not because of implementation maturity; the VCG algorithms
(and to a lesser degree SE-TR) leave much more work to the SMT solver, and
as a result, almost no optimization beyond tuning quantifier heuristics and gen-
erating efficient VCs are possible. We have done the former for all algorithms,
and Boogie is well-optimized to do the latter.

SMT Solver. We have performed our evaluation using Z3 4.8.7, Viper’s de-
fault solver. Different SMT solvers have different performance characteristics,
but experiments with other SMT solvers determined that Z3 offers the best com-
pleteness (and performance) for our examples, and thus, was the best current
choice for performing the evaluation. Future improvements in SMT solvers may
disproportionately affect the evaluation results of certain algorithms: e.g., im-
provements in quantifier reasoning may be particularly beneficial for total-heap
algorithms, while improvements to incremental subsolvers may be particularly
beneficial to SE algorithms.

4 Portfolios

The previous section showed that no single algorithm is optimal for all bench-
mark groups. Therefore, to maximize the chance of successful verification, it is
advisable to use a portfolio of different algorithms, i.e., to run several algorithms
in parallel until at least one of them succeeds.

We explored all combinations of our five algorithms and identified four port-
folios of different sizes that maximize completeness. In this section, we discuss
these portfolios and evaluate their performance. It is worth noting that three out
of the four winning portfolios contain SE-TR, which we proposed in this paper.

Out of all possible combinations, the smallest set of algorithms needed to
get the expected result for all examples in our benchmark set is {SE-PS, SE-
TR, VCG-TR, VCG-TA}, which is our portfolio P0. Since the five algorithms
we evaluated have rather diverse sources of incompleteness, most of them are
needed to avoid any spurious errors in our benchmark set.

Using a large portfolio is resource intensive and not always justified in prac-
tice. There are two portfolios of size three that are complete for all but one exam-
ple: {SE-PS, SE-TR, VCG-TR} and {SE-PS, SE-TR, VCG-TA}. The examples
they fail on seem to be very sensitive to even small changes in the verification
algorithms. Each portfolio contains an SE algorithm with partial heaps, an SE
algorithm with total heaps, and a VCG algorithm, which demonstrates the com-
plementarity of these approaches. We select the first of these portfolios due to
the better average performance of VCG-TR over VCG-TA and name it P1.

Reducing the portfolio size further, we can identify two interesting portfolios
of size two. The best portfolio of size two, {SE-PS, VCG-TR} (P2), is complete



Verification Algorithms for Automated Separation Logic Verifiers 19

for all but six examples. {SE-PS, SE-TR} (P3) is complete for all but ten ex-
amples, but has the major advantage that it contains only SE algorithms, which
reduces the effort of implementing this portfolio substantially. Different SE al-
gorithms can share many parts of the implementation, whereas the implementa-
tions of SE and VCG algorithms offer little opportunity for reuse. Consequently,
P3 provides a relatively easy way for SE tools to improve their completeness by
complementing their existing SE-PS algorithm with the new SE-TR algorithm,
which only requires re-implementing the heap operations.

App. A shows the relative performance of P1, P2, and P3 versus P0. While
P1 mostly performs identical to P0, P2 has a slight disadvantage for RSL and
VeC , but performs equally well for all other groups, and thus delivers almost all
the benefits of P0. Finally, P3, due to its lack of a VCG verifier, performs much
worse than P0 in the previously-identified branch-heavy groups, while delivering
good performance for all others.

5 Related Work

The first verification algorithm for separation logic was the SE algorithm for
Smallfoot [8]. Its partial heap representation as a collection of heap chunks has
been adopted and refined by many separation logic verifiers (such as Caper [17],
the Gillian instantiations for C and JavaScript [38], JaVerT [54], SecC [24],
VeriFast [30], and Viper’s SE-backend), for instance, to support user-defined
predicates [30], alternative permission models such as fractional permissions [12]
and counting permissions [11], advanced separation logic connectives such as
magic wands [56] and iterated separating conjunction [41], and proof search for
angelic choice using backtracking [17]. Our evaluation covers those extensions
that are implemented in Viper, namely predicates, fractional permissions, magic
wands, and iterated separating conjunction.

Gillian [53] is an SE framework that can be instantiated for different input
languages and separation logics and lets each instantiation define its own repre-
sentation of the heap. The existing instantiations for C and JavaScript use an
algorithm similar but not identical to SE-PS, but Gillian could also express the
other SE algorithms we discuss. Our evaluation can guide developers toward an
optimal use of Gillian’s expressiveness.

VCG for separation logic was first developed in the context of VeriCool [57]
and then extended to concurrency in Chalice [37]. The algorithm there, as well
as in Viper’s VCG-backend, uses a total-heap representation. While Chalice and
Viper use a single total map to represent all heap values, GrassHopper [46]
uses a dedicated map for each resource. As we observed in our evaluation, and
has previously been shown in the context of VCC [10], this representation can
improve performance and completeness by simplifying framing. GrassHopper
uses advanced algorithms to automate reasoning about predicates, which were
not in scope for our evaluation here.

Existing verifiers support a range of permission logics, including separation
logic and implicit dynamic frames [57]. Separation logic is typically defined over



20 M. Eilers et al.

partial heaps, whereas the theory of implicit dynamic frames uses total heaps.
However, there is a strong connection between both logics [44], and the algo-
rithms discussed in this paper can support both.

There are other approaches to automating verification in separation logic.
For instance, Steel [28] is built on top of F* [60], which uses type inference to
devise derivations in a dependently typed separation logic. RefinedC [52] au-
tomates proof search in Lithium, a fragment of the Iris separation logic [31].
Its verification algorithm is implemented in Coq as a tactic. Such approaches
differ substantially from the SE and VCG algorithms discussed in this paper
in the degree of automation they provide, their expressiveness, or their ability
to devise foundational proofs, which makes a meaningful comparison difficult.
Hip/Sleek [15] performs a forward verification similar to SE but operates directly
by checking entailments on separation logic formulas and, thus, does not need a
heap encoding. To our knowledge, existing separation logic solvers do not sup-
port all of the separation logic features (predicates, magic wands and quantified
resources, and their combination) supported by the algorithms we considered.

Kassios et al. [32] compared the performance of Chalice’s VCG algorithm to
an alternative SE-backend most similar to SE-PS, and found a significant per-
formance advantage for the SE-backend throughout. However, their comparison
does not include the versions of SE and VCG used in modern tools, does not
assess completeness, and does not reflect the diversity of verification problems,
with only 29 examples in total being compared.

Finally, choices between explicitly enumerating states (e.g., heap chunks in
partial heap models and program paths in SE) and using logical formulas to rep-
resent the different options (in total heap models and VCG algorithms) also exist
for other ways of automated reasoning. For example, explicit-state model check-
ing enumerates individual states, whereas symbolic model checking represents
sets of states via logical formulas, offering different tradeoffs [14].

6 Conclusions and Future Work

We have presented and implemented five algorithms for automated separation
logic verification, including two novel algorithms. Our evaluation shows that,
across all benchmarks, the prevalent SE-PS algorithm shows the best complete-
ness and performance. However, it is not optimal for all benchmark groups and,
thus, should be complemented by other algorithms. We identified algorithm port-
folios of different sizes that maximize completeness.

As future work, we plan to extract features from programs that allow us to
predict which algorithm will perform best.

Acknowledgement. We are grateful to Sacha-Elie Ayoun, Thomas Dinsdale-
Young, and Thomas Wies for discussions about Gillian, Caper, and GrassHop-
per. We thank Robin Sierra for a first implementation of SE-PC. We thank the
ETH Seminar for Statistics consulting service for helpful discussions.



Verification Algorithms for Automated Separation Logic Verifiers 21

References

1. Armborst, L., Huisman, M.: Permission-based verification of red-black trees and
their merging. In: FormaliSE@ICSE. pp. 111–123. IEEE (2021)

2. Arquint, L., Schwerhoff, M., Mehta, V., Müller, P.: A generic methodology for the
modular verification of security protocol implementations. In: CCS. pp. 1377–1391.
ACM (2023)

3. Astrauskas, V.: Leveraging Uniqueness for Modular Verification of Heap-
Manipulating Programs. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2024)

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA),
147:1–147:30 (2019)

5. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: CVC5: A versatile and industrial-
strength SMT solver. In: TACAS (1). Lecture Notes in Computer Science, vol.
13243, pp. 415–442. Springer (2022)

6. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: FMCO. LNCS, vol. 4111,
pp. 364–387. Springer (2005)

7. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
PASTE. pp. 82–87. ACM (2005)

8. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: FMCO. Lecture Notes in Computer Science,
vol. 4111, pp. 115–137. Springer (2005)

9. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: FM. Lecture Notes in Computer Science, vol. 8442, pp. 127–131. Springer (2014)

10. Böhme, S., Moskal, M.: Heaps and data structures: A challenge for automated
provers. In: CADE. Lecture Notes in Computer Science, vol. 6803, pp. 177–191.
Springer (2011)

11. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL. pp. 259–270. ACM (2005)

12. Boyland, J.: Checking interference with fractional permissions. In: SAS. Lecture
Notes in Computer Science, vol. 2694, pp. 55–72. Springer (2003)

13. Bräm, C., Eilers, M., Müller, P., Sierra, R., Summers, A.J.: Rich specifications for
Ethereum smart contract verification. Proc. ACM Program. Lang. 5(OOPSLA),
1–30 (2021)

14. Buzhinsky, I., Pakonen, A., Vyatkin, V.: Explicit-state and symbolic model check-
ing of nuclear i&c systems: A comparison. In: IECON. pp. 5439–5446. IEEE (2017)

15. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

17. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper -
automatic verification for fine-grained concurrency. In: ESOP. Lecture Notes in
Computer Science, vol. 10201, pp. 420–447. Springer (2017)

18. Dross, C., Furia, C.A., Huisman, M., Monahan, R., Müller, P.: VerifyThis 2019:
a program verification competition. Int. J. Softw. Tools Technol. Transf. 23(6),
883–893 (2021)



22 M. Eilers et al.

19. Egli, T.: Translating Pedagogical Exercises to Viper’s Go Front-End. Bachelor’s
thesis, ETH Zürich (2023)

20. Eilers, M.: Modular Specification and Verification of Security Properties for Main-
stream Languages. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2022)

21. Eilers, M., Meier, S., Müller, P.: Product programs in the wild: Retrofitting pro-
gram verifiers to check information flow security. In: CAV (1). Lecture Notes in
Computer Science, vol. 12759, pp. 718–741. Springer (2021)

22. Eilers, M., Müller, P.: Nagini: A static verifier for Python. In: CAV (1). Lecture
Notes in Computer Science, vol. 10981, pp. 596–603. Springer (2018)

23. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3:1–3:37 (2020)

24. Ernst, G., Murray, T.: SecCSL: Security concurrent separation logic. In: CAV (2).
Lecture Notes in Computer Science, vol. 11562, pp. 208–230. Springer (2019)

25. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: ESOP. Lec-
ture Notes in Computer Science, vol. 7792, pp. 125–128. Springer (2013)

26. Forster, S.: Static Verification of the SCION Router Implementation. Bachelor’s
thesis, ETH Zürich (2018)

27. Frei, B.: Translating Pedagogical Verification Exercises to Viper. Bachelor’s thesis,
ETH Zürich (2023)

28. Fromherz, A., Rastogi, A., Swamy, N., Gibson, S., Martínez, G., Merigoux, D.,
Ramananandro, T.: Steel: proof-oriented programming in a dependently typed
concurrent separation logic. Proc. ACM Program. Lang. 5(ICFP), 1–30 (2021)

29. Heule, S., Kassios, I.T., Müller, P., Summers, A.J.: Verification condition genera-
tion for permission logics with abstract predicates and abstraction functions. In:
ECOOP. Lecture Notes in Computer Science, vol. 7920, pp. 451–476. Springer
(2013)

30. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: NASA
Formal Methods. Lecture Notes in Computer Science, vol. 6617, pp. 41–55. Springer
(2011)

31. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

32. Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing verification condition gener-
ation with symbolic execution: An experience report. In: VSTTE. Lecture Notes
in Computer Science, vol. 7152, pp. 196–208. Springer (2012)

33. Lal, A., Qadeer, S.: Powering the static driver verifier using Corral. In: SIGSOFT
FSE. pp. 202–212. ACM (2014)

34. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-
us/research/publication/this-is-boogie-2-2/

35. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR (Dakar). Lecture Notes in Computer Science, vol. 6355, pp. 348–370.
Springer (2010)

36. Leino, K.R.M.: Program Proofs. MIT Press (2023)
37. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with

Chalice. In: FOSAD. Lecture Notes in Computer Science, vol. 5705, pp. 195–222.
Springer (2009)

38. Maksimovic, P., Ayoun, S., Santos, J.F., Gardner, P.: Gillian, part II: real-world
verification for JavaScript and C. In: CAV (2). Lecture Notes in Computer Science,
vol. 12760, pp. 827–850. Springer (2021)



Verification Algorithms for Automated Separation Logic Verifiers 23

39. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

40. Mugnier, E., McLaughlin, S., Tomb, A.: Portfolio solving for Dafny. In: Dafny
Workshop (2024), to appear

41. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: CAV (1). Lecture Notes in Com-
puter Science, vol. 9779, pp. 405–425. Springer (2016)

42. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure
for permission-based reasoning. In: VMCAI. Lecture Notes in Computer Science,
vol. 9583, pp. 41–62. Springer (2016)

43. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL. pp.
247–258. ACM (2005)

44. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: ESOP. Lecture Notes in Computer Science, vol. 6602,
pp. 439–458. Springer (2011)

45. Pereira, J.C., Klenze, T., Giampietro, S., Limbeck, M., Spiliopoulos, D., Wolf,
F.A., Eilers, M., Sprenger, C., Basin, D., Müller, P., Perrig, A.: Protocols to code:
Formal verification of a next-generation internet router (2024)

46. Piskac, R., Wies, T., Zufferey, D.: Grasshopper - complete heap verification with
mixed specifications. In: TACAS. Lecture Notes in Computer Science, vol. 8413,
pp. 124–139. Springer (2014)

47. Poli, F., Denis, X., Müller, P., Summers, A.J.: Reasoning about interior mutability
in Rust using library-defined capabilities (2024)

48. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. pp. 55–74. IEEE Computer Society (2002)

49. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time and
data abstraction. In: ECOOP. Lecture Notes in Computer Science, vol. 8586, pp.
207–231. Springer (2014)

50. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: IFM. Lecture
Notes in Computer Science, vol. 12546, pp. 257–275. Springer (2020)

51. Safari, M., Huisman, M.: Formal verification of parallel prefix sum and stream
compaction algorithms in CUDA. Theor. Comput. Sci. 912, 81–98 (2022)

52. Sammler, M., Lepigre, R., Krebbers, R., Memarian, K., Dreyer, D., Garg, D.: Re-
finedC: automating the foundational verification of C code with refined ownership
types. In: PLDI. pp. 158–174. ACM (2021)

53. Santos, J.F., Maksimovic, P., Ayoun, S., Gardner, P.: Gillian, part i: a multi-
language platform for symbolic execution. In: PLDI. pp. 927–942. ACM (2020)

54. Santos, J.F., Maksimovic, P., Sampaio, G., Gardner, P.: JaVerT 2.0: compositional
symbolic execution for JavaScript. Proc. ACM Program. Lang. 3(POPL), 66:1–
66:31 (2019)

55. Schwerhoff, M.: Advancing Automated, Permission-Based Program Verification Us-
ing Symbolic Execution. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2016)

56. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an au-
tomatic verifier. In: ECOOP. LIPIcs, vol. 37, pp. 614–638. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2015)

57. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: ECOOP. Lecture Notes in Computer Science,
vol. 5653, pp. 148–172. Springer (2009)



24 M. Eilers et al.

58. Sprenger, C., Klenze, T., Eilers, M., Wolf, F.A., Müller, P., Clochard, M., Basin,
D.A.: Igloo: soundly linking compositional refinement and separation logic for
distributed system verification. Proc. ACM Program. Lang. 4(OOPSLA), 152:1–
152:31 (2020)

59. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: TACAS (1). Lecture Notes in Computer Science, vol. 10805, pp.
190–209. Springer (2018)

60. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the Dijkstra monad. In: PLDI. pp. 387–398. ACM (2013)

61. Ter-Gabrielyan, A., Summers, A.J., Müller, P.: Modular verification of heap reach-
ability properties in separation logic. Proc. ACM Program. Lang. 3(OOPSLA),
121:1–121:28 (2019)

62. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: OOPSLA. pp. 867–884. ACM (2013)

63. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: Modular specification and verification of Go programs. In: CAV (1). Lecture
Notes in Computer Science, vol. 12759, pp. 367–379. Springer (2021)

64. Wolf, F.A., Schwerhoff, M., Müller, P.: Concise outlines for a complex logic: A
proof outline checker for TaDA 13047, 407–426 (2021)

A Portfolio Performance Comparison

Fig. 3 compares the performance of P0, the smallest portfolio that is complete
for all examples, to those of the smaller portfolios P1 (of size 3) and P2 and P3
(both of size 2). As discussed before, P1 and (with slightly bigger discrepancies)
P2 show similar performance to P0 for most groups. Between P0 and P3, there is
a substantial disadvantage for P3 for branch-heavy groups due to P3’s exclusive
reliance on SE over VCG.

Fig. 4 additionally compares the performance of SE-PS, the best individual
algorithm, to the portfolios of sizes 3 and 2. The comparisons with P1 and P2
show that both portfolios, in addition to being more complete, offer significant
performance advantages compared to even the best individual algorithm (in
particular in the aforementioned branch-heavy groups). P3, as expected, shows
similar performance to SE-PS except for some outliers (while still offering a
significant completeness advantage).



Verification Algorithms for Automated Separation Logic Verifiers 25

All (
49

8)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

4)

RSL 
(18

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(20

)

PyP
 (1

7)

Re
a (

7)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

0

10

20

30

40

50

60 P0 vs. P1

All (
49

8)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

4)

RSL 
(18

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(20

)

PyP
 (1

7)

Re
a (

7)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

0

25

50

75

100

125

150

175
P0 vs. P2

All (
49

8)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

4)

RSL 
(18

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(20

)

PyP
 (1

7)

Re
a (

7)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

0

25

50

75

100

125

150

175

200 P0 vs. P3

Fig. 3. Box plots of relative percentage difference (RPD) of mean performance for pairs
of portfolios. From top to bottom: a) P0 vs. P1, b) P0 vs. P2, c) P0 vs. P3.



26 M. Eilers et al.

All (
48

7)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

3)

RSL 
(17

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(19

)

PyP
 (1

5)

Re
a (

1)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

200

175

150

125

100

75

50

25

0 SE-PS vs. P1

All (
48

7)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

3)

RSL 
(17

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(19

)

PyP
 (1

5)

Re
a (

1)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

200

175

150

125

100

75

50

25

0 SE-PS vs. P2

All (
48

7)

Ru
1 (

15
0)

Ru
2 (

11
)

Go (
8)

GoC
 (1

3)

RSL 
(17

)
SC

 (8
)

SC
R (1

3)

PP
 (3

8)

Py 
(19

)

PyP
 (1

5)

Re
a (

1)
Vi 

(44
)

Ve
C (1

3)

Ve
V (3

)

DaG
 (8

)

DaV
 (4

1)

Vo
 (3

3)

Ru
3 (

52
)

175

150

125

100

75

50

25

0 SE-PS vs. P3

Fig. 4. Box plots of relative percentage difference (RPD) of mean performance com-
paring SE-PS to different portfolios. From top to bottom: a) SE-PS vs. P1, b) SE-PS
vs. P2, c) SE-PS vs. P3.


