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Preface 
 

The third instance of Verified Software: Theories, Tools and Experiments hosted two 
workshops:  

VS‐Theory (18th August) focuses on theoretical foundations of software verification. Topics 
range from the difficult and essential study of soundness of delicate proof methods, to the 
discovery of new specification techniques and proof methods, to dramatic simplification or 
unification of existing methods, to as yet unknown breakthroughs. The workshop was co‐
chaired by David Naumann, Stevens Institute of Technology, and Hongseok Yang, Queen 
Mary, University of London. 

VS‐Tools & Experiments (19th August) focuses on the development of verification tools and 
their experimental evaluation. Topics of interest include interfaces between tools, tool 
integration platforms, and case studies. The workshop was co‐chaired by Tiziana Margaria, 
University of Potsdam, and Rajeev Joshi, NASA/JPL Laboratory for Reliable Software. 

The program committees thoroughly reviewed all submissions and selected five papers for 
presentation at the Theory workshop and six papers for the Tools & Experiments workshop. 
These proceedings contain the accepted papers of both workshops. 

 

We would like to thank the authors of all submitted papers, whose work allowed us to 
compile an exciting workshop program. We are grateful to the program committee members 
for their careful reviewing and to the VSTTE organizers for their support. 
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Local Reasoning about Mashups

Philippa Gardner, Gareth Smith, and Adam Wright

Imperial College London, UK
{pg, gds, adw07}@doc.ic.ac.uk

Abstract. Web mashups are complex programs that dynamically compose XML data and
JavaScript code from many sources. Whereas data is sometimes formally specified by XML
schema, code never is. This makes it difficult to construct reliable software. Using local Hoare
reasoning, introduced in separation logic to reason about e.g. C programs and extended in con-
text logic to reason about e.g. the DOM library, we are able to reason about mashup programs,
proving that they are fault-free and providing specifications for code that are analogous to XML
schema for data.

1 Introduction

The growing ‘mashup’ phenomenon involves websites using DOM and JavaScript to create complex web
applications that integrate data and code from many sources. This leads to problems with reliability: a
website may change unaware that remote code depends on it; clients may misuse a service due to lack
of specification; or two sites may conflict due to incompatible use of resource. Building on the work
specifying the W3C DOM library for XML update [1, 2], we show how to give specifications to mashup
components. These specifications describe both the shape of the component’s data (analogous to XML
schema) and the behaviour of the code it provides (a kind of schema for code). With such specifications,
one can construct provably fault-free mashup programs, where services deliberately expose a subset of
their resource and clients ensure the integration of components is sound.

Our program reasoning is based on local Hoare reasoning, introduced in separation logic [3] to reason
modularly about C programs and extended in context logic [4] to reason about program modules such
as the DOM library. The work on DOM arose in two stages, by first giving a formal specification
of Featherweight DOM [1] and recently giving a complete specification of the fundamental interfaces
of DOM Core Level One [2]. This paper provides a first step to reasoning about programs which
call the DOM library, by applying the featherweight approach to reason about mashup programs. In
particular, we reason about Featherweight DOM combined with key features of JavaScript used in
mashup programs: mashup IO commands for accessing remote data and code, and dynamic functions
for sharing reusable, dynamic parametric code. Our dynamic functions precisely capture the dynamic
nature of JavaScript functions, an essential ingredient of mashup programs. Full JavaScript functions
are more complex, being truly higher-order and tightly integrated with JavaScript’s object system. We
do not work with higher-order functions or a full object system as our mashup application does not rely
on these features and they would increase the complexity of this presentation. In particular, higher-
order functions in local reasoning have so far proved to be particularly technically challenging [5]. Just
as the work on Featherweight DOM extended to the fundamental interfaces of DOM Core Level 1, we
hope the work presented here will provide a stepping stone to reasoning about substantial JavaScript
programs which call the DOM library.

We illustrate our ideas using a mashup example based on the popular Twitter Service. Twitter is a
service where users can share textual updates. Twitter exposes the update list as XML. Subsets of this
Twitter data are often embedded within other websites: for example, our research group homepage
might list all the recent Twitter updates people have targeted at us. Unfortunately, the update list
can be polluted with spam, which could therefore appear on our homepage. One solution is to use a
spam-checker service to filter known spammers from the list before we display it. This combination of
three elements (our homepage, the Twitter data, and the spam filtering system) forms a mashup.



Fig. 1. Twitter mashup example

Figure 1 illustrates this Twitter mashup example. It shows a browser displaying homepage.example.com.
The browser is directed by the code of homepage to get the data from homepage and Twitter, and
data and code from the spam-checker, and form the mashup. In reality, the data and code will be web
pages - a mixture of XML and JavaScript code, possibly spread over several files. In this paper, we
work with data and code that has already been parsed by the browser into DOM data and separate
code.

We reason about the homepage code. We assume published specifications for the data and code
being pulled from the web. The specification of the Twitter data is that it is a tree whose children are
a list of Twitter updates. The specification of the spam-checker is that its code requires a string (a
person’s name) as input and returns a boolean. With these assumptions and a suitable specification of
the homepage data, we can prove that the homepage code is fault-free and that the only change to the
homepage data is the addition of the Twitter updates. We require no additional assumptions about how
the spam-checker works. In future, we envisage using a combination of trusted published specifications
(say from a site such as Google), together with untrusted specifications which must be automatically
checked, and unspecified data and code which require automatically-generated specifications.

Related work: There are several pieces of work which apply techniques from formal methods to DOM
and JavaScript. The ideas in this paper build on Gardner, Smith, Wheelhouse and Zarfaty’s previous
work on formally specifying DOM [1, 2], which followed Thiemann’s work on a type safe DOM [6].
Our language is very much inspired by features from JavaScript. Maffeis, Mitchell and Taly have given
an operational semantics of JavaScript [7], which significantly aided our understanding of JavaScript.
There is various work on adding XML schema-like types to programming languages in general (e.g.
XDuce [8]), and JavaScript in particular (e.g. [9, 10]). We follow the view of Vitek [11], who has
provided a systematic analysis of JavaScript programs on the web and has come to the conclusion that
a type system for real world JavaScript is impractical. His solution is to work on a new programming
language Thorn [12]. Our solution is to work with local Hoare reasoning.

There is a recent body of work which restricts the mashup environment to make it safe to put
guest code on any web page: examples include Adsafe [13], Caja [14] and Subspace [15, 16]. As far
as we are aware there is no published work on using logical specifications to prevent runtime faults,
or determine mashup dependancies. There has been a wide body of work looking at reasoning about
traditional program modules using separation logic (e.g. [17, 18, 19]). This reasoning is course-grained,
in the sense that a client can reason about separate abstract data structures of the module (e.g. sets
or DOM trees). In contrast, our context-logic reasoning is fine-grained, in the sense that a client can
reason about subdata (e.g. subsets or DOM subtrees). See [20].



2 Reasoning about Featherweight DOM

The DOM API is a W3C standardised library [21] for manipulating tree data and is ubiquitous in
web programming: for example, all browsers provide an implementation of DOM for manipulating web
pages. Featherweight DOM, introduced by Gardner, Smith et al. [1], combines a simple imperative
WHILE language with a fragment of the DOM node interfaces which concentrates on the XML tree
structure. We summarise their work on using local Hoare reasoning based on context logic to provide
an axiomatic semantics of Featherweight DOM.
Data structure: Featherweight DOM programs manipulate a standard variable store and a unique
tree-shaped object heap, which reflects the structure of the documents being edited. The data structure
defining our tree-shaped heap consists of documents, trees, forests (lists of children of a tree), groves
(heaps of rooted trees) and strings:

Documents doc ::= #documentid[de]fid

Document Elements de ::= 〈t〉DE | ∅DE

Trees t ::= sid[f]fid | #textid[s]
Forests f ::= ∅F | 〈t〉F | f ⊗ f

Groves g ::= ∅G | 〈doc〉G | 〈t〉G | g ⊕ g
Strings s ::= ∅S | c | s · s

Unlike DOM, we do not associate trees with a specific owner document, so the #document node
just acts as a root container for a DOM tree. We do this only to give a compact presentation; it is
simple to add owned trees to our data structure and adapt our reasoning accordingly [2]. Notice that,
as well as a tree having an associated node identifier (id), its child list has a forest identifier (fid). These
identifiers are analogous to heap addresses and must be unique across the entire data structure. This
allows commands to address nodes directly, regardless of the current tree structure. Programs may
traverse the structure using commands such as getChildNodes, which returns the forest identifier of
a given node, or item which takes a forest identifier and an integer “n”, and returns the “n”th node of
the given forest. We also work with single-holed contexts for all these structures, defined as standard
with the holes annotated with the types of the removed data: the document type DOC, document
element type DE, tree type T, forest type F, grove type G and string type S.

We define an equivalence on this tree-structured data: the ⊗ operator is associative with identity
∅F; ⊕ is associative and commutative with identity ∅G; and · is associative with identity ∅S.

With this structure, we can represent a simple version of the Twitter update list. Written in XML,
it has the form

<twitter>

<update><user>Adam Wright</user> Hi</update>

<update><user>Gareth Smith</user> Hello</update>

</twitter>

In this paper, we do not work with XML directly but rather its“parsed” form, suitable for manip-
ulation by our Featherweight DOM programs. For example, the above XML Twitter example has the
parsed form:

twitterdata � #document1[twitter2[
update3[user4[#text5[Adam Wright]]6 ⊗ #text7[Hi]]8 ⊗
update9[user10[#text11[Gareth Smith]]12 ⊗ #text13[Hello]]14

]15]16

(1)

using a shorthand for string notation (F ·o ·o is rendered as Foo) and omitting type-annotations such
as 〈〉F when they are clear from the context. We also sometimes omit some unique identifiers, empty
strings within text nodes, and empty child lists of tree nodes.



Statement ::=
Id = IdExpr | Str = StrExpr

| Int = IntExpr | Bool = BoolExpr
| if ( BoolExpr ) then { Statement }

else { Statement }
| while ( BoolExpr ) { Statement }
| skip | Command
| Statement; Statement

Command ::=
Id = createElement(IdExpr, StrExpr)

| Str = getNodeName(IdExpr)
| Id = getParentNode(IdExpr)
| Id = getChildNodes(IdExpr)
| Id = appendChild(IdExpr, IdExpr)
| Id = removeChild(IdExpr, IdExpr)
| Id = item(IdExpr, IntExpr)
| ...

Fig. 2. Featherweight DOM Language

Language: The language of Featherweight DOM is given in figure 2.
With Featherweight DOM, we can write programs that construct and analyse DOM trees: for

example,

updates = getChildNodes(node);

thirdKid = item(updates, 2);

appendChild(publishHere, thirdKid)

This program first obtains the list of children for the tree whose top node is identified by node.
It then extracts the third child in this list, storing the identifier in thirdKid. It then moves the node
identified by thirdKid to be the last child of the node identified by publishHere. This program will
only run correctly on certain DOM trees. Such trees must contain a node identified by node which has
at least three children. Moreover, the third child must not be an ancestor of the node identified by
publishHere.
Assertion language: We define an assertion language to specify properties of the variable store and
our tree-structured heaps. Recall that assertion languages based on separation logic consist of three
parts: classical first-order logic assertions, separating assertions constructed from the commutative
separating conjunction ∗ and its right adjoint −∗, and heap-specific assertions such as ∅ denoting
the empty heap and x �→ y denoting a heap with exactly one cell. Here, we will use an assertion
language based on context logic, which has a similar structure. In our case, the separating assertions are
constructed from a non-commutative separating application ◦D, and its two separating right adjoints
◦−D and −◦. The assertion P ◦D Q specifies that a given tree can be split into two disjoint parts, a
subtree of type D satisfying Q and a tree context satisfying P . The assertion P ◦−DQ specifies a tree
such that, whenever a context satisfying P is placed around the given tree, then the result (of type D)
satisfies Q. The assertion P −◦Q specifies a context such that, whenever a subtree satisfying P is put
inside the given context, the resultsatisfies Q. We do not require a type annotation in the assertion
P −◦Q, since the type of the context satisfying P −◦Q implies the types of the data satisfying P and Q.

As our heap is given by a tree-shaped data structure, we give assertions that describe these trees.
Our tree assertions are constructed by lifting the structure of the data. For example, we can use these
assertions to define an update predicate that accepts only update nodes with a user node and #text
node as children:

update � update[user[#text] ⊗ #text] (2)

As before, we omit angle brackets when the meaning is clear. We also omit identifiers and strings inside
text nodes when they are existentially quantified, and the child lists of nodes when they are empty.

We have the following logical equivalence between assertions, demonstrating the use of the sepa-
rating application:

update ⇐⇒ update[−T ⊗ #text] ◦T user[#text]
Using separating application, we can also derive the assertions �⊗P and �D1�D2P . The assertion �⊗P
specifies a forest in which every tree at the top level satisfies P . The assertion �D1�D2P specifies a tree
or forest of type D2 with a subtree somewhere, potentially deep down, of type D1 that satisfies P . For
example, we can compactly describe an arbitrary update list in Twitter, which requires that all the
child trees of the twitter node are updates:

twitter � #document[twitter[�⊗(trueT =⇒ update)]] (3)

Program reasoning: Using our assertion language, we provide a local Hoare logic for reasoning
about our Featherweight DOM programs. We use the O’Hearn “fault-avoiding” interpretation of Hoare



triples: {P}C{Q} is semantically valid if and only if, in all states satisfying P , C cannot fault and, if
C terminates, the terminal state is described by Q.

We combine standard Hoare rules with small axioms and an abstract frame rule in the style of
separation logic. For example, consider the small axiom for the getChildNodes command:˘

nameNode[f]fid ∧ id = y

¯
id = getChildNodes(Node)˘
nameNode[y/id][f]fid ∧ id = fid

¯
The precondition has two conjuncts: the first describes a node, with an arbitrary name given by the
logical variable name, and which is identified by the value of the Node expression; the second states
that the current value of the id variable is the same as the logical variable y. The postcondition
describes the same node, but substitutes the unchanged logical variable y into the Node expression
(in case the expression uses the variable id). It also states that the id variable now has the value of
the node’s forest identifier. This axiom is small because it specifies the behavior of getChildNodes on
only its intuitive footprint, in this case the subtree identified by Node.

The abstract frame rule is analogous to the separation frame rule, using separation application
instead of separating conjunction, and is the key ingredient enabling us to provide abstract local
reasoning about the DOM API in particular, and program libraries in general. Let C be the code
id = getChildNodes(node), where “node” is a program variable rather than the program expression
“Node” used in the small axiom for getChildNodes. Using the rule of consequence, abstract frame and
an instance of the small axiom, we can obtain the following derivation for C:˘

usernode[f]fid
¯

C
˘

usernode[f]fid ∧ id = fid

¯
Axiom˘

update[−T ⊗ #text] ◦T usernode[f]fid
¯

C
˘

update[−T ⊗ #text] ◦T usernode[f]fid ∧ id = fid

¯
Frame˘

update[usernode[f]fid ⊗ #text]
¯

C
˘

update[usernode[f]fid ⊗ #text] ∧ id = fid

¯
Consequence

The use of the abstract frame rule declares that the data described by the context remains unchanged.
The getChildNodes command is relatively simple. The most complex command in Featherweight

DOM is appendChild(Parent, NewChild), which not only requires that Parent and NewChild are in
the DOM tree, but also that NewChild is not an ancestor node of Parent:

{
(∅F −◦(cg ◦T (nameParent[f]))) ◦F 〈name

′
NewChild ∧ t〉F

}
appendChild(Parent, NewChild){

cg ◦T (nameParent[f ⊗ 〈name
′
NewChild ∧ t〉F])

}

The precondition describes data that can be separated into a context and a forest containing a single
tree identified by NewChild. The context is such that, if we were to place an empty forest in the hole
made by removing the subtree rooted at NewChild, we would still be able to extract the Parent. This
ensures that NewChild cannot be an ancestor of Parent (if it were, there would be no way to extract
the Parent from the context left by removing NewChild and its children). This specification illustrates
the necessity of our contextual reasoning when specifying DOM.

Using our reasoning, we give the following simple specification of a program:˘∃s.updatesnode[f1 ⊗ s[f3] ⊗ f2 ∧ len(f1) = 2] ⊕ updatesILikepublishHere [∅F]
¯

updates = getChildNodes(node);

thirdKid = item(updates, 2);

appendChild(publishHere, thirdKid)˘∃s.updatesnode[f1 ⊗ f2 ∧ len(f1) = 2]updates ⊕ updatesILikepublishHere [sthirdKid [f3]]
¯

The precondition specifies that the grove contains a node labelled “updates” with at least three
children and identified by node, and a node labelled “updatesILike” with no children and identified
by publishHere. Our reasoning proves that, if the program is run in a state which satisfies this
precondition, then it will not fault and it will only terminate in states satisfying the postcondition
which specifies that the third child of node has been moved under publishHere. We can use the
abstract frame rule to describe how the program behaves on larger states.



3 Reasoning about Mashups

In [1, 2], Gardner, Smith et al. introduced an axiomatic specification of DOM. They mainly concen-
trated on the DOM specification, rather than fully exploring how to reason about DOM programs.
Here, we explore program reasoning about mashups, combining reasoning about DOM with reasoning
about a fragment of JavaScript consisting of mashup IO commands and dynamic functions.

Defining a notion of mashup is difficult. People tend to agree that a mashup consists of a web
page that combines data and code from two or more sources, although which part of this picture is
the “mashup” is unclear. Two sensible definitions are that either the page doing the combination of
the resources is the mashup, or that the entire set of resources being combined is the mashup. We
set our terminology as follows. A mashup component is a single resource, associated with a URI, that
provides data and code. We write a mashup component as a pair (doc, C). The data doc provided by
a component is termed mashup data and code C is termed mashup code. A finite partial function m
mapping URIs to these mashup components forms a mashup. A mashup program is a mashup where
we distinguish one component within it as a starting point for program execution.

Given this terminology, our program state consists of the standard variable store and the tree-
stuctured heap, together with a mashup and a function table. A function table f is a mutable mapping
from function names to parameter lists and body code.

Language: We extend Featherweight DOM with two new mashup IO commands and with dynamic
functions. The two new mashup IO commands are:

id = fetchDocument(StrExpr): evaluates StrExpr to obain a URI. If m(URI) = (doc, C), it
ignores C, takes doc, freshens the identifiers with respect to the current heap, appends the result
to the heap at grove level, and stores the new root node identifier in id. It faults if URI ∈ dom(m).
runScript(StrExpr): evaluates StrExpr as above. If m(URI) = (doc, C), the command ignores
doc and behaves as C. It faults if URI ∈ dom(m).

Using these commands, we can begin to write the code of the Twitter mashup mentioned in the
introduction. Consider the following sequence of commands with respect to a mashup with components
for homepage.example.com, twitter.example.com and spamcheck.example.com:

document = fetchDocument("homepage.example.com");

updatesDoc = fetchDocument("twitter.example.com");

runScript("spamcheck.example.com");

This program fragment takes the data associated with the homepage, places it in the heap with
fresh identifiers, and stores the root node identifier in document. It then extracts the Twitter data from
the Twitter component, and runs the code associated with the spam-checker in the same environment.

To give components a way of sharing reusable parametric code, we introduce dynamic functions.
Dynamic functions are a hybrid between procedures and the dynamic, higher-order functions used in
e.g. JavaScript. Dynamic functions are named code blocks, called bodies, with an associated parameter
list of arbitrary arity. They are dynamic because the binding of the function name to a body can be
changed during program execution. For example, function names may be initially unassigned, have some
body later in execution, and another body later still. This dynamic nature is necessary to handle both
the introduction of new functions and the replacement of existing functions by mashup components
when they are executed via runScript.

We extend Featherweight DOM and the mashup IO commands with two dynamic function state-
ments, function introduction and function call:

function Name(P1, ..., Pn) { Statement; return E }: updates the function table f to asso-
ciate the name Name with the body code between the braces along with the parameter names. This
command cannot fault.



r = Name(E1, ..., En): extracts the body code associated with Name from the function table,
replaces the parameters names with the associated expressions E1 to En, then behaves as this code,
associating the return expression of the body code with the store variable r. It faults if there is
no function named Name in the table, if the passed parameter count does not match the stored
function, or if the function body faults.

The only restriction on the use of dynamic functions is that function bodies may not include func-
tion introduction statements; these may only be used at the “top level” component code. Function
calls, however, may appear as statements anywhere and be mutually recursive. In our example Twitter
program, we will simplify notation by allowing function-call statements to be used as expressions: for ex-
ample, we will use the statement newUpdate = createTextNode(getNodeValue(updateText)),
which gets the string of the text node identified by updateText, and creates a new node labelled by
the string. We also use the standard simplification of disallowing assignment to function parameters
within a function body. To allow details of component code to remain private, we use local variables
with a scope limited to a single function body and local functions scoped to a single component. This
restricts local variables and functions to the lexical scope of the containing function or component.
The full details can by found in the technical report[22].

Assertion language: We extend the Featherweight DOM assertion language for specifying proper-
ties of the variable store and tree-structured heap, to provide an assertion language which in addition
specifies properties of a mashup and function table. The mashup assertion µ(Uri) specifies that the
mashup contains an entry for Uri, and the function assertion γ(Name) specifies that the function table
contains an entry for Name.

Program reasoning: We extend Hoare triples to handle mashup IO commands and dynamic func-
tions, working with judgements of the form M � {P}C{Q} where M is a mashup specification built
from a collection of component specifications.

Component specifications enable us to use published specifications of remote components, rather
than requiring the full details of their (possibly changing) data and code. In fact, the remote site
will tend to prove a stronger specification than the published specification. For example, we will see
that the spam-checker component of our Twitter example has the published specification that its data
satisfies the assertion true, and the code requires a string and returns a boolean. Of course, the remote
site would probably prove a more complex specification, from which the published specification can be
inferred.

We define a component specification for a given component (doc, C) as a triple (D, C, F ), where D
is a data specification describing doc, C is a code specification for C, and F is a function specification
for the set of functions declared in C. A data specification is a Featherweight DOM assertion from
section 2, in which no store variables are mentioned and all identifiers are existentially quantified. A
code specification for code C is a triple (P, Q, M), where P and Q are pre- and postconditions for
C and M = mods(C) is the modification set of C: that is, the set of all non-local names modified
by the code. Just as in separation logic, the modification set is needed for a side-condition on the
abstract frame rule that ensures we cannot frame away assertions about names the code will modify.
Its definition is standard with three additions: function introduction is considered to modify the name
of the function being introduced; the modifications of a function-call statement are the modifications
of the function body; and for runScript statements, it is the set for the script code being run. For
brevity, we write the empty code specification (∅G, ∅G, {}) as ∅C. We say that two code specifications
are equivalent if their pre- and postconditions are logically equivalent and their modified sets are the
same. A function specification is a finite partial function mapping every function name introduced by
a function introduction statement in C to a pair (C, R), where C is a code specification that describes
the function body and R lists the parameters.

Recall that mashups are finite partial functions from URIs to mashup components. A mashup
specification is a finite partial function from URIs to component specifications. We write mashup spec-



ifications as M = {URI1 �→ (D1, C1, F1), . . . URIn �→ (Dn, Cn, Fn)}. Given such a mashup specification
M, the mashup function specifications of M, denoted F(M), is the collection of function specifications
given by F1, . . . , Fn when they are compatible. More formally, F(M) = F1 � . . .�Fn is defined as the
natural extension of

(F1 � F2)(Name) �




F1(Name) ⇐⇒ Name ∈ dom(F1) ∧ Name 	∈ dom(F2)

F2(Name) ⇐⇒ Name 	∈ dom(F1) ∧ Name ∈ dom(F2)

F1(Name) ⇐⇒
F1(Name) = (C1, R) ∧
F2(Name) = (C2, R) ∧
C1, C2 equivalent

otherwise undefined

We extend Hoare triples to handle mashup IO commands and dynamic functions, working with
judgements of the form M � {P}C{Q}. The small axioms, standard Hoare rules and abstract frame
rule are not affected by the mashup specification M. We use M in the mashup IO and function rules,
given here (although we ignore local names as they complicate the rule syntax without being very
informative, see the technical report for full details [22]):

M(StrExpr)=(D,C,F )
M�{µ(StrExpr)}Id = fetchDocument(StrExpr){µ(StrExpr)∧D}

M(StrExpr)=(D,(P,Q,M),F )
M�{µ(StrExpr)∧P}runScript(StrExpr){µ(StrExpr)∧Q}

F(M)(Name)=((P,Q,M),(P1,...,Pn)) M�{P}C{Q} mods(C)=M
M�{∅G} function Name(P1, ..., Pn){C}{γ(Name)}

F(M)(Name)=((P,Q,M),(P1,...,Pn))
M�{γ(Name)∧P [Ei/Pi]} r = Name(E1, ..., En){γ(Name)∧Q[Ei/Pi]}

The rule fetchDocument specifies that the resulting document satisfies the data specification D
given by the mashup specification. The rule runScript specifies that the resulting code has precondi-
tion P and postcondition Q, again given by the mashup specification. Notice that we are trusting the
published specification of the mashup component identified by StrExpr. However, when we introduce
our own function, we check that its body satisfies the specification and return the assertion γ(Name)
declaring that the function is in the function table. When calling a function, we use the pre- and
postconditions given in the mashup specification, with suitable substitutions of the passed expressions
for parameters.

3.1 Detailed example

We apply our mashup framework and associated reasoning to our Twitter example. This is both a
simple and realistic example, illustrating the main features of a common mashup. It involves acquiring
data from one remote location (the Twitter update data), and processing it using code from a second,
independent remote location (the spam-checker code). The results are then consumed by the homepage.
The homepage is simple, but makes use of complex remote code (the spam-checker code). This is a
common pattern, as large companies such as google and yahoo provide complex services, which are
used in large numbers of simple mashups. We provide simple reasoning for this Twitter example. In
particular, we show that, although the spam-checker code might be complex, the published specification
is simple (the function isSpammer requires a string and returns a boolean). For space and simplicity,
this example does not fully exercise our reasoning about dynamic functions. For further examples, see
the technical report [22].



Twitter Update List: The Twitter update component provides a set of recent updates as data, and
has no code. Recall the twitter data “twitterdata” defined in section 2(1). We use this to define the
twitter component within the mashup m as

m(twitter.example.com) = (twitterdata, skip)
Recall the twitter assertion given in section 2(3), describing data in the Twitter update format.

As there is no code associated with Twitter, and hence no functions, we can compactly describe the
public specification M for the Twitter component as

M(twitter.example.com) = (twitter, ∅C, ∅)
The Spam Checking service: We have been deliberately vague about the specifics of the spam
checking component, noting only that it will provide some method of filtering spam users from the
list. This mirrors our concerns as developers of the homepage. We do not care how the spam-checker is
implemented, so long as it provides us with a checking method in the form of an isSpammer function.
One possible design for this spam-checker is illustrated in figure 1, and involves maintaining a database
in its data, and using hidden, local functions to query that database. Many other designs are equally
feasible.

m(spamcheck.example.com) = (D, C1; function isSpammer(name) C3 {C2}; )
The public specification for the service mirrors this operational vagueness by giving very weak data

specification, and by giving the isSpammer function a simple contract to fulfil. The implementation
is free to behave however it wishes, as long as it provides a suitable function, does not alter the
environment beyond adding this function, and does not access the web beyond its own data.

FSpec � {isSpammer(name) 
→ ((name : Str, ret = true ∨ ret = false, ∅), (name))}

M(spamcheck.example.com) = (true,

0
@ ∅G ∧ µ(spamcheck.example.com),

∅G ∧ µ(spamcheck.example.com) ∧ γ(isSpammer),
{isSpammer}

1
A , FSpec)

The homepage: The homepage forms the distinguished mashup component. It uses its own data,
which contains an updatesILike node. It downloads the Twitter data and the spam-checker code,
then for every update that is not spam, adds the update text as a child of the updatesILike node.
Let Ch denote the code:

document = fetchDocument("homepage.example.com");

updatesDoc = fetchDocument("twitter.example.com");

runScript("spamcheck.example.com");

// Find the "updatesILike" HTML node, and assign its id to the variable "publishHere".

publishHere = ... // (elided)

// Add each update

updates = getChildNodes(item(getChildNodes(updatesDoc), 0)); length = getLength(updates); i = 0;

while (i < length) {

update = item(updates, 0); i = i + 1;

// Get the update username

userNode = getFirstChild(update); userName = getNodeValue(userNode);

updateText = getSecondChild(update);

// Spam check the username

if (isSpammer(userName) == false) {

newUpdate = createTextNode(getNodeValue(updateText));

appendChild(publishHere, newUpdate);

} else {

removeChild(updates, update);

}

}



In order for this code to run without faulting, it must be associated with data that contains a
(typically unique) node with name “updatesILike” somewhere within it. This node which will be
referred to in the program using its id, which will be assigned to the variable “publishHere”. One
document which meets this requirement is

Dh � #document1[html2[updatesILike3[∅]4]5]

We can then give the component for the homepage as

m(homepage.example.com) = (Dh, Ch)

Let Mods be the set of all variables modified in Ch. We can then specify the homepage as

htmlSpec � #document[html[♦T�FupdatesILike[∅F]]]

M(homepage.example.com) =

0
BBBBBB@

htmlSpec,0
BB@

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧
µ(homepage.example.com) ∧ ∅G,
true,
Mods

1
CCA ,

∅

1
CCCCCCA

The precondition for the homepage states its dependence on the Twitter and spam-checker com-
ponents and its own homepage component; other than that, it needs nothing. The postcondition is
just true. This is enough to prove we have a fault-free mashup; that is, the only resources required
are those given in the precondition. If, however, we were to expect our homepage component to be
“mashed into” other pages, we could give a stronger postcondition that describes the homepage data,
and how the only change within it is the addition of Twitter updates.
Proof of the client code: We give the proof of the homepage code with respect to M in figure 3,
under the assumption that the other components within the mashup specification have been proven
with respect to their specifications. We do not give every Hoare rule application, providing instead
assertions describing the intermediary states and the loop invariant.
More daring use of dynamic functions: Since mashups exist in an unstable environment, it
is sometimes sensible to write a program which can fall back on a secondary service if a primary
service is unavailable. For example, in the twitter mashup above, we might have the choice be-
tween two spam-checkers: a “featurefulSpamChecker” from featurefulSpamChecker.com, which pro-
vides a superior service in the form of the function “featureFulIsSpammer(Name)” but may not
always be available; and the “reliableSpamChecker” from reliableSpamChecker.com, which provides
an inferior service in the form of the function “reliableIsSpammer(Name)” but is always avail-
able. Suppose further that a third party has published a mashup component which allows us to
look up the maintenance schedule of the featurefulSpamChecker to determine whether it is avail-
able. This third party component provides a function called “isOnline” which has the specification:
{true}x=isOnline(){(x ∧ µ(featurefulSpamChecker.com) ∨ (¬x)}.

Now, where the Twitter mashup above introduces the “isSpammer” function with the line
“runScript("spamcheck.example.com");”, we might wish instead to introduce the best available
spam-checking function:

C � if (isOnline()) { runScript("featurefulSpamChecker.com");
function isSpammer(name) { return featureFulIsSpammer(name) }

} else { runScript("reliableSpamChecker.com");
function isSpammer(name) { return reliableIsSpammer(name) }

}
Notice that this code may introduce either of two completely different bodies for the function “isSpammer”.
We can still reason about them however, so long as they both respect a common specification. In the



{µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ ∅G}
document = fetchDocument("homepage.example.com");

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com)∧
〈#documentdocument [html[♦updatesILike[∅F]]]〉G

ff

updatesDoc = fetchDocument("twitter.example.com/twitter");
µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧
〈#documentdocument [html[♦updatesILike[∅F]]]〉G ⊕ 〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update]]〉G

ff

runScript("spamcheck.example.com");
µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧
〈#documentdocument [html[♦updatesILike[∅F]]]〉G ⊕ 〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update]]〉G

ff

publishHere = . . .8<
:

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧
〈#documentdocument [html[♦updatesILikepublishHere [∅F]]]〉G ⊕
〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update]]〉G

9=
;

updates= getChildNodes(item(getChildNodes(updatesDoc), 0)); length = getLength(updates); i = 0;8<
:

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧
∃f.

〈#documentdocument [html[♦updatesILikepublishHere [�⊗trueT =⇒ #text]]]〉G ⊕
〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update ∧ f ∧ len(f) = length]]〉G

9=
;

while (i < length) {
update = item(updates, i);8>>>><

>>>>:

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧

∃f1, f2,x.

〈#documentdocument [html[♦updatesILikepublishHere [�⊗trueT =⇒ #text]]]〉G ⊕

〈#documentupdatesDoc [twitter

2
4 �⊗trueT =⇒ update

∧
„

f1 ⊗ updateupdate [user[#text[x]] ⊗ #text]⊗
f2 ∧ len(f1) = i ∧ len(f2) = length − i− 1

« 3
5]〉G

9>>>>=
>>>>;

i = i + 1; userNode = getFirstChild(update);

userName = getNodeValue(userNode); updateText = getSecondChild(update);8>>>><
>>>>:

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧
∃f1, f2,x.〈#documentdocument [html[♦updatesILikepublishHere [�⊗trueT =⇒ #text]]]〉G ⊕
〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update ∧ (f1 ⊗ updateupdate [

useruserNode [#text[x ∧ x = userName]] ⊗ #textupdateText
] ⊗ f2 ∧ len(f1) = i− 1) ∧ len(f2) = length− i]]〉G

9>>>>=
>>>>;

if (isSpammer(userName) == false) {
newUpdate = createTextNode(getNodeValue(updateText));

appendChild(publishHere, newUpdate);

}
else { skip; }

}8<
:

µ(twitter.example.com) ∧ µ(spamcheck.example.com) ∧ µ(homepage.example.com) ∧ γ(isSpammer) ∧
〈#documentdocument [html[♦updatesILikepublishHere [�⊗trueT =⇒ #text]]]〉G ⊕
〈#documentupdatesDoc [twitter[�⊗trueT =⇒ update]]〉G

9=
;

{true}

Fig. 3. The Twitter Mashup is Fault Free



case where both “featureFulIsSpammer” and “reliableIsSpammer” satisfy the specification we require
for “isSpammer” (which requires a string and returns a boolean), we can prove the Hoare triple:

{µ(reliableSpamChecker.com)∧ γ(isOnline)} C {γ(isSpammer)}

This demonstrates the full power of our dynamic function reasoning. Function specifications are not
tied uniquely to function definitions. The inference rule for function introduction allows us to reason
about any dynamically introduced function that satisfies whatever specification is required for our
program.

4 Conclusions

We have presented a simple formulation of mashup programs and a reasoning system for specifying
properties about such programs. With our reasoning, we can prove that mashups are fault free and
provide specifications for code that are analogous to XML schema for data. We have illustrated our
work with the example of a twitter mashup, which we believe is representative of many mashups found
on the web. This gives hope that these techniques are not merely theoretical, but might be useful in
detecting and eliminating actual software faults.

We have shown how the JavaScript code in a mashup can be given code specifications which are
analogous to the XML schema for describing XML data. Each component within a mashup can be
independently verified, and the resulting specifications can be published to other programmers. This
provides mashup safety. If all components in a mashup are proven with respect to the same set of
specifications, then they cannot fault. That is to say that they will never attempt to call an undefined
function, access a DOM node that does not exist, attempt a prohibited DOM operation or access a web
site that is not available. A side-benefit of our technique is that it results in a clear understanding of
the dependancies involved in any proven mashup, without having to inspect the code of every mashup-
component. This means that firewalls can be configured so that they do not accidentally block an
essential component of a mashup.

This work represents a first step towards reasoning about full JavaScript. Just as Gardner, Smith
et al. extended the reasoning of Featherweight DOM to DOM Core Level 1 [1, 2], so we hope to extend
the the techniques presented in this paper to reason about the full JavaScript language, described
formally by Maffeis, Mitchell and Tally in [7]. One particular challenge will be reasoning about programs
which make extensive use of JavaScript’s higher-order functions. While the work of Birkedal, Reus,
Schwinghammer and Yang [5] promises to handle higher-order functions very generally, it is also
complex. We will investigate the possibility of extending the techniques presented here for dynamic
functions to provide a less powerful but more manageable reasoning method for JavaScript functions.

Notice the verbose, but relatively mechanical, nature of the proof in figure 3. All the techniques
demonstrated in this paper seem enticingly automatable, and invite us to extend the work of successful
separation logic tools such as jStar [23] to reasoning about DOM and JavaScript. Given suitable
automation, it should be possible to dispense with the need to trust the specifications of remote
components, and instead have a browser plugin check that they meet their specifications before running
them. We also plan to apply our techniques to further examples and problems in the mashup area. One
intriguing area is mashup security. For example, if your bank wanted to mash a component into their
online banking system, how can they be sure the component is not surreptitiously trasmitting personal
information contained within the document? One promising approach is footprint analysis [24], with
which we might show that the safety footprint of an untrusted component is disjoint from the sensitive
personal data.
Acknowledgements We thank EPSRC, the Royal Academy of Engineering and Microsoft Research
Cambridge for their financial support.



Bibliography

[1] Gardner, P.A., Smith, G.D., Wheelhouse, M.J., Zarfaty, U.D.: Local Hoare reasoning about DOM.
In: Proceedings, PODS’08. (2008)

[2] Smith, G.D.: PhD thesis. In preparation
[3] O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter data structures.

In: CSL. (2001)
[4] Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. 32nd POPL’2005, ACM

SIGPLAN Notices 40(1) (2005)
[5] Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested hoare triples and frame rules for

higher-order store. In: CSL. (2009) 440–454
[6] Thiemann, P.: A type safe DOM API. In: Proceedings DBPL, 169–183. (2005)
[7] Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript. In: Proceedings,

APLAS 2008. LNCS (2008)
[8] Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language. ACM Transactions

on Internet Technology
[9] Thiemann, P.: Towards a type system for analyzing javascript programs. In: ESOP. (2005) 408–422

[10] Paola, C.A., Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for javascript.
In: In Proc. 19th European Conference on Object-Oriented Programming, Springer (2005) 429–452

[11] Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of javascript
programs. In: Proceedings PLDI ’10, ACM (2010)
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Hoare Logic for Graph Programs
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Abstract. We present a new approach for verifying programs written
in GP (for Graph Programs), an experimental programming language
for performing computations on graphs at a high level of abstraction.
Taking a labelled graph as input, a graph program nondeterministically
applies to it a number of graph transformation rules, directed by simple
control constructs such as sequential composition and as-long-as-possible
iteration. We adapt classical Hoare logic to the domain of graphs, and
describe a system of sound proof rules for showing the partial correctness
of graph programs.

1 Introduction

Rule-based graph transformation (or graph rewriting) has been studied since
the 1970s, motivated by its many applications to programming and specifica-
tion, and the natural visualisation that graphs and graph transformation rules
give to dynamic systems (see the recent monograph [4]). Recently, graph-based
programming languages have seen increased interest as a way of controlling the
application of rules to graphs, in order to solve graph problems in practice. For
example, in implementing a graph algorithm, a graph program might direct the
application of rules to a graph such that they compute its transitive closure. In a
setting where a graph represents a system state, graph programs might represent
the system’s operational behaviour.

Often, it is desirable to be able to prove that a graph program is correct ac-
cording to some specification. Suppose that a graph program computes a colour-
ing of a graph, encoding the colours in the labels of nodes. Can we prove that
the graph program will always produce properly coloured graphs? Suppose that
we model the states of an access control system with graphs, and describe the
operation of logging out a user by a graph program. Can we prove that certain
safety properties are conformed to by the design of the operation?

Up until now, research has tended to focus on proving the correctness of
graph grammars, and sets of graph transformation rules applied arbitrarily to
graphs (see, for example, [19,2,11,3,6]). A first step towards verifying graph pro-
grams was taken by Habel, Pennemann, and Rensink [7], who adopted Dijkstra’s
weakest preconditions approach for so-called high-level programs, which provide
control constructs such as sequential composition and as-long-as-possible itera-
tion over sets of conditional graph transformation rules. However, to the best
of our knowledge, the challenge of verifying programs written in implemented



graph transformation languages — such as PROGRES [20], AGG [21], Fujaba
[13] and GrGen [5] — has yet to be addressed.

In this paper, we present an approach for verifying programs in the graph
programming language GP (for Graph Programs) [16,12], a nondeterministic
and computationally complete language for solving problems in the domain of
graphs, and for which a prototype implementation exists. Rather than adopt-
ing a weakest precondition approach, we follow Hoare’s seminal paper [10] and
devise a calculus of proof rules which are directed by the syntax of GP’s con-
trol constructs. Similar to classical Hoare logic, our calculus aims to facilitate
human-guided verification and the compositional construction of proofs.

We intend in this paper to give the reader an informal understanding of our
approach, favouring intuition and examples over the full technical details. These
however can be found in [18] (a preprint of which is available from the authors’
websites).

The organisation of this paper is as follows. Section 2 provides a brief intro-
duction to GP, and explores its features through an example program. Section
3 introduces E-conditions, a graph specification formalism we use in the asser-
tions of our Hoare triples. Section 4 presents the axiom schemata and inference
rules of our partial correctness proof system, and demonstrates their use in an
example proof of a simple graph program. Finally, in Section 5, we conclude.

2 Graph Programs

Graph programs are constructed from two components. First, a set of conditional
rule schemata; intuitively, these are graph transformation rules with variables
and expressions allowed as labels. Second, a sequence of commands controlling
the application of the conditional rule schemata to a provided input graph. We
review conditional rule schemata and programs in turn, and discuss an example
program. Technical details and further examples can be found in [16,17].

2.1 Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of graph programs, each
one describing a single-step transformation of a graph. Rule schemata comprise
two graphs: a left graph which describes a part to be matched, and a right graph
which describes what the match should be replaced with. The labels of their
graphs contain expressions whose variables are instantiated in the graph match-
ing process to integers or strings. The possible instantiations of these variables
can be restricted by a rule schema condition, a simple predicate demanding
particular relationships between variables, or the non-existence of edges. The
expressions in labels are evaluated to integers or strings after the variables have
been instantiated. Rule schemata are entirely syntactic constructs, representing
possibly infinite sets of graph transformation rules (since the graphs GP operates
on are labelled over an infinite label alphabet of integers and strings).



bridge(a, b, x, y, z : int)
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Fig. 1. A conditional rule schema and one of its applications

Figure 1 shows an example of a conditional rule schema, and a possible result
of its application to a graph. The rule schema consists of the identifier bridge
followed by the declaration of integer variables, the left and right graphs of the
rule schema, the node identifiers 1, 2, 3 specifying which nodes are preserved,
and the keyword where followed by a rule schema condition. Variables are instan-
tiated with values (integers or character strings) in the graph matching process.
Informally, in the application of a rule schema to a graph, a match is found for
an instantiation of the left-hand side, and is replaced with the corresponding
instantiation of the right-hand side. In our example, we have the following in-
stantiation of variables: x 7→ 2, y 7→ 5, z 7→ 4, a 7→ 4, b 7→ 8. Observe that this is
not the only possible instantiation; matches are chosen nondeterministically.

GP allows nodes and edges in rule schemata to be labelled with underscore
delimited sequences, for example, 5 0 and ”York” 1. Sequences can contain items
of type integer and string. They are typically used to encode information into a
graph, for example, to mark a node as reachable, or “tag” a node with an integer
that represents its colour.

In the prototype GP programming system [12], rule schemata are constructed
with a graphical editor. Labels in the left graph may only contain variables or
constants (no composite expressions) because their values at execution time are
determined by graph matching. The condition of a rule schema is a Boolean
expression built from arithmetic expressions and the special predicate edge;
all variables occurring in the condition must also occur in the left graph. The
predicate edge demands the (non-)existence of an edge between two nodes in
the graph to which the rule schema is applied. For example, the expression
not edge(1, 3) in the condition of Figure 1 forbids an edge from node 1 to node



3 when the left graph is matched. The full syntax of conditions is given in
[18]. Technically speaking, a rule schema is applied to a graph according to a
generalisation of the double-pushout approach with relabelling [9].

2.2 Programs

We discuss an example program to familiarise the reader with GP’s features. We
will return to this program later in the paper to prove its correctness.

Example 1 (Colouring). A colouring for a graph is an assignment of colours
(integers) to nodes such that the source and target of each non-looping edge
have different colours. The program colouring in Figure 2, with the command
sequence init!; inc!, produces a colouring for every integer-labelled input graph,
recording colours as tags.

main = init!; inc!

init(x : int)

1

x ⇒

1

x 1

inc(i, k, x, y : int)

x i y i

1 2

k
⇒ x i y i+1

1
2

k

0

0

0

0

0 0

00

+
→ 0 1

0 2

0 1

0 2

0 0

00

Fig. 2. The program colouring and one of its executions

The program initially colours each node with 1 by applying the rule schema
init for as long as possible, using the iteration operator ’!’. It then repeatedly
increments the target colour of edges with the same colour at both ends. Note
that this process is nondeterministic: Figure 2 shows an execution producing a



colouring with two colours, but a colouring with three colours could have been
produced for the same input graph.

Control constructs not used in colouring are {r1, . . . , rn}, which denotes the
nondeterministic application of a rule ri from the set, and if C then P else Q

which executes program P if C terminates with output1, and Q otherwise.
A full structural operational semantics is defined for GP in [17]. Each graph

program is assigned a semantic function, which takes a graph as input, and
returns as output the set of all graphs that could result from the execution of
the program to that input graph.

3 Nested Graph Conditions with Expressions

Since the states of graph programs are graphs, and the pre- and postconditions
of Hoare triples describe properties of program states, we require a specification
formalism for precisely describing and reasoning about properties of graphs. The
nested graph conditions of Habel and Pennemann [6] are such a specification for-
malism, expressively equivalent to first-order logic on graphs. Graph conditions
however are unable to finitely express many properties when graphs are labelled
over infinite label alphabets. For example, if we consider graphs labelled over
the set of integers, it is impossible to finitely express a property as simple as
“there exists an integer-labelled node”; we would require the following infinite
graph condition:

∃( 0 ) ∨ ∃( 1 ) ∨ ∃( −1 ) ∨ ∃( 2 ) ∨ ∃( −2 ) ∨ . . .

Since GP’s label alphabet is infinite (it consists of sequences of arbitrary
integers and character strings), we extend the formalism to allow expressions
with variables in labels, and to have a Boolean expression restricting the in-
stantiations of variables; we refer to what results as E-conditions. E-conditions
are able to finitely represent infinite graph conditions. The infinite graph condi-
tion above, for example, expresses the same property as the finite E-condition
∃( x | type(x) = int), where x is a variable that can be instantiated to any
integer.

A simple example of an E-condition is c = ∃( x y
k

), which is read “there
exists at least one non-looping edge”. A graph G would satisfy this E-condition,
denoted G |= c, if variables k, x, and y could be instantiated to labels, which
together with the nodes and edge, form a subgraph of G.

An assignment constraint (Boolean expression) allows one to restrict the
types and values of variable instantiations. For example,

∃( x y
k

| type(x, y) = int ∧ x < y)

is read “there exists at least one pair of adjacent integer-labelled nodes, of which
the label of the target node is larger than that of the source node”.

1 Program C is tested on a copy of the input graph, which is subsequently discarded.



Boolean expressions over E-conditions are also E-conditions. For example,

d = ¬∃( x

k

i

)

is read “there does not exist a node incident to more than one loop”. Suppose
that G |= d. Then it is the case that no instantiation of i, k, and x will give
labels, together with a node and two loops, that form a subgraph of G.

E-conditions may also be nested. For example,

e = ∀(
1

x | type(x) = int,¬∃(
1

x y
k

))

is read “no integer-labelled node has an outgoing edge to another node (with
any label)”. When an E-condition contains nesting, for a graph to satisfy it, we
need to look further than for some simple subgraph. Suppose that G |= e. Then
for every instantiation of x to an integer that, together with the single node,
gives a subgraph of G, there must not be an outgoing edge from that node to
any node in G with a label that y can be instantiated to (i.e. any node).

The formal definition of E-conditions is based on injective graph morphisms
(i.e. structure preserving mappings between graphs), and allows an arbitrary
amount of nesting; technical details can be found in [18].

4 A Hoare Calculus for Graph Programs

We present in this section a system of partial correctness axiom schemata and
inference rules for GP, in the style of Hoare [1], using E-conditions as the as-
sertions. We demonstrate the proof system by proving a property of our earlier
colouring graph program.

First, we discuss what partial correctness means in the sense of graph pro-
grams. In the classical sense, a Hoare triple {s} P {t} with s, t formulas of
predicate logic and P a program fragment, is read “if P is executed when the
program state satisfies s, then should P terminate, the program state will satisfy
t”. The execution of a graph program can follow one of three paths: it termi-
nates with an output graph (referred to as successful termination), it terminates
without an output graph (this is referred to as failure, and occurs when a rule
schema, or a set of rule schemata, cannot be applied to the current graph), or it
does not terminate at all (for example, r! will never terminate if the left graph
of the rule schema is the empty graph ∅). Because of GP’s nondeterminism, all
three outcomes may be possible for the same program and input graph. We con-
sider for partial correctness the successful termination case, in that if a program
does terminate with an output graph, whatever that output graph may be, it
satisfies some property expressed by an E-condition.

Given E-conditions c, d and a graph program P , a triple of the form {c} P {d}
expresses the claim that whenever a graph G satisfies c, then any graph that
results from the application of P to G will satisfy d. The axiom schemata and
inference rules that follow operate on such triples. As in classical Hoare logic [1],
we use the proof system to construct proof trees, combining axioms and inference



rules (an example will follow). We let c, d, e, inv range over E-conditions, P,Q
over arbitrary programs, r, ri over conditional rule schemata, and R over sets of
conditional rule schemata.

[rule]
{Pre(r, c)} r {c}

The axiom [rule] for the application of a single conditional rule schema works
“backwards”. Starting with a rule schema r and E-condition c as a postcondition,
the transformation Pre is used to construct a precondition such that if G |=
Pre(r, c), and the application of r to G results in a graph H, then H |= c. The
transformation Pre is based on graph morphisms and pushout constructions
(see [18]), but informally can be described by the following steps: (1) form a
disjunction of E-conditions over all possible overlappings of E-condition c and
the right graph of rule schema r, (2) shift the disjunction of E-conditions from
the right- to the left-hand side of r, (3) nest this within another E-condition that
is universally quantified over the left graph of r.

We have that Pre(r, c) implies App({r}), where App constructs an E-condition
expressing the weakest property that must be satisfied for a given rule schema
set to be applicable to a graph (see below). The transformation Pre considers
applicability, since otherwise, we would have to deal with failing computations.

Whereas assignment is basic to imperative programs and assignment axioms
core to their correctness proofs, rule application is basic to graph programs and
the [rule] axiom core to their correctness proofs.

[ruleset1]
{¬App(R)} R {false}

The inference rule [ruleset1] is applied in the case that no rule schema r ∈ R
can be applied to the graph. App takes as input a set R of conditional rule
schemata, and transforms it into an E-condition describing the weakest property
that a graph G must satisfy for R to be applicable to it. If R is applicable
to G, then at least one rule schema r ∈ R satisfies the following: (1) it has
an instantiation of variables such that its left-hand graph is isomorphic to a
subgraph of G, (2) it can be applied to G without leaving dangling edges (i.e.
edges which are not incident to nodes at both ends), and (3) the rule schema
condition evaluates to true. The postcondition false cannot be satisfied by any
graph.

{c} r1 {d} . . . {c} rn {d}
[ruleset2]

{c} {r1, . . . , rn} {d}

The inference rule [ruleset2] is applied when the non-applicability of a rule
schema set is not implied by the precondition. Since the rule schema to be applied
is nondeterministically chosen from the set, it must be shown that the successful
termination of any rule schema in the set results in a graph satisfying the desired
postcondition, d. Note that the transformation App does not appear, since its
effects are encapsulated by the transformation Pre in the axiom [rule].



{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

The sequential composition rule [comp] follows its counterpart for imperative
programming languages, in that we have to find an appropriate intermediate
assertion, the E-condition e.

{c′} P {d′}
[cons] c =⇒ c′ d′ =⇒ d

{c} P {d}

Similar to its classical counterpart, the rule of consequence [cons] allows us to
strengthen the precondition and weaken the postcondition (or replace them with
equivalent assertions), provided that the side conditions c =⇒ c′ and d′ =⇒ d

are valid (mechanically proving such implications of E-conditions to be valid
is a problem we have not yet addressed, however, Pennemann in [14,15] has
developed a resolution-like theorem prover for implications of graph conditions).

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]

{c} if R then P else Q {d}

The conditional rule [if] formalises a case distinction based on the applica-
bility of R to the input graph, utilising the transformation App.

{inv} R {inv}
[!]

{inv} R! {inv ∧ ¬App(R)}

The as-long-as-possible iteration rule [!] states that if an assertion inv (for
invariant) is satisfied after each application of R, then once the iteration has
ended, the graph will still satisfy inv. Additionally, since R is applied for as-
long-as-possible, we can also deduce that R is no longer applicable to the graph,
hence ¬App(R) in the postcondition.

Note that two of the proof rules deal with programs that are restricted in
a particular way: both the condition C of a branching command if C then

P else Q and the body P of a loop P ! must be rule-set calls, that is, sets of
conditional rule schemata. We gain from this restriction definability of the trans-
formations Pre and App, but we hope to be able to modify the transformations
in the future to allow arbitrary programs as input. However, despite the incon-
venience of the restrictions, the computational completeness of the language is
not affected, because in [8] it is shown that a graph transformation language is
complete if it contains single-step application and as-long-as-possible iteration
of (unconditional) sets of rules, together with sequential composition.

Example 2 (Colouring). Figure 3 is a proof tree for the colouring program
of Figure 2. It proves that if colouring is executed on a graph in which the
node labels are exclusively integers, then any graph resulting will have the prop-
erty that each node label is an integer with a colour attached to it, and that
adjacent nodes have distinct colours. That is, the proof tree proves the triple
{¬∃( a | type(a) 6= int)} init!; inc! {∀( a

1

, ∃( a
1

| a = b c ∧ type(b, c) =

int)) ∧ ¬∃( x i y i
k

| type(i, k, x, y) = int)}.



[rule]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[rule]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
{c} init!; inc! {d ∧ ¬App({inc})}

c = ¬∃( a | type(a) 6= int)

d = ∀( a
1

, ∃( a
1

| a = b c ∧ type(b, c) = int))

e = ∀( a
1

, ∃( a
1

| type(a) = int) ∨ ∃( a
1

| a = b c ∧ type(b, c) = int))

¬App({init}) = ¬∃( x | type(x) = int)

¬App({inc}) = ¬∃( x i y i
k

| type(i, k, x, y) = int)

Pre(init, e) = ∀( x
1

a
2

| type(x) = int, ∃( x
1

a
2

| type(a) = int)

∨ ∃( x
1

a
2

| a = b c ∧ type(b, c) = int))

Pre(inc, d) = ∀( x i y i a

1 2 3

k
| type(i, k, x, y) = int,

∃( x i y i a

1 2 3

k
| a = b c ∧ type(b, c) = int))

Fig. 3. A proof tree for the program colouring of Figure 2

The following theorem is our main technical result.

Theorem 1. The proof system comprising [rule], [ruleset1], [ruleset2], [comp],
[cons], [if], and [!] is sound for graph programs in the sense of partial correctness.

This theorem is proven in [18], by showing the soundness of each of the axioms
and inference rules with respect to the structural operational semantics of GP.

5 Conclusion

We have presented the first Hoare-style verification calculus for an implemented
graph transformation language. This required us to extend the nested graph
conditions of Habel, Pennemann, and Rensink with expressions for labels and
assignment constraints, in order to deal with GP’s powerful rule schemata and
infinite label alphabet. We have demonstrated the use of the calculus by proving
the partial correctness of a nondeterministic colouring program.

Future work will investigate the completeness of the calculus. Also, we in-
tend to add termination proof rules in order to verify the total correctness of
graph programs. Finally, we will consider how the calculus can be generalised



to deal with GP programs in which the conditions of branching statements and
the bodies of loops can be arbitrary subprograms rather than just sets of rule
schemata.

Acknowledgements. We are grateful to the anonymous referees for their com-
ments which helped to improve the presentation of this paper.
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Abstract. Separation logic is an extension of Hoare logic that allows local
reasoning. Local reasoning is a powerful feature that often allows simpler
specifications and proofs. However, this power is not used to reason about
while-loops.
In this paper an inference rule is presented that allows using local rea-
soning to verify the partial correctness of while-loops. Instead of loop in-
variants this inference rule uses pre- and post-conditions for loops. This
provides a different view of while-loops that is even without local reason-
ing often beneficial.

1 Motivation

There is a well known connection between loops and recursive procedures.
Modern compilers routinely transform recursive procedures into loops as part
of program optimisation and there are refactorings that depending on varying
criteria transform iterative programs in recursive ones and vice-versa. How-
ever, when using separation logic, recursive implementations are often much
easier to specify and verify than the corresponding imperative ones.

In the following I will look into this surprising observation a little closer
considering the example of determining the length of a single-linked list. This
example – like all others in this paper – has been verified using Holfoot [8], a Sep-
aration logic [5, 6] tool similar to the tool Smallfoot [1]. Both tools, Holfoot and
Smallfoot, use a very similar programming language. However, Holfoot sup-
ports a richer specification language as well as interactive proofs. This enables
it to reason about fully functional specifications, whereas Smallfoot just rea-
sons about the shape of datastructures. Details about the syntax and semantics
of the used specification and programming language are not important for this
paper and are therefore not discussed here. The programming language is easy
to understand, because its syntax is similar to C. The specification language has
uncommon syntax like using underscores to denote existential quantification.
Therefore, in this paper specifications will be presented in an informal, intuitive
way. All specifications are just concerned with partial correctness; termination
is not considered.

The examples as well as Holfoot itself are available at its webpage1. There
is also a web-interface that allows experimenting with the examples. Holfoot

1 http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org


is implemented inside the HOL 4 [2, 7] theorem prover. Thus, there are formal,
machine readable semantics of both the programming and the specification lan-
guage and all reasoning is done by proof inside HOL 4. In particular this means
that all inference rules – including the one presented in this paper – are proven
correct inside HOL 4.

So, let’s consider a recursive and an iterative implementation of determining
the length of a single-linked list:

list_length(r;c) [list(c,cdata)] {
local t;
if (c == NULL) {
r = 0;

} else {
t = c->tl;
list_length(r;t);
r = r + 1;

}
} [list(c,cdata) * (r = length(cdata))]

list_length_iter(r;c) [list(c,cdata)] {
local t;
r = 0; t = c;
while (t != NULL) [∃cdata1 cdata2.

lseg(c, cdata1, t) *
list(t, cdata2) *
(r = length(cdata1)) *
(cdata = cdata1 + cdata2)] {
t = t->tl;
r = r + 1;

}
} [list(c,cdata) * (r = length(cdata))]

Both procedures get two arguments: a call-by-reference argument r and a call
by value one c. The preconditions demand that c points to the start of a single-
linked list that contains some data cdata. The postconditions guarantee, that
this list is left unmodified and r is updated to contain the length of the list.
While this specification is sufficient for the recursive implementation, the iter-
ative one needs a complicated loop invariant. The loop-invariant (see Fig. 1)

Fig. 1. Loop Invariant of list length iter

demands that the list can be split into two parts: the part that has already been
counted and the one that still needs processing. The already counted part is a
list-segment from c to t containing cdata1. The current value of r has to be the
length of this already counted part. The unprocessed part is a null-terminated
single-linked-list starting at t and containing cdata2. Combined, the two parts
need to form the original list, i. e. appending cdata1 and cdata2 results in
cdata.

Summing up, there are two implementations of the same algorithm. They
have the same interface with exactly the same procedure specifications. How-
ever, while this specification is sufficient for the recursive implementation, the



iterative one needs to be annotated with a complicated loop invariant. This in-
variant is not just lengthy, it needs new concepts. Only the invariant needs to
talk about list-segments, a partial datastructure. Both implementations do es-
sentially the same, so why is it so much harder to specify the iterative one?
The answer is that the specification of the recursive procedure call can utilise
separation logic’s local reasoning whereas the loop invariant does not use it.

The recursive implementation checks first2, whether the list is empty. If it is
not empty, the first element can be split off. The recursive call then determines
the length of the remaining list. Thanks to local reasoning the specification of
the recursive call has to mention just the tail of the original list. It is implicitly
guaranteed that the first element of the original list is not modified. In con-
trast, the loop invariant describes the whole state / the whole datastructure.
The list-segment from c to t, which is handled implicitly in the recursive im-
plementation, is mentioned explicitly in the loop invariant.

In the following a inference rule is presented that allows the usage of local
reasoning for the verification of while loops. Instead of loop invariants, this
inference rule uses pre- and post-conditions for while loops. It allows to specify
the list-length example as follows:

list_length_iter(r;c) [list(c,cdata)] {
local t;
r = 0; t = c;
loop_spec [list(t,data)] {
while (t != NULL) { t = t->tl; r = r + 1; }

} [list(old(t),data) * (r = old(r) + length(data))]
} [list(c,cdata) * (r = length(cdata))]

This specification states that assuming t points to a start of a single linked list
before the loop, then after the execution of the loop, there is still the same list
in memory and the value of the variable r has been increased by the length of
the list. So, this specification is using local reasoning. The list-segment between
c and t is handled implicitly.

2 A closer look at the inference rule for while-loops

As motivated, local reasoning is an powerful feature that often allows simpler,
shorter specifications and proofs. However, the inference rule for while-loops
does not allow to utilise it. Let’s have a closer look at this inference rule and see
whether it can be modified to allow local reasoning. Hoare Logic [4] provides
the following inference rule to reason about the partial correctness of while-
loops:

WHILE RULE
{c ∧ I} p {I}

{I} while c do p done {¬c ∧ I}

2 Holfoot’s web-interface can be used to step through the proof. It can be found at
http://holfoot.heap-of-problems.org.

http://holfoot.heap-of-problems.org


This inference rule can informally be justified by an induction on the number
of loop iterations:

{I} while c do p done {¬c ∧ I} ⇐ induction / unroll

{¬c ∧ I} {¬c ∧ I} ∧ use induction hypothesis that
{c ∧ I} p; while c do p done {¬c ∧ I} ⇐ the while loop satisfies

the specification

∀prog. {I} prog {¬c ∧ I} −→
{c ∧ I} p; prog {¬c ∧ I} ⇐ sequential composition rule

{c ∧ I} p {I}

The possibility to use local reasoning is lost in the last step, the application
of the composition rule. Separation logic’s local reasoning guarantees that any
Hoare triple can be extended by an arbitrary context R:

{P} prog {Q} ⇐⇒ ∀R. {P ∗R} prog {Q ∗R}

However, applying the sequential composition rule in the described way, ig-
nores the possibility to extend the specification of prog with a frame R. Let’s try
to extend the inference rule for while-loops to be able use local reasoning. This
extension should be as general as possible.

Slightly generalised, the identified problem with the classical while-rule
is, that it is designed for single Hoare triples {P} prog {Q}. In practice how-
ever, one often reasons about families {P1} prog {Q1}, {P2} prog {Q2}, . . . of
specifications. As seen with the frame rule before, such families are usually
represented using higher order quantification, i. e. they are given in the form
∀x. {P (x)} prog {Q(x)}. If the classical while-rule is used for such a family, it
results in

WHILE RULE FOR FAMILIES
∀x. {c ∧ I(x)} p {I(x)}

∀x. {I(x)} while c do p done {¬c ∧ I(x)}

One can do better than this. This derived rule reasons about every member of
the family, about every instantiation of x separately. The other members, other
instantiations are ignored. In order to use that additional knowledge let’s replay
the informal justification for the classic while-rule with the quantifier in mind:

∀x. {I(x)} while c do p done {¬c ∧ I(x)} ⇐

∀x, prog.
(
∀y. {I(y)} prog {¬c ∧ I(y)}

)
−→

{c ∧ I(x)} p; prog {¬c ∧ I(x)} ⇐

∀x. ∃y. {c ∧ I(x)} p {I(y)} ∧
(
¬c ∧ I(y) → ¬c ∧ I(x)

)
This rule is more general than the classical one. The classic one always in-

stantiates y with x. Now the induction hypothesis is stronger and one can ac-
tually use a different instantiation for the next iteration through the loop. As
discussed before, separation logic’s local reasoning can be expressed as such



a family of specifications. Therefore, reasoning about families of specifications
instead of single ones allows using local reasoning for loops. This is the core of
the proposed inference rule for loops. It leads to the following rule:

EXTENDED WHILE RULE
∀x, prog.

(
∀y. {I(y)} prog {¬c ∧ I(y)}

)
−→ {c ∧ I(x)} p; prog {¬c ∧ I(x)}

∀x. {I(x)} while c do p done {¬c ∧ I(x)}

The extended while rule allows to choose for each loop iteration a differ-
ent instantiation. So, I is still some kind of inductive property of the loop, but
strictly speaking no invariant any more. So let’s use proper pre- and postcon-
ditions for the loop. By introducing pre- and post-conditions, the case for skip-
ping the loop becomes more complicated. There is an additional proof obliga-
tion that the pre-condition implies the post-condition. Since there is this addi-
tional proof obligation anyhow, one can easily allow code after the loop. This
results in the inference rule proposed in this paper:

LOOP SPECIFICATION RULE
∀x. {¬c ∧ P (x)} p2 {Q(x)}

∀x, prog.
(
∀y. {P (y)} prog {Q(y)}

)
−→ {c ∧ P (x)} p1; prog {Q(x)}

∀x. {P (x)} while c do p1 done; p2 {Q(x)}

Both extensions of the extended while rule can be justified using exactly the
same reasoning as before. These extensions are natural and prove useful. Espe-
cially, using real pre- and post-conditions is convenient. However, these exten-
sions are unrelated to the main idea of using local reasoning for loops.

Notice, that this discussion about inference rules is intentionally very infor-
mal. There has been no definition of the semantics of the programming lan-
guage and no definition of Hoare triples. The purpose of this discussion is to
convey the main ideas. In contrast to this informal discussion here, the imple-
mentation of this proposed inference rule in Holfoot is formal. Everything is
defined using higher order logic and its soundness is machine checked using
the HOL 4 theorem prover.

3 Examples

I hope, I could convince you that loop-specifications are advantageous for the
initial example of calculating the length of a single-linked list. There are similar
results for reversing a single-linked list, copying a single-linked list, appending
two single-linked lists, removing an element from a single-linked list, etc. Due
to space restrictions most of these examples are not discussed here. They can be
found on Holfoot’s web-page3.

Before considering examples that are very similar to the motivating one,
let’s start by discussing examples that demonstrate that even without local rea-
soning loop specifications are still useful. In contrast to invariants, the pre- and

3 http://holfoot.heap-of-problems.org
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post-condition specify the behaviour of the block containing the while loop.
Therefore, the loop specification rule is closely related to Eric Hehner’s specified
blocks [3]. Hehner uses single boolean expressions instead of a pre- and post-
condition. Moreover, his work is much more general. However, he is not using
local reasoning. Allowing for these differences, his method of reasoning about
loops is very similar to the one proposed here.

3.1 Array Increment Example

Similar to Hehner’s specified blocks, loop specifications slightly change how to
think about loops. As a rule of thumb, loop invariants express what the loop has
already done, whereas loop specifications express what it will still do. Talking
about what still needs doing instead of what has already been done, often leads
to more natural specifications. Even without local reasoning, Hehner prefers
loops specified as blocks to invariants. He claims that it is simpler and more direct
to say what’s left to be done, rather than to formulate an invariant [3]. This differ-
ence between loop invariants and loop specifications is demonstrated by one of
Hehner’s examples:
inc(;a,n) [array(a,n,data)] {

local i, tmp;
i = 0;
while (i < n) {

tmp = (a + i) -> dta;
(a + i) -> dta = tmp + 1;
i = i + 1;

}
} [array(a,n,map +1 data)]

This procedure increments every element of an array. The loop can be specified
with the following invariant:

∃data2. array(a,n, data2) ∗(
∀x. x < i =⇒ data2[x] = data[x] + 1

)
∗(

∀x. i ≤ x < n =⇒ data2[x] = data[x]
)

The invariant states that there is an array of length n starting at a and contain-
ing some existentially quantified data data2. For all indices up to i the array
contains the incremented value, for all other indices it still contains the original
one. If a loop specification is used, it is the other way round:

pre: array(a,n, data)

post: ∃data2. array(a,n, data2) ∗(
∀x. x < old(i) =⇒ data2[x] = data[x]

)
∗(

∀x. old(i) ≤ x < n =⇒ data2[x] = data[x] + 1
)

This specification states that all the indices starting at the value of i will be up-
dated, while all smaller than i are not touched. Notice, that no local reasoning
is involved here yet. Using local reasoning, the loop specification can however
be simplified by implicitly handling the part of the array that is not touched.

pre: array(a+ i,n− i, data)

post: array(a+ old(i),n− old(i), map (+1) data)



This specification now states that given an array starting from a + i of length
n − i – i. e. just the part of the original array starting at index i – all elements
of this array are incremented. There is no need any more for some complicated
expressions about indices.

3.2 List Filtering Example

The last example demonstrates that loop invariants usually specify what has al-
ready been done, whereas loop specifications specify what will be done. How-
ever, both views were easy to express. The following example of filtering a list
demonstrates that it might be much simpler to express what the loop will still
do. Notice that this example is not exploiting local reasoning.

list_filter(l;x) [list(l,data)] {
local y, z, e;
y = l; z = NULL;
while (y != NULL) {

e = y->dta;
if (e == x) { /* need to remove y */
if (y == l) { /* first link */

l = y->tl; dispose y; y = l;
} else { /* not first link */

e = y->tl; z->tl = e; dispose y; y = z->tl;
}

} else { /* don’t need to remove y */
z = y; y = y->tl;

}
}

} [list(l, filter x from data)]

The loop invariant describes that parts of the list got already filtered. This par-
tial filtering is complicated to express:

if (y = l) then
∃data1. (data = (some xs) + data1) ∗ list(l, data1)

else
∃data1, date, data2. (data = data1 + date + (some xs) + data2) ∗

lseg(l, filtered data1,z) ∗ (z 7→ [tl : y, dta : date]) ∗
lseg(y, data2)

This invariant is even worse than it looks, because the shorthand (some xs) is
used to denote a list of unknown length that consists of just the element x. In
contrast, the loop specification is straightforward, because it describes that the
whole list starting at y will be filtered.

pre: list(y, data2) ∗
if (y 6= l) then lseg(l, data,z) ∗ (z 7→ [tl : y,dta : zdate]) else emp

post: if (old(y) = old(l)) then list(l, filtered data2)
else list(l, data + zdate + filtered data2)



3.3 List Copy Example

After considering examples for which loop specifications proved beneficial even
without local reasoning, let’s have a look at an example with local reasoning:

list_copy(z;c) [list(c,data)] {
local x,y,w,d;
if (c==NULL) { z=NULL; }
else {
z=new(); z->tl=NULL; x = c->dta; z->dta = x; w=z; y=c->tl;
while (y!=NULL) {
d=new(); d->tl=NULL; x=y->dta; d->dta=x; w->tl=d; w=d; y=y->tl;

}
}

} [list(c,data) * list(z,data)]

This procedure copies a single-linked list that starts at c and updates the call-
by-reference argument z such that z points to the copy after execution. The
procedure first checks, whether the list is empty. In this case, nothing needs to
be copied. Otherwise, the first element is copied and auxiliary variables w and
y initialised. After this initialisation, z points to the beginning of the copy, w
points to its last element and y points to the part of the original list that still
needs to be copied. Then a while loop is used to copy the remainder of the list
by copying the element pointed to by y and then advancing y and w.

The while-loop can be specified with the following invariant:

∃data1, cdate, data2. (data = data1 + cdate + data2) ∗
lseg(c, data1 + cdate, y) ∗
lseg(z, data1, w) ∗ (w 7→ [tl : 0,dta : cdate]) ∗
list(y, data2)

This invariant states that the original data can be split into three parts: two
lists data1, data2 and a single element cdate. There is a list-segment from c to y
containing data1 followed by cdate. This part of the original list has already been
copied. The data data1 has been copied to a list-segment from z to w. The last
entry cdate is pointed to by w. Finally, data2 still needs to be copied. It is stored
in a list starting at y.

Using a loop specification simplifies reasoning about the loop significantly:

pre: w 7→ [tl : 0,dta : cdate] ∗ list(y, data2)

post: list(old(w), cdate + data2) ∗ list(old(y), data2)

This specification states that if before the loop is executed w points to some data
cdate and there is a list starting at y containing data2, then the list starting at y
is copied such that the old value of w points to a list containing cdate followed
by data2 after the execution of the loop. The part of the list that has already
been copied, i. e. the list-segment from c to y does not need to be mentioned
explicitly. It is handled implicitly using local reasoning. Notice moreover that
the loop specification does not use list-segments.



3.4 Partial Datastructures

Loop specifications can utilise local reasoning in order to implicitly handle
some part of the state that loop invariants mention explicitly. This implicitly
handled part of the state is usually a partial datastructure. For the examples
so far, these partial data structures are easy to express. For lists, the partial
datastructure is a list-segment and for arrays it is an array. Let’s now consider
a slightly more complicated datastructure: trees. For trees, the corresponding
partial datastructure is a tree with a hole for some other tree. This is difficult
to express. Separation logic’s magic-wand operator can be used, but reasoning
about this additional operator is not straightforward and Holfoot is not able to
do it. Therefore, Holfoot usually can’t handle the invariants of loops that op-
erate on trees. However, loop specifications can be used to avoid the partial
datastructure. This allows Holfoot to reason about additional examples like the
following:

search_tree_delete_min (t,m;) [binary_search_tree(t;keys) * (keys 6= ∅)] {
local tt, pp, p;
p = t->l;
if (p == 0) { m = t->dta; tt = t->r; dispose (t); t = tt; } else {
pp = t; tt = p->l;
loop_spec [binary_search_tree(p, keys2) & (pp points to p and p to tt)] {
while (tt != NULL) { pp = p; p = tt; tt = p->l; }
m = p->dta; tt = p->r; dispose(p); pp->l = tt;

} [∃p2. binary_search_tree(p2, keys2 without min(keys2)) & (pp points to p2)]
}

} [binary_search_tree(t;keys without min(keys)) * (m = min(keys))]

This procedure deletes the minimal key from a non-empty binary search tree.
The while-loop is used to search for the node storing the minimal key. After
the loop has been executed, the original binary-search tree is unmodified and
the variable p points to the node holding the minimal key and pp to its par-
ent node. However, expressing these properties of p and pp is complicated and
would require some kind of partial tree datastructure. Therefore, the code that
deletes the minimal element is included in the loop specification. Thus, the
post-condition of the loop specification can state, that the minimal key of the
original tree has been deleted. In contrast to the corresponding loop invariant,
the loop specification does not need partial tree datastructures.

Besides demonstrating that loop specifications can be used to eliminate the
need for partial datastructures, the last example also demonstrates why it is
useful that loop specifications allow code after the while-loop. Allowing code
after the loop is a minor extension, that is not used by most of the examples that
I considered so far. However, as this example illustrates, it sometimes results in
much simpler post-conditions.

4 Conclusion

In this paper an additional inference rule for while loops is presented. This
loop specification rule uses pre- and post-conditions instead of invariants. Loop
invariants express what the loop has done so far. In contrast loop specifications
state what the loop will still do. This often leads to more natural specifications.



The loop specifications presented here are very similar to Eric Hehner’s
specified blocks [3]. Even without local reasoning they often lead to simpler,
more natural specifications as demonstrated by the list filtering example. How-
ever, they have mainly been introduced in order to be able to use separation
logic’s local reasoning for loops. Using local reasoning, loop specifications gain
their full potential. Besides leading to even simpler specification, local reason-
ing can be used to avoid the need for predicates describing partial datastruc-
tures.

Loop specifications have been implemented inside Holfoot. This implemen-
tation includes a formal correctness proof inside the HOL 4 theorem prover.
There are many Holfoot examples available that demonstrate that loop speci-
fications can simplify the specification and verification of loops considerably.
There are examples for single linked lists like reversing a single-linked list,
copying a single-linked list, appending two single-linked lists, removing an ele-
ment from a single-linked list, examples for arrays like copying an array, binary
search, quicksort and examples for binary trees like binary search tree lookup
and deletion or traversing a tree with a user managed stack. These examples
and many others can be found on Holfoot’s webpage 4. The binary tree exam-
ples might be especially interesting. These could not be handled by Holfoot
without loop specifications, because Holfoot does not support predicates that
are able to describe the otherwise necessary partial datastructures.
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Abstract. Automated verification of memory safety and functional cor-
rectness for heap-manipulating programs has been a challenging task,
especially when dealing with complex data structures with strong invari-
ants involving both shape and numerical properties. Existing verification
systems usually rely on users to supply annotations, which can be tedious
and error-prone, and can significantly restrict the scalability of the ver-
ification system. In this paper, we reduce the need of user annotations
by automatically inferring loop invariants over an abstract domain with
both separation and numerical information. Our loop invariant synthe-
sis is conducted automatically by a fixpoint iteration process, equipped
with newly designed abstraction mechanism, and join and widening op-
erators. Initial experiments have confirmed that we can synthesise loop
invariants with non-trivial constraints.

1 Introduction

Although it is a challenging problem to automatically verify heap manipulating
programs written in mainstream imperative languages, dramatic advances have
been made since the emergence of separation logic [8, 13]. Examples include the
Smallfoot tool [1] for the verification on pointer safety, and Hip/Sleek [10, 11]
for more general properties (both structural and numerical ones).

However, one problem of these verification systems is that they generally
require users to provide specifications for each method as well as invariants
for each loop, which is both tedious and error-prone. This also affects their
scalability, as there can be many methods in a program and each method may
still contain several while loops.

To conquer this problem, separation logic based shape analysis techniques
are brought in, e.g., the SpaceInvader tool [2, 5, 15]. As a further step of Small-
foot, it automatically infers method specifications and loop invariants for pointer
safety in the shape domain. Other works such as THOR [9] incorporate simple
numerical information into the shape domain to allow automated synthesis of
properties like list length. Their success proves the necessity and feasibility for
shape analysis to help automate the verification process.
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However, the prior analyses focus mainly on relatively simple properties, such
as pointer safety for lists and list length information. It is difficult to apply them
in the presence of more sophisticated program properties, such as:
– More flexible user-defined data structures, such as trees;
– Relational numerical properties, like sortedness and binary search property.

These properties can be part of the full functional correctness of heap-manipulating
programs. The (aforementioned) Hip/Sleek tool aims to verify such properties
and it allows users to define their own shape predicates to express their desired
level of correctness.

In this paper, we make the first stride to improve the level of automation
for Hip/Sleek -like verification systems by discovering loop invariants auto-
matically over the combined shape and numerical domain. This proves to be a
challenging problem especially since we aim towards full functional correctness
that Hip/Sleek targets at. Our approach is based on the framework of abstract
interpretation [4] with fixpoint computation.

In summary, this paper makes the following contributions:
– We propose a loop invariant synthesis with novel operations for abstraction,

join and widening over a combined shape and numerical domain.
– We demonstrate that our analysis is sound and terminates.
– We have integrated our solution with Hip/Sleek and conducted some initial

experiments. The experimental results confirm the viability of our solution.

We shall next illustrate our approach informally via an example before pre-
senting the formal details of abstraction, join and widening.

2 The Approach

Separation logic [8, 13] extends Hoare logic to support reasoning about shared
mutable data structures. It provides separation conjunction (∗) to form formu-
lae like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-
disjoint. Our abstract domain is founded on a hybrid logic of both separation
logic and classical first-order logic to specify both separation and numerical
properties. Similar to the Hip/Sleek system, we allow user-defined inductive
predicates. For example, with a data structure definition for a node in a list
data node { int val; node next; }, we can define a predicate for a list as
root::ll〈n〉 ≡ (root=null∧n=0)∨(∃v, q, m · root::node〈v, q〉∗q::ll〈m〉∧n=m+1)
The parameter root for the predicate ll is the root pointer referring to the
list. Its length is denoted by n. A uniform notation p::c〈v∗〉 is used for either
a singleton heap or a predicate. If c is a data node, the notation represents
a singleton heap, p7→c[v∗], e.g. the root::node〈v, q〉 above. If c is a predicate
name, then the data structure pointed to by p has the shape c with parameters
v∗, e.g., the q::ll〈m〉 above.

We can also define a list segment as follows:
ls〈p, n〉 ≡ (root=p ∧ n=0) ∨ (root::node〈 , q〉 ∗ q::ls〈p, m〉 ∧ n=m+1)

where we use the following shortened notation: (i) default root parameter in
LHS may be omitted, (ii) unbound variables, such as q and m, are implicitly
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existentially quantified, and (iii) the underscore denotes an existentially quan-
tified anonymous variable.

If users want to verify a sorting algorithm, they can incorporate sortedness
property into the above predicates as follows:

sll〈n, mn, mx〉 ≡ (root=null ∧ n=0 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sll〈n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

sls〈p, n, mn, mx〉 ≡ (root=p ∧ n=0 ∧ mn=mx) ∨
(root::node〈mn, q〉 ∗ q::sls〈p, n1, k, mx〉 ∧ mn≤k ∧ n=n1+1)

where mn and mx denote resp. the min and max values stored in the sorted list.
Such user-supplied predicates can be used to specify loop invariants and

method pre/post-specifications. Hip/Sleek also allows user-defined lemmas to
express coercion relations between predicates [10]. For example, we can express
with lemma that a list is formed by a list segment with another list as

root::ll〈n〉 ∧ n=n1+n2 ←− root::ls〈p, n1〉 ∗ p::ll〈n2〉
This lemma mechanism is also supported by our analysis. It can benefit our
abstraction operation significantly (described later).

We now illustrate via an example our loop invariant synthesis process.

0 data node { int val;

node next; }

1 node ins_sort(node x)

2 requires x::ll〈n〉
3 ensures res::sll〈n, mn, mx〉
4 {int v;

5 node res,cur,srt,prv=null;

6 while (x != null) {

7 cur=x; x=x.next; v=cur.val;

8 srt=res; prv=null;

9 while (srt != null &&

srt.val <= v) {

10 prv=srt; srt=srt.next;

11 }

12 cur.next=srt;

13 if (prv != null) prv.next=cur;

14 else res=cur;

15 }

16 return res;

17 }

Fig. 1. Insertion sort for linked list.

The method ins sort (Figure 1) sorts a linked list with the insertion sort
algorithm. It is implemented with two nested while loops. The outer loop tra-
verses the whole list x, takes out each node from it (line 7), and inserts that node
into another already sorted list r (which is empty initially before the sorting).
This insertion process makes use of the inner while loop in lines 9-11 to look for
a proper position in the already sorted list for the new node to be inserted. The
actual insertion takes place at lines 12-14.

To verify this program, we need to synthesise appropriate loop invariants for
both while loops. Our analysis follows a standard fixpoint iteration process. It
starts with the (abstract) program state immediately before the while loop (i.e.,
the initial state) and symbolically execute the loop body for several iterations,
until the obtained states converge to a fixpoint, which is the loop invariant.
During such process, at the end of each iteration, we use an abstraction function
to eliminate existentially quantified logical variables, and the join and widening
operators to guarantee termination for the numerical domain.
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As for our example, due to the presence of nested loops, each iteration of the
analysis for the outer loop actually infers a loop invariant for the inner loop. We
shall now illustrate how we synthesise a loop invariant for the inner loop.

Suppose that in one iteration for the outer loop, the state at line 9 becomes
res::sll〈nr, a, b〉 ∗ cur::node〈v, x〉 ∗ x::ll〈nx〉 ∧ srt=res ∧ prv=null ∧ nr+nx+1=n

Note that since the inner loop does not mutate the heap part referred to by
cur and x (i.e., cur::node〈v, x〉 ∗x::ll〈nx〉), we can ignore it during the invariant
synthesis and add it back to the program state using the frame rule of separation
logic [13]. Therefore, the initial state for loop invariant synthesis becomes

res::sll〈nr, a, b〉 ∧ srt=res ∧ prv=null ∧ nr+nx+1=n (1)
From this state, symbolically executing the loop body once yields the state:

res::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=res ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr

(2)

which says that pointer srt moves towards the tail of the list for one node. Then
we join it with the initial state (1) yielding

(res::sll〈nr, a, b〉 ∧ srt=res ∧ prv=null ∧ nr+nx+1=n)∨
(res::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧

prv=res ∧ a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr)
(3)

The second iteration over the loop body starts with (3) and exhibits (also) the
case that srt runs two nodes towards tail, while prv goes one node. Its result is
then joined with pre-state (1) to become the current state:

(3) ∨ res::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr

(4)

Executing the loop body a third time returns a post-state where three nodes are
passed by srt, and two by prv, as below:

(4) ∨ res::node〈a, r0〉 ∗ r0::node〈c1, prv〉 ∗ prv::node〈c2, srt〉 ∗
srt::sll〈ns, c3, b〉 ∧ a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr

where we have an auxiliary logical variable r0. Following this trend, it is pre-
dictable that every iteration hereafter will introduce an additional logical vari-
able (referring to a list node). If we indulge in such increase in the subsequent
iterations, the analysis will never terminate. Our abstraction process prevents
this from happening by eliminating such logical variables as follows:

(4) ∨ res::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+3=nr ∧ n1=2

Note that the heap part res::node〈a, r0〉 ∗ r0::node〈c1, prv〉 is abstracted as a
sorted list segment res::sls〈prv, n1, a, c1〉 with n1 denoting the length of the
segment and n1=2 added into the state. This abstraction process ensures that
our analysis does not allow the shape to increase infinitely.

Executing the loop body a fourth time returns a post-state where four nodes
are passed by srt, and three by prv. Therefore an abstraction is performed to
remove the logical pointer variables. To simplify presentation, we denote σ as
res::sls〈prv,n1,a,c1〉 ∗ prv::node〈c2,srt〉 ∗ srt::sll〈ns,c3,b〉 ∧ a≤c1≤c2≤c3 ∧
c2≤v ∧ nr+1=n−nx, and the abstracted result (after the fourth iteration) is

(4) ∨ (σ ∧ ns+3=nr ∧ n1=2) ∨ (σ ∧ ns+4=nr ∧ n1=3)
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for which we have an observation that the last two disjunctions share the same
shape part (as in σ). Therefore, when joined with the previous state, the dis-
junction will be transferred to the numerical domain, as follows:

(4) ∨ (σ ∧ (ns+3=nr ∧ n1=2 ∨ ns+4=nr ∧ n1=3))
This simplifies the abstraction further. After that, our widening operation com-
pares the current state with the previous one, to look for the same (numerical)
constraints that both states imply, and to replace those numerical constraints
in the current state with the ones discovered by widening. This operation even-
tually ensures termination of our analysis. As for the example, some constraints
among ns, nr and n1 can be found to make the widened post-state become:

(4) ∨ (σ ∧ ns+n1=nr−1 ∧ n1≥2) (5)
One more iteration of symbolic execution will produce the same result as (5),
suggesting that it is already the fixpoint (and hence the loop invariant):

res::sll〈nr, a, b〉 ∧ srt=res ∧ prv=null ∧ nr+1=n−nx ∨
res::node〈a, srt〉 ∗ srt::sll〈ns, c1, b〉 ∧ prv=res ∧
a≤c1 ∧ a≤v ∧ nr+1=n−nx ∧ ns+1=nr ∨

res::node〈a, prv〉 ∗ prv::node〈c1, srt〉 ∗ srt::sll〈ns, c2, b〉 ∧
a≤c1≤c2 ∧ c1≤v ∧ nr+1=n−nx ∧ ns+2=nr ∨

res::sls〈prv, n1, a, c1〉 ∗ prv::node〈c2, srt〉 ∗ srt::sll〈ns, c3, b〉 ∧
a≤c1≤c2≤c3 ∧ c2≤v ∧ nr+1=n−nx ∧ ns+n1=nr−1 ∧ n1≥2

Note that although it is possible to further join the third disjunctive branch with
the fourth, our analysis does not do so as it tries to keep the result as precise as
possible by eliminating only auxiliary pointer variables.

With the frame cur::node〈v, x〉 ∗ x::ll〈nx〉 added back, the analysis for the
outer loop continues until the following (outer) loop invariant is discovered:
(x::ll〈nx〉 ∧ res=null ∧ nx=n) ∨ (res::node〈a, null〉 ∗ x::ll〈nx〉 ∧ n=nx+1) ∨

(res::sll〈nr, a, b〉 ∗ x::ll〈nx〉 ∧ n=nx+nr ∧ nr≥2)
which allows us to verify the whole method successfully using e.g. Hip/Sleek.

3 Language and Abstract Domain

We focus on a strongly-typed C-like imperative language (in Figure 2, analogous
to that in Nguyen et al. [11]) allowing users to define their own data structures
and shape predicates. It requires users to provide specifications for methods, but
while loops can be annotation-free and we will calculate their invariants.

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if v then e1 else e2 | while v {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v.f :=w | free(v)

Fig. 2. A Core (C-like) Imperative Language.

Our specification language (in Figure 3) allows (user-defined) shape predi-
cates spred to specify both shape and numerical properties and lemmas lemma
for predicate coercion. We require that the predicates be well-founded [11].
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spred ::= root::c〈v∗〉 ≡ Φ Φ ::=
W

σ∗ σ ::= ∃v∗·κ∧π
mspec ::= requires Φpr ensures Φpo

lemma ::= root::c〈v∗〉 ∧ π ←− Φ
∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2

φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 3. The Specification Language.

A conjunctive abstract program state, σ, is composed of a heap (shape) part
κ and a numerical part π, where π consists of γ and φ as aliasing and numerical
information, respectively. We use SH to denote the set of such conjunctive states.
During the symbolic execution, the abstract program state at each program point
will be a disjunction of σ’s, denoted by ∆ (and its set is referenced as PSH). We
check the entailment relationship ` between two states with Sleek [11].

The memory model of our specification formula is similar to the model given
for separation logic [13], except that we have extensions to handle user-defined
shape predicates and related numerical properties. In our analysis, all the vari-
ables except the program ones are logical variables. We denote a program vari-
able’s initial value as unprimed and its current value as primed [11].

4 Abstraction, Join and Widening

Our proposed analysis algorithm is given in Figure 4.

Fixpoint Computation in Combined Domain
Input: T , ∆pre, while b {e}, n ;
Local: i := 0; ∆i := false; ∆′

i := false;
1 repeat

2 i := i + 1;

3 ∆i := widen†(∆i−1, join†(∆pre, ∆
′
i−1));

4 ∆′
i := abs†(|[e]|T (∆i ∧ b));

5 if ∆′
i = false ∨ cp no(∆′

i) > n
· then return fail end if

6 until ∆′
i = ∆′

i−1;

7 return ∆′
i

Fig. 4. Main analysis algorithm.

As demonstrated in Section 2, our analysis is based on the abstract interpre-
tation framework [4] over a combined shape and numerical domain, by iteration
of symbolic executions over the loop body, followed by abstraction over shapes
and join and widening over the combined domain. This section concentrates on
our specifically designed abstraction, join and widening operations employed in
our loop invariant synthesis process.

Abstraction function. During the symbolic execution, we may be confronted
with many “concrete” shapes in postconditions of the loop body. As an example
of list traversal, the list may contain one node, or two nodes, or even more nodes
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in the list, which the analysis cannot enumerate infinitely. The abstraction func-
tion deals with those situations by abstracting the (potentially infinite) concrete
situations into more abstract shapes, to ensure finiteness over the shape domain.
Our rationale is to keep only program variables and a bounded number of shared
cutpoints (existentially quantified logical variables referenced by more than one
predicates); all other logical variables will be abstracted away. As an instance,
the first state below can be further abstracted, while the second one cannot:

x::node〈 , z0〉 ∗ z0::node〈 , null〉 Ã x::ll〈n〉 ∧ n=2
x::node〈 , z0〉 ∗ y::node〈 , z0〉 ∗ z0::node〈 , null〉 Ã/ (6)

where both x and y are program variables, and z0 is an existentially quanti-
fied logical variable. In the second case z0 is a shared cutpoint referenced by
both x and y, and is therefore preserved. As illustrated, the abstraction transi-
tion function abs eliminates unimportant cutpoints (during analysis) to ensure
termination. Its type is defined as follows:

abs : SH → SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it
as another conjunctive state σ′ (abs(σ) Ã σ′). Below are its rules.

abs(σ ∧ x0=e) Ã σ[e/x0] abs(σ ∧ e=x0) Ã σ[e/x0]
¬Reach(σ, x0)

abs(x0::c〈v∗〉 ∗ σ) Ã σ ∗ true
isdatat(c1) c2〈u∗2〉 ≡ Φ

p::c1〈v∗1〉 ∗ σ1 ` p::c2〈v∗2〉 ∗ σ2 ¬Reach(p::c2〈v∗2〉 ∗ σ2, v
∗
1)

abs(p::c1〈v∗1〉 ∗ σ1) Ã p::c2〈v∗2〉 ∗ σ2

c1〈u∗1〉 ≡ Φ1 c2〈u∗2〉 ≡ Φ2 root::c2〈v∗2〉 ←− root::c1〈v∗1〉 ∗ σ
p::c1〈v∗1〉 ∗ σ1 ` p::c2〈v∗2〉 ∗ σ2 ¬Reach(p::c2〈v∗2〉 ∗ σ2, v

∗
1)

abs(p::c1〈v∗1〉 ∗ σ1) Ã p::c2〈v∗2〉 ∗ σ2

The first two rules eliminate logical variables (x0) by replacing them with their
equivalent expressions (e). The third rule is used to eliminate any garbage (heap
part led by a logical variable x0 unreachable from the other part of the heap) that
may exist in the heap. As x0 is already unreachable from, and not usable by, the
program variables, it is sound to treat it as garbage true without losing useful
information, for example the x0 in x::node〈 , null〉∗x0::node〈 , null〉 where only
x is a program variable.

The last two rules of abs play the most significant role which intend to elim-
inate shape formulae led by logical variables. All variables in v∗1 are logical vari-
ables. The fourth rule tries to fold a data node up to a predicate node. It confirms
that c1 is a data node definition and c2 is a predicate. Meanwhile it also ensures
that the latter is a sound abstraction of the former by entailment checking, and
the logical parameters of c1 are not reachable from other part of the heap (so
that the abstraction does not lose necessary information). Here ¬Reach(σ, x∗)
says that no variable in x∗ is reachable from any free variable in the abstract
state σ. Therefore we only abstract heap parts not led by a shared cutpoint. As
the previous example shows, we have abs(x::node〈 , z0〉 ∗ z0::node〈 , null〉) Ã
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x::ll〈n0〉 ∧ n0=2. One more note about this is, if we have multiple predicates
to choose from, we will have a disjunction of all predicates which are sound as
abstraction, such as

abs(x::node〈vx, z0〉 ∗ z0::node〈vz, null〉 ∧ vx≤vz) Ã
x::ll〈n0〉 ∧ n0=2 ∨ x::sll〈n0, vx, vz〉 ∧ n0=2

The last rule utilises lemmas provided by users to combine two or more
predicates. Its basic idea is similar as the previous rule; the extra obligation
requires that both c1 and c2 be predicates, and a lemma stating their relationship
is essential. Sometimes such lemma can bring more power to the abstraction,
as it provides more ways to observe a predicate other than its definition. An
illustrative case is abs(x::ls〈z0, n0〉 ∗ z0::ll〈n1〉) Ã x::ll〈n2〉 ∧ n2=n0+n1, if we
are given the lemma to concatenate a list segment with a list to obtain a new
list whose length is the sum of the former two.

One more note about abs is that we only allow it to keep a bounded number
of shared cutpoints during the analysis. Namely, we will avoid unbounded incre-
ment of cutpoints to ensure termination of our analysis. On the basis of this, we
apply these rules from the top to the bottom on the abstract state over and again
until it stabilises. Such convergence is confirmed because the abstract shape do-
main is finite due to the combination of bounded variables and predicates, as
discussed later.

Join operator. The operator join is applied over two conjunctive abstract states,
trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ′2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in
if σ1 ` σ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (joinπ(π1, π2))
else if σ2 ` σ1 ∗ true then ∃x∗1, x∗2 · κ1 ∧ (joinπ(π1, π2))
else σ1 ∨ σ2

where the rename function prevents naming clashes among logical variables of
σ1 and σ2, by renaming logical variables of same name in the two states with
fresh names. For example it will renew x0’s name in both states ∃x0 · x0=0 and
∃x0 · x0=1 to make them ∃x0 · x0=0 and ∃x1 · x1=1. After this procedure it
judges whether σ2 is an abstraction of σ1, or the other way round. If either case
holds, it regards the shape of the weaker state as the shape of the joined states,
and performs joining for numerical formulae with joinπ(π1, π2), the convex hull
operator over numerical domain [12]. Otherwise it keeps a disjunction of the two
states (as it would be unsound to join their shapes together in this case).

Widening operator. The finiteness of shape domain is confirmed by the ab-
straction function. To ensure the termination of the whole analysis, we still need
to guarantee the convergence over the numerical domain. This task is accom-
plished by the widening operator.

The widening operator widen(σ1, σ2) is defined as:
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widen(σ1, σ2) =df

let σ′1, σ
′
2 = rename(σ1, σ2) in

match σ′1, σ′2 with (∃x∗1 · κ1 ∧ π1), (∃x∗2 · κ2 ∧ π2) in
if σ1 ` σ2 ∗ true then ∃x∗1, x∗2 · κ2 ∧ (widenπ(π1, π2))
else σ1 ∨ σ2

where the rename function has the same effect as above. Generally this operator
is analogous to join; the only difference is that the second operand σ2 should be
weaker than the first σ1 (ensured in previous steps of abstraction and joining),
such that the widening reflects the trend of such weakening from σ1 to σ2. Then
it applies widening operation widenπ(π1, π2) over the numerical domain [12].

These three operations provides termination guarantee while preserving sound-
ness for our analysis. Before using them we also lift them pointwisely from SH
to PSH such that they can be applied to ∆’s as well.
Soundness and termination. The soundness of our analysis is ensured by the
soundness of the following: the entailment prover [11], the abstract semantics
(w.r.t. concrete semantics), the abstraction operation over shapes, and the join
and widening operators.

Lemma 1 (Soundness). Our analysis is sound due to the soundness of entail-
ment checking, abstract semantics, operations of abstraction, join and widening.

The proof for entailment checking is by structural induction over abstract
domain [11]; for abstract semantics is by induction over program constructors;
for abstraction follows directly the first two; and for join and widening is based
on entailment checking and soundness of corresponding numerical operators.

For the termination aspect, we have the result:

Lemma 2 (Termination). The iteration of our fixpoint computation will ter-
minate in finite steps for finite input of program and specification.

The proof is based on two main facts: the finiteness over shape domain provided
by our restriction on cutpoints, and the termination over numerical domain
guaranteed by our widening operator. The first can be proved by claiming the
finiteness of program and logical variables preserved in our analysis as well as
the finiteness of all possible shape predicates, and hence the finiteness of all
possible abstract states only with shape information. The second is proved in
the abstract interpretation frameworks for numerical domains [12]: as the states
over shape domain are finite, the widening operator will guarantee termination
for any of these states, and hence the termination of the whole analysis (note
that only the abstract states with the same shape will be widened). Meanwhile
some other care is also taken for the termination issue, including the termination
of entailment checking [11] and lemma application [10].

5 Experiments and Evaluation

We have implemented a prototype system in Objective Caml for evaluation
purpose. We used Sleek [11] as the solver for entailment checking over heap
domain and Fixcalc solver [12] for join and widening operations in numerical do-
main. It can be seen from Figure 5 that all programs listed here can be analysed
with loop invariants obtained, which are confirmed by Hip/Sleek ’s verification.
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Program Function Time

create Creates a list with given length parameter 0.452

ins sort Inner loop of Fig. 1 0.824

ins sort Outer loop of Fig. 1 4.372

delete Disposes a list 0.720

traverse Traverses a list 0.636

append Appends two lists 0.312

partition Auxiliary operation used by Quick-sort 1.497

merge Merges two sorted lists to be one sorted list 1.972

split
Divides a list into two sublists with
length difference of at most one

0.354

select Selects the smallest node of a list 0.692

select sort Outer loop of selection sort 4.892

tree insert Inserts a node into a binary search tree 1.364

tree search Finds a node in a binary search tree 1.294

Fig. 5. Selected Experimental Results.

6 Related Work and Conclusion
Related works. For heap-manipulating programs with any form of recursion
(be it loop or recursive method call), dramatic advances have been made in
synthesising their invariants/specifications. The local shape analysis [5] infers
loop invariants for list-processing programs, followed by the SpaceInvader tool
to infer full method specifications over the separation domain, so as to verify
pointer safety for larger industrial codes [2, 15]. The SLAyer tool [6] implements
an inter-procedural analysis for programs with shape information. To deal with
also size information (such as number of nodes in lists/trees), THOR [9] derives
a numerical program from the original heap-processing one in a sound way,
such that the size information can be obtained with a traditional loop invariant
synthesis. A similar approach [7] combines a set domain (for shape) with its
cardinality domain (for corresponding numerical information) in a more general
framework. Compared with these works, our approach can handle data structures
with stronger invariants such as sortedness and binary search property, which
have not been addressed in the previous works. One more work to be mentioned
is the relational inductive shape analysis [3]. It employs inductive checkers to
express both shape and numerical information. Our advantage over theirs is that
we try to keep as many as possible shared cutpoints (logical variables) during the
analysis (within a preset bound), whereas they do not preserve such cutpoints
(which is witnessed by their joining rules over the shape domain). Therefore
our analysis is essentially more precise than theirs, e.g. in the second scenario
of (6) described in Section 4. Meanwhile their “checkers” do not cover data
structures with loops (such as cyclic lists) while we can handle them naturally.
Lastly, their work is mainly from a theory perspective as they do not employ
numerical reasoners to solve the relational constraints in their implementation;
comparatively, we discharge all the numerical and relational constraints with
automated reasoners [12].

There are also other approaches that can synthesise shape-related program
invariants than those based on separation logic, e.g., the shape analysis frame-
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work TVLA [14] based on three-valued logic. It is capable of handling compli-
cated data structures and properties, such as sortedness. Compared with their
work, our separation-logic-based approach also unifies heterogeneous techniques
and annotations in a homogeneous way with predicates which capture sufficient
information to perform analysis of properties that involve closures. Thanks to
separation logic, our approach benefits from the frame rule and hence supports
local reasoning (only the footprint of a program is considered when the analysis
if performed), which fact enhances its scalability.
Concluding Remarks. We have reported an analysis which allows us to synthe-
sise sound and useful loop invariants over a combined separation and numerical
domain. The key components of our analysis include novel operations for abstrac-
tion, join and widening in the combined domain. Our next step is to conduct
more experimental results to further confirm its viability. Meanwhile we will try
to eliminate the request of users to provide a limit of cutpoint bounds by more
thorough investigations into this arbitrary user-defined specification mechanism.
Acknowledgement. This work was supported in part by EPSRC projects [EP/
E021948/1, EP/G042322/1]. We thank Florin Craciun’s precious comments.
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Abstract. Relational program logics are a powerful tool for the verification of
program transformations and security properties, and enable extensional interpre-
tations of type systems and program analyses. We present a rule-by-rule encoding
of a termination-insensitive variant of Benton’s Relational Hoare Logic (RHL)
in a unary program logic, demonstrating that standard verification technology
may actually suffice for the formal certification of such relational properties. Our
embedding employs a reformulation of self-composition at the level of program
logics and has been formally verified by an implementation in Isabelle/HOL.

1 Introduction

Relational program logics have emerged as a tool for verifying program transforma-
tions, interpreting security analyses, and relating data structure implementations [7, 1,
22]. They expose the two-execution nature of program properties at the level of judge-
ments, extending traditional Hoare/VDM-style unary program logics where a judge-
ment’s interpretation refers to a single execution. Benton [7] makes a particularly com-
pelling argument for relational reasoning, motivating it both from a theoretical perspec-
tive and from a compiler writer’s point of view. In particular, Benton demonstrates that
relational Hoare logic (RHL) may serve as a declarative interface between program
analyses and the transformations enabled by these analyses.

Given the advent of relational logics, it is reasonable to ask whether relational logics
are actually more expressive than unary logics. In this paper, we give a negative answer
to this question, for a variant of Benton’s RHL. We show that relational proof rules can
be derived from a pair of unary specifications whose derivation trees are independent.

In addition to being of theoretical interest, our result opens an avenue for integrat-
ing relational logics into architectures for certified compilation and proof-carrying code.
As has been argued in [4, 2], a modular way to build such systems is to develop stacks
of program logics which mediate between machine-level logics and program analy-
ses. Each layer being derived from its host by a formal interpretation, the soundness
of the entire architecture rests on that of its bottom-most layer. Here, sophisticated se-
mantic models are currently being developed [3] which justify the foundational layers
with respect to operational semantics of mainstream programming languages such as
C [16]. Given the conceptual and engineering complexity inherent in these models, it is
desirable to leverage their construction (in particular: their implementation in theorem
provers) over a wide range of application logics. Our results indicate that it may indeed
be possible to avoid to repeat the construction for relational properties.



With this scenario in mind, we exploratively formalized our work in the theorem
prover Isabelle/HOL [8]. For our simple programming language, a standard soundness
result for the host logic suffices, allowing us to postpone the integration with a more so-
phisticated model. As a side effect, this implementation provides to our knowledge the
first formalized soundness proof of a relational program logic. Like most formalizations
of program logics developed since Kleymann’s thesis [15] we use a shallow embedding
for the assertion language but a deep one for the programming language.

Our variant of RHL differs from Benton’s original as follows. First, we interpret
judgements in a termination-insensitive way, deeming two programs vacuously equiva-
lent if either one fails to terminate. This discipline is more coarse-grained than denota-
tional equivalence as considered by Benton but separates functional equivalence from
the largely orthogonal issue of termination. Second, our encoding treats the program
phrases in a slightly nonsymmetric way. As a consequence of these design decisions,
Benton’s specialised rules for pre- and postrelations that are partial equivalence rela-
tions are either unsound (rule of transitivity) or require the exploitation of the formal
completeness of the host logic (rule of symmetry). As our unary host logic is largely
syntax-directed, its completeness is also required for deriving relational proof rules that
reverse the standard syntactic compositionality discipline, i.e. rules whose concluding
judgement concerns a subphrase of the phrases occurring in the hypotheses. An advan-
tage of the termination-insensitive setting is that an injection rule for pairs of unary
judgements can be derived. Finally, we give some novel rules, in particular a rule for
comparing loops that do not proceed in lock-step.

Outline of technical contribution Our encoding generalizes the approach presented
in [10], where we show how to lift Barthe et al.’s technique of self-composition [6] from
the syntactic level to the level of program logics. Self-composition solves the certifica-
tion problem for noninterference of some program C by reducing it to a one-execution
property of the program C;C ′. Here, C ′ arises from C by replacing all program vari-
ables x in C by fresh copies x′. The reformulation of self-composition in [10] defines
a family of noninterference-guaranteeing program logic assertions which replace the
syntactic code duplication by a corresponding operation at the level of judgements.
These assertions are parameterized over correlation formulae φ, which communicate
information between the two copies of the self-composed program, intuitively serving
as an abstraction of the state at the program point ; where C and C ′ are composed.
Moreover, suitable correlations φ for nonatomic phrases can be synthesized from the
correlations φi associated with their subphrases, in a rule-by-rule fashion following
type systems for noninterference [21, 13]. Thus, noninterference-guaranteeing asser-
tions may be obtained automatically from these type systems. Summarizing, logical
self-composition is the type-directed calculation of a unary program specification for
noninterference, and avoids the code duplication and variable renaming required by
syntactic self-composition. We summarize the work from [10] in Section 2.

The encoding of the present paper refines the class of noninterference-guaranteeing
assertions by exploiting the fact that each such assertion is in fact obtained as a com-
bination of two subspecifications. Thinking in terms of syntactic self-composition, the
first (left) subspecification concerns the behaviour of the original program C while the
second (right) subspecification abstracts the behaviour of the renamed copy C ′. By



exposing the separation into left and right subspecifications, we enable their applica-
tion to different programs, as is required for modeling the two-program judgements of
RHL. Indeed, this separation also applies to general “relation-transforming” rather than
“noninterference-guaranteeing” assertions. Significantly, the relation-transforming as-
sertions may again be parameterized by correlation witnesses φ. The synthesis of these
witnesses proceeds in many cases exactly as in the case of noninterference, factoring
into derivations for left and right subspecifications. Thus, each RHL judgement is the
conjunction of two unary judgements that may be independently derived and are only
coordinated by the use of the shared correlation witness φ.

Like Kleymann in his formal treatment of auxiliary variables [15], we employ uni-
versal quantification over states to link initial conditions to states in later points of ex-
ecution. However, our quantification concerns states in the opposite program/execution
and occurs inside (relational) assertions whereas in Kleymann’s case the quantification
concerns a single execution and occurs in the semantic interpretation of judgements.

The Isabelle-formalization underlying this paper is available for download at [8].

2 Self-composition for simple noninterference

In this section we summarize the treatment of noninterference from [10].

Programming language We consider the well-known language IMP of assignments
and loops, defined over sets X of variables (ranged over by x) and V of values (ranged
over by v). We employ a big-step relation σ C−→ τ where σ, τ, . . . are from the set Σ ≡
X → V of states. We write J.Kσ to denote the evaluation of an arithmetic or boolean
expression in state σ. The (unsurprising) rules defining the semantics are omitted.

Unary axiomatic semantics We define an axiomatic semantics for partial correctness.
As programs cannot get stuck, we employ judgements in precondition-less VDM style,
where assertions A are binary state relations, i.e. are of type A ≡ Σ → Σ → B. Here,
B denotes the set of (meta-level) booleans. Judgement take the form B C : A, i.e. relate
a program phrase C with a specification. Command C satisfies an assertion, notation
|= C : A, if for all σ and τ , σ C−→ τ implies A σ τ .

The proof rules are defined in the table below – the final two rules were not consid-
ered in [10] but are useful for deriving the rules in Section 3.

Hypotheses & side conditions Conclusion
B Skip : λ σ τ. τ = σ

B x:=e : λ σ τ. τ = σ[x 7→ JeKσ]

B C : A; B D : B B C;D : λ σ τ. ∃ ρ. A σ ρ ∧B ρ τ

B C : A; B C′ : A′

B = λ σ τ. (JbKσ ⇒ A σ τ) ∧ (¬JbKσ ⇒ A′ σ τ)
B If b then C else C′ : B

B C : B; ∀ σ. ¬JbKσ ⇒ A σ σ
∀ σ ρ τ. JbKσ ⇒ B σ ρ⇒ A ρ τ ⇒ A σ τ

B While b do C : λ σ τ. A σ τ ∧ ¬JbKτ

B C : A; ∀ σ τ. A σ τ ⇒ B σ τ B C : B

B C : λ σ τ. True

B C : A B C : B B C : λ σ τ. A σ τ ∧B σ τ



Using standard techniques [15, 18], it is easy to show soundness and completeness
of the proof system (relative to the ambient logic HOL), i.e. the following property.

Theorem 1. (Soundness and completeness of program logic) The derivability of the
judgement B C : A is equivalent to |= C : A, i.e., its semantic validity.

Noninterference and self-composition Consider the following notions of state indistin-
guishability and termination-insensitive noninterference (“security”), where the set X
of program variables is statically partitioned into high security variables Xhigh and low
security variables Xlow .

Definition 1. Two states σ, τ ∈ Σ are indistinguishable (w.r.t. low variables), written
σ ∼ τ , if σ(x) = τ(x) for all x ∈ Xlow . Program C is secure if whenever σ ∼ σ′ and

σ
C−→ τ and σ′ C−→ τ ′ then τ ∼ τ ′.

Syntactic self-composition [6] verifies that program C is secure by showing that
|= C1;C2 : Assc holds (for example by showing that B C1;C2 : Assc is derivable),

where C1 and C2 are copies of C operating on mutually disjoint sets of variables,
Assc = λ(σ1, σ2) (τ1, τ2).σ1 ∼ σ2 ⇒ τ1 ∼ τ2, and we write σ = (σ1, σ2) whenever
σi is the part of σ that refers to the variables in Ci and similarly for τ .

The (program-)logical account of self-composition mimics the executions of C1

and C2 in a single VDM assertion for C. This assertions consists of two conjuncts, the
first corresponding to the execution of C1, the second corresponding to the execution of
C2. The conjuncts are linked by a relation φ of type T ≡ (Σ ×Σ) → B. This witness
φ plays the role of an assertion applicable at the point of self-composition, when C1 has
finished execution but C2 has not yet started, i.e. at state (τ1, σ2) of an execution

(σ1, σ2)
C1−−→ (τ1, σ2)

C2−−→ (τ1, τ2).

Definition 2 (Sec). For φ : T we let Sec(φ) denote the assertion

Sec(φ) ≡ λ σ τ. (∀ ρ. σ ∼ ρ⇒ φ(τ, ρ)) ∧ (∀ ρ. φ(ρ, σ) ⇒ ρ ∼ τ)

The first conjunct mimics the execution (σ1, σ2)
C1−−→ (τ1, σ2): applying Sec(φ) to

σ1
C−→ τ1 and instantiating ρ with σ2 yields φ(τ1, σ2) whenever σ1 ∼ σ2. Similarly, the

second conjunct mimics the execution (τ1, σ2)
C2−−→ (τ1, τ2). Indeed, applying Sec(φ)

to σ2
C−→ τ2 and instantiating ρ with τ1 yields τ1 ∼ τ2 whenever φ(τ1, σ2). Combining

the two parts, we thus have τ1 ∼ τ2 whenever σ1 ∼ σ2, as desired.
This reasoning we just gave amounts to the proof of the following soundness result.

Proposition 1. If |= C : Sec(φ) then C is secure.

For proving C secure, it thus suffices to exhibit an arbitrary φ with B C : Sec(φ).
In principle, this strategy always succeeds: we also showed in [10] that if C is secure
then the witness constructed as φ ≡ λ (τ, σ′). ∃σ. σ C−→ τ ∧ σ ∼ σ′ always satisfies
|= C : Sec(φ). This completeness result suggests in particular that any static analysis



T-EXPH` e : high
T-EXPL

Xhigh ∩ Vars(e) = ∅
` e : low

T-BEXP
` e1 : i ` e2 : i

` e1 bop e2 : i

T-SKIP
[high] ` Skip

T-ASSH
[high] ` h:=e T-ASSL

` e : low

[low ] ` l:=e T-SUB
[high] ` C
[low ] ` C

T-COMP
[i] ` C1 [i] ` C2

[i] ` C1;C2
T-WHL

` b : i [i] ` C
[i] ` While b do C

T-IF
` b : i [i] ` C1 [i] ` C2

[i] ` If b then C1 else C2

Fig. 1. Volpano-Smith-Irvine Type System. Security levels: i ∈ {low , high}; Variables: h ∈
Xhigh , l ∈ Xlow , Judgement forms: ` e : i, ` b : i, and [i] ` C

that ensures noninterference of C yields the existence of a witness. This insight can be
confirmed in a constructive manner, taking, for example, the type system of Volpano,
Smith, and Irvine [21], as follows. Figure 1 summarizes the type system in the pre-
sentation of Sabelfeld and Myers [19], restricted to the lattice low @ high . The rules
guarantee security as follows:

Proposition 2. If ` e : low then σ ∼ τ ⇒ JeKσ = JeKτ . If ` b : low then σ ∼ τ ⇒
JbKσ = JbKτ . If [low ] ` C then C is secure. If [high] ` C then σ C−→ τ implies σ ∼ τ .

In order to obtain the desired relations φ along with derivations of B C : Sec(φ)
automatically from typing derivations, we show that each typing axiom yields a wit-
ness φ for its concluding judgement, and that the rules for composite statement forms
combine the witnesses associated with the hypothetical judgements to witnesses for the
concluding judgements. We interpret a typing judgement [low ] ` C as a judgement
B C : Sec(φ) for some suitable φ, and a typing judgement [high] ` C as a judgement
B C : HiSec, where HiSec abbreviates the assertion λ σ τ. σ ∼ τ . The translation of
typing rules into VDM derivations of security assertions is shown in Figure 2. In par-
ticular, the rules constructively exhibit assertions φ for the commands typeable in a low
context. All rules are derivable from the VDM logic.

Theorem 2. Let [i] ` C. If i = high then B C : HiSec holds, and if i = low then there
is some φ such that B C : Sec(φ).

3 RHL in decomposed form

We generalize the development from Section 2 towards RHL by separating the two
conjuncts of Sec(φ) in Definition 2. Indeed,

Sec(φ) = λ σ τ. SecL(φ) σ τ ∧ SecR(φ) σ τ,

where SecL(φ) ≡ λ σ τ. ∀ ρ. σ ∼ ρ ⇒ φ(τ, ρ) and SecR(φ) ≡ λ σ τ. ∀ ρ. φ(ρ, σ) ⇒
ρ ∼ τ. We can thus understand each judgement B C : Sec(φ) in Figure 2 as the
conjunction of judgements B C : SecL(φ) and B C : SecR(φ).



ASSIGNH
B h:=e : HiSec

ASSIGNL
∀ σ τ. σ ∼ τ ⇒ JeKσ = JeKτ

B l:=e : Sec(λ (σ, τ). σ ∼ τ [l 7→ JeKτ ])

COMPL
B C1 : Sec(φ) B C2 : Sec(ψ)

B C1;C2 : Sec(λ (σ, τ). ∃ ρ. φ(ρ, τ) ∧ (∀ω. ρ ∼ ω ⇒ ψ(σ, ω)))

COMPH
B C1 : HiSec B C2 : HiSec

B C1;C2 : HiSec
IFH

B C1 : HiSec B C2 : HiSec
B If b then C1 else C2 : HiSec

IFL
∀ σ τ. σ ∼ τ ⇒ JbKs = JbKτ B C1 : Sec(φ) B C2 : Sec(ψ)

B If b then C1 else C2 : Sec(λ (σ, τ). (JbKτ ⇒ φ(σ, τ)) ∧ (¬JbKτ ⇒ ψ(σ, τ)))

WHILEH
B C : HiSec

B While b do C : HiSec
SUB

B C : HiSec
B C : Sec(λ (σ, τ). σ ∼ τ)

SKIPH
B Skip : HiSec

WHILEL
∀ σ σ′. σ ∼ σ′ ⇒ JbKσ = JbKσ′ B C : Sec(φ)

B While b do C : Sec(F̂(b,φ))

F̂(b,φ) is the least fixed point of the operator

ψ 7−→ λ(σ, τ).(¬JbKτ ⇒ σ ∼ τ) ∧ (JbKτ ⇒ (∃ ρ.φ(ρ, τ) ∧ (∀ω. ρ ∼ ω ⇒ ψ(σ, ω)))).

Fig. 2. Derived proof rules for base-line noninterference.

Significantly, this factoring is compatible with the structure of the proof rules and
with the synthesis of the witnesses φ. To see this, define the proof system BL C : A for
the left conjuncts by replacing Sec(φ) by SecL(φ) throughout the rules of Figure 2, and
define the proof system BR C : A for the right conjuncts similarly, by replacing Sec(φ)
by SecR(φ). We then have the following:

Proposition 3. The systems BL C : A and BR C : A are separately derivable in the
logic of Section 2.

As the next step, we apply the judgements in Proposition 3 to
different phrases C and C ′, whose derivations share only the
witness φ. Observing that the above reasoning is independent
from indistinguishability, we finally arrive at assertions

RSecL(R,φ) ≡ λ σ τ. ∀ρ′. σRρ′ ⇒ φ(τ, ρ′)
RSecR(S, φ) ≡ λ σ′ τ ′. ∀ρ. φ(ρ, σ′) ⇒ ρSτ ′.

φ

R

S

C’C

’τ

’σσ

τ

In particular, note that states in the first position of φ refer to the execution on the left
and that states in the second position refer to the execution on the right – a discipline
that is less apparent from the nonseparated assertion1 Sec(.).

1 This observation suggests that by employing different unary logics on both sides one can relate
programs that stem from different languages or that use different notions of state. Following



The corresponding generalization of security is

Definition 3. Let R,S be relational predicates on states and C and C ′ programs. We

write R : C ≈ C ′ : S if τSτ ′ holds whenever σRσ′ and σ C−→ τ and σ′ C′

−→ τ ′.

This interpretation coincides with Benton’s interpretation of RHL judgements C ∼
C ′ : R ⇒ S, except that the latter additionally requires equitermination and is formu-
lated in denotational rather than operational terms.

The following is the analogon to Proposition 1 and the completeness result from [10].

Proposition 4. Let φ be such that |= C : RSecL(R,φ) and |= C ′ : RSecR(S, φ). Then

R : C ≈ C ′ : S holds. Conversely, if R : C ≈ C ′ : S then φC,R = λ (ρ, ρ′). ∃σ. σ C−→
ρ ∧ σRρ′ satisfies |= C : RSecL(R,φC,R) and |= C ′ : RSecR(S, φC,R).

We encode Benton’s judgements C ∼ C ′ : R ⇒ S as suggested by Proposition 4,
i.e. as pairs of judgements B C : RSecL(R,φ) and B C ′ : RSecR(S, φ) for suitable φ.
In order to obtain a compact presentation, we abbreviate these judgements as φ `L C ≺
C ′ : R ⇒ S and φ `R C ≺ C ′ : R ⇒ S, respectively 2. The rules of RHL may be
categorized as follows.

Core homogeneous rules relate phrases of identical syntactic structure – their em-
beddings are shown in Figure 3. The witnesses φ are precisely those from Fig-
ure 2, modulo the replacement of ∼ by general relations R, S, . . . . In rule WHL ,

̂F(b′,R,φ) is defined as the least fixed point of the (monotone in ψ) operator

F(b′,R,φ) : ψ 7−→ λ (σ, τ). (¬Jb′Kτ ⇒ σRτ) ∧
(Jb′Kτ ⇒ (∃ ρ.φ(ρ, τ) ∧ (∀ω.ρRω ⇒ ψ(σ, ω)))).

.

Benton’s original rules may be obtained from our rules by erasing the witnesses φ
and replacing ≺ by ∼.

Logical rules relate arbitrary phrases. We have derived Benton’s rules of subtyping
(which amounts to the rule of consequence) and falsity, and novel but hardly sur-
prising rules for intersecting and unioning witnesses. The latter are useful for de-
riving some of the other rules given, and yield trivial RHL rules if we erase the
witnesses φ. We omit the rules due to space limitations.

Transformation rules relate phrases of syntactically different shape. Figure 4 shows
the left-rules for eliminating dead code (modeled as equivalence to Skip) and
common branches. The former specializes to the rules for dead assignments and
dead loops from [7]. Starting with this rule, we freely mix unary and relational hy-
potheses: unary hypotheses B C : A essentially amount to relational hypotheses
φ `◦ C ≺ Skip : R ⇒ S or φ `◦ Skip ≺ C ′ : R ⇒ S but in contrast to
the latter can be exploited in cases where Skip does not occur syntactically in the
conclusion3. We omit the rules for similar operations on the right program phrase.

the submission of the present article, we have indeed developed decomposition for arbitrary
pairs of (possibly nondeterministic) transition systems. See reference [9].

2 This combination into a single parameterized proof system results in a minor loss of precision:
in some of the rules, some side conditions are only used for one of the two systems.

3 The effect observed here is exactly the one from Kleymann’s formalization of auxiliary state.
Indeed, unary Hoare logics with auxiliary state can be immediately modeled in a relational
style precisely by using the diagonal precondition and the silent instruction Skip.



SKIP
φ = λ (σ, τ). σRτ

φ `◦ Skip ≺ Skip : R⇒ R

ASS
R = {(σ, σ′) | (σ[x 7→ JeKσ])S(σ′[x′ 7→ Je′Kσ′ ])} φ = λ (σ, τ). σS(τ [x′ 7→ Je′Kτ ])

φ `◦ x:=e ≺ x′:=e′ : R⇒ S

SEQ

φ = λ (σ, τ). ∃ ρ. φ1(ρ, τ) ∧ (∀ ω. ρTω ⇒ φ2(σ, ω))
φ1 `◦ C ≺ C′ : R⇒ T φ2 `◦ D ≺ D′ : T ⇒ S

φ `◦ C;D ≺ C′;D′ : R⇒ S

IF

R = {(σ, σ′) | σTσ′ ∧ JbKσ = Jb′Kσ′} R1 = {(σ, σ′) | σTσ′ ∧ JbKσ ∧ Jb′Kσ′}
R2 = {(σ, σ′) | σTσ′ ∧ ¬JbKσ ∧ ¬Jb′Kσ′}

φ1 `◦ C ≺ C′ : R1 ⇒ S φ2 `◦ D ≺ D′ : R2 ⇒ S
φ = λ (σ, τ). (Jb′Kτ ⇒ φ1(σ, τ)) ∧ (¬Jb′Kτ ⇒ φ2(σ, τ))

φ `◦ If b then C else D ≺ If b′ then C′ else D′ : R⇒ S

WHL

R = {(σ, σ′) | σTσ′ ∧ JbKσ = Jb′Kσ′} S = {(σ, σ′) | σTσ′ ∧ ¬(JbKσ ∨ Jb′Kσ′)}
U = {(σ, σ′) | σTσ′ ∧ JbKσ ∧ Jb′Kσ′} φ `◦ C ≺ C′ : U ⇒ R

̂F(b′,R,φ) `◦ While b do C ≺ While b′ do C′ : R⇒ S

Fig. 3. Embedded syntactic core rules of RHL. All rules carry the implicit side condition ◦ ∈
{L,R}. An alternative choice for φ in rule ASS is φ = λ(σ, τ). ∃ ρ. σ = ρ[x 7→ JeKρ]) ∧ ρRτ.

CBR-L

φ1 `◦ C1 ≺ C′ : R1 ⇒ S φ2 `◦ C2 ≺ C′ : R2 ⇒ S
R1 = {(σ, σ′). σRσ′ ∧ JbKσ} R2 = {(σ, σ′). σRσ′ ∧ ¬JbKσ}

φ = λ (σ, τ). φ1(σ, τ) ∨ φ2(σ, τ)

φ `◦ If b then C1 else C2 ≺ C′ : R⇒ S

DEADL
B C : A ∀ σ σ′ τ. A σ τ ⇒ σRσ′ ⇒ τSσ′ φ = λ (σ, τ). σSτ

φ `◦ C ≺ Skip : R⇒ S

Fig. 4. Selected transformation rules. Both rules carry the implicit side condition ◦ ∈ {L,R}.



Figure 5 shows the remaining rules from [7]. In the absence of side conditions that
stipulate that relations be partial equivalence relations, transitivity requires

{(σ, σ′′). ∃ σ′. σRσ′ ∧ σ′Uσ′′} : C ≈ C ′′ : {(σ, σ′′). ∃ σ′. σTσ′ ∧ σ′Sσ′′}

to hold whenever R : C ≈ C ′ : T and U : C ′ ≈ C ′′ : S. As related phrases are not
necessarily equiterminating, this implication is only satisfied if we impose an appropri-
ate side condition, for example by requiring that R and the termination of C guarantee
the termination of C ′:

∀ σ σ′. σRσ′ ⇒ (∃ τ. σ C−→ τ) ⇒ (∃ τ ′. σ′ C′

−→ τ ′).

The variant of symmetry appropriate in the absence of PER-assumptions concerns the
equivalence of R : C ≈ C ′ : S and R−1 : C ′ ≈ C : S−1 which indeed holds, as
Proposition 4 implies that |= C : RSecL(R,φ) ∧ |= C ′ : RSecR(S, φ) is equivalent
to |= C ′ : RSecL(R−1, φC′,R−1) ∧ |= C : RSecR(S−1, φC′,R−1). Due to the formal
asymmetry in the decomposition, however, R : C ≈ C ′ : S and R−1 : C ′ ≈ C : S−1

can only be turned into judgements in the unary logic if we exploit the formal complete-
ness result. The nonderivability of R-CBINVTL and R-CBINVFL in their decomposed
form is unsurprising, too: these rules reverse the syntactic subphrase relationship be-
tween hypotheses and conclusions that is largely followed by our unary program logic.
Again, both rules are semantically sound, hence we can formally derive them using
completeness.

R-SYM

C ∼ C′ : R⇒ S
Per(R⇒ S)

C′ ∼ C : R⇒ S
R-TR

C ∼ C′ : R⇒ S
C′ ∼ C′′ : R⇒ S Per(R⇒ S)

C ∼ C′′ : R⇒ S

R-CBINVTL
If b then C1 else C2 ∼ C : R⇒ S T = {(σ, σ′). σRσ′ ∧ JbKσ}

C1 ∼ C : T ⇒ S

R-CBINVFL
If b then C1 else C2 ∼ C : R⇒ S T = {(σ, σ′). σRσ′ ∧ ¬JbKσ}

C2 ∼ C : T ⇒ S

Fig. 5. Remaining RHL rules

Finally, we have derived some rules that are not given in [7] – see Figure 6.
Rule UNARY injects two unary judgements. Its specialization to a single Hoare-

style hypothesis {P} C {Q} (i.e. to the case whereC = C ′,R = P×P and S = Q×Q
with A = A′ = λσ τ. P σ → Qτ ) is discussed in [7] but argued to be unsound as C
may in general exhibit different termination behaviour in two states satisfying P . Our
termination-insensitive setting admits the generalized rule.

Rule IF-DIFF applies if the branch conditions b and b′ evaluate differently. It may in
fact be possible to derive IF-DIFF from the earlier rules but this has not been proven yet,
at least in the absence of PER-ness assumptions. Combining IF-DIFF with IF yields the
expected rule for arbitrary conditionals (not shown).



Finally, rule WHLNOLKSTP relates two loops, but in contrast to rule WHL from
Figure 3, the iterations do not have to proceed in lock-step. Instead, each loop body has
to preserve the relational invariant, for arbitrary fixed states of the opposite execution.
The asymmetry in the side conditions for A and A′ is a consequence of the fact that
our embedding prioritizes the left phrase. Clearly, the rule that omits the negatively
occurring ¬JbKσ from the side condition on A′ is derivable from the rule given.

UNARY

B C : A φ = λ (σ, τ). ∃ ρ. A ρ σ ∧ ρRτ B C′ : A′

R = {(σ, σ′). ∀ τ τ ′. A σ τ ⇒ A′ σ′ τ ′ ⇒ σSσ′}
φ `◦ C ≺ C′ : R⇒ S

IF-DIFF

φ1 `◦ C ≺ D′ : U ⇒ S φ2 `◦ D ≺ C′ : V ⇒ S
U = {(σ, σ′). σTσ′ ∧ JbKσ ∧ ¬Jb′Kσ′} V = {(σ, σ′). σTσ′ ∧ ¬JbKσ ∧ Jb′Kσ′}

R = {(σ, σ′). σTσ′ ∧ ¬JbKσ = Jb′Kσ′}
φ = λ (σ, τ). (Jb′Kτ ⇒ φ2(σ, τ)) ∧ (¬Jb′Kτ ⇒ φ1(σ, τ))

φ `◦ If b then C else D ≺ If b′ then C′ else D′ : R⇒ S

WHLNOLKSTP

φ `◦ C ≺ C′ : T ⇒ R B C : A B C′ : A′

T = {(σ, σ′). σRσ′ ∧ JbKσ ∧ Jb′Kσ′}
∀ σ τ σ′. A σ τ ⇒ σRσ′ ⇒ JbKσ ⇒ τRσ′

∀ σ′ τ ′ σ. A′ σ′ τ ′ ⇒ σRσ′ ⇒ Jb′Kσ′ ⇒ ¬JbKσ ⇒ σRτ ′

S = {(σ, σ′). σRσ′ ∧ ¬JbKσ ∧ ¬Jb′Kσ′}
ψ = λ (σ, τ).(σRτ ∧ ¬JbKσ) ∨

∃ ρ.
„
¬Jb′Kτ ∧ ¬JbKσ ∧ (∀ρ′. ρRρ′ ⇒ σRρ′) ∧
(∀ ω. ¬JbKω ⇒ (∀ ρ′. ρRρ′ ⇒ ωRρ′) ⇒ (ωRτ ∧ ¬Jb′Kτ ))

«
ψ `◦ While b do C ≺ While b′ do C′ : R⇒ S

Fig. 6. Additional rules. All rules carry the implicit side condition ◦ ∈ {L,R}.

Summarizing our embedding we have the following:

Theorem 3. The rules in Figures 3, 4, and 6 are derivable in the VDM logic: whenever
φ `◦ C ≺ C ′ : R ⇒ S is derivable using these rules, then ◦ = L implies B C :
RSecL(R,φ), and ◦ = R implies B C ′ : RSecR(S, φ).

Combining this property with Proposition 4 and Theorem 1 yields that R : C ≈ C ′ : S
holds whenever there is some φ such that both φ `L C ≺ C ′ : R ⇒ S and φ `R C ≺
C ′ : R⇒ S are derivable.

4 Discussion

Barthe et al.’s syntactic self-composition extended earlier work by Joshi and Leino [14].
Terauchi and Aiken [20] push the self-composition operation towards the leaves of the
syntax tree using program transformations, guided by noninterference type systems.



The resulting verification conditions are reported to be amenable to fully automated
methods in many cases. Our synthesis of witnesses amounts to a syntax- rather than
type-based decomposition. We have not yet explored the automated discharge of side
conditions and expect the potential for this to be limited, due to the expressiveness of
the encoded logic. Independently from [6], Darvas et al. [11] developed a variation of
self-composition in dynamic logic, with similar goals in mind as [10].

A natural question is whether our technique could be generalized to other language
features and alternative interpretations of judgements. In work performed since the sub-
mission of the present paper, we have extended the embedding to an object-based lan-
guage, including an operational semantics with explicit error states. We have subse-
quently derived relational and unary separation logics, in a termination-insensitive but
fault-avoiding interpretation [9]. We plan to integrate simple procedures in the near fu-
ture, along the lines of [10]. The consideration of termination-sensitivity is future work.

Barthe et al. also present a variation of self-composition where a parallel composi-
tion operator is used in place of the sequential operator. The self-composed program is
then verified using CTL. Transferring these ideas to a setting of relational logic appears
difficult – indeed, we are unaware of any relational temporal logic in the literature.

Separation and concurrency are both supported by the Cminor stack of program log-
ics currently being developed at Princeton. As mentioned in the introduction, a long-
term goal is to integrate relational logics into this system and subsequently to justify
high-level analyses and transformations. As a first step towards this integration we for-
malized an embedding of the VDM logic in a Hoare-style logic with separate pre- and
postconditions.

The main purpose of the present work being the formal embedding of the existing
RHL we have not explored concrete verifications that make use of the novel proof rules.
Such an evaluation might include the verification of some loop transformations rou-
tinely employed in optimizing compilers [5]. Transformation rules that relate multiple
(e.g. nested) loops have already been developed in the translation validation commu-
nity [12]. At present, it is unclear whether these proofs may be reformulated using our
technique. On the other hand, the completeness of our interpretation (i.e. the second
half of Proposition 4) ensures that our system can in principle be extended by any proof
rule that comes with an operational soundness proof.

Funding information This work is funded in part by the Air Force Office of Scien-
tific Research (FA9550-09-1-0138) and by the National Science Foundation (CNS-
0910448).

References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented
programs. In Morrisett and Jones [17], pages 91–102.

2. A. W. Appel. Foundational high-level static analysis. In Proceedings of the CAV 2008
Workshop on Exploiting Concurrency Efficiently and Correctly (EC2), July 2008.

3. A. W. Appel and S. Blazy. Separation logic for small-step Cminor. In Theorem Proving
in Higher Order Logics: Proceedings of the 20th International Conference TPHOLs 2007,
Lecture Notes in Computer Science 4732, pages 5–21. Springer-Verlag, 2007.



4. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic
for resources. Theoretical Computer Science, 389(3):411–445, 2007.

5. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4):345–420, 1994.

6. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-Composition. In
R. Foccardi, editor, Computer Security Foundations Workshop, pages 100–114. IEEE Press,
2004.

7. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM Symposium on
Principles of Programming Languages, POPL’04, Venice, Italy, pages 14–25. ACM Press,
2004.

8. L. Beringer. Relation program logics and self-composition – Isabelle formalization. Avail-
able from www.cs.princeton.edu/∼eberinge, 2010.

9. L. Beringer. Relational program logics in decomposed style. Submitted. Available from
www.cs.princeton.edu/∼eberinge, 2010.

10. L. Beringer and M. Hofmann. Secure information flow and program logics. In IEEE Com-
puter Security Foundations Symposium, pages 233–248. IEEE Press, 2007.
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Abstract. This paper describes the VeriFast prototype program verifi-
cation tool, which implements a separation-logic-based approach for the
specification and verification of safety properties of pointer-manipula-
ting imperative programs. The approach’s distinctive feature is that it
combines very good and predictable verification performance with pow-
erful proofs written conveniently as part of the program. We describe the
tool’s support for the C language.
The paper introduces the tool’s various features by means of a running
example of a linked list implementation. A detailed formalization of the
core of the approach and a soundness proof are available on the website.

1 Introduction

VeriFast is a research prototype program verification tool for verification of safety
properties of C and Java programs, based on separation logic.

The safety properties to be verified are specified as annotations in the source
code, in the form of function preconditions and postconditions expressed as sep-
aration logic assertions. To enable rich specifications, the user may include ad-
ditional annotations that define inductive datatypes, primitive recursive pure
functions over these datatypes, and abstract predicates (i.e. named, parame-
terized assertions). Abstract predicates may be recursive. A restricted form of
existential quantification is supported in assertions in the form of pattern match-
ing.

Verification is based on forward symbolic execution, where memory is repre-
sented as a separate conjunction of points-to assertions and abstract predicate
assertions, and data values are represented as first-order logic terms with a set
of constraints. Abstract predicates must be folded and unfolded explicitly us-
ing ghost statements. Rewritings of the abstract state that require induction,
or derivations of facts over data values that require induction, can be done by
defining lemma functions, which are like ordinary C functions except that it is
checked that they terminate. Specifically, when a lemma function performs a
recursive call, either the recursive call must apply to a strict subset of memory,
or one of its parameters must be an inductive value whose size decreases at each
recursive call.

Assertions over data values are delegated to an SMT solver, formulated as
queries against an axiomatization of the inductive datatypes and recursive pure
? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO)



functions. Importantly, no exhaustiveness axioms are included in this axiomati-
zation; this prevents the SMT solver from performing case analysis on inductive
values. Combined with a measure to prevent infinite reductions due to self-feeding
recursions, this ensures termination of the SMT solver.

A prototype implementation, a formalization and soundness proof, a tuto-
rial text, and a large number of example annotated programs are available at
http://www.cs.kuleuven.be/˜bartj/verifast/. The implementation includes an IDE
that enables the user to step through a failed execution trace, inspecting the
symbolic state at each step.

2 Walkthrough

We introduce the approach through an example annotated C program that im-
plements a linked list ADT. Successive figures show successive fragments of the
example program.

2.1 Symbolic execution and predicates

VeriFast performs symbolic execution. The symbolic state consists of three parts:
the symbolic heap, the symbolic store, and the path condition. The symbolic
heap is a bag of chunks. A chunk consists of a predicate name and an argument
list. Chunk arguments are terms of first-order logic. The predicate name may
be the predicate corresponding to a struct field, in which case we call the chunk
a points-to chunk. A points-to chunk has two arguments: a term denoting the
address of the struct, and a term denoting the field value. The predicate name
may also refer to a user-defined predicate.

The symbolic store maps local variable names to terms that denote the vari-
able’s current value. The path condition is a set of formulae of first-order logic.
These constrain the interpretation of the logical symbols used in the terms in
the symbolic store and the symbolic heap.

In the implementation, the terms are SMT solver terms, and the path con-
dition corresponds to the state of the SMT solver. The verifier pushes formulae
into the SMT solver during symbolic execution, and pops them when a branch
of symbolic execution is finished and the next branch is started.

Notice that this means that the SMT solver does not come into contact
with the heap. The heap is dealt with syntactically within the verifier itself.
This avoids the quantified formulae required by verification condition generation-
based approaches to describe heap effects.

Figure 1 shows function createNode. It uses an abstract predicate [16] to hide
the internal layout of a node. The close ghost statement removes the points-to
chunks for the individual fields of n from the symbolic heap, and adds a node
abstract predicate chunk, as expected by the postcondition. The asterisk denotes
separating conjunction: P ∗ Q holds if the heap can be split into two separate
parts such that P holds for one part and Q for the other. As we will see, oper-
ationally, in our tool the asterisk means sequential composition of consumption



struct node { struct node ∗next ; int value; };

predicate node(struct node ∗n, struct node ∗next , int value) =
n→next 7→ next ∗ n→value 7→ value ∗malloc block node(n);

struct node ∗create node(struct node ∗next , int value)

requires emp; ensures node(result , next , value);

{
struct node ∗n := malloc(sizeof(struct node));
n→next := next ; n→value := value;

close node(n, next , value); return n;

}

Fig. 1. Example demonstrating abstract predicates and ghost statements (Note: an-
notations are shown on a gray background. Also, for readability, we typeset some
operators differently from the implementation.)

or production of assertions. That is, consuming P ∗Q means first consuming P
and then Q; producing P ∗Q means first producing P and then Q.

When symbolically executing function create node, the successive symbolic
states are as follows:

// h = ∅, s = {next 7→ next, value 7→ value}, Σ = ∅
struct node ∗n := malloc(sizeof(struct node));
// h = {node next(n, value0),node value(n, value1),malloc block node(n)},
// s = {n 7→ n,next 7→ next, value 7→ value}, Σ = {n 6= 0}
n→next := next ; n→value := value;
// h = {node next(n, next),node value(n, value),malloc block node(n)},
// s = {n 7→ n,next 7→ next, value 7→ value}, Σ = {n 6= 0}
close node(n,next , value);

// h = {node(n, next, value)}
// s = {n 7→ n,next 7→ next, value 7→ value}, Σ = {n 6= 0}

Italic names denote program variables; sans serif names denote logical symbols.
At the start of symbolic execution, fresh symbols are generated for the function
arguments. In the example, fresh symbols are also generated by the malloc call to
denote malloc’s return value and the initial values of the newly allocated fields.

Figure 2 shows a way to denote a piece of memory containing a set of con-
secutive nodes. Specifically, abstract predicate lseg(n1 ,n2 , v) represents a set of
consecutive nodes where the first node is at n1 and the last node’s next pointer
points to n2 , and the nodes store the list of integers v. As a special case, if n1
equals n2 , the predicate denotes the empty piece of memory.

During symbolic execution of a function, assertions are produced and con-
sumed. Producing a points-to assertion or an abstract predicate assertion means
adding the corresponding chunk to the symbolic heap, and consuming it means



inductive list = nil | cons(int, list);

predicate lseg(struct node ∗n1 , struct node ∗n2 , list v) =
n1 = n2 ? v = nil : node(n1 , ?n, ?h) ∗ lseg(n, n2 , ?t) ∗ v = cons(h, t);

Fig. 2. Example demonstrating inductive datatype definitions, recursive abstract pred-
icates, conditional assertions, and pattern matching

removing a matching chunk from the symbolic heap. If no matching chunk is
present in the symbolic heap, an error is reported. If the assertion being con-
sumed contains patterns, the matching process binds the pattern variables; their
scope includes the rest of the assertion, or if the pattern occurs in a function
body or precondition, its scope includes the rest of the function. Producing a
pure assertion (i.e., a boolean expression), means adding it to the path condition,
and consuming it means asking the SMT solver to check that it follows from the
current path condition. Producing or consuming a separate conjunction means
first producing, resp. consuming the first operand, and then producing, resp.
consuming the second operand. Producing or consuming emp does nothing. If
during execution of a function, a conditional construct is encountered, then the
remainder of the execution is performed once for each branch of the construct,
after adding the corresponding constraint to the path condition. The conditional
constructs include the if and switch statements, the if-then-else assertions, and
the switch assertions.

Execution of a function starts with an empty symbolic heap and an empty
path condition. Then, the precondition is produced. Then, each statement is ex-
ecuted. And finally, the postcondition is consumed. If subsequently, any chunks
are left in the symbolic heap, this is considered a potential memory leak and an
error is reported. Execution of a function call statement proceeds by first con-
suming the call’s precondition and then producing its postcondition. Execution
of an open ghost statement proceeds by first consuming the abstract predicate
assertion and then producing its body. Execution of a close ghost statement
proceeds by first consuming the predicate’s body and then adding the abstract
predicate chunk. Patterns may be used as abstract predicate arguments in an
open statement, but in the current implementation they cannot be used as ar-
guments in a close statement.

Figure 3 shows the first part of the client-visible interface of the linked list
ADT. The implementation keeps a sentinel node at the end of the list, and it
keeps a pointer to the first node and to this sentinel node. The dummy patterns
( ) in the definition of the llist predicate indicate that the next and value fields
of the sentinel node are insignificant.



struct llist { struct node ∗first ; struct node ∗last ; };

predicate llist(struct llist ∗l, list v) =
l→first 7→ ?fn ∗ l→last 7→ ?ln ∗ lseg(fn, ln, v) ∗ node(ln, , ) ∗malloc block llist(l);

struct llist ∗create llist()

requires emp;

ensures llist(result , nil);

{
struct llist ∗l := malloc(sizeof(struct llist));
struct node ∗n := create node(0, 0); l→first := n; l→last := n;

close lseg(n, n, nil); close llist(l, nil);

return l;
}

Fig. 3. Example demonstrating dummy patterns

lemma void distinct nodes(struct node ∗n1 , struct node ∗n2 )
requires node(n1 , ?n1n, ?n1v) ∗ node(n2 , ?n2n, ?n2v);
ensures node(n1 , n1n, n1v) ∗ node(n2 , n2n, n2v) ∗ n1 6= n2;

{
open node(n1 , , ); open node(n2 , , );
close node(n1 , n1n, n1v); close node(n2 , n2n, n2v);

}

Fig. 4. Example demonstrating lemma functions, distinctness constraint production
and patterns in open statements

2.2 Lemma functions

Figure 4 shows a lemma function, which is like a C function except that it is
declared in an annotation and the verifier checks that it terminates and that it
has no effect on memory (i.e. it does not allocate, free, or write to memory).
The only effect of calling a lemma function is that it rewrites the symbolic heap
into a semantically equivalent but syntactically different one, and/or that it adds
constraints to the path condition.

In this example, there is no net change to the symbolic heap; all the lemma
function does is add a constraint. Specifically, given two nodes for which there
are separate abstract predicate chunks in the symbolic heap, the lemma produces
a constraint that says that the nodes are distinct.

Such distinctness constraints are not produced automatically by the verifier
for abstract predicate chunks, since the fact that two abstract predicate chunks
referring to the same abstract predicate appear in memory does not imply any-



thing about distinctness of the arguments. However, the verifier produces them
for points-to chunks. Specifically, when producing a points-to assertion t→f 7→ v,
then for any existing points-to chunk t′→f 7→ v′ in the symbolic heap, a con-
straint t 6= t′ is added automatically. In the example, this occurs during execution
of the second open statement.

fixpoint list add(list v, int x) {
switch (v) {

case nil : return cons(x, nil);
case cons(h, t) :

return cons(h, add(t, x));
}

}

lemma add lemma(struct node ∗n1 ,
struct node ∗n2 , struct node ∗n3 )

requires lseg(n1 , n2 , ?v)
∗ node(n2 , n3 , ?x) ∗ node(n3 , , );

ensures lseg(n1 , n3 , add(v, x))
∗ node(n3 , , );

{
distinct nodes(n2 , n3 );
open lseg(n1 , , );
if (n1 = n2 ) {

close lseg(n3 , n3 , nil);
} else {

distinct nodes(n1 , n3 );
open node(n1 , ?n1n, ?n1v);
add lemma(n1n, n2 , n3 );
close node(n1 , n1n, n1v);

}
close lseg(n1 , n3 , add(v, x));
}

void add(struct llist ∗l, int x)

requires llist(l, ?v);

ensures llist(l, add(v, x));

{
open llist(l, v);

struct node ∗n := create node(0, 0);
struct node ∗nl := l→last ;

open node(nl , , );

nl→next := n;
nl→value := x;

close node(nl , n, x);

l→last := n;

struct node ∗nf := l→first ;
add lemma(nf , nl , n);
close llist(l, add(v, x));

}

Fig. 5. Example demonstrating fixpoint functions and recursive lemma functions

Figure 5 shows the second client-visible list ADT function, function add . It
adds a value to the end of the list. Its contract describes its effect on the ADT’s
abstract value using the fixpoint function add . (Note that fixpoint function names
and non-fixpoint (i.e., regular or lemma) function names are in separate names-
paces; the former may occur only in expressions in annotations, whereas the
latter may occur only in call statements.)

A fixpoint function is not allowed to read or modify memory. Its body must
be a switch statement over one of the function’s parameters. We call this param-
eter the function’s inductive parameter. The body of each clause of the switch



statement must be a return statement. A fixpoint function may call other fix-
point functions, but not regular functions or lemma functions. Furthermore, to
ensure termination, any call must either be a call of a fixpoint function declared
earlier in the program, or it must be a direct recursive call where the argument
for the inductive parameter is a variable bound by the switch statement.

Regular function add creates a new node to serve as the new sentinel node,
then updates the old sentinel node’s fields, and finally calls the lemma func-
tion add lemma to merge the old sentinel node into the lseg abstract predicate
chunk. The lemma function does so using recursion. Lemma functions may per-
form recursive calls, but only direct recursive calls, and termination is ensured
by checking that at each recursive call either the size of the piece of memory
that the function operates on decreases (specifically, after consuming the pre-
condition there must be a points-to chunk left in the symbolic heap), or, similar
to a fixpoint function, the function’s body is a switch statement over one of its
parameters, and the argument for the inductive parameter in the recursive call
is bound by this switch statement. Note that a recursive lemma constitutes an
inductive proof of the fact that the precondition implies the postcondition.

int removeFirst(struct llist ∗l)
requires llist(l, ?v) ∗ v 6= nil ; ensures llist(l, ?t) ∗ v = cons(result , t);

{
open llist(l, v);

struct node ∗nf := l→first ; open lseg(nf , ?nl , v); open node(nf , , );

struct node ∗nfn := nf→next ; int nfv := nf→value; free(nf ); l→first := nfn;

open lseg(nfn, nl , ?t); close lseg(nfn, nl , t); close llist(l, t);

return nfv ;
}

Fig. 6. Example demonstrating execution splits due to conditional constructs in the
bodies of predicates being opened

2.3 Case splits

Figure 6 shows a function that removes the first element from a list. It requires
that the list is non-empty. When the lseg starting at nf is opened, an execu-
tion split occurs because the body of this predicate is an if-then-else assertion.
The verifier notices immediately that the then branch is infeasible and does not
continue execution on this branch.

Notice also that the first node is freed. A statement free(p); looks for a
chunk of the form malloc block T (p), and then for points-to chunks of the form
p→f 7→ v, for each field f of T , and it removes all of these chunks.



void dispose(struct llist ∗l)
requires llist(l, );

ensures emp;

{
open llist(l, );

struct node ∗n := l→first ;
struct node ∗nl := l→last ;
while (n 6= nl)

invariant lseg(n, nl , );

{
open lseg(n, nl , );
open node(n, , );

struct node ∗next := n→next ;
free(n);
n := next ;
}
open lseg(n, n, );
open node(l, , );

free(nl);
free(l);

}

Fig. 7. Example demonstrating loops

void main()

requires emp;

ensures emp;

{
struct llist ∗l := create llist();
add(l, 10);
add(l, 20);
add(l, 30);
add(l, 40);
int x0 := removeFirst(l);
assert(x0 = 10);
int x1 := removeFirst(l);
assert(x1 = 20);
dispose(l);
}

Fig. 8. Example client program for the
list ADT

2.4 Loops

Figure 7 shows function dispose, which takes a list of arbitrary length. It first
frees all proper nodes, then it removes the remaining empty lseg assertion, then
it frees the sentinel node, and finally it frees the struct llist object itself. A loop
invariant must be provided for each loop. Execution of a loop proceeds by first
consuming the loop invariant, assigning fresh symbols to the locals modified by
the loop body, and producing the loop invariant again. Then execution proceeds
along two branches: in one branch, the loop condition is produced, then the
loop body is executed, and finally the loop invariant is consumed. If any chunks
remain, this is considered a leak error. In the other branch, first the negation
of the loop condition is produced, and then execution proceeds after the loop
statement.

Figure 8 wraps up the example by showing an example client program for
the list ADT. This program verifies; it follows that all assert statements succeed
and no memory is leaked.

Notice that the SMT solver successfully evaluates the add fixpoint function
applications.



3 Performance

The time complexity of verification is unbounded in theory. Specifically, since
recursive pure functions of arbitrary time complexity may be defined, there is
no bound on the time complexity of SMT queries. Furthermore, the approach,
as currently implemented, does not perform joining of symbolic execution paths
after conditional constructs; therefore, the number of symbolic execution steps
is exponential in the number of such constructs. However, since no significant
search is performed implicitly by the verifier or the SMT solver, performance is
very good in practice.

The table below shows indicative verification times for a few example pro-
grams.

program total # lines # annotation lines time taken (seconds)
chat server 242 114 0.08

linked list and iterator 332 194 0.09
composite 345 263 0.09

JavaCard applet 340 95 0.51
GameServer 383 148 0.23

4 Related work

Reynolds [17] introduced separation logic. Smallfoot [3] is a tool that performs
symbolic execution using separation logic. This technique has been extended for
greater automation [19], for termination proofs [4, 6], for fine-grained concur-
rency [5], for lock-based concurreny [11], and for Java [8, 12]. Unlike VeriFast,
all of these tools attempt to infer loop invariants automatically.

Alternative specification and verification approaches, based on generation of
verification conditions instead of symbolic execution, include VCC [7], Caduceus
[9], ESC-Java [10], KeY [2], Jahob [20], regional logic [1], and approaches based
on dynamic frames [13] including VeriCool [18], Dafny [14], and Chalice [15].

5 Conclusion

We presented an approach for specification and verification of imperative pro-
grams, that combines very good and predictable verification performance with
powerful proofs written conveniently as part of the program. We are currently
working to increase the degree of automation while preserving these strengths.
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Abstract. Flash filestores have a variety of unique features that lead to
interesting design constraints. One challenge is that of ensuring that each
block of the drive is used and erased evenly, known as “wear-levelling”.
This paper presents a novel approach to the analysis of wear-levelling
algorithms using probabilistic specification and analysis techniques. A
simplified version of a real wear-levelling algorithm used in an actual
flash filestore is given as an illustration. The expected lifetime of a flash
filestore implementing such an algorithm is derived using probabilistic
proof techniques.

1 Introduction

As part of the Grand Challenge on verified software [1], Joshi et al. proposed
a mini-challenge on building a verifiable filesystem [2] using flash memory. The
contribution of this paper (to the mini-challenge) is in the exploration of prob-
abilistic aspects of flash filestores. The focus is on probabilistic “wear-levelling”
algorithms (see Section 3), intended to maximise the life of flash memory. Proba-
bilistic specification and analysis techniques are used to determine the expected
lifetime of a flash filestore implementing a specific wear-levelling algorithm.

Since the mini-challenge was proposed, there have been several papers detail-
ing their contribution to the problem. Butterfield and Woodcock [3] concentrated
on a specific flash standard (ONFI) and developed a formal specification of it
in Z. Kang and Jackson [4] modelled flash memory in Alloy, incorporating (very
simplistic) wear-levelling and error recovery procedures. Damchoom et al. [5]
focused on the data structure of the file system, decomposing an Event-B model
into filestore and flash memory specific operations. The goal of Schierl et al. [6]
was to understand the requirements of a “real system” and so they developed a
formal model of such a system (UBIFS) from its code. The contribution of this
paper is unique in that it explores probabilistic aspects of the flash filestore.

A brief introduction into probabilistic specifications can be found in Sec-
tion 2, followed by (Section 3) an overview of why flash memory is interesting
to examine and a definition of “wear-levelling”. A probabilistic specification of a
wear-levelling algorithm is presented in Section 4 and the expected lifetime of a
flash filestore using such an algorithm is calculated. The results are discussed in
Section 5 and some extensions are proposed. The paper concludes in Section 6.
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prog wp.prog.Q

Assignment x := E Q[x\E]
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Probability prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop do G→ body od (µX � [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is an expression in the program variables; prog1 and
prog2 are probabilistic programs; G is a Boolean-valued expression in the program
variables; p is a constant probability in [0, 1]; and Q is an expectation (a real-valued
expression in the program variables). Given an expression Q, we write Q[x\E] to mean
expression Q in which free occurrences of x have been replaced by expression E. µ is
the least fixed point operator w.r.t the ordering ≤ between expectations.

For expectations (interpreted as real-valued functions), scalar multiplication ∗, mul-
tiplication, ×, addition, +, subtraction, −, and the comparison (such as ≤ and <)
between expectations are defined by the usual point-wise extension of these opera-
tors (as they apply to the real numbers). Multiplication and scalar multiplication have
the highest precedence, followed by addition, subtraction, and finally the comparison
operators. Operators of equal precedence are evaluated from the left.

[·] is the function that takes a Boolean expression false to 0 and true to 1. For {0, 1}
real-valued functions, operation ≤ means the same as implication over predicates, and
× represents conjunction. Addition over disjoint predicates is equivalent to disjunction.

Fig. 1: Probabilistic program notation and weakest-precondition semantics.

2 Probabilistic specifications

To analyse probabilistic wear-levelling we use pGCL [7]. This is an extension of
standard GCL [8] to include probabilistic choice (see Figure 1). Like GCL, it is
a formalism that allows source-level reasoning about programs; it is a generali-
sation since it is able to handle probabilistic (as well as standard) properties.

There are (at least) three reasons for treating probabilistic properties as
rigorously as standard properties: it allows

1. an accurate comparison of performance between differing designs;
2. the specification of basic average guarantees on performance together with

design patterns which achieve them;
3. an exploration of the relationship between program parameters affecting

overall performance.

Probabilistic pGCL introduces a probabilistic choice operator p⊕ (for 0 ≤
p ≤ 1) to include the possibility of probabilistic updates. Thus x := 1 p⊕ x := 2,
would mean that x is assigned the value 1 with probability p, and 2 otherwise
(with probability 1−p). With this, properties of interest are no longer necessarily
absolute, but rather it is possible to reason about the probability that a property
is established or, as shall be seen, expected or average case execution times.
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Quantitative annotations are written over real-valued expressions of the state
space, for example,

{p} x := 1 p⊕ x := 2 {[x = 1]} (1)
{p + 2(1−p)} x := 1 p⊕ x := 2 {x} (2)

The post-annotation is treated as a random variable4 over the program vari-
ables. In (1) we use [x = 1] for the characteristic random variable returning 0
or 1 depending on whether the condition “x = 1” is satisfied. In (2) the random
variable is simply the value of x. The pre-annotation is the expected value of
the random variable after execution of the program, thus for (1) it is p because
the probabilistic update establishes “x = 1” with probability p; in (2) the pre-
annotation is p+ 2(1−p) because that is the expected value of x. More generally
the pre-annotations will be sensitive to the initial state.

Formally an annotation is interpreted using the source-level wp-semantics set
out in Figure 1, so that {P} prog {Q} is valid provided that P ≤ wp.prog.Q.

The idea conveniently generalises loop “invariants” as follows. Consider the
while-loop in Figure 1. A standard loop invariant, I, has to hold at the start
of every iteration, and constrains the states that the loop can enter, formally
written as G ∧ I ⇒ wp.body.I. A quantitative invariant, E, can also be defined
for such a loop. The expected value of E cannot decrease throughout the loop,
written [G]× E ≤ wp.body.E.

Like standard invariants, quantitative invariants can be used to reason about
properties of the whole iteration. For example, for standard invariant I of the
above loop we have that if the loop terminates (with probability 1) then I ⇒
wp.loop.I. Similarly we have that E ≤ wp.loop.E holds for quantitative invariant
E if loop is certainly terminating.

Both standard and quantitative invariants are employed to reason about
aspects of the flash filestore case study in Section 4.

3 Flash filestore systems

Flash memory is a popular storage medium for many applications due to its lack
of moving parts. However, it also behaves differently to other storage media, e.g.
magnetic disks, and new algorithms are required to deal with this new behaviour.

In particular, an individual bit stored on a flash memory cannot be overwrit-
ten; data has to be erased by block (between tens and hundreds of kilobytes) [9]
before that space can be re-used. This is because individual bits can be cleared,
but bits can be reliably set only a block at a time. Another important feature
of flash memory is that each block can only be erased a fixed number (typically
10,000 to 1,000,000) [9] of times before becoming unreliable.

4 A random variable is a function from the sample space to the real numbers, i.e. there
is an element of chance in the value assigned to the variable.
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Many different algorithms have been proposed [9] to deal with these charac-
teristics. A number of these algorithms, many of them probabilistic, are designed
to provide “wear-levelling” (see below). However, there has been little or no re-
search into formally analysing the probabilistic aspects of these algorithms.

3.1 Wear-levelling

As each block of flash memory has a limited number of times it can be erased, it is
important to ensure that individual blocks do not become worn out prematurely.
For example if the same block was used and erased repeatedly a significant
number of times it would no longer operate reliably and the storage capacity of
the flash filestore would have to be reduced. The process of ensuring that the
relative number of erasures for each block in the filestore remains approximately
the same at all times is called wear-levelling.

When designing and evaluating wear-levelling algorithms, there are (at least)
two conflicting characteristics to consider: its impact on the lifetime of the flash
memory; and the speed at which it frees up space. A näıve algorithm, that
guarantees that no block has been erased more than (say) c times more than any
other block, may have a long lifetime (if c is small). However, it may also require
a lot of relocation of data and therefore significantly affect the performance of
the device. To overcome these issues a number of probabilistic algorithms have
been proposed for wear-levelling. It is hoped that these algorithms will result in
the blocks being worn evenly on average, so that the expected lifetime of the
system remains long, but that they will have better performance characteristics
than their non-probabilistic counterparts.

In this case study we investigate the probabilistic aspects of one particular
probabilistic wear-levelling algorithm, taken from the JFFS flash file system [10].
For 99% of the time this algorithm selects a block for erasure to maximise the
amount of memory that will be freed up; the other 1% of the time any block
is chosen at random for reclamation. The idea is that blocks containing static
valid data (which would be ignored 99% of the time) will eventually be chosen
by the random selection and moved to a more worn block.

4 Specification of a flash filestore

Before considering any specific wear-levelling algorithms, let us semi-formally
show what such an algorithm should do in the bigger picture of a flash filestore.
In particular, the garbage collector functionality of a flash filestore is defined, as
shown in Figure 2. It is assumed that the garbage collector is a continuous loop
that runs alongside functionality to read to and write from the filestore. In every
iteration the garbage collector selects two blocks: one to erase (A) and one to
copy any valid data from A to.

The wear-levelling algorithm is the part of this process responsible for choos-
ing the blocks to be reclaimed. The relevant lines of the garbage collector have
been marked with ∗ in Figure 2. In section 4.1 these lines are expanded into
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GARBAGE COLLECTOR

∗ do true →
∗ select a dirty block A;

find another block B that has sufficient clean
pages to receive the valid blocks from A;

copy them over from A to B;
∗ erase A;
∗ od

Fig. 2: Abstract representation of a flash filestore garbage collector

a formal description of a simple probabilistic wear-levelling algorithm based on
that used in the JFFS [10] flash file system.

4.1 A probabilistic wear-levelling algorithm

In this section we show how to model a probabilistic wear-levelling algorithm
using the language from Section 2. The algorithm chosen is a simplified version
of that used in JFFS [10]. One simplification made was to restrict the number
of blocks in the filestore to two. A second was to only include the probabilistic
iterations of the algorithm in the model, i.e. the iterations that select a block ac-
cording to the amount of space reclaimed have been omitted. We concentrate on
the probabilistic part only as we believe that our approach is novel for analysing
the probabilistic aspects of such algorithms. We restrict the number of blocks be-
cause we aim to illustrate how this kind of approach might work, whilst keeping
the arithmetic as simple as possible.

The formal specification of the wear-levelling algorithm is shown in Figure 3.
The variables m and n represent two different blocks and record the number of
times that each has been erased so far. In each iteration of the algorithm one of
these blocks is selected for reclamation: block m or block n, each with probability
1
2 . The total number of times both blocks have been erased, represented by
variable e is also incremented each iteration. This variable is used to calculate
the expected lifetime of the flash filestore in terms of number of erasures, more
details to follow. Initially it is assumed that if either of the blocks reach some
maximum number of erasures, N , then the flash filestore is retired.

4.2 Analysis

The probabilistic wear-levelling algorithm makes no guarantee that each block
has been erased at most c (for c < N) times more than any other block. However,
we can use the quantitative invariant

n−m
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do m < N ∧ n < N →
m := m+ 1 1

2
⊕ n := n+ 1;

e := e+ 1
od

– m represents the number of times block m has been erased, similarly for n
– e represents the total number of times any block has been erased
– N represents the maximum number of times a block can be erased

Fig. 3: Specification of the probabilistic wear-levelling algorithm

to show that the average difference between the number of erasures of each block
is zero (after each execution of the body of the loop). Intuitively, this property
holds because of the symmetry of the probabilistic choice.

But how does this wear-levelling characteristic affect the lifetime of the flash
filestore? We now analyse the wear-levelling algorithm above to determine the
expected lifetime it provides. We chose to measure the lifetime of the device in
terms of the number of erasures. This involved determining the expected value
of the (random) variable e on termination of the loop, written E[e], which is
calculated with the assistance of loop invariants (Section 2).

Using the standard invariant

e = m + n

we have that E[e] = E[m+n] and so it is enough to calculate the expected value
of m + n; but to do this we need a more complicated invariant. Knowledge of
the negative binomial probability distribution provides us with one.

Recall [11] that the negative binomial distribution models the number of tri-
als required until x instances of a specific event have been observed, assuming
that the probability of x occurring is constant across all trials. Consider the
expected value of m alone initially: this can be thought of as the event of in-
terest for a negative binomial distribution, with N being the target number of
instances required. However, this distribution allows situations not permitted by
our model, for example the case where m = N and n = N + 1. It is necessary
to include the situation where n reaches N before m does. To resolve this the
negative binomial distribution is adapted to have an upper bound on the num-
ber of trials allowed and have two instances of the distribution – one each for
the situations in which m and n reach N first. Using the basis of the negative
binomial distribution, and incorporating the complications described above, it
turns out that there exists another quantitative invariant of the loop, as shown
in Equation 3. Intuitively this equation assumes that m + n trials have already
occurred (first line) and calculates the expected number of remaining trials given
this fact (second line).
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m + n+
2N−(m+n+1)∑

e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e

+
2N−(m+n+1)∑

e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e (3)

It can be formally confirmed that the expression (call it inv) shown in Equa-
tion 3 is a quantitative invariant of the loop. This requires (Section 2) showing
that [G] × inv ≤ wp.body.inv. Using the wp proof rules defined in Section 2 it
can be shown that wp.body.inv ≡ inv as is summarised below. It can also be
trivially proved that the values of m and n on termination are as expected (e.g.
that inv (N, n, e) = N + n).

wp.body.inv

≡ wp.
((

m : = m + 1 1
2
⊕ n : = n + 1

)
; e : = e + 1

)
.inv definition of body

≡ composition, assignment, probability and definition of inv

1
2 ∗


m + 1 + n +

2N−((m+1)+n+1)∑
e=N−(m+1)

e

(
e− 1

N − (m + 1)− 1

)(
1
2

)e

+
2N−((m+1)+n+1)∑

e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e



+ 1
2 ∗


m + n + 1 +

2N−(m+(n+1)+1)∑
e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e

+
2N−(m+(n+1)+1)∑

e=N−(n+1)

e

(
e− 1

N − (n + 1)− 1

)(
1
2

)e


≡ simple algebra including combination and summation rules

m +n +
2N−(m+n+1)∑

e=N−m

e

(
e− 1

N −m− 1

)(
1
2

)e

+
2N−(m+n+1)∑

e=N−n

e

(
e− 1

N − n− 1

)(
1
2

)e

≡ inv definition of inv

The expected lifetime of the flash filestore (E[e]) can be determined from
inv by substituting m and n with their initial values (both 0). This gives the
expression found in Equation 4.

E[e] = 2 ∗
2N−1∑
e=N

e

(
e− 1
N − 1

)(
1
2

)e

(4)

Using the expression in Equation 4, the expected lifetime of the flash filestore
was calculated for various values of N , tabulated in Figure 4. It can be seen
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N E[e] E[e]/N

2 2.50 1.25
3 4.13 1.38
4 5.81 1.45
5 7.54 1.51

10 16.48 1.65
50 92.04 1.84

100 188.73 1.89
500 974.77 1.95

1000 1964.32 1.96
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Fig. 4: Expected lifetime (E[e]) for the abstract wear-levelling algorithm

that E[e]/N approaches two (Figure 4). Note that an algorithm that alternated
between blocks (i.e. ensured each block had been erased at most once more than
the other) would have an expected lifetime of 2N − 1 for any N . However, it
may have worse performance characteristics.

5 Discussion

We have illustrated how probabilistic analysis can be used to determine the
expected lifetime of a flash filestore for a simple wear-levelling algorithm. We
discuss this result in more detail here. In particular, we discuss what it means
for a flash filestore to fail and require replacement and then consider possible
extensions to this research.

5.1 When should the filestore be retired?

There are several options available for deciding when a flash filestore is no longer
useful and retiring it. They are discussed in turn below.

A block reaches its maximum number of erasures. One option is to
retire the flash filestore as soon as a block reaches the maximum erasures allowed.
This seems rather extreme, but may be necessary for applications that require
a high percentage of the total disk space to operate correctly. If such a strict
measure is not required the affected block could be marked as unusable and the
remaining blocks of the filestore continue to be used until one of the following
cases occurs.

Valid data can not be relocated. Another strategy could be to continue
until an erase procedure is not possible due to insufficient free space on the
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filestore. When a block is erased, it is necessary to find sufficient free space to
move the valid data remaining on the chosen block to. If sufficient space can
not be found regardless of the block chosen for erasure, the filestore should be
retired immediately otherwise data will be lost.

Data can not be written. Alongside the garbage collector there is also a
process running to handle the read and write requests on the filestore. It may
be necessary to retire the filestore if a write is requested and insufficient free
space exists for the write. This strategy would be needed in situations where the
incoming data rate is high and there is a limited buffer in which data pending a
write operation can be stored.

The algorithm modelled in Section 4 uses the first of these approaches, as
the loop terminates when either of the blocks reaches the maximum value. Using
the second retirement criteria may extend the expected lifetime of this filestore.
However, it would only be possible if (once a block has reached its maximum
number of erasures) the remaining block has no valid data when the next erasure
occurs. This depends on the schedule of writes and erasures for the application
it is being used for. The final approach could either increase or decrease the ex-
pected lifetime of the filestore, it depends as much on the rate of write operations
and write buffer size as it does on the choice of wear-levelling algorithm.

5.2 Possible extensions

Modelling and analysing alternative retirement strategies as discussed above is
a challenging extension to the research because it requires the addition of read,
write and erase rates and durations to the model. However, if such data were
added it may also be possible to analyse the trade-off between the expected life-
time of the flash filestore and the performance issues mentioned in Section 3.
Such analysis is complex and would benefit from the formal modelling of con-
tinuous probability distributions, which is still ongoing research [12].

Finally, there are lots of proposed algorithms for wear-levelling [9], this re-
search could be extended by analysing and comparing a variety of these.

6 Conclusions

This work has been motivated by the Grand Challenge on verified software [1], in
particular the mini-challenge on a verified filestore [2]. The contribution of this
paper to the mini-challenge has been to examine probabilistic aspects of flash
filestores. More specifically, an insight has been provided into how probabilistic
wear-levelling algorithms for flash memory can be analysed using probabilistic
specification and proof techniques. Using this approach it has been shown how
the expected lifetime of a flash filestore implementing a simplified version of
JFFS flash [10] can be found using quantitative invariants.

The results of the analysis have been discussed and different termination
scenarios have been considered depending on the intended usage of the flash
filestore. Finally some extensions to the research have been suggested.
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This research has produced some useful results, however, it has also high-
lighted the complexity of finding suitable invariants for probabilistic specifica-
tions. Katoen et al. are currently working on techniques for finding quantitative
invariants [13], which would assist in analysing the more complex specifications
required to model more realistic systems. It would be interesting to re-visit this
case study when such research matures.
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Abstract. We introduce the CORE system which builds on existing sys-
tems, such as Smallfoot [3], to automatically prove functional correctness
of programs which manipulate pointers, in some cases generating miss-
ing parts of loop-invariants. We describe novel techniques which can be
generalised to apply to more complicated data structures.

1 Motivation

We present here work on proving correct programs which reason about pointers.
We describe the background to the work, and explain how we build on tools such
as Smallfoot [3], extending them to reason about full functional correctness, and
synthesising missing parts of loop-invariants in some cases.

1.1 Separation logic

Separation logic was developed as an extension to Hoare logic [8], with the aim
of simplifying pointer program verification proofs [14, 15]. Pointers are a power-
ful and widely used programming mechanism, but developing and maintaining
correct pointer programs is notoriously hard. A key feature of separation logic
is that it focuses the reasoning effort on only those parts of the heap that are
relevant to a program, so called local reasoning. Because it deals smoothly with
pointers, including “dirty” features such as memory disposal and address arith-
metic, separation logic holds the promise of allowing verification technology to be
applied to a much wider range of real-world software than has been possible
up to now.

In terms of tool development, the main focus has been on shape analysis.
Such analysis can be used to verify properties about the structure (shape) of
data structures within the heap. In this paper we extend this analysis to the
verification of functional properties.

1.2 Proof planning

Proof planning is a technique for automating the search for proofs through the
use of high-level proof outlines, known as proof plans [4]. The current state-of-the-
art proof planner is called IsaPlanner [7], which is Isabelle based. Proof planning



has been used extensively for proof by mathematical induction [6]. Mathematical
induction is essential for the synthesis and verification of the inductively defined
predicates that arise within separation logic specifications. Proof planning there-
fore offers significant benefits for reasoning about separation logic specifications.
Proof planning techniques have been applied successfully to the problems of in-
ductive conjecture generalisation and lemma discovery [9, 10], as well as loop
invariant discovery [12]. This work is currently being integrated and extended
within IsaPlanner. The tool integration capabilities of proof planning have been
demonstrated through the Clam-HOL [16] and NuSPADE projects3 [11]. The
NuSPADE project targeted the SPARK Approach [2], and integrated proof plan-
ning with light-weight program analysis in order to increase proof automation
for loop-based code. The resulting integration was applied to industrial strength
problems and successfully increased the level of proof automation for exception
freedom proofs [11].

2 Methodology

In this section we describe the methodology of our system. We make forward
references to the syntax of Smallfoot+and to the program which becomes the
focus of our investigation.

2.1 Shape, structure and function

The division between shape and function is well documented in the separation
logic literature, but in order to elucidate our proof-techniques we introduce the
notion of “Structural Content”. The structural part can be seen as the “glue”
between shape and function. In what follows, data lseg(α, i, j) is a linked list
pointed to by i, and terminated by j whose data elements are represented by
the functional list α. data list(α, i) is equivalent to data lseg(α, i, nil). In the
loop invariant expression

data lseg(α, i, nil) ∗ data lseg(β, j, nil) ∧ αo = rev(β) <> α

The three categories are defined as

Shape This describes purely the shape of the heap, and hence can be described
purely as in Smallfoot as

list(i) ∗ list(j).

as the list segments are null-terminated. There is no information about any
data that is contained in the list, purely an indication of the inductive data
structures that exist in this part of the heap, in this case linked lists.

3 NuSPADE project: http://www.macs.hw.ac.uk/nuspade



Structural This describes the inductive structures on the heap, and attributes
names for the data contained within them. In this case the structural content
is written

data list(α, i) ∗ data list(β, j)
in our system, as the list segments are null-terminated. When reasoning
about functional properties, it is important that shape information is aug-
mented with logical variables so that this can be extracted.

Functional This describes the pure fragment of the statement in separation
logic. In this case

α0 = rev(β) <> α

describes the functional content, which importantly relies on the logical vari-
ables introduced between the shape and structural content.

2.2 Extracting Verification Conditions

The CORE system builds on a verified verification condition generator [1], which
guarantees the correctness of the proof obligations on which to work. In or-
der to investigate functional properties we extend the language of Smallfoot to
Smallfoot+. Any meta-variables introduced into the assertions are written in
capital letters, as described in section §3.2.

2.3 Proof Techniques

In order to show how we separate functional content from shape content we
must first describe the rewrite-rule system we use. Two central rewrite-rules we
employ are

A−∗(A ∗B)⇒ B (1)

i 6= j → data lseg(α, i, j)⇒ ∃αh, αt, k.[i
data7→ αh] ∗ [i next7→ k] ∗

data lseg(αt, k, j) ∧ α = αh :: αt (2)

which when applied to the goal, A ⇒ B rewrites according to a rule which
corresponds to B → A, where → is logical implication.

Rule (1) is central to proof in separation logic. The extension to the Hoare
logic rules introduce a −∗ symbol at every assignment or allocation of a pointer.
In order to complete a proof, we aim to have no such symbols remaining, meaning
that we are able to determine the shape of the concrete heap in the hypotheses
and conclusions. The only existentials that remain should pertain to functional-
ity. Rule (2) describes the way in which a list segment can be “decomposed”. In
this case, if the list segment is not empty, the leading cons cell is isolated from
the front of the list.

Mutation Mutation is a technique developed in the CORE system to mirror
some of the initial motivations of rippling [5]. It is not as formal, as it has
no calculus, and no termination argument, but is capable of generating sets of
rewrite-rules.



Brief Example In order to apply rule (1) we must extract the precedent to
−∗ from the heap in the postcedent. For example in the case where we have a
conclusion to manipulate

i
data7→ y ∗ (i next7→ z−∗data lseg(α, i, nil))

we need to extract from the list a cons cell from the list segment which corre-
sponds to the precedent. In this case we can exploit rule (2) and bring a matching
cons cell from the list segment to the from the front, and apply rule (1), and the
associative-commutative properties of ∗ to yield

i
data7→ y ∗ i next7→ z−∗

(∃αh, αt.i
data7→ αh ∗ i

next7→ j ∗ data lseg(αt, j, nil)

at which point rule (1) applies leaving the goal

∃αh, αt.i
data7→ y ∗ (i data7→ αh ∗ data lseg(αt, j, nil))

Note that in this case we need to prove that x 6= nil.

General Case In general, as we are dealing with pointer programs whose verifi-
cation conditions are generated using the extended Hoare logic described in [15],
the precedent to −∗ will always be of the form [x next7→ y] where x is always a vari-
able, and y can be existentially quanitified. We are focusing in this presentation
on linked lists, but our analysis can apply to any inductive data structure which
uses pointers.

We describe here the possible situations when decomposing a linked list in
order to match the precedent [x next7→ y]. We assume in what follows that Fi is
an existentially quantified variable, and x, y, z are ground varibles. Attached to
each possibility is a score, which represents the number of existential variables
introduced, which will be explained in the following section.

score= 10 [x next7→ y]
This case represents an exact ground match.

score= 6 [x next7→ F1]
This case represents an inexact match, and instantiates the F1 with y.

score= 3 data lseg(α, x,F1)
This case represents a match with the first cons of the linked list. This
generalises to other data structures where the “leading” pointer can be taken
from the front of the inductive structure.

score= 3 data lseg(α,F1, y)
This case represents a match with the last cons of the linked list. This gen-
eralises to other data structures where the “trailing” pointer can be taken
from the back of the inductive structure.

score= 1 data lseg(α,F1,F2)
This case represents a match with the a cons somewhere embedded within
the linked list.



Terminating Associative-Commutative Rewriting When mutating, a candidate
pointer of the form [x next7→ y] is “pulled” to the front of an expression representing
a heap, in order that rule −∗ can apply. To do this we use rules such as

X ∗ Y ⇒ Y ∗X (3)
pure(Z)→ X ∗ (Y ∧X)⇒ Y ∗ (X ∧ Z) (4)
pure(Z)→ (X ∧ Z) ∗ Y ⇒ X ∗ (Z ∧ Y ) (5)

(X ∗ Y ) ∗ Z ⇒ X ∗ (Y ∗ Z) (6)

where pure is a predicate which denotes that its argument has no shape content.
The CORE system identifies the position of a term in the term tree of the

postcedent to −∗. For example in term a ∗ (b ∗ (X ∧ b)), the term X is at position
[2, 2, 1]. Given an identifiable and sufficient set of rewrite rules as shown above,
the heap can be mutated so that the term X is at position [1]. This process is
done in the two stages, depicted in Figure 1. This is a terminating process since
the number of occurrences of a node labelled with n > 1 is decreasing in the
first two rewrite rules, and the length of the position in the tree is decreasing in
the subsequent rule applications [1]. The reason why a list of rewrite rules and
positions is generated is so that a tactic can be generated, and sent to a theorem
prover such as Coq or Isabelle using an implementation such as that described
in [17].

Fig. 1. Moving the desired term to the top of the tree

Structural Fertilisation and Functional Residue Once mutation has been
exhaustively applied, we are left with a heap in the hypothesis and a heap in the
conclusion. The job now is to match the two heaps and extract the functional
residue. For example if we have a goal

[x next7→ X1] ∗ [x data7→ X2] ∗ data lseg(X3, y, nil) ∧ X2 :: X3 = X4

data lseg(F1, y, nil) ∗ [x next7→ F2] ∗ [x data7→ F3] ∧ X4 = append(F3 :: nil,F1)



where the Xi are constants, and the Fi are Skolem functions (with their depen-
dencies omitted). Observing this simple example, we can see that the shape and
structural elements of the heap can be made to match with the substitutions

X3/F1 X1/F2 X2/F3

This leaves a functional “residue” which is a goal that must be proved. In this
case we need to prove the simple goal

` X2 :: X3 = append(X2 :: nil,X3).

Term Synthesis and Counter-example Checking We introduce a system
whereby if a loop-invariant is incomplete in some regard, we synthesise terms to a
certain depth, and use a counter-example checker to filter out incorrect theorems.
This at present relies on a theory file for lists, but we intend to automate a
process whereby the possible functions over which to range can be automatically
generated. In the case of lists we assume symbols

rev append nil cons = ∧ ¬ true

which allows us to construct conjectures about lists. For an example of this see
§3.2. Incorrect conjectures are ruled out using a simple implemented counter
example checker which checks lists populated with lists of integers.

3 Example

In this section we present in detail the verification of a canonical test for separa-
tion logic – the in-place reversal of a list, whose shape version has been proved
automatically in work such as that described in [13]. We present here an auto-
matic proof of a fully functional version of the program, shown with annotations
in Figure 2. Initially we show how the proof proceeds, using which proof assis-
tants, given a loop invariant, and then go on to describe a synthesis story where
only the shape part of the loop invariant is given.

3.1 Verification story

With a specified loop invariant, the CORE tool is able to automatically sepa-
rate the shape and functional parts of the verification conditions, and send the
resulting functional residue to IsaPlanner. In the following presentations of the
proofs, the sequents are generated automatically by the system, but for ease of
reading, have been slightly modified by hand. For the purposes of the description
of verification, we will concentrate on the proof that the invariant holds.

The system first inserts Skolem functions and constants for the quantified
variables. For ease of presentation we omit the variable dependencies from the



hd,tl;

list_reverse(o;i) [data_list(a;i)] {
local t;

o = NULL;

while (i != NULL) [Ex alpha. Ex beta. data_list(alpha;i) *

data_list(beta;o) /\ a = append(reverse(beta),alpha)] {
t = i->tl;

i->tl = o;

o = i;

i = t;

}
} [data_list(reverse(a);o)]

Fig. 2. In-place list reversal

Skolem functions:
(l1 6= null ∧ (lseg(X1, l1, null) ∗ (lseg(X2, l0, null) ∧ Xa = append(reverse(X2),X1))))

([l1
next7→ F1] ∗ ([l1

next7→ F1]−∗
([l1

next7→ F4] ∗ ([l1
next7→ l0]−∗

(lseg(F2,F1, null) ∗ (lseg(F3, l1, null) ∧ Xa = append(reverse(F3),F2)))))))

At this point in the proof, the central analysis procedure can be employed. In
order to complete the proof we need to eliminate the −∗ symbols. We exploit the
central rewrite-rule

A−∗(A ∗B)⇒ B

In order to do this we need to decide on instantiations for existential variables
– now Skolem functions denoted by Fn. As described in §2.3, the system now
determines the best way in which to decompose the postcedent to the structural
implication Fn. In this case the possible elements which can unify with the
precedent [l1 next7→ l0], with the given scores, are

Score 1 – lseg(F2,F1, null) This list segment can be decomposed by taking
the pointer F1 from the end of the list. This introduces new existentials for
the data, and instantiates the existential F1

Score 2 – lseg(F3, l1, null) This list segment can be decomposed by taking the
pointer l1 from the end of the list. This is scored higher because there is an
exact match with the variables.

Choosing the higher scored version, this now rewrites to

(l1 6= null ∧ (lseg(X1, l1, null) ∗ (lseg(X2, l0, null) ∧ Xa = append(reverse(X2),X1))

([l1
next7→ F1] ∗ ([l1

next7→ F1]−∗
([l1

next7→ F4] ∗ ([l1
next7→ l0]−∗

((∃x1.(∃x2.(∃x3.(([l1
data7→ x2] ∗ ([l1

next7→ x3] ∗ lseg(x1, x3, null)) ∧ cons(x2, x1) = F3)∗
(Xa = append(reverse(F3),F2) ∧ lseg(F2,F1, null)))



We omit the intermediate proof steps here, but after applying heuristically the
techniques shown in §2.3, we end up with the entailment

(l1 6= null ∧ ((([l1
data7→ X4] ∗ ([l1

next7→ X5] ∗ lseg(X3,X5, null)) ∧ cons(X4,X3) = X1∗
(lseg(X2, l0, null) ∧ Xa = append(reverse(X1),X2))

([l1
next7→ F1] ∗ (lseg(F5, l0, null) ∗ ([l1

data7→ F6] ∗ (cons(F6,F5) = F3∧
(Xa = append(reverse(F2),F3) ∧ lseg(F2,F1, null)

The instantiations calculated are

{X4/F6,X5/F1,X2/F5,X3/F2}

This leaves functional residue:

l1 6= null ∧ cons(X4,X3) = X1 ∧ Xa = append(reverse(X2),X1)
cons(X4,X2) = F3 ∧ Xa = append(reverse(F3),X3)

which gets simplified to

l1 6= null ` append(reverse(cons(X4,X3)),X2) = append(reverse(X3), cons(X4,X2))

which is easily proved by IsaPlanner.

3.2 Synthesis story

The program shown in Figure 2 includes a fully specified loop invariant. Imagine
the same program with an incomplete loop invariant, where we introduce the
meta-variable P , which is an unknown predicate, representing the functional
part of the loop-invariant:

[Ex alpha. Ex beta. data_list(alpha;i) * data_list(beta;o) /\ P[a,alpha,beta]]

The functional residue is

l1 6= null ∧ P [Xa, cons(X4,X3),X2]
P [Xa,X3, cons(X4,X2)]

for which we synthesise term

P ≡ λx, y, z. x = append(rev(z), y)

4 Tool Integration Perspective

Figure 3 shows the tool chain of the program. Labels with bold font indicates
that this is a topic and contribution of this paper. A stippled line indicates that
this has not been integrated in the tool chain yet. represents a process,
while indicates a process which is a “glue” between representations.

An annotated Smallfoot+ program, which is a Smallfoot program where the
annotations are extended with structural and functional properties is the input
of the tool. This programs is fanned out to two processes: shape filter which



Fig. 3. The tool chain.

generates Smallfoot program, which is then sent to the Smallfoot family of tools
for shape analysis; and a bytecode compiler which generates annotated byte-
code, and well as a variable map. The annotated bytecode is fed into Atkey’s
sound verification condition generator [1], and the generated VCs is the input of
the CORE system – the heart of the toolchain. By using the shape properties
from the Smallfoot family of tools, the CORE system extracts purely functional
properties properties which Isabelle/IsaPlanner [7] is used to verify.

Thus, our tool chain integrates 4 tools or family of tools: Atkey’s sound VC
generator; the Smallfoot family of tools; Isabelle and IsaPlanner; and our CORE
planner. In addition, there are tools to translate between representations.

5 Conclusion

We have introduced a system, still under development, which aims to automat-
ically prove the correctness of functional specifications about programs which
reason about pointers. We believe that the techniques such as mutation and
term synthesis which we have described augment existing techniques and can
be generalised to apply to programs which involve more complicated inductive
data structures.
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Abstract. The “proof obligations” generated from many formal meth-
ods tend to be simple and can often be discharged by modern automatic
theorem provers or SMT systems. However, those proof tasks that need
hand –or interactive– intervention present a barrier to the use of formal
methods. Theorem proving was one of the earliest challenges addressed
by researchers in the area of Artificial Intelligence and enormous progress
has been made in the provision of general purpose heuristics. The ap-
proach in the recently started AI4FM project is different: we hope to
devise a system that will learn from an expert user how they tackle one
interactive proof and then apply the discovered high-level strategy to
other related proof tasks. We are fortunate in having access to many
such problems through the DEPLOY project but are aware of the dan-
gers of devising an overly specific approach. This short paper appeals for
challenge problems from other sources.

1 Introduction

We have just embarked on a four-year research project (AI4FM) that will use
Artificial Intelligence (AI) to tackle a core issue for “Formal Methods”3 and we
are keen to receive challenge problems.

Achieving verified software has been a dream since the birth of computer
science [Jon03] and the importance of this objective has become ever greater
with the increasing size and complexity of software.4

The use of formal methods has been successful in safety-critical domains,
such as railway and aviation; gradually they are becoming increasingly popular
in other sectors (e.g. Microsoft use formal methods to verify device drivers). A
recent paper by Woodcock et al. [WLBF09] provides an up-to-date analysis of
a significant number of industrial applications of formal methods. As the use
of formal methods has spread beyond small groups of experts out to far larger

3 ‘Formal methods’ use mathematics to specify, develop and reason about software
and systems.

4 We use the term software although the discussion here is valid for any application
of formal methods, i.e. to generic system modelling as well as both hardware and
software.



groups of industrial engineers, the importance of the availability of various sorts
of “support tools” has been recognised. Such support tools include parsers/type
checkers, full-blown theorem provers and decision procedures.

Formal methods are applied both post facto and in VxC verified by construc-
tion. As a shorthand, the former are often referred to as “bottom up” and the
latter as “top down”. Both approaches have their place and our decision to focus
our current efforts on VxC has more to do with the applications that interest us
than in any value judgement.

Top-down methods such as VDM [Jon90], B[Abr96] or Event-B[Abr10] tend
to subscribe to a “posit and prove” pattern in which a designer posits a step of
development and then seeks to justify it. By focusing on a particular style of de-
velopment, a support tool can be built that generates “proof obligations” (POs)
whose discharge justifies the correctness of a development step. For Event-B,
one such support system is known as the “Rodin Tools”5— the generated POs
are putative lemmas that need proof. In a carefully structured Event-B develop-
ment, the theorem provers in the Rodin Tools will discharge the majority of the
POs automatically; with skill and experience, users can get the percentage dis-
charged automatically into the nineties. These results are typical of other choices
of methods/tools. The remaining POs need to be discharged by interactive proof
and this can be both time-consuming and challenging for industrial users; this
in turn leads to proof being a bottleneck in industrial deployment.

There are, in fact, two approaches to dealing with the POs that require user
interaction:

1. Follow a modelling strategy : change the model/abstraction in order to sim-
plify the proofs, thus increasing the proportion of POs that are discharged
automatically. For example, in [BY08], extra refinement steps are introduced
due to known limitations of the automatic theorem provers.

2. Follow a proof strategy : accept the challenging POs and define a strategy for
discharging them.

Both approaches are valid and useful and they can be seen as complementary.
For example, the numbers quoted below most likely apply after several iterations
of massaging the original model. A proof strategy could still be applied after the
modelling strategy has reduced the numbers of undischarged POs.

It is the proof approach that we will take first in our AI4FM project. Our
principal aim is to increase the repertoire of techniques for the proof-strategy
approach by learning from proof attempts made by humans. We should make it
clear that we are thinking of higher-level strategies than those normally coded in
say HOL or Isabelle. In fact our model of the proof process is more like the sort
of interactive proofs created in [JJLM91]; we are also aware that the progress
in SMT research will have an influence on our approach. For example, we may
incorporate SMT solvers as new tactics.

It should be remembered that the POs arising from formal methods tend to
have different properties from “pure” mathematics.

5 See www.event-b.org



1. There are often large numbers of detailed POs. To illustrate, the Paris Metro
Line 14 and the Roissy Airport shuttle system were both developed using
B [Abr07]; the former generated 27, 800 POs (around 2, 250 interactive) while
the latter generated 43, 610 POs (around 1, 150 interactive).

2. POs tend to be less deep.
3. They often exhibit a “similarity”, in the sense that they can be grouped

into “families” and the same (high-level) proof approach can be successfully
applied to all members of the family.

2 The AI4FM approach

There are two reasons of why a PO might not be discharged automatically: the
putative lemma could be wrong (thus pinpointing a mistaken design decision6)
or a true lemma has not been proved by the theorem prover because it is “not
smart enough”.

We have some data from industrial use that suggests failing POs fall into a
relatively small number of distinct classes in the sense that one new idea will be
key to discharging many POs. It is tempting to search for ever better heuristics
but we plan to follow a different path in AI4FM. In many cases where a (correct)
PO is not discharged automatically, an expert can easily see how to complete a
proof. By exploring the nature of the POs within formal methods we believe that
a higher degree of automation can be achieved by relying on expert intervention
to do one proof, with the expectation that this would enable the system to
discharge other POs in the same family.

Specifically, we hope to build a tool that will learn enough from one proof
attempt to improve the chances of proving “similar” results automatically. By
“proof attempt” we include things like the steps explored by the user (not just
the chain of steps in the final proof). Thus it is central to our goal that we find
high-level strategies capable of cutting down the search space in proofs.

Our hypothesis is:

we believe that it is possible (to devise a high-level strategy language for
proofs and) to extract strategies from successful hand proofs that will
facilitate automatic proofs of related POs.

To achieve our goal we plan to analyse exemplar proofs (including their start-
ing PO) using many dimensions. For example, we might separate information
about data structures and approaches to different patterns arising from POs.
Thus one proof (attempt) might be seen to use “generalise induction hypoth-
esis” (e.g. adding an argument to accumulate values) about, say, sequences; a
future use might involve a more complicated tree data structure — but if it has
an induction rule, the same strategy might work. We hope to pick out other
dimensions, such as the domain of the application that gave rise to the PO
(e.g. does it relate to trains or to railway tracks?).

6 An AI approach to help with these circumstances is discussed in [IGB10]



Designing a strategy language capable of capturing such properties (in an ab-
stract form) is crucial to the success of AI4FM — one indication of the feasibility
of such an approach is the earlier work on “proof critics” and “rippling” [BBHI05]
— some early thoughts on a strategy language are presented in [JGB10] — and
some simple examples in [BGJ09].

A key question for the design of the strategy language is the level of abstrac-
tion that will be used. We see two extreme points:

– a rather concrete description of a proof strategy (close to the tactic level),
would not require much proof search when re-applying the strategy on POs
in the same family – however, the size of the family would be rather small;

– much more abstract descriptions of proof strategies would capture far broader
families of POs – however, they would require more proof search.

Thus, to reduce proof search, whilst keeping the families large, a language en-
abling proof strategy descriptions at different levels of abstractions seems desir-
able. HiProofs [DPT06] is an example to describe tactic proof using many levels,
and we plan to build on this idea.

We would also need to provide tool support to both extract strategies from an
exemplar interactive proof – and to interpret a strategy to discharge POs in the
same family as the exemplar proof. We plan to build, at least the interpreter, on
top of the Isabelle proof assistant. The advantage of Isabelle, is that it contains
a meta-logic where we can, to some degree, develop our system – independent
of the underlying method and logic.

Our solutions will rely heavily on heuristics — we do not believe that there
are algorithmic solutions to most of our problems. Thus, as the project name
suggests, our techniques will be heavily influenced by artificial intelligence. Par-
ticular areas of artificial intelligence we hope can help are

– planning and proof planning to find proofs from strategies – e.g. as in rippling
discussed above;

– machine learning in order to
• extract strategies from exemplar proofs. For example, Explanation Based

Generalisation/Learning has previously been used to generalise sub-
proofs for reuse [MS98]. However, something more general is probably
required for our purposes;

• discovering related POs, or finding a particular strategy for a sub-proof
of a PO. We will need to use a form of pattern recognition in order to
achieve this – which explores the various dimensions as discussed above.

– from the exemplar proof we may find “dead ends” in the search space, and
use search techniques to rule them out from the target search space – i.e.
strategies at the level of the search space.

3 We need more challenge portfolios

We are fortunate that our access through the DEPLOY project7 to industrial
users of the Rodin support tools will facilitate the capture of many difficult POs.

7 See www.deploy-project.eu



We have already begun to find out how easy it is to analyse them into families
that succumb to similar ideas to get their proofs to go through. But we are aware
that it is always dangerous to base research on too narrow a base. We should
therefore like to elicit challenge problems from other projects.

We can see three levels of useful access.

– Simple: we would be interested to receive POs generated from formal models
of non-trivial computer systems — if these are beyond the power of the
automatic theorem provers and/or SMT systems at hand, they might be
interesting challenges for us — we are aware that even transferring a single
model is not a simple file because we will need any base (data type) theories
and, potentially, information about the logic used

– Valuable: it would be even more useful if we could get access to families of
related proofs — we would be quite happy to get part of set (from which
we try to learn strategy) — and then subject to independent scrutiny the
question of whether the strategies that we devise would help with the unseen
proof tasks

– Optimal: if we could, in addition to the above, receive a proof history in-
cluding “this is where our TP got stuck” we would gain more insight into
what is needed

We would appreciate it if anyone considering sending us material contacted
Gudmund Grov8 since dialogue is more likely to make the process work. We fully
understand that industrial users might wish to disguise details of their models
by changing the names of functions and/or state components.
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Abstract. Proposed solutions to a collection of software verification
“challenge problems” have been undertaken by a group using Dafny. The
techniques employed to solve these problems present insights into the
Dafny specification and verification process. Solutions to key problems
including binary search of an array and proof of correctness of data
representation are reviewed, with observations about language design
and modularity, among other issues.

1 Introduction

In an effort to focus and unify the efforts of the software verification commu-
nity, the authors of [1] (including the two of us) have proposed a number of
incremental “benchmarks.” These challenge problems present a wide assortment
of potential impediments to automated verification in a manner that progres-
sively increases in difficulty. The benchmarks also elaborate on the data that
should be provided in each solution. This includes code, specifications, verifica-
tion conditions, buggy programs that the system can identify as incorrect, and
so on. Each properly documented solution should be, in essence, a self-contained
software verification case study.

Dafny [2] is a programming language whose semantics is defined by trans-
lation into Boogie [3], thus allowing verification conditions to be generated and
then proven using Z3 [4]. The language features Java-like reference semantics
and a unique selection of primitives, including generic set and seq collection
types. Dafny-based solutions to all eight of the benchmark problems have re-
cently been claimed [5] and made publicly available [6]. We describe three of
these benchmark solutions and discuss the approach used in them.

The benchmark problems, and the specific guidelines for how solutions should
be structured, are intended to establish a detailed and rigorous basis on which
to compare and contrast different approaches to software verification. We do not
seek to position ourselves as de facto official reviewers of proposed benchmark
solutions simply on the grounds that we suggested the benchmarks. Instead,
we hope that this paper will serve as a model for future benchmark solution
submissions and analyses, giving a general idea of how a review might be reported
and encouraging others to participate in this conversation. Other fields of study



thrive on reviews and responses as effective means for disseminating ideas1;
benchmarks and challenge problems provide a similar opportunity in software
engineering.

For each of the reviewed benchmarks, we quote the original problem state-
ment from [1], present the Dafny solution, and discuss its merits. We conclude
with general remarks about the Dafny approach and the lessons learned in un-
dertaking this analysis.

2 Benchmark 2: Binary Search in an Array

Problem Requirements: Verify an operation that uses binary search to find
a given entry in an array of entries that are in sorted order.

Dafny does not provide arrays as a primitive in the programming language.
Therefore, Benchmark 2 is where we first see Dafny’s approach to user-defined
data types. The benchmark does not require that the data type itself be verified,
only that client code using it can be verified relative to the correctness of the
data type. Issues of data representation are covered in later benchmarks; the
issue for now is simply the specification of the array.

The Dafny Array component is shown in Figure 1. Note that for simplicity,
the Dafny solution fixes the contents of an array to be ints. This is permissible;
generics are not explicitly addressed until the fourth benchmark problem.2 An
array of integers is treated as a seq of int. This is indicative of a surprising
characteristic of Dafny data types: it does not seem possible to specify the be-
havior of an array without making a commitment to its representation. A seq is
not an abstract mathematical entity that can be used to describe the behavior
of Array operations; instead it is a real programmatic object that can only be
used in specifications if it is an actual field of a particular Array representation.3

Given this state of affairs, one may wonder how a client could possibly write
specifications (e.g., loop invariants) that involve Arrays in a modular manner,
without committing to any particular Array implementation. Dafny does not
provide any special new mechanism for this, but rather suggests as a good prac-
tice that classes provide a sufficiently robust collection of “pure” functions to
facilitate client specification writing.

Get is an example of one of these “mathematical” functions, whose bodies
are expressions rather than statements in the programming language. Although
there is currently no compiler for Dafny, these functions are intended to be
executable. One interesting question is how exactly these will be implemented
by a Dafny compiler. One may also wonder what performance characteristics
Array will offer when represented as a seq.

1 One famous example from cognitive science is Chomsky’s review of Skinner [7].
2 Actually, Benchmark 3 calls for a generic datatype, but the Dafny solution does not

meet this requirement.
3 Dafny does allow “ghost” variables, but this amounts to the same problem for pur-

poses of present discussion; a ghost variable is treated identically to a non-ghost
variable (i.e., via explicit updates).
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class Array {

var contents: seq<int>;

method Init(n: int);

requires 0 <= n;

modifies this;

ensures |contents| == n;

function Length(): int

reads this;

{ |contents| }

function Get(i: int): int

requires 0 <= i && i < |contents|;

reads this;

{ contents[i] }

method Set(i: int, x: int);

requires 0 <= i && i < |contents|;

modifies this;

ensures |contents| == |old(contents)|;

ensures contents[..i] == old(contents[..i]);

ensures contents[i] == x;

ensures contents[i+1..] == old(contents[i+1..]);

}

Fig. 1. Dafny Array component.

The binary search implementation is shown in Figure 2. We see that the loop
can exit unnaturally (i.e., without the loop guard evaluating to false), and so
the verification conditions must account for this. Unfortunately, the publicly-
available Dafny solutions do not include verification conditions for inspection.
Also of note is the arithmetic used to compute mid. It is carefully formulated to
avoid overflow, which is a subtle bug that is specifically enunciated in the bench-
mark statement. It would have been nice to see this bug manifest in the code,
and then be discovered by a failed verification, but built-in ints are unbounded
in Dafny.

3 Benchmark 3: Sorting a Queue

Problem Requirements: Specify a user-defined FIFO queue ADT that is
generic (i.e., parameterized by the type of entries in a queue). Verify an op-
eration that uses this component to sort the entries in a queue into some
client-defined order.

In this benchmark, the issue of parameterizing the sorting operation by an
ordering is deemed to be “central,” and the invariants involved for even straight-
forward sorting algorithms are non-trivial.

In Dafny, one can define a function only by writing an explicit function
body. This means it is not possible to specify a generic comparison function.
So, the proposed solution proceeds by fixing the queue contents to be ints and

3



method BinarySearch(a: Array, key: int) returns (result: int)

requires a != null;

requires (forall i, j :: 0 <= i && i < j && j < a.Length() ==>

a.Get(i) <= a.Get(j));

ensures -1 <= result && result < a.Length();

ensures 0 <= result ==> a.Get(result) == key;

ensures result == -1 ==>

(forall i :: 0 <= i && i < a.Length() ==> a.Get(i) != key);

{

var low := 0;

var high := a.Length();

while (low < high)

invariant 0 <= low && high <= a.Length();

invariant (forall i :: 0 <= i && i < low ==> a.Get(i) < key);

invariant (forall i :: high <= i && i < a.Length() ==>

key < a.Get(i));

decreases high - low;

{

var mid := low + (high - low) / 2;

var midVal := a.Get(mid);

if (midVal < key) {

low := mid + 1;

} else if (key < midVal) {

high := mid;

} else {

result := mid; // key found

return;

}

}

result := -1; // key not present

}

Fig. 2. Binary search implemented in Dafny.
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the ordering to be standard numeric “less than or equal to.” This skirts the
central issue of parameterization by an operation mentioned above, but leaves a
challenging benchmark nonetheless.

Selection sort, implemented with a RemoveMin helper operation, is shown in
Figures 3 and 4. Clearly, the solution is annotation-heavy. This is primarily due
to the need to specify properties about permutations, e.g., that the outgoing
(sorted) value of the queue is a permutation of the incoming value.

One can imagine that certain properties, e.g., two strings being permutations
of each other, are so fundamental and useful that one may wish to isolate their
mathematical definitions inside some sort of atomic unit that can be concisely
referred to in specifications. This could be viewed as an analog of procedural
abstraction, and indeed one could propose using Dafny’s functions to serve in
this role. However, it is difficult to see exactly where such a function should
reside. Queue would be too limited a scope, because of course we may wish to
use it with other user-defined data types that are implemented with a seq —
for example a stack, or even the Array seen in Benchmark 2. A language system
that uses pure mathematical modeling seems better suited to this kind of design,
because it would allow such definitions to reside with the rest of the mathematical
theory used in the modeling, rather than in some particular program component,
where it is hard to reuse.

4 Benchmark 4: Layered Implementation of Map ADT

Problem Requirements: Verify an implementation of a generic map ADT,
where the data representation is layered on other built-in types and/or ADTs.

The Dafny solution shown in Figure 5 uses two seqs to represent the map:
one to hold the keys and one to hold the associated values, with the association
being established by matching indices.

At this point, issues of modularity and abstraction are brought to center
stage. Consider, for example, the FindIndex method. Without even fully un-
derstanding the contract, an intuitive gloss of the method’s name indicates that
implementation details have been exposed here. From an abstract point of view,
a map has no notion of “index,” and so FindIndex is in principle surprising.

One could respond that FindIndex is intended to be “private.” Dafny cur-
rently has no enforced access restriction; otherwise the authors would surely
use it here. However, even if there were such a mechanism, there are further
violations of representation encapsulation in the Map class. One example is the
ensures clause of Find, which exposes the fact that the class contains fields keys
and values of type seq. Imagine that one might prefer to implement Map using
two Queues in the representation. To describe the exact same behavior, the spec-
ifications would have to change so that all mentions of keys and values instead
refer to keys.contents and values.contents, respectively.4

4 In fact the situation becomes worse when one considers that there may be multiple
implementations of Queue, each exposing its own representation in different ways
and with different field names.
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method RemoveMin(q: Queue<int>) returns (m: int, k:int)

requires q != null && |q.contents| != 0;

modifies q;

ensures |old(q.contents)| == |q.contents| + 1;

ensures 0 <= k && k < |old(q.contents)| && old(q.contents[k]) == m;

ensures (forall i :: 0 <= i && i < |q.contents| ==> m <= q.contents[i]);

ensures q.contents == old(q.contents)[k+1..] + old(q.contents)[..k];

{

var n := |q.contents|;

k := 0;

m := q.Head();

var j := 0;

while (j < n)

invariant j <= n;

invariant q.contents == old(q.contents)[j..] + old(q.contents)[..j];

invariant 0 <= k && k < |old(q.contents)| && old(q.contents)[k] == m;

invariant (forall i ::0<= i && i < j ==> m <= old(q.contents)[i]);

decreases n-j;

{

call x:= q.Dequeue();

call q.Enqueue(x);

if ( x < m) {k := j; m := x;}

j:= j+1;

}

j := 0;

while (j < k)

invariant j <= k;

invariant q.contents == old(q.contents)[j..] + old(q.contents)[..j];

decreases k-j;

{

call x := q.Dequeue();

call q.Enqueue(x);

j:= j +1;

}

call m:= q.Dequeue();

}

}

Fig. 3. Dafny RemoveMin implementation.
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method Sort(q: Queue<int>) returns (r: Queue<int>, perm: seq<int>)

requires q != null;

modifies q;

ensures r != null && fresh(r) && |r.contents| == |old(q.contents)|;

ensures (forall i, j :: 0 <= i && i < j && j < |r.contents| ==>

r.Get(i) <= r.Get(j));

ensures |perm| == |r.contents|; // ==|pperm|

ensures (forall i: int :: 0 <= i && i < |perm| ==>

0 <= perm[i] && perm[i] < |perm|);

ensures (forall i, j: int :: 0 <= i && i < j && j < |perm| ==>

perm[i] != perm[j]);

ensures (forall i: int :: 0 <= i && i < |perm| ==>

r.contents[i] == old(q.contents)[perm[i]]);

{ r := new Queue<int>;

call r.Init();

// initialize ghostvar p so p=<0,...,|q.contents|-1> (code omitted)

perm:= []; ghost var pperm := p + perm;

while (|q.contents| != 0)

invariant |r.contents| == |old(q.contents)| - |q.contents|;

invariant (forall i, j :: 0 <= i && i < j && j < |r.contents| ==>

r.contents[i] <= r.contents[j]);

invariant (forall i, j :: 0 <= i && i < |r.contents| && 0 <= j &&

j < |q.contents| ==> r.contents[i] <= q.contents[j]);

invariant pperm==p+perm&& |p|==|q.contents|&& |perm|==|r.contents|;

invariant (forall i: int :: 0 <= i && i < |perm| ==>

0 <= perm[i] && perm[i] < |pperm|);

invariant (forall i:int::0<=i && i<|p|==> 0<=p[i] && p[i]<|pperm|);

invariant (forall i, j: int :: 0 <= i && i < j && j < |pperm| ==>

pperm[i] != pperm[j]);

invariant (forall i: int :: 0 <= i && i < |perm| ==>

r.contents[i] == old(q.contents)[perm[i]]);

invariant (forall i: int :: 0 <= i && i < |p| ==>

q.contents[i] == old(q.contents)[p[i]]);

decreases |q.contents|;

{

call m,k := RemoveMin(q);

perm := perm + [p[k]]; //adds index of min to perm

p := p[k+1..]+ p[..k]; //remove index of min from p

call r.Enqueue(m);

pperm := pperm[k+1..|p|+1]+pperm[..k]+pperm[|p|+1..]+[pperm[k]];

}

//lemma needed to trigger axiom

assert (forall i:int :: 0<=i && i < |perm| ==> perm[i] == pperm[i]);

}

Fig. 4. Dafny Sort implementation. A trivial portion of code that properly initializes
the ghost seq p is omitted for presentation purposes, but is correctly annotated and
verified in the full solution.
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class Map<Key,Value> {

var keys: seq<Key>;

var values: seq<Value>;

function Valid(): bool

reads this;

{

|keys| == |values| &&

(forall i, j :: 0 <= i && i < j && j < |keys| ==> keys[i] != keys[j])

}

method Find(key: Key) returns (present: bool, val: Value)

requires Valid();

ensures !present ==> key !in keys;

ensures present ==> (exists i :: 0 <= i && i < |keys| &&

keys[i] == key && values[i] == val);

{

call j := FindIndex(key);

if (j == -1) {

present := false;

} else {

present := true;

val := values[j];

}

}

method FindIndex(key: Key) returns (idx: int)

requires Valid();

ensures -1 <= idx && idx < |keys|;

ensures idx == -1 ==> key !in keys;

ensures 0 <= idx ==> keys[idx] == key;

{

var j := 0;

while (j < |keys|)

invariant j <= |keys|;

invariant key !in keys[..j];

decreases |keys| -j;

{

if (keys[j] == key) {

idx := j;

return;

}

j := j + 1;

}

idx := -1;

}

}

Fig. 5. An implementation of a map component using two parallel seqs. Methods for
initializing the map, adding values, and removing values have been omitted solely for
conciseness of presentation.
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This is symptomatic of the aforementioned coupling between abstract speci-
fications and concrete realizations. In the comments accompanying their Bench-
mark 4 solution, the authors note that this problem would be easier to solve
if “Dafny had a built-in map type that could be used in specifications,” but of
course one cannot expect such an entity to exist for every kind of data type one
may need to implement. Pure mathematical modeling is a convenient way of
avoiding these issues and decoupling code from specifications, but it introduces
complexities — such as establishing a correspondence between the programmatic
entities participating in the data representation and the model used to express
the desired behavior [8, 9] — that Dafny is not yet engineered to handle.

5 Conclusion

The most important issue brought to light by these proposed benchmark solu-
tions has to do with Dafny’s treatment of mathematical modeling. Dafny com-
ponents tightly couple specifications with their implementations — indeed there
seems to be no mechanism for writing specifications in a separate code unit.

In Dafny, some “mathematical” entities such as sets and sequences are ac-
tually primitives in the programming language. They serve a dual role: as de-
scriptors for component behavior, and as actual fields of the class implementing
that behavior. For example, both Array and Queue are specified and represented
with a Dafny seq. One advantage of this approach is that in situations where a
particular property is needed both for specification and for implementation pur-
poses, a single entity (a Dafny function) can be used to define it. One example
of this is the Get function seen in Benchmark 2.

On the other hand, this conflation of code and mathematics also poses some
threats to modularity. For example, consider the issue of multiple implementa-
tions. In Benchmark 3, we see that class fields (e.g., contents) are allowed to
appear in client specifications. Now imagine that there were two implementa-
tions of Queue: one which has a seq called contents, and another which uses
a set called contents, likely in conjunction with some other fields. Exchanging
one implementation with the other would inadvertently change the meaning (or
even the well-formedness) of client specifications. The recommended idiom is of
course to decouple the implementation from the specifications by only mention-
ing functions rather than fields on the client side, but the proposed solution to
Benchmark 3 provides evidence that this is not currently possible in all cases.5

As authors of [1], we are pleased that the verification community has begun
to take on the challenges proposed therein. Dafny’s ability to address all eight
benchmarks is impressive and appreciated; unfortunately space does not permit
a presentation or review of all solutions here.

The collection, cataloging, and analysis of multiple solutions to the verifica-
tion benchmark problems provide a valuable opportunity for detailed analyses
and comparison. This work presents an initial discussion; we hope others follow.
5 The authors note in the comments of their solution to Benchmark 3 that attempting

to use Get instead of referring to contents does not work.
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Abstract. This paper defines a suite of benchmark verification problems, to serve
as an acid test for verification systems that reason about full functional cor-
rectness of programs with non-trivial data-structure invariants. Solutions to the
benchmarks can be used to understand similarities and differences between ver-
ification tools and techniques. The paper also gives a procedure for scoring the
solutions.

0 Introduction

There are many program verification systems today, and we expect many more to be
developed in the next decade. The systems differ in what programming language they
handle, in the underlying logic and the specification features that they support, in the
style in which specifications are written, in how one interacts with the system, and in the
level of automation provided by the system. Yet, in the end, the tools all have a similar
goal: to increase our confidence level in particular algorithms or pieces of code, and to
do so in a convincing way without spending too much effort. So, how do we measure
and compare the capabilities of various tools, how do we measure the improvements
of a given tool over time, and how we compare how well tools live up to the common
goal?

In this paper, we propose a set of challenging verification benchmarks, aimed to
facilitate such measurements and comparisons. These benchmarks are for modular ver-
ification of functional correctness of programs where the data structures themselves
rely on interesting consistency conditions. That is, the benchmarks were chosen as ones
that involve useful and non-trivial data structures, not just non-trivial algorithms. Please
note that these benchmarks are unlikely to be suitable for model-checking, testing, or
extended static checking tools, with limited specification capabilities.

We propose the following five benchmarks, mostly freshman data structures.

0. Constant-time spare array, where init, get and set operations all take constant
time. A simple warm-up problem exercising invariants over arrays.

1. Composite pattern, which has been proposed before. There is an update in the
middle of a tree pointer structure, and then the algorithm walks the tree up to fix
the invariant.

2. Binary heap is expected to be implemented with a integer-indexed data structure.
We use heap-sort as a test-harness.
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3. Union-find data structure for maintaining partitioning of a set. We use a maze
generation algorithm (essentially Kruskal’s spanning tree construction) as a test-
harness.

4. Red-black trees. The classic. Likely most difficult in the set.

While challenging, we believe the benchmarks are solvable with state-of-the-art tools.
We have started verification of some using the Dafny [6] and VCC [1] tools, and con-
vinced ourselves that the others can be also verified. Thus, we expect the comparison
to happen based on the performance and annotation overhead of the tools (see Sect. 1
below).

The benchmarks do not rely on object-orientation, type parameters, pointer arith-
metic, unsafe features, particular concurrency handling, etc. It is thus possible to imple-
ment them in C or Java-like languages. The data structures and signatures that we give
are imperative, thus performing verification in a functional programming language may
be challenging.

The selection of benchmarks is clearly rather arbitrary. It would be ideal to have
some objective benchmarks provided by outsiders, however we do not know of any
such benchmarks. The situation is similar in the theorem prover competitions (CAST,
SMT-COMP, SAT-race), where authors of the tools are allowed to submit benchmarks.
The idea is, of course, that authors of all tools can submit benchmarks, giving a good
mix in the end. For example, SMT-LIB welcomes any benchmarks, but during compe-
tition the benchmarks arising from actual applications (as opposed to random or hand-
crafted) are given higher weights. In that spirit, a verification benchmark is valuable
as long as it is something users will want to verify. We we believe that this is the case
for all benchmarks presented here. The initial feedback we have received about our
benchmarks from the verification community was overall very positive.

Each benchmark comes with a signature of operations available on the data structure
and a “test harness”—a short program measuring the completeness of specifications of
the data structure. We intentionally do not give exact specifications of the data structure
operations, as these may vary between tools.

We also give a scoring scheme for the benchmarks. The scores are broken down so
that it is possible to get points even if not all interesting properties to verify have been
verified. Parts of the scores come from conciseness of specifications and other overhead
for the proof, as well as from the performance of the realized verification tool.

Our goals are:

– to benchmark the ability of verification tools to verify the correctness of algorithms/-
executable code that involve non-trivial data structure invariants, and

– to benchmark their support for modular checking and facilities for abstraction.

Having been inspired by a first suite of verification benchmarks, presented at VSTTE
2008 by Weide et al. [10], and having attempted to solve those using Dafny [7], we have
tried to give more precise problem statements, in particular through the test harness
mechanism. Also, unlike the VSTTE 2008 benchmarks, we do not aim at incremen-
tality (i.e., that one benchmark would build on another); rather, we give independent
problems where the harness makes use of the abstract specification of the data structure
in the same benchmark.
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We expect the benchmarks to be suitable tasks to most of the tools listed below (the
list is of course not expected to be exhaustive): the general purpose interactive provers
(Coq, Isabelle/HOL, ACL2); interactive verification environments (Ynot, KeY, KIV,
RESOLVE); symbolc execution tools (jStar, VeriFast, VeriCool); and deductive verifiers
using automatic provers in the backend (Dafny, VCC, Chalice, Jahob, and the Why
tools (including Krakatoa and Frama-C)). Three efforts to undertake the benchmarks
are already underway, by Jan Smans (using VeriCool 3 [8]) and by us (using VCC and
Dafny). We have setup an open-source project0, to collect solutions.

1 Requirements and Scoring

We expect modular solutions, i.e., one should verify correctness of a reasonably abstract
specification (each problem specifies at least one such abstraction), and then verify the
harness using only the specification, not the implementation of the data structure.

We also expect that the verification includes the safety of all operations, like absence
of null dereferences, array bounds errors, and other precondition violations.

Each problem is scored on a scale from 0 to 100 points, inclusive. The description
of the problem gives scores for various subtasks, which add up to 80. Usually some of
the subtasks depend on others. If any points are scored for any of those subtasks, then
additional points are added:

– 5 points are added if the solution guarantees termination, i.e., total correctness of
the test harness and the other code is proven

– 6 − 2 ln g
p or 10 points (whichever is less) are added, where g is the number of

tokens in the specification and all the additional lemmas/guidance needed for the
verifier to verify the problem in batch mode and p is the number of tokens in the
executable part of the program (including the harness)

– 5− 1
2 ln t or 5 points (whichever is less) are added, where t is the number of sec-

onds the verifier needs in batch mode to verify the problem (including the harness)

Should the score for a benchmark come out negative (i.e., the benchmark takes a couple
of million years to verify or requires millions of lines of annotations), then the score is
to be treated as 0 for that benchmark.

The result of the benchmark suite is the average number of points scored in individ-
ual benchmarks, where any benchmark not attempted counts as 0.

The definition of token will necessarily vary between languages. For languages with
C-like syntax, we provide a script1 to count them (which may need to be tweaked for a
particular verifier).

The runtime should be measured as the wall-clock time on a modern (as of 2010)
machine, i.e., about a 3GHz PC. To reward parallel processing, any number of pro-
cessors/cores are allowed, provided they all run concurrently during the interval wall-
clock time reported. The measurement must, however, be done on an actual machine—it
should not be constructed as a number that one, in principle, could obtain.

0 http://vacid.codeplex.com/
1 http://research.microsoft.com/~moskal/count-tokens.zip

http://vacid.codeplex.com/
http://research.microsoft.com/~moskal/count-tokens.zip
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Ideally, we would like to measure the tool’s response time to the user while the
user is developing the specification. That would mean computing the response time
for a single method (or whatever the unit of specification/verification is) for a failed
verification. However, since this is difficult to compare between different tools, we have
instead settled for measuring the time needed for a successful verification of each entire
benchmark.

Let us shortly motivate the scoring. As for the subtasks, we think that solving
the problem at all is more important than annotation overhead or performance (this
is similar to various theorem prover competitions). In particular, solving another sub-
task should not lower the overall score. This is why each subtask is worth at least 20
points. Other than that the amounts of points are just a guess, in some cases educated
by our own attempts to solve these, or similar, problems.

As for the overhead, let us look at some data points. The extended static checking
tools (e.g., ESC/Java [4]) have an overhead of about 0.1 (which gives 10 points). Tools
aiming at functional verification are unlikely to do any better. Automatic deductive
tools, like Dafny and VCC, tend to have overhead roughly between 1 and 4 (6 to 4
points). Finally, the impressive L4.verified [5] project, using interactive Isabelle/HOL
prover to verify functional correctness of an operating system, is reporting overhead
of 20 (which gives 0 points). Any higher overhead gives negative points on our simple
benchmarks.

As for the time, for interactive work in an IDE the response time should be in the
sub-second range, and thus the 1 second overall time gives the maximal 5 points. Oth-
erwise, the verification tool is likely to be used similarly to the compiler, which gives
warnings about the code in the ballpark of 1 to 10 minutes (3 to 2 points). Finally, the
response time of over an hour seems to effectively prevent development of specification,
and thus the overall time between 1 and 6 hours gets between 1 and 0 points. Anything
longer gives negative points.

The pseudo-code that we use below to describe data structures, the signatures of
operations, and the various test harnesses is similar to Java or C#. We use type uint
to denote the unsigned integers used to index into arrays, mostly to clearly distinguish
them from values stored in the arrays (i.e., int’s); however, there is no requirement
on solutions to use unsigned types. It is permitted and encouraged (but currently does
not yield any extra points) to use a generic type instead of int, and a particular value
instead of 0 for all collection data-structures. We use a statement assert(P) to say that
we require condition P to be verified to always hold (at least for full-points solutions;
see exact description with each task).

1.0 Solution Description

To facilitate comparison between tools, solutions should report for each benchmark:

– which verification tasks were solved
– whether termination was proven
– the size in tokens of executable code and annotations; include separate numbers

for the data-structure itself and the harness (the assertions in harness count as exe-
cutable code, as they only emulate a use of the data-structure)



5

– the time it takes to verify the solution with multiple cores, and also with a single
core

– if applicable, the longest verification time of a method (also multi- and single-core)
– test machine configuration (in particular, number of cores, if they were used, as

well as any unusual resource requirement)
– the approximate time and number of people it took to develop the annotations,

together with some indication of familiarity of the specification developers with
the verification tools and techniques

– and, of course, the score computed as indicated above.

2 Constant-Time Sparse Array

For this benchmark, the task is to implement and verify an array where all three ba-
sic operations (create, get, and set) take constant time (Exercise 2.12 in [0]; see also
[9] p. 271). Any memory requested from the underlying memory allocator (typically
malloc() or new) should be treated as containing arbitrary values. The solution should
use three arrays: one for the actual values stored in the array, and two more for marking
which indices are already initialized, as in the program below.

class SparseArray {
int val[MAXLEN];
uint idx[MAXLEN], back[MAXLEN];
uint n;
static SparseArray create(uint sz) {
SparseArray t = new SparseArray();
n = 0;
return t;

}
int get(uint i) {
if (idx[i] < n && back[idx[i]] == i) return val[i];
else return 0;

}
void set(uint i, int v) {
val[i] = v;
if (!(idx[i] < n && back[idx[i]] == i)) {

assert(n < MAXLEN); // (*), see Verification Tasks
idx[i] = n; back[n] = i; n = n + 1;

}
}

}

Verify that the program above meets the usual abstract interface of an array. The
get() and set() methods should require the index to be within bounds, and the create()
method may require that sz <= MAXLEN.

In a language like Java, the internal arrays allocated by the class above would al-
ready be 0-initialized; however, our benchmark stipulates that the implementation is not
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allowed to make use of that fact in the verification. One way to ensure that is to make
the constructor take the arrays as input.

The following test harness should be verified without looking at the particular im-
plementation of the array.

void sparseArrayTestHarness() {
SparseArray a = create(10), b = create(20);
assert(a.get(5) == 0 && b.get(7) == 0);
a.set(5, 1); b.set(7, 2);
assert(a.get(5) == 1 && b.get(7) == 2);
assert(a.get(0) == 0 && b.get(0) == 0);

}

2.0 Verification Tasks

0. Verify the correctness of the array implementation against your specification, as-
suming n < MAXLEN at the place marked with (*) in the code. Also, verify the
correctness of the test harness using the specifications of the array. 50 points.

1. As above, but without the assumption (*). In other words, verify that the asser-
tion holds (which ensures that the program does not reference the array outside its
bounds). 30 points.

3 Composite Pattern

This benchmark, which has been used as a specification and verification challenge at
SAVCBS 2008 [3], involves a set of nodes connected acyclicly via parent links. In
addition to graph structure information, each node stores an integer val as well as the
sum of the val fields in the tree rooted at the node. The key is to keep these sum fields
up-to-date.

A client is allowed access to any node in the set. That is, clients can hold pointers to
any node. When the value of a node is updated, all relevant sum fields must be updated
as well. This can be accomplished using recursion or by a loop like:

void update(int v) {
int diff = v - val;
val = v;
for (CompositeNode p = this; p != null; p = p.parent) {

p.sum = p.sum + diff;
}

}

The signature of the class is:

class CompositeNode {
CompositeNode parent;
CompositeNode left, right;
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int val, sum;
static CompositeNode create(int v);
void addChild(CompositeNode child); // connect ’this’ as the parent of ’child’
void dislodge(); // disconnect ’this’ from its parent
void update(int v);

}

Here, we have limited nodes to two children, but programs are also allowed to support
an unbounded number of children. The precondition of addChild() should prevent cy-
cles from being created and prevent a node from getting more children than the imple-
mentation supports. Method dislodge() severs a node’s tie to its parent. All methods
must keep all sum fields up-to-date.

void compositeHarness()
{

CompositeNode a = create(5), b = create(7);
a.addChild(b);
assert(a.sum == 12);
b.update(17);
assert(a.sum == 22);

CompositeNode c = create(10);
b.addChild(c); b.dislodge();
assert(b.sum == 27);

}

It is allowed to modify the specification above to introduce an “manager” object to
keep track of disjoint trees of composites.

3.0 Verification Tasks

0. Verify correctness of the harness. 80 points.

4 Binary Heap

A binary min-heap (see [2], Chapter 6) is a nearly full binary tree, where the nodes
maintain the heap property, that is, each node is smaller than each of its children. The
heap should be stored in an integer-indexed collection (e.g., an array). The following
three operations should be provided:

class Heap {
static Heap create(uint sz);
void insert(int e);
int extractMin();

}
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The create(sz) method creates a new heap of maximum capacity sz (this restric-
tion is optional). The insert() method should allow inserting an element multiple
times so that extractMin() will return it multiple times.

The test harness consists of two procedures to be verified separately: a simple im-
plementation of heap sort, and one use case.

void heapSort(int[] arr, uint len) {
uint i;
Heap h = create(len);
for (i = 0; i < len; ++i) h.insert(arr[i]);
for (i = 0; i < len; ++i) arr[i] = h.extractMin();

}
void heapSortTestHarness() {

int[] arr = { 42, 13, 42 };
heapSort(arr, 3);
assert(arr[0] <= arr[1] && arr[1] <= arr[2]);
assert(arr[0] == 13 && arr[1] == 42 && arr[2] == 42);

}

One may find the operation that “bubbles-up” an entry upon insertion to be similar
in spirit to the composite pattern: we break the invariant at some point, and then move
up fixing it. The motivation for including both benchmarks is that the composite pattern
is supposed to be implemented with pointer structures, and the heap with an array (or
another integer-indexed collection). Applications are likely to need both and thus we
test for both.

4.0 Verification Tasks

0. Verify the that the heap sort returns an array that is sorted (in particular, verify the
first assertion in the harness). 40 points.

1. Verify that the heap represents a multiset, and thus that the heap sort produces a
permutation of the input (in particular, verify the second assertion). 40 points.

5 Union-Find

This benchmark makes use of the union-find data structure:

class UnionFind {
static UnionFind create(uint sz);
uint getNumClasses();
int find(int a);
void union(int a, int b);

}

Method create() creates a union-find data structure consisting of sz elements,
identified by the integers from 0 to less than sz. Initially, each element is in an equiva-
lence class by itself; that is, it is its own representative. In other words, the number of
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equivalence classes, which is returned by getNumClasses(), is initially sz. As usual,
find() returns the representative element for a given element, and union() merges two
equivalence classes.

The test harness constructs a random maze. The maze has size n times n. Thus, it
is a graph with n*n nodes. The maze will be a spanning tree of that graph. The maze
construction makes use of union-find as illustrated here:

uint rand();
void buildMaze(uint n) {

UnionFind u = create(n*n);
while (u.getNumClasses() > 1) {
uint x = rand() % n, y = rand() % n, d = rand() % 2;
uint w = x, z = y;
if (d == 0) w++; else z++;
if (w < n && z < n) {

int a = y*n + x, b = w*n + z;
if (u.find(a) != u.find(b)) {

output edge ((x,y), (w,z));
u.union(a, b);

}
}

}
}

The verification should be performed for an arbitrary rand() function, even if an
implementation is actually provided with the solution. The test harness shown above is
acceptable for verifying partial correctness, but needs to be suitably modified in order
to stand a chance of scoring points for termination.

The maze is considered correct if it is a spanning tree. More precisely, the task in
this benchmark is to show that all n*n nodes are reachable (either from a particular node
or that nodes are pairwise connected) and that there are n*n-1 edges. (From these two
properties, it follows that nodes are uniquely reachable.)

5.0 Verification Tasks

0. Verify the correctness of the maze creation. 60 points.
1. Include path compression and node balancing in the implementation of the union-

find algorithms. 20 points.

The task 1 involves the two standard optimizations that make union-find efficient.
We did not split them further, as node balancing is expected to be very easy to imple-
ment and verify. For task 0, any correct implementation of union-find is acceptable.

6 Red-black Trees

A red-black tree [2] is a commonly used kind of binary search tree where each node,
in addition to the usual data and pointers, carries a bit of information referred to as the
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color (traditionally, either red or black). Tree operations maintain approximate balance
by using rotation guided by colors of nodes. The task is to implement and verify a
red-black tree providing a dictionary interface, like the one below:

class RedBlackTree {
static RedBlackTree create(int defaultValue);
void replace(int key, int value);
void remove(int key);
int lookup(int key);

}

The method create(d) creates a new dictionary mapping all keys to d. replace(k, v)
replaces the current value associated with k by v. remove(k) is functionally equivalent
to replace(k, d), where d is the default value provided upon construction, but see
Sect. 6.0 below. Finally, lookup(k) returns the current value associated with k.

The following test harness should be verified without looking at the particular im-
plementation of red-black trees; that is, the interface above should be specified using
appropriate abstraction, e.g., a map or a set of pairs.

void redBlackTestHarness() {
RedBlackTree a = create(0), b = create(1);
a.replace(1, 1); b.replace(1, 10);
a.replace(2, 2); b.replace(2, 20);
assert(a.lookup(1) == 1 && a.lookup(42) == 0);
assert(b.lookup(1) == 10 && b.lookup(42) == 1);
a.remove(1); b.remove(2);
assert(a.lookup(1) == 0 && a.lookup(42) == 0);
assert(b.lookup(2) == 1 && b.lookup(42) == 1);

}

6.0 Verification Tasks

0. Prove the correctness of the test harness and tree implementation against the speci-
fications of the tree (it is allowed to implement remove() by a call to replace()).
40 points

1. Implement remove() so it really removes a node from the tree ([2], Section 13.4).
20 points.

2. Prove the red-black balancing invariant, that is, that a red node cannot be a parent
of another red node and that every path from a leaf to the root contains the same
number of black nodes. 20 points.

Like in the heap, the color fix-up operation is similar in spirit to the composite
pattern. However here, the invariant involved is much more complex—the benchmark
is designed to test scalability of the tool.
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7 Conclusion and Future Work

The VACID-0 test provides a basis for comparing verification tools on implementa-
tions of non-trivial data structures. We hope that these and other solutions will lend
themselves to interesting comparisons, and that they will help shape future editions of
verification benchmarks.
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