
Sound reasoning about unchecked exceptions

Bart Jacobs1 Peter Müller2 Frank Piessens1

1Katholieke Universiteit Leuven
Belgium

{bartj,frank}@cs.kuleuven.be

2Microsoft Research, Redmond
USA

mueller@microsoft.com

Abstract

In most software development projects, it is not feasi-
ble for developers to handle explicitly all possible unusual
events which may occur during program execution, such as
arithmetic overflow, highly unusual environment conditions,
heap memory or call stack exhaustion, or asynchronous
thread cancellation. Modern programming languages pro-
vide unchecked exceptions to deal with these circumstances
safely and with minimal programming overhead. However,
reasoning about programs in the presence of unchecked ex-
ceptions is difficult, especially in a multithreaded setting
where the system should survive the failure of a subsystem.

We propose a static verification approach for multi-
threaded programs with unchecked exceptions. Our ap-
proach is an extension of the Spec# verification method-
ology for object-oriented programs. It verifies that ob-
jects encapsulating shared resources are always ready to
be disposed of, by allowing ownership transfers to other
threads only through well-nested parallel execution opera-
tions. Also, the approach prevents developers from relying
on invariants that may have been broken by a failure. We
believe the programming style enforced by our approach
leads to better programs, even in the absence of formal ver-
ification. The proposed approach enables developers using
mainstream languages to gain some of the benefits of ap-
proaches based on isolated sub-processes. We believe this is
the first verification approach that soundly verifies common
exception handling and locking patterns in the presence of
unchecked exceptions.

1 Introduction

In most software development projects, it is not feasi-
ble for developers to handle explicitly all possible unusual
events which may occur during program execution. To deal
with such events, modern programming languages provide
the mechanism of exceptions. This mechanism allows pro-

grammers to write code for the normal case and to centralize
the handling of many unusual events in one place, namely
the exception handler. Specifically, most programming lan-
guages provide try-catch statements or equivalent. If exe-
cution of the try block terminates due to an exception, the
catch block is executed and the overall try-catch statement
terminates normally. Some languages, including Java and
C#, also provide try-finally statements. The finally block
is executed after the execution of the try block, no matter
whether the try block terminates normally or exceptionally.
This facilitates for instance the disposal of resources. The
overall try-finally statement terminates normally if the try
block and the finally block terminate normally.

Some programming languages, particularly Java and
Spec# [18], distinguish between checked and unchecked ex-
ceptions. The compiler checks that for each checked ex-
ception that may occur in a given method, the method ei-
ther catches the exception or declares the exception in its
header (using a throws clause). Methods need not catch or
declare unchecked exceptions. Checked exceptions are typ-
ically used for expected, but rare errors, for instance, failure
to open a file. Unchecked exceptions are typically used in
the following situations:

1. in abnormal situations caused by bugs in the program
(for instance, null-pointer dereferencing or assertion
violation);

2. in unexpected situations that may occur at a large num-
ber of program points and that usually cannot be han-
dled locally by a method (for instance, out of memory
errors and asynchronous thread cancellation);

Making these exceptions checked would clutter up the code
with throws clauses since virtually any method potentially
contains a bug, runs out of memory, etc. In some program-
ming languages, in particular C#, all exceptions are effec-
tively unchecked.

Checked exceptions do not cause major problems for
program verification. Since they can be thrown only at cer-
tain known program points, verifiers can take the excep-

1



tional control flow into account [14]. In particular, excep-
tional postconditions [15] permit callers of a method to rea-
son about the exceptional termination of a call, and methods
can be required to preserve object invariants even in case a
checked exception occurs.

Even though program verifiers typically show the ab-
sence of unchecked exceptions of kind 1, verified programs
may still throw unchecked exceptions of kind 2. Proving
the absence of the latter kind is either too cumbersome (for
instance, proving the absence of out-of-memory errors en-
tails reasoning about resource properties and the garbage
collector) or not possible during modular verification (for
instance, asynchronous thread cancellation is triggered by
code that is outside the current module). Therefore, our
goal is to verify that a program does not throw unchecked
exceptions of kind 1, and that programmer-specified safety
properties, such as method contracts and in-line assertions,
hold. This verification should be sound, even if the program
throws unchecked exceptions of kind 2. It is crucial for the
verification to be modular, that is, to allow reasoning about
a class independent of its clients and subclasses. Modularity
is important to verify class libraries and for scalability.

We illustrate this challenge using the example in Fig. 1.
Objects of class Processor perform computations. When-
ever a processor allocates a resource, it is stored in a
ResourceTable together with the processor and a time
stamp. After the processing has terminated normally or
exceptionally, the finally block in method Process calls
method DisposeAll of class ResourceTable to dispose all
resources allocated by the terminating processor.

The third invariant of class ResourceTable expresses
that an element of array r is non-null if the corresponding
element of p is non-null. This invariant is used by method
DisposeAll to guarantee that the call r[i].Dispose() does
not throw a null-pointer exception.

Our example should not verify because it potentially
throws a null-pointer exception. Consider an execution
of method Process that calls Add. In method Add, the
call of the static property DateT ime.Now may cause a
StackOverflowException. In this case, method Add ter-
minates exceptionally in a state where the resource table
does not satisfy its third invariant: p[i] is already non-null,
but r[i] may still contain null. Consequently, when the fi-
nally block of Process calls rt.DisposeAll, this method
may throw a null-pointer exception when it tries to dispose
r[i].

Separately dealing with each control flow path caused
by an unchecked exception is typically infeasible, since an
unchecked exception may occur at almost every program
point. For the same reason, it is in general not possible to es-
tablish exceptional postconditions or to re-establish object
invariants when an unchecked exception is thrown. Conse-
quently, our example verifies in existing program verifiers,

class Resource {
public void Dispose() { /* . . . */ }
}

class ResourceTable {
Processor[]! p := new Processor[16];
DateT ime[]! t := new DateT ime[16];
Resource[]! r := new Resource[16];

invariant p.Length = t.Length;
invariant p.Length = r.Length;
invariant ∀i : 0 ≤ i < p.Length ∧ p[i] 6= null⇒ r[i] 6= null;

public void Add(Processor! pp, Resource! rp) {
for(int i := 0; i < p.Length; i := i + 1)

if(p[i] = null) { // found empty slot
p[i] := pp;
t[i] := DateT ime.Now;
r[i] := rp;
return;
}

/* resize arrays and add data */
}

public void DisposeAll(Processor! pp) {
for(int i := 0; i < p.Length; i := i + 1)

if(p[i] = pp) {
p[i] := null;
r[i].Dispose();
}

}
}

class Processor {
ResourceTable! rt := new ResourceTable();

public void Process() {
try {

// do some processing
Resource! r := new Resource();
rt.Add(this, r);
// do some processing
} finally {

rt.DisposeAll(this);
}
}
}

Figure 1. Implementation of a resource table
and its client in a notation similar to Spec#.
Exclamation points mark non-null types. For
instance, Processor! is the type of non-null
references to Processor objects. A reference
of type Processor[]! points to a non-null array,
but the array elements may be null. We omit-
ted Spec#’s unpack and pack statements,
but assume that objects are unpacked be-
fore their fields are updated. All methods re-
quire implicitly that their receiver is consis-
tent, that is, satisfies its invariant.

2



which is unsound. For instance, ESC/Java [14] only consid-
ers unchecked exceptions that are propagated by a method,
and the Spec# verifier Boogie [1] ignores exceptional con-
trol flow altogether.

A naive solution to this soundness problem is not to
assume anything about the program state upon entry of a
catch or finally block. With this solution, a program veri-
fier would not assume the invariant of rt to hold upon entry
of the finally block in method Process. Consequently, the
call to DisposeAll would not verify because the method
(implicitly) requires the invariant of its receiver to hold.

Whereas this naive solution is sound, it does not permit
verification of common programming patterns, in particular,
two idioms that the C# designers found important enough
to provide special syntax for: the using block and the lock
block. The statement

using (o) { S }

is equivalent to

try { S } finally { o.Dispose(); }

In general, o.Dispose() relies on o being in a consistent
state. However, this may not be assumed with the naive
solution. The statement

lock (o) { S }

is equivalent to

Monitor .Enter(o);
try { S } finally {Monitor .Exit(o); }

(assuming o is side-effect-free). Our verification methodol-
ogy for programs that use locks [11] requires that when a
thread releases the lock of an object o, o is accessible by the
thread and o is consistent. Again, both requirements cannot
be shown with the naive solution.

To be able to support common programming idioms, a
verification methodology must be able to prove that certain
objects that are manipulated in the try block are accessi-
ble and consistent upon entry to a catch or finally block.
In this paper, we propose a static verification methodology
for multithreaded programs that is sound in the presence of
unchecked exceptions and handles the above idioms.

Outline. This paper is structured as follows. Sec. 2 pro-
vides the background on the Spec# verification methodol-
ogy needed in the rest of the paper. Sec. 3 introduces block
invariants, which enable the verification of simply try state-
ments, but cannot guarantee that objects are consistent and
accessible to the current thread. We address consistency
in Sec. 4 and accessibility in Secs. 5 and 6. We discuss
strengths and weaknesses of our methodology in Sec. 7 and
review related work in Sec. 8.

This paper provides an informal overview of the ap-
proach. A formalization and soundness proof is provided
in an accompanying technical report [13].

2 Verifying multithreaded programs

Our approach is based on an existing verification ap-
proach for multithreaded object-oriented programs [10, 11,
12]. To focus on the most important aspects of our method-
ology, we ignore inheritance in the following. However, an
extension is straightforward.

The Spec# methodology verifies the absence of data
races, deadlocks, and operation precondition violations
such as null dereferences, as well as compliance of the pro-
gram with programmer-specified correctness criteria such
as method specifications and object invariants.

The absence of data races is proved using additional state
variables, in particular a per-thread access set, and a global
shared set. Each of these state variables holds a set of object
references. An access of a field o.f by a thread t is illegal
if the target object o is not in t’s access set at the time of
the operation. The methodology ensures that two threads’
access sets are always disjoint; it follows that verified pro-
grams do not contain data races.

The state variables evolve as follows. Initially, each
thread’s access set is empty. When a thread creates a new
object, the object is added to the thread’s access set. Also,
when a thread acquires an object o’s lock, by entering a
synchronized (o) statement (in Java) or a lock (o) state-
ment (in C#), the object is added to the thread’s access set.
When the thread releases o’s lock, o is removed from the
thread’s access set.

To avoid a race between the thread that creates an ob-
ject and a thread that acquires the object’s lock, the pro-
gramming model imposes the rule that a thread may at-
tempt to acquire an object’s lock only if the object is in
the shared set. The shared set is initially empty. A thread
may transfer an object from its access set to the shared set
using the special command share o, which is important
for our verification methodology, but does not influence the
observable behavior of the program. After a thread shares
an object, it no longer has access to it, unless and until
it acquires the object’s lock, at which point the program-
ming language’s locking semantics ensures mutual exclu-
sion with other threads that acquire the lock.

The programming model deals with thread creation in
Java as follows. When a thread t starts a new thread t′ using
a call t′.start(), the Thread object t′ is transferred from the
access set of t to the access set of t′. In C#, when a thread t
starts a new thread t′ using a call

new Thread(o.M).Start();

3



object o is transferred from the access set of t to the access
set of t′.

The data race prevention approach is integrated with the
Spec# (a.k.a. Boogie) object invariant approach [2, 16], as
follows. Each object is implicitly extended with a boolean
ghost field called inv . Each class C may declare an object
invariant InvC . The approach ensures that in each program
state, for each object o of class C, we have

o.inv ⇒ InvC [o/this]

Object invariants are verified as follows. Each object’s inv
bit is initially false . The programmer may set o.inv to true
using the special command pack o, and to false using the
special command unpack o. pack o asserts o’s invariant;
an assignment to a field of o requires o.inv to be false .

Object invariants interact with locking as follows. The
approach enforces the property that in each program state,
if a shared object o is not locked by any thread, then its
inv bit is true . It does so by imposing the proof obligation
o.inv = true at each share o operation and at each exit
from a synchronized (o), resp. lock (o), block.

The approach prevents both lock re-entry and deadlocks
(defined as a group of threads where each thread is waiting
for another thread in the group to release a lock). It does so
by allowing the programmer to define a partial order among
shared objects, and considering a program legal only if it
acquires locks according to this partial order.

3 Block invariants

The basic observation underlying our methodology is
that upon entry to a finally block, we can assume those
properties that are true at every point during the try block.
Consider the two code snippets in Fig. 2. The code on the
left should verify because t is non-null throughout the try
block. Therefore, it can safely be assumed to be non-null
upon entry to the finally block. However, the code on the
right might throw a null-pointer exception in case method
Foo terminates exceptionally.

To support this kind of reasoning, we equip each try
block with a block invariant. This invariant must hold
throughout the try block. Consequently, it may be as-
sumed upon entry to corresponding catch and finally blocks.
Adding the block invariant t 6= null to the left try block in
Fig. 2 allows us to verify the finally block.

The block invariant of a try block must be preserved by
each operation performed during the execution of the block,
including operations performed by methods called from the
try block. For instance in our example, the block invariant
must also hold throughout the execution of Foo, which is
trivially the case because Foo cannot change the local vari-
able t. In general, block invariants that depend on heap lo-

T t := new T ();
try {

Foo();
t := new T ();
/* more code not

changing t */
} finally {

t.Dispose();
}

T t := null;
try {

Foo();
t := new T ();
/* more code not

changing t */
} finally {

t.Dispose();
}

Figure 2. Two examples illustrating block in-
variants. The example on the left verifies with
the block invariant t 6= null. The example on
the right may throw a null-pointer exception.

cations lead to proof obligations for all method implemen-
tations that are potentially called from a try block. In the
presence of dynamic method binding, such proof obliga-
tions are difficult to show modularly. However, modular
solutions are possible for certain block invariants:

First, block invariants that do not depend on heap loca-
tions cannot be violated by method calls. Therefore, they
can be verified modularly. We verify such a block invariant
I by asserting I immediately before the try block and af-
ter each statement of the try block. At the beginning of the
catch or finally block, we assume I . This solution allows us
to verify the left example in Fig. 2.

Second, if the frame properties of a method were re-
quired to specify even temporary modifications of fields,
one could use this information to show that block invari-
ants are preserved. Such frame specifications are supported
by JML’s assignable clauses [15]. For brevity, we do not
present the details of this approach here.

While block invariants allow one to verify many sim-
ple try statements, they are not powerful enough for the re-
source table example in Fig. 1. The finally block of method
Process relies on rt’s invariant. However, rt.inv is not a
block invariant, since rt.inv is temporarily modified dur-
ing the execution of rt.Add since Add unpacks its receiver
in order to modify its state (not shown in Fig. 1). Further-
more, using a block invariant to verify accessibility of an
object does not support temporary transfer of an object’s
accessibility to another thread. In the following sections,
we present solutions specific to object consistency and ac-
cessibility.

4 Dynamic checks for object consistency

The resource table example shows that object consis-
tency in general cannot be expressed as a block invariant
because methods called from try blocks unpack their re-
ceiver, thereby modifying its inv field. Consequently, when

4



such a method throws an exception before the receiver is re-
packed, the object invariant is violated upon entry to the fi-
nally block. Consequently, verifying modularly that certain
objects are always valid on entry to the finally block does
not seem possible. Therefore, in our proposal, we make it
possible to test consistency efficiently at runtime.

This is achieved by making the inv field explicit in each
object’s state such that programs can read its value. Up-
dates of the inv field are still permitted only through the
unpack and pack statements. The explicit inv field al-
lows catch and finally blocks to test whether they can rely on
an object’s invariant. For instance, the call rt.DisposeAll
in Process’s finally block (Fig. 1), can be guarded by an
if(rt.inv) statement.

As described in Sec. 2, the Spec# methodology for multi-
threaded programs enforces that if a shared object o is
not locked by any thread, then its inv bit is true . How-
ever, this requirement cannot be maintained in the pres-
ence of unchecked exceptions. Consider the statement
synchronized (o) { S } (in Java) or lock (o) { S } (in
C#). Acknowledging that it is not feasible to guarantee the
consistency of o on exit from S, we cannot guarantee that
o is consistent after its lock has been released. Therefore,
in our methodology, releasing an object’s lock no longer re-
quires that the object is consistent, and acquiring an object’s
lock no longer provides the guarantee that the object is con-
sistent. Therefore, after acquiring an object’s lock, consis-
tency of the object has to be checked at runtime before any
methods are called on the object that require its consistency.

Checking the explicit inv is more efficient than check-
ing the whole object invariant. The space overhead can be
reduced by introducing explicit inv fields only for those ob-
jects that are used in catch and finally blocks, in particular
the objects used as arguments in using and lock statements.

If the runtime test for object consistency succeeds, the
object invariant may be safely assumed in subsequent code
inside and outside the catch or finally block. If the test
fails, the invariant may not be assumed. In many such situa-
tions, it is possible to program conservatively, that is, with-
out relying on object invariants to hold. For instance, since
DisposeAll is used in a finally block, one might consider
rewriting the method such that it checks all conditions it re-
lies on at runtime. In particular, if r[i] is found to be null,
there is no resource to be disposed, and the method may
simply skip this array element. In other cases, the only ap-
propriate reaction is to throw another unchecked exception.
Most likely, subsequent code will not be able to use the in-
consistent object. Nevertheless, we believe it is important
that our methodology makes this potential problem of in-
consistent objects explicit and forces programmers to think
about appropriate reactions to failed checks. Programmers
not using Spec# can benefit from our methodology by using
it as a style guide in their programming language.

class Client {
public void main() {

Socket s := . . . ;
InputStream i := s.getInputStream();
try {

foo(i);
} finally {

s.close(); // Requires access to i
}

}
}

Figure 3. A Java example. Verification of
this example fails unless a make threadlocal
clause is added.

5 Thread-local objects

In order to prevent data races and object invariant viola-
tions, the verification methodology described in Section 2
considers an access of a field o.f by a thread t to be legal
only if o is in t’s access set.

If a finally block accesses an object o’s fields, verifying
the block requires proof that o is in the current thread’s ac-
cess set at the time of the access. However, the correspond-
ing block invariant is not supported by the two solutions de-
scribed in Sec. 3: The first solution does not apply because
methods called in the try block can change the accessibility
of o by transferring o to another thread; the second solution
does not apply because accessibility, like the inv field, if
often modified temporarily. In this section, we extend our
methodology to support block invariants about accessibil-
ity. In the next section, we further extend the methodology
to support temporarily transferring accessibility of an object
to another thread.

The problem with accessibility is illustrated by the ex-
ample (in Java) in Fig. 3. Method main obtains a Socket
object. At this point, the Socket object’s input stream object
is accessible. However, method foo might change the ac-
cessibility of i, which is, thus, not a block invariant. Since
the call to s.close requires s’s input stream i to be accessi-
ble, verification of the finally block fails.

To support block invariants about accessibility, we ex-
tend our methodology to prevent certain objects from
becoming inaccessible. We add a boolean ghost field
threadlocal to each object. We use this field to prevent
thread-local objects from becoming transferred to another
thread. This is achieved by imposing proof obligations on
all operations that transfer object ownership.

To manipulate the threadlocal field, we add a
make threadlocal clause to try blocks, specifying the
objects that should be thread-local for the duration of the

5



try block:

try make threadlocal o; { S1 } finally { S2 }

For such a try statement, we first assert that o is actu-
ally accessible. Before executing the try block, we set
o.threadlocal to true in order to prevent o from becom-
ing inaccessible. When the try block terminates (normally
or exceptionally), o.threadlocal is set back to its original
value. Since o cannot becoming inaccessible during the ex-
ecution of the try block, the accessibility of o is now a block
invariant, which may be assumed upon entry to the finally
block.

In our example, the clause make threadlocal s, i al-
lows us to verify the finally block. Note that if Foo at-
tempted to transfer accessibility of i to another thread, it
would require ¬i.threadlocal in its precondition. There-
fore, this attempt would become apparent as precondition
violation.

6 Ownership transfer between threads:
Structured concurrent programming

The extension of the previous section permits block in-
variants that enforce an object to be accessible throughout
a try block. However, it is often useful to temporarily pass
accessibility of an object to another thread. Such transfers
happen when threads are started or joined. In this section,
we further extend our methodology to enable this.

The example in Fig. 4 is an extension of Fig. 3. In this
extension, method main starts a new thread p inside the
try block. When p is started, accessibility of i is implic-
itly transferred to the new thread, and later transferred back
when p and the current thread join. Because of this own-
ership transfer, accessibility of i is not a block invariant.
Adding the clause make threadlocal s, i would fail be-
cause the Start method requires p.i to be non-threadlocal.

Our methodology enables temporary ownership transfer
to other threads by introducing support for structured con-
current programming. We could introduce a classical paral-
lel composition statement:

par { SA } { SB }

However, it is easier to introduce this functionality in the
form of a library method. For Java:

public class ParallelExecutionException {
public Throwable getBranch1Exception();
public Throwable getBranch2Exception();
. . .

}

public static void
executeInParallel(Runnable b1 , Runnable b2 )

{ . . . }

class IncomingPump extends Thread {
InputStream i;
public void run() {

pumpIncoming(i);
}
. . .

}

class Client {
public void main() {

Socket s := . . . ;
InputStream i := s.getInputStream();
try {

IncomingPump p := new IncomingPump();
p.i := i;
p.start(); // Transfers i to new thread
/* . . . */
p.join(); // Transfers i back

} finally {
s.close(); // Requires access to i

}
}

}

Figure 4. A Java example. Because of the
ownership transfer, accessibility of i is not a
block invariant. Consequently, verification of
the finally block fails.

6



For C#:

public delegate void Branch();

public class ParallelExecutionException {
public Exception Branch1Exception { get { . . . } }
public Exception Branch2Exception { get { . . . } }
. . .

}

public static void
ExecuteInParallel(Branch b1 , Branch b2 )

{ . . . }

The semantics of this method is that it executes b1 and
b2 in different threads (one of which is likely to be the
current thread, but this is unimportant). Control exits the
method only after control has exited both branches. Con-
trol exits normally only if control has exited both branches
normally; if either branch exits with an exception, the
ExecuteInParallel or executeInParallel call exits with a
ParallelExecutionException (but it first waits for the other
branch to exit).

Note that this method can be implemented easily
using the existing threading support, such as methods
Thread .start and Thread .join in Java. However, some
care must be taken to ensure that exceptions and thread in-
terruptions are handled correctly. Note also that the imple-
mentation of this method cannot itself be verified under this
approach; it is part of the “trusted base”.

Note also that the semantics of this method differs from
the Java Concurrency API’s

java.util .concurrent .ExecutorService.invokeAll

method in that the latter returns normally after all tasks have
completed, even if some of the tasks completed because of
an exception.

Verification of a call

ExecuteInParallel(o1.M1, o2.M2);

in C#, where the relevant method contracts are

void M1() requires P1; ensures Q1;

and
void M2() requires P2; ensures Q2;

proceeds by translating it to:

assert P1[o1/this];
assert P2[o2/this];
assert A(P1[o1/this]) ∩ A(P2[o2/this]) = ∅;
havoc A ∪ A(P1[o1/this]) ∪ A(P2[o2/this]);
assume Q1[o1/this];
assume Q2[o2/this];

where A(P ) denotes the required access set of P , defined
as

A(P ) = {o | (∀A • P (A)⇒ o ∈ A)}
that is, the set of objects that are in all access sets that sat-
isfy predicate P under the current heap. In other words, the
parallel execution of two calls is valid if both calls’ precon-
ditions hold and their required access sets are disjoint. The
effect of the parallel execution is encoded by havocing the
(fields of) the objects that are not in the current access set
or that are in either call’s required access set, and then as-
suming both calls’ postconditions. Furthermore, neither P1

nor P2 are allowed to mention the current thread identifier,
since one or both of the calls may be executed in a different
thread.

Verification of a call

executeInParallel(r1, r2);

in Java is analogous, except that verification is based on the
contracts of r1 and r2’s run methods, which must be iden-
tifiable statically.

Note that this verification approach is analogous to the
proof rule for parallel composition in separation logic [22].

Figure 5 shows a Java code fragment that uses an
executeInParallel call. It is part of a chat server. When
a client connection is received, incoming messages are re-
ceived in one thread and outgoing messages sent in another.
Closing the socket requires both the input stream and the
output stream to be accessible. This is proven thanks to
the make threadlocal clause. Note that contrary to the
Thread .start method, executeInParallel allows the ob-
jects whose accessibility is temporarily transferred to other
threads to be thread-local.

7 Discussion

Our methodology enables sound reasoning in the pres-
ence of unchecked exceptions using the following ingredi-
ents:

1. Simple block invariants allow us to verify many try
statements, where the block invariant does not depend
on heap locations. Such try statements are common
and can be verified with little overhead.

2. Since object consistency in general cannot be enforced
using block invariants, we provide a way to check con-
sistency efficiently at runtime. Although this is not en-
tirely satisfactory, it suffices to ensure soundness. It
shows that programmers need to insert code to track
object consistency manually.

3. Thread-local objects and structured concurrent pro-
gramming allow us to prove accessibility of objects in
catch and finally blocks.

7



class IncomingPump implements Runnable {
InputStream i;
public void run()

requires i is accessible and thread-local;
ensures i is accessible and thread-local;

{
ChatServer.pumpIncoming(i);

}
}

class OutgoingPump implements Runnable {
OutputStream o;
public void run()

requires o is accessible and thread-local;
ensures o is accessible and thread-local;

{
ChatServer.pumpOutgoing(o);

}
}

class Client {
public void main() {

Socket s := . . . ;
InputStream i := s.getInputStream();
OutputStream o := s.getOutputStream();
try make threadlocal i, o; {

IncomingPump ip := new IncomingPump();
ip.i := i;
OutgoingPump op := new OutgoingPump();
op.o := o;
ThreadingUtils.executeInParallel(ip, op);

} finally {
s.close(); // Requires access to i and o

}
}

}

Figure 5. Example of parallel execution, in
Java.

In this paper, we focus on making program verification
sound, but do not address other important issues such as
resource management and fault tolerance. In fact, our ver-
ification methodology does not guarantee that all allocated
resources are freed. In particular, when the explicit consis-
tency check in a finally block fails, typically an unchecked
exception is thrown without freeing resources first. To
achieve fault tolerance, it would be helpful to support se-
lective cancellation of high-level computations while pro-
tecting lower layers in a complex program.

A tentative suggestion for dealing with these issues is to
extend the programming language with the notion of sub-
systems that fail independently of each other. When a fail-
ure occurs (that is, an unchecked exception is thrown) in a

certain thread, that thread’s subsystem fails. At that point,
all threads currently running in that subsystem are aborted
up to the statement where the thread originally entered the
subsystem.

The resource leakage problem is dealt with as follows.
When a provider subsystem hands a handle to a resource al-
located in the provider subsystem to a client subsystem, the
handle is registered with the client subsystem. The provider
may associate a cleanup routine with a handle. When a
subsystem fails or otherwise finishes, all handles associated
with it are executed in the corresponding provider subsys-
tems. If the cleanup action fails, the provider subsystem
fails. This prevents resource leaks where the client sub-
system finishes but the resource remains allocated in the
provider subsystem and the provider subsystem outlives the
client subsystem for an extended period of time. We plan to
investigate this idea as future work.

8 Related work

Our methodology builds on the verification methodology
of Spec# [3, 17]. Although the Spec# language supports
checked and unchecked exceptions, the program verifier
Boogie ignores them. Therefore, verification is not sound
for executions where exceptions occur.

JML [15] provides elaborate support for specifying ex-
ceptional behavior of methods. JML requires a method
to preserve object invariants even if the method terminates
with an unchecked exception. Since unchecked exceptions
can occur at almost every program point, this requirement
essentially prevents temporary violations of object invari-
ants, which is overly restrictive. Our methodology imposes
weaker requirements at the price of runtime checks of ob-
ject invariants.

To our knowledge, the existing verifiers for Java and
JML do not fully support unchecked exceptions. ESC/Java
[8] only considers unchecked exceptions that are propa-
gated by a method, but ignores other sources of unchecked
exceptions such as object creation, which may cause out-of-
memory errors. This can lead to unsoundness. Jive’s [20]
handling of unchecked exceptions is not faithful to the JML
semantics. Whereas Jive proves the absence of exceptions
of kind 1 (bugs, see Sec. 1), exceptions of kind 2 are ig-
nored. To our knowledge, the same is true for KeY [4], Jack
[7], LOOP [5], and Krakatoa [19]. Although our methodol-
ogy is based on Spec#, the main ideas could be adopted by
Java/JML verifiers, especially, block invariants.

Recent work applies separation logic [25] to verification
of object-oriented programs [23, 24] and concurrent pro-
grams [22, 6]. However, we are not aware of any work that
applies separation logic to a language that includes excep-
tions.

We propose structured concurrent programming as a part

8



of our solution. While other approaches such as CSP [9] and
SCOOP [21] abandon threads altogether, we want to sup-
port Java-style programs with threads and explicit locking.
Therefore, we resort to structured concurrent programming
only in cases where try blocks need to transfer object own-
ership between threads.

9 Conclusion

We propose a methodology for modular static verifi-
cation of programmer-specified safety properties in mul-
tithreaded object-oriented programs. Our methodology is
sound in the presence of unchecked exceptions and soundly
verifies common exception handling patterns. The approach
enforces that programmers use structured concurrent pro-
gramming if they pass objects that are accessed in catch
blocks or finally blocks to other threads. Furthermore, it
enforces that programmers track the consistency of an ob-
ject at runtime, using an explicit inv bit, if they need to rely
on the object’s consistency after a failure or after acquiring
its lock.

As future work, we plan to investigate the subsystem idea
sketched in Sec. 7 and to implement our methodology in the
program verifier SpecLeuven [10].

Acknowledgments. The authors would like to thank the
members of the Formal Methods club at ETH Zurich for a
very entertaining and helpful discussion on this topic. Bart
Jacobs is a Research Assistant of the Fund for Scientific
Research - Flanders (F.W.O.-Vlaanderen) (Belgium). Peter
Müller’s work was carried out at ETH Zurich. It was funded
in part by the Information Society Technologies program of
the European Commission, Future and Emerging Technolo-
gies under the IST-2005-015905 MOBIUS project.

References

[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Proceedings of the Fourth
International Symposium on Formal Methods for Compo-
nents and Objects (FMCO 2005), volume 4111 of LNCS.
Springer, 2006.

[2] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology, 3(6):27–56, 2004.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In CASSIS 2004, volume
3362 of LNCS. Springer, 2004.

[4] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Veri-
fication of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

[5] J. v. d. Berg and B. Jacobs. The LOOP compiler for Java
and JML. In T. Margaria and W. Yi, editors, Tools and

Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2031 of Lecture Notes in Computer Sci-
ence, pages 299–312. Springer, 2001.

[6] S. Brookes. A semantics for concurrent separation logic,
2004. Invited paper, in Proceedings of CONCUR.

[7] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correct-
ness: A developer-oriented approach. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods: In-
ternational Symposium of Formal Methods Europe, volume
2805 of Lecture Notes in Computer Science, pages 422–439.
Springer-Verlag, 2003.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI 2002, volume 37 of SIGPLAN Notices, pages 234–
245. ACM, May 2002.

[9] C. A. R. Hoare. Communicating sequential processes. Com-
mun. ACM, 21(8):666–677, 1978.

[10] B. Jacobs. A Statically Verifiable Programming Model
for Concurrent Object-Oriented Programs. PhD thesis,
Katholieke Universiteit Leuven, Department of Computer
Science, 2007.

[11] B. Jacobs, K. R. M. Leino, F. Piessens, and W. Schulte.
Safe concurrency for aggregate objects with invariants. In
Proc. Int. Conf. Software Engineering and Formal Methods
(SEFM 2005), pages 137–146. IEEE Computer Society, sep
2005.

[12] B. Jacobs, K. R. M. Leino, and W. Schulte. Verification
of multithreaded object-oriented programs with invariants.
In M. Barnett, S. H. Edwards, D. Giannakopoulou, G. T.
Leavens, and N. Sharygina, editors, SAVCBS 2004 Work-
shop Proceedings, 2004. Technical Report 04-09, Computer
Science, Iowa State University.

[13] B. Jacobs, P. Müller, and F. Piessens. Sound reasoning
about unchecked exceptions: Soundness proof. Techni-
cal report, Katholieke Universiteit Leuven, 2007. Cur-
rently available at http://www.cs.kuleuven.be/

˜bartj/sefm2007/.
[14] J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting

ESC/Java and JML: Progress and issues in building and us-
ing ESC/Java2, including a case study involving the use of
the tool to verify portions of an Internet voting tally system.
In Construction and Analysis of Safe, Secure, and Interoper-
able Smart devices (CASSIS), volume 3362 of Lecture Notes
in Computer Science, pages 108–128. Springer, 2004.

[15] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, P. Müller, and J. Kiniry. JML reference manual. De-
partment of Computer Science, Iowa State University. Avail-
able from www.jmlspecs.org, 2006.

[16] K. R. M. Leino and P. Müller. Object invariants in dynamic
contexts. In M. Odersky, editor, ECOOP 2004, volume 3086
of LNCS, pages 491–516. Springer-Verlag, 2004.

[17] K. R. M. Leino and P. Müller. Object invariants in dy-
namic contexts. In M. Odersky, editor, European Confer-
ence on Object-Oriented Programming (ECOOP), volume
3086 of Lecture Notes in Computer Science, pages 491–516.
Springer-Verlag, 2004.

[18] K. R. M. Leino and W. Schulte. Exception safety for c#. In
Software Engineering and Formal Methods (SEFM), pages
218–227. IEEE Computer Society, 2004.

9



[19] C. Marché, C. Paulin-Mohring, and X. Urbain. The Kraka-
toa tool for certification of Java/JavaCard programs anno-
tated in JML. Journal of Logic and Algebraic Programming,
58(1–2):89–106, 2004.

[20] P. Müller, J. Meyer, and A. Poetzsch-Heffter. Programming
and interface specification language of JIVE—specification
and design rationale. Technical Report 223, Fernuniversität
Hagen, 1997.

[21] P. Nienaltowski. Practical framework for contract-based
concurrent object-oriented programming. PhD thesis, De-
partment of Computer Science, ETH Zurich, 2007.

[22] P. W. O’Hearn. Resources, concurrency, and local reason-
ing. To appear in Theoretical Computer Science; prelimi-
nary version in CONCUR’04.

[23] M. J. Parkinson. Local reasoning for Java. PhD thesis, Com-
puter Laboratory, Cambridge University, 2005.

[24] M. J. Parkinson and G. M. Bierman. Separation logic and
abstraction. In Proc. POPL, 2005.

[25] J. C. Reynolds. Separation logic: a logic for shared mutable
data structures, 2002. Invited Paper, Proceedings of the 17th
IEEE Symposium on Logic in Computer Science, pages 55-
74.

10


