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Abstract

Peer-to-peer systems typically operate in large-scale, highly unreliable and insecure envi-
ronments. Tackling this complexity requires good software design. Yet, many peer-to-peer
systems are developed in an ad-hoc manner, and little has been published about their software
architecture. We studied various academic and open source peer-to-peer systems and identi-
fied design patterns for the overlay network, the key architectural component of a peer-to-peer
system. In this paper, we present a pattern language for overlay networks, consisting of new
patterns as well as adaptations of existing patterns. This language proved highly useful for the
development of our own peer-to-peer system.

Note: This paper covers a whole pattern language rather than an individual pattern. For a
writers’ workshop session, we suggest the patterns Message Verifier and Router.
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1 Introduction

Peer-to-peer systems have gained a lot of popularity due to file sharing applications (e.g.,
Napster, Gnutella, eDonkey, Kazaa), communication applications (e.g, Skype, Jabber, ICQ),
collaboration applications (e.g., Groove Networks), content distribution systems (e.g., BitTor-
rent), and grid computing (e.g., SETI@Home). The term peer-to-peer refers to a decentralized
architecture in which all nodes (computers) have identical capabilities and responsibilities and
all communication is potentially symmetric [1, 2, 3]. Peer-to-peer systems have the unique ad-
vantage of being able to harness idle resources (computation cycles, bandwidth, and storage)
of participating computers at the edge of the Internet. This implies that they typically work
in a large-scale, highly unreliable and insecure environment.

Developing a peer-to-peer system is challenging. While early peer-to-peer applications were
developed rather experimentally, they have attracted a great deal of attention from research
ever since, resulting in a number of ongoing projects at leading universities around the world.
Most efforts have been put into the routing problem: Given a key, find the node that is
responsible for that key. This has led to new structured overlay networks (e.g., Chord [4],
Pastry [5], Tapestry [6], Kademlia [7], CAN [8]), which solve this task efficiently.

So far, research on peer-to-peer systems has mainly focused on system design. However,
the complexity of a peer-to-peer system also requires a sophisticated software design. Yet,
many existing peer-to-peer applications are developed in an ad-hoc manner, and little has been
published about their software architecture. Some design solutions for traditional distributed
systems [9] can be adapted to peer-to-peer systems. However, peer-to-peer systems exhibit
a number of characteristics that are very different from centralized, asymmetric distributed
systems and that must be reflected in the software design. This observation is also supported
by peer-to-peer framework initiatives (such as Sun’s JXTA [10]), which are building higher
abstractions around the core problems of peer-to-peer systems.

Design patterns capture successful solutions to recurring problems and are used both to
document and to improve the design of software systems [11, 12, 13, 14]. In this paper, we de-
scribe patterns for overlay networks, the key architectural component of a peer-to-peer system,
which is responsible for implementing the routing algorithm. To identify the patterns, we in-
vestigated different academic and open-source projects such as FreePastry [15], Tapestry [16],
Bamboo [17], P-Grid [18], a Viceroy implementation [19], JXTA [10], LimeWire [20], jMule
[21], Dijjer [22], OogP2P [23], GISP [24], Azureus [25], JTorrent [26], and Meteor [27]. We also
implemented and improved found design patterns in our own peer-to-peer system.

The contributions of this paper are twofold. First, it presents a complete pattern language
for overlay networks, consisting of simple new patterns as well as adaptations of existing pat-
terns. Second, it suggests several proto-patterns, which have not yet been documented, but
belong to the fundamental building blocks of overlay networks.
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This paper is structured as follows. In Sec. 2, we discuss related work. Sec. 3 provides an
overview over peer-to-peer systems and the overlay network layer as its core building block,
and outlines the basic design issues. The next two sections present our pattern language. We
summarize our pattern language in Sec. 4, and provide a detailed description of the proto-
patterns we suggest in Sec. 5. Finally, we offer some conclusions in Sec. 6.
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2 Related Work

In this section, we discuss related work on the software design of peer-to-peer systems.
To the best of our knowledge, no patterns for peer-to-peer systems have been documented

yet. EuroPLoP 2002 [40] hosted a focus group on patterns in peer-to-peer systems, which
outlined the characteristics of peer-to-peer systems and concluded that new patterns might
be discovered, but that most issues could be solved with well-known patterns for distributed
systems. This workshop did not result in the documentation of new patterns. EuroPLoP 2005
organized a follow-up focus group on peer-to-peer systems, but the results have not been
published yet.

Dabek et al. [41] recognize overlay networks as the key component of most peer-to-peer
systems. They show how different higher-level abstractions such as distributed hash tables,
decentralized object location, and group multicast can be built on top of overlay networks.
These abstractions are in turn the basis for applications such as CFS [34], PAST [35], Scribe
[42], and OceanStore [36].

Lieberherr et al. [43] present a socket-based approach for the implementation of overlay
networks. The overlay socket API describes how applications can interact with different overlay
network protocols, and how different transport protocols can be used. Lieberherr et al. focus
on this interaction rather than on the design of the overlay network itself.

JXTA [10] is a major effort in building a higher abstraction around the core problems of
peer-to-peer systems. It consists of a set of protocols that allow any device to communicate
in a peer-to-peer manner. JXTA is a specification of a peer-to-peer infrastructure layer on
top of the network layer, and is therefore closely related to the notion of an overlay network.
However, the scope and tasks of this layer in JXTA are much broader than typically found in
overlay networks, including entities such as groups, advertisements, services, etc.

Besides the overlay network, a fully functional peer-to-peer system contains several other
important components. However, good design solutions for problems at the application level
are well-known and typically not specific to peer-to-peer applications. On the other hand, a
rich set of patterns from distributed systems in general is available for problems arising at the
network layer. We conclude this section by giving references to these design solutions.

• Concurrency: Concurrency is an inherent issue in any distributed system. In peer-
to-peer systems, many blocking operations are involved, so that they benefit from con-
currency even on a single processor machine. This topic has been researched in detail.
Lea [44] describes a number of best practices and design patterns for concurrent sys-
tems. Additionally, Schmidt et al. [9] provide solutions for designing scalable concurrent
distributed systems.
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• Messaging: Nodes in peer-to-peer systems communicate by exchanging messages. Mes-
saging has been investigated extensively in the light of enterprise application integration.
The book by Hohpe and Woolf [45] focuses on design issues and patterns.

• Asynchronous operations: Sending messages is inherently asynchronous, which results
in a number of design problems when offering these services to an application. These
problems occur at the application level or the thin layer of distributed hash tables because
these layers build a higher abstraction further away from the notion of messages. Design
patterns for asynchronous systems are, for instance, presented by Schmidt et al. [9].
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3 Overview

3.1 Peer-to-Peer Systems

Shirky [28] defines peer-to-peer as: “a class of applications that takes advantage of resources—
storage, cycles, content, human presence—available at the edges of the Internet. Because ac-
cessing these decentralized resources means operating in an environment of unstable connectivity
and unpredictable IP addresses, peer-to-peer nodes must operate outside the DNS system and
have significant or total autonomy from central servers.” This definition regards peer-to-peer
systems as an application-level Internet on top of the Internet. Peer-to-peer systems consist
of a large number of nodes that communicate by requesting and sending data. Of course,
this concept is not new, and large parts of the Internet infrastructure itself communicate in
a peer-to-peer fashion. What is new is the fact that the nodes in the system are at the edge
of the Internet, that is, unreliable personal computers, which can be turned on and off at any
time. Peer-to-peer systems therefore need to cope with this inherent dynamics and the high
exposure to attacks and failures. Moreover, the scale of peer-to-peer systems can be extremely
large, incorporating millions of nodes.

3.2 Overlay Network

Peer-to-peer applications have been built for different purposes such as file sharing (e.g., Nap-
ster, Gnutella, eDonkey, Kazaa), communication (e.g, Skype, Jabber, ICQ), collaboration
(e.g., Groove Networks), content distribution (e.g., BitTorrent), and grid computing (e.g.,
SETI@Home). Although their purpose is different, they all share the need to localize items
such as fragments, files, and users in the network. Napster, one of the first file sharing applica-
tions, used a central server for the localization, which does not scale well. Early systems that
followed Napster, such as Gnutella [31], tried to overcome this scalability problem by using
a decentralized approach. A query was simply flooded through the system. A single query
therefore resulted in a large number of messages, which is not efficient [32].

Routing efficiency is improved significantly by structured overlay networks such as Chord
[4], Pastry [5], Tapestry [6], Kademlia [7], and CAN [8]. Overlay networks are responsible for
implementing an efficient routing algorithm. The nodes in the system are structured in order
to decrease the search steps necessary to find the target identifier. Each node maintains a local
routing table, which holds the identifiers of other nodes in the system. When a query message
arrives, the node forwards the message to the node on its local routing table that is closest
(using an appropriate metric) to the specified target identifier.
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3.3 Software Architecture

Applications are built on top of the overlay network layer, which in turn uses the network
layer to transmit messages over the network (e.g., using UDP or TCP). Therefore, the software
architecture of a peer-to-peer application typically looks as follows.

Kazaa,
eDonkey,
Skype,
etc.

Network Layer

Overlay Network Layer

DHT
route

send

DHash, Bamboo,
OpenDHT, Bunshin, etc.

Distributed
storage systems

CFS, PAST,
OceanStore, etc.

put, get

Application
Layer

Chord, Pastry, Tapestry,
CAN, etc.

e.g., based on UDP, TCP

Different kinds of applications can be built on top of the overlay network layer, such as
file sharing applications [33], collaboration applications [29, 30], or distributed file systems
[34, 35, 36]. Distributed file systems, however, are usually not directly built on top of the
overlay network layer, but on top of a distributed hash table (DHT) [17, 37, 38, 39], which
provides a higher abstraction by offering put and get operations to store and retrieve data
fragments in the network. In the literature, distributed hash tables and overlay networks are
sometimes used interchangeably, because distributed hash tables rely on overlay networks to
localize the fragments in the network. However, in this paper, we make a sharper distinction
between those two terms, and regard distributed hash tables as a thin layer on top of the
overlay network, as shown in the figure above.

3.4 Overlay Network Layer

The overlay network layer exposes an operation route, which is used by applications to route
messages to a specified target key in the network. The routing algorithm determines the node
with the closest identifier known locally and sends the message to it using the underlying
network layer. When the overlay network layer receives a message from the network layer, it
checks whether the message has arrived at its target, or whether it needs to be forwarded to
the next node on the routing path. Finally, when the message arrives at its target, the overlay
network layer delivers it to the corresponding application.

The routing algorithm presumes that a topology is maintained among nodes in the network,
which is also the responsibility of the overlay network layer. For that reason, it needs to
execute a protocol which maintains neighbors by periodically sending messages. It needs to
replace nodes that have left and integrate new nodes that have joined the network. In a specific
network, different kinds of node types may exist. Therefore, different kinds of messages may
need to be exchanged among these different nodes.
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The overlay network layer actually represents a node in the network. However, in some
networks, a computer may host more than one node concurrently, so that the overlay network
can represent several virtual local nodes.

The different tasks and functions of the overlay network layer can be grouped into different
categories as follows. We will use these categories throughout the rest of this paper.

Overlay Network Layer

route

Routing table
Neighbors

Routing

Local Node

Remote Nodes

Network Interaction

Application Interaction

send

receive

notifydeliver

Virtual nodes

Join

Maintain topology

Leave

Router

Control
Join

Application

Message Handling

Protocol

Alive

Dispatcher

Create

Verify

Messages
etc.

Algorithm

register

Node types

• Application Interaction represents the interface of the overlay network layer to appli-
cations. It needs to provide a route operation and means to register different kinds of
applications.

• Messages groups all different kinds of messages that are sent in the overlay network.

• Message Handling regards the question of how the overlay network processes the dif-
ferent kinds of messages.

• Routing combines all parts related to the routing algorithm.

• Local Nodes represents the nodes hosted on the computer.

• Protocol groups all parts responsible for maintaining the topology.

• Remote Nodes organizes how remote nodes are represented in the overlay network, and
how interaction takes place.
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• Network Interaction defines how the overlay network layer interacts with the network
layer.

3.5 Design Issues

In this section, we identify different design issues that arise in the design of the overlay network.
We group the different issues into the categories introduced in the last section. These design
issues build the basis for the patterns of the pattern language presented in this paper, which
have proven very helpful for the design of our own overlay network.

3.5.1 Application Interaction

The application built on top of the overlay network layer uses it to route messages to specified
keys (e.g., a query message to find a certain item in the network). How can the overlay network
layer be completely encapsulated, so that it is not dependent on the application and can be
used for different kinds of applications? How will the overlay network be accessed? When a
message arrives at its target node, it needs to be delivered up to the application. How does
the overlay network pass messages to the application? How does it notify the application of
important events, such as for instance when it routes a message further to the next node on
the routing path?

3.5.2 Messages

Not all messages need to be routed, but some are sent directly to other nodes to maintain
the routing topology (e.g., ’alive’ messages). However, not only the overlay protocol needs to
send direct messages, but also the application built on top. This is the case once an item has
been found, and direct communication can take place. Unfortunately, this causes some design
problems. Furthermore, lots of different kinds of messages exist in the overlay network. There
are application messages sent by the application, and control messages which are sent by the
overlay network itself. Some of the messages need to be routed. Some need to be verified. How
is the message hierarchy organized?

3.5.3 Message Handling

Peer-to-peer systems are very exposed to the outside world. Because they communicate by
exchanging messages, one simple form of attack is sending forged messages. Therefore, the
following design issues have to be addressed: How are such attacks detected and damage
prevented? How can the message integrity be verified?

Overlay networks receive messages from other nodes, which either need to be routed further,
processed by the overlay network, or delivered up to the application. The application in turn
asks to route messages, and periodically, some protocol entity needs to send messages by its
own. Furthermore, some events might occur which result in a notification of the application
built on top. Altogether, a peer-to-peer application is highly concurrent, and good design
practices need to be applied in order not to obfuscate the execution flow.
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3.5.4 Routing

Query messages need to be routed to their target. On their way, they pass many intermediate
nodes. How are intermediate nodes processing the message? How does the message dispatching
mechanism interact with the routing algorithm? Which objects are taking part in the routing
process? How is the routing algorithm implemented, and how does it interact with the routing
table and other local information available? Sometimes, not only messages sent by the appli-
cation need to be routed, but others as well (e.g., join messages). How can different messages
be made routable?

3.5.5 Local Nodes

A computer participating in a peer-to-peer system often corresponds to a node in the network.
In some overlay networks, however, a computer can host even more than one node. This is
mainly due to load balancing reasons, so that powerful computers can be split into a number
of so called virtual nodes. We refer to the nodes hosted on a computer as the local nodes, as
opposed to remote nodes, which are hosted on other computers. Research networks often only
have one type of node, which is responsible for various tasks. In real systems, however, this
is rarely feasible. Different roles for the nodes need to be introduced because the computers
are highly heterogeneous. One example is that some machines are behind firewalls or network
address translators (NAT), which makes it impossible to send unsolicited messages to such
computers. These nodes can therefore sometimes not take part in the routing process. An-
other example is the differences in the resources of the individual computers (e.g., bandwidth,
storage), so that some nodes can take more responsibilities to improve overall efficiency. How is
this different behavior implemented in the overlay network? Even though different computers
may be assigned different tasks, the source code should still be the same. On the other hand,
’symmetric’ code is hard to read and maintain. How is this problem solved in the design of the
overlay network?

3.5.6 Protocol

In an overlay network, nodes constantly join and leave. Because of these dynamics, the routing
topology needs to be maintained in order to guarantee high routing efficiency. If computers
crash, they cannot properly leave the system. Still, the system needs to cope with these failures.
These dynamic operations are specified in protocols.

3.5.7 Remote Nodes

In the overlay network, the local nodes communicate with remote nodes. In existing projects,
it is often hard to identify the nodes or peers in the network. Instead of a clear abstraction for
local and remote nodes, these entities are obfuscated in the code. This makes it hard to read,
understand and change the code.

3.5.8 Network Interaction

The overlay network uses the underlying network layer to send and receive messages in a
scalable way. How does the overlay network interact with the network layer? The overlay
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network layer should not depend on the actual implementation of the network layer, so that
it can be exchanged at any time. Furthermore, the actual transport protocol such as UDP or
TCP should not need to be exposed to the overlay network layer.
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4 Pattern Language

This section presents our pattern language for overlay networks, the common abstraction of
most peer-to-peer systems. The patterns are all on the conceptual level of overlay networks,
dealing with entities such as messages, dispatchers, routers, and nodes, trying to solve most
of the design issues presented in section Sec. 3.5. The language does not cover the underlying
network layer, which transmits data over the network.

The pattern language consists of adaptations of well-known patterns as well as new proto-
patterns that represent best-practices that have led to a favorable design in different projects.
Combining the patterns appropriately will result in a functional skeleton of an overlay network.
An example can be found in [46, Sec. 8].

For each pattern, we summarize the problem it addresses and sketch the solution. The
suggested proto-patterns will be presented in detail in Sec. 5. We have grouped the patterns
into the eight categories introduced in Sec. 3.2. The patterns in each category are separated
into ’known and adapted patterns’ and ’proto-patterns’. In case the pattern already exists or
is an adaptation from a well-known pattern, the original pattern is stated in parenthesis.

4.1 Application Interaction

Known or Adapted Patterns

Pattern Problem Solution

Overlay
Facade
(Facade)

How do you encapsulate access to the
overlay network from the application?
How are direct messages sent? Are
they sent using the overlay network,
or by accessing the underlying net-
work layer directly?

Use an Overlay Facade, which exposes the
operations that the overlay network pro-
vides to the application (API), and encap-
sulates the implementation of the overlay
network. Extend the Overlay Facade with
a send method, and use the overlay net-
work layer also to send direct messages to
known addresses.

Application
Delivery
(Observer)

How does the overlay network deliver
messages up to the application?

Use an Application Delivery interface with
a deliver method, which allows the overlay
network to deliver up messages by simply
calling this method. An object implement-
ing this interface is provided by the appli-
cation.

Application
Notification
(Observer)

How do you notify the application in
case of an important event?

Use an Application Notification interface
with known methods to the overlay net-
work, so that it can inform the application
simply by calling the appropriate method.
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Proto-Patterns

Pattern Problem Solution

Abstract
Address
Handle

How do you encapsulate the neces-
sary algorithm to contact computers
behind firewalls or network address
translators (NAT), without affecting
the application built on top?

Use an Abstract Address Handle to refer to
another computer. The Abstract Address
Handle encapsulates all information nec-
essary to contact computers even if they
are behind firewalls or NATs. However,
for the application, they can be used as if
they were Internet addresses.

4.2 Messages

Known or Adapted Patterns

Pattern Problem Solution

Message
Factory
(Factory)

How do you transform the raw bytes
into the different message objects?

Use a Message Factory, which provides a
create method that takes the raw bytes as
input and returns the appropriate message
object. The Message Factory encapsulates
the logic to transform the bytes into the
message objects properly.

Envelope
Wrapper
(Envelope
Wrapper)

How do you send a given message with
another messaging system?

Use an Envelope Wrapper to wrap the mes-
sage to be sent in an envelope that is com-
pliant with the message system used to
send the message.
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Proto-Patterns

Pattern Problem Solution

Message
Hierarchy

How do you separate messages sent by
the application from messages sent by
the overlay network?

Use Message Hierarchy to structure the
messages clearly into application and con-
trol messages. Application messages wrap
messages sent by the application in a sim-
ple Envelope Wrapper. An application
message can be as simple as only contain-
ing the payload. The pattern allows the
Message Dispatcher to distinguish appli-
cation from control messages sent by the
overlay network.

Routed
Message
(Envelope
Wrapper)

How do you make specific messages
routable?

Use a Routed Message which wraps the
message to be routed and adds the nec-
essary header fields that are important for
the routing algorithm.

Specialized
Message
Type

How can you improve testability on
the messages and profit from static
type safety to render some faulty net-
work conditions impossible?

Use Specialized Message Types, which al-
lows monitoring exactly which messages
two nodes exchange. It also helps for de-
bugging and allows each message to be
adapted to the specific needs of each pair of
node types, thus including strong types for
the fields. Wrong assignments can there-
fore already be checked by the compiler.

Source
Sink
Marker
(Marker
Interface)

How can you make the source and
sink node type of a message explicit,
so that it can be checked at runtime
in the code?

Use Source Sink Marker to mark the
source and sink node type of each mes-
sage. Let each message simply implement
this (empty) Marker Interface, so that the
node types can be checked by the program.

4.3 Message Handling
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Known or Adapted Patterns

Pattern Problem Solution

Message
Dispatcher
(Observer)

How do you process the different mes-
sages?

Use a Message Dispatcher, which receives
the raw bytes from the network layer, cre-
ates the corresponding message object us-
ing the Message Factory, and dispatches
it to the actual object responsible for
processing it.

Message
Handler
(Observer)

How can you make the Message Dis-
patcher be as simple and small as pos-
sible?

Use a Message Handler interface which
simply provides a method handle(Message
message). All objects that are responsible
for processing messages need to implement
this interface. Then, the Message Dis-
patcher can call this method to dispatch off
messages and is prevented from processing
them by itself.

Autonomous
Message
(Command
Message)

How could you let messages process
themselves, making the Message Dis-
patcher and Message Handlers be-
come redundant?

Use Autonomous Messages, which know
how to process themselves. They are
processed by calling an execute method on
the message object.

Proto-Patterns

Pattern Problem Solution

Message
Verifier

How can you include a simple verifi-
cation mechanism, which can be ex-
tended for specific messages?

Use a Message Verifier, which provides a
method verify that checks the integrity of
all messages. If credentials are included, it
will verify that they are indeed issued for
the claimed sender.

4.4 Routing

Proto-Patterns

Pattern Problem Solution

Router How do you implement the routing al-
gorithm and how does it interact with
other objects in the overlay network?

Use a Router, which encapsulates the rout-
ing algorithm and provides a method to
route Routed Messages. This method
checks whether a Routed Message is at
its target, or if it needs to be sent away,
in which case the router chooses the next
node according to its routing algorithm
from the routing table and neighbors table.
It interacts with the Message Dispatcher
to dispatch messages that have arrived at
their target to the appropriate object.

4.5 Local Nodes

Simple Patterns
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Pattern Problem Solution

Local
Node

How do you model the object space of
the overlay network around the con-
cept of local nodes?

Use a Local Node for each node that is
hosted on the computer, resulting in a vi-
sual and clear structure in the object space.
The Local Node has its own identifier and
stores connections to remote nodes (Node
Handles), which represent the topology of
the overlay network.

Local
Node
For
Each
Type

How do you integrate different node
types with different behavior?

Use Local Node For Each Type, which
represents each different node type in the
network explicitly. Local Node For Each
Type extends the Local Node, which pro-
vides the properties and behavior that are
shared among all node types.

4.6 Protocol

Known or Adapted Patterns

Pattern Problem Solution

Separate
Protocol
(Strategy)

How do you implement different pro-
tocols, needing to run at different
time intervals?

Use a Separate Protocol for each differ-
ent protocol, encapsulating the respective
logic. Each Separate Protocol can be run
at different time intervals.
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Proto-Patterns

Pattern Problem Solution

Self
Maintenance

How do you implement the mainte-
nance protocol?

Use Self Maintenance, which encapsulates
the maintenance protocol in the Local
Node and runs it periodically in its own
thread. This makes the nodes be the only
active components in the system, responsi-
ble for joining and maintaining themselves
the same way as in the system model.

4.7 Remote Nodes

Simple or Known Patterns

Pattern Problem Solution

Node
Handle

How do you store all the different in-
formation available about a remote
node in the overlay network?

Use a Node Handle, which provides an ab-
stract handle of a remote node. It stores
all available information about a node at a
central place. Make the Node Handle seri-
alizable or write a proprietary marshaling
algorithm, so that the necessary informa-
tion can be transmitted easily.

Typed
Node
Handle

How can you make the Node Handles
’type safe’, making it easier to detect
mistakes and improve readability?

Use a Typed Node Handle, which is sim-
ply an extension of a Node Handle for
each type of node. Make the base type
abstract and consequently use the appro-
priate Typed Node Handle throughout the
overlay network and in message objects.

Node
Handle
Proxy
(Proxy)

How can you refer to nodes in the
same way, whether they reside locally
or remotely, thus making the under-
lying transmission of a message trans-
parently?

Use a Node Handle Proxy, which can rep-
resent both, a remote or a local node. It
provides a method receive(Message) which
either lets the Local Node process the mes-
sage or sends the message using the under-
lying network to the remote node.

4.8 Network Interaction

Simple or Known Patterns

Pattern Problem Solution

Network
Gateway
(Gateway)

How do you remove strong depen-
dence on the network layer and allow
to put in control mechanisms for out-
going messages?

Use a Network Gateway, which encap-
sulates access to the underlying network
gateway.

Network
Stub
(Service Stub)

How can you include a simulation en-
vironment for your overlay network?

Use a Network Stub, which uses the same
interface as the network layer, but be-
haves differently, for instance simulating
the sending and receiving of messages.
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Pattern Problem Solution

Traffic
Monitor
(Observer)

How can all incoming and outgoing
messages easily be monitored?

Use a Traffic Monitor at the overlay net-
work layer, which is informed of all in-
coming and outgoing messages, interprets
them and updates its statistics.

4.9 Overview

The following figure provides an overview over all patterns in our pattern language. The big
colored rectangles represent the different categories. Small boxes represent the patterns, and
the arrows indicate the relationships between them. The white boxes are the suggested proto-
patterns, which we describe in detail in the next section. Grey boxes stand for simple, known,
or adapted patterns. For a detailed presentation of these patterns, the reader is referred to our
technical report [46].
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5 Proto-Patterns

This section describes the listed proto-patterns from the last section in pattern-form. They have
proven very helpful in the design and implementation of our own peer-to-peer system. Please
note that simple, adapted or well-known patterns from this pattern language are described in
detail in our technical report [46].

5.1 Application Interaction: Abstract Address Handle

Context

The overlay network’s routing functionality is used to localize nodes in the network. Once a
node has been found, further messages can be sent directly to its address. Unfortunately, in
real networks, it is sometimes not possible to send a message to an Internet address directly,
because of firewalls or network address translators (NAT). In that case, the communication
must either be relayed over a well-configured node, or ’hole punching’ techniques need to be
applied. This renders it impossible to simply use an Internet address as a parameter of the
send method. However, the application built on top of the overlay network should not need to
worry about these problems and should be able to simply send messages to the return address
provided by the overlay network in Application Delivery.

Problem

How do you encapsulate the necessary algorithm to contact computers behind firewalls or
network address translators (NAT), without affecting the application built on top of the overlay
network?

Forces

1. The application should be able to send a direct message to the return address that it has
received from the answer of a query (Application Delivery).

2. Not all computers are well-configured in practical systems, making it impossible to simply
use Internet addresses.

3. Contacting a node hosted on a badly-configured computer may need the interaction of
other nodes (e.g., mediators). The underlying complexity should be hidden from the
application.

20



Solution

IAbstractAddressHandle

mediator: InternetAddress
target: InternetAddress

AbstractAddressHandle

Use an Abstract Address Handle to refer to another computer. The Abstract Address
Handle encapsulates all information necessary to contact computers even if they are behind
firewalls or NATs. However, for the application, they can be used as if they were Internet
addresses.

The Abstract Address Handle serves as a handle to a remote node for the application.
The application does not need to access the address object’s internals. Therefore, Application
Delivery provides an empty interface (IAbstractAddressHandle in the above figure) to the ap-
plication, which serves as such an abstract handle. The overlay network can cast this interface
to the appropriate object which provides access to all information necessary to contact that
computer, including its Internet address and possibly a mediator Internet address.

How the firewall or NAT is traversed depends on the actual implementation. The mediator
(relay) address contained in the Abstract Address Handle might relay all messages to that
node, or it may be used to initiate ’hole punching’ methods.

Resulting Context

If you are using Abstract Address Handle, then the receiver Internet Address in the send
method of the Overlay Facade can be replaced by Abstract Address Handle. Consequently,
Application Delivery will deliver Abstract Address Handles instead of Internet addresses as
well. This gives the application an abstract handle to communicate to a physical computer.

Rationale

Abstract Address Handles resolves most forces stated:

1. The application can simply send a message to the address it has received from the overlay
network. The logic to contact nodes behind firewalls or NATs is completely encapsulated
in the overlay network.
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2. Because not all computers can be contacted directly, the overlay network never returns
simple Internet addresses, but Abstract Address Handles.

3. Because the overlay network has the knowledge about the connection of nodes in the
network, it is the correct place to implement the traversal logic. Abstract Address Handles
hides the underlying complexity completely.

The solution is good because it has a number of favorable qualities:

• Abstraction: The Abstract Address Handle is a nice abstraction to refer to remote ad-
dresses, because it is completely transparent how the underlying layer contacts the ad-
dress.

• High cohesion: Abstract Address Handle puts the logic on how to contact a remote
address at the right place, so that it results in a highly cohesive architecture.

• Simplicity: For the application, it is trivial to send a message to a given Abstract Address
Handle.

• Understandability: Using Abstract Address Handle is very easy to understand, because
the traversal logic is encapsulated and does not need to be understood.

• Encapsulation: The traversal logic is encapsulated, so that it can freely be modified
without affecting the application.

• Flexibility: It is easy to support different lower layer transport protocols and the like,
because the application does not need to take care about these issues at all.

Known Uses

Most academic overlay network do not take problems arising from firewalls or NATs into
account, so that this pattern is not applied there. Practical projects sometimes use hole
punching techniques, but are implemented rather ad-hoc, so that no nice abstractions can
be found. The empty Address interface in FreePastry is a similar idea, even though its purpose
is a little bit different in that it is not used for NAT traversal.

5.2 Messages

5.2.1 Message Hierarchy

Context

An application uses the overlay network to route an application message to a given key (e.g.,
a query message to localize an item in the network or a message to start data transfer). The
overlay network itself needs to send control messages in order to maintain the topology. The
semantics of application and control messages is very different. When an application message
arrives at its target node, the Message Dispatcher has to deliver it up to the application (using
Application Delivery), whereas control messages are handled within the overlay network.
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Problem

How do you separate messages sent by the application from messages sent by the overlay
network?

Forces

1. A message sent by the application cannot be interpreted by the overlay network, because
it may have a different format and has a different semantics.

2. The message needs to be recognized as an application message and needs to be delivered
to the application at the receiving node.

3. At least one bit of information is needed to distinguish it from other messages in the
overlay network.

4. Not all messages sent by the application need to be routed, but some can be sent directly.

5. Conversely, not only application messages, but also control messages might need to be
routed (e.g., join messages).

6. All control messages might share some properties and behavior.

Solution

getPayload(): ByteBuffer

ApplicationMessage ControlMessage

AliveJoin LeaveNeighbors

getType()

Message

Use Message Hierarchy to structure the messages clearly into application and control
messages.

Application messages wrap messages sent by the application in a simple Envelope Wrapper.
An application message can be as simple as only containing the payload. The pattern allows
the Message Dispatcher to distinguish application from control messages sent by the overlay
network.
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Resulting Context

When marshaling, one additional bit (e.g., the type) is sufficient to distinguish application
messages from control messages. When an application message is received, the Message Factory
creates an ApplicationMessage object with the uninterpreted raw bytes as its payload, which
can be delivered up to the application using Application Delivery, or the corresponding control
message which is processed by the overlay network itself. Different messages can be routed by
wrapping them in a Routed Message.

Rationale

Message Hierarchy resolves all forces stated.

1. The overlay network can distinguish application messages from control messages and does
not need to interpret application messages.

2. Messages wrapped in an ApplicationMessage are delivered up to the application.

3. The information to distinguish application and control messages is encoded in the type
bit of the message.

4. Not all application messages or control messages need to be routed towards their target.
Instead, if they needs to be routed, they can be included in a Routed Message.

5. By making the concept of routable messages orthogonal to the Message Hierarchy (see
Routed Message), all messages can be routed.

6. By having a common supertype, all control messages can share some behavior and prop-
erties easily.

The solution has the following favorable qualities:

• Clarity: Using Message Hierarchy results in a very clear structure, separating application
messages from control messages in the overlay network.

• Understandability: The Message Hierarchy makes it very easy to understand which mes-
sages are sent by the application, and which are sent by the overlay network itself.

• Flexibility: Any kind of application message can be sent, without any changes to the
overlay network.

Known Uses

Some overlay networks never send application messages directly, that is, all application mes-
sages are wrapped in Routed Messages. However, to allow the Message Dispatcher to determine
whether to deliver a message to the application, this approach does not allow control messages
to be wrapped in Routed Messages.

Many overlay networks do not structure the messages into application and control messages.
This has the severe drawback that the design is difficult to understand and maintain.

In HyperCast [47], the overlay message header is a concrete example of this pattern [43].
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References

The application message in the Message Hierarchy is simply an instance of an Envelope Wrap-
per. In [43], the messages are clearly separated into application and protocol messages.

5.2.2 Routed Message

Context

Routing a message to a given key is the task of the overlay network. Each node on the routing
path needs to check whether it is the target of this message, or whether it needs to send
it away to the next node. This logic is implemented using a Router. The routed messages
need to contain specific header fields, at least the target key of the message. If you are using
Message Hierarchy, this would be a place to include those header fields. However, not all
application messages need to be routed, and some control messages need to be routed as well.
At intermediate nodes, all routable messages need to be treated equally. Only at their target
node, different actions need to be performed.

Problem

How do you make specific messages routable?

Forces

1. Whether a message is routable or not is orthogonal to other message characteristics (e.g.,
application messages and control messages both might be routable, or not).

2. All routable messages share some header fields, such as the target key.

3. Dependence on the message type is not favorable and can lead to code duplication.

4. Intermediate nodes should need to be able to handle the message without knowing its
content or specific type.

Solution

getType()
getSource(): Id
getTarget(): Key

getPayload(): ByteBuffer

RoutedMessage

Use a Routed Message that wraps the message to be routed and adds the necessary header
fields that are important for the routing algorithm.
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Routed Message is a variant of an Envelope Wrapper. As its payload, it can take any
message. Therefore, both application and control messages can be made routable by simply
creating a Routed Message containing it. Intermediate nodes only read the fields from the
Routed Messages that they need in the Router. If a message is at its target node, its content
can be dispatched by the Message Dispatcher (see Router for implementation details).

Similar to the well-known Adapter pattern, a static variant can be applied in case your pro-
gramming language supports multiple implementation inheritance. In case your programming
language only supports single inheritance, then the same effect can still be achieved if you are
using automatic code generation for the message objects.

Resulting Context

When a Routed Message arrives, the Router checks whether the message is at its target or
needs to be sent to the next node on the routing path.

Rationale

Routed Message resolves all forces stated:

1. By using Routed Message, both application and control messages, can be routed.

2. The common header fields are given by the Routed Message.

3. The Router and Message Dispatcher do not need to check for different types of messages
that are routable. Instead, they can treat all Routed Messages the same way.

4. Intermediate nodes can treat all Routed Messages uniformly.

The solution has the following favorable qualities:

• Flexibility: Using Routed Message, it is trivial to make any kind of message routable.

• Encapsulation: The Routed Message encapsulates all header fields necessary for the
routing logic.

• Clarity: Using Routed Message leads to a very clear structure. Whether a message is
routed or not is orthogonal to the message hierarchy.

• Understandability: It is easy to see whether a message is routed or not, and it is easy to
see how an intermediate node treats a Routed Message.

• High cohesion: Routed Message leads to high cohesion in the message space; the concept
of routed messages is encapsulated in the Routed Message, while the specific message
that is routed is encapsulated by itself.

Known Uses

Almost all overlay networks use a variant of Routed Message as a basic concept (e.g., FreePastry,
Tapestry). FreePastry combines Routed Message with a variant of Autonomous Message.
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5.2.3 Specialized Message Type

Context

In real systems, the overlay network often consists of different types of nodes (e.g., super,
storage, and client nodes). All these different nodes are connected, so that lots of messages
need to be sent in total. The messages sent between different node types are often very similar
in their intent and behavior. Therefore, most systems reuse these ’universal message types’.
One example of such a universal message type is an ’alive’ message that can usually be sent
between any two nodes to inform the receiver that the sending node is still active. However,
using the same universal messages between any pair of nodes can make it hard to test, detect
faulty conditions and monitor the network. Additionally, the content of universal messages is
sometimes misused to convey different kinds of information, thus strong types cannot be used.

Problem

How can you improve testability on the messages and profit from static type safety to render
some faulty network conditions impossible?

Forces

1. For each pair of nodes, similar messages need to be sent. Using the same message for
each pair of nodes is therefore often possible.

2. For monitoring and testing, looking at the sender and receiver of a message can yield
helpful information.

3. Sometimes, however, the information given by the sender and receiver is not enough to
unambiguously deduce which node has sent which message. This is for instance the case
if several nodes can be hosted on one computer, but the sender and receiver addresses
only correspond to the Internet address of the computer.

4. Using universal messages, testing and debugging the protocol is much harder because
messages cannot be distinguished early, or by simply looking at their types.

5. Messages sometimes convey information such as Node Handles. When using universal
messages, these fields cannot be strongly typed, thus for instance Typed Node Handle
cannot be applied in the messages.

6. Creating new message types takes some effort. They need to be added to the Message
Factory, and if the marshaling and demarshaling algorithm must be written manually, it
is tedious and error-prone.
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Solution

ClientSuperAlive

Alive

StorageSuperAlive SuperStorageAliveSuperClientAlive

Use Specialized Message Types, which allows monitoring exactly which messages two
nodes exchange.

Specialized Message Type splits the universal ’alive’ message into one for each different pair
of node types. It therefore distinguishes between ’super-client-alive’, ’client-super-alive’, ’super-
storage-alive’, etc. This makes it easier to monitor the network and to debug. Additionally, each
message can now contain strongly typed fields, which renders faulty assignments impossible,
which were hard to detect otherwise. Static type safety can further be improved if message
types can only be sent off if their target address corresponds to the correct node type. A ’super-
client-alive’ message may only be sent off, if the target Node Handle is a Typed Node Handle
of type client. Together with Source Sink Marker, this can be easily checked. Furthermore,
the statistics provided by a Traffic Monitor can be much more accurate when using Specialized
Message Types.

The drawback of this pattern is that creating new message types takes some effort, especially
if a proprietary marshaling and demarshaling code must be written. To overcome this, it can
be very helpful to write an automatic reflection-based code generator.

When using Specialized Message Types, there are many more messages in the message
hierarchy. Therefore, a good naming convention should be applied. Using explicit names that
contain the sending node and the receiving node (e.g., SuperClientAlive) is a good choice.
Additionally, Source Sink Marker can be used to state this information more explicitly and to
even check it in the code.

Resulting Context

When using Specialized Message Types, the Message Factory needs to be updated for each type
of message. The Message Dispatcher needs to dispatch each message to the object responsible
for processing it. If you are using Message Handler in combination with Local Node For Each
Type, then all messages sent to a given node type will be processed by the same Local Node.
Therefore, it would be useful to detect the sink node type of a message automatically. This
problem is addressed in Source Sink Marker.

Rationale

Using Specialized Message Types corresponds to the object-oriented approach of always using
the most specific type possible. This allows specifying the system as accurate as possible,

28



avoiding any ambiguities. Because the specific messages can then contain strong types, some
mistakes can already be detected by the compiler.

Specialized Message Type resolves most forces stated:

1. Although it is possible to send the same message between different pairs of nodes, Special-
ized Message Type has a number of advantages, such as improved testability and static
type safety, so that it can be better in some cases.

2. While the sender and receiver can yield some information, it is not always possible to
deduce the type of the nodes unambiguously (e.g., because different nodes are hosted
on one machine, and all of them send ’alive’ messages). Specialized Message Type is a
simple solution for this problem.

3. In the case of virtual nodes, sender and receiver node type can be deduced when using
Specialized Message Type.

4. Using Specialized Message Type, it is easy to test, debug and monitor the overlay network,
because only the interesting Specialized Message Type needs to be tracked.

5. Specialized Message Type also allows to contain type safe data. Instead of Node Handles,
Typed Node Handles can be used for instance.

6. However, adding new message types for each pair of message takes some effort and bloats
the message hierarchy.

The solution has the following favorable qualities:

• Type safety: Not only can it be checked whether a certain node type can receive a
certain message type, but the messages itself can also contain type safe information, such
as Typed Node Handle instead of Node Handle.

• Clarity: Introducing a new type of message for each pair makes it very explicit and
therefore clear which messages are exchanged by which node types.

• Understandability: The explicit structure makes it very easy to understand the purpose
of each message.

• Testability: With Specialized Message Types, it is much easier to test and debug the
network, because the exchange of a message between a certain pair of nodes can be
tracked individually.

The solution has the following liabilities:

• Flexibility: Using universal message types is much more flexible, because no adaptations
are needed when adding new node types.

• Effortless: Adding a new message type for each pair of nodes takes some effort.
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• Simplicity: The message hierarchy is more complex than if there was only one universal
message type. However, while at first glance it is more complex, reading the source code
becomes much simpler.

However, taking the extra effort needed can be justified by the benefits of a clear, explicit
structure that improves testability.

Known Uses

The only known application that uses Specialized Message Type is our own system. This might
be due to the fact that most academic projects have only one type of node, so that Specialized
Message Type cannot be applied.

5.2.4 Source Sink Marker

Context

If you are using Specialized Message Types, each message should be sent and received by exactly
one type of node. Explicit names for the message classes, containing the sender (source) and
receiver (sink) node type, can help the reader of the code. However, the Message Dispatcher
still needs to know each message type and checking the source and sink node type in the code
at runtime at different places is not possible (e.g., in the Traffic Monitor).

Problem

How can you make the source and sink node type of a message explicit, so that it can be
checked at runtime in the code?

Forces

1. Using long class names to indicate the source and sink of a message is very helpful for the
programmer reading the source code, but is not sufficient for the dispatching mechanism
to distinguish the types as well.

2. Using a separate table which lists the source and sink of each message is a source for in-
consistency and duplication. Furthermore, it does not improve readability when browsing
through the code.

3. Using reflection to check the source and sink node type at runtime from its class name is
not efficient and safe.
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Solution

IClientSink

IClientSource

ISuperSink

ISuperSource

IStorageSink

IStorageSource

SuperClientAlive

ControlMessage

Message

Alive

Use Source Sink Marker to mark the source and sink node type of each message. Let
each message simply implement this (empty) Marker Interface, so that the node types can be
checked by the program.

Create an empty source and a sink Marker Interface for each type (e.g., IClientNodeSource,
see the above figure), and let each message implement the two corresponding interfaces. If you
are using Local Node For Each Type, then the dispatching mechanism becomes very simple;
only the sink type of a message has to be checked (e.g., in Java using instanceof ) in order to
dispatch it to the appropriate local node object.

Because Source Sink Marker introduces explicit types for the messages, some bugs can be
detected already at compile-time. Other bugs can be detected by using assertions at run-time.
It can for instance be checked that messages for a client node can only be sent off if the target
node is of type client (using Typed Node Handle).

If the programming environment easily allows seeing the interface of an object, then it
is also more readable for the programmer. At least when a programmer looks at the class, it
becomes clear who sends and who receives this type of message. To improve readability further,
it can also be a good choice to use explicit names for the message types, containing the source
and sink node type (e.g., SuperClientAlive). We provide code samples in our technical report
[46, Sec. 7.2.7].

Resulting Context

When using Local Node For Each Type and Message Dispatcher, each Local Node needs to
register itself at the implicit Message Dispatcher for the messages it is interested in. Likewise,
if an explicit Message Dispatcher is used, it needs to dispatch the messages off to the Local
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Node depending on their type. Once Source Sink Marker is applied, this becomes very simple,
because now only the sink type needs to be checked.

Rationale

Source Sink Marker introduces strong types and therefore makes the system safer. Using
Source Sink Marker, the source and sink node type of a message can be checked at runtime,
which can help at different places (e.g., Message Dispatcher, Traffic Monitor).

It resolves all forces stated:

1. Using Source Sink Marker allows the Message Dispatcher and other places in the code to
check the source and sink node type of a message.

2. Source Sink Marker states the type of the source and sink of a message at the right place,
the message itself. This avoids inconsistencies and improves readability.

3. Checking the type of an object is much more efficient and safe than using reflection.

The solution has the following favorable qualities:

• Clarity: Source Sink Marker makes it explicit and easy to check the source and sink node
type a message.

• Understandability: When reading the code, this extra information helps to understand
it quicker.

• Simplicity: Using Source Sink Marker, the Message Dispatcher becomes much simpler,
because messages can simply be dispatched off according to their sink node type.

• Effortless: Using Source Sink Marker gains some of the effort that was spent to create
each different Specialized Message Type, because in the Message Dispatcher, most often
only the sink type of a message needs to be checked to decide which Message Handler to
dispatch it to.

Known Uses

Marker Interfaces are used heavily in different software systems. Prominent examples are for
instance the Serializable and Remote interface in the Java programming language.

For the purpose of marking the source and sink of messages, we could not find this pattern
be applied in overlay networks so far.

References

Source Sink Marker is a concrete instance of the Marker Interface pattern, which is a well-
known base pattern. A description of the Marker Interface pattern can for instance be found
in [48].
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5.3 Message Handling: Message Verifier

Context

Peer-to-peer systems are very vulnerable to attacks because they are inherently open and
exposed. One specific form of attack is by sending messages with a forged sender address, that
is, messages claiming to be from a certain node, while they are in reality sent by an attacker.
You want to include a simple yet effective mechanism to detect such messages. Messages
need to carry cryptographic proofs (credentials, signatures) in order to verify the sender of
a message. However, credentials can be quite large, so that they reduce overall efficiency if
they were included in all messages. Because message integrity is not equally important for all
messages, credentials should be included in some specific messages only. For all other messages,
you may want to perform some simple verification checks.

Problem

How can you include a simple verification mechanism, which can be extended for specific
messages?

Forces

1. Forged messages should be detected early, before they can cause damage.

2. Some message should include credentials. It should be easy to add credentials to existing
messages or to new ones.

3. Verifying the credentials is similar for all messages containing credentials.

4. The message hierarchy can be quite complex.

5. Simple verification can be done by checking header fields.

6. Each message may include its proper verification logic.

Solution

verify(Message): boolean

MessageVerifier

verify(): boolean

Message

getCredentials(): Credentials

IContainsCredentials

issuedFor(InternetAddress):
boolean

Credentials

verify(): boolean

NormalMessage

verify(): boolean
getCredentials(): Credentials

SecureMessage
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Use a Message Verifier, which provides a method verify that checks the integrity of all
messages. If credentials are included, it will verify that they are indeed issued for the claimed
sender.

The Message Verifier provides a central place for doing all verification checks. The verify
method can first do some simple checks on the header fields or do other integrity checks.
Then, it calls the verify method of each message, which allows each message to implement its
own verification algorithm. Furthermore, if a message contains credentials, it checks whether
the credentials are indeed issued for that sender, thus verifying that the message is really sent
by the claimed sender. If the Message Verifier cannot verify a message, it can be dropped by
the Message Dispatcher, so that it cannot cause any damage.

The verify method of each message is provided by the common supertype Message. The
Message class simply implements this method by returning true. If a specific message type
wants to implement its own verification algorithm, it can simply override this method.

Interesting checks can only be done if a message contains cryptographic proofs. This allows
one for instance to verify that the sender is really who he claims to be. All messages containing
such credentials need to implement a common interface (IContainsCredentials), so that the
Message Verifier knows that it needs to check the credentials. Messages implementing this
interface need to implement a method similar to getCredentials, which returns the credentials
so that the Message Verifier can perform the checks. We provide code samples in our technical
report [46, Sec. 7.3.4].

Resulting Context

Messages need to be verified when they arrive in the overlay network. After creating the
message using Message Factory, the check needs to be done immediately, before dispatching or
processing the message further. Thus, the Message Dispatcher calls the Message Verifier just
after the message object has been created. In case it is not verified, the Message Dispatcher
either drops (and logs) the message, or performs any other appropriate action.

Note that some simple semantic checks can be included by always using strong types.
Therefore, it is recommended to use Typed Node Handle to include in messages, which also
gives reasons to use Specialized Message Types.

Rationale

In the case of single implementation inheritance, the credentials cannot be verified by a method
provided by a common superclass, because of the complex message hierarchy and the fact that
only specific messages should include credentials. Therefore, this logic needs to be factored
out into a Message Verifier. If multiple implementation inheritance can be used, then the
verification method could also be provided by a common superclass.

The Message Verifier also provides a central place to include other verification checks,
reflecting common policies on an abstract level, orthogonal to individual messages (for instance
to drop all messages sent by a specific address).

The Message Verifier resolves all of the forces stated:
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1. If the Message Verifier is called as soon as the Message Factory has created the message
object, forged messages are detected early and can be dropped by the Message Dispatcher.

2. Not all messages need to contain credentials, because it is an overhead and makes the
message larger, consuming more bandwidth. It is very easy to include credentials for any
kind of message that needs it.

3. All messages containing credentials are verified the same way.

4. The Message Verifier pattern takes into account that the message hierarchy can be very
complex, and that for instance the credentials cannot always be inherited.

5. Simple verification of header fields, or applying a general policy, is very easy using the
Message Verifier.

6. Each message can include its own verification logic.

The solution has the following favorable qualities:

• Flexibility: The Message Verifier is a very flexible mechanism. Any kind of message can
be verified, and the level of security can be increased stepwise. Credentials are completely
orthogonal to the rest of the message hierarchy, and every message object can implement
its own verification logic.

• High cohesion: Access and checks are encapsulated in the Message Verifier.

• Understandability: It is easy to understand when and where the verification logic is
executed, and what happens in the Message Dispatcher if a message is not verified.

• Clarity: The Message Verifier is a very clear and visual structure for where verification
of messages takes place.

Known Uses

FreePastry is designed to include a Message Verifier. JXTA uses credentials and certificates in
an extended way.

5.4 Routing: Router

Context

The task of the overlay network is to route messages to specified keys. To achieve this goal,
every node receiving a message sends it to the node from its routing table with the identifier
which is closest (in whatever metric used) to the key. Once the message arrives at its target
node, it needs to be delivered up to the application. You are using Routed Message to identify
such messages.

Problem

How do you implement the routing algorithm and how does it interact with other objects in
the overlay network?
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Forces

1. All messages, including Routed Messages, enter the overlay network through the Message
Dispatcher. However, it is not the task of the Message Dispatcher to implement the
routing algorithm.

2. A message that has arrived at its target node needs to be delivered up to the application.
Otherwise, the message needs to be sent to the next node.

3. In some specific overlay networks, the message must not be delivered up to the application,
but needs to be sent to connected nodes. This is for instance the case in a network where
storage nodes are connected to super nodes, but only super nodes participate in the
routing algorithm. A super node might need to unwrap the Routed Message and send
its contained message off to a connected storage node.

4. In some cases, the application built on top of the overlay network needs to be informed
before a message is sent to the next node (using Application Notification).

5. The specific routing algorithm, as well as the metric used, should be encapsulated from
the rest of the overlay network, so that its implementation can be changed easily.

6. Despite the complexity of the algorithm, it should be easy to read and understand where
the routing takes place in the code.

7. The same code should be used when an application uses the overlay network to route a
message, and when a Routed Messages arrives at an intermediate node. This avoids code
duplication.

8. The Message Dispatcher knows whom to dispatch which message. Therefore, once a
Routed Message has arrived at its target, the internal message should be dispatched off
using the Message Dispatcher.

9. Information about the network (Node Handles) might not only be stored in a routing
table, but in a neighbor and other objects as well. This information must potentially also
be taken into account in the routing algorithm.

10. Not only application messages might be contained in Routed Messages, but also control
messages (e.g., join messages). Therefore, not all messages that arrive at their target
need to be delivered up to the application.
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Solution
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Use a Router, which encapsulates the routing algorithm and provides a method to route
Routed Messages. This method checks whether a Routed Message is at its target, or if
it needs to be sent away, in which case the router chooses the next node according to its
routing algorithm from the routing table and neighbors table. It interacts with the Mes-
sage Dispatcher to dispatch messages that have arrived at their target to the appropriate object.

The Router is implemented by an object which provides a method route(RoutedMessage
message), which either decides that it is at its target, or that it needs to be sent away, in which
case it would call the appropriate method on the Network Gateway. The Message Dispatcher
knows whom to dispatch which message. Therefore, the Router should not need to dispatch
off messages by itself, because this would result in unnecessary code duplication. Instead,
the Router should rely on the Message Dispatcher to do that job. However, there are some
interesting details regarding the actual implementation of the interaction of the Router with
the Message Dispatcher.

A simple and elegant solution is as follows. When a Routed Message arrives at the Message
Dispatcher, it dispatches it to the Router (either calling route directly in an explicit Message
Dispatcher, or let the Router object implement a Message Handler). The Router decides
whether the Routed Messages has arrived at its target, or if it needs to be sent away to the
next node using the Network Gateway. In case it has arrived at its target, the payload of the
Routed Message, thus the actual application or control Message, will be delivered again to the
Message Dispatcher. Since the payload is not yet transformed into a message object, delivering
it works exactly the same way as when messages are delivered by the network layer. However, it
might be necessary for the Message Dispatcher to distinguish these two cases, so that it would
need to provide a separate method to the Router, which takes note of it (for instance making a
distinction for the Traffic Monitor) and delegates to the usual deliver method. In any case, the
Message Dispatcher now lets the message object be created by the Message Factory, and then
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dispatches it off to the appropriate message as if it was sent directly and arrived through the
network layer. The following figures shows a sequence diagram of an example where a Routed
Message contains an application message and arrives at its target node.
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This is the preferred implementation if this mechanism is sufficient, which is usually true
in networks with only one type of node. In networks with several node types, the target node
of the routing algorithm might not be the same as the one that should receive the message in
the end (e.g., if the target of a message is a storage node, but only super nodes take part in
the routing process). In this case, the message needs to be sent away to that machine. Even
though this could be achieved in the aforementioned implementation, the next approach makes
this more explicit and readable for the programmer.

In the second approach, the Message Dispatcher does not immediately dispatch a Routed
Message off to the Router, but calls a method isAtTarget(RoutedMessage routedMessage) pro-
vided by the Router, which returns true, if the Routed Message is at its target, or false other-
wise. If so, the Message Dispatcher might either deliver it to the application, or, as motivated,
needs to send it off to a connected node (this could be a super node which has connections to
several storage nodes). It could call another object which takes care for that. However, this
implementation makes the execution flow more explicit. If the message is not at its target, the
Message Dispatcher calls the route method from the Router, to actually send it to the next
node on the routing path. We provide code samples in our technical report [46, Sec. 7.4.1].

Resulting Context

The Router is responsible for routing messages to given keys. It therefore expects the messages
in a certain format that contains the necessary information. This special message is a Routed
Message.
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The Router needs to interact with the Message Dispatcher, because it does not know how to
dispatch a specific message once it has arrived at its target node. The Message Dispatcher, on
the other hand, calls the Router in case a Routed Message arrives. In the case that a message
needs to be sent further, the Router makes use of the Network Gateway.

The Overlay Facade uses the Router to route application messages, contained in Routed
Messages, to their target. Local Node, Self Maintenance, or Separate Protocol might make use
of the Router to route control messages (e.g., join messages), contained in Routed Messages,
to their target.

Some applications might need to be informed whenever the router sends off a message to
the next node, which gives the application a possibility to control which messages are sent.
This functionality is also defined as the forward method in [41]. For that reason, the Router
might need to notify the application using Application Notification.

Rationale

The Router encapsulates the routing algorithm and allows making changes to it easily, without
affecting other parts of the code. The Router can be used for incoming Routed Messages, as
well as for application messages that need to be routed to their target. Using the Router makes
it very easy to understand the design of the overlay network even if the routing algorithm is
complex.

The Router resolves all forces stated:

1. The routing algorithm is separated from the Message Dispatcher, and completely encap-
sulated in the Router.

2. The collaboration of the Message Dispatcher and the Router makes it possible to include
the dispatching logic only once, in the Message Dispatcher.

3. Again, the collaboration of the Message Dispatcher and the Router allows to process the
message in any way needed.

4. The router can inform the application built on top before it sends a message away, using
Application Notification.

5. The implementation of the routing algorithm can be changed, as long as it remains
semantically equivalent and conforms to the interface of the Router.

6. The Router pattern clearly localizes the routing functionality in the code.

7. The Router is used for both, arriving external Routed Messages, as well as Routed Mes-
sages that need to be sent away for the application built on top.

8. Because of the collaboration of the Message Dispatcher and the Router, the Router does
not need to know whom to dispatch which message.

9. The Router can use all information locally available, such as routing tables and neigh-
borhood structures.
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10. Again, the Router uses the Message Dispatcher to dispatch off the internal message, once
it has arrived at its target node.

The solution has the following favorable qualities:

• Encapsulation: The Router encapsulates all routing logic completely, which makes it easy
to change the implementation, as long as it remains semantically equivalent.

• High cohesion: Because the routing logic is encapsulated, the architecture is highly co-
hesive, putting all routing logic at a single place.

• Understandability: It is easy to understand the functionality of the Router even if the
specific routing algorithm is not understood in detail.

• Clarity: Using an explicit Router makes the structure of the overlay network very clear.

• Avoids code duplication: Because of the design of the Router, it can be used for incoming
messages that need to be routed further, as well as for application messages that the
application built on top wants to send.

Known Uses

A Router is used in many overlay networks, but the actual implementations vary. In FreePastry,
messages arrive at the PastryNode (the Message Dispatcher combined with Local Node), which
dispatches the Routed Messages off to the Router. The Router in turn is responsible for setting
up the next hop using the routing algorithm of Pastry. After that, the message is sent to the
PastryNode again, which dispatches it off to the Router as before. This time, the next hop
has been set, so that the Routed Messages is executed as an Autonomous Message, which lets
the Node Handle Proxy representing the next hop receive the message. If the Node Handle
Proxy’s reference to its PastryNode equals the next hop, the Routed Message’s internal message
is received by the local PastryNode. If so, the PastryNode this time delivers it up to the
application. If not, the Node Handle Proxy is responsible for transmitting the message to the
actual computer where the node resides. The complexity of this algorithm in FreePastry partly
results from the flexibility provided by the use of Node Handle Proxy in combination with
Local Node. Maybe it could be simplified by some minor refactoring.

In HyperCast, the Router is called Forwarding Engine, which has its own network adapter
to receive messages. In HyperCast, only (and all) application messages are routed, so that
listening on another port is possible. This makes application messages not arrive at the usual
dispatcher, but at the Forwarding Engine directly.

5.5 Protocol: Self Maintenance

Context

Nodes constantly join and leave the overlay network, which makes it necessary to maintain the
routing topology and update it to reflect the changes. Therefore, every node needs to run a
maintenance protocol periodically, which sends ’alive’ messages to connected nodes, checks if
connected nodes are still alive, and much more. If a node realizes that its connected node (e.g.,
its super node or its neighbor) is not alive anymore, it will need initiate a new join operation.
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Problem

How do you implement the maintenance protocol?

Forces

• Protocol logic spread around the overlay network is hard to read and to maintain.

• The only entities active in the overlay network are the nodes.

• The maintenance protocol needs to be run periodically.

Solution

run()

isConnected()
maintenance()
join()
shutDown();

doJoin()
doMaintenance()

LocalNode

Runnable

public void run() {

   while(...) {
      maintenance();
   }

}

doJoin()
doMaintenance()

ClientNode

doJoin()
doMaintenance()

StorageNode

doJoin()
doMaintenance()

SuperNode

private void maintenance() {

   if (!isConnected()) {
      join();
   else {
      doMaintenance();
   }

}

Use Self Maintenance, which encapsulates the maintenance protocol in the Local Node and
runs it periodically in a separate thread. This makes the nodes be the only active components
in the system, responsible for joining and maintaining themselves.

In Java, the Local Node object simply implements the Runnable interface. In the run
method, the maintenance method of the Local Node object is periodically called in a loop, which
waits before looping the next time for a certain amount of time (the maintenance frequency).
The maintenance method implements the protocol. It also lets the Local Node join the network
if it is not connected. Therefore, it is sufficient to construct the Local Node and start a new
thread on it. Instead of implementing the Runnable interface, the Local Node could also extend
the Thread class.
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This maintenance protocol represents the periodic action that is performed by each node.
Of course, the node also needs to react on control messages that arrive. Because Local Node
can be combined with Message Handler, also the reactive part of the protocol is encapsulated
in the Local Node object. However, the methods performing the protocol need to be imple-
mented carefully, taking into account that the receiver thread tries to access the same objects
at the same time. Therefore, safety and liveness issues must be solved by applying good de-
sign principles (see for instance [44]). We provide code samples in our technical report [46,
Sec. 7.6.1].

Resulting Context

Some events occurring in the maintenance protocol execution might be interesting to the appli-
cation built on top (e.g., when the Local Node is connected or disconnected from the network).
In this case, Application Notification can be used to inform the application.

Rationale

Using Self Maintenance corresponds to the way overlay networks are being modeled from
a system’s perspective. It is the nodes that join and leave the network, and it is the
nodes, and not protocols, which send ’alive’ and other control messages. Furthermore, using
Local Node as Message Handler plus Self Maintenance encapsulates the Local Node completely.

Local Node resolves all forces stated.

1. The protocol logic of each node is encapsulated in the node object itself.

2. Using Self Maintenance, only the nodes are active in the system, making it easy to
understand the dynamics of the network.

3. The Local Node runs its maintenance protocol periodically.

The solution has the following favorable qualities:

1. Encapsulation: The dynamics are encapsulated in the Local Node object.

2. High cohesion: Because everything is encapsulated in the Local Node object, this leads
to high cohesion.

3. Understandability: It is easy to understand where and when each node runs its mainte-
nance protocol.

The solution has the following liabilities:

• Flexibility: It is not easy to change the protocol or use different protocols for different
tasks. If this is needed, Separate Protocol might be the better choice.

• Extensibility: The protocol cannot be extended easily, because the whole protocol is
regarded as one block, rather than different protocols for different tasks.
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Known Uses

Unfortunately, we have not seen this pattern being used in other systems. More often, Separate
Protocol was applied. However, in the case that the maintenance algorithm can be triggered
at a constant time interval per Local Node, it can be very beneficial.
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6 Conclusions

In this paper, we presented a pattern language for overlay networks. Although many of the
design issues can be addressed by simple adaptations of well-known patterns, we identified
several new solutions that we suggest as proto-patterns. We implemented all of these proto-
patterns in our own peer-to-peer system, a distributed storage system. This practical experience
confirmed that the proto-patterns address the design issues of overlay networks effectively and
lead to a clear software design.

We believe that our pattern language is helpful for both developers new to peer-to-peer
systems as well as for experienced peer-to-peer programmers, who will find a collection of
familiar ideas generalized to patterns.
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