
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Fifteen Years of Viper

Marco Eilers1[0000−0003−4891−6950], Malte Schwerhoff1[0000−0003−2569−9121],
Alexander J. Summers2[0000−0001−5554−9381], and Peter

Müller1[0000−0001−7001−2566]

1 Department of Computer Science,
ETH Zurich, Zurich, Switzerland

{marco.eilers, malte.schwerhoff,
peter.mueller}@inf.ethz.ch

2 Department of Computer Science,
University of British Columbia, Canada

alex.summers@ubc.ca

Abstract. Viper is a verification infrastructure that facilitates the de-
velopment of automated verifiers based on separation logic. Viper con-
sists of the Viper intermediate language and two backend verifiers based
on symbolic execution and verification condition generation, respectively.
It has been used to build over a dozen program verifiers that translate
verification problems in Go, Java, Python, Rust, and many others, into
the Viper language and automate verification using the Viper backends.
In this paper, we describe the original design goals for Viper’s language,
verification logic, and tool architecture, summarize our experiences, and
explain our principles for evolving the system.

Keywords: Intermediate verification language, separation logic, verifi-
cation structure, automated reasoning

1 Introduction

Automated program verifiers are often organized into a frontend, which trans-
lates verification problems into an intermediate verification language (IVL), and
a backend, which extracts proof obligations from the IVL program and uses an
SMT solver to discharge them. For instance, Corral [33], Dafny [35], Spec# [6],
and SymDiff [32] are based on the Boogie IVL [34], whereas Frama-C [12] and
Creusot [17] use WhyML [27]. This architecture allows backends to be reused
across many different verifiers, such that sophisticated proof search algorithms,
inference, error reporting, etc. do not have to be re-implemented for each tool.

The main goal of the Viper [41] project is to bring these benefits to the
realm of separation logic verifiers, for which Boogie and WhyML provide no
dedicated support. Fifteen years after starting the Viper project, we have by
and large achieved this goal; over a dozen frontends have been built on top of
Viper [3,9,10,13,21,23,28,49,50,57,59,60,61], several complex verification projects
apply Viper-based tools [2,47], and Viper has been used successfully in teaching.

https://doi.org/10.5281/zenodo.15308916

2 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

To make Viper an attractive IVL for separation logic verifiers, we have pri-
oritized the following three design goals:

– Expressiveness: Viper can capture a wide range of programs and properties,
as well as the proof principles of a wide variety of different separation logics.

– Soundness: Viper is designed to be sound, that is, successful verification
implies that the input program always satisfies its specifications. Viper does
not aim to be complete in general (as is standard for SMT-based verifiers),
but does aim for a clear definition of which questions it should be expected
to answer automatically (and conversely, where annotations are expected).

– Usability: Viper aims to offer a smooth user experience, most importantly,
by (1) effectively automating separation logic proofs with modest user an-
notations, (2) being user-friendly for humans who manipulate Viper code
directly without going through a frontend, and (3) providing helpful error
messages when verification fails.

In this paper, we describe how these design goals are reflected in Viper’s
language, verification logic, and tool architecture, summarize our experiences,
and explain our principles for evolving the system. We believe our observations
can be transferred to other formal methods tools and will be useful for developers
and maintainers of such tools.

2 The Viper Language

In this section, we discuss how the three design goals from the introduction are
reflected in Viper’s language design, and we explain our principles for extending
the language.

2.1 Language Design

Expressiveness. To support the translation of diverse source languages, the
Viper language offers a very permissive type system, imperative statements with
structured and unstructured control flow (e.g. to encode languages with abrupt
termination), as well as features to encode language features not directly sup-
ported by Viper, such as arrays.

Viper’s assertion language supports a rich first-order separation logic (see
Sec. 3.1 for details) including universal and existential quantification. Moreover,
it allows defining custom datatypes, either as algebraic datatypes or as (inter-
preted or uninterpreted) sorts and functions.

A core virtue of Viper is its ability to encode the proof rules of a wide range
of separation logics. To this end, Viper offers inhale and exhale statements.
Inhaling an assertion P adds the separation logic resources described by P to
the current state and assumes the value constraints in P . Conversely, exhal-
ing P checks that its resources are available in the current state and removes
them; moreover it asserts all value constraints. inhale and exhale are sepa-
ration logic’s analogs of assume and assert, and equally versatile in encoding

Fifteen Years of Viper 3

proof rules, as demonstrated by frontends for complex logics such as RSL [57]
and TaDA [60].

Human-Friendliness. When designing an IVL, there is an inherent trade-off
between keeping the language minimal (which simplifies both tool development
and formalization) and adding richer language constructs to make the language
more human-friendly. Following the examples of Boogie and WhyML, we de-
signed Viper to be well-suited as both a target language for verification frontends
and a language directly usable by humans. The latter has proven invaluable for
prototyping new encoding schemes that a frontend might eventually automate,
for debugging frontend-generated code, and for having raw access to Viper’s
features, for instance, in teaching and during verification competitions.

To support direct use, Viper’s core language provides various constructs that
do not increase expressiveness, but make the code more accessible. Examples in-
clude method calls (which, given Viper’s modular verification could be encoded
using inhale and exhale) as well as structured control flow with conditional
statements and loops (which could be encoded using goto). Similarly, Viper’s as-
sertion language includes some technically-redundant connectives (e.g. includes
disjunction as well as implication) to make formulas easier to understand. More-
over, macros greatly increase the readability of Viper code by providing concise
notations for complex statements or assertions. These features not only improve
usability, but also enable potential future Viper functionality, such as method
inlining and specification inference techniques (e.g. for explicit loops). We have
found that these benefits clearly outweigh their very modest development effort.

Error Reporting. Even though error reporting mostly concerns the verifi-
cation logic and tool architecture, it also represents an important trade-off in
terms of language design. In general, a tool that checks more properties (partic-
ularly well-definedness of expressions) by default is able to provide more-precise
error messages, at the cost of increased verification effort. For instance, SMT
solvers are based on a logic with total functions, where operations that are not
meaningful, such as division by zero or out-of-bounds sequence access, yield un-
specified results [7]. Even though Viper expressions and assertions are encoded
into SMT, Viper instead uses a partial interpretation of these operations and
imposes proof obligations to ensure that they are always applied within their
domain. This choice enables more precise error reporting. For instance, for the
assertion x/y > 0, Viper reports different error messages when y might be zero
vs. when y is non-zero but the division might not yield a positive result. We
have found that Viper’s well-definedness checks for assertions have proven very
useful both during the development of frontends and for direct uses of Viper,
especially in teaching. However, they slightly increase verification time, and it
would sometimes be useful to (selectively) disable well-definedness checks, for
instance, when a frontend guarantees that they will always succeed.

4 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

2.2 Growing the Language

Increasing adoption of Viper as the IVL for diverse verifiers and as a teaching
language continuously leads to new requirements. We add a new language feature
only if it does not compromise our overarching goals (e.g. we know how to soundly
automate verification) and at least one of the following criteria applies: (1) The
new feature simplifies the development of multiple frontends, (2) it enhances the
experience of manually writing Viper programs, or (3) it enables more efficient
verification. Features in the first two categories are often implemented as plugins
(cf. Sec. 4) that extend Viper’s surface language but desugar into core Viper,
so that backends need not be adapted. Features in the third category require
changes to the backends to realize the intended performance improvement.

As an example for criterion (1), a common demand from frontends to support
the verification of hyperproperties motivated us to implement a product program
construction [24], initially needed by the Python frontend Nagini, in Viper [22].
It was subsequently used by other frontends [21,58]. However, there are also
concepts that occur in many frontends, but are have not yet found their way
into Viper. For instance, each occurrence of ghost code in a frontend has specific
characteristics, and we were not yet able to devise unified support in the IVL.

As an example for criterion (2), we added (optional) support for proving
termination. This feature is not required by frontends because termination checks
can easily be encoded. However, such an encoding is tedious when using Viper
directly because programmers not only have to insert the necessary assertions
(which is error-prone) but also need to define appropriate well-founded orders.
Built-in support for termination proofs is especially useful for teaching.

As an example for criterion (3), we added support for havocking parts of the
heap, which can be handled much more efficiently than encodings that achieve
the same result. This feature reduced the verification time of many Voila [60]
examples by an order of magnitude.

When there has been tension between requirements for using Viper as an
IVL and using it manually, we have tended to resolve it in favor of IVL usage.
As a result, the Viper language does not directly offer some features (e.g. arrays,
lemmas, and the aforementioned ghost code) that exist in verification languages
for manual use, such as Dafny. In Viper, those features have to be encoded.

Possible future extensions include extended support for generic types, and
modularization features that allow one to control dependencies between modules
to improve verification time and facilitate the maintenance of verified code.

3 Verification Logic

As a deductive program verifier, Viper automates proof search in a program
logic for the Viper language (by generating and checking logical conditions). In
this section, we reflect on our choice of program logic, summarize our efforts to
formalize it, and discuss our approach to increasing its expressiveness over time.

Fifteen Years of Viper 5

3.1 Implicit Dynamic Frames

The main application domain for Viper is the verification of imperative, con-
current programs, which makes separation logic [51,42] a fairly obvious choice
for Viper’s program logic. However, even at the time when the work on Viper
started, there were dozens of different separation logics to choose from, with
different trade-offs in expressiveness, simplicity, and potential for automation.

Based on our prior experience with Chalice [36,37], we decided to use Im-
plicit Dynamic Frames (IDF) [56], a dialect of separation logic whose assertions
express constraints on ownership and values separately. For instance, instead of
separation logic’s points-to predicate x.f 7→ v, IDF uses an accessibility pred-
icate acc(x.f) to express ownership of the heap location, and an expression
x.f == v to express a constraint on the value stored in the location. This sep-
aration is lifted to entire data structures, where inductive predicates [44] ab-
stract over permissions, and side-effect free functions over values; notably, these
functions may read from heap locations [29]. For instance, the IDF assertion
list(l) && length(l) > 0 expresses that the data structure stored in l is a
non-empty list. Suitable well-formedness checks ensure that assertions constrain
the value of a heap location only in contexts where that location is owned.

Choosing IDF over a more standard separation logic has the potential draw-
back of being less known in the community, thus potentially making Viper more
difficult for others to adopt. Overall, however, IDF proved to be an excellent
foundation for an IVL such as Viper for the following main reasons: (1) Source
programs typically contain deterministic, side-effect free methods such as getters,
comparison functions, and other operations to inspect data structures. These can
be encoded as Viper functions and used directly in specifications. For instance,
in the verification of a large Go codebase [11], 324 out of 823 (non-ghost and
ghost) source methods fell into this category (ca. 40%). (2) Separating permis-
sion specifications from value specifications facilitates incremental verification.
Verification typically starts by proving memory safety, which requires mostly
permission specifications. With IDF, functional specifications can later define
various abstractions of data structures without modifying the predicates used
for proving memory safety and, thus, without adjusting the features of the origi-
nal proof. In contrast, standard separation logics must express data abstractions
as part of the predicate, such that the abstractions need to be fixed upfront
when the predicates are declared. For instance, a binomial heap implementation
in Viper [39] uses three predicates to prove memory safety and then introduces
ten functions to express various layers of invariants and functional properties.
This separation of concerns greatly simplified its verification. (3) Separating per-
mission from value constraints enables the development of tools that handle these
two aspects differently. For instance, specification inference techniques may tar-
get only one kind of constraint [20]. Moreover, Viper frontends for languages with
ownership type systems, most prominently Prusti for Rust [3], automatically ex-
tract permission specifications from type information and then simply conjoin
user-provided value constraints. Finally, IDF proved to be useful for gradual

6 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

verification [62], because it allows programmers to provide partial specifications
that contain relevant value constraints, but to defer permission specifications.

In our experience, these advantages clearly outweigh the potential drawbacks
of IDF in the context of an intermediate verification language.

3.2 Formalization and Soundness

Viper has been designed to be sound, that is, if verification succeeds for a
Viper program then it is actually correct. However, like other SMT-based veri-
fiers [34,27], Viper does not yet provide end-to-end formal soundness guarantees.
Users have to trust the definition of Viper’s program logic, the correctness of its
implementation in the Viper backends, and the underlying SMT solver (plus the
correctness of the Viper frontend). On the other hand, verification in interactive
theorem provers typically focuses on formal soundness proofs first and considers
automation as an afterthought.

A fundamental question is thus how best to design verification tools that
provide good automation and formal soundness guarantees. In Viper, we have
chosen to focus on practical applications first: Once a feature is sufficiently au-
tomated and has proved useful, we formalize its semantics and prove soundness.
We found that this “practice drives theory” approach is a viable alternative to the
prevalent theory-first approach and has led to alternative mathematical direc-
tions and the discovery and solution of interesting theoretical problems [15,14].

There have been recent efforts to provide a formal semantics for parts of the
Viper language [16,45,62]. In particular, Dardinier et al. [16] formalize an oper-
ational and an axiomatic Viper semantics in Isabelle and prove soundness and
completeness between them. Their supported subset contains core features such
as fractional permissions and Viper’s exhale and inhale statements. The formal
treatment of other important features such as inductive predicates and abstrac-
tion functions are planned for future work. Dardinier et al. use their semantics
to formally connect a frontend based on concurrent separation logic to two Viper
backends. In contrast to this once-and-for-all soundness proof, Parthasarathy et
al. [45] extended Viper’s verification condition generator to produce a certifi-
cate for each successful verification. This certificate is a formal proof in Isabelle
that shows that correctness of the Boogie program produced by Viper’s verifi-
cation condition generator implies correctness of the Viper program; this result
can be combined with an existing certification for Boogie [46]. In contrast to a
soundness proof for the logic, certification covers also the implementation of the
logic in the backend. These works suggest avenues for obtaining foundational
guarantees for an automated verifier such as Viper. Extending them to a larger
Viper subset and combining them with certification techniques for SMT solvers
to obtain end-to-end guarantees is promising future work.

3.3 Growing the Logic

Since the original design of Viper, the expressiveness of state-of-the-art sepa-
ration logics has grown tremendously, for instance, by supporting higher-order

Fifteen Years of Viper 7

programs and specifications, as well as various forms of concurrency reasoning.
Viper’s philosophy for growing its own supported logic has been rather conser-
vative. We consider adding a feature if (1) an encoding into existing features is
not possible or leads to bad performance, (2) there is a demand from several
frontends for this feature, and (3) the feature can be automated reliably. The
third criterion is especially important to preserve Viper’s usability.

The two most significant extensions to Viper’s logic have been magic wands [55]
and iterated separating conjunctions [40]. Magic wands allow one to specify par-
tial data structures and were initially added to express invariants for iterative
traversals: in particular, the permissions to the part of the data structure already
visited can be conveniently expressed with a wand. Later, magic wand support
turned out to be essential for the encoding of borrowing in the Rust verifier
Prusti [3]. Iterated separating conjunctions are especially useful for specifying
random-access data structures such as arrays, as well as data structures with
complex sharing such as arbitrary graphs. In the latter case, specifications can
maintain a set of nodes and express ownership of all nodes in the graph by quan-
tifying over the set members using an iterated separating conjunction. This use
of a set results in specifications akin to those in Dafny [35], but with support for
concurrent programs. Adding these features required developing novel verifica-
tion algorithms and, for magic wands, also novel theoretical foundations [15].

A recent development has been to start fine tuning the degree of automation
Viper provides, another key trade-off in verifier design: Verifiers can generally
choose to require more user input for their proofs and thereby obtain simpler,
fast proof automation, or alternatively provide more automation at the expense
of a more complex proof search. Viper generally aims for a high degree of au-
tomation (higher than, for example, VeriFast); this choice increases usability, but
can negatively impact verification performance for complex projects. Thus, we
have started adding features that enable users to control the degree of automa-
tion (e.g. the automatic unfolding of function definitions); more such extensions
are necessary to improve scalability further. Another avenue for future work is
Viper’s fixed permission model. It is able to encode many program logics, but
such encodings can lack automation. Therefore, inspired by Gillian [53], we plan
to add support for custom permission models and separation algebras.

4 Tool Architecture

Over the years, many new frontends have been added to Viper’s ecosystem,
but the core architecture (Fig. 1) has remained unchanged. Its central compo-
nent is the Viper IVL, targeted by frontends for real-world programming lan-
guages [3,49,59,9,23,10,28,50,61] and specialized program logics [57,60,21,13].

Viper programs, no matter whether they are generated by a frontend or writ-
ten manually, are verified by one of Viper’s two backends. The symbolic execution
(SE) backend [54] operates in the style of Smallfoot [8] and VeriFast [30], but
employs different algorithms for Viper’s more advanced features. It maintains
a symbolic heap to track separation logic resources and interacts directly with

8 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

 Viper
Intermediate
Language

Gobra
(Go)

VerCors (Java, C,
GPGPU, PVL)

2vyper
(Ethereum)

Nagini
(Python)

RSL Voila
 (TaDA)

HyperViper
(CommCSL)

Hypra
(Hyper Hoare Logic)

Symbolic Execution Verification Condition
Generation

Boogie

Z3 CVC5

Plugins

OCaml, Kotlin,
Pancake, ...

Prusti, Mendel
(Rust)

...

Fig. 1. Viper’s architecture, with frontends (blue), backends (red), dependencies
(green), and plugin infrastructure (purple).

an SMT solver to discharge verification conditions. The verification condition
generation (VCG) backend encodes Viper programs into Boogie [5], that is, it
is based on another, lower-level IVL. Viper mainly uses the Z3 SMT solver [38],
but also has support for others, e.g. CVC5 [4].

A core design principle behind Viper’s architecture, which is essential for its
overall usability, is to shield Viper users from the details of the backends and
the underlying SMT solver. All interactions happen through the Viper language,
and any kind of feedback from the tool can be understood at the level of the
language. For instance, Viper’s error messages and counterexamples do not refer
to details of the backends, and it remains transparent whether a Viper feature is
implemented natively or via a plugin. We successfully maintain this abstraction
with very few exceptions; for instance, even though Viper offers trigger inference
for the SMT solver’s quantifier instantiation algorithm, users sometimes have to
specify triggers manually (although nonetheless in terms of Viper-level features,
not their SMT representations). Most Viper frontends provide a similar abstrac-
tion, that is, they in turn shield their users from Viper, such that they can work
entirely on the level of the source language.

4.1 Project Management

Developing a tool infrastructure over 15 years in an academic research group is a
major challenge because the development spans several generations of PhD stu-
dents and postdocs, and because the incentives to implement features, fix bugs,
and optimize performance are not aligned well with the realities of academia.

We have addressed the first challenge by having team members from several
generations work on each Viper component, to ensure continuity and to retain
expertise in the group as members graduate and leave. We were also fortunate

Fifteen Years of Viper 9

that some key team members decided to stay at ETH Zurich beyond their grad-
uation or to continue contributing to Viper in their next job.

We have addressed the second challenge by having an owner for each Viper
component (including frontends and IDE), who is responsible for bug fixing and
maintenance. This allows us to spread this effort over many people, making it
bearable for each of them. Moreover, new PhD projects such as the development
of frontends or major case studies are usually a good motivation for PhD students
to extend Viper to better support their work.

Over the last 15 years, we usually had between 10 and 20 people working on
Viper and its frontends. We coordinate them in monthly project meetings, and
(since 2021) maintain a biannual release schedule to drive the project and ensure
steady improvements. Finally, we have found occasional hackathons and regular
participation in verification competitions to be great ways to obtain experience
with our own tools, to find new areas for improvement and to boost team spirit.

4.2 Backends

A key feature that distinguishes Viper from many (intermediate) verification
languages is its support for two different backend verifiers that implement two
technically very different verification techniques. The decision to support multi-
ple backends instead of a single one represents a major trade-off with far-reaching
consequences.

The main advantages are the backends’ varied performance and completeness
characteristics for different classes of programs (as we explored previously [25]),
which enabled frontends and verification efforts that would not have been pos-
sible with only one backend.

Another major advantage is that the two backends enable differential testing:
any case where the two backends disagree signals either a bug, an incompleteness,
or possibly unclear semantics of a Viper feature. Such testing has been one of
the main ways to detect such issues, and also helps users triage their own issues.

On the other hand, supporting different backends limits extensions of the lan-
guage and logic to features that can be automated well in both: e.g. SE-based ver-
ifiers can easily support pattern matching for separation-logic resources, whereas
a VCG-based backend would have to produce verification conditions containing
(both universal and) existential quantifiers, which are not supported well by
SMT solvers. Hence, Viper does not have this feature (which is rarely needed
with IDF). Similarly, since Viper’s VCG backend goes through Boogie, it can
only use SMT-level features (e.g. natively-supported types) that are exposed
by Boogie. Finally, counterexamples returned by Viper must be generated from
two substantially different sources, which limits the information that can be
presented. Despite such individual cases, this limitation has not proved to be a
major obstacle in practice. As a mitigation, we have recently introduced anno-
tations to express backend-specific instructions in Viper programs, although we
expect these to be used only rarely.

Moreover, maintaining two backends incurs substantial engineering costs:
language or logic extensions have to be implemented for both backends, which

10 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

can slow down development and lead to situations where a new language feature
is temporarily supported by only one backend. To mitigate this issue, Viper uses
plugins, which enable modular extensions of Viper’s syntax that are desugared
into the core IVL before reaching the backends. This allows us to extend the
language and logic without impacting the backends. For example, user-defined
ADTs and termination checks are implemented as plugins. Facilitating extensions
via plugins has substantially contributed to Viper’s agility and expressiveness.

Overall, we have enjoyed significant benefits from Viper’s two-backend strat-
egy in terms of our ability to use Viper for challenging verification projects, and
to advance the state of the art in SE- and VCG-based verification. However,
the implementation and maintenance effort required to do this, especially in a
research group, should not be underestimated.

4.3 Growing the Architecture

The most significant additions to the Viper ecosystem since its inception have
been its frontends, particularly its four most mature frontends for real-world
languages (Prusti for Rust, Gobra for Go, VerCors for Java and CUDA/OpenCL,
and Nagini for Python). Each is able to verify realistic code; for instance, we
have verified an entire system (of over 4,000 lines of production code) only with
Gobra [47]. VerCors has been used for multiple realistic Java and CUDA case
studies [1,52,43]. Nagini targets statically-typed Python and has support for
some of Python’s more dynamic features (such as dynamic addition of fields). In
addition to these main frontends, a substantial number of research prototypes for
automating advanced program logics has been developed, and there is ongoing
work on further frontends.

Each new frontend has significantly benefitted from the shared infrastructure
built around the Viper language, but also challenged Viper and motivated im-
provements that ultimately benefit the whole ecosystem. An interesting special
case is the gradual verification tool Gradual C0 [19], which is not implemented
as a frontend, but as a fork of Viper and its SE backend.

Most changes to the Viper backends are triggered by extensions of the Viper
language and logic (see Sec. 2.2 and Sec. 3.3). In addition to those, we have
extended both backends to explore different core algorithms, combinations of
heap models and proof search algorithms. These exhibit different performance
and completeness tradeoffs [25], and users can choose the algorithm that best
suits the verification problem domain at hand. As it has become difficult even for
experts to predict which specific algorithm will perform best on a given example,
automating this process is ongoing work.

Finally, one of the most important additions to the Viper architecture has
been its IDE integration in the form of a mature plugin for VSCode, which sig-
nificantly simplifies the process of installing and running Viper, and additionally
enhances the user experience through features such as verification result caching,
intuitive error reporting, and many standard IDE features. We are convinced
that Viper’s availability in VSCode has played a central role in its adoption for
teaching at multiple universities.

Fifteen Years of Viper 11

5 Related Work

There are a number of other verification tools for separation logics, such as
VeriFast [30], GRASShopper [48], SecC [26], the Gillian verifiers [53], and Ca-
per [18], as well as other similar tools not based on separation logic, in particular,
Dafny [35], which uses dynamic frames [31] to reason about heap-manipulating
programs. Moreover, there are other intermediate verification languages (IVLs)
with corresponding backends, most notably Boogie [34], Why3 [27], and GIL [53].

Compared to most other separation logic based tools, Viper supports a richer
set of core features in its separation logic (offering, e.g., magic wands, iterated
separating conjunction, and permission introspection), along with appropriate
proof search algorithms, which facilitates the encoding of a wide range of verifi-
cation problems. For example, SecC and Caper directly implement more specific
logics (for information flow security and fine-grained concurrency, respectively),
while those use cases can both be supported in Viper via a plugin and a frontend,
respectively. Moreover, Viper supports specific assertions and statements (e.g.,
inhale and exhale) whose purpose is to encode separation logic proof rules in
Viper; no other tool has those. Compared to VeriFast, Viper requires less user
input and provides more automation at the cost of a more complex proof search
that can potentially lead to worse performance.

Compared to Dafny, Viper’s logical foundation allows one to encode verifica-
tion problems for concurrent programs, whereas Dafny is limited to sequential
code. On the other hand, Dafny offers advanced features for proof authoring and
specification inference, whereas Viper leaves such tasks to frontends.

Compared to other IVLs, Viper supports a fixed heap model and logic (im-
plicit dynamic frames), whereas GIL is parametric in its memory model, and
Boogie and Why3 require frontends to encode the memory model. Viper’s ap-
proach allows it to provide predictable automated proof search algorithms tai-
lored to its heap model and logic.

Viper is also unique in that it is (to our knowledge) the only deductive veri-
fication framework supporting more than one independent verification backend.

6 Discussion

Revisiting our original design goals, we believe we have achieved the goal of
expressiveness, as demonstrated by Viper’s ability to verify a wide range of fron-
tend languages, and advanced properties expressed in complex program logics.
Making Viper parametric in its permission model and adding support for higher-
order code and assertions would further increase expressiveness.

Viper is designed for soundness above all else; we leverage differential testing
to effectively identify implementation bugs in the backends, and extensions such
as termination checks help detect inconsistent encodings. Significant progress
has been made in formalizing Viper’s semantics and generating proof certificates,
with ongoing efforts to enable independent proof validation.

As for usability, we find it very encouraging that Viper is increasingly used
by people with little or no connection to the Viper team, for both teaching (e.g.,

12 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

in Copenhagen, Nancy, and Oldenburg) and tooling (e.g., frontends for Java,
Kotlin, OCaml, Pancake; Gradual Viper). It has also won awards in several
categories of the VerifyThis verification competition (best team, best student
team, tool used by most teams), demonstrating its effectiveness. Ongoing work on
specification inference and verification debugging will further increase usability.

Overall, we see the verification of a next-generation internet router [47] as
evidence for Viper’s usability and expressiveness. This is a substantial Go code-
base under active development, not written with verification in mind, optimized
for performance, and one of the largest verification efforts ever undertaken with
automated separation logic verifiers.

Such ambitious projects demonstrate the capabilities of the Viper infrastruc-
ture, but also relentlessly expose aspects that need improving. In fact, many of
the directions for future work mentioned throughout this paper are motivated
by large case studies on correctness and security verification. They will fuel our
research agenda for the next 15 years.

Acknowledgments. Numerous people have contributed to the development of
the Viper infrastructure and its frontends, both in our team and elsewhere. We
are very grateful for all of these contributions.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

Fifteen Years of Viper 13

References

1. Armborst, L., Huisman, M.: Permission-based verification of red-black trees and
their merging. In: FormaliSE@ICSE. pp. 111–123. IEEE (2021)

2. Arquint, L., Schwerhoff, M., Mehta, V., Müller, P.: A generic methodology for the
modular verification of security protocol implementations. In: CCS. pp. 1377–1391.
ACM (2023)

3. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA),
147:1–147:30 (2019)

4. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: CVC5: A versatile and industrial-
strength SMT solver. In: TACAS (1). Lecture Notes in Computer Science, vol.
13243, pp. 415–442. Springer (2022)

5. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: FMCO. LNCS, vol. 4111,
pp. 364–387. Springer (2005)

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

7. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

8. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: FMCO. Lecture Notes in Computer Science,
vol. 4111, pp. 115–137. Springer (2005)

9. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: FM. Lecture Notes in Computer Science, vol. 8442, pp. 127–131. Springer (2014)

10. Bräm, C., Eilers, M., Müller, P., Sierra, R., Summers, A.J.: Rich specifications for
Ethereum smart contract verification. Proc. ACM Program. Lang. 5(OOPSLA),
1–30 (2021)

11. Chuat, L., Legner, M., Basin, D.A., Hausheer, D., Hitz, S., Müller, P., Perrig, A.:
The Complete Guide to SCION - From Design Principles to Formal Verification.
Information Security and Cryptography, Springer (2022)

12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C – A software analysis perspective. In: SEFM. Lecture Notes in Computer
Science, vol. 7504, pp. 233–247. Springer (2012)

13. Dardinier, T., Li, A., Müller, P.: Hypra: A deductive program verifier for hyper
hoare logic. Proc. ACM Program. Lang. 8(OOPSLA2), 1279–1308 (2024). https:
//doi.org/10.1145/3689756, https://doi.org/10.1145/3689756

14. Dardinier, T., Müller, P., Summers, A.J.: Fractional resources in unbounded
separation logic. Proc. ACM Program. Lang. 6(OOPSLA2), 1066–1092 (2022).
https://doi.org/10.1145/3563326, https://doi.org/10.1145/3563326

15. Dardinier, T., Parthasarathy, G., Weeks, N., Müller, P., Summers, A.J.: Sound
automation of magic wands. In: CAV (2). Lecture Notes in Computer Science, vol.
13372, pp. 130–151. Springer (2022)

16. Dardinier, T., Sammler, M., Parthasarathy, G., Summers, A.J., Müller, P.: Formal
foundations for translational separation logic verifiers. Proc. ACM Program. Lang.
9(POPL) (Jan 2025)

https://doi.org/10.1145/3689756
https://doi.org/10.1145/3689756
https://doi.org/10.1145/3689756
https://doi.org/10.1145/3689756
https://doi.org/10.1145/3689756
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326

14 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

17. Denis, X., Jourdan, J., Marché, C.: Creusot: A foundry for the deductive verifica-
tion of Rust programs. In: ICFEM. Lecture Notes in Computer Science, vol. 13478,
pp. 90–105. Springer (2022)

18. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper -
automatic verification for fine-grained concurrency. In: ESOP. Lecture Notes in
Computer Science, vol. 10201, pp. 420–447. Springer (2017)

19. DiVincenzo, J., McCormack, I., Zimmerman, C., Gouni, H., Gorenburg, J., Ramos-
Dávila, J., Zhang, M., Sunshine, J., Tanter, É., Aldrich, J.: Gradual C0: Symbolic
execution for gradual verification. ACM Trans. Program. Lang. Syst. 46(4) (Jan
2025). https://doi.org/10.1145/3704808, https://doi.org/10.1145/3704808

20. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.: Permission in-
ference for array programs. In: Chockler, H., Weissenbacher, G. (eds.) Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10982, pp. 55–
74. Springer (2018). https://doi.org/10.1007/978-3-319-96142-2_7, https:
//doi.org/10.1007/978-3-319-96142-2_7

21. Eilers, M., Dardinier, T., Müller, P.: CommCSL: Proving information flow security
for concurrent programs using abstract commutativity. Proc. ACM Program. Lang.
7(PLDI), 1682–1707 (2023). https://doi.org/10.1145/3591289, https://doi.
org/10.1145/3591289

22. Eilers, M., Meier, S., Müller, P.: Product programs in the wild: Retrofitting pro-
gram verifiers to check information flow security. In: CAV (1). Lecture Notes in
Computer Science, vol. 12759, pp. 718–741. Springer (2021)

23. Eilers, M., Müller, P.: Nagini: A static verifier for Python. In: CAV (1). Lecture
Notes in Computer Science, vol. 10981, pp. 596–603. Springer (2018)

24. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3:1–3:37 (2020)

25. Eilers, M., Schwerhoff, M., Müller, P.: Verification algorithms for automated sepa-
ration logic verifiers. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verifica-
tion - 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27,
2024, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14681, pp. 362–
386. Springer (2024). https://doi.org/10.1007/978-3-031-65627-9_18, https:
//doi.org/10.1007/978-3-031-65627-9_18

26. Ernst, G., Murray, T.: SecCSL: Security concurrent separation logic. In: CAV (2).
Lecture Notes in Computer Science, vol. 11562, pp. 208–230. Springer (2019)

27. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: ESOP. Lec-
ture Notes in Computer Science, vol. 7792, pp. 125–128. Springer (2013)

28. Gros, C., Pereira, M.: Le chameau et le serpent rentrent dans un bar : vérifica-
tion quasi-automatique de code OCaml en logique de séparation (2024), https:
//arxiv.org/abs/2412.14894

29. Heule, S., Kassios, I.T., Müller, P., Summers, A.J.: Verification condition genera-
tion for permission logics with abstract predicates and abstraction functions. In:
ECOOP. Lecture Notes in Computer Science, vol. 7920, pp. 451–476. Springer
(2013)

30. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: NASA
Formal Methods. Lecture Notes in Computer Science, vol. 6617, pp. 41–55. Springer
(2011)

https://doi.org/10.1145/3704808
https://doi.org/10.1145/3704808
https://doi.org/10.1145/3704808
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1145/3591289
https://doi.org/10.1145/3591289
https://doi.org/10.1145/3591289
https://doi.org/10.1145/3591289
https://doi.org/10.1007/978-3-031-65627-9_18
https://doi.org/10.1007/978-3-031-65627-9_18
https://doi.org/10.1007/978-3-031-65627-9_18
https://doi.org/10.1007/978-3-031-65627-9_18
https://arxiv.org/abs/2412.14894
https://arxiv.org/abs/2412.14894

Fifteen Years of Viper 15

31. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006:
Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Canada, August 21-27, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4085, pp. 268–283. Springer (2006). https://doi.org/10.1007/11813040_19,
https://doi.org/10.1007/11813040_19

32. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: CAV. Lecture Notes in
Computer Science, vol. 7358, pp. 712–717. Springer (2012)

33. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
CAV. Lecture Notes in Computer Science, vol. 7358, pp. 427–443. Springer (2012)

34. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

35. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR (Dakar). Lecture Notes in Computer Science, vol. 6355, pp. 348–370.
Springer (2010)

36. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
ESOP. Lecture Notes in Computer Science, vol. 5502, pp. 378–393. Springer (2009)

37. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: FOSAD. Lecture Notes in Computer Science, vol. 5705, pp. 195–222.
Springer (2009)

38. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

39. Müller, P.: The binomial heap verification challenge in Viper. In: Müller, P.,
Schaefer, I. (eds.) Principled Software Development - Essays Dedicated to
Arnd Poetzsch-Heffter on the Occasion of his 60th Birthday. pp. 203–219.
Springer (2018). https://doi.org/10.1007/978-3-319-98047-8_13, https://
doi.org/10.1007/978-3-319-98047-8_13

40. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: CAV (1). Lecture Notes in Com-
puter Science, vol. 9779, pp. 405–425. Springer (2016)

41. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure
for permission-based reasoning. In: VMCAI. Lecture Notes in Computer Science,
vol. 9583, pp. 41–62. Springer (2016)

42. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004 - Concurrency Theory, 15th International Con-
ference, London, UK, August 31 - September 3, 2004, Proceedings. Lecture Notes
in Computer Science, vol. 3170, pp. 49–67. Springer (2004). https://doi.org/10.
1007/978-3-540-28644-8_4, https://doi.org/10.1007/978-3-540-28644-8_4

43. Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical traf-
fic tunnel control system. In: Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated Formal
Methods - 15th International Conference, IFM 2019, Bergen, Norway, December
2-6, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11918, pp. 418–
436. Springer (2019). https://doi.org/10.1007/978-3-030-34968-4_23, https:
//doi.org/10.1007/978-3-030-34968-4_23

44. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL. pp.
247–258. ACM (2005)

45. Parthasarathy, G., Dardinier, T., Bonneau, B., Müller, P., Summers, A.J.: To-
wards trustworthy automated program verifiers: Formally validating transla-
tions into an intermediate verification language. Proc. ACM Program. Lang.

https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23

16 M. Eilers, M. Schwerhoff, A. J. Summers, P. Müller

8(PLDI), 1510–1534 (2024). https://doi.org/10.1145/3656438, https://doi.
org/10.1145/3656438

46. Parthasarathy, G., Müller, P., Summers, A.J.: Formally validating a practical ver-
ification condition generator. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23,
2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12760, pp. 704–
727. Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_33, https:
//doi.org/10.1007/978-3-030-81688-9_33

47. Pereira, J.C., Klenze, T., Giampietro, S., Limbeck, M., Spiliopoulos, D., Wolf,
F.A., Eilers, M., Sprenger, C., Basin, D., Müller, P., Perrig, A.: Protocols to code:
Formal verification of a next-generation internet router (2024), https://arxiv.
org/abs/2405.06074

48. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: TACAS. Lecture Notes in Computer Science, vol. 8413,
pp. 124–139. Springer (2014)

49. Poli, F., Denis, X., Müller, P., Summers, A.J.: Reasoning about interior mutability
in Rust using library-defined capabilities (2024)

50. Protopapa, F.: Verifying Kotlin Code with Viper by Controlling Aliasing. Master’s
thesis, University of Padua (2024)

51. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS. pp. 55–74. IEEE Computer Society (2002)

52. Safari, M., Huisman, M.: Formal verification of parallel prefix sum and stream
compaction algorithms in CUDA. Theor. Comput. Sci. 912, 81–98 (2022)

53. Santos, J.F., Maksimovic, P., Ayoun, S., Gardner, P.: Gillian, part I: a multi-
language platform for symbolic execution. In: PLDI. pp. 927–942. ACM (2020)

54. Schwerhoff, M.: Advancing Automated, Permission-Based Program Verification Us-
ing Symbolic Execution. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2016)

55. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an au-
tomatic verifier. In: ECOOP. LIPIcs, vol. 37, pp. 614–638. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2015)

56. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: ECOOP. Lecture Notes in Computer Science,
vol. 5653, pp. 148–172. Springer (2009)

57. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: TACAS (1). Lecture Notes in Computer Science, vol. 10805, pp.
190–209. Springer (2018)

58. Wolf, F.A., Müller, P.: Verifiable security policies for distributed systems. In: Com-
puter and Communications Security (CCS). pp. 4–18. CCS ’24, Association for
Computing Machinery, New York, NY, USA (2024). https://doi.org/10.1145/
3658644.3690303, https://doi.org/10.1145/3658644.3690303

59. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: Modular specification and verification of Go programs. In: CAV (1). Lecture
Notes in Computer Science, vol. 12759, pp. 367–379. Springer (2021)

60. Wolf, F.A., Schwerhoff, M., Müller, P.: Concise outlines for a complex logic: A
proof outline checker for TaDA 13047, 407–426 (2021)

61. Zhao, J., Legnani, A., Ung, T.T., Truong, H., Sau, T.W., Tanaka, M., Åman Po-
hjola, J., Sewell, T., Sison, R., Syeda, H., Myreen, M., Norrish, M., Heiser, G.: Ver-
ifying device drivers with Pancake (2025), https://arxiv.org/abs/2501.08249

62. Zimmerman, C., DiVincenzo, J., Aldrich, J.: Sound gradual verification with
symbolic execution. Proc. ACM Program. Lang. 8(POPL), 2547–2576 (2024).
https://doi.org/10.1145/3632927, https://doi.org/10.1145/3632927

https://doi.org/10.1145/3656438
https://doi.org/10.1145/3656438
https://doi.org/10.1145/3656438
https://doi.org/10.1145/3656438
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-030-81688-9_33
https://arxiv.org/abs/2405.06074
https://arxiv.org/abs/2405.06074
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303
https://doi.org/10.1145/3658644.3690303
https://arxiv.org/abs/2501.08249
https://doi.org/10.1145/3632927
https://doi.org/10.1145/3632927
https://doi.org/10.1145/3632927

	Fifteen Years of Viper

