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Abstract. Abstract interpretation has been widely applied to approx-
imate data structures and (usually numerical) value information. One
needs to combine them to effectively apply static analysis to real software.
Nevertheless, they have been studied mainly as orthogonal problems so
far. In this context, we introduce a generic framework that, given a heap
and a value analysis, combines them, and we formally prove its soundness.
The heap analysis approximates concrete locations with heap identifiers,
that can be materialized or merged. Meanwhile, the value analysis tracks
information both on variable and heap identifiers, taking into account
when heap identifiers are merged or materialized. We show how existing
pointer and shape analyses, as well as numerical domains, can be plugged
in our framework. As far as we know, this is the first sound generic
automatic framework combining heap and value analyses that allows to
freely manage heap identifiers.

1 Introduction

Two major fields of static program analysis have been heap and (usually numerical)
value abstractions. Venet states that “If one wants to use static analysis to support
or achieve verification of real programs, we believe that symbolic (i.e., heap) and
numerical static analysis must be tightly integrated”[33]. Nevertheless, “symbolic
and numerical static analysis are commonly regarded as entirely orthogonal
problems”.

Object-oriented programming languages are currently mainstream in software
development, and many analyzers targeting these languages have been developed.
Two main lines appeared in this context: (i) analyzers focused on value information
that preprocess the program applying a specific heap analysis, and replace heap
accesses with symbolic variables (e.g., Clousot [23]), and (ii) heap abstractions
(e.g., TVLA [22]) that do not track value information, or that have to be manually
extended (e.g., with specific predicates) to track a particular type of value
information [24, 25]. As far as we know, existing analyzers that combine heap
and value analyses are not both generic (that is, they are specific on a particular
heap and/or value analysis) and automatic (that is, they require to provide some
annotation, like instrumentation predicates).



Motivating Example Consider the motivating example in Figure 1. Class
ListInt represents a list of integers, with an integer field f (containing the value
of an element) and a ListInt next field (pointing to the next element of the
list, or to null if we are at the end). Method absSum(l) computes the sum of
the absolute values of the elements in the list. Imagine that two clients call
this method. client1 passes the list [1; 2]3 to absSum, where the two elements
are allocated at different program points (p1 and p2). Instead, client2 calls
absSum with a list of n positive elements, where n is an input of the program.

1 int absSum(ListInt l ) {
2 int sum = 0;
3 ListInt it = l;
4 while( it != null ) {
5 if ( it . f < 0) sum = sum − it.f;
6 else sum = sum + it.f;
7 it =it.next;
8 }
9 return sum;

10 }

Fig. 1: The motivating example

There are various properties and invariants
we would like to prove and infer on such pro-
gram. First of all, we would like to prove that
we do not have any NullPointerException

(property P1). In addition, we could discover
that the value returned by sumAbs is positive
(P2), or that it is greater or equal than all the
elements in the list pointed by l (P3). These
properties require to combine different heap
and value analyses. P1 does not require any
particular numerical analysis, and for both
the clients a simple and efficient heap analysis
based on the allocation sites [29] would be
precise enough. Instead, P2 requires at least
a numerical domain that tracks the sign of numerical variables, while P3 requires
a relational domain like Octagons [28]. In addition, for client1 the allocation
site-based heap abstraction would be precise enough both for P2 and P3. Instead,
on client2 this abstraction would approximate all the nodes of the list with
a unique summary node, and it would not be able to discover that the value
added to sum is positive, since it cannot track precise information on the Boolean
condition of the if statement. Therefore, we need a more precise heap abstraction
that materializes the node pointed by it (e.g., shape analysis [30]).

Contribution The contribution of this work is the formalization of a sound
generic analysis that allows to combine various heap and value abstractions
automatically. The heap analysis approximates concrete locations through heap
identifiers, while the value analysis tracks information on these identifiers. In
addition, our framework allows the heap analysis to freely manage heap iden-
tifiers, and in particular to merge and materialize them. These modifications
are represented by substitutions, and they are propagated to the value analysis.
For the most part, our approach relies on standard components of abstract
interpretation-based sound static analyses, and we formally define and prove
the soundness of their combination. In addition, we show how to instantiate
our framework with a pointer and a shape analyses, as well as with numerical

3 [1; 2] is a shortcut to denote a list of two elements, with value 1 stored in the field f

of the first element list, and 2 in the second one.



Fig. 2: The architecture of the domains in our approach

domains. This proves that our framework is expressive enough to be applied to
the most common heap and value analyses.

1.1 Overview of the Framework

Domains Figure 2 depicts the overall structure of our approach. On the left,
we have standard object-oriented states composed by an environment and a
store. On the right, we have our target abstract domain composed by a heap
and a value abstract state. Here we represent the state of client1 when calling
method absSum in our motivating example. We adopt an allocation site-based
heap abstraction [1] and the Interval domain [9]. Therefore, the heap analysis
abstracts the list with two abstract nodes named p1 and p2, while the value
analysis tracks that field f of p1 is [1..1], and field f of p2 is [2..2].

The heap analysis concretizes to a set of environments and stores representing
information only about references. This is represented in Figure 2 in the upper
central box of split states, and it is obtained through the heap concretization γH.
Similarly, the value analysis concretizes to environments and stores representing
information only about values through γV. The value analysis contains information
about heap identifiers p1.f and p2.f, and it needs the concretization of heap
identifiers γHId provided by γH to produce concrete states. For instance, in Figure
2 we assume that one possible γHId concretizes p1.f and p2.f to (#1, f) and
(#2, f), respectively.

Semantics The heap semantics may need to materialize or merge heap identifiers.
The information about how the heap identifiers are modified is communicated
through substitutions. A substitution is a function that tells the value analysis
from which heap identifiers of the pre-state the identifiers of the post-state come.
In this way, the value analysis can preserve the soundness of the information
tracked on heap identifiers modified by the heap analysis.

For instance, consider the semantics step depicted in Figure 3. Suppose to
analyze our motivating example combining a simple shape analysis [30] with the
Interval domain. We analyze method absSum when it is called by client2. The



Fig. 3: The semantics’ architecture of our approach

abstract state on the left of Figure 3 is produced before computing the abstract
semantics of line 3 in Figure 14. Supposing that the node pointed by it has to be
always definite, when we assign l to it, a definite node is materialized from u1.
The value analysis was already tracking information about u1.f before this step,
and it has to propagate this information to the materialized identifier u2.f. The
heap analysis communicates a substitution sub to the value analysis, telling that
u1.f and u2.f in the post-state derive from u1.f in the pre-state. Then the value
analysis is updated reflecting the semantics of this substitution, that is, assigning
the value tracked on u1.f in the pre-state to u1.f and u2.f in the post-state.

This paper formalizes this generic combination of heap and value analyses.
First of all, Section 2 introduces the minimal object-oriented language we deal
with. Then we formalize a standard concrete and a split domain and semantics in
Section 3. Section 4 formalizes and proves the soundness of the abstract domain
and semantics. Section 5 shows how to plug in our framework pointer and shape
analyses, as well as numerical domains. In this way, we prove that our approach
is generic enough to support some of the most common heap and value analyses.
Finally, Section 6 discusses the related work, while Section 7 concludes.

Notation: In this paper, we will denote by →A a small-step transition
semantics on the domain A, and by →℘(A) the pointwise application of →A to
set of states in A. Formally, 〈st,A1〉 →℘(A) {a′ : ∃a ∈ A1 : 〈st, a〉 →A a′} where
A1 ⊆ A. With an abuse of notation, we will denote by πn the projection of a set
of tuples (with at least n components) to the set containing the n-th component
of each single tuple in the given set. Our approach is based on the abstract
interpretation theory [9, 10]. We will denote concrete sets and elements by C
and c, respectively, and abstract sets and elements by A and a, respectively. In
addition, γA will denote the concretization function of the abstract domain A.

2 Language

A program consists of a control flow graph of basic blocks. Each basic block
consists of a sequence of statements. Different blocks are connected through
edges that optionally contain a Boolean condition to represent conditional jumps.

4 For the sake of simplicity, we assume that l is acyclic containing at least two elements.



e′ = e[x 7→ s(e(y), f)]
〈x = y.f, (e, s)〉 →Σ (e′, s)

e′ = e[x 7→ e(y)]
〈x = y, (e, s)〉 →Σ (e′, s)

e′ = e[x 7→ alloc(C, (e, s))]
〈x = new C, (e, s)〉 →Σ (e′, s)

s′ = s[(e(x), f) 7→ e(y)]
〈x.f = y, (e, s)〉 →Σ (e, s′)

s′ = s[(e(x), f) 7→ eval(vexp, (e, s))]
〈x.f = vexp, (e, s)〉 →Σ (e, s′)

e′ = e[x 7→ eval(vexp, (e, s))]
〈x = vexp, (e, s)〉 →Σ (e′, s)

Fig. 4: The concrete semantics →Σ.

rexp ::= x | x.f | new C

vexp ::= x | x.f | vexp1 < op > vexp2

op ::= + | − | ∗ | · · ·
st ::= x = rexp | x.f = y |

| x = vexp | x.f = vexp

Table 1: Expressions and statements

For the sake of simplicity, we fo-
cus our attention on the statements
of the minimal object-oriented lan-
guage defined in Table 1. This sup-
ports assignments to variables and
fields, and it distinguishes among
value and reference expressions. Ref-
erence expressions can be variable
identifiers, field accesses, and object
creations. Value expressions can be
variables, field accesses, or binary
combinations of value expressions through an (e.g., arithmetic) operator. There-
fore, we assume that we can distinguish between value (that is, vexp returning
values of native types like int and double in Java) and reference expressions
(that is, rexp). Note that in Table 1 y represents a variable of reference type,
and C ∈ Class where Class denotes the set of the classes of the object-oriented
program that can be instantiated.

3 Concrete Domain and Semantics

In this section we first introduce a standard domain (Σ) and semantics (→Σ) of
object-oriented programs, and we abstract it with a split domain (ΣSplit) and
semantics (→Split) proving the soundness of our approach.

3.1 Standard Domain and Semantics

First of all, we partition the content of variables and heap locations into values
(Val) and references (Ref). As usual in object-oriented programming languages, a
state of the execution is composed by an environment (that relates local variables
to references or values, Env : Var→ (Ref∪Val)) and a store (that relates locations
to references or values, Store : (Ref × Field)→ (Ref ∪ Val)). A concrete state is
defined by Σ = Env × Store. The lattice structure is given by 〈℘(Σ),⊆〉.



eval : (vexp× Σ)→ Val
eval(x, (e, s)) = e(x)
eval(x.f, (e, s)) = s(e(x), f)
eval(vexp1 < op > vexp2, (e, s)) = eval(vexp1, (e, s)) < op > eval(vexp2, (e, s))

Fig. 5: The concrete expression evaluation.

evalSplit : (vexp′ × ΣVal)→ Val
evalSplit(x, (eVal, sVal)) = eVal(x)
evalSplit(< r > .f, (eVal, sVal)) = sVal(r, f)
evalSplit(vexp1 < op > vexp2, (eVal, sVal)) =

= evalSplit(vexp1, (eVal, sVal)) < op > evalSplit(vexp2, (eVal, sVal))

Fig. 6: The split expression evaluation.

Semantics Figure 4 defines a standard concrete small step semantics →Σ, while
Figure 5 defines a standard concrete evaluation of value expressions. We assume
that a function alloc : (Class×Σ)→ Ref is given. This allocates an object instance
of the given class, and returns the reference pointing to it.

3.2 Split Domain

We split the concrete domain and semantics between the portion dealing with
values (EnvVal : Var → Val, StoreVal : (Ref × Field) → Val, and ΣVal = EnvVal ×
StoreVal), and the portion dealing with references (EnvRef : Var→ Ref, StoreRef :
(Ref × Field)→ Ref, and ΣRef = EnvRef × StoreRef). A state is then the Cartesian
product of these two components (ΣSplit = ΣRef ×ΣVal). Like the concrete domain,
the lattice structure is given by set of elements, that is, 〈℘(ΣSplit),⊆〉.

Soundness To prove the soundness of 〈℘(ΣSplit),⊆〉 with respect to 〈℘(Σ),⊆〉,
we have to formalize the concretization γSplit : ℘(ΣSplit) → ℘(Σ) that defines
how states in ΣSplit are mapped into states in Σ. Intuitively, this consists in
the pointwise set union of the two parts of split states. Formally, γSplit(T) =
{(ev ∪ eh, sv ∪ sh) : ((eh, sh), (ev, sv)) ∈ T} . Note that, since in the definition of
the language in Section 2 we assumed that we can distinguish among value and
reference expressions (and in particular local variables and field accesses), the
domains of ev and eh do not overlap. The same considerations apply to sv and sh.

Then, we have that 〈℘(ΣSplit),⊆〉 is a sound approximation of 〈℘(Σ),⊆〉 , that
is, they form a Galois connection.

s′Val = sVal[(r, f) 7→ evalSplit(vexp
′, (eVal, sVal))]

〈< r > .f = vexp
′, (eVal, sVal)〉 →Val (eVal, s

′
Val)

e′Val = eVal[x 7→ evalSplit(vexp
′, (eVal, sVal))]

〈x = vexp
′, (eVal, sVal)〉 →Val (e′Val, sVal)

Fig. 7: The semantics of the value part



e′Ref = eRef [x 7→ alloc(C, (eRef , sRef))]
〈x = new C, (eRef , sRef)〉 →Ref (e′Ref , sRef)

e′Ref = eRef [x 7→ sRef(eRef(y), f)]
〈x = y.f, (eRef , sRef)〉 →Ref (e′Ref , sRef)

s′Ref = sRef [(eRef(x), f) 7→ eRef(y)]
〈x.f = y, (eRef , sRef)〉 →Ref (eRef , s

′
Ref)

e′Ref = eRef [x 7→ eRef(y)]
〈x = y, (eRef , sRef)〉 →Ref (e′Ref , sRef)

Fig. 8: The semantics of the heap part

〈x = rexp, σRef〉 →Ref σ
′
Ref

〈x = rexp, (σRef , σVal)〉 →Split (σ′
Ref , σVal)

〈x.f = y, σRef〉 →Ref σ
′
Ref

〈x.f = y, (σRef , σVal)〉 →Split (σ′
Ref , σVal)

〈RJx.f, σRefK=RJvexp, σRefK, σVal〉 →Val σ
′
Val

〈x.f = vexp, (σRef , σVal)〉 →Split (σRef , σ
′
Val)

〈x =RJvexp, σRefK, σVal〉 →Val σ
′
Val

〈x = vexp, (σRef , σVal)〉 →Split (σRef , σ
′
Val)

Fig. 9: The semantics of the split domain

Semantics Figure 6 defines the evaluation of expressions in vexp′, where
vexp′ ::=x|< r > .f|vexp1′ < op > vexp2′ with r ∈ Ref. The main difference
w.r.t. the concrete expression evaluation defined by Figure 5 is that it deals only
with the value portion of the heap state. This is possible since vexp′ contains
a reference instead of a local variable when accessing a field with statement
< r > .f. Then, we have that →Split is a sound approximation of →Σ.

The small-step semantics→Split over ΣSplit is formalized by Figure 9. It mainly
applies the proper semantics of the value (Figure 7) or the heap (Figure 8) part
of the state by looking to the statement. The only noticeable difference appears
when we deal with statements requiring both value and heap state (namely,
x = vexp and x.f = vexp). In these cases, we preprocess vexp and x.f with the
following function R:

R : (vexp× ΣRef)→ vexp′

RJx, (eRef , sRef)K = x

RJx.f, (eRef , sRef)K = <eRef(x)> .f
RJvexp1 < op > vexp2, (eRef , sRef)K =

= RJvexp1, (eRef , sRef)K< op >RJvexp2, (eRef , sRef)K
This function replaces in a value expression the local variable x in a field

access x.f with the reference r pointed by x in the reference environment. This
step is necessary to allow the evaluation of value expressions to perform without
any knowledge of the actual state of the reference part.

4 Abstract Domain and Semantics

The reference (ΣRef) and the value (ΣVal) part of the split domain are approx-
imated by a given heap (H) and value (V) analysis, respectively. In addition,
the heap analysis defines a set of heap identifiers HId which aims at abstracting
concrete locations, and the value analysis tracks information over these identifiers
like it does over variable identifiers. Since we want to allow the heap analysis to
merge and materialize heap identifiers, we have to communicate these changes to



the value analysis through substitutions. In this Section, we formalize and prove
the soundness of this framework.

4.1 Abstract Domain

We assume that a value analysis V and a heap analysis H are provided with
lattice operators (〈V,vV,tV,uV〉 and 〈H,vH tH,uH〉, respectively). In addition,

they provide the widening operators ∇V and ∇H, respectively. The states Σ of

our abstract domain are composed by a heap and a value state (Σ = H × V).
Then a state of our analysis is the Cartesian product of H and V denoted by
〈Σ,vΣ,tΣ,uΣ〉.

4.2 Concretization Function

We assume that the heap analysis defines a finite set of heap identifiers HId. In
addition, it provides a function heapId : H → ℘(HId) that returns the set of
heap identifiers contained in a given abstract heap. The value analysis tracks
information on variables as well as heap identifiers. Therefore, the concretization
of the value analysis produces (i) environments in EnvVal, and (ii) stores with
abstract heap identifiers instead of concrete locations since the value analysis
alone cannot concretize heap identifiers (StoreHId : HId → ℘(Val)). Note that
we have a set of concrete values as codomain since a single heap identifier,
representing a summary node, may concretize into many concrete references that
could have different values in the same store’s concretization. For instance, a list
of positive values may be approximated by a single heap identifier u. Imagine
that we are dealing with a particular concretization of this list containing two
elements. These two elements are not necessarily equal, so for instance the value
analysis could tell us that u.f concretizes to {1, 2} (e.g., to represent a list [1; 2]).

To concretize a store in StoreHId to Store, we need that the heap analysis
provides the concretization of heap identifiers. Therefore, the heap concretization
has to provide a function γHId that relates each heap identifier to a set of concrete

locations (HId → ℘(Ref × Field)). Also in this case, we need to have a set of
concrete locations as codomain in order to support summary nodes.

In this way, the heap analysis can track the shape of the heap, and represent
symbolically nodes using heap identifiers. When it concretizes, the concrete values
of references in one concrete store transform the shape into a concrete memory
state. In this scenario, the heap identifiers’ concretization is the component that
tells us how we go from the shape to the concrete references. Note that a single
shape could concretize to a (possibly infinite) set of concrete stores, since there
are infinitely many possible reference values for the heap identifiers, and the heap
identifiers’ concretization is specific for one concrete store.

Formally, the heap concretization γH returns a set of pairs containing a

concrete store, and a concretization of heap identifiers (γH : H→ ℘(ΣRef×(HId→
℘(Ref × Field)))). The mapping of heap identifiers to sets of concrete locations is
necessary to concretize later value stores.



We assume that the heap and value analyses are sound, that is, they form

a Galois connection. Formally, 〈℘(EnvVal × StoreHId),⊆〉 −−−→←−−−
αV

γV 〈V,vV〉 and

〈℘(ΣRef),⊆〉 −−−−−−→←−−−−−−
αH

π1◦γH 〈H,vH〉. In addition, we assume that γV and π1(γH) are

complete meet-morphisms.
We are now in position to combine the heap and value concretizations to

concretize abstract states in Σ to ℘(ΣSplit). What is still missing is the concretiza-
tion of StoreHId to Store. Intuitively, the resulting stores should relate a location
(r, f) with the values related to a heap identifier that is concretized into (r, f).
Formally, we define γStoreHId

: (StoreHId × (HId → ℘(Ref × Field))) → ℘(StoreVal)
as follows:

γStoreHId
(s, γHId) = {[(r, f) 7→ v] : i ∈ dom(γHId) ∧ (r, f) ∈ γHId(i) ∧ v ∈ s(i)}

Finally, the concretization of abstract states γΣ : Σ→ ℘(ΣSplit) is defined by:

γΣ(v, h) = {(σH , (ev, s
′
v)) : (ev, sv) ∈ γV(v) ∧ (σH , γHId) ∈ γH(h)∧

s′v ∈ γStoreHId
(sv, γHId)}

Running Example Consider now the motivating example of Figure 1 with
the list passed by client1, and the abstract state depicted in the right part
of Figure 2. The numerical domain concretizes the store (sv in the definition
of γΣ) to {[(p1, f) 7→ {1}, (p2, f) 7→ {2}]} while the value environment ev is
empty since there is no local value variable. Instead, γH may concretize to many
heaps with different γHId. For the sake of simplicity, let us focus on the case in
which γHId = [(p1, f) 7→ {(#1, f)}, (p2, f) 7→ {(#2, f)}]. Then γStoreHId

returns the
numerical store s′v = [(#1, f) 7→ 1, (#2, f) 7→ 2], that is, it substitutes (p1, f) and
(p2, f) with (#1, f) and (#2, f) in sv, respectively.

Soundness We need to assume some conditions on how heap identifiers are
concretized in order to prove the soundness of the analysis.

C1 γHId has to define the concretization of all the heap identifiers contained in

the concretized heap. Formally, ∀γHId ∈ π2(γH(h)) : dom(γHId) = heapId(h).
C2 If a heap identifier is not in all the states we are intersecting, then it will not

be part of the results of the intersection, since through the greatest lower
bound we are taking only the part that is common among all the states we
are intersecting. Formally, ∀H1 ⊆ H : heapId(

d
h∈H1

h) =
⋂

h∈H1
heapId(h).

C3 Different heap identifiers represent different portions of the heap. Formally,
∀i1, i2 ∈ dom(γHId) : i1 6= i2 ⇒ γHId(i1) ∩ γHId(i2) = ∅.

C4 When we intersect a set of abstract heaps, the heap identifiers’ concretization
is the pointwise intersection of the heap identifiers’ concretization of all the
intersected states. Formally, ∀(σH , γHId) ∈ γH(

d
h∈H1

h),∀(σH , γiHId
) ∈ γH(hi) :

hi ∈ H1 ⇒ γHId = λx.
⋂

hi∈H1
γi

HId
(x).

Condition C1 is necessary since otherwise the value analysis could track
information on heap identifiers that it does not know how to concretize. Condition
C3 is a rather standard assumption over abstract nodes in heap analysis (e.g., in



shape analysis [30]), and it states that different identifiers represents different
portions of the heap. In this way, the assignment of an identifier is guaranteed
not to affect other identifiers. Condition C2 and C4 are both necessary to prove
that γΣ is meet-preserving. This is a fundamental property for Galois connections
induced by a glb-preserving concretization function (e.g., see Proposition 7 of
[11]). Intuitively, they correspond to the requirement that π1(γH) and γV are
complete meet-morphism applied to π2(γH).

Theorem 1 (〈Σ,v〉 is a sound approximation of 〈℘(ΣSplit),⊆〉).
〈℘(ΣSplit),⊆〉 −−−−→←−−−−

αΣ

γΣ 〈Σ,v〉 where αΣ = λX. uΣ {x : X ⊆ γΣ(x)}.

Since Galois connections compose [9], we have that 〈℘(Σ),⊆〉 −−−−−−−−−→←−−−−−−−−−
αΣ◦α℘(Split)

γ℘(Split)◦γΣ

〈Σ,v〉 that is, Σ is sound with respect to the standard concrete domain ℘(Σ).

4.3 Substitutions

Substitutions allow the heap analysis to freely manage heap identifiers when
applying semantic operators. They are defined by Sub : ℘(HId)→ ℘(HId). The
meaning of a relation in a substitution is that the identifiers in the domain are
in the post-state, and they derive from the identifiers in the pre-state they are
in relation with. For instance, [{id1, id2} 7→ {id3}] represents that id1 and id2
are materialized from id3, while [{id1} 7→ {id2, id3}] means that id2 and id3 are
merged into id1.

In our notation, we will represent by →sub
H

that the heap semantic operator

→H produced the substitution sub. Function applySub : (V× Sub)→ V applies a
substitution to a state of the value analysis, and it is defined by:

applySub(v, sub) = vn where sub = [I1 7→ I′1, ..., In 7→ I′n], v0 = v∧
∀j ∈ [1..n] : vj = ti′∈I′j

{v′n : Ij = {i1, · · · , in}, v′0 = vj−1,

∀k ∈ [1..n] : 〈ik = i′, v′k−1〉 →V v′k}
The intuition behind applySub is that, given a substitution sub, each single

replacement Ij 7→ I′j ∈ sub represents that the identifiers in I′j are substituted by
Ij . Therefore, each identifier i′ ∈ I′j is assigned to each identifier i ∈ Ij .

Soundness We expect that the substitution produced by a heap semantic
operator is coherent with respect to the modifications of the heap identifiers that

have been induced by such operator. This means that, if 〈st, h〉 →sub
H

h
′

and

[I 7→ I′] ∈ sub, the concrete locations represented by I′ in the pre-state corresponds
to what is represented by I in the post-state. This correspondence is bound to
heap concretization that are related through the concrete heap semantics →Ref .
This concept is formalized by the following proposition.

Proposition 1 (Soundness of the substitution). Let h ∈ H be a state of the

heap analysis such that 〈st, h〉 →sub
H

h
′
.



A substitution is sound iff ∀(h, γHId) ∈ γH(h) : 〈st, h〉 →Ref h′, (h′, γ′
HId

) ∈
γH(h

′
) we have that γ′

HId
= γHId[i 7→ I′ : I′ ⊆

⋃
i1∈sub(I) γHId(i1) ∧ ∃I ∈ dom(sub) :

i ∈ I] and ∀I ∈ dom(sub) :
⋃

i∈I γ
′
HId

(i) =
⋃

i′∈sub(I) γHId(i′).

Intuitively, the substitution univocally establishes how heap identifiers’ con-
cretization is affected by the heap semantic operator. In addition, since a substi-
tution represents how heap identifiers are modified in a single step, we do not
want that different replacements in the same substitution overlap. The intuition
is that a set of heap identifiers can be substituted by another set, but during one
single substitution the same heap identifiers cannot be in many replacements. For
instance, imagine that we have the substitution [{id1} 7→ {id2}, {id2} 7→ {id3}].
In this case, it is not clear what is represented. In particular, we could have that
(i) id1 is replaced by id2 that is then replaced by id3, or (ii) id2 is replaced by
id3 and id1 is replaced by id2. To avoid this ambiguity, we do not allow this
scenario. Nevertheless, the effects of overlapping substitutions (like the one we
sketched) can be obtained by a sequence of non-overlapping substitutions that
disambiguate the semantics. For instance, (i) corresponds to [{id1} 7→ {id2}]
followed by [{id2} 7→ {id3}], while (ii) corresponds to [{id2} 7→ {id3}] followed
by [{id1} 7→ {id2}].

Proposition 2 (Non-overlapping replacements). We assume that single re-
placements in the same substitution do not overlap. Formally, ∀I ∈ dom(sub),∀I′ ∈
dom(sub) \ {I} : I ∩ I′ = ∅ ∧ sub(I) ∩ sub(I′) = ∅.

Running Example Consider again the program in Figure 1, and suppose to
have a transition like the one depicted in Figure 3. The materialization of u2
produces the replacement [{u1.f, u2.f} 7→ {u1.f}], and its application to the
numerical state produces [u1.f 7→ [0..+∞], u2.f 7→ [0..+∞]].

This replacement satisfies the soundness conditions of the substitution. In-
tuitively, the two heap identifiers u1.f and u2.f in the post state corresponds
to u1.f in the heap state. Therefore, given a particular concrete state, the con-
cretization of the heap identifiers of u1.f and u2.f in the post-state corresponds
to the concretization of u1.f in the pre-state, that is exactly what is stated by
Proposition 1. In addition, the substitution does not overlap, and therefore it
satisfies Proposition 2.

4.4 Semantics

In our split domain, we assumed that the value part ΣVal takes care of statements
about values, while the heap part ΣRef defines the semantics of statements dealing
with the heap. Nevertheless, we needed the heap state to replace field accesses
with a reference and the accessed field in value expressions, and when assigning
a value to a location. Similarly, we will have to replace field accesses with heap
identifiers when defining the abstract semantics.

Let us define vexp ::=x|i|vexp1 < op > vexp2 where i ∈ HId. vexp is the
abstract counterpart of vexp′. We assume that V provides the semantics of value



〈x.f = y, h〉 →sub
H h′ ∧ applySub(v, sub) = v′

〈x.f = y, (h, v)〉 →Σ (h
′
, v′)

v′ =
⊔

i ∈ RJx.f, hK,
vexp ∈ RJvexp, hK

v1 : 〈i = vexp, v〉 →V v1

〈x.f = vexp, (h, v)〉 →Σ (h, v′)

〈x = rexp, h〉 →sub
H h′ ∧ applySub(v, sub) = v′

〈x = rexp, (h, v)〉 →Σ (h
′
, v′)

v′ =
⊔

vexp∈RJvexp,hK

v1 : 〈x = vexp, v〉 →V v1

〈x = vexp, (h, v)〉 →Σ (h, v′)

Fig. 10: The abstract semantics →Σ

assignment 〈i = vexp, v〉 →V v′, and that H provides (i) the semantics of field

access 〈x.f, h〉 →H I (where I ⊆ HId is the set of heap identifiers obtained by

accessing x.f)5, (ii) the semantics of local variable assignment 〈x = rexp, h〉 →sub
H

h
′
, and (iii) the semantics of field assignment 〈x.f = y, h〉 →sub

H
h
′

The abstract semantics is defined by Figure 10. It relies on function R:
R : (vexp× H)→ ℘(vexp)

RJx, hK = {x}
RJx.f, hK = I where 〈x.f, h〉 →H I
RJvexp1 < op > vexp2, (h, v)K =

⋃
vexp1 ∈ RJvexp1, hK
vexp2 ∈ RJvexp2, hK

vexp1< op >vexp2

Similarly to R, this function replaces each field access x.f with the heap
identifier i that represents such field access in the current heap state. Since the
heap analysis may return a set of heap identifiers when accessing a field (e.g.,
because it may track that a local variable could point to two different abstract
heap nodes), R returns a set of possible value expressions in vexp.

Running Example Suppose to analyze the statement it = l at line 3 of the
motivating example of Figure 1 obtaining a transition as depicted in Figure 3.
The analysis materializes the node pointed by it, and it produces a substitution
as discussed in Section 4.3. The definition of the semantics →Σ simply applies
this substitution to the value analysis after the heap semantics.

Soundness Before establishing the soundness conditions of the heap and the
value analyses, we need to introduce the semantics→Val′ that defines the semantics
of statements dealing with vexp on EnvVal×StoreHId. This is formalized by Figure

5 For the sake of simplicity, we assume that field accesses do not produce any sub-
stitution nor they modify the abstract heap state. Anyway, this does not limit the
expressiveness of our approach, since we may obtain this substitution and a new
heap state by simulating this statement by assigning a field access to a local variable,
and then by replacing the field access with this local variable in the expression or
assignment containing x.f.



〈i = vexp, (eVal, sHId)〉 →Val′ (eVal, sHId[i 7→ eval ′(vexp, (eVal, sHId))])

〈x = vexp, (eVal, sHId)〉 →Val′ (eVal[x 7→ eval ′(vexp, (eVal, sHId))], sHId)

Fig. 11: The semantics →Val′

eval ′ : (vexp× (EnvVal × StoreHId))→ Val
eval ′(x, (eVal, sHId)) = eVal(x)
eval ′(i, (eVal, sHId)) = sHId(i)
eval ′(vexp1 < op > vexp2, (eVal, sHId)) =

= eval ′(vexp1, (eVal, sHId)) < op > eval ′(vexp2, (eVal, sHId))

Fig. 12: The expression evaluation eval ′.

11 and 12. Then, we assume that the semantics of the value and the heap analysis
are both sound.

Proposition 3 (Soundness of the value semantics). We assume that the
semantic operator provided by the value analysis is sound. Formally,
∀v ∈ V, 〈st, v〉 →V v′, 〈st, γV(v)〉 →℘(Val′) V′ ⇒ V′ ⊆ γV(v′)

where st ∈ {x = vexp, x.f = vexp}.

Proposition 4 (Soundness of the heap semantics). We assume that the
semantic operators provided by the heap analysis are sound. Formally,

– ∀h ∈ H, 〈st, h〉 →sub
H

h
′
, 〈st, π1(γH(h))〉 →℘(Ref) H′ ⇒ H′ ⊆ π1(γH(h

′
)) where

st ∈ {x = rexp, x.f = y}, and
– ∀h ∈ H, 〈x.f, h〉 →H I,∀((eRef , sRef), γHId) ∈ γH(h)⇒ (eRef(x), f) ∈

⋃
i∈I γHId(i).

Theorem 2 (Soundness of →Σ). Let (h, v) ∈ Σ and st ∈ St be a set of initial
states and a statement, respectively. Then

〈st, (h, v)〉 →Σ (h
′
, v′), 〈st, γΣ(h, v)〉 →℘(Split) S⇒ S ⊆ γΣ(h

′
, v′)

4.5 Reduction

In abstract interpretation, the reduced product [10] allows two analyses to
exchange information through a reduce operator. This operator is represented
by a function ρΣ : Σ→ Σ such that (i) ρΣ(σ) vΣ σ, and (ii) γΣ(ρΣ(σ)) = γΣ(σ).
Since the reduce operator may change what is represented by heap identifiers, it
may produce a substitution whose effects are propagated to V through applySub.

For instance, a numerical analysis could discover that a list contains 2 elements,
while the heap analysis was unable to track this information (e.g., it tracks the
shape depicted on the left part of Figure 3). The reduce operator may refine the
heap state leading to a shape similar to the one depicted in the upper right part
of Figure 2.



Thanks to the genericness of the approach we adopted, we allow one to
arbitrarily refine the heap state with the information tracked by the value
analysis. Nevertheless, this refinement has to be defined on specific instances of
value and heap analyses.

4.6 Interface of the Value and the Heap Analysis

We now summarize the interface of the value and the heap analysis. First of all,
we have some standard assumptions on sound abstract domains. In particular,
both the analyses form a lattice (〈V,vV,tV,uV〉 and 〈H,vH tH,uH〉) and a
Galois connection with the concrete domain. In addition, they provide sound
semantic operators to assign and read heap locations.

We have then some specific requirements on the heap analysis. In particular, H
provides (i) a finite set of heap identifiers HId, (ii) a function heapId : H→ ℘(HId)
that, given a state, returns the set of heap identifiers contained in that state,
(iii) a coherent concretization of them (Conditions C1-4), and (iv) coherent
substitutions of heap identifiers (Proposition 1 and 2).

These components are necessary to allow our framework to combine the heap
and the value analyses, and to formally prove its soundness.

5 Instances

In this Section, we show how to plug two heap (namely, pointer and shape)
analyses, and existing numerical domains in our framework. In this way, we prove
that our framework is expressive enough to be applied to the most common heap
and value analyses.

5.1 Pointer Analysis PA

Pointer analysis [20] has been extensively studied. One of the most known results
in this field is Andersen’s flow-insensitive analysis[1]. This analysis has been
extended in various ways [31]. In this Section, we propose a slight modification
of Might et al.’s analysis [26]. In particular, our analysis is flow-sensitive, field-
sensitive, and it does not deal with context-sensitivity since we did not support
method calls in our language. Nevertheless, we expect that our approach can be
straightforwardly extended to such scenario. We adopt a standard allocation site
abstraction [1, 12, 13, 29] to approximate dynamic locations in a finite way.

Domain Heap identifiers are represented by pairs made by (i) program labels in
Lab of the new statements that allocate memory, and (ii) field names (HIdPA =
Lab × Field). Since the sets of program labels and of field names are both
finite, HIdPA is finite as well. The abstract environment relates each variable
to a set of program labels (EnvPA : Var → ℘(Lab)). We need a set of program
labels as codomain since statically a variable could be related to references



EPA : (rexp× ΣPA)→ ℘(Lab)
EPAJx, (e, s)K = e(x)
EPAJx.f, (e, s)K =

⋃
l∈e(x) s(l, f)

EPAJnew C, (e, s)K = {label(new C)}
(a) The expression semantics of PA,
where label given a statement returns
its program label

s′ =
⊔

l∈e(x)

s[(l, f) 7→ e(y)]

〈x.f = y, (e, s)〉 →∅PA (e, s′)

e′ = e[x 7→ EPAJrexp, (e, s)K]
〈x = rexp, (e, s)〉 →∅PA (e′, s)

〈x.f, (e, s)〉 →PA

⋃
l∈e(x)

s(l, f)

(b) The statement semantics of
PA

Fig. 13: PA definitions

allocated at different program labels. Similarly, an abstract store relates a pair
composed by a program label and a field name to a set of program labels
(StorePA : (Lab × Field) → ℘(Lab)). Finally, abstract states are the Cartesian
product of abstract environments and stores (ΣPA = EnvPA × StorePA). The
function heapIdPA : ΣPA → ℘(HIdPA) returns the set of all the abstract memory
locations in the environment and in the store. First of all, we collect all the
labels that are actually stored in the abstract state. Formally, label(ePA, sPA) =⋃

x∈dom(ePA)
ePA(x)

⋃
(l,f)∈dom(sPA)

{l}∪sPA(l, f). Then heapIdPA is defined as follows:

heapIdPA(ePA, sPA) =
⋃

l∈label(ePA,sPA),f∈fieldValPA(l)(l, f) where fieldValPA : Lab →
Field is a function that, given a program point that contains the assignment of
a new statement, returns all the possible value field names of the instantiated
object.

The lattice structure relies on the pointwise application of set operators on
EnvPA and StorePA, and the widening operator corresponds to the least upper
bound operator since the set of program labels is finite. The concretization γPA

first concretizes each label to a set of concrete references that could have been
created at that program label, and then builds up the environments and stores in
which abstract references are replaced by the corresponding references. Formally,

γPA(ePA, sPA) = {((e, s), γHId)} :

γHId ∈ {[(l, f) 7→ (r, f) : (l, f) ∈ heapIdPA(ePA, sPA) ∧ r ∈ allocatedRef (l)]}
e ∈ {[x 7→ r : x ∈ dom(e) ∧ r ∈

⋃
l∈e(x) γHId(allocatedRef (l))]}

s ∈ {[(r1, f) 7→ r2 : (l1, f) ∈ dom(s) ∧ r1 ∈ allocatedRef (l1)∧
r2 ∈

⋃
l2∈s(l1,f)

allocatedRef (l2)]}

where allocatedRef : Lab→ ℘(Ref) is a function that returns all the references
allocated by a given program label.

These definitions satisfy the soundness conditions of heap identifier concretiza-
tion, and in particular C1 since γHId always concretizes all the heap identifiers
in the state, C2 since by definition uPA is the pointwise application of the set



intersection ∩, C3 since what is allocated by a label is disjoint from what can
be allocated by other labels, and C4 since what is represented by a label never
changes during the computation of the abstract semantics.

Semantics Figure 13a formalizes the abstract evaluation of expressions, while
Figure 13b deals with the semantics of statements. Both these semantics are
quite standard. The evaluation of expressions simply enquires the environment or
the store to know the abstract references pointed by a variable or a field access,
respectively. Instead, when we create a new object, this returns a singleton con-
taining the label of the statement. Similarly, the abstract semantics of statements
assigns the set of labels returned by the evaluation of expressions to the assigned
variable or abstract location. The semantics always creates an empty substitution,
since statements do not change how we concretize the heap identifiers, because
each heap identifier represents all the concrete locations allocated by a given
label. This is not touched by the abstract semantics, and empty substitutions
always satisfy Proposition 1. In addition, since only empty substitutions are
produced, Proposition 2 trivially holds.

5.2 TVLA-based Shape Analysis

Shape analysis [30] is an approach to heap analysis that achieved an impressive
amount of research results, and it was used to define quite precise abstractions.
TVLA [22] is the first and one of the most popular shape analysis engines.
Ferrara et al. [15] combined TVLA and value analyses in a generic way relying on
substitutions. A further work [16] has plugged this combination in the framework
we introduced in this paper.

Intuitively, the concrete structure of the heap is represented by shapes defined
by 2-valued logic structures. These are then approximated by 3-valued logic
structures. At this level, maybe nodes represent summary node in the heap graph.
Unfortunately, TVLA names nodes in a completely arbitrary and unpredictable
way. Therefore, TVAL+ augmented states with unary name predicates. Condition
C3 imposes that different names point to different nodes. Therefore, each name
predicate can point only to one node, and each node has to be pointed by one
name predicate. The states satisfying this property are called normalized. When
computing the TVLA semantics, the exit state may not be normalized. [15]
then defines a normalization algorithm, and [16] proves that the substitutions it
produces satisfy Propositions 1 and 2.

5.3 Numerical Domains

Numerical domains are by far the most studied value abstraction, and usually they
track information on local variables. Our approach introduces heap identifiers in
addition to variables. On the one hand, if a heap identifier represents a definite
node (that is, it is always concretized to a single concrete reference by γHId), then
the value domain can treat it exactly as a variable identifier. On the other hand,



if it is a summary node (that is, it concretizes to many concrete references), the
value analysis has to take into account this fact to preserve the soundness of the
whole analysis.

There are three major issues in this scenario. First of all, when performing an
assignment to a heap identifier representing a summary node, the value analysis
has to perform a weak update, that is, it has to compute the least upper bound
between the state before the assignment and after it. A similar issue arises when
reading from a summary node. Imagine to analyze a = l.f; b = l.next.f; with
the linear equalities domain [21] on the heap state depicted in the upper-left
corner of Figure 3. The heap analysis would evaluate both l and l.next with u1.
Therefore, after the computation of the semantics of a = u1.f; b = u1.f; we would
infer that a == u1.f ∧ b == u1.f, and then that a == b, that is unsound. For
this reason, when considering expressions containing summary nodes, the value
domain has to consider that the same heap identifiers may represent different
concrete heap locations. Finally, numerical domains usually deal with all the
program variables. Instead, in our framework we cannot know a priori the heap
identifiers produced by the heap approximation during the analysis. For instance,
this would lead to situations in which we have to join value states defined on
different environments.

All these issues are already well-known, and Gopan et al. [18] extended
existing numerical domains (dealing only with local variables) to summarized
dimensions in a generic way. In particular, they require four operators from a
numerical domain (add, drop, fold, and expand). Using these operators, they
define a sound semantics dealing with summary nodes. Their main insight is to (i)
materialize one node from the summary node, (ii) perform the abstract evaluation
or assignment on this node, and (iii) merge this node with the summary node
where it comes from. If on the one hand this approach is quite precise, on the
other hand it could introduce several identifiers when computing the semantics,
slowing down the analysis.

6 Related Work

In this Section, we briefly discuss some previous work dealing with the combination
of (usually shape) heap and (usually numerical) value analyses.

McCloskey et al. [25] proposed a generic way of combining heap and numerical
domains. Similarly to our work, the heap analysis splits the heap into classes of
disjoint portions of the heap as we did with heap identifiers (in particular with
Condition C3). They assume that “the set of individuals belonging to a class is
not affected by an assignment”, that in our framework roughly means that what
is represented by heap identifiers is not modified by assignments. Instead, one of
the main focuses of our approach was to allow this scenario, and substitutions are
the component used to communicate to the value analysis how heap identifiers are
modified. In addition, they adopt first order logic formula to allow the analyses to
communicate, and they require that the user of the analysis provides the predicates
that are shared among the analyses. Instead, we automatically combined heap



and value analysis, while we rely on reduce operators to communicate information
from the value to the heap analysis. Similarly, Gulwani and Tiwari [19] rely on
the Nelson-Oppen method to combine analyzers represented in first order logic,
while our approach relies on abstract interpretation-based domains. Chang and
Leino [6] relied on heap analyses based on equalities to allow the numerical
domain to track information over heap locations. They extended the variable
identifiers usually adopted by numerical domains with aliens expressions to track
information over heap locations. Intuitively, this corresponds to our notion of
heap identifiers.

There are only few previous works that combined generically heap and
numerical domains based on abstract interpretation. Miné’s memory abstraction
[27], that is part of ASTRÉE [4], is parametrized on a numerical domain, but
it does not support neither summary nodes, nor dynamic allocation. Abstract
cofibered domains [32] (and in a more generic way the reduced cardinal power
[10]) takes as argument a numerical domain, and they could be instantiated with
various heap analyses. This framework requires to manually define the functor to
glue the two domains, while our work is aimed at building a generic framework
that automatically combines the two domains, and that relies on few assumptions
to ensure the soundness of the whole analysis. Recently, Chang and Rival [7]
introduced a modular combination of shape and numerical abstract domains.
The shape analysis relies on points-to predicate, while the numerical domain
tracks information on a symbolic representation of values stored in the heap.
This is slightly different from our concept of heap identifiers, that are aimed
at abstracting memory locations. In addition, this work targets shape analyses
based on summarization and materialization of nodes. This implies that when a
node is materialized, the shape analysis needs to track a disjunctive abstraction
made by a set of shapes.

Several works dealt with refining the results of a specific heap analysis with
some numerical information inferred by another analysis. In this context, Magill
et al. [24] refine a heap analysis based on separation logic with some numerical
domains through counter-examples generated by the shape analysis. Similarly,
Beyer et al. [3] combined the model checker BLAST [2] with TVLA using
Counter-Example Guided Abstraction Refinement for refining the shape analysis.
Bouajjani et al. [5] developed a framework to statically infer properties over
programs manipulating lists containing integer numerical data. Instead, our
approach is generic both on the heap and value analysis, and the information
tracked by the heap analysis could be refined by the value analysis through a
reduce operator as described in Section 4.5.

7 Conclusion

In this paper we presented a sound generic framework to combine heap and value
analyses automatically. Our framework relies on standard operators of static
analyses based on abstract interpretation. In addition, it requires that the heap
analysis provides a set of heap identifiers, how these identifiers are concretized



into references, and some additional soundness conditions. As far as we know,
this is the first generic combination that allows the heap analysis to merge and
materialize heap identifiers. We instantiated our framework to a standard pointer
and shape analyses as well as to numerical domains, thus proving empirically the
expressiveness of our approach.

7.1 Future Work

The most part of the theoretical ideas contained in this paper came from some
practical experience the authors get with Sample [8, 14, 17, 34], a generic static
analyzer that combines different heap and value analyses. We are currently
extending this analyzer with all the results of this paper, and to provide an
interface to plug implementation of heap and numerical analyses to external
users.
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