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Abstract

This work aims at relating the methodologies Spec] and JML rely on by defining a
semantics-preserving translation scheme between Spec] and JML. This translation shall map
a Spec] program, verifiable in the Spec] methodology, to a semantic equivalent JML program,
verifiable in the JML methodology, and vice versa.

1 Introduction

The Spec] programming system [3] is based on a methodology for specifying and verifying
object-oriented programs. The basics of this sound methodology are described in [2, 4].

The methodology the Java Modeling Language (JML) [1] relies on is built on top of the
Universe Type System. Details of this sound methodology are presented in detail in [6].

Both the Spec] and JML methodologies use object invariants to specify the consistency
of data and an ownership model to organize objects into contexts. The two methodologies
differ, however, in several respects. The Spec] methodology leverages a program’s hierarchy of
abstractions. For this purpose, the methodology tracks ownership relations, dynamically, by
means of ghost fields, invariants, and new program statements (pack and unpack). Unlike
Spec]’s methodology, the methodology JML is based on uses the Universe Type System to
statically enforce the ownership model.

In the Spec] methodology, one can reason separately about the object invariants declared in
different subclasses. In JML, this is, however, not possible. That is because in JML an object
is either in a state where all its invariants, i.e., also the invariants declared in subclasses, are
known to hold or in a state where all the invariants are allowed to be violated.

The two methodologies also differ with the respect to the definitions of legal assignments
and admissible invariants. Thus, assignments allowed in the Spec] methodology are not legal in
the JML methodology and vice versa. Similarly, invariants permitted in the JML methodology
are not admissible in the Spec] methodology and vice versa.

The goal of this work is to relate the two methodologies by defining a semantics-preserving
translation scheme between Spec] and JML. This translation is supposed to map a Spec] pro-
gram, verifiable in the Spec] methodology, into a semantic equivalent JML program, verifiable
in the JML methodology, and vice versa. Such a translation scheme is, for example, useful as it
can enable carrying any progress in one methodology into the other methodology.

Throughout this work, to simplify the exposition, we make the following assumptions:



• Routines have only one parameter besides the this receiver.

• Expressions do not have side effects.

• Routines’ bodies consist of assignments and method calls only.

• Classes have a single constructor.

• Constructors do not call methods except for the implicit call of the direct superclass
constructor.

• There are no constant field accesses.

Outline The rest of this work is organized as follows. Section 2 defines translation schemes,
from Spec] to JML and vice versa, for restricted methodologies that consider only individual
objects. Translation schemes for extended methodologies that reason about aggregate objects
are defined in Sections 3 and 4. Thus, the translation schemes for the methodologies that can
check ownership-based invariants are described in Section 3, while schemes for the methodologies
that can reason about visibility-based invariants are presented in Section 4.

2 Invariants of single objects

2.1 From Spec] to JML

Task Given a Spec] program whose executions are legitimate in Spec], we want to translate
it (without changing its behavior) to a JML program whose executions are legitimate in JML.

2.1.1 Considered Spec] subset

[inv ’s restrictions] The field inv cannot be mentioned in invariants and cannot be directly
updated. It can only be read in method preconditions and postconditions.

Definition 1 Let T and S be two classes such that S is the direct superclass of T. The statements
pack and unpack are defined as follows:

pack o as T ≡
assert o 6= null ∧ o.inv = S
assert InvT (o)
o.inv := T

unpack o from T ≡
assert o 6= null ∧ o.inv = T
o.inv := S

[Constructors] Every constructor has the postcondition

inv = T

where T is the class of the constructor.
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Definition 2 (Legal assignment) If f is declared in class T, then the assignment o.f = exp is
legal iff T < o.inv.

Definition 3 (Admissible invariant) An invariant in a class T is admissible iff each of its
access expressions is of the form this.f, where f is a field of T (not necessarily declared by T).

Definition 4 (Legitimate Spec] program execution) In the Spec] methodology, a program
execution is legitimate iff each of the program’s assert statements succeeds at run-time.

2.1.2 Considered JML subset

Definition 5 (Legal assignment) Every assignment o.f = exp is legal.

Definition 6 (Admissible invariant) An invariant in a class T is admissible iff each of its
access expressions is of the form this.f, where f is a field declared by T.

Definition 7 (Legitimate JML program execution) A program execution is legitimate iff
each of its objects satisfies its invariant in each visible state.

2.1.3 Translation

Idea We consider in class Object a ghost type-valued field. More precisely, we assume that
Object declares an instance field inv of type Type.

Subset of Spec] We can only consider a subset of Spec] programs. Let us denote by Spec]S
this subset. Given the definition of JML admissible invariants (Definition 6), Spec]S only allows
admissible invariants which refer to fields declared by the enclosing class.

Definition 8 (Translation) The translation function Tr is defined as follows:

Tr (pack o as T) ≡ set o.inv = T

Tr (unpack o from T) ≡ set o.inv = S

If InvT is the invariant of a class T, then

Tr(InvT ) ≡ (inv ≤ T) → InvT

For all the other program constructs, Tr is the identity.

2.1.4 Translation’s correctness

The following lemma allows one to omit the assert statements in the translation of the pack
and unpack statements.

Lemma 1 Let P, S, σ, and σ′ be a Spec] program, a program statement, and two program

states, respectively. If P ` σ
S−→ σ′, then Tr(P) ` σ

Tr(S)−→ σ′.
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Proof. The proof runs by induction on the shape of the derivation tree for P ` σ
S−→ σ′. ut

Theorem 1 Let P be a Spec]S program. Assume that P has legal assignments, admissible
invariants, and legitimate Spec] executions. Then, Tr(P) is a JML program with legal assign-
ments, admissible invariants, and legitimate executions.

Proof. Tr(P) has legal assignments since every Spec] legal assignment is, according to Defi-
nition 5, a JML legal assignment. Moreover, the invariants of Tr(P) are admissible since the
corresponding invariants in Spec]S are admissible and the inv fields used in the invariants are
declared by the enclosing classes.

We now want to show that every execution of Tr(P) is legitimate. To do that, we prove that
for every object o and for every type T such that o is of type T , the following property holds
in every state (not necessarily visible) of Tr(P):

(o.inv ≤ T ) → InvT (o) (1)

The proof runs by induction over the sequence of program states.

Object creation: upon creating an object o, o.inv = Object. This implies that (1) is preserved
as Object’s invariant defaults to true.

Field assignment : Let o ′.f = exp be an assignment. Let us assume that this assignment affects
an invariant InvT (o), where o is of type T . Such an assignment can affect InvT (o) if and only
if o ′ = o and InvT refers to this.f . According to Definition 2, the above assignment has the
following precondition in Spec]S : T ′ < o ′.inv , where T ′ is the class which declares f . As f is a
field of o and o is of type T , we have T ≤ T ′ (otherwise o.f cannot be type-checked). By this
and T ′ < o ′.inv , we get T < o.inv . This, however, implies that the invariant of class T for o,
i.e., (o.inv ≤ T ) → InvT (o), holds (since the right side of the implication evaluates to false).
So, the property (1) is preserved.

The set statement :

• set statement resulted upon translating a Spec] pack statement: pack o as T .

Such a set statement changes only the inv field of o. As InvT is not allowed to refer to any
inv fields, the value of InvT (o) cannot be changed by this set statement. On the other
hand, InvT (o) holds in the current execution of Tr(P) since, by Lemma 1, it holds in the
corresponding execution of P. As the value of InvT (o) cannot be changed, it means that
InvT (o) is true also after the set statement, and consequently, (o.inv ≤ T ) → InvT (o)
holds. So, (1) is preserved.

• set statement resulted upon translating an Spec] unpack statement: unpack o from
T .

Similarly as in the above case, the set statement changes only the inv field of o. As
discussed above, the value of InvT (o) cannot be changed. On the other hand, the value
of o.inv is changed to the direct superclass of the class pointed to by o.inv before the set
statement. By Lemma 1, o.inv is T in the current execution of Tr(P) as that is case in the
corresponding execution of P. Consequently, the truth value of o.inv ≤ T might change,
but only from true to false. So, (o.inv ≤ T ) → InvT (o) is true. Hence, (1) is preserved.

ut
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2.2 From JML to Spec]

Task Given a JML program whose executions are legitimate in JML, we want to translate it
(without changing its behavior) to a Spec] program whose executions are legitimate in Spec].
In particular, we translate a source program that implicitly uses visible state semantics to a
program that checks and uses visible state semantics explicitly.

2.2.1 Considered JML subset

The only difference with respect to the JML subset considered in Section 2.1.2 is concerning
legal assignments:

Definition 9 (Legal assignment) An assignment o.f = exp is legal iff o = this.

2.2.2 Considered Spec] subset

The considered subset is the same as the one defined in Section 2.1.1.

2.2.3 Translation

Definition 10 (Fully Pack and Unpack) For a type T and an object o whose allocated type,
type(o), is a subclass of the classes T1, . . . ,Tn and Object, where type(o) <: T1 <: . . . <: Tn <:
Object, the statements fullyunpack o and fullypack o at T are defined as follows:

fullyunpack o ≡
unpack o from type(o)
unpack o from T1

...
unpack o from Tn

fullypack o at T ≡
pack o as Tn

pack o as Tn−1
...

pack o as T
o.inv := type(o)

Definition 11 (Translation) A method m declared in class T is translated as follows:

Tr (
m(S x) {

Body
}

)

≡

m(S x)
requires ∀ o • o.inv = type(o)
ensures ∀ o • o.inv = type(o)
{

fullyunpack this
Tr (Body)
fullypack this at T

}
}

The declaration of the constructor in class T is translated as follows:
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Tr (
T(S x) {

Body
}

)

≡

T(S x)
requires ∀o | o 6= this • o.inv = type(o)
ensures this.inv = T ∧ ∀o | o 6= this • o.inv = type(o)
{

Tr (Body)
pack this as T

}

A method call o.m() in a class T is translated as follows:

Tr (
o.m(x)

)
≡

fullypack this at T
o.m(x)
fullyunpack this

2.2.4 Discussion

Constructor’s postcondition The constructors are required to build consistent objects.
Therefore, the constructor of a class T should have the postcondition inv = T . To guarantee
this postcondition, a pack statement is inserted just before the constructor returns.

Legal assignments A JML legal assignment is any assignment to this, whereas a Spec] legal
assignment is every assignment to sufficiently unpacked objects. Given these definitions, one
has to sufficiently unpack the JML’s this receiver (before assigning to it) as opposed to simply
unpack it. If this.inv is T upon entering a T ’s method and one simply unpack this (before
assigning to it), then every assignment to this.f in T , with f declared by a T ’s superclass,
would be illegal in Spec].

Let m be a JML method declared by a type T . Method m can assign to fields of this declared
in different classes (T or T ’s superclasses). Therefore, this should be unpacked sufficiently
enough to make legal all the assignments to this. For that, this.inv could just be set to the
first class (in the type hierarchy) above the highest class which declares a field m assigns to. To
simplify the exposition, we set this.inv to the topmost type of the type hierarchy, i.e., Object.

Virtual methods Without introducing the statements fullypack and fullyunpack, the
precondition inv = 1 for virtual methods, proposed as default by Barnett et al. [2], would not
always work. Let us consider the Spec] example in Figure 1.

Upon entering Super :: foo, one can assume that this.inv is Super . For the virtual call
to bar , Super :: foo needs to ensure this.inv = type(this). Obviously, this precondition does
not hold in our example (it would hold if and only if class Super was sealed). Note that
a simple pack-ing of this upon entering Super :: foo does not help since type(this) is not
necessarily Sub: for example, this.inv could be a proper subclass of Sub that implements
Super :: foo by calling the implementation of foo in Sub. As type(this) is not known at the time
of the virtual call bar(), the number of pack statements needed to modify this.inv from Super
to type(this) is not known either. However, this brings up again the necessity of introducing
the fullypack statement.

If Super :: foo updates inherited fields before the call to bar , then this would have to be
sufficiently unpacked at the beginning of Super :: foo. As the updated fields can be declared
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Figure 1 Virtual methods with precondition inv = 1.

class Super {
virtual foo()

requires inv = 1 {
bar ();

}

virtual bar()
requires inv = 1 {}

}

class Sub : Super {
foo()

requires inv = Sub {
unpack this from Sub
base.foo();
pack this as Sub

}

bar()
requires inv = Sub {}

}

by any of Super ’s superclasses, this would have to be fully unpacked. Thus, a fullyunpack
statement would have to be inserted.

In the context of virtual methods having the precondition inv = 1, supercalls become prob-
lematic. When an implementation of a virtual method is invoked through a supercall, the this
object is not in a consistent state. That means that although all the invariants for this hold
in the JML source program, the Spec] methodology cannot ensure the same property for the
corresponding Spec] program. This downside could, however, be fixed through our translation,
namely by inserting before every supercall an assert statement that checks the invariant of the
enclosing class. In our example, as this.inv is Super at the time of the call base.foo(), the
statement assert InvSub(this) could be inserted just before the supercall.

Hence, setting the precondition inv = 1 for virtual methods would still require the statements
fullypack and fullyunpack. As such a precondition would also necessitate the asserts before
several supercalls, we have decided to set the precondition ∀o • o.inv = type(o) also for virtual
methods.

Modular verification The statement fullypack o cannot be defined exactly in the same
way as the statement fullyunpack o, that is as a sequence of statements pack o as T i ,
i = n..1 . Such a definition would be problematic for modular verification. Such a fullypack
statement, invoked, for example, with the this object in a method m of a class T , has to
check, in particular, the invariants of all T ’s strict subclasses from T to type(this). Checking
these invariants requires possessing information about them. This yields, however, a problem
in modular verification. This downside does not, however, show up in the Spec] programs
generated by our translation. That is because, according to Definition 6, the JML admissible
invariants are only allowed to depend on fields declared by the enclosing class. This means
that, in the resulting Spec] programs, the inherited fields are never referred to in invariants.
In the Spec] methodology, this would be equivalent with assuming that every field is non-
additive. So, the method m cannot modify the invariants of T ’s strict subclasses. Therefore,
the fullypack statement does not need to check these invariants. Consequently, a statement
fullypack o at T comprises only pack statements from T n to T (see Definition 10). Note
that fullypack o sets this.inv directly as opposed to set it via pack statements.

Translation’s naturalness Although the translation scheme requires the introduction of the
statements fullypack and fullyunpack, we think that the translation is natural in the sense
that the Spec] programs generated by the translation are verified through the Spec] methodology
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along the lines the JML source program is verified with the JML methodology. Thus, the JML
this object is fully exposed between visible states, so is the corresponding Spec] this object as
a result of applying fullyunpack and fullypack. Moreover, the invariants of all the enclosing
class’ superclasses are checked for the JML this object when passing to a new visible state, so
are the corresponding invariants for the Spec] this object upon invoking fullypack. In this
sense, the method precondition ∀ o • o.inv = type(o) prescribed by the translation explicitly
expresses the implicit JML visible state semantics.

2.2.5 Translation’s correctness

Lemma 2 Let m be a method in a JML program. In Tr(m), this.inv is Object before and
after the execution of every m’s statement other than a method call.

Proof. By induction on number of the visible states of the execution. ut

Theorem 2 Let P be a JML program. If P has legal assignments, admissible invariants and
legitimate JML executions, then Tr(P) is a Spec] program with legal assignments, admissible
invariants, and legitimate executions.

Proof. Based on Tr ’s definition for method declarations (Definition 11), every legal JML as-
signment in P is, in particular, a legal Spec] assignment in Tr(P). This is because in Tr(P),
every assignment occurs between a fullyunpack and a fullypack. So, by Lemma 2, it occurs
when this.inv is Object. Consequently, an arbitrary assignment to this.f is legal according to
Definition 2 since T < Object, where T is the class which declares the field f .
Every JML admissible invariant (Definition 6) is, in particular, a Spec] admissible invariant
(Definition 3).

To conclude the proof, we show that the following two properties hold for an arbitrary execution
of Tr(P):

(P1) the execution is legitimate in Spec] according to Definition 4, i.e., the asserts prescribed
by the unpack and pack statements do not fail at run-time;

(P2) the precondition and postcondition of every method called in the given execution of Tr(P)
are ensured;

These properties can be simultaneously proved by induction on the executions’ length, i.e., the
number of visible states of these executions.

The base case: the execution has a single state, i.e., the initial state. This state can only
be the prestate of a constructor’s execution. As this state does not involve any unpack or
pack statements, (P1) obviously holds. Also, (P2) is satisfied since the constructor has no
precondition.

The induction step: we assume that the properties (P1) and (P2) are satisfied in executions of
length strictly less than n. Without losing generality, one may assume that there is a method m
such that the nth visible state is either m’s poststate or the prestate of a method, say m ′,
called by m. As the proofs of both cases are similar, we only treat here the second one. Let
T be the class of m. According to our translation scheme, between the (n-1)th state and the
nth state, the only executed pack and unpack statements are those within the fullypack
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operation inserted just before m calls m ′ and the fullyunpack operation executed when m ′

starts executing, respectively.
The asserts imposed by the pack operations within fullypack this, where this is the receiver
object of m, do not fail at run-time since

• by Lemma 2, this.inv is Object before fullypack this, and

• the invariants of the (not necessarily proper) superclasses of T checked by the pack oper-
ations hold by the visible state semantics of the JML source program (Definition 7).

Moreover, the precondition of m ′, i.e., ∀ o • o.inv = type(o), is ensured by m since

• the this object of m is the only object whose inv field can be modified between the (n-1)th
state and the nth state, and

• this.inv is updated to type(this) by the statement fullypack this.

The asserts prescribed by the unpack operations within fullyunpack this, where this is
the receiver object of m ′, do not fail at run-time since, by the precondition of m ′, this.inv is
type(this) before fullyunpack this.

We also need to prove the following properties:

• the asserts prescribed by the pack at the end of every constructor succeeds;

• the postcondition of every constructor is guaranteed;

The second property follows immediately from the first one.
Let us consider the constructor of a class T . The assert checking the value of this.inv succeeds
since this.inv = S , where S is the direct superclass of T . This can be easily proved by induction
over the ”depth” of S in the subtyping hierarchy, where the following fact is used: in JML,
it is ensured that every constructor (implicitly or explicitly) calls its superclass constructor.
Moreover, the assert testing the invariant of T does not fail since InvT (this) holds by the
visible state semantics of the JML source program (Definition 7). ut

3 Object structures

3.1 From Spec] to JML

3.1.1 Considered Spec] subset

For an object p, p.owner .obj and p.owner .typ denote p’s owning object and the class of the
owning object that induces the ownership, respectively. More exactly, if p.owner = [o,T ], then
p.owner .obj = o and p.owner .typ = T .

The methodology described in [2, 4] uses a special boolean field, committed , to indicate
whether the object is committed. According to this methodology, if p.owner = [o,T ], then
p.committed if and only if o.inv ≤ T . By using the components obj and typ, this definition
becomes as follows:
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p.committed :⇐⇒ p.owner .obj .inv ≤ p.owner .typ

As the field committed can be expressed in terms of inv and owner , the methodology we present
here omits it.

[Constructors] Every constructor has the postcondition

inv = T ∧ owner .typ < owner .obj .inv

where T is the class of the constructor.
To ensure that every assignment from the considered Spec] subset is legal in JML, we only

consider Spec] legal assignments that assign to fields of this.

Definition 12 (Legal assignment) If f is declared in class T, then the assignment o.f = exp
is legal iff T < o.inv and o = this.

Definition 13 Let T and S be two classes such that S is the direct superclass of T. The state-
ments pack and unpack are defined as follows:

pack o as T ≡
assert o 6= null ∧ o.inv = S
assert InvT (o)
assert (∀p | p.owner = [o,T] • p.inv = type(p))
o.inv := T

unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ o.owner.typ < o.owner.obj.inv
o.inv := S

To ensure that the Spec] invariants are mapped into admissible JML invariants, the only
accesses to this’s fields that we consider in the Spec] admissible expressions are those for which
the field is declared by the enclosing class.

Definition 14 (Ownership admissible invariant) An invariant in a class T is ownership
admissible iff each of its access expressions is of one of the following forms:

• this.f, where f is a field declared by T;

• this.g0 . . . gn .f, where g0 is declared by T and (gi)ni=0 are rep fields.

Assumption The Spec] subset we consider here does not include the transfer statement.
This is because the Spec] programs that perform ownership transfer cannot be translated to
JML as the JML’s ownership graphs are immutable.

Future work An extension of the JML’s Universe Type System that supports ownership
transfer has been proposed in [5]. Potential future work includes defining a translation scheme
that maps the Spec] transfer statement in the JML set that supports ownership transfer.
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3.1.2 Considered JML subset

Assumption To ensure the subclass separation principle, according [6], the rep fields should
be declared private.

Future work Relaxing the above restriction on rep fields is part of future work. This could
be achieved, for example, by defining owners as pairs consisting of an object reference and a
class name.

Definition 15 (Legal assignment) An assignment o.f = exp is legal iff o = this.

The Universe Type System the JML methodology is based on enforces several typing con-
straints (see [6]). We assume all these constraints. In particular, we assume the following
properties (Figure 6 and Corollary 5.2 in [6]):
[Legal field access] A field access o.f appearing in a method m is legal iff one of the following
conditions is satisfied:

• o’s type is a peer type and f ’s type is not a rep type, or

• o is m’s receiver and f ’s type is a rep type, or

• o’s type is a rep type and f ’s type is not a rep type.

The type constraints imposed by the Universe Type System restrict the set of allowed method
calls:
[Legal method call] A method m can only call methods on a rep or peer object of m’s
receiver object.

Definition 16 (Ownership admissible expression) An access expression this.g0 . . . gn ap-
pearing in a class T is ownership admissible if g0 is declared by T and

• n = 0, or

• n > 0 and g0 is declared as a rep field.

Definition 17 (Ownership admissible invariant) An invariant in a class T is ownership
admissible iff each of its access expressions is ownership admissible.

Definition 18 (Relevant object) An object o is relevant to the execution of a method m iff
o is inside the context in which m executes.

Definition 19 (Legitimate JML program execution) A program execution is legitimate
iff for each execution of a method m and for each object o relevant to m’s execution, o satisfies
its invariant in the prestate and poststate of m’s execution.
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3.1.3 Translation

[Idea] Consider in class Object the ghost fields inv and owner of declared type Type and
Object, respectively.

We assume that every Spec] rep field is declared private. Moreover, to ensure that the
translated Spec] expressions are legal in JML, we impose that they are typeable in the JML’s
Universe Type System.

Definition 20 (Translation) The pack and unpack statements are translated as follows:

Tr (pack o as T) ≡ set o.inv = T

Tr (unpack o from T) ≡ set o.inv = S

If InvT is the invariant of a class T, then

Tr(InvT ) ≡ (inv ≤ T) → (InvT ∧ ∀o′ | o′.owner = [this,T] • o′.inv = type(o′))

The translation of a Spec] invariant essentially represents the inlining of the program invari-
ants defined in [4].

3.1.4 Translation’s correctness

Theorem 3 Let P be a Spec] program. Assume that P has legal assignments, admissible in-
variants, and legitimate Spec] executions. Then, Tr(P) is a JML program that is type correct
in the Universe Type System and has legal assignments, admissible invariants, and legitimate
executions.

Proof. Every assignment in Tr(P) is legal as we have considered Spec] programs which assign
to this only (Definition 12). Moreover, Tr(P) has admissible invariants since every Spec]
ownership admissible expression is, in particular, a JML ownership admissible expression.
Based on legitimateness of P’s executions, we want to prove now that every execution of Tr(P)
is legitimate. For this, we show that for every object o and every type T such that o is of
type T , the property

(o.inv ≤ T ) → (InvT (o) ∧ ∀o ′ | o ′.owner = [o,T ] • o ′.inv = type(o ′)) (2)

is satisfied in every state of Tr(P), in particular in every visible state. The proof runs by
induction over the sequence of program states.

Object creation: upon creating an object o, o.inv = Object. This implies that (2) is preserved
since Object’s invariant defaults to true and there is no object o owns.

Field assignment : Let o ′.f = exp be a (legal) assignment, where field f is declared by a class F .
Let us consider the effect of this assignment on an invariant InvT (o) for some o of type T (note
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that the formula ∀o ′ | o ′.owner = [o,T ] • o ′.inv = type(o ′) cannot be affected by our field
assignment). We would like to show that if InvT (o) refers to the object pointed by o ′.f , then o is
sufficiently unpacked, i.e., T < o.inv . Following the definition of Spec] admissible expressions,
we analyze the following cases:

1. InvT refers to this.f and o ′ = o. As the assignment o ′.f = exp is legal in Spec],
F < o ′.inv = o.inv . Class T is a subclass of F since the expression o ′.f should typecheck.
Consequently, T < o.inv .

2. InvT refers to this.g0 . . . gn .f , where g i , i = 0..n are rep fields, and o.g0 . . . gn = o ′. As
the Spec] assignment to o ′ is legal, F < o ′.inv . So, o ′ is not consistent. By the definition
of unpack, o.g0 . . . gn−1 is not consistent either. This argument can be inductively applied
to derive that o.g0 is not consistent. By the unpack’s definition, the owner of o.g0, i.e.,
o, should be unpacked beyond the owner type, i.e., the type of the rep field g0. That
means S < o.inv , where S is the class that declares g0. For o.g0 to typecheck, S should
be a (not necessarily proper) subclass of T : T ≤ S . Consequently, T < o.inv .

The set statement :

• set statement resulted upon translating a Spec] pack statement: pack o as T .

This set statement can only change the inv field of o. As the inv fields are not allowed
to appear in invariants, the value of InvT (o) cannot be changed. Note that in the cor-
responding P’s execution, InvT (o) holds since the execution is legitimate and InvT (o) is
ensured through an assert. By Lemma 1, InvT (o) shall also hold in the given execution
of Tr(P).

We also have to show that (2) holds for the owner of o. If o ′ and S are such that o.owner
= [o’,S ], then

(o ′.inv ≤ S ) → (InvS (o ′) ∧ ∀o ′′ | o ′′.owner = [o ′′,S ] • o ′′.inv = type(o ′′))

holds even if o.inv has been modified. The above formula holds since S < o ′.inv . This
is because, according to the definition of the unpack statements (our pack statement is
necessarily preceded by an unpack statement), the owner object shall be unpacked beyond
the owning type: in our case, o.owner .typ < o.owner .obj .inv .

• set statement obtained upon translating a Spec] unpack statement: unpack o from T .

Like in the above case, the set statement can only change o’s inv field. As discussed
above, the truth value of InvT (o) cannot be changed. By Lemma 1, o.inv is T before the
set statement. This statement updates o.inv to T ’s direct superclass. This means that
the truth value of o.inv is changed from true to false. So, (2) is preserved.

Similarly as in the case of the pack statement, (2) can be proved to hold for o’s owner as
the owner is necessarily unpacked beyond the owning type of o.

This concludes the proof.
ut
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3.2 From JML to Spec]

3.2.1 Considered Spec] subset

The only difference with respect to the Spec] subset considered in Section 3.1.1 is concerning
the ownership admissible invariant:

Definition 21 (Ownership admissible invariant) An invariant in a class T is ownership
admissible iff each of its access expressions is of one of the following forms:

• this.f, where f is a field declared by T or T’s superclasses;

• this.g0 . . . gn .f, where (gi)ni=0 are rep fields.

3.2.2 Considered JML subset

The considered subset is the same as the one defined in Section 3.1.2.

3.2.3 Translation

Definition 22 (Peers) For two objects o and o′, we define arePeers(o, o′) as follows:

arePeers(o, o′) = ∃q,T,T ′ • o.owner = [q,T] ∧ o′.owner = [q,T ′]

Definition 23 (Translation) A type T which declares the peer fields g0, . . . , gn is translated
as follows:

Tr (
T {

peer T0 g0;
...
peer Tn gn ;
...
RoutineDeclarations

}
)

≡

T {
T0 g0;
...
Tn gn ;
invariant ∀i = 0,n • this.gi .owner = this.owner
...
Tr(RoutineDeclarations)

}

The declaration of a method m in class T is translated as follows:

Tr (
m(S x) {

Body
}

)

≡

m(S x)
requires (this.owner.typ < this.owner.obj.inv) ∧

∀o | arePeers(o, this) • o.inv = type(o)
ensures (this.owner.typ < this.owner.obj.inv) ∧

∀o | arePeers(o, this) • o.inv = type(o)
{

fullyunpack this
Tr (Body)
fullypack this at T

}
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The declaration of the constructor in class T is translated as follows:

Tr (
T(S x) {

Body
}

)

≡

T(S x)
requires ∀o | o 6= this ∧ arePeers(this, o) • o.inv = type(o)
ensures (this.owner.typ < this.owner.obj.inv) ∧

this.inv = T ∧
∀o | o 6= this ∧ arePeers(this, o) • o.inv = type(o)

{
Tr (Body)
pack this as T

}

A method call o.m(x) appearing in class T is translated as follows:

Tr (
o.m(x)

)
≡

if arePeers(o, this) then
fullypack this at T

o.m(x)
if arePeers(o, this) then

fullyunpack this

3.2.4 Translation’s correctness

The following lemma is an immediate consequence of Definition 22:

Lemma 3 If arePeers(o, o′) and arePeers(o′, o′′), then arePeers(o, o′′).

The property claimed by the following lemma is a consequence of the Spec] methodology
(more exactly, of the definitions of pack and unpack) and not of translation Tr .

Lemma 4 Given a JML program P, the following property is a program invariant in Tr(P):

∀o, o′ • [arePeers(o, o′) → [(o.owner.typ < o.owner.obj.inv) ↔ (o′.owner.typ < o′.owner.obj.inv)]]

Proof. By arePeers(o, o ′), we get

o.owner .obj = o ′.owner .obj

The proof runs by induction on the execution’s length. ut

The definition of the translation scheme Tr enforces the following lemma.

Lemma 5 Let m be a method in a JML program. When executing Tr(m), the following prop-
erties hold before and after every m’s statement that is not a method call:

(1) this.owner.typ < this.owner.obj.inv

(2) this.inv = Object

15



(3) ∀o • [∃T • (o.owner = [this,T]) → (o.inv = type(o))]

(4) ∀o • [(o 6= this ∧ arePeers(o, this)) → (o.inv = type(o))]

Proof. The proof runs by induction on the execution’s length. ut

Theorem 4 Let P be a JML program that is type correct in the Universe Type System. If P has
legal assignments, admissible invariants and legitimate JML executions, then Tr(P) is a Spec]
program with legal assignments, admissible invariants, and legitimate executions.

Proof. Every JML legal assignment in P is, in particular, a Spec] legal assignment in Tr(P).
This is since in Tr(P), every assignment to this occurs between a fullyunpack this and
a fullypack this statement. So, by property (2) in Lemma 5, it occurs when this.inv is
Object. Consequently, an arbitrary assignment to this.f is legal according to Definition 12
since T < Object, where T is the class which declares the field f . Note that T 6= Object as
Object does not declare any fields.

Every JML admissible invariant (Definition 17) is, in particular, a Spec] admissible invariant
(Definition 14). This is since every access expression permitted in a JML admissible invariant
is also allowed in a Spec] admissible invariant. To show that, let us consider the invariant of a
JML type T :

• if this.g0 occurs in the JML invariant, where g0 is declared by T , then this.g0 is also
allowed to appear in the invariant of the corresponding Spec] type.

• if the expression this.g0 . . . gn appears in the JML invariant, where g0 is declared as rep,
then this.g0 . . . gn is also allowed in the invariant of the corresponding Spec] type.

We now prove the following two properties for an arbitrary execution of Tr(P):

(P1) the execution is legitimate in Spec], i.e., the asserts prescribed by the unpack and pack
statements do not fail at run-time;

(P2) the precondition and postcondition of every method called in the given execution of Tr(P)
are ensured;

(P1) and (P2) can be simultaneously proved by induction on the execution’s length.

The base case: the execution has a single state, the initial state. This state can only be
the prestate of a constructor’s execution. As this state does not involve any unpack or pack
statements, (P1) obviously holds. Also, (P2) holds as the constructor’s precondition is satisfied.
This is so since there is no allocated object in this state.

The induction step: we assume that the properties (P1) and (P2) are satisfied in executions
of length strictly less than n. Without losing generality, one assumes there is a method m such
that the nth visible state is either m’s poststate or the prestate of a method m ′ called by m.
Let T be the class of m.

Case 1 : the nth visible state is the prestate of the call to m ′. The call of m ′ is legal in JML iff
the object m ′ is called on, say o, is either a rep or a peer of m’s receiver object.

Case 1.1 : We first assume that o is a rep of m’s this object: so, there exists T ′ such that
o.owner = [this,T ′].
The precondition of m ′ is ensured by m since
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• o.owner .typ < o.owner .obj .inv : this is equivalent with T ′ < this.inv which is a conse-
quence of property (2) in Lemma 5 (note that T ’ cannot be Object).

• o.inv = type(o): this is a consequence of property (4) in Lemma 5 which claims that o is
consistent before the call of m ′.

• o ′.inv = type(o ′) for every o ′ 6= o such that arePeers(o, o ′). In other words, every peer
object of o is consistent. This can be shown as follows. Let us consider an arbitrary
peer o ′ of o. By Definition 22, there exists S , S ′ and q such that o.owner = [q ,S ] and
o ′.owner = [q ,S ′]. On the other hand, o.owner = [this,T ′]. It follows that q is this,
and consequently o ′ is a peer of this. By property (4) in Lemma 5, we get that o ′ is
consistent.

Hence, property (P2) is preserved.

Between the (n-1 )th visible state and nth visible state, there no pack statements and the
only unpack statements are those within the operation fullyunpack o executed upon the
entry of m ′. The asserts prescribed by this fullyunpack do not fail at run-time since, by the
precondition of m ′ (proved to hold above), o.inv = type(o) and o.owner .typ < o.owner .obj .inv .
So, property (P1) is maintained.

Case 1.2 : We now assume that o is a peer of m’s this object: so, there exists o ′, T ′, T ′′ such
that this.owner = [o ′,T ′] and o.owner = [o ′,T ′′].
According to the translation scheme, the only pack and unpack statements executed between
the (n-1)th state and nth state are those prescribed by fullypack this at T executed before
the call of m ′, where this is m’s receiver object, and fullyunpack o executed upon the entry
of m ′.
The asserts imposed by the pack operations within fullypack this at T do not fail at run-time
since

• this.inv = Object: this follows from property (2) in Lemma 5.

• every object owned by this is consistent: this follows from property (4) in Lemma 5.

• the invariant InvS (this) holds for every type S that is a supertype of T . This is a
consequence of the relevant invariant semantics of the JML program P. Note that, by the
subclass separation principle, also the invariants of the subclasses between T and type(o)
hold. However, to allow modular reasoning, these invariants are not checked (through
assert statements).

Moreover, the precondition of m ′ is guaranteed by m since

• o.owner .typ < o.owner .obj .inv : this is a consequence of Lemma 4 and property (1)
in Lemma 5.

• o.inv = type(o): this follows from property (4) in Lemma 5.

• o ′.inv = type(o ′) for every o ′ 6= o such that arePeers(o, o ′). In other words, every peer
of o is consistent. This can be derived from property (4) in Lemma 5 and from the fact
that this becomes consistent after fullypack this is executed.
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The asserts prescribed by the unpack operations within fullyunpack o do not fail at run-time
since, by the precondition of m ′, o.owner .typ < o.owner .obj .inv and o.inv is type(o) (before
fullyunpack this).
So, properties (P1) and (P2) are preserved.

Case 2 : the nth visible state is the poststate of m. Let m ′′ be the method that called m and o
be the receiver object of m ′′. The call of m is legal in JML iff the this object of m is either a
rep or a peer of o.

Case 2.1 : We first assume that this is a rep of o: so, there exists T ′ such that o.owner =
[this,T ′].
According to the translation scheme, the only pack and unpack statements executed between
the (n-1)th state and nth state are those prescribed by fullypack this at T executed upon
exiting m.
The asserts imposed by the pack operations within the above fullypack operation do not fail
at run-time since

• this.inv = Object: this follows from property (2) in Lemma 5.

• every object owned by this is consistent: this follows from property (3) in Lemma 5.

• the invariant InvS (this) hold for every type S that is a supertype of T . This is a conse-
quence of the relevant invariant semantics of the JML program P. Similarly as in Case 1.2,
the invariants of T ’s subclasses are not checked explicitly.

So, (P1) is preserved.
The postcondition of m is ensured since

• this.owner .typ < this.owner .obj .inv : this follows from property (1) in Lemma 5.

• this.inv = type(this): this obviously holds after the execution of fullypack this at T
at the end of m.

• o ′.inv = type(o ′) for every o ′ 6= this such that arePeers(this, o ′). This can be obtained
from property (4) in Lemma 5.

So, property (P2) is maintained.

Case 2.2 : We assume that this is a peer of o. One can prove as above that (P2) is preserved.
According to the translation scheme, the only pack and unpack statements executed between
the (n-1)th state and nth state are those prescribed by fullypack this at T executed upon
exiting m and fullyunpack o executed upon transferring control back to m ′′. Similarly as
in Case 2.1, one can prove that the asserts implied by the fullypack operation succeed at
run-time.
The asserts of fullyunpack o do not fail at run-time since

• o.owner .typ < o.owner .obj .inv : this follows from Lemma 4 and property (1) in Lemma 5.

• o.inv = type(o): this follows from the postcondition of m since o and the this object
of m are peers.

So, the property (P1) is preserved.
This concludes the proof. ut
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4 Visibility-based invariants

4.1 From Spec] to JML

4.1.1 Considered Spec] subset

In addition to the Spec] rep field annotations considered in Section 3, Spec] includes explicitly
peer field annotations to express that the object stored in the peer field and the receiver object
have the same owner.

Definition 24 (Visibility admissible expression) An access expression appearing in a class T
is visibility admissible if it is of the form this.g1 . . . gn .f, where

(1) n = 0, or

(2) g1 is a rep field and each of the fields gi , i = 2,n is a rep or a peer field.

The field f must not be the predefined field inv.

Definition 25 (Visibility admissible invariants) An invariant in a class T is visibility ad-
missible if each of its access expressions is visibility admissible.

Definition 26 (Legal assignment) If f is declared in class T, then the assignment o.f = exp
is legal iff T < o.inv.

4.1.2 Considered JML subset

Definition 27 (Visibility admissible expression) An access expression this.g0 . . . gn ap-
pearing in a class T is visibility admissible if g0 is declared by T and the access expression is of
one of the following forms:

(1) n = 0, or

(2) every field gi , i = 0,n− 1, is a peer field, or

(3) n > 0 and g0 is declared as a rep field.

Remark 1 Unlike the corresponding definition in [6], Definition 27 includes also the case n = 0.
That is to allow expressions of the form this.f, where f is a rep field. As a result, every visibility
admissible expression is, in particular, an ownership admissible expression (see Definition 16).

Definition 28 (Visibility admissible invariants) An invariant in a class T is visibility ad-
missible if each of its access expressions is visibility admissible and if, for each prefix of an access
expression which appears in the invariant and matches form (1) in Definition 27, the invariant
is visible in the class which declares the corresponding field gn .

To simplify the approach, we assume that every module imports all the other modules. That
allows one to omit the visibility notion.

Definition 29 (Legal assignment) An assignment o.f = exp is legal iff o and the this object
of the enclosing method are peers.
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4.1.3 Translation

The idea is the same as in Section 3.1.3, namely to consider in class Object the ghost fields inv
and owner of declared type Type and Object, respectively. The translation Tr eliminates the
dependent and owner -dependent clauses as they are not needed anymore in JML.

Similarly as in Section 3.1.3, we assume that every Spec] rep field is private and every
Spec] expression is typeable in the JML’s Universe Type System.

The translation scheme we are looking for should be defined such that the following theorem
holds:

Theorem 5 Let P be a Spec] program. Assume that P has legal assignments, admissible in-
variants, and legitimate Spec] executions. Then, Tr(P) is a JML program that is type correct
in the Universe Type System and has legal assignments, admissible invariants, and legitimate
executions.

Discussion Concerning the proof of Theorem 5, one can easily show that every admissible
invariant of the Spec] program P (see Definition 25), is, in particular, an admissible invariant
of the JML program Tr(P) (see Definition 28). Moreover, the proof of Tr(P) executions’
legitimateness can be done in the same way as the corresponding proof part of Theorem 3.
However, one open problem is to define (possibly restrict or extend) the sets of legal assignments
specified by Definitions 26 and 29 such that Tr maps the Spec] assignments considered legal
to JML assignments considered legal. The proof obligations imposed by the legal assignments
should, however, preserve the soundness of the JML and Spec] methodologies.

4.2 From JML to Spec]

4.2.1 Considered JML subset

The JML set considered is the same as the one defined in Section 4.1.2.

4.2.2 Considered Spec] subset

Definition 30 (Visibility admissible expression) An access expression appearing in a class T
is visibility admissible if it has one of the following forms:

(1) this.g1 . . . gn .f, where n = 0 or g1 is a rep field and each of the fields gi , i = 2,n is a rep
or a peer field.

(2) this.g1 . . . gn .f, where n ≥ 1, f is different than the field owner, and T appears in f’s
dependent-clause.

(3) this.g1 . . . gn .owner, where n ≥ 1 and T is in an owner-dependent declaration of gn ’s
type.

(4) x.f, where x is bound by a universal quantification of the form

∀T x | x.owner = [this.T ′] • P(x)

and T ′ is a superclass of T. P(x) may refer to the identity and the state of x, but not to
the states of objects referenced by x.

The field f must not be the predefined field inv.
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The definition of visibility admissible invariants is then based on the definition of visibility
admissible expressions presented above.

Definition 31 (Legal assignment) If f is declared in class T, then the assignment o.f = exp
is legal iff

• T < o.inv, and

• for each class T ′ in the dependent-clause of f and for each access expression this.g1 . . . gn .f
of kind (2) in Definition 30 in an invariant declared in T ′:

∀t | t.g1 . . . gn = o • T ′ < t.inv

4.2.3 Translation

Definition 32 (Translation) The declaration of a field f is translated as follows:

Tr (
T f ;

)
≡ T f dependent T1, . . . ,Tn ;

where T1, . . . ,Tn are all the classes whose invariants contain access expressions this.g1 . . . gn .f
of the form (2) in Definition 30.

The declaration of a method m in class T is translated as follows:

Tr (
m(S x) {

Body
}

)

≡

m(S x)
requires this.owner.typ < this.owner.obj.inv ∧

∀o | arePeers(o, this) • o.inv = type(o)
ensures ∀o | arePeers(o, this) • o.inv = type(o) ∧

o.owner.typ < o.owner.obj.inv
{

foreach o with arePeers(o, this) do
fullyunpack o

Tr (Body)
foreach o with arePeers(o, this) do

fullypack o at T
}

The declaration of the constructor in class T is translated as follows:

Tr (
T(S x) {

Body
}

)

≡

T(S x)
requires ∀o | o 6= this ∧ arePeers(this, o) • o.inv = type(o)
ensures this.owner.typ < this.owner.obj.inv ∧

this.inv = T ∧
∀o | o 6= this ∧ arePeers(this, o) • o.inv = type(o)

{
Tr (Body)
pack this as T

}

21



A method call o.m(x) appearing in class T is translated as follows:

Tr (
o.m(x)

)
≡

if arePeers(o, this) then
foreach o′ with arePeers(o′, this) do

fullypack o′ at T
o.m(x)
if arePeers(o, this) then

foreach o′ with arePeers(o′, this) do
fullyunpack o′

4.2.4 Translation’s correctness

Theorem 6 Let P be a JML program that is type correct in the Universe Type System. If P has
legal assignments, admissible invariants and legitimate JML executions, then Tr(P) is a Spec]
program with legal assignments, admissible invariants, and legitimate executions.

Proof. Every JML legal assignment in P is, in particular, a Spec] legal assignment in Tr(P).
Let o.f = exp be an arbitrary legal assignment in P, where field f is declared by a class T . By
Definition 29, we get arePeers(o, this), where this is the receiver object of the method that
contains the assignment. Assuming that type(o) is visible in m, the statement fullyunpack o
is executed before the assignment (see Definition 32). Consequently, o.inv = Object. It then
obviously holds T < o.inv . Let us now assume that there exists a class T ′ in the dependent-
clause of f . Let us consider an arbitrary access expression this.g1 . . . gn .f of kind (2) from
Definition 30 in an invariant declared in T ′ such that t .g1 . . . gn = o. As the fields (g i)ni=1 are
peer fields, t and o are peers, i.e., arePeers(t , o). By this, arePeers(o, this) and Lemma 3,
we get arePeers(o, this). Assuming that type(t) is visible in m, we get that t .inv = Object
upon executing the statement fullyunpack t at the beginning of m (see the translation of a
method declaration). Therefore, T ′ < t .inv . Hence, according to Definition 31, the assignment
o.f = exp is legal in Tr(P).

Every JML admissible invariant (Definition 28) is, in particular, a Spec] admissible invariant
(Definition 25). That is because every visibility admissible access expression in JML is, in
particular, a visibility admissible expression in Spec]. To show that, let us consider an arbitrary
visibility admissible access expression this.g0 . . . gn appearing in the invariant of a JML class T .
By Definition 27, the field g0 is declared by T . We distinguish the following three cases:

• n = 0. The access expression this.g0 is an expression of the form (1) from Definition 30.
Thus, it is visibility admissible in Spec].

• every field (g i)ni=0 is a peer field. By Definition 32, in the resulting Spec] program, class T
will appear in the dependent-clause of field gn . Consequently, the access expression is
visibility admissible in Spec] according to Definition 30 (expression of form (2)).

• n > 0 and g0 is declared as a rep field. In this case, the access expression is in Spec] of
the form (1) in Definition 30. So, the expression is visibility admissible in Spec].

Tr(P) executions’ legitimateness can be proved by induction on the execution’s length. As this
proof is similar to the corresponding proof part from Theorem 4, we omit it here. ut
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