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Abstract. A workflow graph is a classical flow graph extended by concurrent fork
and join. Workflow graphs can be used to represent the main control-flow of e.g.
business process models modeled in languages such as BPMN or UML activity
diagrams. They can also be seen as compact representations of free-choice Petri
nets with a unique start and a unique end. A workflow graph is said to be sound if
it is free of deadlocks and exhibits no lack of synchronization, which correspond to
liveness and safeness of a slightly modified version of the corresponding Petri net.
We present a new characterization of unsoundness of workflow graphs in terms
of three structural, i.e., graphical error patterns. We also present a polynomial-
time algorithm that decides unsoundness and returns for each unsound workflow
graph, one of the three structural error patterns as diagnostic information. An
experimental evaluation on over 1350 workflow graphs derived from industrial
business process models suggests that our technique performs well in practice.

1 Introduction

Workflow graphs can capture the main control flow of processes modeled in languages
such as BPMN, UML Activity Diagrams, and Event Process Chains (EPC). That is, the
core routing constructs of these languages can be mapped to the routing constructs of
workflow graphs: alternative split and merge, as well as concurrent fork and join. Thus,
a workflow graph is a classical control-flow graph or flow chart extended by concurrent
fork and join. Fig. 1(a) shows a simple example of a workflow graph in BPMN notation
where f 1 and f 2 are (concurrent) forks, j1 is a (concurrent) join, d1 is a decision (i.e.,
alternative split), and m1 and m2 are alternative merges. Note that Fig. 1(a) shows only
the pure control-flow; representations of tasks, commands, data assignments, etc. are
omitted. Those could be added to the edges of the workflow graph.

A workflow graph is equivalent to a corresponding free-choice Petri net [1], called a
free-choice workflow net. The corresponding net for the workflow graph in Fig. 1(a) is
shown in Fig. 1(b) where the (green) dashed part is ignored. In fact, the corresponding
free-choice workflow net is in some sense isomorphic to its workflow graph (see [1] for
details) such that the workflow graph can be seen as a condensed representation of the
free-choice workflow net, and all analysis information obtained on the workflow net can
be easily mapped back to the workflow graph. Because of this close relationship and the
rich theory available for free-choice nets [2], we will henceforth continue the technical
development based on free-choice workflow nets.
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Fig. 1. (a) A workflow graph, (b) its corresponding free-choice workflow net (without dashed part)
and its connected version (with dashed part)

A natural correctness condition for free-choice workflow nets, and the dominant one
for business process modeling, called soundness, requires the absence of two types of
control-flow errors: deadlocks and lack of synchronization. Lack of synchronization,
called unsafeness in Petri net theory, occurs when there are two control-flow tokens
at the same place, which gives rise to implicit auto-concurrency, i.e., a task executing
concurrently to itself, which is usually considered a modeling error for this model class.
Process languages such as BPMN have constructs for explicit auto-concurrency, called
multiple instance tasks, where the auto-concurrency is encapsulated in a single-entry-
single-exit block.

Figs. 2(a) and (d) (ignore the coloring for now) show simple examples of workflow
nets with deadlocks. Figs. 2(b) and (c) exhibit lack of synchronization, i.e., unsafeness.
In particular, Fig. 2(c) shows a special case of lack of synchronization, which causes an
unbounded production of tokens, which can be a serious problem for process execution
engines if undetected.

A free-choice workflow net is sound if and only if its (strongly) connected version is
safe and live (in the Petri net sense) [3]. The connected version of the net in Fig. 1(b)
is created by adding the dashed part. It can be decided in polynomial time whether a
strongly connected free-choice net is safe and live using linear-algebraic techniques.
However, none of the existing decision procedures [4–6, 2] explicitly attempts to produce
diagnostic information to support a modeler in locating, understanding and fixing the
error in case the net is not live or not safe.

In this paper, we present a novel technique to detect control-flow errors and to
produce diagnostic information that helps modelers to locate and fix the cause of the
error. In particular, we make the following contributions:

1. We present a new characterization of unsoundness in terms of three structural error
patterns, i.e., offending subgraphs (see Fig. 2) that are present in a free-choice
workflow net if and only if it is unsound. This diagnostic information is designed to
be more concise and easier to consume than an error trace, which is important as
many process models are created by business analysts without a strong technical
background.

2. We present an algorithm that decides unsoundness in polynomial time such that one
structural error pattern is returned for each unsound graph. As a byproduct, we can
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also generate an error trace in polynomial time to complement the main graphical
diagnostic information.

3. We implemented our technique as a research prototype in the IBM WebSphere Busi-
ness Modeler. An experimental evaluation on over 1350 workflow graphs derived
from industrial business process models suggests that our technique is sufficiently
fast to run the analysis and provide immediate concise diagnostic feedback while
the process model is being developed.

Some proofs are omitted in this version. They and additional detail can be found in
an extended version of this paper [7] and in a thesis [8].

Related work. Our structural error patterns are similar to control-flow ‘anti-patterns’,
which are sometimes given to modeling practitioners [9] in terms of erroneous instructive
examples. However, in contrast to those anti-patterns, our structural error patterns are
formally characterized as graph structures and proved to capture all situations where
deadlock or lack of synchronization may occur.

Our patterns are also strongly related to a graph-theoretic characterization of live and
bounded free-choice nets given by Esparza and Silva [10]. However, we are not aware of
any polynomial-time decision procedure for their characterization.

An alternative approach to detect control flow errors and to provide diagnostic infor-
mation is to compute an error trace through state-space exploration. An experimental
study [11] has shown that whereas naive state-space exploration is not sufficient to ana-
lyze the state spaces of business process models, with appropriate reduction techniques,
state space exploration can check soundness of an industrial process model in less than a
second. However, the traces obtained can be large and contain many transitions that do
not contribute to the actual control-flow error [12], which requires additional techniques
to trim the trace [13, 14], whereas our structural error patterns represent control-flow
errors concisely. Moreover, many traces are difficult to visualize in the context of a
process model, for instance, because they include several iterations through a cycle,
whereas our structural error patterns can be displayed and understood within the process
model.

The tool Woflan [15] implements a complex set of (partially exponential-time) Petri
net analysis techniques. Some diagnostic hints, e.g., so-called mismatches, can be helpful
in many cases to understand an error, but they do not imply unsoundness in general. For
other diagnosis results, it remains unclear how they can pinpoint the cause of an error.

2 Preliminaries

2.1 Free-choice workflow nets and soundness

A Petri net N = (P,T, F) consists of disjoint, finite and non-empty sets P of places and
T of transitions and a relation F ⊆ (P × T ) ∪ (T × P). An element of P ∪ T is also
called an element of N. Note that (P ∪ T, F) is a directed (bipartite) graph and we apply
well-known graph-theoretic concepts such as path and strong connectedness to it. For an
element x of N, we define •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} and for a set X of
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elements, we set •X =
⋃

x∈X
•x and X• =

⋃
x∈X x•. N is free-choice if for all transitions

t1, t2, •t1 ∩ •t2 , ∅ implies3 |•t1| = |•t2| = 1. A subnet of N is a Petri net N′ = (P′,T ′, F′)
such that P′ ⊆ P, T ′ ⊆ T and F′ = F ∩ ((P′ × T ′) ∪ (T ′ × P′)). The incidence matrix of
a Petri net N is given by the integers ct,p = χF(t, p) − χF(p, t) for t ∈ T, p ∈ P where χF

denotes the characteristic function of F.
A marking of N is a mapping m : P → N, i.e., a bag over P. If m(p) = k, we say

that p has k tokens in m. If m(p) > 0, we say that p is marked in m. We will sometimes
treat a set of places X ⊆ P as a marking by identifying it with its characteristic function.
Addition and containment of markings is defined pointwise: (m1+m2)(p) = m1(p)+m2(p)
and m1 ≤ m2 if there is a marking m such that m1 + m = m2. A transition t is enabled in
m if •t ≤ m. For two markings m1,m2 and a transition t, the relationship m1

t
−→ m2 holds

whenever t is enabled in m1 and m1 + t• = •t + m2. We write m −→ m′ if m
t
−→ m′ for any t

and
∗
−→ for the reflexive and transitive closure of −→. We say m′ is reachable from m if

m
∗
−→ m′. A transition t (place p) is dead in m if no marking reachable from m enables t

(marks p). A transition or place x is live in m if x is not dead in each marking reachable
from m. A local deadlock is a marking in which a transition t is dead and a place p ∈ •t
is marked. A global deadlock is a marking in which no transition is enabled. N is live in
a marking m0 if every transition is live in m0.

We say N is bounded from a marking m0 if there is a marking m∗ such that for every
marking m reachable from m0, we have m ≤ m∗. A marking is safe if each place has at
most one token. N is safe from a marking m0 if every marking reachable from m0 is safe.

A workflow net is a Petri net N with a unique source ps and a unique sink pt , ps such
that ps, pt ∈ P and every element of N is on a path from ps to pt. The marking ms (resp.
mt) of N which has a single token on the source (sink) and no token elsewhere is called the
initial (final) marking of N. An execution sequence of N is a sequenceσ = m0,m1,m2, . . .
of markings of N such that mi −→ mi+1 for each i ≥ 0. If σ = m0, . . . ,mn is finite, we also
write m0

σ
−→ mn. An execution trace of N is an execution sequence σ = m0,m1,m2, . . .

of N such that m0 = ms. A marking of N is said to be a reachable marking of N if it is
reachable from the initial marking of N.

A workflow net N is said to be sound [3] if the following three conditions are
satisfied: (i) the sink is live in the initial marking, (ii) the final marking is the only
reachable marking of N that marks the sink, and (iii) no transition of N is dead in the
initial marking. Condition (ii) says that a token on the sink signals ‘proper termination’,
i.e., there is no token left in the interior of the net. The example in Fig. 1(b) is sound.
Soundness appears to be an especially natural correctness condition for free-choice
workflow nets as the following theorem suggests. We define for a workflow net N the
(strongly) connected version of N, denoted by N. N is obtained from N by adding a fresh
transition tr, called the return transition and connect it such that •tr = pt and t•r = ps, i.e.,
the return transition moves a token from the sink to the source of N, cf. Fig. 1(b) with
dashed part. Note that the underlying graph of N is indeed strongly connected.

3 Often, a more liberal definition is given for free-choice, which is sometimes also called extended
free-choice. However an extended free-choice net can be converted into an equivalent free-
choice net by a simple and well-known construction.
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Theorem 1 ([3]). Let N be a free-choice workflow net. The following five statements
are equivalent: (i) N is sound, (ii) N is safe from the initial marking and no reachable
marking is a local deadlock (iii) N is safe from the initial marking and no reachable
marking is a global deadlock, (iv) N is bounded and live from the initial marking, and
(v) N is safe and live from the initial marking.

It is not necessarily obvious to a modeler whether a reachable marking is a local
deadlock or not. However it is fairly obvious whether a marking is a global deadlock.
We could therefore call a global deadlock an explicit error marking and a local deadlock
an implicit error marking. So far, we have three explicit error markings that imply
unsoundness: a global deadlock, an unsafe marking, and an improper termination, i.e., a
reachable marking that has a token on the sink and some token elsewhere. An execution
trace that ends in an explicit error marking can be considered as diagnostic information
for unsoundness.

2.2 Structural characterizations for safeness and liveness in free-choice nets

We will use the following concepts from Petri net and graph theory to build graphical
diagnostic information: siphons, circuits, handles and bridges. A siphon4 is a non-empty
set S of places such that •S ⊆ S •; S is minimal if it does not contain another siphon.
The central property of a siphon, which makes it suitable as diagnostic information,
and which is an immediate consequence of its definition, is that if S is not marked in a
marking m, then each transition t ∈ S • is dead in m. We will also identify a siphon S
with the subnet generated by it, which is the subnet (P′,T ′, F′) such that P′ = S and
T ′ = •S .

A path is said to be trivial if it contains only one element. A circuit of N is a non-
trivial path from an element to itself such that all other elements are pairwise distinct. A
handle on a subnet N′ is a non-trivial path H in N from some element x of N′ to some
element y of N′ such that H is disjoint from N′ apart from x and y. H is a P/T-handle if
x ∈ P and y ∈ T and a T/P-handle if x ∈ T and y ∈ P. A bridge between two subnets
N′ and N′′ is a non-trivial path B from an element x of N′ to an element y of N′′ that
is disjoint from N′ apart from x and disjoint from N′′ apart from y. B is a T/P-bridge if
x ∈ T and y ∈ P.

N is structurally live if there exists a marking from which it is live; it is structurally
bounded if N is bounded from each marking of N. N is SLB if it is structurally live and
structurally bounded. Note that SLB is equivalent with the notion of well-formedness [2]
of a free-choice net, where N is well-formed if there exists a marking from which N is
live and bounded. This is because a well-formed free-choice net is structurally bounded
[2, Thm.5.8].

The following propositions are directly derived from the literature. Let for the rest of
this paper, N denote a free-choice workflow net and N its connected version.

Theorem 2 ([2, Thm.6.17],[10, Thm.4.2]). We have: (i) N is safe and live from the
initial marking iff it is SLB and every siphon contains the source and (ii) N is SLB iff it

4 Unfortunately, a siphon is also often called a deadlock.
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contains no circuit with a T/P-handle and for every circuit C with a P/T-handle H, there
is a T/P-bridge between C and H.

Imagine the connected versions for the examples in Fig. 2. Then the red part in
Fig. 2(a) shows a siphon that does not contain the source. In Figs. 2(b) and (c), the red
part shows a T/P-handle on a circuit (blue part + imagined return edge). Fig. 2(d) shows
a P/T-handle without bridges (red part) on a circuit (part of the blue plus imagined return
edge). We discuss these examples in more depth in Sect. 3.1.

It can be computed in polynomial time whether every siphon is initially marked
[5]. However, we do not know any way to compute Thm. 2(ii) in polynomial time.
Moreover, condition (ii) of Thm. 2 has another drawback to be used directly as diagnostic
information. Although a circuit with a handle is an explicit error condition as it is easily
verified by a user, a circuit with a handle without bridges is less suited because the
absence of bridges is not obvious to a user in a large graph.

3 New Diagnostic Information for Unsoundness

In this section, we present a new characterization of unsoundness in terms of the presence
of three types of graph structures, which are suitable as diagnostic information. The new
characterization is derived from the Esparza-Silva characterization (Thm. 2(ii)) with an
essential change and some additional adaptations based on the structure of workflow
nets. We present the new characterization in Sect. 3.1, and we show in Sect. 3.2 that each
of the error patterns indeed indicates unsoundness.

3.1 A new structural characterization of unsoundness

The new characterization is based on the new notion of a DQ-siphon:

Definition 1. A decreasing quasi-component siphon, DQ-siphon for short, is a siphon
S such that for each transition t, |t• ∩ S | ≤ 1.

A DQ-siphon has initially at most one token in N and since the number of tokens in
it cannot increase, it has never more than one token. Recall that a path in a graph is said
to be simple if it does not visit any node twice. The new characterization is:

Theorem 3. N is unsound iff at least one of the following statements holds:

1. N has a siphon that does not contain the source.
2. N has a simple path from some element to the sink that has a T/P-handle.
3. N has a DQ-siphon S with a P/T-handle (more precisely, the subnet generated by S

has a P/T-handle).

The proof of Thm. 3 is deferred to Sect. 3.3. Fig. 2 shows examples for the error
patterns. They indicate unsoundness as follows. As stated already above, all transitions
t ∈ S • are dead once the siphon S is unmarked, which for Thm. 3(i), is the case already in
the initial marking, cf. Fig. 2(a). For a simple path with a T/P-handle, we can distinguish
two cases, a forward handle, cf. Fig. 2(b) and a backward handle, cf. Fig. 2(c). The
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Fig. 2. Examples of the three error patterns: (a) A siphon (red) that does not contain the source, (b)
A path to the sink (blue) with a (forward) T/P-handle (red), (c) A path to the sink (blue) with a
(backward) T/P-handle (red), (d) A DQ-siphon (blue) with a P/T-handle (red).

intuition of the forward handle is that we can execute, unless there is an obstruction
by a deadlock, the path and the handle independently, which generates two tokens at
the merging place p, i.e., an unsafe marking. Likewise, the intuition for the backward
handle is that, if not obstructed by a deadlock, the handle and the path can be executed
concurrently to produce an unbounded number of tokens at p. Finally, for a DQ-siphon
S , we can assume it contains the source (otherwise we resort to Thm. 3(i)). Since S has
always at most one token, it becomes unmarked when the first transition of the handle
occurs, which marks the handle and all transitions t ∈ S • become dead. The token on the
handle can be brought, unless obstructed by a deadlock, to the last place p ∈ •t′ of the
handle, where t′ is the last transition of the handle, hence t′ ∈ S • and t′ is therefore dead,
which is a local deadlock. These intuitions are substantiated in Sect. 3.2 below.

3.2 Error patterns indicate unsoundness

In this section, we prove that given that the workflow net exhibits one of the error patterns
in Thm. 3, we can compute an execution trace to an explicit error marking in polynomial
time. The existence of the traces forms the underpinning for the intuition for the error
patterns given above. In particular, this proves the ‘if’ direction of Thm. 3. The execution
traces can also be used to complement the main diagnostic information from Thm. 3. We
need the following lemma, which generalizes the central property of a sound free-choice
net that every place can be marked and every transition can be enabled from the initial
marking.

Lemma 1. Let π be a path in N from a place p1 to a place p2, and m a marking of N
such that p1 is marked in m. Then, we can compute in O(|P|2) time an execution sequence
from m to a marking m′ such that m′ marks p2 or m′ is an explicit error marking, i.e., a
global deadlock, an improper termination, or unsafe.

The proof of Lemma 1 is provided in the extended version of this paper [7]. The
following observation will help us later: An unsafe marking or an improper termination
marking are two special cases of a more general error marking:
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Lemma 2. Let p1, p2 be two distinct places of N such that there exists a simple path
from p1 via p2 to the sink of N. If there exists a reachable marking m that marks both
places p1 and p2, then N is unsound. An execution sequence from m to an explicit error
marking can be computed in O(|P|2) time.

By help of Lemmas 1 and 2, we can show the following:

Theorem 4. If N exhibits any of the three error patterns in Thm. 3, then a trace of N to
an explicit error marking can be computed in O(|P|2) time from the error pattern.

A complete proof of Theorem 4 is provided in the extended version of this paper [7].
We now give a brief account of the proof for each error pattern. For any siphon that does
not contain the source, there is a path from the source to a place of the siphon. As no
place of an unmarked siphon can be marked, it follows directly from Lemma 1 that we
can compute, in quadratic time, a trace from the initial marking to an error marking.

Consider now the case where N has a simple path π from some element e1 to the sink
that has a T/P-handle H. Applying Lemma 1 to a path from the source of N to the place
p1 that precedes the first transition of H, we obtain either an error marking or a marking
that marks p1. In the latter case, we apply Lemma 1 to the path H. This will result in an
error marking or, without going into the details, a marking m where two places of π are
marked. By Lemma 2, we can obtain from m, an error trace in quadratic time.

Finally consider the case where N has a DQ-siphon S with a P/T-handle H. By the
DQ-siphon property, S has always at most one token. Applying Lemma 1 to a path from
the source of N to the first place of H, we obtain, in quadratic time, an execution leading
to an error marking or a marking that marks a single place in S , viz. the first place of
H. In the latter case, we apply Lemma 1 to the path H and we obtain an execution that
leads to either an error marking or a marking that marks the last place p of H. Because
S became unmarked through the execution of the handle, the last transition t′ of H is
dead because t′ ∈ S •, cf. Fig. 2(d). Hence we obtain an explicit error marking by once
again applying Lemma 1 to a path from p to the sink of N.

3.3 Proof of Thm. 3

In Thm. 4, we have shown one direction of Thm. 3. To show the other direction of
Thm. 3, suppose N is unsound. Due to Thm. 1, N is not safe or not live from the initial
marking. Due to Thm. 2, we have either (i) some siphon of N does not contain the source,
(ii) N contains a circuit with a T/P-handle, or (iii) N contains a circuit with a P/T-handle
without T/P-bridges. In case (i), we conclude that N has a siphon that does not contain
the source because each siphon in N is also a siphon in N. For the cases (ii) and (iii), we
use the following lemmas.

Lemma 3. If N has a circuit with a T/P-handle, then N has a path to the sink with a
T/P-handle, which can be computed in O(|F|) time.

Lemma 4. If N has a circuit with a P/T-handle without T/P-bridge, then N has a minimal
siphon S with a P/T-handle or a siphon that does not contain the source.
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When the minimal siphon S with P/T-handle that Lemma 4 returns is not a DQ-
siphon, then there is a transition t such that |t• ∩ S | > 1. Then, we apply Lemma 5 below
and obtain a path to the sink of N with a T/P-handle, which concludes the proof of
Thm. 3. Lemma 5 will be re-used in Sect. 4.

Lemma 5. If S is a minimal siphon of N such that there is a transition t such that
|t• ∩ S | > 1, then N has a circuit with a T/P-handle, which can be computed in O(F)
time.

The proofs of the lemmas are provided in the extended version of this paper [7].

4 Computation of Structural Diagnostic Information

In this section, we show that structural diagnostic information as given by Thm. 3 can
be computed in polynomial time. We employ and extend an algorithm by Kemper and
Bause [5], which in turn is based on the rank equation for free-choice nets. We need
the following definitions. A state machine (also called S-graph) is a Petri net such that
for each transition t, |•t| = |t•| = 1, i.e., it has no concurrency. A P-component (also
called S-component) of N is a subnet (P′,T ′, F′) of N that is a strongly connected state
machine such that T ′ = •P′ ∪ P′•. N is state-machine decomposable (SMD) if each
element of N belongs to some P-component of N. Fig. 3 shows two nets that are SMD,
each with a decomposition. SMD is necessary for N to be SLB but not sufficient. The net
in Fig. 3(a) is SLB (sound), the net in Fig. 3(b) is not SLB (unsound). More precisely,
SMD is sufficient for N being safe, but not for being live. Note that the net in Fig. 3(b)
has deadlocks.

The difference between N being SMD and SLB can be captured using the rank
equation. To this end, we need the notion of a cluster. For a transition t of N, let
[t] = {t′ ∈ T | •t ∩ •t′ , ∅} be the cluster of t. In a free-choice net, each cluster is an
equivalence class, hence clusters provide a partition of T . We have the following:

Theorem 5 ([16]). N is SLB iff N is SMD and

rank(N) = |{[t] | t ∈ T }| − 1 (1)

where rank(N) is the rank of the incidence matrix of N.

(a) (b)
tr tr

p1 p2

Fig. 3. Two nets, each decomposed into two overlapping P-components S 1 (green part + black
part) and S 2 (orange part + black part) (a) is safe and live (sound), (b) is safe but not live (unsound)
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Algorithm 1 Decides whether N is safe and live and returns diagnostic information.
CheckSafeAndLive(N)
1: SiphonCheck(N): if N has a siphon S that does not include the source of N then return (false,

S ) end if
2: SMD-Check(N): if a minimal siphon S of N is found that is not a state machine then return

(false, D) where D is either a circuit with a T/P-handle or a DQ-siphon with a P/T-handle
computed from S end if

3: Rank-Check(N): if the rank equation (1) holds for N then return true end if
4: loop
5: Unprocessed := the set of all places of N
6: loop
7: pick p ∈ Unprocessed
8: N′ := delete(p,N)
9: if N′ is not empty then

10: SMD-Check(N′): if a minimal siphon S of N′ is found that is not a state machine
then return (false, D) where D is either a circuit with a T/P-handle or a DQ-siphon
with a P/T-handle computed from S end if

11: Rank-Check(N′): if the rank equation (1) does not hold for N′ then N := N′; break
end if

12: end if
13: Unprocessed := Unprocessed \ {p}
14: end loop
15: end loop

Note that the rank of the incidence matrix can be computed in time cubic in
max(|P|, |T |). For the example net (connected version) in Fig. 3(b), the rank of the
incidence matrix is 6 and the number of clusters is also 6.

We now present an algorithm that decides whether N is safe and live, which is, as
stated earlier, equivalent with N being sound. This algorithm, shown as Algorithm 1,
returns corresponding diagnostic information for the connected net, viz. either a siphon
that does not contain the source of N (line 1), a circuit with a T/P-handle or a DQ-siphon
with a P/T-handle (lines 2 and 10). This can then be post-processed into the desired
diagnostic information for N as stated in Thm. 3, which we will show below in Thm. 7.

Algorithm 1 proceeds as follows. It first checks whether N has a siphon that does not
contain the source of N using an algorithm by Esparza and Silva [4, Alg.6.6], cf. also
[5]. This is denoted as SiphonCheck(N).

Next the algorithm tries to compute a state-machine decomposition of N using an
algorithm by Kemper and Bause [5, Alg. 17], which is denoted as SMD-Check(N). This
algorithm computes a cover of the net with minimal siphons, i.e., a set of of minimal
siphons such that each place is in some minimal siphon. It then checks whether each of
the computed minimal siphons is a P-component. If this is not the case, N is not SLB
[5, Thm.6]. A minimal siphon S of N is not a P-component iff one of the following two
conditions holds: (i) there is a transition t such that |t• ∩ S | > 1. In this case, we can
compute a circuit with a T/P-handle as proved in Lemma 5. In the other case (ii), we
have S • \ •S , ∅. In this case, we can compute a P/T-handle attached to S as proved in
Lemma 6. Note that condition (i) is checked first, so when condition (ii) is checked, we
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know that there is no transition t such that |t• ∩ S | > 1 and hence, if (ii) holds for S , S
must be a DQ-siphon.

Lemma 6. If S is a minimal siphon of N such that S • \ •S , ∅, then S has a P/T-handle
in N, which can be computed in O(|F|) time.

In case the SMD-Check in line 2 passes, we know that each of the computed minimal
siphons is a P-component and therefore, N is SMD and hence safe. The algorithm
proceeds with computing the rank of the incidence matrix of N by standard techniques
and checks the rank equation (1), denoted Rank-Check(N). If the equation holds, then
N is SLB due to Thm. 5 and safe and live due to Thm. 2. If the rank equation does not
hold, we know that N is not live. In this case, we iteratively reduce the net as described
below until the SMD check for the reduced net returns diagnostic information.

For the reduction, we define N′ = delete(p,N) as the largest strongly connected
subnet of N that does not contain p. Fig. 4 shows in (a) the result of delete(p1,N) and
(b) the result of delete(p2,N) where N is the net shown in Fig. 3(b). N′ = delete(p,N)
can be computed in linear time. N′ may be empty for a particular p, but if N is SMD and
not SLB, a place p can be found such that delete(p,N) is not empty (see Lemma 8). If
N′ is not empty, we perform an SMD check on it. If the SMD check on the reduced net
N′ (line 10) generates diagnostic information, this information is returned as diagnostic
information of the original net N. We argue in Lemma 7 below that this is correct.

Lemma 7. Let N′ = delete(p,N) for some p such that N′ is nonempty.

(i) If S is a minimal siphon of N′ such that there is a transition t such that |t• ∩ S | > 1,
then S is also a minimal siphon of N such that there is a transition t such that
|t• ∩ S | > 1.

(ii) If S is a minimal siphon of N′ such that S • \ •S , ∅, then S is also a minimal
siphon of N such that S • \ •S , ∅.

Otherwise, if the SMD check passes for N′, we check the rank equation for N′. If
the rank equation for N′ does not hold, we know that N′ is not SLB. Hence we found a
smaller net that contains an error, and, in this sense, the reduction was successful. In this
case, we proceed with N′ as the subject of further analysis, we break from the inner loop
and go into a new iteration of the outer loop to reduce the net further.

(a) (b)
trtr

Fig. 4. The result of (a) delete(p1,N) and (b) delete(p2,N) where N is the net in Fig. 3(b)
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If the rank equation holds for N′, then N′ is SLB, i.e., removal of p has removed the
deadlock (i.e., made the net live). In this case, we try to reduce with another place p.

Lemma 8 below proves that, as long as a strongly connected free-choice workflow
net is SMD but not SLB, we find a place p such that the reduced net is not empty and not
SLB, so either the SMD check or the rank check fails on the reduced net. In the former
case, we are done and in the latter case, we proceed with a smaller net that is SMD but
not SLB. Since this reduction can be performed at most |P| many times, the SMD check
must fail eventually and return diagnostic information.

Lemma 8. Let N′ be a strongly connected subnet of N such that N′ is SMD. If N′ is not
SLB then there exists a place p such that delete(p,N′) is nonempty and not SLB.

We can now conclude with the correctness of Alg. 1.

Theorem 6. Alg. 1 decides whether N is safe and live from the initial marking. If not, it
outputs either a siphon that does not include the source, a DQ-siphon with a P/T-handle,
or a circuit with a T/P-handle. Alg. 1 completes in O(|P|2 ∗ max(|P|, |T |)3).

Proof. We have already shown the correctness of Alg. 1. For the complexity, note that
the time complexity of the Siphon Check is O(|P|2 ∗ |T |) [5]. The complexity of the
SMD Check is O(|P| ∗ (|P| + |T | + |F|)) because the worst case is bounded by the need
to identify |P| minimal siphons and finding a minimal siphon containing a place can be
done in time O(|P| + |T | + |F|) [17]. Finally, checking the rank of the incidence matrix
can be done in O(max(|P|, |T |)3). Thus, the complexity is dominated by the computation
of the rank of the matrix. Alg. 1 performs, at most, |P|2 computations of the rank. Thus,
the worst case time complexity of Alg. 1 is O(|P|2 ∗ max(|P|, |T |)3).

As an example, we consider again the net from Fig. 3(b). This net passes the siphon
check but might or might not pass the first SMD check, depending on the nondeterminis-
tic choice of minimal siphons in the SMD check. Suppose the algorithm finds the state
machine decomposition shown in Fig. 3(b). The subsequent rank check for this net fails.
If in the reduction, place p1 is picked, we obtain the net shown in Fig. 4(a), which is SLB
and hence passes the subsequent SMD and rank check. If however place p2 is picked
for reduction, we obtain the net shown in Fig. 4(b), which is not SMD and hence the
SMD check must fail. Fig. 5(a) shows a minimal siphon S (in orange) that covers p3. S
is not a state machine for two reasons: |t•1 ∩ S | > 1 and t2 ∈ S • \ •S . The first violation is
picked up first, and from S and t1, a circuit with a T/P-handle is computed (Lemma 5),
which is shown in Fig. 5(b).

The diagnostic information obtained from Alg. 1 for N can be post-processed into
diagnostic information for N. We obtain:

Theorem 7. Soundness of N can be decided in time O(|P|2 ∗ max(|P|, |T |)3) such that
the algorithm returns one of the structural error patterns in Thm. 3 in case N is unsound.

Proof. The algorithm creates the connected version of N and applies Alg. 1 to it. A
siphon that does not contain the source of N is returned as it is. Note that each siphon
in N is a siphon in N. A DQ-siphon S with a P/T-handle in N is a DQ-siphon with a
P/T-handle in N and is also returned as it is. Note that in this case, S contains the source
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(a) (b)

tr

t1
t2

p1 p3

tr

t1

Fig. 5. (a) A minimal siphon S (in orange) that is not a state machine witnessed by t1 (b) A circuit
(in blue) with a T/P-handle (in red) computed from S and t1.

(otherwise we would return the first error pattern) and therefore the sink, because of the
siphon property. Therefore, the return edge belongs to the siphon and cannot belong
to the handle, so removal of the return edge retains the error pattern. A circuit with a
T/P-handle in N is transformed into a path to the sink with a T/P-handle using Lemma 3.
The complexity of this algorithm is dominated by the complexity of Alg. 1.

5 Experimental Evaluation

We implemented our technique as a research prototype in the IBM WebSphere Business
Modeler and used this implementation to evaluate the performance of our technique and
demonstrate that our technique provides useful diagnostic information.

Our implementation translates business process models described in the IBM Web-
Sphere Business Modeler language into workflow graphs [11] and then applies a com-
pletion technique by Kiepuszewski et al. [18] (cf. also [11]) to obtain a workflow graph
with a unique sink, as required by our technique.

Data set. We ran our control flow analysis on 1353 business process models from
industrial projects in the insurance and banking domain, which were also used as a
benchmark in other work [11, 12]. The 1353 models are organized into four libraries A,
B1, B2, and B3. The libraries B1 and B2 are older releases of the library B3, where some
process models were refined or changed, possibly removing or adding errors. Counting
only libraries A and B3, we have 703 unique original models. Over the four libraries, the
average number of nodes per derived Petri net ranges between 89 and 107. There are
several large nets with up to 627 nodes. For example, 47 nets from library B3 have 200
or more nodes. Some models have state spaces with more than 1 million states, cf. [11].

We validated the correctness of the results, i.e., the detected soundness or unsound-
ness of the processes, by comparing them with the results obtained during previous
experiments applying different analysis techniques to the same data [11]. The techniques
agree on all process models.

Performance evaluation. We ran our experiments on a notebook with a 2 GHz processor
and 2 GB RAM. The analysis times are computed as an average over 10 runs. They also
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Library A B1 B2 B3 Total

Processes 282 287 363 421 1,353

Unsound processes 130 180 202 214 726
Siphon without source 0 17 15 13 45
Path with a T/P-handle 47 138 158 174 517
DQ-siphon with a P/T-handle 83 25 29 27 164

Average library analysis time [ms] 752 492 627 928 2799

Table 1. Experimental results.

include the time spent by the tool to generate the error report for the user. The overhead
for loading the process models from disk into memory during the first run is excluded.

Tab. 1 summarizes the results of our experiments for the four libraries. All three
structural error patterns occurred in the data set. The average time to analyze a process
model is 2ms, which is sufficiently fast to run our analysis and provide immediate
feedback while the process model is being developed. In particular, our control-flow
analyzer is roughly 2 to 6 times faster than existing tools that produce diagnostic
information, that is, tools based on state space exploration [11].

Our implementation highlights structural error patterns inside the process model.
For instance, Fig. 6 shows the error report for a path with a T/P-handle. Note that the
activity ‘Confirm Customer Requirement’ produces a token on each of its outgoing
edges according to the semantics of the used high-level language. Therefore, this activity
creates a concurrent fork (as f 1 in Fig. 1(a)) in the corresponding workflow graph. In
Fig. 6, the activity ‘Confirm Customer Requirement’ is on a simple path (blue) to the
final place and starts multiple concurrent paths including a T/P-handle (in red). Both
concurrent paths join on the alternative merge (empty diamond with error flag) without
being properly synchronized, which would need a concurrent join instead (as j1 in
Fig. 1(a)). We provide examples for the other two structural patterns in the extended
version of this paper [7].

Fig. 6. Screenshot of the diagnostic information for a T/P-handle.

Diagnostic information. As this example illustrates, our technique provides concise
diagnostic information. In particular, the structural patterns have advantages over the
traces computed by state space exploration. They can be displayed and understood
directly in the context of the process model (which is difficult for traces that may be
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long and may contain iterations). Moreover, they are concise and do not contain any
information that is not immediately relevant for understanding and fixing the error
(in contrast to traces, which typically describe complete executions including aspects
irrelevant for the error).

6 Conclusion

We presented a new characterization of control-flow errors in workflow graphs in terms
of three structural error patterns, as well as an algorithm that decides whether one of
the error patterns is present. To our knowledge, this is the first algorithm that runs in
polynomial time and produces diagnostic information. It is applicable to a wide range
of business process models modeled in languages such as BPMN or UML activity
diagrams; features of these languages that do not translate to workflow graphs are
either used rarely or orthogonal to soundness checking. Our experiments show that our
technique is sufficiently fast to give instant feedback while the process model is being
developed; the experiments also provide anecdotal evidence that our technique generates
useful diagnostic information. Evaluating the benefit of this information in comparison,
for instance, to error traces, requires a user study and involves various aspects beyond
the scope of this paper, such as error visualizations and user interactions. We leave such
a study for future work.
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