
Automatic Inference of Access Permissions

Pietro Ferrara and Peter Müller

ETH Zurich, Switzerland
{pietro.ferrara, peter.mueller}@inf.ethz.ch

Abstract. Access permissions are used in several program verification
approaches such as those based on separation logic or implicit dynamic
frames to simplify framing and to provide a basis for reasoning about
concurrent code. However, access permissions increase the annotation
overhead because programmers need to specify for each program compo-
nent which permissions it requires or provides. We present a new static
analysis based on abstract interpretation to infer access permissions au-
tomatically. Our analysis computes a symbolic approximation of the per-
missions owned for each heap location at each program point and infers a
constraint system over these symbolic permissions that reflects the per-
mission requirements of each heap access in the program. The constraint
system is solved using linear programming. Our analysis is parametric in
the permission system and supports, for instance, fractional and count-
ing permissions. Experimental results demonstrate that our analysis is
fast and is able to infer almost all access permissions for our case studies.

1 Introduction

Verification techniques based on access permissions associate a permission with
each heap location. A thread may access a location if and only if it has the access
permission for that location. This rule enables the verification of concurrent
programs since it guarantees the absence of data races (two threads cannot both
have the access permission for a memory location) and allows one to reason about
thread interleavings (if a thread has the permission for a location, no other thread
can modify it). Permissions can be transferred between threads when a thread is
forked or joined, or via synchronization primitives such as monitors. To support
procedure-modular verification, permissions are often associated with procedure
(or method) incarnations; permissions are then transferred not only between
different threads but also between callers and callees of the same thread. In
this case, permissions simplify framing because a method may modify at most
those locations for which it has permission; all other locations are guaranteed
to remain unchanged. Permissions are used for instance in separation logic [22]
and implicit dynamic frames [25].

Fractional permissions [2] and counting permissions [1] refine the permission
model by allowing a full permission to be split (repeatedly) into fractions or
into any number of units, which can be re-composed into a full permission. Both
fractional and counting permissions allow one to distinguish between read access

class Coord {
var x: int ;
var y: int ;

invariant acc(x) && acc(y)

method client() {
acquire this ;
var oldX := x; var oldY := y;
this .FlipH();
assert x == −oldX;
assert y == oldY;
release this ;
}

method FlipH()
requires acc(x)
ensures acc(x)
ensures x == −old(x)
{ x := −x; }
}

Fig. 1. An example illustrating access permissions.

(requiring any non-zero permission) and write access (requiring full permission)
and, thus, support parallel reads while still enforcing exclusive writes.

Fig. 1 illustrates the use of permissions in Chalice [14, 15]. A full permission
to a location e.f is denoted by acc(e.f), which corresponds to e.f 7→ in sepa-
ration logic. Chalice associates permissions with method incarnations and with
monitors. The precondition and postcondition of a method specify the permis-
sions a method expects from its caller and provides to its caller, respectively. A
monitor invariant specifies the permissions associated with a monitor. When a
method acquires a monitor, these permissions are transferred from the monitor
to the method, and returned to the monitor when it is released.

In Fig. 1, the monitor invariant of class Coord expresses that the monitor
holds the permission to this.x and this.y when the monitor is not currently held
by any thread. Method client obtains permissions to this.x and this.y by acquiring
the monitor of this. Method FlipH requires permission to location this.x via its
preconditions, and returns it via its postcondition. When client calls FlipH, the
permission to this.x is passed to FlipH; the permission is returned when FlipH
terminates. Method client can call FlipH passing and receiving back access per-
mission to this.x. Both assertions in client verify. The first assertion is established
by the call to FlipH; since the current thread holds the permission to x, no other
thread could invalidate the property between the call and the assertion. The sec-
ond assertion illustrates framing: since client does not pass its permission for y
to FlipH, we can conclude that FlipH cannot modify y. Both assertions would not
verify if they were placed after the release statement because then other threads
could obtain permissions to x and y and invalidate the asserted properties.

A drawback of all permission systems is that they require programmers to
annotate their programs with access permissions, which increases the annotation
overhead significantly. To address this issue, we present a new static analysis
based on abstract interpretation to infer access permissions automatically. In this
paper, we focus on the inference of access annotations for pre- and postconditions
as well as monitor invariants, but our analysis also supports loop invariants and
abstract predicates with fold and unfold statements [20]. Our paper makes four
technical contributions: (1) a representation of permissions with symbolic values,
(2) an inference of constraints over these symbolic values, (3) an inference of
annotations, which supports fractional and counting permissions, as well as the
combination of both, and (4) an implementation and experimental evaluation of
the analysis in Sample (Static Analyzer for Multiple Programming LanguagEs).

The experimental results show that our analysis is practical and effective. It
infers permission annotations for all examples in the Chalice test suite in under
three seconds, and the necessary annotations in all examples except for four that
use recursive data structures, for which our heap abstraction is too coarse. We
expect that more precise heap analyses like TVLA [23] will solve this issue.

Approach. Our approach is based on abstract interpretation [6], a theory for
defining and soundly approximating the semantics of a program. The main com-
ponents of our analysis are: (1) an abstract domain that is a complete lattice,
(2) a widening operator to make the analysis convergent, and (3) an abstract
semantics defined as a transfer function that, given a statement and an initial
abstract state, defines the abstract state obtained after the statement.

We introduce a symbolic value for each location and each possible occurrence
of an access permission in a pre- or postcondition, or monitor invariant. For in-
stance, Pre(C, m, x.f) represents the permission specified in the precondition of
method m of class C for the location denoted by the path x.f. Using these sym-
bolic values, the analysis infers a sound approximation of the access permissions
that the current method incarnation has for any given heap location at any given
program point. These symbolic permissions have the form

∑
ai∗vi+c where ai is

an integer number, c is a real, and vi is a symbolic value. For instance, if method
m’s first statement acquires the monitor of this then its symbolic permission for
a location x.f is 1 ∗ Pre(C,m, x.f) + 1 ∗MI(C, x.f) + 0.

We then extract a set of constraints over the symbolic values, which reflect
the permission rules of the verification technique. For instance, for an assignment
to x.f, we introduce a constraint that the symbolic permission at this program
point is equal to the full (write) permission. Our constraints are parametric in the
permission system being used. We solve the constraints using linear programming
and obtain a numerical access permission for each symbolic value. For simplicity,
we assume here that the inference is run on un-annotated programs, but partial
annotations could be easily represented as additional constraints.

Outline. Sec. 2 introduces the language supported by our analysis and the
running example. Sec. 3 sketches our heap analysis. Sec. 4 defines the abstract
domain and semantics to approximate access permissions. Sec. 5 explains how
we infer permission annotations. Sec. 6 reports the experimental results. Sec. 7
discusses related work, and Sec. 8 concludes.

2 Language

We present our analysis for a class-based language with threads and monitors.

Programs. A program consists of a sequence of class declarations. Each class
declares fields, a monitor invariant, and methods. A method declaration con-
tains the method signature, pre- and postconditions, and a method body, which
is given as a control flow graph of basic blocks. Each basic block consists of a
sequence of statements. Different blocks are connected through edges that op-
tionally contain a boolean condition to represent conditional jumps.

E ::= x | x.f
St :: = x := E | x := new T | acquire x | t := fork x.m() | share x

| x.f := E | x.m() | release x | join t

Table 1. Expressions and statements. We denote thread identifiers by t.

The expressions and statements of our language are summarized in Table 1.
We omit uninteresting expressions such as boolean and arithmetic operators
here. We adopt the share statement from Chalice; it associates a (non-reentrant)
monitor with a previously thread-local object to make it available for locking.
We omit Chalice’s unshare statement since it does not affect permissions.

Specifications and Permissions. Specifications are expressed using the ex-
pressions of the programming language, an old-expression to let postconditions
refer to prestate-values, and permission predicates. A permission predicate has
the form acc(x. f ,p), where p denotes a permission. With fractional permissions,
p is a fraction between 0 and 1, with counting permissions, p is an integer (neg-
ative numbers are interpreted as a full permission plus p counting permissions),
and in Chalice, p is an expression of the form q% + n · ε, where q is a natural
number between 0 and 100, n is an integer, and ε is a constant that denotes
an infinitesimal permission, that is, an arbitrarily small, positive number. The
percentage encodes fractional permissions, whereas the infinitesimal permission
is used as a unit of counting permissions. Independently of the permission sys-
tem, we abbreviate a full permission as acc(x. f). For sound verification, it is
important that specifications are self-framing, that is, a specification may re-
fer to x.f only if it has the permission to access x.f. So acc(x. f) && x.f > 0 is a
valid specification, but x. f > 0 is not. We enforce this requirement by generating
constraints not only for heap accesses in code but also in specifications.

Permission Transfer. Permissions can be transferred between two method
incarnations and between a method incarnation and a monitor. For modular
verification, we can describe these transfers from the perspective of the method
incarnation that is currently executing. We say that a method exhales a per-
mission if it transfers the permission to another method or a monitor, that is,
gives up the permission. It inhales a permission if the transfer happens in the
other direction, that is, when the method obtains the permission. For instance,
when a monitor is released, its invariant is exhaled, while the invariant is inhaled
when the monitor is acquired. Exhaling a permission entails a proof obligation
that the method actually has the permission to be transferred. We say that a
method exhales or inhales a specification, if it exhales or inhales all permissions
mentioned in the specification. The statements of our language transfer permis-
sions as follows. Assignments involve no permission transfer. When creating an
object, we inhale full permissions for all locations of the fresh object. When we
call a method, we first exhale the precondition of the callee and then inhale its
postcondition. When a method acquires a monitor, we inhale the monitor in-
variant, and we exhale the invariant when the monitor is released and when we

1 class W1 {
2 var c : Cell ;
3 method Inc()
4 ensures c.c1==old(c.c1)+1
5 {
6 acquire c;
7 c.x := c.x+1;
8 c.c1 := c.c1+1;
9 release c;

10 }
11 }

12 class Cell {
13 var x, c1, c2: int ;
14 invariant x==c1+c2;
15 }

16 class W2 {
17 var c : Cell ;
18 method Inc()
19 ensures c.c2==old(c.c2)+1
20 {
21 acquire c;
22 c.x := c.x+1;
23 c.c2 := c.c2+1;
24 release c;
25 }
26 }

27 class OwickiGries {
28 method main() {
29 var c := new Cell;
30 share c;
31 var w1 := new W1;
32 w1.c := c;
33 var w2 := new W2;
34 w2.c = c;
35 t1 := fork w1.Inc ();
36 t2 := fork w2.Inc ();
37 join t1;
38 join t2;
39 acquire c;
40 assert c.x==2;
41 }
42 }

Fig. 2. The Owicki-Gries example without permission annotations.

first share the object. When forking a thread, we exhale the precondition of the
forked method, while we inhale the postcondition when joining.

Running Example. We illustrate our inference using Owicki and Gries’s classi-
cal example [19], see Fig. 2. Two worker threads, implemented in classes W1 and
W2 each increment a shared variable x (of class Cell) by 1. The client (method
main) asserts that the effect of running both workers is to increment x by 2. The
standard solution to proving this assertion requires ghost (that is, specification-
only) variables; the ghost fields c1 and c2 store the contribution of each worker to
the overall effect. These ghost variables are related to x in Cell’s monitor invari-
ant and also mentioned in the workers’ postconditions. Therefore, to enforce self-
framing specifications, the postconditions and the monitor invariant need some
access permission to the ghost variables. This can be achieved by using fractional
or counting permissions to split the permissions over the postconditions and the
monitor invariant. The example then verifies: From the postconditions, we know
that after the two join operations in main, c1 and c2 have each been increased by
1. From Cell’s monitor invariant, which we assume after the acquire statement,
we know that then x has been increased by 2; so since fields of new objects are
initialized to zero-equivalent values, the assertion verifies. We will show how our
analysis infers the permission annotation to enable this verification.

3 Heap Analysis

Since access permissions guard accesses to heap locations, our inference requires
information about the heap, for instance, to decide whether two expressions may
refer to the same heap location. The analysis that approximates properties of the
heap is crucial for the effectiveness of the permission inference. However, since
the heap analysis is not the main focus of this paper, we only sketch the main
ideas and notations of the implemented heap analysis here, which is an extension
of our earlier work [10]. We expect that more sophisticated heap analyses such
as shape analysis [23] could be combined with our inference.

Our heap analysis abstracts objects in the concrete heap to abstract nodes
(set L) in an abstract heap. The abstraction identifies each object with the
program point where it is created. That is, it abstracts all concrete objects
created at the same program point (for instance, inside a loop) by the same
abstract summary node. The heap analysis works modularly, that is, analyzes
each method separately. The initial heap for a method contains one abstract node
for each method argument and abstract object reachable from an argument. If
some of these objects may be aliases (that is, their types do not exclude that
they refer to the same object), they are instead represented by one summary
node. The function isSummary : L → {true, false} yields whether a node is a
summary node, that is, whether it may represent more than one object.

Our permission inference uses type information for abstract nodes to deter-
mine which monitor invariant to inhale and exhale. The function class : L → C
yields the class of an abstract node (C is the set of class identifiers); for summary
nodes, it returns the smallest superclass of the classes of each concrete object
represented by the summary node.

The function fields : L→ ℘(F) yields the set of fields of an abstract node, and
the union of these sets for a summary node; F is the set of field identifiers. A path
in Path is a sequence starting with a variable and followed by field identifiers.
As usual, we denote by x.f the concatenation of variable x with field identifier f.

The heap analysis needs to define the semantics of expressions and statements
in order to describe their effects on the abstract heap. The function E : (H,E)→
L evaluates an expression in an abstract heap and yields the resulting abstract
node (H is the set of abstract heaps). We assume a semantics of statements that
tracks how each statement modifies the abstract heap. We do not present the
heap semantics here, and we leave the heap modifications implicit in the abstract
semantics for the permission inference.

4 Symbolic Permissions

In this section we present the symbolic values, which represent permission pred-
icates in specifications, the abstract domain, the abstract semantics, and an
unsound approximation that can improve the results of the inference.

4.1 Symbolic Values

Programs may contain permission predicates in pre- and postconditions and
monitor invariants (we ignore loop invariants here, but our analysis supports
them). We represent the permissions in these specifications by symbolic values
(set SV). The access permission for a path p.f specified (1) by the precondition
or postcondition of a method m in class C is represented by Pre(C, m, p.f)
or Post(C, m, p.f), respectively, and (2) by the monitor invariant of class C is
represented by MI (C, p.f). Since there could be many (possibly infinite) paths
to a location, our semantics always considers a shortest path.

4.2 Abstract Domain

The symbolic access permission for a single abstract location, that is, field of an
abstract node, could combine several symbolic values, since it could be the result
of inhaling and exhaling different method specifications and monitor invariants.
Therefore we represent the symbolic permission as the summation of symbolic
values si multiplied by integer coefficients ai (to represent how many times we
have inhaled or exhaled a permission) and an integer constant c (to represent
the full permission that is inhaled when an object is created). Formally, AV =
{
∑

i ai ∗ si + c where ai, c ∈ R, si ∈ SV}.
On these summations we define a lattice structure. Fig. 3 formalizes the

lattice operators. To be sound, we compute at each program point the access
permissions the current method surely has, that is, it has in all possible execu-
tions. For this reason, the upper bound—which is used in the abstract semantics
for joins in the control flow—of two symbolic permissions l1 and l2 is the min-
imum of l1 and l2. Since symbolic values represent non-negative values, a safe
approximation of the minimum of two symbolic permissions is computed using
the minimum of the corresponding coefficients ai and of the integer constant c.
Conversely, the lower bound is the maximum of l1 and l2, which is computed
analogously. In the lattice order, symbolic permission l1 is less or equal l2 iff
l1 represents greater or equal permissions than l2, that is, each coefficient and
the constant in l1 is greater or equal than the corresponding coefficient and the
constant in l2; this definition is in line with defining the upper bound as the min-
imum. We assume that each concrete permission system defines two constants,
zero and full, to denote the zero-permission and full permission, respectively.
The bottom element is any value greater than full or less than zero, that is, any
invalid value for a permission. The top element is zero. Then the lattice can be
defined by 〈AV,≤AV, zero − 1, zero,tAV,uAV〉. Note that this domain does not
track disjunctive information like b ⇒ acc(x.f), but it can be used inside other
generic domains to obtain precise disjunctive information [18].

In the above domain, we have a finite number of symbolic values, but the
integer coefficients could decrease indefinitely. Therefore, we need a widening
operator to ensure the termination of the analysis. Our widening abstracts the
symbolic access permission to zero if it is decreasing. This definition reflects that
if a loop exhales permissions in each iteration, we approximate it assuming that
no permission is left when the loop terminates because we do not know statically
how many times the loop body will be executed. However, none of the examples
we analyzed required widening because such loops are not common.

The abstract domain PL tracks the symbolic access permissions at a given
program point for each field of each abstract node. Therefore, its state is repre-

(
∑

j a
1
j ∗ sj + c1) tAV (

∑
j a

2
j ∗ sj + c2) = (

∑
j min(a1j , a

2
j) ∗ sj + min(c1, c2))

(
∑

j a
1
j ∗ sj + c1) uAV (

∑
j a

2
j ∗ sj + c2) = (

∑
j max(a1j , a

2
j) ∗ sj + max(c1, c2))

(
∑

j a
1
j ∗ sj + c1) ≤AV (

∑
j a

2
j ∗ sj + c2) = true⇔ c1 ≥ c2 ∧ ∀j : a1j ≥ a

2
j

Fig. 3. Lattice operators on AV.

sented by a function that maps abstract locations to symbolic access permissions:
PL : (L×F)→ AV. The lattice operators are defined as the functional extensions
of the lattice operators of AV.

4.3 Abstract Semantics

The abstract semantics formalizes the effects of statements on symbolic per-
missions. It uses the helper functions in Fig. 4. reach(r, h,R, p) yields the set of
abstract locations that can be reached from an abstract node r in a heap h, with-
out traversing the abstract nodes in R, and for each reachable abstract location
a path through which it can be reached; this path is an extension of path p,
through which node r is reachable from some starting point. The set R is used to
discard alternative paths to the same abstract location. Note that the definition
of reach is recursive. For each recursive application, we use function reach1 to
add all abstract locations that are reachable in one step, that is, by accessing a
field of r. The recursion is well-founded since the heap domain contains a finite
number of abstract nodes, and the set R grows in each recursive application.

Function reach is used to extract all the abstract locations for which we
potentially inhale or exhale permissions, together with a shortest path through
which these permissions could be inhaled or exhaled. Function rep uses these
abstract locations and paths to construct a symbolic value for each of them. Its
last argument determines what kind of symbolic value we want to obtain.

reach : (L× H× ℘(L)× Path)→ ℘(L× F× Path)

reach(r, h,R, p) = {(r1, f, p) : (r1, f) ∈ reach1(h, p) ∧ r1 /∈ R}∪
∪{(r2, f1, p1) ∈ reach(r1, h,R∪ ↓1 (reach1(h, p)), p.f) : (r1, f) ∈ reach1(h, p)}

reach1 : (H× Path)→ ℘(L× F)

reach1(h, p) = {(r, f) : E(h, p) = r ∧ f ∈ fields(r)}

rep : (℘(L× F× Path)× SV)→ ℘(L× F× SV)
rep({(r1, f1, p1), · · · , (ri, fi, pi)}, s) = {(r1, f1, s1), · · · , (ri, fi, si)} : ∀j ∈ [1..i] :

sj =

MI(c, pj.fj) if s = MI(c, p)
Pre(c,m, pj.fj) if s = Pre(c,m, p)
Post(c,m, pj.fj) if s = Post(c,m, p)

}

inhS : (PL× L× F× SV)→ PL

inhS(σ, r, f, s) =

{
σ[(r, f) 7→ σ(r, f) + 1 ∗ s] if isSummary(r) = false
σ otherwise

inh : (PL× ℘(L× F× SV))→ PL

inh(σ, {(r1, f1, s1), · · · , (ri, fi, si)}) = σi :

∃σ0, · · · , σi ∈ PL : σ0 = σ ∧ ∀j ∈ [1..i] : σj = inhS(σj−1, rj , fj, sj)

exhS : (PL× L× F× SV)→ PL

exhS(σ, r, f, s) = σ[(r, f) 7→ σ(r, f)− 1 ∗ s]

exh : (PL× ℘(L× F× SV))→ PL

exh(σ, {(r1, f1, s1), · · · , (ri, fi, si)}) = σi :

∃σ0, · · · , σi ∈ PL : σ0 = σ ∧ ∀j ∈ [1..i] : σj = exhS(σj−1, rj , fj, sj)

Fig. 4. Helper functions for the abstract semantics. The prefix operator ↓1 de-
notes the projection of a pair on its first component; it is lifted to sets of pairs.

Finally, we define two functions inhS and exhS to inhale and exhale permis-
sions, respectively. They map a state of the abstract domain to another state.
The permissions are determined by pairs of abstract locations and symbolic val-
ues. The functions inh and exh lift inhS and exhS to sets of pairs. In order
to be sound, we inhale a permission iff the abstract node is not summary. The
abstract semantics of statements (Fig. 5) maps a statement, a state of the ab-
stract domain, and a heap to another state. It reflects the permission transfer
described in Sec. 2. For instance, acquiring a monitor inhales all the symbolic
permissions that its invariant could potentially specify. These are permissions for
all abstract locations reachable from the object whose monitor is being acquired.
To determine these abstract locations, we apply rep to the result of reach.
Running Example. In method Inc of class W1, we obtain that between the
acquire and the release statements (lines 7 and 8), the current thread has the
symbolic access permission 1∗Pre(W1, Inc, this.c.f)+1*MI (Cell, this.f) for each
field f of Cell (that is, x, c1, and c2). At the end of the method, it has only
1∗Pre(W1, Inc, this.c.f) since we released the monitor of c. The permissions for
class W2 are analogous. Before the fork in method main of class OwickiGries, the
current thread has −1∗MI (Cell, c.f)+full for all fields f of class Cell. The negated
permissions from the monitor invariant stem from exhaling the monitor invariant
when sharing c; the constant full is inhaled when c is created. When forking the
two threads (lines 35 and 36), we exhale the preconditions of the forked methods,
obtaining −1∗MI (Cell, c.f)−1∗Pre(W1, Inc, c.f)−1∗Pre(W2, Inc, c.f)+full. When
joining the forked threads, we inhale the postconditions of the forked methods,
and when acquiring c’s monitor (line 39), we inhale the monitor invariant of class
Cell. Then at line 41, the current thread has −1∗Pre(W1, Inc, c.f)+1∗Post(W1,
Inc, c.f)−1∗Pre(W2, Inc, c.f)+1∗Post(W2, Inc, c.f)+full for each field f of Cell.

4.4 Unsound Approximations

The analysis we described so far is sound, but sometimes too coarse in its treat-
ment of summary nodes. Even with a more precise heap analysis, the inference
becomes more practical when it uses two unsound approximations.

S : (St,PL,H)→ PL

S(x := E, σ, h) = σ

S(x.f := E, σ, h) = σ

S(x := new T, σ, h) = σ[r 7→ full : (r, p) ∈ reach1(h′, x)]

where h′ is the abstract heap obtained after x := new T

S(x.m(), σ, h) = σ2 : σ1 = exh(σ, rep(reach(E(h, x), h, ∅, this),Pre(class(E(h, x)),m, ∅)))∧
σ2 = inh(σ1, rep(reach(E(h, x), h, ∅, this),Post(class(E(h, x)),m, ∅)))

S(acquire x, σ, h) = inh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(E(h, x)), ∅)))
S(release x, σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(E(h, x)), ∅)))
S(t := fork x.m(), σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),Pre(class(E(h, x)),m, ∅)))
S(join t, σ, h) = inh(σ, rep(reach(E(h, x), h, ∅, this),Post(C,m, ∅))) : TM (t) = C.m

S(share x, σ, h) = exh(σ, rep(reach(E(h, x), h, ∅, this),MI(class(h(x)), ∅)))

Fig. 5. The definition of the abstract semantics. The function TM yields the
method with which a given thread was forked.

System zero full fractional infinitesimal ensureRead(p)

Fractional 0 1 true false p > 0
Counting 0 Integer.MAX VALUE false false p ≥ 1
Chalice 0 100 true true p ≥ ε

Table 2. Instances of permission systems.

First, as we explained earlier, a sound analysis must not inhale permissions
on summary nodes because this might forge permissions. Removing this restric-
tion improves especially the treatment of recursive data structures, which are
usually abstracted to summary nodes. Second, our analysis conservatively as-
sumes maximum aliasing in the input state of a method, that is, arguments or
fields whose types do not rule out aliasing are represented by summary nodes.
Following Clousot [17], we suggest to assume that aliasing does not occur in
the input state. This unsound assumption is useful when methods take several
parameters of the same type and when a parameter is a recursive data structure.

These unsound approximations may lead to permission annotations that
cause a subsequent verification attempt to fail. For instance, unsoundly inhaling
on a summary node representing x and y might provide permission to access x.f
even if in the concrete execution, there is only permission for y.f. However, in our
experiments (see Sec. 6), the unsound approximations helped inferring complete
annotations, without compromising their precision.

5 Annotation Inference

In this section, we explain how we infer permission annotations by generating
constraints on symbolic permissions and how we solve the constraint system.

5.1 Permission Systems

To support various permission systems, our analysis is parametric in the follow-
ing aspects: (1) the numerical values that represent permissions, (2) the value
that represents the absence of a permission, (3) the value that represents a full
permission, and (4) the condition that permits read access. Aspect (1) is ex-
pressed via two boolean flags fractional and infinitesimal, which express whether
fractional and infinitesimal (ε) permissions are supported. Aspects (2) and (3)
are expressed via the constants zero and full as presented in the previous sec-
tion. Aspect (4) is expressed by a function ensureRead : PL → Constr (where
Constr is the set of linear constraints over permissions in AV). These parame-
ters are aimed at soundly overapproximating different permission systems in a
finite way. Therefore they do not define the semantics of concrete systems, but
they propose a way of abstracting them. Table 2 presents the parameters for
fractional, counting, and Chalice permissions.

Fractional permissions are represented by fractions between 0 and 1, infinites-
imal values are not supported, and reading is permitted by any non-zero per-
mission. Counting permissions are represented by integers between 0 and the
maximum integer value; again, infinitesimal values are not supported, and read-
ing is permitted by any non-zero permission. We interpret a value i between
0 and Integer.MAX VALUE/2 as i counting permissions and a value between
Integer.MAX VALUE/2 and Integer.MAX VALUE as a full permission minus i
counting permissions. Chalice permissions are represented by integers between
0 and 100, infinitesimal values are supported, and reading is permitted by per-
missions that are at least one infinitesimal permission (symbolic value ε).

5.2 Inferring Constraints

A permission-based verification technique prescribes rules that guard the access
of heap locations, for instance, that a full permission is required to update the
location. We reflect these rules in the analysis through the following constraints
on the symbolic permission l for an abstract location at a given program point:
(1) ensureRead(l) when the location is read, (2) l == full when the location is
written, (3) l ≤ full after a permission gets inhaled to encode that a method
cannot obtain more than a full permission, and (4) zero ≤ l after a permission
is exhaled to encode the check that a method must possess the permissions it
exhales. To ensure that specifications are self-framing (see Sec. 1), we generate
constraint (1) also for field accesses within preconditions, postconditions, and
monitor invariants. An additional constraint ensures that all symbolic values
represent valid permissions: ∀s ∈ SV : zero ≤ s ≤ full.

In systems that support infinitesimal permissions, we introduce the following
constraint on the concrete value of ε: 0 < n ∗ ε < 0.5, where n is the maximal
coefficient multiplied by infinitesimal permissions in all symbolic permissions.
We interpret permission values in the open interval (0; 0.5) as a positive number
of ε’s and values in (0.5; 1) as 1 plus a negative number of ε’s.

To infer strong postconditions, we introduce additional constraints for the
exit states of the analysis that ensure that each method returns as many per-
missions to its caller as possible. For each field of a non-summary node reachable
through a path p, we determine the upper bound l of the symbolic permissions
for all possible exit states of a method m of class C and require Post(C,m, p) = l.
Running Example. Fig. 6 reports some of the constraints for the example
from Fig. 2. We have already discussed the results of its abstract semantics in
Sec. 4.3. For each constraint, we report the code line that induced the constraint.
As before, f stands for any field of class Cell (x, c1, or c2).

The first four constraints are introduced for method Inc of class W1. The
constraints for class W2 are analogous (with c2 instead of c1). The constraint
for line 4 is introduced because Inc’s postcondition reads c.c1; in the exit state of
the method, the only permission for c.c1 is the one specified in the precondition
since we already released the monitor of c. The identical constraint is introduced
for the field read old(c.c1), which reads c.c1’s pre-state value. The field writes
to c.x and c.c1 (lines 7 and 8) require that the method has write permission

Constraint Line

ensureRead(1*Post(W1, Inc, c.c1)) 4
1*Pre(W1, Inc, c.x) + 1*MI (Cell, x) = full 7
1*Pre(W1, Inc, c.c1) + 1*MI (Cell, c1) = full 8
1*Post(W1, Inc, c.f) = 1*Pre(W1, Inc, c.f) 10

ensureRead(1*MI (Cell, f)) 14

zero ≤ full− 1 ∗MI(Cell, f)− 1 ∗ Pre(W1, Inc, c.f)− 1 ∗ Pre(W2, Inc, c.f) 36

Fig. 6. Some constraints for the running example.

for the corresponding abstract locations. Therefore, we introduce a constraint
that for these locations, the sum of the permissions in Inc’s precondition and in
Cell’s monitor invariant must be a full permission. By the abstract semantics the
permissions in the exit state of Inc are exactly those specified in the precondition.
So we enforce that the precondition and the postcondition specify the same
permissions for each field f of c. The monitor invariant of class Cell (line 14)
reads all fields of the class and, thus, requires read permission for them.

Several constraints are produced for the main method of class OwickiGries.
We discuss the one for the second fork (line 36). By the heap analysis, we know
that c is fresh in method main. So the permission held after the second fork for
any field c.f is the full permission (from the creation of c) minus what is specified
in Cell’s monitor invariant (from sharing c) minus what is specified in W1.Inc’s
precondition (from the first fork) minus what is specified in W2.Inc’s precon-
dition (from the second fork). The constraint ensures that main has sufficient
permissions for the second fork, that is, that exhaling the precondition does not
lead to permissions smaller than zero.

5.3 Resolution of the Constraints

We solve the inferred constraint system using linear programming [8]. We define
an objective function that lets us infer the minimal permissions that satisfy the
constraints. Maximizing the permissions would often result in full permissions
for each reachable location, even if the location is never accessed. Such a solution
complicates subsequent verification, for instance, by providing weaker framing.

Through the objective function we also express priorities defining where to
put annotations when several solutions are possible, for instance, in the method
specification or in the monitor invariant. To do that, we multiply each symbolic
value in the objective function by a factor. A bigger factor expresses a lower
priority for that symbolic value, since we minimize the objective function.

Solving the linear programming system determines whether the system is
feasible, that is, whether there are numerical values (real numbers) for all sym-
bolic values that satisfy the constraints. An infeasible system may occur because
of approximation, for instance, if we soundly abstain from inhaling on summary
nodes, the constraint for a subsequent field access might not be satisfiable. If the

system is feasible, we use the solution to compute the permission predicates for
pre- and postconditions as well as monitor invariants.

The constraints resolution provides a numerical value that has to be trans-
lated to a permission predicate. This step is straightforward for fractional per-
missions. For counting permissions, we translate a value differently, depending
on whether it is less or greater than Integer.MAX VALUE/2 (see Sec. 5.1). For
Chalice permissions, the integer part of each numerical value is turned into a
percentage, whereas the mantissa is turned into a (positive or negative) number
of counting permissions by dividing it by the solution for the symbolic value ε.
Running Example. In the following, we present the annotations obtained by
solving the constraints in Fig. 6 for Chalice’s permission model. Fractional and
counting permissions lead to similar results. The constraint system is feasible,
and we obtain different solutions, depending on the priorities encoded in the
objective function. Here, we give priority to monitor invariants. Assume that
the numerical value for ε is 0.1. Then for W1’s Inc method we obtain 0.1 for c.c1
and 0 for all other fields, which are the smallest possible values that satisfy the
constraints (especially the first) in Fig. 6. This solution results in acc(c.c1, ε) for
the pre- and postcondition, and analogous results for W2.Inc.

By the second and third constraint, and by the analogous constraints for
W2.Inc, we obtain for Cell’s monitor invariant 99.9 (that is, 100−ε) permission for
c.c1 and c.c2, and 100 for c.x. This solution cannot be expressed in Chalice, which
does not have syntax for a negative number of ε’s. However, we could easily add
a constraint that for each symbolic value, the mantissa of the numerical value in
the solution must be in [0; 0.5) and, thus, translate into a non-negative number
of ε’s. With this additional constraint, we obtain the pre- and postcondition
acc(c.c1,1), and the monitor invariant acc(x) && acc(c1,99) && acc(c2,99).
This solution reflects the need to split the permissions as discussed in Sec. 2,
and allows one to verify the example in Chalice.

6 Experimental Results

We implemented our inference system in Sample, a generic compositional static
analyzer. We executed the analysis on an Intel Code 2 Quad CPU 2.83 GHz
with 4 GB of RAM, running Windows 7, and the Java SE Runtime Environment
1.6.0 16-b01. Table 3 summarizes the experimental results when we apply the
analysis to case studies taken from (i) the Chalice tutorial [15] and the Chalice
distribution, (ii) VeriCool [24], and (iii) VeriFast [12] libraries. Sample analyzes
Scala programs. Therefore all the examples have been written in Scala using a
custom library to represent statements that are not natively supported.

We performed the experiments applying the heap analysis with the unsound
entry state and unsound inhaling, giving higher priorities to monitor invariants.
Column Program reports the program we analyzed and LOC the lines of code;
columns Fractional, Counting, and Chalice report the time of the analysis
(in msec) when using fractional, counting, and Chalice permissions, respectively.
% Inferred Contracts reports the percentage of inferred contracts including

Program LOC Fractional Counting Chalice % Inferred Contracts Heap Analysis

Fig1 20 45 50 55 100% 22
Fig2 12 12 9 8 100% 11
Fig3 13 9 6 7 100% 8
Fig4 25 3 3 5 100% 8
Fig5 24 143 142 163 100% 80
Fig6 27 53 50 61 100% 20
Fig11 32 15 9 17 100% 20
Fig12 31 15 13 23 100% 25
Fig13 35 706 726 760 100% 223
OwickiGries 59 164 129 131 100% 39
cell− defaults 164 115 97 120 100% 55
linkedlist 77 78 82 86 100% 61
swap 15 10 9 10 100% 5
AssociationList 113 668 753 741 36% 305
HandOverHand 128 564 532 611 36% 478

Master 65 76 81 89 100% 57
CellLib 116 148 154 160 100% 79
CompositePattern 67 1217 1282 1279 71% 1009

Spouse 58 221 135 164 100% 33
Account 52 12 9 9 100% 16
Stack 54 76 74 78 67% 35
Iterator 57 46 55 53 100% 28

Table 3. Experimental results.

loop invariants w.r.t. the contracts that were in the original annotated program.
Column Heap Analysis contains the time of the heap analysis (in msec).

The analysis takes less than a second in all cases except CompositePattern,
and the times of execution are similar using different permission systems. We
were able to infer all contracts for most of the examples, obtaining the same
precision using different permission systems. On the other hand, we infer only one
third of the annotation for AssociationList and HandOverHand and two thirds for
Stack since these examples deal with recursive data structures, which are roughly
approximated by our heap analysis. Similarly, CompositePattern contains a set
of nodes that is roughly abstracted by the heap analysis, and so our approach
is able to infer annotations for the fields of the class but not for the elements
contained in such a set. The verification of programs with partial annotations
would fail, but the user could manually add the missing contracts.

7 Related Work

There is a large body of work on the inference of program annotations. Ernst
et al.’s Daikon system [9] uses a dynamic analysis to infer object invariants.
Flanagan and Leino’s Houdini tool [11] generates a large number of candidate
annotations and uses ESC/Java to verify or refute each of them. Leino and
Logozzo [13] integrate abstract interpretation and program verification to infer
loop invariants. However, none of these inferences supports access permissions.

The Chalice language [14] provides an option -autoMagic to infer certain
permission predicates. However, the inference does not find non-trivial splittings

of permissions as required by our running example, and it cannot be applied to
other permission models.

Calcagno et al. [3] propose an inference system based on bi-abduction. Their
approach uses a compositional shape analysis to infer annotations over separa-
tion logic formulas. The approach has been extended to infer resource invariants
for concurrent programs [4], that is, the (full) access permissions that are asso-
ciated with a lock.

Yasuoka and Terauchi [27] propose a calculus to infer fractional permissions.
Like our approach, they represent constraints with linear inequalities, and they
solve them using linear programming. Their approach is focused on a simple re-
gion language, and it does not support object-oriented features and concurrency.

A major application of access permissions is to simplify framing, that is,
determining what is definitely not changed by a method execution. There are
several static analyses for frame information. Rakamarić and Hu [21] propose
a technique to infer frame information for functions and loops on C programs.
Spoto and Poll [26] introduce a static analysis based on abstract interpretation
for JML’s assignable clauses. However, their analysis only checks existing anno-
tations, rather than inferring annotations. Cataño and Huisman’s Chase tool [5]
performs similar checks. The practical effectiveness of their approach has been
demonstrated both in terms of precision and efficiency on industrial code. How-
ever, the approach is not sound, since it does not consider aliasing. In contrast
to these approaches, we infer access permissions, which can then be used to infer
framing information [25], and for other purposes like verifying concurrent code.

8 Conclusion

We presented an analysis to infer access permissions for various permission sys-
tems. Our approach infers pre- and postconditions and monitor invariants. It also
handles loop invariants and abstract predicates, but we omitted them in the pa-
per for brevity. The experimental results indicate that our analysis is efficient
and precise. As future work, we plan to increase the precision of our approach
adopting shape analysis [16] to obtain more precise heap abstractions, and to
mutually refine the heap abstraction and the permission inference through a re-
duced product [7]. We also plan to extend the analysis to permission predicates
where the permission is expressed by a program variable.
Acknowledgments. We are grateful to the anonymous referees, Agostino Cortesi,
and Alexander J. Summers for their helpful feedback. This work was partially
supported by the SNF project “Verification-Driven Inference of Contracts”.

References

1. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission account-
ing in separation logic. In POPL. ACM, 2005.

2. J. Boyland. Checking interference with fractional permissions. In SAS, volume
2694 of LNCS, pages 55–72. Springer, 2003.

3. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In POPL. ACM, 2009.

4. C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive resource invariant syn-
thesis. In APLAS, volume 5904 of LNCS, pages 259–274. Springer, 2009.

5. N. Cataño and M. Huisman. Chase: A static checker for JML’s assignable clause.
In VMCAI, volume 2575 of LNCS. Springer, 2003.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL.
ACM, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL. ACM, 1979.

8. G. B. Dantzig. Linear programming and extensions. Rand Corporation Research
Study. Princeton Univ. Press, 1963.

9. M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69:35–45, 2007.

10. P. Ferrara. A fast and precise analysis for data race detection. In Bytecode, 2008.
11. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.

In FME, volume 2021 of LNCS. Springer, 2001.
12. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.

VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NFM,
volume 4617 of LNCS. Springer, 2011.

13. K. R. M. Leino and F. Logozzo. Loop invariants on demand. In APLAS, volume
3780 of LNCS. Springer, 2005.

14. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, volume 5502 of LNCS. Springer, 2009.

15. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In FOSAD, volume 5705 of LNCS. Springer, 2009.

16. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
SAS, volume 1824 of LNCS. Springer, 2000.

17. F. Logozzo and M. Fähndrich. Static contract checking with abstract interpreta-
tion. In FoVeOOS, volume 6528 of LNCS. Springer, 2010.

18. L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzers. In ESOP, volume 3444 of LNCS. -Verlag, 2005.

19. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic
approach. Commun. ACM, 19:279–285, 1976.

20. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL. ACM,
2005.

21. Z. Rakamaric and A. J. Hu. Automatic inference of frame axioms using static
analysis. In ASE. IEEE, 2008.

22. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
Symposium on Logic in Computer Science, 0:55, 2002.

23. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM ToPLaS, 24(3):217–298, 2002.

24. J. Smans, B. Jacobs, and F. Piessens. VeriCool: An automatic verifier for a con-
current object-oriented language. In FMOODS, LNCS. Springer, 2008.

25. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, volume 5653 of LNCS. Springer, 2009.

26. F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In FOOL, 2003.
27. H. Yasuoka and T. Terauchi. Polymorphic fractional capabilities. In SAS, volume

5673 of LNCS, pages 36–51. Springer, 2009.

