
Automatic Inference of Heap Properties
Exploiting Value Domains

Pietro Ferrara1, Peter Müller2, and Milos Novacek2

1 IBM Thomas J. Watson Research Center, USA
pietroferrara@us.ibm.com

2 Department of Computer Science, ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch,milos.novacek@inf.ethz.ch

Abstract. Effective static analyses of heap-manipulating programs need
to track precise information about the heap structures and the values
computed by the program. Most existing heap analyses rely on man-
ual annotations to precisely analyze general and, in particular, recursive,
heap structures. Moreover, they either do not exploit value information
to obtain more precise heap information or require more annotations for
this purpose. In this paper, we present a combined heap and value anal-
ysis that infers complex invariants for recursive heap structures such as
lists and trees, including relations between value fields of heap-allocated
objects. Our analysis uses a novel notion of edge-local identifiers to track
value information about the source and target of a pointer, even if these
are summary nodes. With each potential pointer in the heap, our analysis
associates value information that describes in which states the pointer
may exist, and uses this information to improve the precision of the
analysis by pruning infeasible heap structures. Our analysis has been
implemented in the static analyzer Sample; experimental results show
that it can automatically infer invariants for data structures, for which
state-of-the-art analyses require manual annotations.

1 Introduction

Effective static analyses of heap-manipulating programs need to track precise
information about the heap structures and the values computed by a program.
Heap and value information is not independent: heap information determines
which locations need to be tracked by a value analysis, and information about
value fields may be useful to obtain more precise heap information, for instance,
to rule out certain forms of aliasing. Moreover, many interesting invariants of
heap-manipulating programs combine heap and value information such as the
invariant that a heap structure is a sorted linked list.

Despite these connections, heap and value analyses have often been treated
as orthogonal problems. Some existing heap analyses such as TVLA [19] rely on
manual instrumentation to infer invariants that combine heap and value infor-
mation. However, TVLA does not support general value domains, which limits,
for instance, arithmetical reasoning. Recent work addresses this issue by combin-
ing TVLA with value domains, but still requires the user to provide predicates

to track and exchange information between the heap and value domains [23],
or is not able to track complex invariants over recursive data structures [14].
Chang and Rival [5] present an efficient inference for combined heap and value
invariants, which also relies on user-provided predicates. Other analyses do not
require manual annotations [2,3], but are specific to programs that manipulate
certain data structures such as singly-linked lists.

In this paper, we present a combined heap and value analysis—expressed as
an abstract interpretation [8]—that infers complex invariants of heap structures.
It is automatic in the sense that it uses only the information included in the
program, without relying on manual annotations. Our analysis uses a graph-
based abstraction of heaps, where each edge in the graph represents a potential
pointer in the concrete heap. Each edge is associated with an abstract value state
that characterizes in which concrete states this pointer might actually exist. The
value states on the edges allow our analysis to represent disjunctive information
in a single heap graph (like the bracketing constraints in Dillig et al.’s Fluid
Updates [10]). They are also used to improve the precision of the analysis when
value information implies that certain pointer chains cannot exist in concrete
heaps. Our analysis can be instantiated with different value domains to obtain
different trade-offs between precision and efficiency.

Like many heap analyses, we use summary nodes to abstract over sets of
concrete objects. A key innovation of our analysis is to introduce edge-local iden-
tifiers for the source and target of each edge in the heap graph. An edge-local
identifier represents a field of one particular concrete object, even when the ob-
ject is abstracted by a summary node. By having identifiers per edge, the value
analysis may relate the fields of the source and the target of a concrete pointer
and, thus, track inductive invariants such as the sortedness of a linked list.

1 Node increasingList (int v) {
2 Node result = null ;
3 int i = v;
4 while (i > 0) {
5 Node p = new Node();
6 p.next = result ;
7 p. val = i − 1;
8 result = p;
9 i = i − 1;

10 }
11 return result ;
12 }

Fig. 1: Running example.

Example. Method increasingList in Fig. 1 creates
and returns a linked list. If parameter v is non-
positive, the list is empty, that is, result is null (in-
variant I1). Otherwise, the list satisfies the follow-
ing properties: it is non-empty, that is, the result
is non-null (I2), the first node has value 0 (I3), the
values of all other nodes are one larger than their
predecessor’s (I4), and the value of the last node
is v− 1 (I5). Note that these invariants imply that
the list is acyclic and has v nodes.

Fig. 2 shows the abstract state that our analysis infers at the end of method
increasingList. Here, we use a numerical domain such as Polyhedra [9] or

Trg, val Src, val 1
next

[Src, val v 1]
v 0
∧ Trg, val 0]result nullnext

v 0

Fig. 2: The abstract heap state
inferred at line 11 of Fig. 1.

Octagon [24] for the abstract states associ-
ated with each edge in the graph. The fig-
ure shows the relevant constraints from these
states. They are expressed in terms of param-
eter v and the edge-local identifiers (Src, val)
and (Trg, val), which refer to the val field of the
source and target of a pointer, respectively.

2

The abstract state reflects the five invariants stated above. Variable result is
null if the constraints on the corresponding edge hold, that is, if v is non-positive
(I1). Otherwise, result points to the summary node n0, which implies that it is
non-null (I2). This example illustrates that our analysis represents disjunctive
information in a single graph: both possible values of result are represented by
the same graph, and we use value information to determine the states in which
each pointer may exist. The constraint (Trg, val) = 0 on the edge from result to
the summary node n0 expresses that the first list node has value 0 (I3). Note
that the edge-local identifier allows us to express properties of a single object,
even if it is abstracted by a summary node. The same feature is used in the
constraint (Trg, val) = (Src, val) + 1 on the edge from n0 to itself to express
invariant I4. Finally, the constraint (Src, val) = v − 1 on the edge from n0 to
null expresses that the last list node has value v − 1 (I5). All five invariants are
inferred automatically by our analysis without manual annotations.

Outline. Sec. 2 defines the language and the concrete domain. Sec. 3 formalizes
the abstract domain, while Sec. 4 defines the abstract semantics. Sec. 5 reports
the experimental results, Sec. 6 discusses related work, and Sec. 7 concludes.

2 Programming Language and Concrete Domain

We present our analysis for the small object-based language in Fig. 3. To simplify
the formalization, we model local variables as fields of a special object =, that is,
treat local variables as heap locations. We distinguish reference field and value

rAE ::= =.fr | rAE.fr

vAE ::= =.fv | rAE.fv

rexp ::= null | rAE | new C
vexp ::= n | vAE | vexp 〈op〉 vexp
op ::= + | − | ∗ | · · ·
ST ::= rAE = rexp | vAE = vexp

Fig. 3: Expressions and statements.

field access expressions rAE and vAE, de-
pending on the type of the accessed field.
A reference expression rexp may be null, a
reference field access expression, or an ob-
ject creation. A value expression vexp may
be a literal, a value field access expression,
or a binary expression. Since the treat-
ment of loops and conditionals is stan-
dard, the only relevant statements in ST
are value and reference assignments.

In the concrete domain, we partition the content of heap locations into values
and references. Let Ref be the set of concrete references (objects and null), with
=, null ∈ Ref, and let Val be the set of values. Let FieldRef and FieldVal be finite
sets of reference and value fields, respectively. An execution state consists of a
value store and a reference store. We model a value store as a partial map in
StoreVal = (Ref \ {null}) × FieldVal ⇀ Val and a reference store as a partial map
in StoreRef = (Ref \ {null})× FieldRef ⇀ Ref. For each reference in their domain,
these maps contain an entry for every field. We will refer to entries in a reference
store as concrete edges. We define the set of all concrete states (concrete heaps)
as Σ = StoreRef × StoreVal.

3

3 Abstract Domain and Operators

In this section, we present the abstract domain, the concretization function, as
well as join and widening operators.

3.1 Abstract Domain

Let Ref be the set of abstract references (or abstract nodes) with =, null ∈ Ref
(that is, we overload the symbols = and null to denote both concrete and ab-
stract references). Each abstract node n ∈ Ref represents either a single concrete
non-null reference (definite node), or a non-empty set of concrete non-null ref-
erences (summary node) with = and null being definite nodes. The functions in
IsSummary = Ref → {true, false} define whether a node is a summary node.

An abstract reference store in StoreRef = P((Ref \ {null}) × FieldRef × Ref)
represents possible pointers between abstract nodes through reference fields. It
can be interpreted as a directed graph where edges are labeled with a field name.
Hence, we will refer to members of the abstract reference store as abstract edges.

For an abstract edge n1
fr−→ n2, we will refer to n1 as the source and to n2 as

the target of the edge.

Our heap analysis is parameterized by an abstract value domain V, which
tracks information about value fields, for instance, relations among numerical
values. Each abstract edge is associated with an abstract value state (abstract
condition) via a map in Cond = (Ref \{null})×FieldRef ×Ref → V. The abstract
condition of an abstract edge approximates the concrete value stores in which
the edge exists. That is, our abstract domain tracks disjunctive information by
having several edges with the same source and field, and associating them with
different abstract conditions.

Abstract value states in V refer to memory locations via abstract identifiers
ID = Loc∪EId where Loc = (Ref\{null})×FieldVal and EId = {Src,Trg}×FieldVal.
An identifier (n, fv) ∈ Loc represents the value field fv of the concrete refer-
ences abstracted by the node n. Edge-local identifiers (Src, fv), (Trg, fv) ∈ EId
represent the value field fv of the single concrete source or target reference of
the concrete edges represented by an abstract edge. They track relations be-
tween the value fields of adjacent references in concrete heaps, which allows
us to infer precise invariants on summary nodes. For instance, the constraint

(Src, val) ≤ (Trg, val) in the abstract condition of an abstract edge n
next−−→ n ex-

presses sortedness of the concrete list that is abstracted by the summary node n.

We define the set of all abstract states (abstract heaps) as Σ = StoreRef ×
Cond× IsSummary.

Example. The abstract heap in Fig. 4 depicts the loop invariant of the program
in Fig. 1. Many of the constraints are similar to the constraints in Fig. 2. In
particular, combining the abstract heap for the loop invariant with the negation
of the loop guard (that is, i ≤ 0) yields the information reflected in Fig. 2, for
instance, that result is null iff v ≤ 0 and that the first list node has value 0.

4

[v i 2 ∧ v Src, val i 0
∧ Trg, val Src, val 1]

next

[v i 1 ∧ i 0
∧ Src, val i
∧ Trg, val Src, val 1]

[v 1 ∧ v i 0
∧ Src, val v 1]

[v i 0 ∧ i 0
∧ Trg, val i]

[v 1 i 0 ∧ Src, val v 1]
next

result null

[v i]

next next

Fig. 4: The abstract heap representing the loop invariant at line 4 of the example
in Fig. 1. Solid and dashed circles denote definite and summary nodes, respec-
tively. Arrows depict abstract edges and are annotated with relevant constraints
from their abstract conditions. To improve readability, we depict local reference
variables as nodes and use local variables as identifiers in constraints, although
the analysis models them as fields of =.

3.2 Concretization

In this section, we define the concretization function γ : Σ → P(Σ) that yields
the set of concrete heaps represented by a given abstract heap.

We assume that our heap analysis is instantiated with a sound value analysis.
Its concretization function γV : V → P(ID → P(Val)) yields a set of maps from
abstract identifiers to sets of concrete values. These maps yield sets of concrete
values rather than single values since an abstract value state may contain identi-
fiers for fields of summary nodes, and the value analysis alone cannot concretize
them. Let references(stRef) be the set of concrete references of a given concrete
reference store stRef , including = and null. We define the concretization function
γ of abstract heaps as:

(stRef , stVal) ∈ γ(St, con, isSum)⇔

∃αRef ∈ (references(stRef)→ Ref)·
GraphEmbed(αRef , stRef , (St, isSum))∧
ValueEmbed(αRef , (stRef , stVal), con)

That is, a concrete heap (stRef , stVal) is in the concretization of an abstract heap
(St, con, isSum) iff there exists an embedding αRef (a function from concrete
references to abstract nodes) such that the shape and the values of the concrete
heap can be embedded into the abstract heap. These embeddings are expressed
via the predicates GraphEmbed and ValueEmbed, which are defined as follows.

GraphEmbed holds if a given concrete reference store matches the shape of
a given abstract heap, ignoring the value information. This is the case if =
and null are the only concrete references that are abstracted to the abstract =
and null (1), if, whenever multiple concrete references are abstracted to a single
abstract reference, that abstract reference is a summary node (2), and if every
concrete edge is represented by an abstract edge in the abstract heap (3). Note
that this abstract edge is unique since αRef is a function:

5

GraphEmbed(αRef , stRef , (St, isSum))⇔
α−1

Ref(=) = {=} ∧ α−1
Ref(null) = {null} ∧ (1)

(∀n ∈ img(αRef) · |α−1
Ref(n)| > 1⇒ isSum(n)) ∧ (2)

∀r1
fr−→ r2 ∈ stRef · αRef(r1)

fr−→ αRef(r2) ∈ St (3)

where α−1
Ref is the preimage of αRef (that is, it yields the set of concrete references

abstracted by a given abstract reference).
ValueEmbed expresses that, for a given concrete reference store stRef , the

value store stVal matches all relevant abstract conditions in the abstract heap.
Here, an abstract condition is relevant if it is associated with an abstract edge
that corresponds to a concrete edge in stRef . In the definition below, we relate the
concrete value store stVal to each relevant abstract condition via a map s from

abstract identifiers to sets of concrete values. For each concrete edge r1
fr−→ r2

in the concrete reference store stRef , there is a map s in the concretization of
the abstract condition of the corresponding abstract edge (4). The map s may
constrain a concrete location (r, fv) in three ways: via the abstract identifier
(αRef(r), fv), via the edge-local identifier (Src, fv) if r is the source of the concrete
edge, that is, r = r1, and via the edge-local identifier (Trg, fv) if r is the target of
the concrete edge, that is, r = r2. In all three cases, the map s must yield a set
that contains the value v stored in the concrete value store for (r, fv) (5). Finally,
any concrete value store matches the relevant abstract conditions only if the
conditions do not contradict each other, even on abstract locations that are not
included in a given concrete heap. To ensure there are no such contradictions,
s must be in the concretization of all relevant conditions, ignoring edge-local
identifiers, which may denote different locations for different abstract edges. We
use the operator ↓Loc to project to the identifiers in Loc, that is, to remove
edge-local identifiers (6).

ValueEmbed(αRef , (stRef , stVal), con)⇔

∀r1
fr−→ r2 ∈ stRef · ∃s ∈ γV(con(αRef(r1)

fr−→ αRef(r2))) · (4)

∀((r, fv) 7→ v) ∈ stVal ·

v ∈ s(αRef(r), fv)∧
r = r1 ⇒ v ∈ s(Src, fv)∧
r = r2 ⇒ v ∈ s(Trg, fv)

 ∧ (5)

s ↓Loc∈ γV

 l

r′1
f′
r−→r′2∈stRef

(
con(αRef(r

′
1)

f ′
r−→ αRef(r

′
2)) ↓Loc

) (6)

Example. Fig. 5 shows the reference and value stores of two concrete heaps. The
heap of the left) is in the concretization of the abstract heap in Fig. 2. For the
embedding αRef = [= 7→ =, null 7→ null, r1 7→ n0, r2 7→ n0], GraphEmbed holds
since n0 is a summary node and all three concrete edges have corresponding

6

result
next next

null[
v 7→ 2, (r1, val) 7→ 0, (r2, val) 7→ 1

] result

next

[
v 7→ 1, (r1, val) 7→ 0

]
Fig. 5: Concrete heaps, consisting of a reference store, displayed on top, and a
value store, displayed underneath. The heap on the left is in the concretization
of the abstract heap in Fig. 2, whereas the heap on the right is not because it
violates the condition that list nodes store increasing values.

abstract edges. ValueEmbed also holds since the concrete value store satisfies
the three relevant abstract conditions, and these conditions do not contradict
each other.

In contrast, the heap on the right is not in the concretization of the abstract
heap in Fig. 2. The graph embedding forces the embedding to be αRef = [= 7→
=, null 7→ null, r1 7→ n0]. Therefore, both edge-local identifiers (Src, val) and
(Trg, val) on the abstract edge from n0 to n0 correspond to (r1, val), such that
there is no value for (r1, val) that satisfies the constraint (Trg, val) = (Src, val)+1.
In other words, any map s in the concretization of this constraint assigns different
values to these edge-local identifiers and, thus, does not satisfy condition (5).

3.3 Join

The join operator tΣ first computes an abstract reference store for the joined
heaps and then the abstract conditions for the edges in this store.

Abstract Reference Store. An abstract heap can be viewed as a directed
graph in which vertices are labeled as =, null, definite node other than = and
null, or summary node; edges are labeled with reference fields. The vertex labels
are used to avoid matching nodes in two heaps that cannot correspond (for
instance, a summary node and a definite node). A labeled heap graph is a triple
g = (V,E, η) ∈ Graph, where V ⊆ Ref is a set of vertices, E ⊆ V × FieldRef × V
is a set of edges labeled with a reference field, and η : V → {=,Null,Def,Sum}
is a labeling function on vertices. We assume a strict total order <G on graphs
that ensures in particular that g1 <G g2 if g1 has fewer vertices than g2 or the
same number of vertices but fewer edges.

To improve performance, we define the join of two abstract reference stores
such that it minimizes the size of the resulting store. Its structure is the minimum
common supergraph of the two joined stores. Let g1 and g2 be graphs. Graph g
is a common supergraph of g1 and g2 iff g1 and g2 are subgraph isomorphic to g
with the isomorphisms I1 and I2, respectively. We call g the minimum common
supergraph (MCS) of g1 and g2 if there exists no other common supergraph that
is smaller in the ordering <G. The procedure MCS (g1, g2) yields the (unique)

7

[v 1 i 0
∧ Trg, val i]

[v 1 i 0 ∧ Src, val v 1]
next

result null

[v i]

null
[v 2 i 0
∧ Src, val i
∧ Trg, val
		 Src, val 1]

[v 2 i 0
∧ Src, val v 1]

[3 v i 0
∧ i 0
∧ Trg, val i]

[v 1 i 0 ∧ Src, val v 1]
next

result next next

null
[v 2 i 0
∧ Src, val i
∧ Trg, val
		 Src, val 1]

[v 2 i 0
∧ Src, val v 1]

[3 v i 0
∧ i 0
∧ Trg, val i]

[v 1 i 0 ∧ Src, val v 1]
next

result next next

[v i]

Fig. 6: The abstract heap graphs on the left occur before and after the second
iteration of the fixed-point computation of the loop invariant (line 4) in Fig. 1.
Joining them results in the heap on the right. Bold arrows indicate edges of the
maximum common subgraph.

minimum common supergraph g of g1 and g2 as well as the corresponding sub-
graph isomorphisms I1 and I2 between g1 and g, and g2 and g, respectively.
The problem of computing MCS can be reduced to the well-studied problem of
finding the maximum common subgraph [4]. See Appendix A for the definitions
of graph/subgraph isomorphism and maximum common subgraph. Intuitively,
we can compute (g, I1, I2) = MCS (g1, g2) by “gluing” to the maximum common
subgraph of g1 and g2 those parts of g1 and g2 that are not in their maximum
common subgraph.

Let Π : StoreRef × IsSummary → Graph be a bijective function from ab-
stract stores to heap graphs. The abstract store and the IsSummary function
of the join of (St1, con1, isSum1) and (St2, con2, isSum2) are (St, isSum) =
Π−1(MCS (Π(St1, isSum1), Π(St2, isSum2)) ↓1), where ↓1 denotes projection
of a tuple on the first component, that is, the graph returned by MCS . Note
that Π(St, isSum) includes both Π(St1, isSum1) and Π(St2, isSum2). Hence,
the abstract reference store (St, isSum) subsumes the abstract reference stores
(St1, isSum1) and (St2, isSum2).
Example. Fig. 6 shows on the left the abstract heap graphs g1 and g2 before and
after the second iteration of the fixed-point computation of the loop invariant
(line 4) in Fig. 1, and their join g on the right. Besides the special nodes = and
null, the maximum common subgraph includes node n1 as well as the edges from
result to n1 and from n1 to null. To this common subgraph, we add the remainder
of g1 (the edge from result to null) and the remainder of g2 (n2 with its edges).
Note that both g1 and g2 are subgraph isomorphic to g, where the isomorphism
is the identity function.

Abstract Conditions. Consider an edge in the abstract store resulting from
the join of two abstract heaps. We determine its abstract condition as follows.
If the edge is in the maximum common subgraph of the joined heap graphs,
its abstract condition is the join of the abstract conditions in the two heaps.
Otherwise, the condition is the same as in the heap that contributed the edge,
after applying the subgraph isomorphism.

8

As explained above, computing the minimum common supergraph (g, I1, I2) =
MCS (Π(St1, isSum1), Π(St2, isSum2)) yields the subgraph isomorphisms I1 and
I2 from Π(St1, isSum1) to g and from Π(St2, isSum2) to g, respectively. We de-
fine the function rename ISO : (Ref → Ref) × V → V to rename the identifiers
in Loc of a given abstract value state according to an isomorphism. Using this
renaming, we define the join operator tΣ : Σ× Σ→ Σ as

(St1, con1, isSum1) tΣ (St2, con2, isSum2) = (St, con, isSum)

where:

(g, I1, I2) = MCS (Π(St1, isSum1), Π(St2, isSum2)) ∧
(St, isSum) = Π−1(g) ∧

con =

e 7→ s

∣∣∣∣∣∣ e ∈ St ∧ s =
⊔s′

∣∣∣∣∣∣
∃ i ∈ {1, 2} · ∃ (n1, fr, n2) ∈ Sti ·
e = (Ii(n1), fr, Ii(n2)) ∧
s′ = rename ISO(Ii, coni(n1, fr, n2))

Computing the maximum common subgraph is NP-complete; however, most
code fragments change only small portions of the abstract heap. Our implemen-
tation exploits this fact to compute the isomorphisms incrementally, usually in
linear time.
Example. Consider the edge from result to n1 in the heap on the right of Fig. 6,
which is in the maximum common subgraph of the heaps on the left. Hence,
its abstract condition is the join of the conditions for those heaps (assuming a
relational numerical domain). Since the constraint v−1 = i in the top left abstract
heap implies the constraint 3 > v− i > 0 in the lower heap, the latter constraint
is tracked by the result of the join operation; the other constraints of the joined
conditions are identical and, thus, carried over to the result. Conversely, the
edges from result to null, from n1 to n2, and from n2 to null are not in the
maximum common subgraph; their conditions come from the heap contributing
the edges.

3.4 Widening

The above join operator does not guarantee the convergence of the analysis. In
fact, the size of the abstract heap may grow at each application of join, and the
abstract conditions may not stabilize. Therefore, we define a widening operator
∇Σ : Σ × Σ → Σ that guarantees that the analysis reaches a fixed point in
finite time (that is, terminates). In order to do so, the widening operator must
bound the size of the abstract heap, which means that it has to merge nodes
into summary nodes. This merging is controlled via a finite set of field access
expressions W, which is a parameter of the analysis and denotes references that
the analysis should track separately. By default, W is the set of local reference
variables, but it can be extended to any set of field access expressions if desired.
For all examples in our evaluation (Sec. 5), the analysis uses the default.

We perform widening in two steps. First, in both input heaps, we merge
nodes that (i) are denoted by the same set of field access expressions from W,

9

nullresult
[4 v i 1 ∧ 0
∧ Src, val i
∧ Trg, val Src, val 1]

[v 3 i 0
∧ Src, val v 1]

[4 v i 0 ∧ i 0
∧ Trg, val i]

[v 2 i 0 ∧ Src, val v 1]
next

[v i]

[4 v i 2 ∧ 0
∧ Src, val i 1
∧ Trg, val Src, val 1]

[v 1 i 0 ∧ Src, val v 1]
next

next next next

Fig. 7: Heap before the fourth iteration of the fixed-point computation of the
loop invariant in Fig. 1.

[4 v i 2 ∧ v Src, val i 0
∧ Trg, val Src, val 1]

next

[v 1 ∧ v i 0
∧ Src, val v 1]

[v 1 i 0 ∧ Src, val v 1]
next

result null

[v i]

next next

[4 v i 0
∧ i 0
∧ Trg, val i]

[4 v i 1 ∧ i 0
∧ Src, val i
∧ Trg, val Src, val 1]

[5 v i 2 ∧ v Src, val i 0
∧ Trg, val Src, val 1]

next

[v 1 ∧ v i 0
∧ Src, val v 1]

[v 1 i 0 ∧ Src, val v 1]
next

result null

[v i]

next next

[5 v i 0
∧ i 0
∧ Trg, val i]

[5 v i 1 ∧ i 0
∧ Src, val i
∧ Trg, val Src, val 1]

Fig. 8: Heaps with merged nodes before the fourth (left) and fifth (right) iter-
ation of the fixed-point computation. The heaps differ only in the highlighted
constraints.

and (ii) are reachable (via some access path) from the same set of local variables.
Second, if the two heaps are isomorphic, we apply edge-wise widening to the
abstract conditions; otherwise, we join them. We refer the reader to App. B for
more details, and to the accompanying technical report [15] for the complete
formalization.

Example. Suppose we widen the abstract heap before the fourth iteration of the
fixed-point computation for the loop in Fig. 1 with the heap before the fifth
iteration. The abstract heap before the fourth iteration is displayed in Fig. 7;
the heap before the fifth iteration looks similar, but has four definite nodes.

In the first step, widening merges nodes using the defaultW = {result}. In the
heap from Fig. 7, we merge n2 and n3 into a single summary node n2 since they
are (i) denoted by the same set of field access expressions from W (the empty
set since result denotes neither n2 nor n3), and (ii) they are reachable from the
same set of local variables ({result}). However, n1 is denoted by a different set of
field access expressions ({result}), and therefore not merged with n2 and n3. The
edges from n2 and n3 to null are also merged, and their conditions are joined.
The resulting heap is shown on the left of Fig. 8. Merging nodes in the heap
before the fifth iteration (not shown) results in the heap on the right of Fig. 8.
Note that these heaps are isomorphic, that is, the heap shape has stabilized.

In the second step, since the heaps after merging are isomorphic, we apply
edge-wise widening to the abstract conditions. This step removes the upper
bound on v − i, but leaves all other constraints unaffected, that is, the abstract
conditions have stabilized. The resulting heap is shown in Fig. 4; it represents
the loop invariant of the program from Fig. 1.

10

4 Abstract Semantics

In this section, we formalize the semantics of reference and value assignments.

4.1 Reference Assignment

An abstract store includes disjunctive information. Therefore, for a reference
assignment p.fr = rhs, there may be several abstract references for the receiver
p and the right-hand side rhs, which may be reached through different paths
with different value conditions. The value states on the edges along each path
specify the conditions under which p and rhs evaluate to a particular abstract
reference. The abstract semantics for reference assignments adds an abstract
edge for each possible combination of receiver p and right-hand side rhs, with an
abstract condition that reflects when this combination exists.

The rule below formalizes reference assignments of the form p.fr = rhs, where
p.fr ∈ rAE and rhs ∈ rexp. Since we encode local variables as fields of a spe-
cial reference =, the rule also covers assignments to those. It uses an auxiliary
function eval rexp, which takes a reference expression (or =) re and an abstract
state σ and yields (a) a set NC of pairs, each consisting of an abstract reference
to which re may evaluate in σ and the condition under which re may evaluate
to this reference, and (b) a resulting abstract state, which is used to encode
allocation, that is, when re contains new expressions (see App. C).

(NC rhs, (Strhs, conrhs, isSum rhs)) = eval rexp(rhs, σ) (1)

(NC p,) = eval rexp(p, (Strhs, conrhs, isSum rhs)) (2)

strong ⇐⇒ ∃ n ∈ Ref · (NC p = {(n,)} ∧ ¬isSumr(n)) (3)
strong ⇒ (St = {(n1, f, n2) ∈ Strhs | (n1,) /∈ NC p ∨ fr 6= f}) (4)

(¬strong)⇒ (St = Strhs) (5)

conasg =

[
(np, fr, nrhs) 7→ (TrgToSrc(sp) u srhs)

∣∣∣∣ (np, sp) ∈ NC p ∧
(nrhs, srhs) ∈ NC rhs

]
(6)

St
′

= St ∪ dom(conasg) (7)

con′ = conrhs

[
e 7→ s

∣∣∣∣ e ∈ dom(conasg) ∧ (e /∈ St⇒ s = conasg(e)) ∧
(e ∈ St⇒ s = conasg(e) t conrhs(e))

]
(8)

〈p.fr = rhs, σ〉 →Σ (St
′
, con′, isSum rhs)

A reference assignment first evaluates rhs to obtain the possible abstract
references for the right-hand side expression together with the corresponding
conditions, as well as a successor state (1). The receiver p is evaluated in this
successor state. Since it is side-effect free (see Fig. 3), we discard the state re-
sulting from its evaluation (2). The analysis performs a strong update iff there
is only one abstract reference n for the receiver, which is a definite node (3).
In that case, the analysis removes all edges whose source is the receiver node
and that are labeled with the assigned field fr (4); otherwise, it performs a weak
update, that is, retains all existing edges (5). To add the edges for all possible
combinations of receivers and right-hand sides, we first create a map conasg that

11

[v i 2
∧ v Src, val i 0
∧ Trg, val Src, val 1]

next

next
[v 1
∧ v i 0
∧ Src, val v 1]

[v 1 i 0 ∧ Src, val v 1]
next

result null

[v i 0]

[v i 0 ∧ i 0 ∧ Trg, val i]

p

next
[v i 0
∧ i 0
∧ Trg, val i
∧ Src, val i 1]

next
[v i 1
∧ i 0
∧ Src, val i
∧ Trg, val Src, val 1][v i 0

∧ i 0
∧ Trg, val i 1]

next
[v 	i 0 ∧ Src, val i 1]

Fig. 9: The abstract heap after line 7 of the program in Fig. 1. The bold edges
are added by the reference assignment in line 6; the highlighted constraints come
from the value assignment in line 7.

maps each of the new edges to the abstract condition that describes when the
particular combination exists, that is, the greatest lower bound of the conditions
for choosing a particular abstract reference for the receiver and a particular ab-
stract reference for the right-hand side, respectively (6). The only twist in this
step is how to handle edge-local identifiers. The receiver is denoted by Trg in
conditions on edges pointing to the receiver, but by Src in the new edges. Func-
tion TrgToSrc performs this conversion. Since the map conasg contains an entry
for each new edge, we obtain the final abstract store by adding the domain of
this map to the store constructed in step 4 or 5 (7). Finally, the abstract condi-
tions are updated: For each new edge that is not present in the store before the
reference assignment, we add the condition from conasg . For each edge that is
already present (which may happen during a weak update), we join the condition
from conasg and the existing condition (8).

Example. Fig. 9 without the bold edges and the highlighted constraints, shows
the abstract heap after line 5 in Fig. 1. It is obtained from the abstract heap
in Fig. 4 (the loop invariant) by (i) assuming the loop guard (i > 0) in all
abstract conditions and (ii) applying the abstract semantics of the statement
Node p = new Node() (line 5), which introduces the definite node n3. (Its next
field initially points to null, which is not shown in the figure.) We will now illus-
trate the abstract semantics of the reference assignment p.next = result (line 6).

The right-hand side of the assignment, result, evaluates to null or to n1

(point (1) of of the rule above). Since the receiver p evaluates to a single definite
node n3 (2), we perform a strong update (3). The strong update removes all
out-edges of n3 labeled with next (4) and introduces new edges for all combi-
nations of abstract references for the receiver and for the right-hand side, that
is, edges from n3 to null and from n3 to n1 (7). These edges are shown in bold
in Fig. 9. The former edge exists if the right-hand side (result) evaluates to
null, that is, if v = i > 0; the latter exists if result evaluates to n1, that is, if
v − i > 0∧ i > 0∧ (Trg, val) = i (6). These constraints are the abstract conditions
of the new edges (8), as shown in Fig. 9 (still ignoring the highlighted constraints,
which will be discussed later).

12

4.2 Value Assignment

Like the semantics of reference assignments, the abstract semantics of a value
assignment p.fv = rhs (where p.fv ∈ vAE and rhs ∈ vexp) needs to consider each
possible combination of evaluations for the receiver p and for the right-hand side
rhs. For each combination, it updates all abstract conditions in the abstract store
to reflect the assignment and the conditions under which the combination exists.
The following rule formalizes this intuition.

S = eval vexp(rhs, (St, con, isSum)) (1)

(NC p,) = eval rexp(p, (St, con, isSum)) (2)
con′ = updateCond(rhs, fv,NC p, S, con) (3)

〈p.fv = rhs, (St, con, isSum)〉 →Σ (St, con′, isSum)

Each way of evaluating the right-hand side expression rhs, if it contains a field
access, chooses a path through the abstract store. The abstract conditions of the
edges along a path describe when this path may be chosen. Function eval vexp

(defined in App. D.2) yields the set S of conditions (value states) that describe
each way of evaluating rhs (1). Analogously to step 2 of reference assignment,
we evaluate the receiver expression p to obtain the possible receiver references,
each with a condition under which p may evaluate to this reference (2). We
use the function updateCond (see App. E) to reflect the value assignment in the
value states of all edges in the abstract store (3). This function considers all
possible combinations of receiver reference (obtained from NC p) and value state
for a particular way of evaluating the right-hand side expression (from S). For
each of them, it propagates the value information that has to hold when this
combination is chosen to the conditions of each edge in the abstract store and
applies the assignment operation of the value domain. The condition of each edge
in the abstract store is then defined to be the join of the conditions obtained for
all ways of executing the value assignment.

Example. Fig. 9 without the highlighted constraints shows the abstract heap
after line 6 in Fig. 1. The highlighted constraints are introduced by the abstract
semantics of the statement p.val = i - 1 (line 7). There is only one way to
evaluate the right-hand side expression. Therefore, eval vexp yields a singleton set
(point (1) of the rule above). This set contains the condition v − i ≥ 0 ∧ i > 0,
which holds in each concrete heap (otherwise there would be no value for result).
Similarly, the receiver expression p evaluates to a single node, n3, under the same
condition (2). This condition must be satisfied in order to be able to perform
the assignment. Therefore, we conjoin it to each abstract condition in the store
(which has no effect in this example), and then assign i − 1 to (n3, val) since p
evaluates to n3 (3). Moreover, since n3 is the target of the edge from p to n3,
we also add the constraint (Trg, val) = i− 1 for the edge-local identifier to the
condition on this edge, and analogously for (Src, val) on both out-edges of n3 (3).

13

Data Structure Operations Octa. Poly.

SortedSLL constructor
insertKey
deleteKey
findKey
deepCopy

1.24 1.82

SortedDLL constructor
insertKey
deleteKey
findKey
deepCopy

1.91 2.83

Data Structure Operations Octa. Poly.

BST constructor
insertKey
findKey

1.96 2.43

NodeCachingSLL constructor
add
remove
findKey

0.87 1.04

PersonAndAccount withdraw
deposit
changeInterest

0.38 0.43

Table 1: Analysis times (in seconds) of classes implementing different data struc-
tures when instantiating the analysis with the Octagon and Polyhedra value do-
mains. For each class, we inferred an object invariant by computing a fixed point
over all its methods.

5 Experimental Results

We implemented our analysis in the static analyzer Sample and applied it to
Scala implementations of typical list and tree operations (some of which we
took from the literature [5,7,14]), operations on nested recursive data structures
(such as lists of lists), and a simple aggregate structure [12]. We performed the
experiments on an Intel Core i7-Q820 CPU (1.73GHz, 8GB) running the 64-
bit version of Ubuntu 14.04. We instantiated our analysis with the Octagon [24]
and Polyhedra [9] value domains implemented in Apron [18]. We used the default
widening parameter, that is,W is the set of local reference variables. There were
no manual annotations for any of the benchmarks.

Inference of Object Invariants. Tab. 1 reports the analysis times (the aver-
age of 10 runs) for implementations of five different data structures. We instan-
tiated Logozzo’s framework [20] with our analysis to infer object invariants for
each data structure by computing a fixed point over all its operations.

SortedSLL implements a sorted singly-linked list (SLL). The inferred object
invariant expresses that the values stored in the list nodes are non-decreasing.

SortedDLL implements a sorted doubly-linked list (DLL). Our analysis infers
sortedness in both directions, that is, via the next and prev fields. However,
the analysis cannot infer the structural invariant of doubly-linked lists n.next 6=
null⇒ n = n.next.prev because it has no way of relating the concrete references

of the two edges n
next−−→ n and n

prev−−→ n for the summary node n.
BST implements a binary search tree. The analysis infers both the value and

the shape information of a BST data structure. Our implementation stores the
infimum and supremum of all keys of a sub-tree in its root. This information
allows our analysis to relate the value stored in the root to the values in the left
and right sub-trees, and, thus, to infer that the shape is a tree, that is, loop-
free and not a general DAG. We omitted method deleteKey because our analysis
is not able to infer that replacing the deleted key with the next smallest key
preserves sortedness; it does, however, infer that the tree shape is preserved.

NodeCachingSLL implements an acyclic SLL that maintains a cache of node
objects to reduce object creation and garbage collection. The inferred object

14

Operation Octa. Poly.

insertionSort 0.43 - SLL
0.72 - DLL

0.48 - SLL
0.85 - DLL

partitionWithKey 0.32 - SLL
0.48 - DLL

0.34 - SLL
0.55 - DLL

createListOfZerosAndSum 0.22 - SLL
0.39 - DLL

0.23 - SLL
0.43 - DLL

increasingList 0.28 - SLL
0.41 - DLL

0.31 - SLL
0.50 - DLL

sortListOfListsOfValues 1.45 1.88

listToBST 1.03 1.21

Table 2: Analysis times (in seconds) for single operations on different data struc-
tures when instantiating the analysis with the Octagon and Polyhedra value do-
mains. The first 4 operations work on singly-linked lists (SLL) and doubly-linked
lists (DLL). The fifth operation works on lists of singly-linked lists that store
values. The last operation transforms an SLL to a binary search tree.

invariant expresses that the list and the cache are disjoint and that the size of
the cache is between 0 and maximumCacheSize. Moreover, we inferred that the
addKey method creates a new object only if the cache is empty. Every node of
the list stores the length of the list rooted at the node. This information lets
our analysis infer that the list and its cache are acyclic, which is needed to infer
disjointness of the list and the cache. The latter step required materialization,
that is, splitting a definite node off a summary node, which is supported by our
implementation, but not explained in this paper.

Besides the object invariants for these four classes, our analysis infers that
the result of method findKey is either null or has the value of the given key. This
postcondition is inferred even if the result is represented by a summary node.

PersonAndAccount implements an aggregate data structure similar to the
example from a paper on the verification of object invariants [12]. The analysis
infers combined shape and value invariants, for instance, that Account and Person
objects reference each other, the sum of the account balance and person’s salary
is positive, and the interest rate of the account is always non-negative.

Inference of Method Postconditions. Tab. 2 reports the analysis times of
individual operations on different data structures. The initial abstract states and
the abstract heaps that represent the arguments to the operations contain only
information that is provided by the static types; no annotations were used. The
first four operations manipulate singly and doubly-linked lists. insertionSort takes
an unsorted list of values and sorts it. The analysis infers that the result is a
sorted list. partitionWithKey takes a list of values and a key, and creates two new
lists such that the keys in one are less than or equal to the given key, and the
keys in the other are greater. The analysis infers this value property and that
the resulting lists are disjoint. createListOfZerosAndSum creates a list of zeros
and subsequently traverses the list and sums up the values. The analysis infers
that the result is a list of zeros, and the sum of the values is zero. increasingList
is the method from Fig. 1, with an analogous implementation for DLLs. The
analysis infers the heap in Fig. 2 (and an analogous heap for DLLs).

15

The last two operations of Tab. 2 demonstrate that the analysis is able to infer
non-trivial shape and value properties for programs manipulating nested recur-
sive data structures or a combination of different data structures. sortListOfList-
sOfValues takes a singly-linked list of SLLs that store values, and sorts each of
the lists. The analysis infers that the result is a list of sorted SLLs. listToBST
takes an SLL of values and creates a binary search tree out of it, without using
the methods of the BST class discussed above. The analysis infers that the result
is a binary search tree.

Discussion. The analysis times in Tab. 1 and Tab. 2 demonstrate the efficiency
of our analysis. For all our benchmark classes, the fixed point over all their meth-
ods was computed within 3 seconds when using the Polyhedra domain. When
instantiated with a more efficient but less precise value domain, the efficiency of
the analysis increases, as illustrated by the usage of the Octagon domain.

Our experiments demonstrate that our analysis can infer invariants that com-
bine shape and value information in interesting ways, for instance, sortedness
of lists and trees, or invariants that relate the states of different objects in an
aggregate structure. Our analysis leverages data stored in value fields, such as
the infimum and supremum in the BST class discussed above, to obtain more
precise shape information. As future work, we plan to rely less on such fields
by tracking additional abstract conditions (such as injectivity of references) on
edges and by generalizing edge-local identifiers to reference fields.

6 Related Work

Dillig et al. [10,11] present a precise content analysis for arrays and containers,
in which heap edges are qualified by logical constraints over indexes into a con-
tainer. This idea inspired our approach of tracking disjunctive information via
the value states associated with edges in the heap. Our analysis uses generic
value domains instead of logical constraints and can therefore be instantiated
with different levels of precision and efficiency. Moreover, it uses edge-local iden-
tifiers instead of indexes, which allows us to express constraints on arbitrary
nodes (especially summary nodes) in the heap, not only on indexed structures
such as arrays and containers. Whereas Dillig et al. concentrate on clients of ar-
rays and containers, our analysis targets arbitrary heap-manipulating programs
including implementations of containers.

Similarly to our work, Bouajjani et al. [2,3] introduce a static analysis that
automatically infers combined shape and numerical invariants and is parametric
in the underlying value domain. The main difference is that their technique is
specific to programs that manipulate singly-linked lists of values. For such data
structures Bouajjani et al.’s approach is more powerful since it can relate an
arbitrary number of successive positions in a list. In contrast, the aim of our
analysis is to be applicable to general heap-manipulating programs.

Sagiv et al. [25] introduce a shape analysis in which invariants are expressed
in 3-valued first order logic with transitive closure (FOLTC). These invariants

16

may combine shape and value constraints. The analysis requires user-supplied
predicates, whereas our analysis does not need manual annotations; it repre-
sents a state by a set of logical structures, whereas our analysis maintains a
single abstract heap, reducing the number of nodes and edges, and therefore
the complexity of the overall analysis. The merging of nodes in our widening
operator can be viewed as a special case of canonical abstractions.

McCloskey et al. [23] propose a framework for combining shape and numerical
domains (encoded as predicates in FOLTC) in a generic way. However, users
have to supply shared predicates via which the domains communicate and which
usually resemble the properties one wants to prove. In contrast, our analysis can
be parameterized by arbitrary value domains without any manual overhead.

Ferrara et al. [13,14] and Fu [16] combine different heap and value analyses.
Whereas their work represents a state as a heap abstraction and a single value
state, our analysis attaches a value state to each edge in the heap abstraction,
allowing for a precise tracking of disjunctive information. Moreover, in the value
states of Ferrara et al.’s and Fu’s work, different heap identifiers represent disjoint
portions of the heap. This is not the case for our edge-local identifiers, which
refer to memory locations already represented by abstract identifiers and which
enable a precise treatment of summary nodes.

Chang et al. [7] introduce a shape analysis based on user-supplied invariants
that describe data structures such as lists and trees. These invariants are used to
abstract over a potentially unbounded number of concrete references. Chang and
Rival [5,6] extend this work and present a framework for combining shape and
numeric abstractions into a single domain. Their approach enables the precise
and modular analysis of heap and numeric invariants, but relies on user-supplied
properties, whereas our analysis does not require manual annotations.

Abdulla et al. [1] introduce a fully automatic analysis of dynamically-allocated
heap data structures. They abstract heaps as forest automata, extended by con-
straints on the values stored in heap nodes. While the analysis precisely tracks
shape information, the value constraints can represent only a fixed set of or-
dering relations. For instance, they cannot express invariant I4 of our running
example (see introduction). Moreover, our analysis can be parametrized with
different value domains, allowing for different trade-offs between precision and
efficiency.

Marron et al. [22] introduce heap abstractions that are similar to the graphs
representing abstract heaps in our work. In fact, the formalization of the con-
cretization function in Sec. 3.2 is inspired by their work. However, there are
important technical differences. In particular, Marron et al.’s analysis maintains
a normal form, which makes their lattice finite, but loses information when merg-
ing two heap graphs. In contrast, we deal with an infinite lattice, but preserve
some of this information. Moreover, Marron et al.’s heap graphs track specific
aliasing predicates (such as injectivity of fields or tree shapes), but no value
information. Finally, the purpose of their work is to provide a high-level abstrac-
tion of concrete runtime heaps, whereas we propose an abstract domain and an
abstract semantics for a static code analysis.

17

7 Conclusion

In this paper, we have presented a static analysis that infers complex invari-
ants combining shape and value information. The analysis is parametric in the
underlying value domain, allowing for different trade-offs between precision and
efficiency. A key innovation of our analysis is the introduction of edge-local iden-
tifiers to track value information about the source and target of a pointer, which
allows it to infer inductive invariants such as sortedness of a linked list. The
analysis has been implemented in the static analyzer Sample. Our experiments
demonstrate its effectiveness.

As future work, we plan to generalize the abstract conditions associated with
abstract edges to track richer information. Supporting reference equalities and
inequalities would allow our analysis to infer more structural invariants such as
the invariant of a doubly-linked list. Supporting regular expressions over field
names as additional abstract identifiers would allow the analysis to infer global
properties.

Acknowledgments. We are grateful to Uri Juhasz and Alexander Summers for
numerous discussions, to John Boyland for helpful comments on a draft of this
paper, and to Severin Heiniger for his contributions to the implementation. We
would like to thank the anonymous reviewers for the useful feedback.

References

1. P. A. Abdulla, L. Hoĺık, B. Jonsson, O. Lengál, C. Q. Trinh, and T. Vojnar.
Verification of heap manipulating programs with ordered data by extended forest
automata. In ATVA. Springer, 2013.

2. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. On inter-procedural analysis
of programs with lists and data. In PLDI. ACM, 2011.

3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Abstract domains for auto-
mated reasoning about list-manipulating programs with infinite data. In VMCAI.
Springer, 2012.

4. H. Bunke, X. Jiang, and A. Kandel. On the minimum common supergraph of two
graphs. Computing, 65(1):13–25, Aug. 2000.

5. B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In POPL. ACM,
2008.

6. B.-Y. E. Chang and X. Rival. Modular construction of shape-numeric analyzers.
In David A. Schmidt’s 60th Birthday Festschrift, EPTCS, 2013.

7. B.-Y. E. Chang, X. Rival, and G. C. Necula. Shape analysis with structural in-
variant checkers. In SAS. Springer, 2007.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL.
ACM, 1977.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL. ACM, 1978.

10. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
In ESOP. Springer, 2010.

18

11. I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using containers.
In POPL. ACM, 2011.

12. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified frame-
work for verification techniques for object invariants. In ECOOP. Springer, 2008.

13. P. Ferrara. Generic combination of heap and value analyses in abstract interpre-
tation. In VMCAI. Springer, 2014.

14. P. Ferrara, R. Fuchs, and U. Juhasz. TVAL+ : TVLA and value analyses together.
In SEFM. Springer, 2012.

15. P. Ferrara, P. Müller, and M. Novacek. Automatic inference of heap properties
exploiting value domains. Technical Report 794, ETH Zurich, 2013.

16. Z. Fu. Modularly combining numeric abstract domains with points-to analysis,
and a scalable static numeric analyzer for Java. In VMCAI. Springer, 2014.

17. D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and S. Sagiv. Numeric domains with
summarized dimensions. In TACAS. Springer, 2004.

18. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In CAV. Springer, 2009.

19. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
SAS. Springer, 2000.

20. F. Logozzo. Automatic inference of class invariants. In VMCAI. Springer, 2004.
21. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap

abstraction. In SAS. Springer, 2004.
22. M. Marron, C. Sánchez, Z. Su, and M. Fähndrich. Abstracting runtime heaps for

program understanding. IEEE Trans. Software Eng., 39(6):774–786, 2013.
23. B. McCloskey, T. W. Reps, and S. Sagiv. Statically inferring complex heap, array,

and numeric invariants. In SAS. Springer, 2010.
24. A. Miné. The octagon abstract domain. Higher Order Symbol. Comput., 2006.
25. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3–valued logic.

In POPL. ACM, 1999.

19

A Graph Theory

In this Appendix, we define graphs, subgraphs, isomorphism, and maximum
common subgraph. These components are adopted by the join and widening
operators of our analysis.

Definition 1 (Graph). Let L be a finite set of labels of nodes and edges. A
labeled graph is a triple g = (V,E, η), where

– V is a set of vertices
– E ⊆ V × L× V
– η : V → L is a function assigning labels to vertices

Definition 2 (Subgraph - ⊆). Let g = (V,E, η) be a graph. We say that
g′ = (V ′, E′, η′) is a subgraph of g, g′ ⊆ g, iff

– V ′ ⊆ V
– E′ ⊆ E
– η′(v′) = η(v′) for all v′ ∈ V ′

When we join two graphs, we want to find the maximum subgraphs of the
two joined shapes that are shared among the two heap states. Therefore, we have
first to define what it means for two graphs (and subgraphs) to be isomorphic,
and then what a Maximum Common Subgraph is.

Definition 3 (Graph Isomorphism). Let g and g′ be graphs. A graph iso-
morphism between g and g′ is a bijective mapping i : V → V ′ such that

– η(v) = η′(i(v)) for all v ∈ V
– for any edge e = (u, l, v) ∈ E there exists an edge e′ = (i(u), l, i(v)) ∈ E′, and

for any edge e′ = (u′, l, v′) ∈ E′ there exists an edge e = (i−1(u′), l, i−1(v′)) ∈
E.

Definition 4 (Subgraph Isomorphism). If there exists a graph g′ ⊆ g and
g′ is isomorphic to g1, then we say that g1 is subgraph isomorphic to g.

Definition 5 (Maximum Common Subgraph - mcs). Let g1 = (V1, E1, η1)
and g2 = (V2, E2, η2) be graphs. We say that g = (V,E, η) is a common sub-
graph of g1 and g2 iff there exist g′1 ⊆ g1 and g′2 ⊆ g2 such that g is graph
isomorphic to g′1 and g′2. We call g a maximum common subgraph of g1 and
g2, mcs(g1, g2), if there exists no other common subgraph of g1 and g2 that has,
firstly, more vertices and, secondly, more edges than g.

How to compute the Maximum Common Subgraph has been already studied,
and we refer the interested reader to [4] for more details.

B Overview of the Widening Operator

In this Appendix, we present an overview of the widening operator of our analy-
sis. The technical report [15] contains the complete formalization of this operator.

20

Merging Nodes. Our widening operator is parametric in a finite set of field
access expressions W, which denote objects that the user wants the analysis to
track separately. Using field access expressions for obtaining a bounded heap
representation is standard [19,21,25]. Different heuristics and data-flow analyses
can be used to automatically determine W. For instance, for all examples in our
evaluation (Sec. 5), we used default W, the set of local reference variables.

Based on this set of field access expressions, we partition the nodes of an
abstract heap into equivalence classes such that two nodes are in the same equiv-
alence class iff they are reachable both (i) via the identical sets of field access
expressions from W, and (ii) from the identical sets of local variables. The lat-
ter condition improves precision, for instance, by preventing the widening from
merging the tails of two separate lists into a single summary node. We define
special equivalence classes for = and null.

After partitioning the nodes of an abstract heap, we merge all nodes in the
same partition into a single (if necessary, summary) node. The merging of nodes
may also replace several edges by a single edge from or to the merged node.
The abstract condition for this edge is the join of the conditions of the edges it
replaces.

From Merge to Widening. Once we merged nodes, we perform edge-wise
widening of the abstract conditions. The widening of the conditions on the edges
of the heaps can be performed only if the heaps are isomorphic, that is, the shape
has stabilized; otherwise there are edges in one heap that do not correspond to
any edge in the other heap, hence, their conditions cannot be widened.

The heap partitioning described above is unique, which allows us to determine
whether two heaps after merging nodes are isomorphic efficiently (linear in the
number of nodes in the abstract heaps, which is bounded by the size of W and
the number of local variables in the program).

If the heaps are isomorphic, we apply edge-wise widening to the conditions
of the heaps using the widening operator of the value domain to obtain the
resulting abstract heap. Otherwise, we take the join of the abstract heaps.

Termination. Since W is finite and there are only finitely many local vari-
ables, there are only finitely many equivalence classes for the merging of nodes.
Therefore, the abstract heap resulting from merging has a bounded number of
nodes. When the two heaps after merging of nodes are isomorphic, termination
of widening follows from the fact that there are only finitely many edges and
the widening of the value analysis converges. When they are not isomorphic, the
heaps are joined. However, the join can be applied only finitely many times, since
there are only finitely many non-isomorphic structures that can be constructed
from a fixed number of nodes, and after every application of join, the size of the
abstract structure grows, as join is a monotone operator. Furthermore, also the
set of identifiers tracked by conditions on edges grows with every application of
join to conditions and there are only finitely many identifiers (since there are
only finitely many nodes in the heap and FieldVal is finite).

21

C Evaluation of Reference Expressions

In this section, we formalize the evaluation of reference expressions (rexp). A
reference expression is either null, an allocation of a new object (new C), or a
reference field access expression (rAE). We formalize the evaluation of new C
in App. C.1 and the evaluation of rAE in App. C.2. We define the evaluation
function of reference expressions in App. C.3.

We assume that the underlying value analysis V provides the following op-
erators based on well-known definitions [17]: (i) add : P(ID) × V → V, which
introduces a given set of identifiers with value > into a given state, (ii) drop :
P(ID) × V → V, which projects out a given set of identifiers from a state, and
(iii) expand : P(ID × ID) × V → V, which extends a given state such that for
any (id1, id2) of a given set of pairs of identifiers, the abstract value of id2 is the
same as the abstract value of id1, and the values of the identifiers present in the
original state remain unchanged.

We partition the set of edge-local identifiers into source edge-local identifiers
EIdSrc = {Src}×FieldVal and target edge-local identifiers EIdTrg = {Trg}×FieldVal.

In the evaluation of both reference and value expressions, we will have to de-
termine a value state that approximates the value stores of all heaps represented
by a given abstract heap. We call such a value state the general condition of an
abstract heap. It is defined as follows. Each abstract condition associated with
an edge of an abstract heap approximates the value store of all concrete heaps in
which the edge exists. Therefore, it is sufficient to consider any abstract reference
n that abstracts a concrete reference that exists in every concrete heap (such as
=) and any field f . The join of the conditions of the edges (n, f,) is a value state
that approximates the value stores of all concrete stores (since n.f must have
some value in each of them). In the definition below, we take the join over all fields
for simplicity, and drop the edge-local identifiers since the general condition is not
associated with any particular edge and, hence, the edge-local identifiers have no
meaning. Formally, the general condition generalV : Σ→ V of an abstract heap

is defined as generalV(St, con,) =
⊔

e∈St{drop(EId, con(e)) | = = source(e)}.

C.1 Object Allocation

An abstract heap σ′ soundly approximates an allocation of a new object in ab-
stract heap σ if and only if for each concrete heap h ∈ γ(σ) and for each concrete
heap h′ resulting from the allocation of a new object in h, the concretization of
σ′ contains h′, that is, h′ ∈ γ(σ′). Let allocΣ : Σ → (P((Ref × V)) × Σ) be
a function that for a given abstract heap returs (i) a singleton set3 containing
the abstract reference representing the newly allocated object and the abstract
condition approximating value stores of heaps resulting from the allocation, and
(ii) an abstract heap which soundly approximates object allocation in the given

3 Returning a singleton set rather than a single pair simplifies the definition of eval rexp

in App. C.3.

22

heap. Formally, allocΣ(St, con, isSum) = ({(n, s)}, (St′, con′, isSum ′)) where

n ∈ (Ref \ ({n′ | (n′, ,) ∈ St ∨ (, , n′) ∈ St} ∪ {null,=})) ∧ (1)
isSum ′ = isSum[n 7→ false] ∧ (2)
I = {n} × FieldVal ∧ (3)

s = add(I ∪ EId, generalV(St, con, isSum)) ∧ (4)

St
′

= St ∪ {(n, fr, null) | fr ∈ FieldRef} ∧ (5)

con′ =

[
e 7→

{
add(I, con(e)) if e ∈ St
drop(EIdTrg, s) otherwise

∣∣∣∣∣ e ∈ St′
]

(6)

The newly allocated object is represented by a fresh non-null node n (1), which
is definite (2). The analysis builds up the value state s approximating the value
store of all concrete heaps in which the new object has been allocated (using the
general condition defined above). Consequently, s must contain the identifiers I
for the value fields of n (3). Since the allocation of an object can appear only
on the right-hand side of an assignment, s will participate in the condition of
an edge that represents the assignment (see line (6) of the abstract semantics of
reference assignment in Sec. 4.1). For this purpose, we also introduce edge-local
identifiers into s (4). We assume that the concrete semantics of object allocation
assigns null to reference fields of the newly allocated object. Accordingly, the
analysis updates the abstract store such that the reference fields of n point to
null (5). Finally, the abstract conditions are updated: for each edge that is already
present, we add identifiers I to their existing conditions. For every new edge, we
add the condition s in which the target edge-local identifiers are not present
(since the target of the edge is null) (6).

C.2 Reference Field Access Expressions

Since the abstract store includes disjunctive information, a reference field access
expression =.f1. · · · .fn ∈ rAE may correspond to multiple paths in the abstract
heap. When evaluating =.f1. · · · .fn, all these paths must be considered. Let
paths : rAE × StoreRef → P((Ref × FieldRef × Ref)∗) be a function that returns
the set of all paths in a given abstract store for a given reference field access
expression. Formally:

paths(=.f1. · · · .fn, St) = {〈e1, · · · , en〉 | ∀ 1 ≤ i ≤ n · ei ∈ St ∧ field(ei) = fi ∧
source(e1) = = ∧ ((1 < i)⇒ (source(ei) = target(ei−1)))}

Each edge in a path is associated with an abstract condition that approximates
the value stores of all concrete heaps in which the edge exists. Therefore, the
path is feasible only in those concrete heaps whose value stores are approximated
by the abstract conditions associated with all edges of the path. However, since
the abstract condition of an edge contains edge-local identifiers for the source
and the target of this particular edge, it is not generally sound to simply take
the greatest lower bound of all abstract conditions of the path. If ei and ei+1

are two consecutive edges in the path then the target edge-local identifiers in

23

the abstract condition of ei correspond to the source edge-local identifiers in
the abstract condition of ei+1. To adjust the edge-local identifiers, we define a
function TrgToSrc : V → V, which converts the target edge-local identifiers of
a given abstract condition to source edge-local identifiers and sets the target
edge-local identifiers to >. Formally:

TrgToSrc(s) = add(EIdTrg, drop(EIdTrg, expand(R, drop(EIdSrc, s))))

where R = {((Trg, fv), (Src, fv)) | fv ∈ FieldVal}. In the above definition, we
convert the target edge-local identifiers to source local-identifiers by first remov-
ing the source edge-local identifiers from the value state (via drop), and then
re-introducing them with the abstract values of the corresponding target edge-
local identifiers (via expand). Since the source edge-local identifiers assumed
the role of the target edge-local identifiers, the target edge-local identifiers are
removed from the state and then re-introduced with the value > (via add).

We now define a function pathCondition : V×(Ref×FieldRef×Ref)∗×Cond→
V, which, for a given abstract condition and a given path, returns the abstract
condition under which the path is feasible and does not contradict the condition.
Furthermore, in case the last node of the given path is non-null, the target edge-
local identifiers of the resulting abstract condition refer to the value fields of the
last node of the path. Formally:

pathCondition(s, 〈e1, · · · , en〉, con) ={
add(EIdSrc, drop(EIdSrc, s)) if 〈e1, · · · en〉 = ε

pathCondition(TrgToSrc(s) u con(e1), 〈e2, · · · en〉, con) otherwise

where ε represents an empty path. In the above definition, s represents the
value information accumulated from the abstract conditions of already processed
edges. In the last line of the definition, we obtain the next value of this accu-
mulator by taking the greatest lower bound of the current s (with appropriate
adjustments of edge local identifiers) and the abstract condition of the next
unprocessed edge.

Now we define an evaluation function for reference field access expressions
eval rAE : rAE×Σ→ P(Ref×V), which returns a set of pairs of abstract references
and abstract value states. In each pair, the reference is the last node of a paths
that may represent the given reference field access expressions, and the value
state describes under which condition this path is feasible. In each pair, the
target edge-local identifiers of the abstract condition refer to value fields of the
abstract reference. Note that if the abstract condition is ⊥, the path is not
feasible and such a path may be discarded. Formally:

eval rAE(ap, (St, con, isSum)) = {(n, s) | ∃ 〈e1, · · · en〉 ∈ paths(ap, St) ·
target(en) = n ∧ s = pathCondition(>, 〈e1, · · · en〉, con) ∧ s 6= ⊥}

C.3 Reference Expressions

We define an evaluation function eval rexp : (rexp∪{=})×Σ→ (P(Ref×V)×Σ) for
reference expressions and also =, which simplifies the treatment of assignments

24

to expressions of the form =.f . eval rexp returns (i) the abstract references that a
given reference expression (or =) may represent together with the abstract condi-
tions under which it may represent these abstract references. In these conditions,
the target edge-local identifiers must correspond to value fields of the resulting
abstract references. And (ii) the abstract heap that results from evaluating the
given expression, since allocation has side-effects. Formally:

eval rexp(re, σ) =

allocΣ(σ) if re = new C

({(null, add(EIdSrc, generalV(σ)))}, σ) if re = null

(eval rAE(re, σ), σ) if re ∈ rAE

({(=, add(EIdSrc, expand(R, generalV(σ))))}, σ) if re = =

where R = {((=, fv), (Trg, fv)) | fv ∈ FieldVal}. Since the abstract conditions
returned by eval rexp may participate in conditions of edges (see line (6) of the
abstract semantics of reference assignment in Sec. 4.1), we need to make sure
that they include the edge-local identifiers.

D Evaluation of Value Expressions

In this section, we formalize the evaluation of value expressions (vexp). A value
expression is either a literal (n), a value field access expression (vAE), or a binary
expression (vexp 〈op〉 vexp). We formalize the evaluation of vAE in App. D.1 and
define the evaluation function for value expressions in App. D.2.

D.1 Value Field Access Expressions

For a value field access expression p.fv, the receiver expression p is either = or a
reference field access expression. In the latter case, it may correspond to multiple
paths in the abstract heap. Therefore, there may be multiple ways to evaluate
p.fv, and the evaluation function must consider each of them.

We use function eval rexp (App. C.2) to determine the set of abstract refer-
ences representing p, and for each of them an abstract condition under which p
represents this reference. The edge-local identifier (Trg, fv) in these conditions
refers to p.fv, and, therefore, is important for the evaluation. However, in App. E,
we will detach these conditions from their edges such that edge-local identifiers
lose their meaning. To preserve the information about p.fv, we retain it using a
separate, non-edge-local identifier before removing the edge-local identifiers. For
this purpose, we extend the set of abstract identifiers ID of the value analysis
with value field access identifiers, that is, IDvAE = ID ∪ vAE. These identifiers
are used only temporarily for intermediate steps, but do not occur in any value
states before or after a value assignment is performed.

Function eval vAE : vAE×Σ→ P(V) yields the set of value states correspond-
ing to different ways a given value field access expression may be evaluated.
Formally:

eval vAE(p.fv, σ) =

{
drop(EId, s)

∣∣∣∣∃ (n, s′) ∈ eval rexp(p, σ) · n 6= null ∧
s = expand({((Trg, fv), p.fv)}, s′)

}

25

For a given value field access expression p.fv, the function first computes the
abstract references representing p, together with the value states under which
p represents them. Abstract null references are excluded since they would lead
to null-pointer dereferencing when evaluating p.fv and, thus, abortion of the
execution. Then, for each abstract condition, the function renames the identifier
(Trg, fv) to the new value field access identifier p.fv (via expand). Finally, since
the resulting value state describes conditions on the entire heap, the function
removes all edge-local identifiers.

D.2 Value Expressions

We define an evaluation function for value expressions eval vexp : vexp×Σ→ P(V),
which returns the set of value states corresponding to every possible way a given
value expression may be evaluated in a given abstract heap. Each resulting value
state contains value field access identifiers for all value field access expressions
presents in the given value expression. Formally:

eval vexp(ve, σ) =

{generalV(σ)} if ve ∈ n

eval vAE(ve, σ) if ve ∈ vAE{
meetvAE(s1, s2)

∣∣∣∣∣s1 ∈ eval vexp(ve1, σ) ∧
s2 ∈ eval vexp(ve2, σ)

}
if ve1〈op〉ve2 = ve

For literals n, the function yields the general condition since a literal can be
evaluated in any heap. For value field access expressions, the function applies
eval vAE from the previous section. The evaluation of binary expressions works as
follows.

Recursively evaluating the expressions ve1 and ve2 yields sets of abstract
states that represent all ways of evaluating these expressions. The resulting state
for the binary expression is essentially the point-wise application of the greatest
lower bound to each combination of states from these sets. However, these states
may in general contain different value field access identifiers I1 and I2. To avoid
information loss when applying the greatest lower bound, we first enlarge all
involved value states to include all identifiers in I1 ∪ I2. Let getvAE : V →
P(IDvAE) yield a set of value field access identifiers of a given value state. Function
meetvAE : V × V → V yields the value state that is the greatest lower bound of
the given value states and contains all value field access identifiers from these
states:

meetvAE(s1, s2) = add(getvAE(s2)\getvAE(s1), s1)uadd(getvAE(s1)\getvAE(s2), s2)

E Updating Conditions

In this section, we formalize an update function used in Sec. 4.2 to perform
assignments of value expressions on each edge in an abstract heap.

26

We assume that the value analysis has the notion of summary identifiers and
provides an operator assign : P(ID)×vexp×V→ V that performs a strong assign-
ment of a given expression to a given set of identifiers. We define a weak assign-
ment assignw : P(ID)× vexp×V→ V as assignw

(
I, ve, s

)
= assign(I, ve, s)t s.

We define an update function updateCond : vexp × FieldVal × P(Ref × V) ×
P(V) × Cond → Cond, which updates abstract conditions of all edges to reflect
an assignment to a value field of a receiver with respect to the value states that
correspond to the evaluations of the right hand side of the assignment. Formally:

updateCond(ve, fv,NC , S, con) =e 7→ ⊔
s3

∣∣∣∣∣∣∣∣
∃ s ∈ S, (n, s′) ∈ NC ·
∃ s1 = propagateV(s, s′, con(e))·
∃ s2 = asg(affected ID(e, fv, n), ve, s1) ·
s3 = drop(vAE, s2)

∣∣∣∣∣∣∣∣ e ∈ dom(con)

where asg =

{
assign if ¬isSum(n)

assignw otherwise
.

For every edge e, the function computes a new abstract condition as a join of
conditions s3 computed as follows:

The set S of value states corresponds to all possible evaluations of the value
expression ve. NC is a set of abstract references representing a receiver together
with an abstract condition under which this reference represents the receiver. A
possible combination of s in S and (n, s′) in NC is chosen. The value information
from s and s′ is propagated (via propagateV, defined below) into the abstract
condition of e, obtaining the value state s1. s1 contains all value field access
identifiers from ve. Since several different identifiers in ID may represent the
same memory location, all the identifiers that may represent the value field fv of
the receiver n must be updated. We define a function affected ID : (Ref×FieldRef×
Ref)× FieldVal × Ref → P(ID) which yields the set of identifiers for a given edge
that may represent the same memory location as the identifier (n, fv). Formally:

affected ID((n1, fr, n2), fv, n) = {(Src, fv) | n1 = n}∪{(Trg, fv) | n2 = n}∪{(n, fv)}

Then, we apply a strong (if n is definite) or a weak (if n is summary) assignment
of ve to all identifiers that may represent the same memory location as (n, fv),
obtaining the value state s2. However, s2 still contains value field access identi-
fiers of ve which cannot appear in abstract conditions of edges. We obtain s3 by
removing all value field access identifiers from s2 (via drop).

Function propagateV : V×V×V→ V propagates the value information from
a given value state s corresponding to an evaluation of a value expression and
a given abstract condition s′ for a receiver to a given abstract condition of an
edge se. Formally:

propagateV(s, s′, se) = meetvAE(add(EId,meetvAE(s, s′)), se)

The above function first gathers the value information from s and s′ into an
intermediate state by taking the greatest lower bound of s and s′ and preserving

27

the value field access identifiers of the both states. Then, in order to preserve
the edge local identifiers of se, the edge-local identifiers are introduced into
the intermediate state. Finally, we propagate the value information from the
intermediate state to se by taking the greatest lower bound of the intermediate
state and se while preserving the value field access identifiers of the intermediate
state.

28

	Automatic Inference of Heap Properties Exploiting Value Domains

