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Abstract. We present a tool that checks for a given context-free graph
grammar whether the corresponding graph reduction system in which
all rules are applied backward, is confluent—a question that arises when
using graph grammars to guide state space abstractions for analyzing
heap-manipulating programs; confluence of the graph reduction system
then guarantees the abstraction’s uniqueness. If a graph reduction sys-
tem is not confluent, our tool provides symbolic representations of coun-
terexamples to confluence, i.e., non-joinable critical pairs, for manual
inspection. Furthermore, it features a heuristics-based completion proce-
dure that attempts to turn a graph reduction system into a confluent one
without invalidating the properties mandated by the abstraction frame-
work. We evaluate our implementation on various graph grammars for
verifying data structure traversal algorithms from the literature.

Keywords: Graph grammars · Confluence · Critical pairs · Completion.

1 Introduction

Confluence is a central property of many rewriting formalisms, including term
rewriting and graph transformation systems: Confluent systems require no back-
tracking since all terminating sequences of rule applications produce the same
result. In this paper, we present a tool that checks confluence for certain graph
reduction systems—more precisely: hyperedge replacement grammars (HRG) [9]
in which all rules are reversed—based on the algorithm in [14].

Our work is motivated by the usage of HRGs as an abstraction mechanism
for verifying pointer programs. This approach is at the core of Attestor3—
a graph-based model-checking tool for analyzing Java programs operating on
dynamic data structures [2,12]. To cope with large or even unbounded state
spaces arising in this context, Attestor performs a symbolic shape analysis
based on a user-supplied HRG that characterizes the data structures handled by

3 https://github.com/moves-rwth/attestor
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the program. Here, a suitable HRG generates graphs modeling concrete heaps
where hyperedges labeled with nonterminal symbols act as placeholders for the
(partial) data structures under consideration, e.g., doubly-linked lists or binary
trees with a fixed root. Abstracting of a concrete heap then corresponds to
applying HRG rules backward until a normal form is reached. While termination
of this procedure is guaranteed for the HRGs admitted in our setting, confluence,
i.e., uniqueness of normal forms, is not. Confluence is vital for the performance of
verification tools, such as Attestor, because—rather than abstracting a heap
in all possible ways—it suffices to apply abstraction rules exhaustively and in
arbitrary order. Furthermore, confluence can be exploited to decide whether an
abstract state is subsumed by an already computed one—a particular instance
of the graph language inclusion problem that is crucial for ensuring termination
of the overall analysis in the presence of loops or recursive procedures (cf. [21]).

Apart from checking whether the graph reduction system induced by an
HRG is confluent, our tool supports a heuristics-based completion procedure to
transform it into a confluent one. In particular, the heuristics can be chosen
such that properties of the HRG required by Attestor, e.g., those ensuring
termination of the abstraction, are preserved during completion. We evaluate
our implementation on various heap abstractions that have been proposed in
the literature (as HRGs or equivalent inductive predicates in separation logic).

Related tools. While algorithms for deciding confluence have been extensively
studied in the context of graph transformations (cf. [6,11,14,20,23,24]), there
are, to the best of our knowledge, only few tools that support computing critical
pairs—a key component for confluence checking.

However, we are not aware that any of the tools below support proving
backward confluence for HRGs, which additionally requires checking whether the
computed critical pairs are joinable. Moreover, they do not support completion.

AGG4 is a development environment for attributed graph transformation
systems supporting an algebraic approach to graph transformation [25,27]. For
analyzing critical pairs, it implements the algorithm developed in [11].

VeriGraph[7] is a tool for simulation and analysis of transformation systems
given by graph grammars, which appears not to be developed further anymore. It
implements the critical-pair analysis described in [19]. A performance comparison
with AGG is given in [4], analyzing both critical pairs and sequences to capture
conflicts and dependencies between rules. The evaluation shows that Verigraph
outperforms AGG in realistic test cases, which indicates that AGG is more
sensitive to the size of the graphs contained in rewriting rules.

Henshin[1] is a model transformation environment that is based on the Eclipse
Modeling Framework. It first integrated a critical-pair analysis as presented in
[5], which has later been superseded by a more efficient and flexible conflict and
dependency analysis [18].

4 https://www.user.tu-berlin.de/o.runge/agg/
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SyGraV[8] is a graph analysis tool that supports checking local confluence of
attributed graph transformation systems. It was the first to fill the gap between
theoretical results and practical usability of symbolic graph analysis.

2 The Tool

We implemented a confluence checking and a completion component within the
software model checker Attestor; our confluence checker can also be used as
a standalone tool. The tool, its source code, and our benchmarks are available
online.5 In this article, we do not distinguish between Attestor and its con-
fluence checker. This section briefly outlines our tool’s input, its main steps for
proving confluence, the feedback it provides, and the extent to which it supports
automatic completion of graph grammars. A detailed discussion of the under-
lying algorithm (which is based on [14]), its implementation, and the heuristics
applied for guiding completion is found in [26].

2.1 Input

Our confluence checker targets a subset of HRGs suitable for modeling dy-
namic data structures (cf. [12,2] for details). While HRGs are context-free graph
grammars—and thus always confluent—Attestor checks whether the corre-
sponding graph reduction system (GRS) [13] in which all rules are applied in
reverse direction, is confluent as well. In our setting, graph rewriting through
reverse rule applications always terminates because we require all HRG rules to
be increasing, i.e., every hyperedge connected to n ≥ 0 nodes is mapped to a
hypergraph consisting of at least n + 1 nodes and edges. HRGs are specified as
a set of (forward) rules in a JSON-style format. Both nodes and hyperedges are
equipped with attributes indicating the type of nodes and edges; these types can
be consulted to differentiate elements when checking for graph isomorphism.

2.2 Proving Confluence

Attestor implements the confluence checking algorithm in [14] for the set
of GRSs from above. That is, it systematically computes all critical pairs—
overlappings of two hypergraphs appearing on the left-hand side of graph trans-
formation rules—and, for each critical pair, checks whether it is strongly joinable,
i.e., exhaustive rewriting after applying either of the two possible rules leads to
isomorphic normal forms. Here, “strongly” refers to an additional requirement
while searching for graph isomorphisms: we distinguish between nodes in the
original overlapping that are not deleted by rule applications. The above con-
dition is necessary because a GSR is confluent iff all critical pairs are strongly
joinable. Attestor reports if a critical pair is joinable but not strongly joinable
since this case seems to be a frequent error when manually designing supposedly
confluent grammars for heap abstraction (see evaluation).

5 https://github.com/moves-rwth/attestor-confluence
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Fig. 1. Rules of an HRG modelling doubly-linked list segments; the graphical repre-
sentation was automatically generated by Attestor. In our graphical notation, circles
indicate nodes; double circles capture the sequence of external nodes (ordered by their
label). Hyperedges are drawn as rectangles; the numbered connections indicate the
sequence of nodes attached to a hyperedge, i.e., all hyperedges labeled with DLL are
attached to four (not necessarily different) nodes. For simplicity, hyperedges connected
to exactly two nodes are drawn as (labeled) arrows. In all hypergraphs, nodes and
edges are additionally equipped with an integer, e.g., 4 for the single hyperedge on the
LHS of rules), to identify them across rule applications.
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Fig. 2. Example of the feedback generated for a critical pair. It displays a non-joinable
pair at the bottom, a trivial derivation to the graphs in the middle and a derivation
using the second and third rule from Figure 1 to obtain the context graph of the critical
pair at the top.
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2.3 Graphical Feedback

Apart from answering whether a given GRS is confluent, Attestor generates
a report (in LATEX, using the TikZ library) that visualizes for each critical pair:
(a) the context graph, i.e., the overlapping of two left-hand sides of rules, (b) the
two rules that are applied, (c) the graphs obtained after one rule application, and
(d) at most two normal forms obtained after further exhaustive rule applications
up to isomorphism. If a GRS is not confluent, the report lists counterexamples
consisting of non-isomorphic normal forms for the same critical pair.

Figure 2 depicts an excerpt of Attestor’s output for a single critical pair.
The underlying HRG generates non-empty doubly-linked list segments as shown
in Figure 1. Each edge labeled with DLL represents a doubly-linked list segment
that is connected with the predecessor of the previous node (0), the previous
node (1), the next node (2) and the successor of the next node (3). The first
rule generates a doubly-linked list of length 2 (the smallest this grammar can
generate assuming the first and last node are both the ”null” node). The second
and third rule represent graphs obtained from traversing the list in forward
and backward direction, respectively. The fourth rule was introduced to achieve
backward confluence: intuitively, it states that two correctly connected doubly-
linked lists segments again represent a doubly-linked list segment.

However, as our analysis shows, the fourth rule is not sufficient to guarantee
confluence. In Figure 2, the context graph is at the top and the graphs resulting
from the first two rule applications (2.8 and 3.3)6 are directly below; the numbers
assigned to each node and hyperedge serve to identify them throughout rule
applications. The critical pair in question is not strongly joinable because there is
no isomorphism between the two graphs at the bottom, which are obtained after
exhaustive rule application. In particular, the hyperedges 6 and 0 are attached
to different sequences of nodes.

2.4 Automated Completion

Attestor also supports a simple completion procedure to turn. a given GRS
into a confluent one. In contrast to existing completion algorithms, such as
Knuth-Bendix [17], we are not interested in any extension that ensures con-
fluence. Instead, reversing all GRS rules should still lead to an HRG that meets
Attestor’s requirements for heap abstractions.

We thus opted for implementing a greedy procedure that applies various
heuristics which preserve the aforementioned HRG properties. By choosing suit-
able heuristics, our greedy approach enables rapid prototyping of handcrafted
strategies for devising appropriate heap abstractions. For example, one heuristic
attempts to add rules that group connected hyperedges with identical labels into
a single one of the same label.

6 That is, rules 2 and 3 were applied. To improve performance, Attestor generates
specialized rules in which two or more external nodes are identical; the number after
the dot indicates which case of a rule has been applied.
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Table 1. The experimental results for our confluence checker; confluent grammars are
marked with 3. All runtimes are in milliseconds.

Critical Pairs Runtime

Grammar Not Weak Strong Total Node Edge Validity Total

7 InTree 22 1 18 41 9.6 19.6 32.8 63.5
3 InTreeLinked 0 0 83 83 11.1 7.0 32.8 51.7
7 LinkedTree1 5 0 10 15 6.0 9.3 4.0 19.7
7 LinkedTree2 217 4 20 241 61.1 111.5 95.7 270.1
3 BT 0 0 33 33 2.1 4.8 4.9 12.2
3 SLList 0 0 15 15 0.3 0.4 0.8 1.6
7 SimpleDLL 1 0 2 3 0.1 0.4 0.2 0.7
7 DLList 63 12 137 212 89.8 22.5 78.7 192.6

3 Evaluation

We evaluated our implementation on both confluent and non-confluent graph
grammars proposed for modeling dynamic data structures. For the non-confluent
grammars, we also experimented with feeding our greedy completion procedure
with various heuristics to turn them into confluent ones.

Setup. All experiments were performed on a Thinkpad X1 Carbon 2019 with an
Intel Core i7-8565U, 1.8 GHz and 16 GB Ram, which runs Ubuntu 20.04.1.

Confluence Checking. Table 1 shows our experimental results for checking whether
a given graph reduction system induced by an HRG is confluent. As noted in the
previous section, Attestor checks for each critical pair whether it is strongly-
joinable, weakly joinable or not joinable at all. To conclude that a graph grammar
is confluent (and thus mark it with 3), all critical pairs must be strongly join-
able. Furthermore, we measured the time for computing overlappings of nodes,
overlappings of edges, a validity check for possibly spurious pairs (we discard
graphs that do not model heaps and thus cannot appear in our setting) as well
as the total runtime. Starting the java virtual machine and parsing the grammar
took 0.9s CPU time and was thus dominant for small examples.

The HRGs InTree [15] and InTreeLinked generate “in-trees”, i.e., binary
trees in which the direction of edges is inverted such that child nodes point
to their parent. InTreeLinked additionally connects all leaves of the in-tree
from left to right via a singly-linked list. It is noteworthy that—despite having
more than twice as many rules—Attestor managed to prove confluence for
InTreeLinked faster than determining all critical pairs that are not strongly
joinable for InTree. One possibe explanation is that the different edge labels (for
the left and right child as well as the successor in the list) used by InTreeLinked

reduce the number of edge overlappings that need to be computed.
The HRGs LinkedTree1 and LinkedTree2 generate binary trees with a given

root, where each node has a back pointer to its parent and all leaves are connected
from left to right. While LinkedTree2, which is taken from [22], consists of only
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Table 2. Completion results (3 if successful, 7 if unsuccessful) for different combina-
tions of completion heuristics. All runtimes are in seconds.

InTree LinkedTree1 LinkedTree2 SimpleDLL DLList

CA 7, 0.003 7, 0.003 7, 0.337 7, <0.001 7, 0.127

RNN 7, 1.538 7, 0.048 7, 55762.111 7, 0.002 7, 533.773
JGN 7, 2.415 7, 0.051 7, 53327.031 7, 0.003 7, 540.818
SNR 7, 1.576 7, 0.048 7, 55341.839 3, 0.006 7, 526.315
OR 7, 1.640 7, 0.046 7, 55018.761 3, 0.004 7, 527.410
ORL 7, 0.847 7, 0.213 7, 31075.274 7, 0.004 7, 362.976
A1 7, 1.570 3, 0.049 3, 55042.314 3, 0.004 7, 392.728
A1L 7, 1.175 3, 0.203 7, 27297.678 7, 0.004 7, 258.643
A2 3, 0.333 3, 0.024 3, 12.405 3, 0.004 7, 26.421

A2L 7, 0.838 3, 0.038 7, 27053.035 7, 0.004 7, 261.090

two rules with up to 7 nodes and 7 hyperedges (of rank at most 4), it turned
out to be quite complex, leading to a large number of possible non-joinable
critical pairs. LinkedTree1 is an early attempt to turn a simplified version of
LinkedTree2 into an HRG that induces a confluent GRS.

The HRG BT [3] generates binary trees with a given root that has been
handcrafted for verifying tree traversal algorithms. Ensuring confluence required
two different nonterminal symbols and fourteen rules in total. Similarly, SLList
is a handcrafted grammar modeling singly-linked lists.

SimpleDLL and DLL generate doubly-linked lists. The former version only ad-
mits list traversals from left to right whereas the latter version admits traversals
in both directions. Both HRGs do not induce confluent GRSs. This surprised us
as DLL has been successfully applied for analyzing pointer programs [2]. While
confluence is not required for the soundness of such program analyses, non-
confluence typically leads to performance penalties. Upon closer inspection, we
discovered that the list-manipulating programs analyzed in [2] with these gram-
mars did not lead to states containing a non-joinable critical pair.

Completion. We applied our confluence completion procedure to the non-confluent
grammars shown in Table 1, i.e., InTree, LinkedTree1, LinkedTree2, SimpleDLL
and DLList. The results of our tests are given in Table 2.

CA adds application conditions to rule out some non-joinable critical pairs;
RNN introduces new nonterminals to join critical pairs. Moreover, JGN and SNR

extend RNN by joining or using existing nonterminals. The remaining heuristics
combine subsets of the above heuristics in different order (details are found in
[10,26]). We require that heuristics ending with ’L’ preserve local concretizability—
a property ensuring that those parts of the heap that can be manipulated by
one program instruction are obtainable using a single rule application (cf. [16]).

We observe that combining heuristics increases the chance to successfully
complete a grammar, as is the case for InTree, LinkedTree1 and LinkedTree2.
Moreover, enforcing local concretizability can both increase runtime (see A2

vs. A2L), but also affect the completion result (see InTree, LinkedTree2, and
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SimpleDLL). For complex grammars, such LinkedTree2, completion is expen-
sive, which prohibits its usage with every invocation of Attestor. In such
cases, it is preferable to perform completion as a preprocessing step and store
the completed grammar for re-use.

4 Conclusion

We presented a tool for checking backward confluence of (certain) attributed hy-
peredge replacement grammars. The tool is implemented as a component of the
graph-based software model checker Attestor but can also be used stand-alone.
Within Attestor, checking for backward confluence of user-supplied grammars
did not lead to substantial performance penalties. However, it did improve the
overall verification pipeline in at least two aspects: First, incompleteness issues,
i.e., failed verification attempts of correct programs; our tool enables detecting
such issues before running an expensive state space generation. Second, rather
than manually inspecting thousands of graphs in a generated state space, our
tool creates a counterexample to backward confluence that allows fixing the
supplied grammar.

Furthermore, we implemented a heuristics-driven algorithm that attempts
to turn a given HRG into a backward confluent one. Although this algorithm
is expensive, it can be run independently of the actual verification pipeline; if
completion succeeds, the resulting grammar can be exported for future use.

A possible future improvement of our tool’s performance is to detect and
omit critical pairs that are not relevant for Attestor’s state space generation.
Such an approach would amount to proving confluence up to garbage [6].
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11. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer (2002)

12. Heinen, J., Jansen, C., Katoen, J.P., Noll, T.: Verifying pointer programs using
graph grammars. Science of Computer Programming 97(1), 157–162 (2015)

13. Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation.
RAIRO Theor. Informatics Appl. 25, 445–472 (1991)

14. Hristakiev, I., Plump, D.: Checking graph programs for confluence. In: STAF 2017.
LNCS, vol. 10748, pp. 92–108. Springer (2018)

15. Jansen, C.: Static Analysis of Pointer Programs - Linking Graph Grammars and
Separation Logic. Ph.D. thesis, RWTH Aachen University, Germany (2017)

16. Jansen, C., Heinen, J., Katoen, J.P., Noll, T.: A local greibach normal form for
hyperedge replacement grammars. In: LATA. pp. 323–335. Springer, Berlin (2011)

17. Knuth, D., Bendix, P.: Simple word problems in universal algebra. Computational
Problems in Abstract Algebra pp. 263––297 (1970)
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