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Abstract. The theory of Dynamic Frames has been invented to deal with the frame problem in the presence of
encapsulation and pointers. It has proved more flexible and conceptually simpler than previous approaches that
tackled the problem. It is now being actively used both for theoretical and for practical purposes related to the
formal verification of program correctness. This paper presents the full theory of Dynamic Frames, together with
its reasoning laws and exemplifies the use of these laws in proving correct several common design patterns. It also
discusses the ongoing research on the topic.
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1. Introduction

A significant aspect of the behavior of any operation is what parts of the world it leaves unchanged. Usually, a
specification for an operation is split into a functional requirement, which describes what changes the specified
operation brings about and a framing requirement, which describes the frame of the operation, i.e. the part of
the world which the operation has license to change. Anything outside the frame is left unchanged. The frame
problem, i.e. the problem of how to formalize framing requirements, is a central issue in formal logic, first studied
in the context of artificial intelligence [MH69]. In the context of software specification, the “operations” are
computations (procedures, methods, etc.) and the “world” is the state.

For example, suppose that we want to specify that a computation C increments program variable x by 1. In
a relational theory, like [Heh93], the specification would be

x ′ � x + 1 (1)

where the primed identifier x ′ represents the final value of program variable x and the plain identifier x its initial
value. The specification (1) says how C changes x but it says nothing about the effect of C on other program
variables. A client which uses more program variables will have trouble using C . The program below cannot
ensure that y ends up being 0:

y :� 0 ; C
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In a non-modular setting like [Heh93], we know all the program variables. We can use this knowledge to add
framing requirements to (1). For example, if x , y, z are all the program variables, then the specification becomes

x ′ � x + 1 ∧ y ′ � y ∧ z ′ � z (2)

Modular programming makes it impossible to write such assertions: we do not know all the variables of the
program at the time that we specify a computation. In modular programming theories, it is standard to separate
the framing specification from the functional specification like that:

ensures x ′ � x + 1 modifies x (3)

The above specification says that the value of x is increased by 1 and that the computation only modifies the
program variable x . Its translation into a relational specification depends on the client. For example, if a client
introduces variables y, z then (3) is translated to (2) for that client.

Adding encapsulation complicates matters even further: now the client does not know the exact variables that
constitute the implementation of the operation under use. Still, the specification must speak in a language that
the client can understand. It must somehow refer indirectly to the hidden state of the implementer, modelling
it with an abstract state that is known to the client. This is achieved either by specification variables/attributes
(also known as model variables/fields) or by pure functions/methods. We are using specification variables and
attributes here, but this choice is a matter of taste; other formalisms are also compatible with the rest of the paper.
A specification variable is essentially a function on the state that represents the relation between the abstract state
that the client imagines and the concrete state of the implementation.

Example 1.1 One example of using specification variables is the specification and implementation of a module
that formalizes sets of integers. The module provides an operation that inserts elements into the set and an oper-
ation that queries whether an element is in the set. The specification of the module uses a public specification
variable S to represent the value of the set. This is the specification of the module as the client sees it:

module ASpec
spec var S ⊆ Z

insert(x ∈ Z) ensures S ′ � S ∪ {x }
find(x ∈ Z) ensures S ′ � S ∧ return′ � (x ∈ S )

end module

The client knows nothing about the internal representation of S and how it relates to its private variables.
The implementer’s job is to refine the module ASpec using concrete program variables and concrete programs.

A possibility is to use a private array L to hold all the elements of S . The exact representation of S is given in
terms of the private program variable L. The refinement looks like this:

module ARef
prog var L ∈ Z

∗
spec var S � {x ∈ Z | ∃i ∈ N · i < #L ∧ x � L i}
insert(x ∈ Z) ensures L′ � [x ]�L
find(x ∈ Z) ensures L′ � L ∧ return′ � (∃i ∈ N · i < #L ∧ x � L i )

end module

In the above module, the new syntax used should be fairly straightforward: X ∗ denotes the set of finite lists of
items in X , � denotes list concatenation, [x ] denotes a one-item list, #L denotes the size of list L and juxtaposition
denotes zero-based list indexing. Module ARef is a refinement of Module ASpec but not yet an implementation,
as the operations have not been implemented yet. Further refinements will give an implementation, but this is
not the point of this example.
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Framing specifications in this new setting cannot mention the private program variable L, which is unknown
to the client. They must instead mention the public specification variable S . For example, the framing specification
of the method insert should be something like

modifies S (4)

which means that the computation is allowed to change S and all specification and program variables on which S
depends. In our example, this means that the computation changes S and L. As in the case without specification
variables, if a client introduces specification or program variables y, z , the specification (4) is translated to:

y ′ � y ∧ z ′ � z

since S is not known to depend on y, z . Thus the reasoning on the level of specifications expects that a computation
that satisfies (4) preserves y, z .

Unfortunately, in the presence of pointers, the translation may be unsound. This is because, the representation
of y may actually share heap locations with the representation of S . When that happens, changes to L may change
the value of y , contrary to what is predicted by the theory. This situation is called abstract aliasing [LN02].

Various approaches are proposed in the literature to deal with this problem. Perhaps the most flexible and
general solution is the theory of Dynamic Frames [Kas06a, Kas06b]. Unlike other systems which seek to avoid the
possibility of abstract aliasing by imposing various restrictions to the programmer, the key idea behind the theory
of Dynamic Frames is to make abstract aliasing directly expressible in the specification language. This way, the
theory succeeds to solve the framing problem without restricting the programmer and without introducing any
new special formal constructs (Dynamic Frames are simply set-valued specification variables).

The use of the theory was first presented in [Kas06a]. In that paper, only specification/implementation exam-
ples were given, but no example of formal proofs was made and the techniques and theorems behind Dynamic
Frames formal proofs were not shown. The present paper attempts a more comprehensive coverage of the theory,
which includes the proof laws, the proof examples and yet one more example which were omitted from [Kas06a].
The paper also revises of work that was based on the theory since its invention, as well as future research directions.

2. Preliminaries

Here we introduce the basic mathematical notation, as well as the basic notions of specifications, implementa-
tions, modules etc. to be used in the rest of the paper. Further notation and definitions will be introduced as we
proceed in the presentation of theory.

2.1. Basic mathematical notation

We will be using standard logical, arithmetic and set-theoretic notation, with which we hope most readers are
very familiar. Besides that, we will be using the notation which is introduced in this subsection.

Large operators. The operators �⇐⇒ have the same semantics as �⇐⇒ but lowest precedence. They are
used to reduce the number of parentheses in expressions.

Sets and Set Notation. The set of booleans {�,⊥} is denoted B. The symbol � stands for “true”. The set of
rational numbers is denoted Q. Set comprehension is denoted {x ∈ D · P} where D is a set and P is a boolean
expression with free occurrences of variable x .

If i , j are integers, then the sets {i , ..j } and {i , .., j } are defined as follows:

{i , ..j } � {x ∈ Z · i ≤ x < j }
{i , .., j } � {x ∈ Z · i ≤ x ≤ j }

Notice that {i , ..j } does not include j .
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Functions. Functions are introduced using syntax λ x ∈ D · B where D is the domain and B is the body of the
function. Operator Dom extracts the domain of a function. Function application is denoted by juxtaposition.
The domain restriction operator � and the one-point update �→| operator are defined by:

f � D � λ x ∈ D ∩ Dom f · f x
y �→ z | f � λ x ∈ {y} ∪ Dom f · if x � y then z else f x

Lists. A list L is a function whose domain is {0, ..i} for some natural number i called the length of L and denoted
#L. We can use the syntax [x ; y ; ...] to construct lists. The concatenation of lists L and M is denoted L�M .
Notation L[i ; ..j ] extracts the part of the list between indices i (incl.) and j (excl.). The predicate disjoint takes a
list of sets L and asserts that the sets in L are mutually disjoint. Formally:

disjoint L � ∀i ∈ {0, ..#L} · ∀j ∈ {0, ..#L} · i � j ∨ L i ∩ L j � ∅

Open expressions. In this paper, identifiers may stand for expressions that may contain free variables. We may
say e.g. that E is an expression on variables x , y, .... We call such identifiers “open expressions”.

The reason open expressions are used is because some quantities of interest depend on the same small set
of variables (for example, the program state σ ), which we therefore rather keep implicit to reduce the notational
clutter. Readers who are uncomfortable with open expressions, may consider the occurrence of an open expression
E on variables x , y, . . . as a purely syntactical abbreviation of E x y ... where E is a function.

Let E , t be expressions and x a variable. Then E (t/x ) denotes expression E with all free occurrences of x
substituted by t .

2.2. Basic definitions

State and variables. There is an infinite set of locations Loc. There is also an infinite set of values Val that contains
at least the booleans and integers.

Definition 2.1 (Region) Any subset of Loc is called a region.

Definition 2.2 (State and allocation) A state σ is a finite mapping from locations to values. A location in Dom σ
is used or allocated in σ . The set of all states is denoted �.

Before introducing object orientation, our basic state abstraction mechanism will be specification variables.
A specification variable is used as a visible abstraction of part of the state that is supposed to be hidden by the
client. In our theory, it is just a state-dependent expression:

Definition 2.3 (Spec. variable) A specification variable is an open expression that depends only on the state σ (i.e.
with free occurrences of the variable σ ∈ �).

We will see later examples of the use of specification variables as abstractions. For now, we introduce two important
specification variables: the set of all allocated locations Used and the set of all unallocated locations Unused:

Used � Dom σ
Unused � Loc\Used

For any specification variable v , the expression v ′ is defined by:

v ′ � v (σ ′/σ )

As we will be using σ to represent the initial state of a computation and σ ′ to represent the final state of the
computation, the expression v ′ is called the final value of v .

The actual variables of imperative computations, here called program variables, can be represented as special
cases of specification variables:

Definition 2.4 (Program variable) A program variable x is a special case of specification variable whose value is
the content of the state at a constant location addr x , called the address of x :

x � σ (addr x )



Dynamic frames 271

Imperative specifications. Imperative specifications are modelled using the relational style:

Definition 2.5 (Imperative spec.) An imperative specification is a boolean expression on the state-valued variables
σ, σ ′. The state σ is called the pre-state and the state σ ′ is called the post-state.

Programming constructs are defined as imperative specifications. The program ok leaves the state unchanged:

ok � σ ′ � σ

If x is a program variable and E is an expression on σ , then the program x :� E , called concrete assignment, is
defined by:

x :� E � σ ′ � addr x �→ E | σ

If l is a location-valued expression on σ and E is an expression on σ , then the program ∗l :� E , called pointer
assignment, is defined by:

∗l :� E � σ ′ � l �→ E | σ

If P and Q are imperative specifications, then the specification P ;Q , called the sequential composition of P and
Q is defined by:

P ;Q � ∃σ ′′ · P (σ ′′/σ ′) ∧ Q(σ ′′/σ )

If P is an imperative specification, then the specification var x · P , called local program variable introduction, is
defined by:

var x · P � ∃addr x ∈ Unused · P

In P , occurrences of the identifier x are abbreviations of expression σ (addr x ). More programming constructs
can be introduced; here we present only those used in this paper.

Modules. We now provide a module construct that will hold all our specifications and implementations:

Definition 2.6 (Module) A module is a collection of name declarations and axioms.

We introduce a module using syntax module N , where N is the name of the module and we conclude its definition
using syntax end module . Keywords spec var and prog var declare specification variables and program variables
respectively. Syntax import M is used to import all names and axioms of module M into the module in which it
appears.

The correct implementation of a specification is capture by the notion of module refinement:

Definition 2.7 (Refinement) A module M refines (or implements) a module N if the axioms of M imply the axioms
of N and the names declared in M are included in the names declared in N .

Procedures. In a module, we may introduce procedures, using the keyword proc followed by the name of the
procedure, its parameters in parentheses and an imperative specification:

proc p(x1, . . . , xn ) · S (5)

The axiom (5) promises that invoking the procedure will satisfy the imperative specification S . A procedure
invocation p(x1, . . . , xn ) is an imperative specification.

Formally (5) where p and the xi are identifiers and S is an imperative specification, is an abbreviation for the
following axiom:

∀x1 ∈ Val, . . . , xn ∈ Val · σ ∈ �, σ ′ ∈ � · p(x1, . . . , xn ) ⇒ S

If a procedure is written using only programming constructs, then it is a program and its implementation is
finished.

Example 2.1 (Rational number) As an example of the use of modules, module refinement, specification and pro-
gram variables, we will show their use in the implementation of a rational number module. Classes have not been
introduced yet, so we will have to do with a single rational number.
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The specification for this is given in module Rat:

module Rat
spec var rat inv ∈ B, rat
rat inv ⇒ rat ∈ Q

proc double() · rat inv ⇒ rat ′ � 2 × rat ∧ rat inv′
end module

The module introduces specification variables rat inv and rat. The boolean specification variable rat inv is
abstracting the module invariant, a condition that must hold for the operations of the module to behave appro-
priately. The specification attribute rat is the abstract rational value that the client “sees”. The client cannot see
the actual representation of these specification variables in program variables. An axiom promises that as long
as the invariant holds, what the client will see is a rational number.

The imperative specification of the procedure double promises to double the represented rational number,
as long as the invariant initially holds (the latter requirement is typically separated as a pre-condition in many
specification languages). It also promises to preserve the invariant.

Of course this specification is practically useless, since it provides no observer procedures. However, this is
not an important part of the specification as far as we are concerned. Defining observer procedures would only
clutter the example. We can imagine that our module also contains specifications for some observer procedures
that we do not show here. The same policy will be followed in later examples.

To implement this specification, we must write a module RatImpl providing definitions of all the specification
variables and procedures. Here is such an implementation:

module RatImpl
prog var nom, denom
spec var rat inv � (nom ∈ Z ∧ denom ∈ N\{0})
spec var rat � nom/denom
proc double() · nom :� 2 × nom

end module

This is a valid implementation, as it is very easy to show that the axioms of RatImpl imply those of Rat. It is
not a very surprising implementation, neither in terms of the definition of its specification attributes nor in terms
of the implementation of procedure double.

3. The Dynamic Frames theory

Example 2.1 has no support for framing, so the module Rat is not very useful for a client. For example, suppose
that we have a client of Rat with its own variable x . The client wishes to invoke double but at the same time
preserve the value of x . Formally, the client wishes to prove:

double() ⇒ x ′ � x

It is impossible to prove that using the specification of double which makes no promise about any part of the state
other than the representation of the rational number itself. In this section, we introduce the basics of our framing
specification methodology which will solve this problem.

3.1. Framing with regions

In the Dynamic Frames theory, all properties related to framing are formed using regions:

Definition 3.1 (Region) A region is a set of locations.

Regions are used to write imperative framing requirements, which specify the parts of the state that a method
is allowed to change. There are two different ways to write imperative framing requirements: the “preserves” oper-
ator � and the “modifies” operator �. Preservation specifies the part of the state that should be left untouched.
Modification specifies the part of the state that we have license to change.

Definition 3.2 (Imperative framing requirements) Let f be a region. The preservation of f is an imperative
specification �f defined as follows:

�f � σ ′ � f � σ � f
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The modification of f is an imperative specification �f defined as follows:

�f � �(Used\f )

Notice that �f allows the allocation of new memory.
Regions are also used to frame expressions that vary with state, such as specification variables. When a region

f frames a state-dependent expression E , that means that E depends only on the locations in f .

Definition 3.3 (Expression framing) Let f be a region and E an expression on σ . We say that f frames E in state
σ if the following holds:

∀ σ ′ ∈ � · �f ⇒ E ′ � E (6)

Notice that expression framing is a state condition: f may frame E in some states but not in others. State condition
(6) is abbreviated by

f frames E

More than one expression can be written to the right of frames separated by commas:

f frames (x , y, ...) � f frames x ∧ f frames y ∧ ...

Two expressions E ,D on σ are known to be independent in state σ if they are known to have disjoint frames
in that state, i.e. for some regions f , g :

f frames E ∧ g frames D ∧ disjoint[f ; g ]

When that happens, the modification of f guarantees the preservation of the value of D (and similarly, the
modification of g guarantees the preservation of the value of E):

Theorem 3.1 (Value preservation) Let f , g be regions and D be an expression on σ . For any states σ, σ ′, the
following holds:

�f ∧ g frames D ∧ disjoint[f ; g ] ⇒ D ′ � D (7)

Proof. The formal proof is as follows:

�f ∧ g frames D ∧ disjoint[f ; j ]� �(Used\f ) ∧ g frames D ∧ disjoint[f ; j ]⇒ �g ∧ g frames D⇒ D ′ � D

�

3.2. Dynamic Frames and variable framing

The methodology of Dynamic Frames is based on Theorem. 3.1. To make use of it, we define specification
variables that play the roles of f and g in (7). They are called dynamic frames:

Definition 3.4 (Dynamic Frame) A specification variable f is a dynamic frame (or simply frame) at state σ , if

f ⊆ Used

Notice that being a dynamic frame is a state condition.
For every specification variable v that we use in a theory, we introduce a frame f to frame it. Frames do not

have to be unique; more than one specification attribute may share the same frame. The fact that f is a frame is
usually made part of an invariant:

inv ⇒ f ⊆ Used

The specification variable-framing property for v is also usually asserted as part of the invariant:

inv ⇒ f frames v
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In most cases, it is enough to introduce one frame for all the specification variables of interest. We use the
name rep for that frame. We call the value of rep the representation region. We do not need to introduce frames
for program variables: the frame of program variable m is the singleton that contains its address {addr m}.
Example 3.1 (Rational number with frames) To address the frame problem in Example 2.1, we introduce a frame
rat rep and assert that it frames both rat and rat inv:

rat inv ⇒ rat rep ⊆ Used ∧ rat rep frames (rat inv, rat)

The full specification now becomes:

module Rat
spec var rat inv ∈ B, rat, rep
rat inv ⇒ rat ∈ Q

rat inv ⇒ rat rep ⊆ Used ∧ rat rep frames (rat inv, rat)
proc double() · rat inv ⇒ rat ′ � 2 × rat ∧ rat inv′

end module

Consider now a client that introduces a new variable x :

module Client
import Rat
spec var c inv ∈ B, x , c rep
c inv ⇒ rat inv ∧ c rep ⊆ Used ∧ x ∈ Z

c inv ⇒ c rep frames (c inv, x ) ∧ disjoint[rat rep, c rep]
...
end module

It is straightforward for the client to prove, using Theorem 3.1 that invocation of double() will not touch x :

double() ∧ c inv ⇒ x ′ � x

It is the implementer’s obligation to find implementations for the specification attributes (including the frames)
that satisfy the requirements of the theory. The module RatImpl already implements everything, except for rat rep.
In this simple case, it is very easy and the frame happens to be constant:

rat rep � {addr nom, addr denom}
So, the whole module RatImpl becomes:

module RatImpl
prog var nom, denom
spec var rat inv � (nom ∈ Z ∧ denom ∈ N\{0})
spec var rat � nom/denom
spec var rat rep � {addr nom, addr denom}
proc double() · nom :� 2 × nom

end module

The example demonstrates not only the use, but also the modularity of the Dynamic Frames approach. In
Theorem 3.1, it is the implementer’s responsibility to ensure �f , without knowing about g and D . These belong
to the client, whose responsibility is to ensure disjoint[f ; g ] as well as g frames D .

In this simple example, the frame is constant. In more interesting examples later on, frames vary with state,
which makes their handling more challenging.

3.3. Objects

To show the full-fledged theory of Dynamic Frames, apart from encapsulation, we need references and dynamic
allocation. For that reason, we introduce a small mathematical model of objects. The model is far from being a
complete formalization of object orientation; we only introduce the features that we need.
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References.

Definition 3.5 (References) There is a set O. The elements of O are called object references. The special value null
denotes the null reference. It is not included in O.

Attributes and methods. Specification and program attributes and methods are introduced in complete analogy
with specification and program variables and procedures: they only depend on one more mathematical variable
self of type O. The variable self is called the current object.

Definition 3.6 (Specification attribute) A specification attribute is an open expression with free occurrences of the
identifiers σ ∈ � and self ∈ O only. A program attribute x is a special case of specification attribute such that

x � σ (addr x )

for some open expression addr x that depends on self only. The location addr x is called the address of x .

Specification attributes are also called model fields. Elsewhere pure methods are employed for basically the same
abstraction mechanism on objects.

The keyword spec attr introduces specification attributes. The keyword prog attr introduces program attri-
butes. The definitions for concrete assignments are valid for program and specification attributes as well

The following abbreviation is introduced to facilitate the access of attributes of object references other than
self:

p.E � E (p/self)

for object reference p and any expression E that depends on self. The notation (.) can be generalized to apply
many times: (for any k ∈ N)

[E ]0 � self
[E ]k+1 � [E ]k .E

For each object, we use three specification attributes, the initialization constraint init, the invariant inv and
the representation region rep. These specification attributes obey the following axiom for all object references
and states:

init ∈ B ∧ inv ∈ B ∧ (init ⇒ inv) ∧ (inv ⇒ rep ⊆ Used) (8)

For our convenience we specify that the representation region of the null reference is empty:

null.rep � ∅
Definition 3.7 (Method invocation) If o is an object reference, l is an identifier and x , y, ... are values, then
o.l (x ; y ; ...) is an imperative specification called method invocation of l on o with parameters x ; y ; ....

Class specifications.

Definition 3.8 (Class) A class is a set of object references.

The specification of a class C is a collection of axioms that begins with class C and ends with keyword
end class . In each axiom, the identifier self is implicitly universally quantified over C , and the identifiers σ, σ ′
are implicitly universally quantified over �. There are usually two kinds of axioms in a class specification: the
attribute specifications and the method specifications.

Attribute specifications. The attribute specifications axiomatize the specification and program attributes of a
class. In a class implementation, the attribute specifications have the form a � E , where a is a specification
attribute and E is an expression.
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Method specifications. Method specifications have the form:

∀x · ∀y · ... self.l (x ; y ; ...) ⇒ S (9)

where l is an identifier, x , y, ... are data-valued identifiers and S is an imperative specification, called the body of
method l . The expression (9) is abbreviated by

method l (x ; y ; ...) · S
In a class implementation, S must be a program.

Object creation. To create a new object of class C , we allocate fresh memory for its representation region and we
ensure that its initialization condition is met. This is all done by the specification x :� new C defined as follows:

x :� new C � �{addr x } ∧ x ′ ∈ C ∧ (x .init)′ ∧ (x .rep)′ ⊆ Unused\{addr x }
where x is a program variable.

3.4. Establishing and maintaining frame disjointness

The use of Theorem 3.1 to prove the preservation of values is only half of the story. The other half is how we
establish and maintain frame disjointness, which is one of the requirements of Theorem 3.1. Establishing disjoint-
ness is easy, as we can see from the definition of the new statement, which creates a new frame from previously
un-allocated memory, and therefore disjoint from any other frame in use.

The problem of maintaining disjointness is not trivial, because in general dynamic frames may vary with state.
This does not happen in our simple rational number example, but it happens when we use more elaborated data
structures, as we do in the following sections.

Dynamic frames are specification attributes too. To guarantee preservation of disjointness (or any other prop-
erty of dynamic frames for that matter), dynamic frames need to be framed too. The most obvious solution is to
make dynamic frames self-framing. Suppose that f , g are two dynamic frames. If g is self-framing and initially
disjoint from f , then, by Theorem 3.1, the modification of f preserves the value of g . Thus, if we also ensure that
f increases only by unused addresses, we ensure that f remains disjoint from g :

f ∪ g ⊆ Used ∧ g frames g ∧ disjoint[f ; g ] ∧ �f ∧ f ′ ⊆ f ∪ Unused⇒ (disjoint[f ; g ])′
(10)

The requirement f ′ ⊆ f ∪ Unused is our equivalent of what Leino and Nelson [LN02] call the swinging pivots
requirement. In their theory, this is enforced. We can be more general. We can generalize (10) so that the region
that we frame upon f is different from the frame h whose disjointness we want to ensure from g :

Theorem 3.2 (Disjointness preservation) Let f , g, h be dynamic frames. Then the following holds:

f ∪ g ⊆ Used ∧ g frames g ∧ disjoint[f ; g ] ∧ �f ∧ h ′ ⊆ f ∪ Unused⇒ (disjoint[h; g ])′
(11)

Proof. The proof of the theorem is as follows:

f ∪ g ⊆ Used ∧ g frames g ∧ disjoint[f ; g ] ∧ �f ∧ h ′ ⊆ f ∪ Unused
Theorem 3.1⇒ g ′ � g ∧ disjoint[f ∪ Unused ; g ] ∧ h ′ ⊆ f ∪ Unused⇒ disjoint[h ′; g ′]

�
Notice that (10) is a special case of Theorem 3.2, in which f and h are the same dynamic frame. But, more

generally, we are allowed to have h “swallow” (part of) another frame f1, if

f � h ∪ f1

a situation which violates the swinging pivots requirement and therefore is forbidden in [LN02].
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3.5. Programming laws

In this section, we prove three programming laws, which calculate the overall framing and functional effect of
sequences of specifications. The purpose of these laws is to remove sequential compositions from imperative
specifications, which is an important part of correctness proofs.

Frame accumulation. The frame accumulation law calculates the overall framing effect of a sequential composi-
tion. Suppose that we have a sequential composition P ;Q and we want to prove that it refines �f , where f varies
with state. A way to do it is to prove that:

• P refines �f .
• Q refines �g , for dynamic frame g whose value at the intermediate state is included in the value of f in the

initial state.

Formally:

�f ∧ g ′ ⊆ f ; �g ⇒ �f

A small generalization is the following: because � allows modification of all unused addresses, the intermediate
value of g may also contain some unused addresses. The final version of the frame accumulation law is as follows:

Theorem 3.3 (Frame accumulation) Let f , g be dynamic frames. Then the following holds:

�f ∧ g ′ ⊆ f ∪ Unused ; �g ⇒ �f

Proof. The proof goes as follows:

�f ∧ g ′ ⊆ �f ∪ Unused ; �g
sequential composition� ∃σ ′′ · σ ′′ � (Used\f ) � σ � (Used\f ) ∧ g ′′ ⊆ f ∪ Unused

∧ σ ′ � (Used′′\g ′′) � σ ′′ � (Used′′\g ′′)
domain restriction composition⇒ ∃σ ′′ · σ ′ � ((Used\f ) ∩ (Used′′\g ′′)) � σ � ((Used\f ) ∩ (Used′′\g ′′)) ∧ g ′′ ⊆ f ∪ Unused

∧ σ ′ � (Used′′\g ′′) � σ ′′ � (Used′′\g ′′)
preservation operator� ∃σ ′′ · �((Used\f ) ∩ (Used′′\g ′′)) ∧ g ′′ ⊆ f ∪ Unused

∧ σ ′ � (Used′′\g ′′) � σ ′′ � (Used′′\g ′′)

We now pause the main proof and observe that the body of the existential quantification implies two things.
First, we prove that: Used′′ ⊇ Used\f as follows:

σ ′′ � (Used\f ) � σ � (Used\f )
function equality implies domain equality⇒ Used′′ ∩ (Used\f ) � Used ∩ (Used\f )� Used′′ ∩ (Used\f ) � Used\f� Used′′ ⊇ Used\f

Second, we prove that Used′′\g ′′ ⊇ Used\f
Used′′\g ′′

from proof above
⊇ (Used\f )\g ′′

from conjunct g ′′ ⊆ f ∪ Unused
⊇ (Used\f )\(f ∪ Unused)
� Used\f
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The main proof continues as follows:

�f ∧ g ′ ⊆ �f ∪ Unused ; �g⇒ ∃σ ′′ · �((Used\f ) ∩ (Used′′\g ′′)) ∧ Used′′\g ′′ ⊇ Used\f⇒ �(Used\f )� �f

�
A special case of Theorem 3.3 is:

f ⊆ Used ∧ (�f ∧ f ⊆ f ∪ Used ; �f ) ⇒ �f

where the first specification obeys the swinging pivots requirement.

Substitution. Like its counterpart in [Heh93], the substitution law is used to calculate the functional effect of
P ;Q , where P is an assignment. We make it more generally applicable, by allowing P to be any conjunction of
imperative specifications of the form X ′ � A where the X ,A are expressions on σ .

Theorem 3.4 (Substitution) Let X ,Y , . . . ,A,B , . . . be expressions on σ and F a predicate. Then

X ′ � A ∧ Y ′ � B ∧ ... ; F X Y ...σ ′ ⇒ F A B ... σ ′

Proof. The proof is as follows:

X ′ � A ∧ Y ′ � B ∧ ... ; F X Y ...σ ′
sequential composition� ∃σ ′′ · X ′′ � A ∧ Y ′′ � B ∧ ... ∧ F X ′′ Y ′′...σ ′

� ∃σ ′′ · X ′′ � A ∧ Y ′′ � B ∧ ... ∧ F A B ...σ ′
⇒ F A B ...σ ′

�

Frame restriction accumulation. Frame restrictions are imperative specifications of the form

f ′ ⊆ f ∪ h

where the f , h are dynamic frames. Frame restrictions are very important for proving the preservation of frame
disjointness (Theorem 3.2).

The frame restriction accumulation law calculates the overall frame restriction of a sequential composition
P ;Q . As in the case of frame accumulation, a way to prove that P ;Q refines f ′ ⊆ f ∪ h, where f , h are dynamic
frames, is to prove that:

• P refines f ′ ⊆ f ∪ h
• Q refines f ′ ⊆ f ∪ g for some expression g whose value in the intermediate state is included in the value of

f ∪ h in the initial state.

Theorem 3.5 (Frame restriction accumulation) Let f , g, h be dynamic frames. The following holds:

f ′ ∪ g ′ ⊆ f ∪ h ; f ′ ⊆ f ∪ g ⇒ f ′ ⊆ f ∪ h

Proof. The proof is as follows:

f ′ ∪ g ′ ⊆ f ∪ h ; f ′ ⊆ f ∪ g
sequential composition� ∃σ ′′ · f ′′ ∪ g ′′ ⊆ f ∪ h ∧ f ′ ⊆ f ′′ ∪ g ′′

transitivity⇒ f ′ ⊆ f ∪ h

�



Dynamic frames 279

3.6. Auxiliary notation

The Dynamic Frames notation which we have seen so far is quite verbose. In this section, we introduce auxiliary
notation that attacks the verbosity problem.

Abstract assignment. More often than not, we will see that there is a single dynamic frame rep that frames the
invariant, itself and all the other specification variables in the class:

inv ⇒ rep frames (inv, rep, x1, x2...)

A frequent case is to change one of the specification variables xi while preserving all the others, including the
invariant, and maintaining the swinging pivots requirement for rep. We will abbreviate this case with xi ::� E
and we will call it abstract assignment:

xi ::� E � inv ⇒ �rep ∧ x ′
i � E ∧ inv′ ∧ rep′ ⊆ rep ∪ Used ∧ ∀j �� i · x ′

j � xj

The � operation. Notice that an operation that satisfies �f , where f is self-framing, is not in a position to extend
f in any way other than by previously unallocated memory. So we can invent a stronger notation for both facts
�f and f ′ ⊆ f ∪ Used. This is the � operator, called strong frame:

�f � �f ∧ f ′ ⊆ f ∪ Used

Strong frames have a convenient accumulation law:

Theorem 3.6 (Strong frame accumulation) Let f , g be dynamic frames. The following holds:

�f ∧ g ′ ⊆ f ∪ Unused ; �g ∧ f ′ ⊆ g ∪ Unused ⇒ �f

Proof. Immediate from Theorem 3.3 and

�f� σ ′ � (Used\f ) � σ � (Used\f )
domain of σ ′ � (Used\f ) is at least Used\f⇒ Used′ ⊇ Used\f⇒ Unused′ ⊆ Loc\(Unused\f )

set theory⇒ Unused′ ⊆ Unused ∪ f

and

�f ∧ g ′ ⊆ f ∪ Unused ; f ′ ⊆ g ∪ Unused
sequential composition and the above lemma� ∃σ ′′ · g ′′ ⊆ f ∪ Unused ∧ f ′ ⊆ g ′′ ∪ Unused′′ ∧ Unused′′ ⊆ Unused ∪ f

transitivity⇒ f ′ ⊆ f ∪ Unused

�

4. Examples

In this section, we present some examples of specification and implementation in the theory of Dynamic Frames.
Most proofs of correctness are omitted, but some interesting ones are shown. We also omit pure methods that
return information to the client, because they are not relevant to the paper. For more comprehensive coverage,
the reader is referred to [Kas06b].
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4.1. Lists

This example concerns the specification and implementation of a class List that formalizes lists of integers.

Specification. The specification comes in a module named ListSpec. It introduces the class List and a specifica-
tion attribute L whose value is the represented list. The frame rep frames itself, the invariant and L. The initial
value of L is the empty list.

module ListSpec
class List
spec attr L
inv ⇒ L ∈ Z

∗ ∧ rep ⊆ Used ∧ rep frames (rep, inv,L)
init ⇒ L � [] ∧ inv

The method insert inserts an item to the beginning of the list. It does not need to violate the swinging pivots
requirement: the representation region of the current object may only increase by newly allocated memory.

method insert(x ) · x ∈ Z ⇒ L ::� [x ]�L

The method cut takes two parameters, an address l and an integer pos. It breaks the list in two (at the point
where pos is pointing). The first part of the old list is returned as a result (the address l serves as returning address).
The second part is the new value of the current list. The specification of cut allows this method to be implemented
by pointer operations: in particular, it allows the representation region of the returned list to contain memory that
used to belong to the representation region of self. The final representation regions of the two lists are disjoint:

method cut(l ; pos)·
inv ∧ l ∈ Loc\rep ∧ pos ∈ {0, .., #L}

⇒ �({l} ∪ rep) ∧ L′ � L[pos; ..#L] ∧ inv′
∧ σ ′l ∈ List ∧ (σ l .L)′ � L[0; ..pos] ∧ (σ l .inv)′ ∧ (σ l .rep)′ ⊆ rep ∪ Unused
∧ (disjoint[rep ; σ l .rep ; {l}])′

Finally, the method paste concatenates a list to the end of the current list. The initial representation regions
of the two lists must be disjoint. The specification says that the representation region of the parameter may be
“swallowed” by the representation region of the current list object. This allows implementation with pointer
operations:

method paste(p)·
inv ∧ p ∈ List ∧ p.inv ∧ disjoint[rep ; p.rep] ⇒ �(rep ∪ p.rep) ∧ L′ � L�p.L ∧ inv′

end class
end module

Implementation. To implement ListSpec, we define a new module ListImpl. We use a standard linked list imple-
mentation. The nodes are object references with program attributes val and next, where val stores a list item and
next refers to the next node in list (or is equal to null if there is no next node). The list object has a reference head
to the first node.

module ListImpl
class Node
prog attr val , next
init � next � null ∧ val ∈ Z

inv � (next � null ∨ next ∈ Node) ∧ val ∈ Z

rep � {addr val , addr next}
end class

class List
prog attr head
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The specification attributes and the methods for linked lists are implemented as follows:

spec attr len � min{i ∈ N · head.[next]i � null}
spec attr L � λi ∈ {0, ..len} · head.[next]i .val
rep � {addr head} ∪ ⋃

i ∈ {0, ..len} · head.[next]i .rep
inv � (∀i ∈ {0, ..len} · head.[next]i .val ∈ Z)

∧ disjoint( [{addr head}]
� λ i ∈ {0, ..len} · head.[next]i .rep )

init � head � null

method insert(x ) · var n · n :� new Node ; n.val :� x ; n.next :� head ; head :� n
method cut(l ; pos) · var q ·

σ l :� new List
; if pos � 0 then ok

else (σ l .head :� head ; q :� head.[next]pos−1 ; head :� q .next ; q .next :� null)
method paste(p) · var q ·

if head � null then head :� p else (q :� head.[next]len−1 ; q .next :� p.head)
end class

end module

Refinement proof. The linked-list implementation refines the specification. We will not show the refinement proof
here, which is tedious but easy. We will only prove the framing properties, which are the most interesting part.
The proof depends on the theorem of chain framing:

Theorem 4.1 (Chain framing) Let a be a program attribute, k ∈ N and self ∈ O, such that [a]k ∈ O. Then the
following holds:

{i ∈ {0, ..k} · [a]k .(addr a)} frames [a]k (12)

Proof. Induction on k . For k � 0, (12) becomes:

∅ frames self

which is true. For the induction step, we assume (12) and prove the formula for k + 1:

�{i ∈ {0, ..k + 1} · [a]k+1.(addr a)}� �{i ∈ {0, ..k} · [a]k .(addr a)} ∧ σ ′([a]k .(addr a)) � σ ([a]k .(addr a))� �{i ∈ {0, ..k} · [a]k .(addr a)} ∧ σ ′((addr a)([a]k/self)) � σ ((addr a)([a]k/self))� �{i ∈ {0, ..k} · [a]k .(addr a)} ∧ (σ ′(addr a))([a]k/self) � (σ (addr a))([a]k/self)� �{i ∈ {0, ..k} · [a]k .(addr a)} ∧ [a]k .a ′ � [a]k .a
assumption (12)⇒ ([a]k )′ � [a]k ∧ [a]k .a ′ � [a]k .a⇒ ([a]k .a)′ � [a]k .a

�
Using the chain framing theorem, we can prove that the specification attribute len is framed by rep. Assume

�rep. Then:

len′
� min{i ∈ N · (head.[next]i )′ � null}

assumption �rep� min{i ∈ N · head.([next]i )′ � null}
chain framing theorem� min({i ∈ N · i ≤ len ∧ head.[next]i � null} ∪ {i ∈ N · i > len ∧ head.([next]i )′ � null})

the minimum of the underlined part is len
the other set’s minimum is definitely greater than len� len
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Now the proof for the framing of the rest of the attributes is a direct consequence of the chain framing
theorem. For example, to prove rep frames L, assume �rep and:

L′
� (λi ∈ {0, ..len} · head.[next]i .val)′

lemma about len� λi ∈ {0, ..len} · (head.[next]i .val)′
framing� λi ∈ {0, ..len} · head.[next]i .(val)′
framing� λi ∈ {0, ..len} · head.[next]i .val� L

This example has illustrated that the theory of Dynamic Frames handles the issue of objects crossing encap-
sulation borders. It also showed, for the first time in the paper, a case where frames depend dynamically on the
state.

4.2. A list client

In this example, we verify a client of the list module, showing the use of the reasoning theorems presented in
Sects. 3.5 and 3.6. The specification asks us to put the first item to the end of the list:

module LClient
import ListSpec
proc cl(l )·
l .(self ∈ List ∧ L �� [] ∧ inv ⇒ �rep ∧ L′ � L[1; ..#L]�L[0] ∧ inv′)

end module

The implementation uses the cut and paste operators:

module LClient
import ListSpec
proc cl(l ) · var p · l .cut(addr p, 1) ; l .paste(p)

end module

The proof of correctness goes as follows:

l .(self ∈ List ∧ L �� [] ∧ inv) ∧ cl(l)� ∃addr p ∈ Unused · l .(self ∈ List ∧ L �� [] ∧ inv) ∧ (l .cut(addr p, 1) ; l .paste(p))
all preconditions of cut are met⇒ l ∈ List ∧ l .L �� []

∧ ∃addr p ∈ Unused·
l .(�({addr p} ∪ rep) ∧ L′ � L[1; ..#L] ∧ inv′)

∧ p ′ ∈ List ∧ (p.L)′ � [l .L0] ∧ (p.inv)′ ∧ (p.rep)′ ⊆ l .rep ∪ Unused
∧ (disjoint[l .rep ; p.rep ; {addr p}])′

; l .paste(p)
all preconditions of paste are met⇒ l ∈ List ∧ l .L �� []

∧ ∃addr p ∈ Unused·
l .(�({addr p} ∪ rep) ∧ L′ � L[1; ..#L])

∧ (p.L)′ � [l .L0] ∧ (p.rep)′ ⊆ l .rep ∪ Unused
; �(l .rep ∪ p.rep) ∧ l .L′ � l .L�p.L ∧ (l .inv)′

since addr p ∈ Unused, it is �({addr p} ∪ rep) � �rep
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� l ∈ List ∧ l .L �� []
∧ ∃addr p ∈ Unused·

l .(�rep ∧ L′ � L[1; ..#L])
∧ (p.L)′ � [l .L0] ∧ (p.rep)′ ⊆ l .rep ∪ Unused

; �(l .rep ∪ p.rep) ∧ l .L′ � l .L�p.L ∧ (l .inv)′
Theorem 3.6 for g � l .rep ∪ p.rep⇒ l .(�rep ∧ self ∈ List ∧ L �� [])

∧ ∃addr p ∈ Unused·
l .(L′ � L[1; ..#L]) ∧ (p.L)′ � [l .L0] ; l .L′ � l .L�p.L ∧ (l .inv)′

extract (l .inv)′ from quantification� l .(�rep ∧ inv′ ∧ self ∈ List ∧ L �� [])
∧ ∃addr p ∈ Unused · l .(L′ � L[1; ..#L]) ∧ (p.L)′ � [l .L0] ; l .L′ � l .L�p.L

Theorem 3.4⇒ l .(�rep ∧ L′ � L[1; ..#L]�L[0] ∧ inv′ ∧ rep′ ⊆ rep ∪ Unused)

4.3. Sets

This example presents the specification SetSpec of a class Set that formalizes sets of integers. The class supports
an insertion method insert and a method paste that performs the union of the current set to its parameter. Like
its List counterpart, the method paste allows the current set object to “swallow” part of the representation region
of the parameter:

module SetSpec
class Set

spec attr S
inv ⇒ S ⊆ Z ∧ rep frames (S , rep, inv)
init ⇒ S � ∅
method insert(x ) · x ∈ Z ⇒ S ::� S ∪ {x }
method paste(p)·

inv ∧ p ∈ Set ∧ p.inv ∧ disjoint[rep; p.rep]
⇒ �(rep ∪ p.rep) ∧ S ′ � p.S ∪ S ∧ inv′

end class
end module

We can implement the class by using an internal list object:

module SetImpl
import ListSpec

class Set
spec attr S
prog attr contents
inv � contents ∈ List ∧ contents.inv ∧ addr contents �∈ contents.rep
init � inv ∧ contents.init
rep � {addr contents} ∪ contents.rep
S � {x ∈ Z · ∃ i ∈ {0, ..#(contents.L)} · contents.L i � x }
method insert(x ) · contents.insert(x )
method paste(p) · contents.paste(p.contents)

end class
end module

The correctness proof is very easy in this case and it is omitted.
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4.4. Iterators

This example shows how the theory handles sharing and friend classes. We specify iterators in a module
IteratorSpec which imports the ListSpec module from Sect. 4.1. An iterator has a list attached to it, given
by the value of the program attribute attl. It also points to an item in the list, or perhaps to the end of the list.
The index of the pointed item is given by the value of the specification attribute pos. The representation region of
an iterator is disjoint from that of the attached list. The class of iterators supports methods for attachment and
traversal.

module IteratorSpec
import ListSpec

class Iterator
prog attr attl
spec attr pos
inv ⇒ (attl � null ∨ (attl ∈ List ∧ attl.inv)) ∧ disjoint[rep; attl.rep]
inv ⇒ rep frames (attl, rep) ∧ (rep ∪ attl.rep) frames inv
inv ∧ attl �� null ⇒ pos ∈ {0, .., #attl.L} ∧ (rep ∪ attl.rep) frames pos
init ⇒ attl � null

method attach(l ) · inv ∧ l ∈ List ∧ l .inv ⇒ �rep ∧ (inv ∧ pos � 0 ∧ attl � l )′
method next()·
inv ∧ pos < #attl.L ⇒ �rep ∧ pos′ � pos + 1 ∧ attl′ � attl ∧ inv′

end class
end module

The implementation of iterators imports ListImpl. This means that the implementer of the Iterator class has
access to the implementation of the List class. This makes Iterator a friend of List. Compare that to the imple-
mentation of the Set class which imports ListSpec and therefore does not have access to the implementation of
List: the class Set is not a friend of List. Iterators are implemented as pointers to list nodes:

module IteratorImpl
import ListImpl

class Iterator
prog attr attl, currentNode
spec attr pos � min{i ∈ N · attl.head.[next]i � currentNode}
inv � (attl � null ∨ (attl ∈ List ∧ attl.inv ∧ pos ∈ {0, .., #attl.L}))

∧ disjoint[rep; attl.rep] ∧ rep ⊆ Used
init � attl � currentNode � null
rep � {addr attl, addr currentNode}
method attach(l ) · attl :� l ; currentNode :� l .head
method next() · currentNode :� currentNode.next

end class
end module

4.5. Observers

This is an example of the Subjects and Observers pattern, which shows how the theory handles sharing without
friendship. The specification of Subjects follows. For simplicity, we only use an integer specification variable val
to represent the visible state of the object, which is being observed. We also omit subscription and notification
of observers; it is going to be the responsibility of each observer to update itself accordingly.
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module SubjectSpec
class Subject

spec var val
inv ⇒ val ∈ Z ∧ rep frames (rep, val, inv)
method set(v ) · v ∈ Z ⇒ val ::� v

end class
end module

We do not want to implement SubjectSpec: we assume that another implementer has done that for us. We
want to create various observer classes without touching that implementation. In what follows, we create a mod-
ule which specifies such an observer class. It supports methods attach to attach itself to a subject and update to
update its state. It also supports a boolean specification attribute updated that is true if and only if the internal
representation of the observer (which is not shown in its specification) is in synch with the value of the subject.

module ObserverSpec
import SubjectSpec

class Observer
spec attr updated
prog attr subject
inv ⇒ updated ∈ B ∧ subject ∈ Subject ∪ {null} ∧ rep frames (rep, subject, inv)

The interesting part here is the framing of updated, which is not achieved by frames alone. The specification
attribute update also depends on the observed subject. Since however, we don’t have access to the private attributes
of the subject, we must content ourselves with the public attributes, generalizing frames as follows:

inv ∧ subject �� null ∧ subject.inv ∧ �rep ∧ subject.val′ � subject.val ⇒ updated′ � updated

The methods of Observer are specified as follows:

method attach(s)·
s ∈ Subject ∧ inv ⇒ �rep ∧ subject′ � s ∧ inv′ ∧ updated′

method update()·
inv ⇒ �rep ∧ subject′ � subject ∧ inv′ ∧ updated′

end class
end module

5. Other work

5.1. Work based on Dynamic Frames

Ghost state in place of model state. The main work that followed [Kas06a] focused on the automation of proof
with Dynamic Frames. The problem is hard to deal with in its general case, since some examples involve higher-
order logic and induction-based proofs (see for example Theorem 4.1). Region logic [BBN08, BNR08] and the
Dafny automatic verifier [Lei08] replaced our specification attributes with ghost attributes, i.e. with attributes
that are assigned to by the programmer, instead of deriving their value automatically from definitions, as is done
here. While this circumvents the problem and permits automated theorem proving, it might be cumbersome and
error-prone for the programmer.

A rival verifier for Dynamic Frames, that does not have this problem, but has not been demonstrated in such
higher-order examples, is VeriCool [SJP08b]. VeriCool was created with a focus to support concurrency.

Implicit dynamic frames. Perhaps the most important development on Dynamic Frames research is the advent
of Implicit Dynamic Frames [SJP08a, SJP09] and the respective automatic verifier VeriFast. The framework of
Implicit Dynamic Frames achieves more concise specifications, as framing specifications of a method are inferred
from the rest of its specification. The treatment is influenced by Separation Logic, to the point one can say that
Implicit Dynamic Frames are a unification of Dynamic Frames with Separation Logic.
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A difference between the original version of Dynamic Frames and Implicit Dynamic Frames lies in the
proof laws: Implicit Dynamic Frames introduce a swinging pivots axiom that facilitates proofs in the presence
of sequential composition. This idea inspired the notion of strong frame which we introduced in Sect. 3.6 and
the corresponding accumulation law, Theorem 3.6. Strong frames appear here for the first time: the original
version of Dynamic Frames [Kas06b] used only the reasoning laws of Sect. 3.5. Using strong frames achieves
more concise specifications and simpler proofs. A strong frame is roughly equivalent to the required access set of
Implicit Dynamic Frames.

5.2. Other frameworks

Older approaches. Leino and Nelson’s work [LN02] is a big collection of rules that deal with some of the most fre-
quent cases of the problem. The approach has considerable complexity and it does not address all cases uniformly.
Its most drastic restriction is that it forces each method to obey the swinging pivots requirement. This, even in its
less restrictive version [DLN98], rules out the implementation for paste in Sect. 4.1. In a variant [LPHZ02], the
authors use data groups [Lei98] instead of variables in frame specifications. However, absence of abstract aliasing
is still not expressible in the specification language and thus the swinging pivots requirement together with other
restrictions similar to those in [LN02] are enforced.

The Universes type system [Mül02] is a much simpler and more uniform approach to the problem, also
adopted by the JML language [MPHL03, DM05]. It too imposes restrictions that have to do with objects travel-
ling through encapsulation boundaries. Our implementation for List is possible in [Mül02], although somewhat
awkwardly, by declaring the node objects “peers” to their containing list object. Our implementation of the paste
method for Set in Sect. 4.3 is impossible, because for the peer solution to work, Set and List should be declared
in the same module.

Boogie. A less restrictive variant of Universes is the Boogie methodology [BDF+04, LM04, BN04, LM06] used
in Spec# [BLS04]. Its most important improvement over Universes is that it allows objects to cross encapsulation
boundaries. However, the Boogie methodology has the same visibility restriction concerning “peer” objects as
the Universes type system: a class of shareable objects must be aware of all its sharing clients. This causes a
modularity problem: the creation of a new sharing client of a class C means that the specification of C must be
revised. The restriction remains in the treatments of friends and sharing of [BN04]. Moreover, if C happens to be
a library class whose specification and implementation cannot be modified, the creation of new sharing clients is
not even possible [LM04].

The Dynamic Frames theory imposes no such restriction and therefore it is more flexible than Boogie. The
Iterator example of Sect. 4.4 and the Observer example of Sect. 4.5 show examples of sharing. Sharing with or
without friendship is supported: the class Iterator is a friend of the class List, while observers are not friends to
the class Subject. In either case, the creation of a new sharing class will not affect the specification and the proof
of the shared class.

Separation logic. The development of Separation Logic [HRY01, Rey02] attacks the framing problem from a
different perspective. The idea is to extend the condition language of Hoare logic with a separating conjunction
operator �, with the following intuitive semantics: condition P �Q is true if and only if P and Q hold for disjoint
parts of the heap. Framing is handled by the following frame rule:

{P}C {Q}
{P � R}C {Q � R}

where R is a condition that has none of the variables modified by C . The idea is that the implementer of a program
C proves the local property P{C }Q and the client uses the frame rule to prove the wider property {P �R}C {Q �R}
that the client needs. Separation Logic handles well many intricate low-level examples with pointers, even with
pointer arithmetic.

O’Hearn et al.’s work [HYR04] is a first attempt to deal with information hiding in Separation Logic. The
solution does not scale to dynamic modularity, i.e. it deals only with single instances of a hidden data structure
[PB05]. Thus, it is not suitable for the dynamic modularity of object orientation in which the solution must
usually be applied to arbitrarily many objects. Parkinson and Bierman [PB05] solve the problem by providing
a much more complete treatment based on their introduction of abstract predicates (very similar to our notion
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of invariant). Their work is heavily based on the Frame Rule, which insists on complete heap-separation of the
client predicate R from the implementer’s predicates P ,Q .

The use of the Frame Rule is inappropriate in the case of sharing, like the examples of Sects. 4.4 and 4.5.
For example, a client of the IteratorSpec module may hold two iterators attached to the same list object. The
representation of their pos specification attribute depends on their representation regions as well as the repre-
sentation region of the shared list object. Thus, the representations of these two specification attributes are not
heap-separated, even though the representation regions of the two iterators (their rep frame) are disjoint. The
Dynamic Frames theory can show that invoking next on one of them preserves the value of the other. It is unclear
how to do that using the Frame Rule of Separation Logic.

The difference between the two approaches seems to be that the frames of operations and specification attri-
butes are made explicit in Dynamic Frames, while they are implicit in Separation Logic. In Implicit Dynamic
Frames this issue appears and it is dealt with using an extra predicate untouched, to guarantee that some locations
(in the present example, the representation region of the attached list) remain untouched even though they are
part of the frame of a method.

Unified theories of programming. The present paper is very close in spirit to the relational frameworks of Unified
Theories of Programming (UTP) [HH98]. However, the treatment of pointers in UTP-influenced theories has
departed from the simple modelling of “pointers as locations” which undelies Dynamic Frames. In particular,
works like [HCW08, SG08], following ideas from [Bro86], attempt a more abstract view of pointers, in which
heaps are represented by a function V that can take arbitrarily long lists of references and returns values, as well
as an equivalence relation S that describes which of these lists of references point to the same address. The details
of the models have been well worked out. We are looking forward to see how far these abstractions can go, by
applying them to some interesting examples.

5.3. Future work

The theory of Dynamic Frames is a very flexible way to deal with the framing problem in the presence of references
and encapsulation. The research on Dynamic Frames has so far focused on building automated provers on it or
its variants. The difficulty rises basically on the higher-order axioms that are required to deal with some frequent
patterns, such as the linked list of Sect. 4.1. Another methodological problem of the theory is the verbosity of its
specifications, which is however effectively dealt with in the Implicit Dynamic Frames variant.

Apart from improvements to the theory itself, it is interesting to see how the theory of Dynamic Frames
handles concurrency, a field in which heap separation as well as sharing are of vital importance. An extension of
Implicit Dynamic Frames with Fractional Permissions [Boy03], presented in [LM09] is an interesting approach
and can serve as a starting point.

6. Conclusion

This paper is an extension of [Kas06a]. We have introduced the full theory of Dynamic Frames together with its
reasoning laws, some interesting examples and a report on the most important work that was based on it. The
Dynamic Frames theory remains one of the most simple and flexible formalisms to attack the frame problem in
the presence of encapsulation and pointers, while at the same time it has been influential on most subsequent
research on the subject. Current research on the theory focuses on automating the verification of programs
specified with Dynamic Frames, with various proposals already implemented.
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