
Verification Condition Generation for
Permission Logics with

Abstract Predicates and Abstraction Functions

Stefan Heule, Ioannis T. Kassios, Peter Müller, and Alexander J. Summers

ETH Zurich, Switzerland
stheule@ethz.ch,

{ioannis.kassios,peter.mueller,alexander.summers}@inf.ethz.ch

Abstract. Abstract predicates are the primary abstraction mechanism
for program logics based on access permissions, such as separation logic
and implicit dynamic frames. In addition to abstract predicates, it is
useful to also support classical abstraction functions, for instance, to en-
code side-effect-free methods of the program and use them in specifica-
tions. However, combining abstract predicates and abstraction functions
in a verification condition generator leads to subtle interactions, which
complicate reasoning about heap modifications. Such complications may
compromise soundness or cause divergence of the prover in the context of
automated verification. In this paper, we present an encoding of abstract
predicates and abstraction functions in the verification condition genera-
tor Boogie. Our encoding is sound and handles recursion in a way that is
suitable for automatic verification using SMT solvers. It is implemented
in the automatic verifier Chalice.

1 Introduction

Program logics based on access permissions, such as separation logic [22] and
implicit dynamic frames [25] are the foundation of many program verifiers for
heap-manipulating programs [3, 9, 13, 19, 24]. They associate an access permis-
sion with each heap location and enforce that a method accesses a location only
if it has the permission to do so. To enable modular verification, each method
specification states which permissions the method requires from its caller (in its
precondition) and returns to its caller (in its postcondition). Upon a call, the
caller relinquishes the required permissions (we say the caller exhales the pre-
condition) and transfers them to the callee (the callee inhales them). Conversely,
when a method terminates, the method exhales its postcondition, while its caller
inhales it. This technique simplifies framing; as long as a method holds on to
the permission for a location (that is, does not exhale it), no other method can
access that location and, thus, its value remains unchanged.

Abstract Predicates. Enumerating all locations for which a method requires
or returns permissions is not possible for recursive data structures. For instance, a

class List {
var value: int;
var next: List;

predicate valid { acc(value) && acc(next) && (next 6= null ⇒ next.valid) }

function length(): int
requires valid;
ensures result > 0;

{ unfolding valid in next = null ? 1 : 1 + next.length() }

function itemAt(i: int): int
requires valid && 0 ≤ i && i<length();

{ unfolding valid in i = 0 || next = null ? value : next.itemAt(i-1) }

method set(i: int, v: int)
requires valid && 0 ≤ i && i < length();
ensures valid && length() = old(length()) && itemAt(i) = v;
ensures ∀ j in [0..length()-1] • i 6= j ⇒ itemAt(j) = old(itemAt(j));

{
unfold valid;
if (i = 0) { value := v; }
else { call next.set(i-1, v); }
fold valid;

}
}

Fig. 1. A Chalice [19] implementation of a singly-linked list. Methods have precon-
ditions (keyword requires) and postconditions (keyword ensures). In addition to
regular methods, Chalice supports side-effect free functions, which may be used in
specifications. An access permission to a field o.f is denoted by acc(o.f), which corre-
sponds to o.f 7→ _ in separation logic. The Chalice conjunction && treats permissions
multiplicatively (i.e., requiring the sum of the permissions in each conjunct), similarly
to the separating conjunction ∗ of separation logic. The recursive abstract predicate
valid represents the memory locations of the list structure. The unfold and fold
ghost statements replace a predicate by its body and vice versa. The ghost expression
construct unfolding. . .in is intuitively analogous to an unfold-fold block and can be
used in functions and in specifications, where statements cannot occur.

method that traverses a linked list, such as method itemAt in Fig. 1 would require
permission to access this.value, this.next, this.next.value, this.next.next,
and so on. To solve this problem, Parkinson and Bierman [21] introduced ab-
stract predicates. The definition of an abstract predicate declares a predicate
body that may contain permissions to concrete heap locations, constraints on
their values, and possibly further predicate instances. Due to this recursion,
abstract predicates potentially represent permission to an unbounded number
of heap locations. For instance, the abstract predicate valid in Fig. 1 repre-
sents the permissions for value, next and, if next is non-null, the permissions in
next.valid. Just as with permissions to field locations, a method may require
predicate instances from its caller. It may access a location if it possesses the
corresponding permission, either directly or as part of a predicate instance. For

2

example, method itemAt requires the predicate instance valid to get access to
all locations of the list.

In this paper, we employ ghost locations to describe the predicates held for
a particular object (cf. Sec. 3). Holding an instance of a predicate is represented
by holding permission to its ghost location. We use the term location for both
concrete field locations and predicate locations. We use the term permission to
describe permissions to both kinds of locations.

Abstraction Functions. Abstraction functions [12] map the concrete repre-
sentation of a data structure (say, a linked list) to an abstract value (say, a
sequence). Specifications can then be expressed in terms of the abstract val-
ues, which is important for information hiding. In the form of side-effect-free
inspector methods (pure methods), abstraction functions are a key ingredient of
contract languages such as Eiffel, JML, Spec#, and .NET CodeContracts, which
support runtime assertion checking in addition to static verification.

Many permission logics express data abstraction via parameterised abstract
predicates whose parameters represent abstracted values of a data structure and
whose bodies relate the concrete representation of the data structure to these
abstract values. However, there are several advantages to supporting classical
abstraction functions in addition to abstract predicates: (1) Most data struc-
ture implementations include side-effect-free inspector methods (or functions in
Chalice) such as itemAt and length in our example. It is convenient to re-use
these methods in specifications; side-effect free methods can be encoded natu-
rally as abstraction functions [6]. (2) Declaring abstraction functions does not
affect the signatures and definitions of abstract predicates. This allows additional
abstractions to be added to a library during maintenance, without changes to the
abstract predicates and, thus, re-verification of existing client code. (3) Specifica-
tions written without abstraction functions typically use logical variables for the
parameters of an abstract predicate, which can then be used in postconditions to
describe how the abstract value has changed. Finding witnesses for these logical
variables is not supported well by SMT solvers1. By contrast, abstraction func-
tions can be used within old expressions to refer to their pre-state evaluation,
avoiding logical variables.

For concreteness, we present our approach in the context of Chalice, which
provides only non-parameterised predicates. In this setting, the primary role
of predicates such as valid in Fig. 1 is to abstract over access permissions,
whereas functions such as length and itemAt abstract over the contents of a data
structure. Our results apply also to frameworks with parameterised predicates.

Contributions. The main contribution of this paper is an encoding of abstract
predicates and abstraction functions for verification condition generators that
is sound and amenable to automation via SMT solvers. The challenge that we
1 Existing tools that support rich parameterised predicates use custom reasoning en-
gines based on symbolic execution, rather than verification condition generation.

3

solve is how to avoid giving uncontrolled recursive axioms to the prover, which
may cause the prover to diverge because it instantiates these axioms indefinitely
in a so-called matching loop.

It is tempting to generate such recursive axioms in three situations: (1) to
define which permissions are part of a recursive predicate instance (for example,
to determine which permissions are transferred when it is exhaled), (2) to define
the values of recursive abstraction functions, and (3) to define which heap loca-
tions the value of a recursive abstraction function depends on (for example, to
determine whether a heap update affects the value of a function application).

The key insight motivating our solution is that, although each of the three
questions above are in principle concerned with a statically unbounded number
of unrollings of a recursive definition, the unrolling of these definitions is typically
only relevant up to the depth at which the program to be verified (including its
contracts) has explicitly inspected the corresponding data structure, at either
the current or an earlier program point. That is, our solution focuses on ensuring
that recursively-defined information is made available for predicate and function
bodies which have been syntactically observed at some program point up to
the current one. By applying this idea to the various aspects of the encoding
problem, our solution expresses each proof obligation in a way that does not
give recursive definitions to the prover that can be unfolded in an unbounded
manner. Our solution employs some existing ideas, but combines and enhances
them in an original way to achieve the first verification condition generator that
avoids matching loops and is sound2. In particular, we present a novel encoding of
those permissions inside a predicate that are needed to express proof obligations.

We present our solution for implicit dynamic frames [25], but it also applies
to other permission logics, such as separation logic. We have implemented our
solution in a new version of Chalice.

Outline. Secs. 2 and 3 present our solution informally. The details of our en-
coding are explained in Secs. 4 and 5, and we argue why our solution is sound
in Sec. 6. We discuss related work in Sec. 7 and conclude in Sec. 8.

2 Abstract Predicates
In this section, we describe informally how our technique avoids the first form
of uncontrolled recursive axioms described above. The other two forms are dis-
cussed in the next section.

2.1 Folding and Unfolding
Whenever a method attempts to access a location o.f , the verifier needs to check
whether the method has the access permission for o.f , either directly or as part
2 Some verifiers based on symbolic execution [24, 14] support both abstract predicates
and abstraction functions, and many more support only the former (e.g., [9, 13, 3]). In
the equally important domain of verification condition generation, there is currently
no solution that supports both features, is sound, and avoids matching loops.

4

of a predicate. However, since the definitions of predicates may be recursive, a
verifier cannot determine precisely which permissions are part of a predicate;
since the recursion is (statically) unbounded, it is neither possible to inline the
predicate’s body fully, nor is it useful to let an SMT solver reason directly about
recursive definitions because the solver might unfold a recursive axiom infinitely
often in a matching-loop and therefore not terminate.

Many verifiers [13, 19, 24] work around this problem by distinguishing be-
tween a predicate and its body. Instead of letting the SMT solver expand predi-
cate definitions automatically, the verifier expands only specific predicate defini-
tions at specific points in the program execution. Unfolding replaces a predicate
by its body, while folding has the inverse effect. Until a predicate has been un-
folded, the permissions and information implied by the predicate’s body are
generally not made available to the prover.

We call a permission that has not been folded into a predicate instance direct;
all other permissions are called folded. Accessing a field, unfolding a predicate,
or exhaling a predicate all require appropriate direct permissions.

Folding and unfolding transforms the problem of deciding how deeply to
unroll a recursive definition to the problem of how deeply to unfold a predicate
instance. Some tools provide heuristics for inferring unfold and fold operations in
certain common situations, while others require programmers to indicate these
operations through ghost statements. For the approach presented in this paper,
it is irrelevant whether the unfold and fold operations are indicated explicitly or
inferred, as long as there are specific points in the program execution at which
the transition between a predicate and its body takes place. In our examples,
we use explicit unfold and fold ghost statements for clarity.

The method set in Fig. 1 illustrates these concepts. The method body first
inhales its precondition; in particular, the predicate valid. After the inhale, it
holds valid as a direct predicate, whereas the permissions to value and next (as
well as the fields of the rest of the list) are folded. Consequently, before accessing
these locations, the method must unfold valid. The fold statement at the end of
the method is necessary to regain direct permission to valid, which gets exhaled
as part of the postcondition.

Folding and unfolding allows one to phrase most proof obligations in terms
of direct permissions. For instance, the prover does not have to unroll recur-
sive predicate definitions to determine whether a method may access a field or
transfer a permission to another method since the corresponding proof obliga-
tions require direct permissions, and appropriate fold or unfold operations may
be necessary to show this. However, abstraction functions require the verifier to
track also certain folded permissions, as we will explain shortly.

The key insight mentioned in the introduction can now be made more con-
crete: although some information about the contents of recursively-defined pred-
icates and functions is essential, we need concern ourselves only with those predi-
cate instances whose bodies were unfolded earlier in the program text. Therefore,
we can avoid dependencies on arbitrary unrollings of recursive definitions, and
instead focus on recording detailed information for precisely these instances.

5

2.2 Exhaling Predicates

When a method releases the permission to a location, the verifier must invalidate
any information about the location’s value. Since another method may obtain
the permission and modify the location, it would be unsound to retain any
information. Verification condition generators invalidate information about a
location by assigning an arbitrary value to the location; we say that the verifier
havocs the location.

It is not useful to havoc locations immediately when the direct permission to
the location is released; in particular, when the location is being folded inside
a predicate. The reason for this is that abstraction functions provide a way of
inspecting memory locations whose permissions have been folded. For instance,
the function itemAt yields the value of a value field whose permission is folded
(possibly deeply) into the valid predicate. If we were to havoc locations upon
fold then a function that inspects a location after is has been folded into a
predicate would return an arbitrary value, which would defeat the purpose of
abstraction functions. For instance, the call to itemAt in the postcondition of set
would yield an unknown value, and the postcondition could not be verified. To
avoid this problem, it is necessary to havoc locations not when their permissions
get folded inside a predicate but only when the predicate is subsequently exhaled;
that is, when the method releases the folded permissions to these locations.

As we explained above, a verification condition generator based on SMT
solvers cannot precisely determine all the permissions that are (transitively)
folded into a predicate and, thus, which locations to havoc when the predicate
is exhaled. We solve this dilemma by havocing very aggressively. Each time a
predicate is exhaled, we havoc all memory locations for which the method does
not retain a direct permission. This solution is sound since it havocs all locations
whose permissions are folded, not just the ones that are inside the predicate
instance given away. We will discuss in the next subsection how to make this
crude approximation more precise, by recovering location values to make the
verification sufficiently complete.

2.3 Framing of Locations—Known-Folded Permissions

Aggressively havocing all locations to which the program does not hold direct
permission is, by itself, too incomplete to be useful. When the verifier has ob-
served the value of a heap location earlier in the program, it is important to
preserve this information even though the permission to this location is now
folded inside a predicate instance. This is a particular case of our earlier insight:
it is not all folded permissions that we care about, but those (a) for which the
program previously held the direct permission and (b) which are folded inside
a predicate instance that has been retained up to the current program point.
We call these permissions the known-folded permissions of a predicate instance.
In our encoding, in addition to recording direct permissions, we record for each
predicate instance those locations to which the predicate holds known-folded
permission.

6

valid

next value

next.valid

next value

next.valid

inhale valid

exhale valid

unfold valid

...

...
fold valid

next value

next.valid

...

exhale valid

unfold valid valid

Fig. 2. Each trapezoid depicts all permissions held at a particular point in a method
invocation, where the white regions contain direct permissions and the gray areas
depict folded permissions. Known-folded permissions appear in the light gray region
with dashed border (connected to the predicate they belong to).

Known-folded permissions provide an under-approximation of folded permis-
sions, which (unlike the latter) can be precisely tracked in our encoding. A pred-
icate instance contains known-folded permission to a location exactly when the
direct permission to the location was folded (possibly deeply) inside the pred-
icate instance at some earlier program point, either through a fold statement
or through an unfolding expression. Because the known-folded permissions are
always a subset of the folded permissions held by the current method, it is sound
to havoc only those locations when exhaling a predicate for which the method
holds neither direct nor known-folded permission.

Fig. 2 illustrates how fold, unfold, exhale, and inhale operate on some of
the possible states of the valid predicate. The upper row depicts states in which
the values of fields value and next have not been observed; in the upper right
trapezoid, the permissions in the body of valid are folded, but not known-folded.
In the lower row the values of these fields have been observed, and permission
to them is either direct or known-folded, which protects the fields from being
havoced by an exhale.

As an example, consider two distinct List objects x and y, for which the
valid predicate is held at the beginning of the execution of the following code:

var i: int := unfolding x.valid in x.value;
var j: int := unfolding y.valid in y.value;
call y.set(0,10);
assert unfolding x.valid in (i = x.value); // succeeds
assert unfolding y.valid in (j = y.value); // correctly fails to verify

The unfolding expressions at the beginning of the code make the permissions
to x.value and y.value known-folded. The call to y.set exhales y.valid and
thereby removes the permission to y.value from the known-folded permissions,
since y.value is folded inside y.valid. It havocs the state, but preserves locations
for which the method holds known-folded permission, in particular, x.value.
This makes the first assertion at the end of the code succeed, while the second
assertion correctly fails to verify.

7

3 Abstraction Functions

The distinction between direct, known-folded, and other folded permissions avoids
the need for recursive axioms in our encoding of recursive predicates. In this
section, we explain how we handle the other two forms of problematic axioms
mentioned in the introduction, namely the axioms for the definition and the
framing of abstraction functions.

3.1 Definition of Abstraction Functions

An abstraction function is typically encoded as an uninterpreted function sym-
bol together with a definitional axiom that relates the function symbol to the
definition of the abstraction function. For recursive functions, this axiom is re-
cursive and might lead to a matching loop if the instantiation of the axiom is not
controlled. We avoid this matching loop by controlling when a recursive function
definition may be expanded by the SMT solver; this is achieved via appropriate
matching patterns (triggers) that control how the SMT solver instantiates uni-
versal quantifiers [7]. Our approach lets the prover unroll the function definition
only one level deep, and it triggers additional unrollings as we explain next.

A typical recursive abstraction function such as length in Fig. 1 requires
permission to the locations of the data structure in its precondition (often via a
predicate) and recurses on the data structure to compute its result. In particular,
the body of such a function typically unfolds a predicate from its precondition
before recursing on the next node in the structure via the same function (cf.
length). The definitional axiom of such a function relates a function applica-
tion that depends on a predicate to an expression that depends on the locations
whose permissions are folded inside the predicate’s body. Therefore, an instan-
tiation of the axiom will typically only provide useful information if the verifier
has observed some information about these contents. For instance, if a method
does not have direct or known-folded permission to o.next and o.next.valid
then it cannot observe the values of o.next and o.next.length(). Without any
knowledge about these values, the definitional axiom for o.length() is not useful.

This observation leads us to tie the instantiation of function definitions to
the occurrence of predicate instances which have been unfolded at some earlier
point in the program code. Essentially, we again follow our key insight; rather
than concerning ourselves with arbitrary unrollings of a function’s definition,
it is enough to ensure that they are unrolled to at least the depth that the
corresponding predicate instances have been unfolded (at some program point
up to the current one). Thus, the instantiation of axioms proceeds in lockstep
with the method’s traversal of the corresponding data structure. To implement
this, our approach generates an appropriate trigger whenever fold and unfold
operations are encountered (see Sec. 5.1 for details).

The following example illustrates our approach. Assume that unroll is an
additional method of class List. The method precondition mentions length,
which allows the prover to expand the recursive definition only one level deep,
which avoids a matching loop. Therefore, the prover cannot conclude from the

8

precondition that next.next is null. However, since the method cannot observe
the value of next.next at this point (the permission is folded inside valid),
the information would be useless anyway. The second unfold statement unfolds
the predicate instance required by the function application next.length() and,
therefore, generates the trigger to instantiate the definitional axiom for this
application, which provides the information to verify the assertion.

method unroll()
requires valid && length() = 2

{
unfold valid;
unfold next.valid;
assert next.next = null;

}

The approach outlined above avoids matching loops by controlling the in-
stantiations of recursive definitional axioms. It supports the typical uses of ab-
straction functions, but does not handle recursion that is not tied to the traversal
of a data structure (e.g., a factorial function). The automatic handling of such
functions is beyond the scope of this paper.

3.2 Termination of Abstraction Functions

A common problem in allowing arbitrary recursive definitions in specifications,
is the potential for introducing unsoundness to the logic, via non-well-founded
recursion. For example, the definition of a function f() = 1 + f() is inconsistent
and therefore must be forbidden.

The usual approach to handling this problem is to insist on the existence of a
well-founded termination measure for each recursive function definition provided.
One particular termination measure that is tied to predicates is the number of
(direct or folded) predicate instances held in the state. That is, among other
measures, a function passes the termination-check if the verifier can show that
every recursive function call is made within the body of an unfolding expression
(that is, after unfolding a predicate instance). The number of predicate instances
held defines a well-founded measure because every predicate instance can be
unfolded only finitely many times. Only finitely many fold statements can ever
be encountered during a program run and, thus, any point in the program at
which an infinite predicate instance is assumed to be held is actually unreachable.
For a more detailed and formal discussion of the treatment of termination issues
here, we refer the reader to [26].

Note that this treatment of predicates does not rule out cyclic heap struc-
tures. For instance, doubly-linked structures can be easily handled with fractional
permissions, while cyclic lists can be handled (as in separation logic) using list
segment predicates3.

Concerning our running example (Fig. 1), the termination measure described
above permits the definitions of the functions length and itemAt; the recursive
calls are inside unfolding expressions.
3 See the online tool [1] for further examples, including a cyclic list.

9

3.3 Framing of Abstraction Functions

Since an SMT solver cannot unroll a recursive function definition arbitrarily
deeply, it cannot use the function definitions to frame function applications,
that is, to determine whether a heap update potentially affects the value of
a function application or not. Therefore, an encoding of abstraction functions
requires a framing axiom in addition to the definitional axiom, to express the
circumstances under which the value of a function application can be framed.

Intuitively, the value of a function can be framed if none of the heap locations
on which the function depends are modified. These locations are a subset of the
locations for which the function requires permission in its precondition. However,
if the function requires a recursive predicate then this set cannot be determined
precisely by the verifier or the SMT solver.

Similarly to existing tools such as Spec# [2] and VeriCool [24], we handle this
problem by abstracting over the locations folded inside a predicate instance, via
versioning. The idea is as follows: if we can be sure that a predicate instance has
been neither unfolded nor exhaled since an earlier program point, we know that
all locations nested inside the predicate are unmodified. We label the predicate
with the same version to identify this case.

Predicate versions are recorded as the values of predicate locations in the
heap, which are treated like field locations: in particular, we retain knowledge of
a predicate version so long as we hold either direct or known-folded permission to
the predicate location. When we hold neither direct nor known-folded permission
to such a location, it will naturally be havoced during an exhale. In addition,
the version is havoced when the predicate is unfolded. Thus, our solution for
function framing is closely tied to the framing of locations.

The details of our handling of functions are given in Sec. 5, but the framing
axiom is, informally, as follows: two applications of the same function in two
states evaluate to the same value if the receiver and all arguments of the function
applications are the same and the two states agree on the values of all locations
to which the function precondition requires direct permission; in particular, this
includes the versions of the required predicates.

To illustrate our approach, consider again two distinct List objects x and y
for which the valid predicate is held at the beginning in the following code:

var i: int := x.itemAt(0);
var j: int := y.itemAt(0);
call y.set(0,10);
assert x.itemAt(0) = i; // succeeds
assert y.itemAt(0) = j; // correctly fails to verify

The exhale operation of the method call gives away y.valid, thereby havocing
the version of that predicate. The predicate x.valid is not affected, and keeps
the same version, which allows the prover to correctly verify the first assertion,
using the framing axiom. The second assertion is not necessarily true, and indeed
fails to verify because the version of y.valid has changed.

10

4 Encoding of Abstract Predicates

In this and the next section, we present an encoding of our solution in the
verification condition generator Boogie [16]. Verification with Boogie consists of
three steps: (1) a translator translates the source program and its specification
into the Boogie language, (2) Boogie computes verification conditions, and (3) an
SMT solver attempts to prove the verification conditions. Here, we focus on how
the translator encodes abstract predicates without giving recursive definitions
or axioms to the prover. The complementary encoding of abstraction functions
will be presented in the next section.

Heaps and Permission Masks. Our encoding represents the current heap
with a variable Heap, which is a map from locations to values. The value of a
location e.f is denoted by Heap[e, f]. Permissions are tracked using permission
masks, which map locations to booleans. The variable Mask stores the current
mask, which represents the direct permissions held by the current method.

We also store information about predicate instances in the heap. For an
abstract predicate p, we use (ghost) predicate locations e.p to store an integer-
mask pair. Such a pair represents the predicate version (as an integer) along with
a mask representing the known-folded permissions under the predicate instance
e.p; we call this the predicate mask. We write Heap[e, p].version to denote the
version of predicate instance e.p, and Heap[e, p].mask to denote the corresponding
predicate mask for known-folded permissions. At the beginning of verifying a
method body, we assume all predicate masks to be empty masks (denoted by ∅),
that is, to map all locations to false.

We say that a heap H ′ is a framed heap for a state with heap H and mask
M , written H ′ M≡ H, if H and H ′ agree on the location values for which the
method has direct or known-folded permission in that state, and for all other
predicate locations, the predicate mask in H ′ is empty. More precisely:

1. For all locations o.l for which M [o, l] is true, H ′[o, l] = H[o, l].
2. For all predicate locations o.p for which M [o, p] is true, and for all locations

o′.l′ for which H[o, p].mask[o′, l′] is true, H ′[o, l] = H[o, l].
3. For all predicate locations o.p, if H ′[o, p] has not been constrained by either

of the two cases above, then H ′[o, p].mask = ∅.

An important property of our encoding is that the known-folded permissions
of a predicate instance e.p include the known-folded permissions of predicates
instances in the body of e.p (informally, the predicate masks record informa-
tion transitively). This property is maintained as part of our encoding of a fold
statement, and when evaluating an unfolding expression. Storing transitive in-
formation in this “flattened” form means we never need to recursively traverse
predicate masks in our encoding. The operation of “copying” information from
one predicate mask to another is encoded via assumptions and quantifiers, but
we represent it here using a disjunction operator on masks. We denote the dis-
junction of two masks by (M1

∨
M2) and define it pointwise:

11

(M1
∨

M2)[e, l]⇔ (M1[e, l] ∨M2[e, l])

Encoding of Exhale. As explained in Sec. 2, the exhale operation aggressively
havocs the heap and preserves information only for those locations to which
the method holds direct or known-folded permission after the exhale. In the
encoding of exhale (see top of Fig. 3), this is reflected by introducing a fresh
heap H ′, assuming that H ′ is a framed heap for the state after the exhale and
then making H ′ the new current heap. The actual exhaling is encoded via an
auxiliary operation exhale′, which is explained next.

[[exhale A]] = var H′ ; havoc H′ ; [[exhale′ A]] ; assume H′ Mask
≡ Heap ; Heap := H′

[[exhale′ e]] = assert bbecc
[[exhale′ A1 && A2]] = [[exhale′ A1]] ; [[exhale′ A2]]
[[exhale′ e ⇒ A]] = if (bbecc) { [[exhale′ A]] }
[[exhale′ acc(e.f)]] = assert Mask[bbecc, f] ; Mask[bbecc, f] := false
[[exhale′ acc(e.p)]] = assert Mask[bbecc, p] ; Mask[bbecc, p] := false
[[exhale′ unfolding e.p in e′]] = [[inhale body(bbecc, p)]]false

Heap[bbecc,p].mask ;
assert bbe′cc

Fig. 3. Encoding of exhale. We use A to denote general assertions, which may include
permissions, and e to denote expressions without any permissions. To emphasize the
uniform treatment of field permissions and predicates, we write acc(e.p) to denote the
predicate instance e.p, but simply write e.p in our examples for brevity. [[_]] denotes
the translation of source statements to Boogie instructions. In the encoding, we treat
exhale and exhale′ like statements even though they cannot occur in source pro-
grams. bb_cc denotes the translation of source expressions to Boogie expressions; it is
straightforward and therefore omitted. Both translation functions refer to the global
variables Heap and Mask. body() yields the declared body of a predicate instance.

The exhale′ operation recursively traverses the assertion to be exhaled, as-
serting all logical properties, and removing the required permissions from the
current mask (see Fig. 3). Exhaling a boolean expression amounts to asserting
that the expression holds. Exhaling a conjunction results in exhaling the two
conjuncts sequentially; the side-effects of these exhales are accumulated. Impli-
cations are handled via if-statements in the Boogie output. Exhaling permission
to a field or predicate location amounts to checking that the permission is cur-
rently held, and then removing it. Exhaling an unfolding expression is the most
complicated case. First, the body of the unfolded predicate is inhaled, but using
the predicate mask for the predicate instance instead of the Mask variable (since
the permissions encountered are known-folded and not direct permissions). The
translation of inhale used here is described below. Finally, the body of the
unfolding expression is asserted to be true.

12

Encoding of Inhale. The translation of inhale is given in Fig. 4. In contrast
to exhale, the translation of inhale is parameterised by a mask because it some-
times operates on primary and sometimes on known-folded permissions stored in
a particular predicate mask. The boolean parameter b of the translation function
indicates whether the inhale is of direct permissions or not. inhale traverses the
assertion to be inhaled, assuming all logical properties, and adding the required
permissions to the current mask. The assumption of ¬M[bbecc, f] in the case of

[[inhale e]]bM = assume bbecc
[[inhale A1 && A2]]bM = [[inhale A1]]bM ; [[inhale A2]]bM
[[inhale e ⇒ A]]bM = if (bbecc) { [[inhale A]]bM }
[[inhale acc(e.f)]]bM = assume ¬M[bbecc, f] ; M[bbecc, f] := true
[[inhale acc(e.p)]]bM = M[bbecc, p] := true ;

#if (¬b) { M := M
∨

Heap[bbecc, p]].mask }
[[inhale unfolding e.p in e′]]bM = #if (b) { [[inhale body(bbecc, p)]]false

Heap[bbecc,p].mask ; }
assume bbe′cc

Fig. 4. Encoding of inhale. The #if -conditionals are resolved by the translator.

inhaling field permissions encodes the fact that we cannot hold permission to the
same location twice. This assumption is not made for permissions to predicate
locations, since it is possible to hold the same predicate more than once4.

When exhaling or inhaling an unfolding expression for a predicate instance
e.p, the permissions in the body of e.p become known-folded permissions. There-
fore, they get inhaled into the predicate mask of e.p. In this case (which is
indicated by b being false), inhaling a predicate permission e.p “copies” any
known-folded permissions from the inner predicate instance to the outer; that
is, we flatten the known-folded permissions under e.p. Due to this flattening, an
unfolding expression affects permissions only when we are inhaling direct per-
missions (that is, b is true). If we are already inhaling known-folded permissions,
any permissions folded under an inner predicate instance are already part of the
known-folded masks of the outer predicates.

Encoding of Source Statements. Chalice statements are generally desugared
into appropriate combinations of inhale and exhale statements. For example, a
(void) method call is simply encoded with an exhale of the precondition followed
by an inhale of the postcondition (see Fig. 5). The havocing of heap locations
that takes place as part of the exhale takes care of invalidating any information
that the called method may have changed.

fold and unfold statements do not require a general havoc of the heap, since
no permissions are actually released to another method; they are simply reorgan-
4 In this paper, this can only happen for trivial predicates without permissions, but
the assumption is important once fractional permissions are employed.

13

isations of permissions amongst predicate instances. Therefore, their translations
use exhale′. In addition to swapping a predicate instance with its body, fold
statements record known-folded permissions, and unfold statements havoc the
version of the predicate instance.

We verify loops as usual by using a loop invariant and verifying the loop body
independently of the surrounding code. To access locations in the loop body, the
verifier requires the appropriate permissions in the loop invariant. To commu-
nicate knowledge about known-folded locations between the loop body and the
surrounding context, one can use an unfolding expression in the invariant. Our
encoding of unfolding then ensures that the necessary known-folded permissions
are added when the loop invariant is evaluated.

[[call e.m()]] = [[exhale pre(bbecc, m)]] ; [[inhale post(bbecc, m)]]true
Mask

[[fold e.p]] = [[exhale′ body(bbecc, p)]] ; [[inhale body(bbecc, p)]]false
Heap[bbecc,p].mask ;

[[inhale acc(e.p)]]true
Mask

[[unfold e.p]] = [[exhale′ acc(e.p)]] ; havoc Heap[bbecc, p].version ;
Heap[bbecc, p].mask := ∅ ; [[inhale body(bbecc, p)]]true

Mask

Fig. 5. Encoding calls, fold, and unfold statements. pre() and post() yield the pre-
condition and postcondition of a method with the appropriate substitutions.

5 Encoding of Abstraction Functions

In this section, we present our encoding of abstraction functions, building upon
the handling of predicates and known-folded permissions in the previous section.
The presented approach is based on uninterpreted functions and axioms, but
again avoids presenting the prover with recursive axioms that can be applied in
an unbounded way. This is achieved by a combination of versioning predicate
instances, and careful selection of axiom triggering strategies [7].

5.1 Function Definitional Axiom

Each Chalice function is represented by a corresponding uninterpreted function
in the generated Boogie program, in which the heap, the receiver as well as
parameters to the Chalice function are turned into explicit parameters. For ex-
ample, function length() from Fig. 1 gives rise to the following uninterpreted
Boogie function declaration (by convention, we prepend a # symbol to the func-
tion name, to differentiate it from its Chalice counterpart):

function #length(heap: HeapType, this: ref) returns (int);

14

In Boogie, it is standard to specify properties of an uninterpreted function via
a definitional axiom. In the common case that this axiom introduces universal
quantifiers, the prover needs a strategy to decide when to instantiate the axiom.
For example, consider the “direct” translation of the Chalice definition of func-
tion length(), as a Boogie axiom (we assume here that H, M, and this range over
heaps, masks, and references, respectively):
axiom ∀ H, M, this • M[this,valid] =⇒
#length(H,this) = (H[this,next] 6= null ? (1 + #length(H,H[this,next])) : 1)

This axiom states that, provided that the function’s precondition holds, a func-
tion application is always equal to its body. Allowing the prover to instantiate
this axiom in arbitrary ways, would lead to two problems. First, the prover
might instantiate it with a heap and a mask that belong to different execution
states. Second, since the function is recursive, the prover might instantiate its
definitional axiom indefinitely in a matching loop.

To solve the first problem, our encoding introduces a boolean uninterpreted
function state which takes a heap and a mask as arguments. The function ap-
plication state(Heap, Mask) is assumed to yield true in our encoding every time
a state is changed, for instance, after an exhale is translated (but not for the
intermediate states during the translation). All axioms that quantify over a heap
and mask use the state function as a premise. We write ∀ (H,M) • P(H, M) to
abbreviate ∀ H,M • state(H, M) ⇒ P(H, M).

To solve the second problem, we make use of Z3’s and Boogie’s facility to as-
sociate universal quantifiers with sets of syntactic triggers. Triggers are matching
patterns denoted by the syntax {t1,t2,...}, where the terms t1, t2, etc. men-
tion the variables bound by the universal quantifier. When the SMT solver has
syntactically seen expressions e1, e2, etc. that match a trigger (modulo known
equalities), it may instantiate the universal quantifier with the sub-expressions
that correspond to the bound variables in the trigger.

In the following, we explain how we encode abstraction functions and use
triggers in a way that allows the prover to obtain sufficient information from the
recursive definitions of the functions, without having the possibility of entering
a matching loop.

Limited and Unlimited Functions. To avoid matching loops in the defini-
tional axioms for abstraction functions, we adopt a technique employed in other
tools [17]. For each Chalice function we introduce two Boogie functions (called
the limited and unlimited functions). Their logical meanings are intuitively the
same, but their practical use in axioms and triggers is different. For example,
for the length() function, we introduce the limited form (which we identify by
adding a ’ to the name) along with the original definition:
function #length(heap: HeapType, this: ref) returns (int);
function #length’(heap: HeapType, this: ref) returns (int);

Now, we define the definitional axiom above as follows: every occurrence of
a function application which comes from the body of the function definition,

15

is replaced by its corresponding limited function. The unlimited form of the
function is used in the trigger set for the axiom (and is still used in the translation
of source-level Chalice expressions). For example, for length we generate the
following definitional axiom (all our axioms that quantify over both the heap and
mask include state(H,M) as part of each trigger, but we omit this for conciseness):
axiom ∀ (H,M), this • {#length(H,this)} M[this,valid] =⇒
#length(H,this) = (H[this,next] 6= null ? (1 + #length’(H,H[this,next])) : 1)

Because the body of this axiom does not introduce any new applications of the
unlimited function #length(), an instantiation of the axiom does not give rise
to any further instantiations; the potential matching loop is avoided. In order to
give a meaning to the #length’() function, the following addition axiom is used,
which also does not introduce any new applications of the unlimited function
#length().
axiom ∀ (H,M), this • {#length(H,this)} #length’(H, this) = #length(H, this)

Effectively, this allows to prover to unroll a function’s definition exactly once for
any given occurrence of that function in the source program.

Controlled Triggering. To implement the idea presented in Sec. 3.1 of allow-
ing the prover to unroll a function definition when the corresponding predicate
has been folded or unfolded at some point in the program, we proceed as follows.
We introduce a boolean function for every predicate, to be used as a trigger for
functions that depend on it. We illustrate this using the predicate valid:

function #validtrig(this: ref) returns (bool);

This function indicates that the corresponding predicate has been folded or
unfolded in some state for the given receiver. This is introduced in our encoding
by instrumenting the translation of fold e.valid and unfold e.valid with an
extra assumption of #validtrig(e).

Additionally, we are interested in unrolling the definitional axiom for a func-
tion application with a given list of arguments only if that application for the
same arguments has been mentioned somewhere in the program. Otherwise, the
prover cannot learn useful information by expanding the function’s definition.
To this end, we add another boolean function along with an axiom:

function #lengthtrig(this: ref) returns (bool);
axiom ∀ (H,M), this • {#length’(H, this)} #lengthtrig(this)

We use the function application #lengthtrig(e) in triggers to indicate that
length has been applied to the receiver e in some state. The axiom shown encodes
this meaning.

We now add the following trigger set to our definitional axiom of length.
It allows the prover to instantiate the definitional axiom in the cases described
in Sec. 3.1, but still does not cause matching loops. Note that this trigger cor-
responds to our “key insight” in the introduction since it allows the prover to

16

expand recursive definitions up to the depth at which the program has inspected
the data structure.

{ #lengthtrig(this), #validtrig(this) }

Such a trigger set is introduced for each predicate in the precondition of the
function that also gets unfolded in the body of the function before any recursive
function calls that occur. If the predicate is not unfolded, or the recursive calls
are not in the body of the corresponding unfolding expression, the recursion of
the function is not tied to traversing the predicate over the data structure, and
the additional trigger is not added.

5.2 Function Framing Axiom

To frame functions, we employ an additional axiom which essentially states that,
if no part of the state mentioned in a function’s precondition differs between two
heaps, then the function’s value is also the same in the two heaps. As we discussed
in Sec. 3.3, we use predicate versions to abstract over the locations folded into
the predicate instance, thus avoiding giving recursive predicate definitions to the
prover. For example, the framing axiom for length() is as follows:

axiom ∀ (H1, M1), (H2, M2), this • {#length’(H1,this),#length’(H2,this)}
H1[this,valid].version = H2[this,valid].version =⇒
#length’(H1, this) = #length’(H2, this)

This axiom is phrased in terms of the limited function #length’, but by the axiom
relating unlimited and limited functions presented in the previous subsection, it
can also be used to frame unlimited functions.

Note that our use of predicate versioning is asymmetrical; if a predicate
version is the same in two heaps, then we assume the contents of the predicate
instance to be the same, but not vice versa. For example, unfolding and folding a
predicate (without modifying any contents) will yield a new version (see Fig. 5).
However, our function definitional axiom will be triggered in this case, deduc-
ing the relationship to the locations immediately contained inside the predicate
instance. If these are known to be preserved, then the prover can conclude that
the function value has not changed.

6 Soundness

In this section, we give an informal justification for the soundness of our ap-
proach. As we have explained in Sec. 3.2, the definitional axioms for the Boogie
functions that we use in our encoding are consistent. The soundness arguments
in this section furthermore justify (1) our approach to function framing, and
(2) our approach to heap location framing.

17

6.1 Soundness of Function Framing

To justify our approach to function framing, we use the following definition:

Definition 1 (Permission and Heap Footprints). The permission footprint
of a predicate in a heap is the set of heap locations defined by recursively evaluat-
ing the predicate definition in the given heap, and collecting the locations whose
permissions are required by the definition.

The permission footprint of a function in a heap is the set of heap locations
defined by evaluating the function’s precondition in the given heap, and collecting
the locations whose permissions the precondition requires, as well as the permis-
sion footprints of all predicates the precondition requires in that evaluation.

The heap footprint of the predicate or function in a heap is the set of location-
value pairs such that the location is in the corresponding permission footprint,
and the value is the value stored in the heap at that location.

It is sufficient to observe the following:
(1) Evaluation of a function application (at runtime) reads only locations in

its permission footprint. This property is enforced by a well-formedness check for
each function definition, as is standard for logics supporting user-supplied defi-
nitions. In particular, a function application’s value is a function of its receiver,
arguments, and its heap footprint. Function bodies can also apply functions, but
the checking of preconditions ensures that heap footprints for recursive applica-
tions are always subsets of the original one.

(2) Like functions, predicate definitions are checked to ensure that they read
only heap locations that fall within their permission footprint. Thus, the per-
mission and heap footprints of a predicate are fixed by the permissions folded
inside of it. Since we havoc version numbers whenever a predicate is unfolded
or exhaled, the version of a predicate location at two different program points
can be known to be the same only if the heap footprint of the predicate is also
identical at both points.

(3) Consider a situation in which our framing axiom allows the prover to
equate a function value between two program points. By (1), we know that
it is sufficient to know that the function’s heap footprint remains the same
between both points. The heap footprint is made up of locations to which explicit
permission is required in the function’s precondition (which the axiom requires
to have the same values), and the heap footprints of those predicate locations
that the function’s precondition requires (which the axiom requires to have the
same versions). By (2), the function value is the same in both states.

6.2 Soundness of Heap Location Framing

For the soundness of heap location framing, the argument depends on a precise
definition of the notions of folded and known-folded locations for predicate in-
stances. We address here the soundness of our use of predicate masks to record
the known-folded permissions per predicate instance. Our encoding maintains
an invariant regarding these masks, but its intuition is simple; we record and

18

remember known-folded permissions until the corresponding predicate instances
are lost, and make sure they are recorded in the masks of all predicate instances
that enclose the locations. It is also important for our argument that we do
not selectively record the known-folded permissions from a predicate’s body, but
always record everything that the body depends on at a time.

We need to define several notions to explain our argument. Since many of
our definitions treat both types of location uniformly, we use the meta variable
l to range over both predicate and field location names.

Definition 2 (Folded Locations).

– In a heap H, a location o′.l′ is directly folded inside a predicate location
o.p, written directFolded(o, p, o′, l′, H), if evaluating the body of the predicate
instance o.p in H results in directly requiring permission to the location o′.l′.

– In a heap H, a location o′.l′ is folded inside a predicate location o.p, written
folded(o, p, o′, l′, H), as defined by (the least fixpoint of):

folded(o, p, o′, l′, H) ⇔ (directFolded(o, p, o′, l′, H) ∨
∃o′′, p′′.(directFolded(o, p, o′′, p′′, H) ∧ folded(o′′, p′′, o′, l′, H)))

We now provide the definitions which characterise the auxiliary information that
our encoding records about known-folded permissions.

Definition 3 (Recorded Predicate Bodies and Known-Folded Permis-
sions).

– In a heap H, a predicate location o.p has its body recorded, as defined by:

bodyRecorded(H, o, p) ⇔ (∀o′, l′.(directFolded(o, p, o′, l′, H) ⇒
H[o, p].mask[o′, l′] ∧
(l′ is a predicate location ⇒ H[o′, l′].mask ⊆ H[o, p].mask))

– In a heap H, a location o′.l′ is known-folded inside a predicate location o.p,
written knownFolded(o, p, o′, l′, H), as defined by (the least fixpoint of):

knownFolded(o, p, o′, l′, H) ⇔ bodyRecorded(H, o, p) ∧
(directFolded(o, p, o′, l′, H) ∨
∃o′′, p′′.(directFolded(o, p, o′′, p′′, H) ∧ knownFolded(o′′, p′′, o′, l′, H)))

Our definition of bodyRecorded requires not only that every location directly
required by a predicate body is stored in the corresponding predicate mask, but
also that the recorded information is transitive; any information in predicate
masks for nested predicate instances must be included in the level above (in
the definition, M ⊆ M ′ denotes that mask M ′ is true at least for the locations
for which M is true). Our definition of knownFolded insists on this organisation
of the information in predicate masks “all the way down”—all of the predicate
instances in between must also satisfy bodyRecorded. This definition of known-
folded locations approximates the folded locations for a predicate instance (the
definitions are similar, but knownFolded enforces extra constraints).

19

One of the properties we assume about the underlying methodology, is that
locations to which folded permission is held, never have their permissions also
in the direct mask. This is a special case of the more-general property that
permissions should never be forged/duplicated, but only transferred. Note that
this is a soundness property of the underlying semantic model.

Lemma 1 (Folded Locations cannot be in the Direct Mask). Before and
after every Chalice program statement, it holds that

∀o, p, o′, l′. (Mask[o, p] ∧ folded(o, p, o′, l′, Heap)) ⇒ ¬Mask[o′, l′]

Finally, we can state the invariant that describes how the information in our
predicate masks relates to the definition of knownFolded locations above:

Theorem 1 (Predicate Mask Permissions are Known-Folded Locations).
Our encoding preserves the following invariant:

∀o, p, o′, l′.(Heap[o, p].mask[o′, l′] ⇒
((Mask[o, p] ∨ ∃o′′, p′′.(Mask[o′′, p′′] ∧ knownFolded(o′′, p′′, o, p, Heap))) ∧
knownFolded(o, p, o′, l′, Heap)))

Proof Sketch. We show that the property is preserved across the four most
relevant operations concerning known-folded permissions: folding, unfolding, in-
haling, and exhaling predicate instances. For each operation, we assume the
invariant holds beforehand, and show that it holds afterwards. To do this, we
consider the cases in which Heap[o, p].mask[o′, l′] can newly have been made true
by the operation (in which case the consequent of the implication must also be
checked), as well as the cases in which the consequent of the implication may
have been falsified by the operation (in which case we must be sure that the
antecedent is also now false).

Folding o1.p1: Consider the set of locations directly required in the body of
o1.p1. Permissions to all of these locations are removed from Mask and added
to Heap[o1, p1].mask. Furthermore, any of these locations which are predicate
locations have their predicate masks copied into Heap[o1, p1].mask (cf. Fig. 3). In
particular, these operations result in bodyRecorded(Heap, o1, p1) holding. Finally,
Mask[o1, p1] is set to true. Since these operations only add to predicate masks,
they do not falsify any previous instances of knownFolded.

Considering the invariant, the antecedent Heap[o, p].mask[o′, l′] can newly
have been made true only in the case o = o1, p = p1 and for o′.l′ being one
of the locations directly folded in the body of o1.p1. For all such cases, we have
knownFolded(o1, p1, o′, l′, Heap) as required. On the other hand, since a set of lo-
cations is removed from Mask, we must also take care that the antecedent is not
falsified when o.p is one of those locations. However, since all such locations are
recorded in Heap[o1, p1].mask by the operation, the second disjunct can be shown
in these cases, taking o′′ = o1 and p′′ = p1.

Unfolding o1.p1: This operation sets Mask[o1, p1] to false, and removes any in-
formation associated with the predicate instance. In particular, Heap[o1, p1].mask

20

is set to false for all locations, which we write as ∅. Since we do not add
to any predicate masks, we cannot make the antecedent of the invariant true
in any new cases. Since we only remove information from the predicate mask
Heap[o1, p1].mask, the only instances of knownFolded that can be falsified by this
operation are those concerning locations known-folded in o1.p1 ; i.e., those o2.l2
for which knownFolded(o1, p1, o2, l2, Heap) holds (note that by Lemma 1, we know
that o1.p1 was not itself folded inside any predicate instance). Thus, considering
the consequent of the invariant, the only cases we need worry about are when
either o = o1 and p = p1 (in which case, the antecedent of the invariant is nec-
essarily false, since we reset the predicate mask to ∅), or o′′ = o1 and p′′ = p1.
In this latter case, unrolling the definition of knownFolded(o′′, p′′, o, p, Heap) in
the state before the operation, in combination with the fact that we record all
direct-folded locations from the body of o1.p1 in the Mask, provides the necessary
information to show that the invariant still holds.

Inhaling o1.p1: This operation simply sets Mask[o1, p1] to true, which cannot
falsify the consequent of the invariant, or make the antecedent newly true.

Exhaling o1.p1: This operation sets Mask[o1, p1] to false, and then generates

a “global havoc”, constrained by the assumption H ′ Mask≡ Heap. Let’s consider
the point just after this havoc operation (see Fig. 3), but before the new heap
H ′ is assigned to Heap (so that we have names for both the new and old heaps).
The havoc operation means that all predicate masks H ′[o.p].mask are set to
∅, except in the case that either Mask[o, p] still holds after the operation, or, for
some o′′.p′′, Mask[o′′, p′′]∧Heap[o′′, p′′].mask[o, p] holds. In particular, consider the
cases in which the antecedent of the invariant H ′[o, p].mask[o′, l′] could possibly
hold. This would require that H ′[o, p].mask 6= ∅, and, since nothing is added to
the predicate masks in the operation, also that Heap[o, p].mask[o′, l′] held. By the
argument above, along with the assumption of the invariant in the state before
the operation, we deduce that:

H ′[o, p].mask[o′, l′] ⇒
((Mask[o, p] ∨ ∃o′′, p′′.(Mask[o′′, p′′] ∧ knownFolded(o′′, p′′, o, p, Heap)) ∧
knownFolded(o, p, o′, l′, Heap)))

Thus, all we need to know in order to deduce that the invariant holds in the new
heap H ′ is that the occurrences of knownFolded mentioned here are still true for
H ′. This follows because, in both cases, the known-folded information is recorded
under a predicate instance to which direct permission is held. By the soundness
of the underlying permission logic, we know that the locations folded inside this
outer predicate instance cannot be modified, and thus, that the meanings of all
nested predicates are preserved. Furthermore, any predicate instances known to
be folded inside this outer instance must have their entire bodies recorded in the
corresponding predicate mask, and therefore, their meanings and directly folded
locations remain unaffected by the global havoc. Therefore, a simple induction
shows that knownFolded information is preserved in the new heap. �

21

Corollary 1 (Predicate Masks record only Folded Permissions). Before
and after the translation of every Chalice statement, the following property holds:

∀o, p, o′, l′. (Mask[o, p] ∧ Heap[o, p].mask[o′, l′] ⇒ folded(o, p, o′, l′, Heap))

By this corollary, which follows directly from Theorem 1, the locations framed
across a global havoc are always either locations to which direct permission is
held, or which are folded inside a predicate instance to which direct permission is
held; in both cases, the soundness of the underlying permission handling implies
that framing these location values is sound.

7 Related Work

Verification Condition Generation (VCG) is a popular technique for the construc-
tion of automated verifiers [2, 5, 10, 15, 16, 18]. The concept of abstract predicates
was introduced by [21] and it is used in separation logic [22] and implicit dy-
namic frames [25]. In VCG verifiers, abstraction functions are used together with
abstract predicates in Chalice [18] and VeriCool [25].

The VeriCool VCG implementation handles abstract predicates and abstrac-
tion functions soundly but, unlike our solution, introduces the possibility of
matching loops in the SMT solver. To assess whether matching loops are a
problem in practice, we took an example from VeriCool and translated it into
Chalice. We experimented with partial specifications by leaving out parts of the
main loop invariant. Such verification attempts are common when specifying
a program and refining its contracts until the verification succeeds. We found
that the verification time significantly increased for failed proof attempts (due
to partial specifications) from 2.3 minutes to up to one hour (at which point
we terminated the verifier). In some cases, removing logically redundant parts
of the specification also increased the verification time (to 16 minutes). These
are typical symptoms of matching loops. Our new version of Chalice verifies
the translated program in less than 20 seconds (with or without the redundant
specifications) and reports failed attempts for partially specified versions even
quicker. Details of these examples can be found at [1].

The previous Chalice encoding of predicates and functions is unsound. The
encoding considered only direct permissions and havoced the heap lazily, that
is, when permissions are (re-)obtained. This ensures that values of fields are
preserved, but also leaves invalid information in the heap, which caused the
unsound behaviour. In particular, folded locations were never havoced.

Symbolic execution is an alternative technique to VCG and is used in tools
such as [3, 9, 13, 14, 24]. Typically, symbolic execution engines use partial heaps
and other more elaborate data structures for the representation of the program
state. In the presence of such data structures, the problem treated in this paper
is not as intricate. In particular, symbolic execution engines can iterate through
their heap representation to determine folded permissions, whereas for VCG with
SMT solvers, this is not possible in the presence of recursive predicates. Symbolic
execution forgets heap information by chopping off the corresponding part from

22

the partial heap. Framing of function values can be sufficiently handled as in
VCG by predicate versioning.

The mechanism of predicate versioning typically seen in symbolic execution
engines differs from ours. A version in these systems is a snapshot of the under-
lying heap. If a predicate is unfolded and folded back immediately, its version
does not change and functions depending on that predicate are known to not
have changed their value either. In contrast, our approach always changes the
version number at unfold statements. However, the use of the definitional axiom
allows the prover to unroll the definition one level and prove function equiva-
lence nonetheless. In this way, we can achieve the same effect as in the predicate
versioning of symbolic execution, without using the symbolic execution-specific
data structures, which are unsuitable in a VCG setting. Versioning in Spec# [2]
is also similar to our predicate versioning, but more incomplete: the user must
explicitly mention the functions whose return values must be preserved.

Madhusudan et al. [20] present a logic to express complex properties of tree
structures, as well as a procedure that decides such properties efficiently. Their
core idea of expanding a recursive definition a statically known number of times
that depends on the program under verification is similar to ours. Compared to
our work, their logic is restricted in expressiveness: it tackles only tree struc-
tures and it considers only functions with a single tree argument and a specific
definition pattern.

Shape Analysis has been successfully applied in the context of three-valued
logic [23], and more recently adapted by many works to the setting of separation
logic [8], with the aim of inferring the recursive structure of the current heap.
The approach is typically based on a fixed set of recursive definitions, but some
techniques (e.g., [11]) aim also to infer these recursive definitions. The idea that
recursive definitions need only be handled up to a certain depth is central to
shape analysis, but the problem tackled is different; we do not aim at such
inference, while we do support arbitrary user-defined predicates and dependent
abstraction functions for use with our encoding.

Suter et al. provide a generic approach to constructing decision procedures for
recursive algebraic data types [27]. In particular, their work supports recursive
abstraction functions, to allow a more abstract representation of the underlying
data to be used in specifications. While their approach applies only to func-
tional data types, they employ a notion of partial evaluation of the abstraction
functions that is similar to our controlled instantiation of function definitions.
It would be interesting to see if their work, as well as work on shape analyses
could be adapted to our setting, perhaps to infer unfold and fold statements.

Triggering is a major challenge in the use of SMT solvers [7]. Our treatment
of function definitional axioms involves intricate triggering, which extends the
idea of limited functions [17].

23

8 Conclusion

In this paper, we have presented a VCG encoding technique for abstract pred-
icates and abstraction functions. To prevent matching loops one must refrain
from giving recursive definitions to the prover, even though in general the defi-
nitions of both predicates and functions can be recursive. We solve this challenge
with the insight that proof obligations can typically be discharged by allowing
the prover to unroll recursive definitions for the parts of the program data struc-
tures which have been observed by the program at some earlier point. Inspecting
the program text allows us to encode this with the use of trigger strategies as
well as the introduction of known-folded permissions.

Our encoding is, to the best of our knowledge, the only sound encoding of
both features that prevents matching loops. Our comparison with the VeriCool
VCG verifier shows that prevention of matching loops makes an important dif-
ference in the verification experience.

We have implemented the methodology for the more general setting of frac-
tional permissions [4] in a new version of Chalice5. We ran our implementation
on the Chalice test suite of 100 interesting examples and regression tests and ob-
served no unsoundness or incompleteness. The timings are predictable, even for
examples with faulty specifications. Our tool can be tried out online [1], where
we also provide several challenging examples.

Acknowledgements. We would like to thank Jan Smans for explaining to us
the operation of VeriCool and Malte Schwerhoff for various discussions and for
making our implementation available online. We are especially grateful to the
reviewers of FM 2012 for their insightful comments on an earlier version of this
paper, which lead to a major redesign and improvement of our technique.

References

1. Chalice (online). http://boogiebox2.inf.ethz.ch:1001/tuwin/tool/chalice.
2. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.

Specification and verification: The Spec# experience. CACM, 54(6):81–91, 2011.
3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-

sertion checking with separation logic. In FMCO, volume 4111 of LNCS, pages
115–137. Springer, 2006.

4. J. Boyland. Checking interference with fractional permissions. In SAS, volume
2694 of LNCS, pages 55–72. Springer, 2003.

5. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskał, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs, volume 5674 of LNCS. Springer, 2009.

6. Á. Darvas and P. Müller. Reasoning about method calls in interface specifications.
JOT, 5(5):59–85, 2006.

5 We provide an artifact containing a precompiled binary as well as the source code
of our verifier at http://www.pm.inf.ethz.ch/research/chalice/chalice.zip

24

7. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

8. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, volume 3920 of LNCS, pages 287–302. Springer, 2006.

9. D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java.
In OOPSLA, pages 213–226. ACM, 2008.

10. J. C. Filliâtre. Why: a multi-language multi-prover verification tool. Technical
Report 1366, LRI, Université Paris Sud, 2003.

11. B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recursion
synthesis. In PLDI, pages 256–265. ACM, 2007.

12. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

13. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS, volume 6461 of LNCS, pages 304–311. Springer, 2010.

14. I. T. Kassios, P. Müller, and M. Schwerhoff. Comparing verification condition
generation with symbolic execution: an experience report. In VSTTE, volume
7152 of LNCS, pages 196–208. Springer, 2012.

15. K. R. M. Leino. Specification and verification of object-oriented software. In
Marktoberdorf International Summer School 2008, Lecture Notes, 2008.

16. K. R. M. Leino. This is Boogie 2. Working Draft. Available at http://research.
microsoft.com/en-us/um/people/leino/papers.html, 2008.

17. K. R. M. Leino and R. Monahan. Reasoning about comprehensions with first-order
smt solvers. In SAC, pages 615–622. ACM, 2009.

18. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, volume 5502 of LNCS, pages 378–393. Springer, 2009.

19. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
Chalice. In FOSAD V, volume 5705 of LNCS, pages 195–222. Springer, 2009.

20. P. Madhusudan, X. Qiu, and A. Stefanescu. Recursive proofs for inductive tree
data-structures. In POPL, pages 123–136. ACM, 2012.

21. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, pages
247–258. ACM, 2005.

22. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS. IEEE Computer Society Press, 2002.

23. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In POPL, pages 105–118. ACM, 1999.

24. J. Smans, B. Jacobs, and F. Piessens. VeriCool: An automatic verifier for a concur-
rent object-oriented language. In FMOODS, volume 5051 of LNCS, pages 220–239.
Springer, 2008.

25. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, volume 5653 of LNCS, pages 148–172.
Springer, 2009.

26. A. J. Summers and S. Drossopoulou. A formal semantics for isorecursive and
equirecursive state abstractions. Technical Report 773, ETH Zurich, 2012.

27. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In POPL, pages 199–210. ACM, 2010.

25

