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Abstract

The specification of properties that are preserved during the execution
of a procedure, is an instance of the well-known frame problem. The frame
problem has proved to be one of the thorniest obstacles in the field of
Specification and Verification of programs with rich heap structures and
encapsulation.

Dynamic Frames is a formalism that was developed to deal with this
problem. Its emphasis is on preserving the modularity of the specification
methodology, i.e., the ability to handle small parts of a larger program
independently of each other, without compromising its expressiveness,
i.e., without imposing a strict methodology that would exclude useful
programs. Further developments focused on automating the verification
of programs written in the Dynamic Frames style. Automation poses
extra challenges, and calls for variations of the original formalism.

The original formalism as well as two variations are discussed in this
tutorial. During the discussion, we compare the strengths and weaknesses
of each approach, and we mention several important design goals and
trade-offs, in the hope of providing a good starting point for people who
are interested in conducting research in the area.

1 Introduction

Imperative programs with rich heap structures and encapsulation are main-
stream, since they are featured in very popular object oriented languages such
as Java and C#. We are interested in the modular automated full functional ver-
ification of such programs. This means that we want to specify unambiguously
the desired behavior of our programs in an expressive mathematical language,
and to provide a mechanism that formally proves their compliance. Further-
more, we want to do this in a scalable way, therefore our specifications must be
as modular as possible, and we want our proof mechanism to be as automated
as possible.

All these requirements compose a complex research domain. In particular,
the frame problem [29] has been one of the hardest and most interesting re-
search problems in this area. The formalism of Dynamic Frames [17, 18, 19]
was invented to address this problem, initially in a theoretical setting, with
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no concern for automation. Further research attempts to integrate Dynamic
Frames in automated verifiers revealed various trade-offs and challenges.

In this tutorial, we explain these research challenges, and we show two differ-
ent ways in which the automation of Dynamic Frames has been implemented.
The tutorial can serve two purposes. One the one hand, it can be used as
a case study of formal design, even by people who are not interested in Dy-
namic Frames per se. On the other hand, it can be used by people interested in
Dynamic Frames, either as users or researchers, to understand the advantages
and shortcomings of each of its variants, the state-of-the-art, and some current
research problems.

2 Basics of Modular Specification

One of the most important design goals for a theory of program verification
is modularity. The idea is that a proof of correctness can be broken down
into small parts, one for each program module, which are independent of each
other. This way, extensions to the program do not break already verified code.
Furthermore, a change in one module invalidates only one proof.

The concept of modularity of verification is of course inspired by the same
concept in programming language design. Designers of verification systems take
advantage of the kind of modules provided by the targeted programming lan-
guage.

In these notes, we follow a minimal style of specification for a small object
based language. Our modules are classes. A class specification consists of pre-
and postconditions attached to the methods of a class. We follow the so-called
“partial correctness” semantics for methods, which means that we do not take
into consideration executions that do not terminate. Subclassing is completely
ignored.

Each class C has a specification S. The proof of correctness of C versus S
does not depend on any other proof of correctness. When another class C ′ is
involved in C, then we only rely on the specification S′of C ′. This means that
our proof of correctness does not break if the implementation of C ′ changes,
provided of course that the new implementation of C ′ is also correct with respect
to S′.

2.1 Procedural Abstraction

Fig. 1 shows an example of a correct class in our language. There is an integer
field x, and a method i whose purpose is described by its postcondition: to
increase the value of x (the keyword old may be used at the postcondition to
evaluate an expression at the pre-state). The implementer is free to chose any
way of satisfying that goal. Here, the implementation adds 1 to the value of x.

The modularity requirement appears in our example as follows: changing
the implementation of i to, e.g., x := x + 10; does not invalidate the proof of
correctness of any client. To satisfy this, clients must not rely on the fact that
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class C
{

var x : int;

method i()
ensures x > old(x);
{ x := x + 1; }
}

Figure 1: A simple class

class Client
{

method m0(c : C)
ensures c.x > 2 ∗ old(c.x);
{ c.x := 2 ∗ c.x; c.i(); }

method m1(c : C)
ensures c.x = 2 ∗ old(c.x) + 1;
{ c.x := 2 ∗ c.x; c.i(); }
}

Figure 2: A client for C

i increases x by 1: this implementation detail might change. The clients must
rely only on the specification x > old(x). For example, in Fig. 2, the method
m0 is correct, but the method m1 is not correct.

We often refer to this policy as procedural abstraction: roughly the client is
told “what” is being computed, but “how” this is computed remains hidden.

2.2 Data Abstraction

Most of the time, the implementer wants to hide from the client not only the
actual code, but also the actual data representation of an implementation. For
example, we might want a class that represents sequences of integers. There are
various data structures that can be used for that purpose, e.g., arrays, linked
lists, doubly linked lists etc. The actual representation is of no interest to the
client, who is only interested in using the abstract mathematical concept of a
sequence. The implementer should be free to change the data representation
without breaking the verification of the client. This idea is called data abstrac-
tion [15].

The client must not be able to refer to the fields of a class at all: if the
implementation changes, then a field may disappear, or, worse yet, represent
something different. But then, we have a problem: how can we write specifica-
tions that the client can even understand? For example, in Fig. 1, if x is meant
to be hidden, the specification of i is not legal: the client does not know x.
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The idea advocated in [15] is to invent a new vocabulary for the client, that of
abstract variables. The specifications are written using visible abstract variables,
which the client can understand. These variables are used in the reasoning of
the client. On the other hand, the implementer is using concrete variables in
the implementation.

In object orientation, the vocabulary that the client uses to refer to the state
of an object is the observer methods of a class, i.e., methods which return a
value that depends on the actual state of the object. It is natural to use the
observer methods as abstract vocabulary. The implementation of the observer
methods connects the two vocabularies.

To simplify this idea, we introduce the construct of pure functions. These
are members of a class whose invocation computes a result without changing
the state. Their body is an expression of the programming language. We allow
invocations of pure functions to appear in specifications of methods. In Fig. 3,
we implement a class that represents sequences of integers using a hidden linked
list and specify its methods using the provided pure functions get and len.

This style of specification is attractive because of its simplicity. Notice how-
ever that the possibility of non-termination of the evaluation of a pure function
may lead to inconsistencies. For example, the following definition introduces an
inconsistent axiom:

function f() returns bool { ¬f(); }

In the example of Fig. 3, the function len has inconsistent definition when the
list is cyclic.

Our verification technique must show that the evaluation of any pure func-
tion terminates, when done in a state that satisfies its precondition. This means
that it must provide somehow an upper bound to the evaluation time [14]. We
come back to the problem later, but we leave the specification as it is now.

3 The Frame Problem and Dynamic Frames

3.1 The Frame Problem

As proud as we are of our classes in Fig. 1 and 3, the sad truth is that they are
of no use to any real client. The logical problem does not have to do with what
the methods of our class do, but with what they don’t do.

For example, consider the client of the List class in Fig. 4. After constructing
two List objects, A,B (in that order), the client expects A to represent the
empty list. This expectation is expressed by the assert statement. Such a
statement, called an assertion, must be proved to be correct in any execution
of the program.

The specification of List is too weak for the client to verify the assertion.
The problem happens after executing the statement B := new List;. The
specification of the constructor of List promises that the new object B is going
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class Node
{

public var v : int;
public var n : Node;
}

class List
{

private var c : Node;

List()
ensures len() = 0;
{ c := null; }

public method insert(x : int)
ensures len() = old(len()) + 1 ∧ get(0) = x;
ensures ∀i : 1..len()− 1 · get(i) = old(get(i− 1));
{

var p : Node;
p := new Node; p.v := x; p.n := c;
c := p;
}

public function get(i : int) returns int
requires 0 ≤ i < len();
{ get aux(i, c); }

private function get aux(i : int, p : Node) returns int
requires 0 ≤ i < len aux(i, p);
{ i = 0 ? p.v : get aux(i− 1 , p.n); }

public function len() returns int
{ len aux(c); }

private function len aux(p : Node) returns int
{ p = null ? 0 : 1 + len aux(p.n); }
}

Figure 3: The List class

var A,B : List;
A := new List; B := new List;
assert A.len() = 0; //fails

Figure 4: An incorrect client of List.
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to represent the empty list, but makes no promise about what else may happen
to the state during the construction of B. In particular, we have no guarantee
that A.c will not change.

The problem can be stated as follows: when formally describing a change
in a system, how do we specify what parts of the state of the system are not
affected by that change? This is called the frame problem [29].

The instance of the frame problem that we are dealing with is quite hard.
The specifier cannot express logically that “no client variable is affected”. In
our modular setting, the variables of the client are unknown. Neither can the
specifier express the fact that only the field c of the new object is modified.
Remember that c is invisible to the client, who can observe the state of the
object only through the pure functions get and len.

One could think that we can add “modifies” clauses to our methods, that
mention pure functions. For example the method insert modifies the pure func-
tions len and get of the target object, leaving everything else (and therefore the
pure functions of other objects) unchanged. Such reasoning would in general
be unsound, because of a situation called abstract aliasing [28]: A and B may
share some nodes in their secret linked list implementation, which means that
an operation on the nodes of B may affect the internal state of A, unbeknownst
to the client. Abstract aliasing cannot happen in our implementation of Fig. 3,
but the specification does not reflect that. In fact, our specification language so
far has no way of expressing the possibility or absence of abstract aliasing.

3.2 Dynamic Frames

The idea behind Dynamic Frames, is the introduction in the abstract vocabulary
of the footprints of methods and functions. The footprint of a method is the
set of all fields that the method is permitted to modify. The footprint of a pure
function is the set of all fields that the function is permitted to read.

If footprints can be expressed in the abstract vocabulary, we can express
absence of interference by proving that the footprint of a method is disjoint
from the footprint of a pure function. In the example of Fig. 4, we need to
prove that the footprint of the constructor of B is disjoint from the footprint of
A.len(), at the point where the constructor of B is called.

The footprint of a method is written in a “modifies” clause in the speci-
fication of that method. In particular, modifies F ; means that the method
is allowed to modify only the fields that are included in F evaluated in the
pre-state, or fields of newly allocated objects.

The footprint of a function is written in a “reads” clause in the specification
of that function. In particular, reads F ; means that the function depends only
on fields included in F .

To express footprints abstractly, we introduce pure functions whose evalua-
tion yields a set of fields. Such a pure function is called a dynamic frame. We
denote by reg (region) the return type of dynamic frames.

We can now annotate with footprints the List class. We need one public
dynamic frame rep (representation region) that contains all the nodes of the
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list. Fig. 5 shows how the new specification looks. The implementations of the
methods are omitted.

The constructor has no “modifies” clause, which defaults to an empty foot-
print. This is correct: all the constructor modifies is the field c of the newly
allocated object, which need not be included in the footprint. The method
insert has rep() as its footprint.

Having dynamic frames, we can write specifications that were impossible in
our previous language. For example, we can add the requirement that there
are no cycles in our list. This is an invariant of the list object. We express
it as a pure function inv() that returns a boolean. Fig. 6 shows the definition
of the invariant. The requirement of disjointness of frames ensures acyclicity.
We add inv() as a precondition and postcondition to all our methods and as a
precondition to all other pure functions. We add inv() only as postcondition in
the constructor.

We can also write and specify a method prepend which takes another list
argument and prepends it to the current list. The method has the precondition
that the representation regions of both list objects are disjoint, which is now
expressible. Fig. 7 shows the specification and the implementation of the prepend
method.

3.3 Swinging Pivots and Self-Framing

So far our notation gives a way for the specifier to describe in the abstract level
an overapproximation of all fields that a method changes and all fields that a
pure function depends on. We also have managed to express non-interference
properties necessary to introduce a new method and an invariant in our class.
The implementer has the way to define this abstract vocabulary nicely.

It seems that our work is done. However, this is not so. Fig. 8 shows an
example of the problem that remains to be solved.

The client starts with two lists A,B that have no abstract aliasing with each
other. For the sake of the example, we know that B.len() = 1 in the prestate.

Our first statement inserts 10 to A. Since the footprint of A.insert(10) is
initially disjoint from that of B.len(), we know that B.len() preserves its value
through this operation, and the first assertion succeeds. However, after we
perform the insert operation for the second time, the expression B.len() = 1
cannot be proved to be true anymore. What happened?

The problem is that in the state between the two calls to A.insert(10) we
cannot prove the non-interference property A.rep()∩B.rep() = ∅. The property
cannot be proved, because the first invocation of A.insert(10) does not guarantee
anything about how the values A.rep() or B.rep() change.

To solve this problem, we must have a methodology that guarantees that
when a method is invoked, all the disjointness properties of the dynamic frames
it does not know about are preserved. In our example, the specification of insert
should be such that if the representation region of the current object is disjoint
from an unknown dynamic frame, then it remains disjoint after the invocation
of insert. This is not trivial, because we cannot directly refer to dynamic frames
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class List
{

private var c : Node;

List()
ensures len() = 0;
{ c := null; }

public method insert(x : int)
modifies rep();
ensures len() = old(len()) + 1 ∧ get(0) = x;
ensures ∀i : 1..len()− 1 · get(i) = old(get(i− 1));
{ ... }

public function rep() returns reg
{ {this.c} ∪ rep aux(c); }

private function rep aux(p : Node) returns reg
{ p = null ? ∅ : {p.v, p.n} ∪ rep aux(p.n); }

public function get(i : int) returns int
requires 0 ≤ i < len();
reads rep();
{ get aux(i, c); }

private function get aux(i : int, p : Node) returns int
requires 0 ≤ i < len aux(i, p);
reads rep aux(p);
{ i = 0 ? p.v : get aux(i− 1 , p.n); }

public function len() returns int
reads rep();
{ len aux(c); }

private function len aux(p : Node) returns int
reads rep aux(p);
{ p = null ? 0 : 1 + len aux(p.n); }
}

Figure 5: The List class with dynamic frames

8



public function inv() returns bool
reads rep();
{ inv aux(c); }

private function inv aux(p : Node) returns bool
reads rep aux(p);
{ p = null ∨ ({p.v, p.n} ∩ rep aux(p.n) = ∅ ∧ inv aux(p.n)); }

Figure 6: The inv function

public method prepend(p : List)
requires p 6= null ∧ inv() ∧ p.inv();
requires rep() ∩ p.rep() = ∅;
modifies rep() ∪ p.rep();
ensures len() = old(len() + p.len());
ensures ∀i : 0..old(p.len())− 1 · get(i) = old(p.get(i));
ensures ∀i : old(p.len())..len()− 1 · get(i) = get(i− old(p.len()));
ensures inv();
{

var q : Node;
if(p.c 6= null)
{
q := p.c;
while(q.n 6= null) q := q.n;
q.n := c;
c := p.c;
}
}

Figure 7: The prepend method

method cl(A : List, B : List)
requires A.rep() ∩B.rep = ∅;
requires B.len() = 1;
{
A.insert(10);
assert B.len() = 1; //succeeds
A.insert(10);
assert B.len() = 1; //fails!
}

Figure 8: Failing to Preserve Disjointness
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Set()
...
ensures fresh(rep());
{ ... }

public method insert(x : int)
...
ensures fresh(rep()− old(rep()));
{ ... }

public method prepend(p : List)
...
ensures fresh(rep() ∪ p.rep()− old(rep() ∪ p.rep());
{ ... }

Figure 9: Swinging Pivots Specifications for the List class

we do not know about. It turns out that we need two conventions: the swinging
pivots restriction and self-framing.

3.3.1 Swinging Pivots

The swinging pivots restriction is named after a requirement of the methodology
of [28], which has been relaxed significantly in the Dynamic Frames theory. The
restriction, as it is now, can be expressed as follows. Let S be the set of dynamic
frames that are involved in the footprint of a method. The value of any dynamic
frame in S may be increased only by locations that are initially in some other
dynamic frame in S or by newly allocated locations.

For example, in insert(x), we only have rep() in the footprint. The value
of rep() may be increased only by newly allocated locations. In prepend(p),
we have two dynamic frames in the footprint, rep() and p.rep(). The dynamic
frame rep() may be increased only by locations that were previously in p.rep(), or
newly allocated locations. Similarly, p.rep() may be increased only by locations
that were previously in rep() or newly allocated locations.

We introduce a keyword fresh, to be used in two-state expressions, such as
postconditions. It takes as argument a region-valued expression E and asserts
that anything new in E is freshly allocated. Using fresh, the swinging pivots
requirement is expressed as a postcondition to our methods as shown in Fig. 9

3.3.2 Self-framing

The swinging pivots restriction is not enough. It guarantees that the dynamic
frames we know about do not step on unknown territory. But it does not
guarantee that the dynamic frames we do not know about do not behave badly.

For example, in Fig. 8, after the first insert, we know that A.rep() does
not “step on” B.rep(), because it is only increased with previously unallocated
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public function rep() returns reg
reads rep();
{ rep aux(c) }

private function rep aux(p : Node) returns reg
reads rep aux(p);
{ ... }

Figure 10: Self-framing rep()

locations. But we do not know how B.rep() has changed.
Dynamic frames that are unknown by a method m and disjoint from its foot-

print, such as B.rep() in this example, should not change when m is invoked. In
fact, if no field within a dynamic frame is touched, then the dynamic frame itself
should not change. Dynamic frames must frame themselves, i.e., the footprint
of a dynamic frame must be the dynamic frame itself.

To make rep() self-framing we just give it footprint rep(), as in Fig. 10.
With self-framing and swinging pivots, the client in Fig. 8 should verify. By

swinging pivots, the first insert does not allow A.rep() to “step on” B.rep().
At the same time, B.rep() keeps its value, thanks to self-framing. This means
that the non-interference property is preserved before the second insert. The
non-interference property guarantees that B.len() = 1 in the end.

4 Automated Verification

Our new focus is to verify that our implementations comply to their specification
in an automated way, i.e., using a push-button tool (an automated verifier) for
that purpose. We do not want the programmer to interact with the verifier at
all: all the information that the verifier needs to do its job should already be in
our specifications.

Currently, there are two popular techniques for automated program verifi-
cation: the Verification Condition Generation (VCG) [12, 23] and the Symbolic
Execution (SE) [20]. A VCG-verifier transforms the program together with
its specifications into a big logical formula, using some program calculus (usu-
ally a weakest precondition calculus [11]), and then passes this formula on to
an automated theorem prover, the program that performs the actual proving.
VCG-verifiers include Boogie [23] and Why [12]. A SE-verifier executes all pos-
sible program paths from the beginning to the end using symbolic instead of
actual values, gathers logical information information on the way, and calls the
theorem prover only on demand passing it each time the logical information it
collects for each state. SE-based tools are the KeY system [4], Smallfoot [5],
VeriCool [38], and Verifast [16] among others.

Regardless of the technique used to generate the formulas, the process de-
pends crucially on the theorem prover used at the back end. It seems that the
soft spot for automated theorem proving at this moment in time is the so-called
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SMT-solvers (Satisfiability Modulo Theories), such as Z3 [30] and Simplify [9],
which support first order logic together with custom theories, which come with
their own decision procedures. State-of-the-art SMT solvers have native support
for linear arithmetic, can be extended by theories on demand, are reasonably
fast, effective and require no interaction.

There are several issues that affect the performance of SMT solvers. These
must be taken into account when designing the automation of a specification
theory:

• The expressiveness of the language is limited to first order logic (together
with some extensions, such as linear arithmetic).

• Proof obligations with quantifiers, although they are handled by SMT-
solvers, must be avoided as much as possible, for performance reasons.

• A major issue for the axioms fed to an SMT-solver is the occurrence of
matching loops. A typical situation that explains the problem is when we
have recursive axioms of the form:

∀x · f(x) = g(f(h(x)))

Suppose that the prover is trying to work on (e.g., prove) a formula that
contains f(3). One possibility is to instantiate the above quantification
for x = 3 and get g(f(h(3)). The new term contains the subterm f(h(3)),
which means that the axiom can be instantiated again. This can go on
forever, in which case the prover fails to terminate.

Recursive definitions such as the above are very frequent in programming,
therefore matching loops show up very often in program verification.

5 Automating Dynamic Frames

There are several issues with using SMT-based tools to prove programs specified
in the Dynamic Frames style. For example, it is not clear how to prove properties
involving footprints, e.g., footprint compliance and self-framing, without exact
non-recursive definition of dynamic frames. Such a definition however would in
general require reachability predicates, because dynamic frames are non-trivial
underapproximations of the set of locations that are reachable by an object (this
is also the case in our List example). Reachability predicates are not expressible
in first order logic, and therefore cannot be used with an SMT-based tool. In
this section, we present two techniques for overcoming such problems.

The first technique is to model dynamic frames, and potentially other mem-
bers of the abstract vocabulary, with ghost fields, i.e., “imaginary” fields which
do not appear in the compiled version of the program. Variations of this tech-
nique are Regional Logic [1], and the program verifier Dafny [22], which we use
for demonstration.

12



The second technique is the use of explicit folding and unfolding of the re-
cursive definitions. This technique is being primarily used in Separation Logic
verification tools, and in an important variation of the Dynamic Frames theory,
that of Implicit Dynamic Frames [38]. We use Chalice [24], an Implicit Dynamic
Frames tool, for demonstration.

5.1 Ghost Fields for Dynamic Frames

The so-called ghost fields do not influence the execution, and thus do not appear
in the compiled version of a program, but they may be assigned to and they
may be used in specifications. A value that is stored in a ghost field does not
need a specific definition. The recursive properties that the ghost field must
satisfy are part of the invariant.

In our example, rep can be introduced as a ghost field. The length of the list
can also be introduced as a ghost field. Such an approach solves the problem of
well-definedness of the len() pure function. The function get() can stay as it is,
as its evaluation can be proved to be bound by len, and therefore its definition
is well-founded.

The language and program verifier Dafny [22] depends heavily on this use
of ghost variables. In Fig. 11, we see part of the list example written in Dafny.

In Dafny, the granularity of framing is coarser than what we have been
describing so far: footprints are sets of objects and not fields. Permission to
read from / write to a field is granted if the corresponding object is in the
footprint.

Specification Style. As discussed above, len and rep are now ghost fields,
not only in the List class, but also in the Node class. We see that the invariant
supports the recursive relations for these fields. The invariant is assumed as
a precondition and asserted as a postcondition in method insert. Notice that
this means that the programmer must add ghost assignments within the code
of insert.

Definedness of Pure Functions. The keyword decreases indicates a termi-
nation measure for a pure function. We see here that len is a termination mea-
sure that guarantees that inv() is well-defined. Similarly, get(i) has a decreases
clause of i (not shown in the code). All pure functions used in specifications
must have such a decreases clause, which guarantees their definedness.

Footprint Compliance. One important feature of the Dafny approach is the
handling of footprint compliance, i.e., the proof that all methods write at most
to objects in their footprint, and that all functions read at most from objects in
their footprint.

A Dafny program translates into a Boogie program with only one state
variable H that contains the whole heap. The heap maps pairs of objects and
fields to values. There is a special boolean field alloc that separates allocated
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class Node
{

var v : int;
var n : Node;
ghost var len : int;
ghost var rep : set < object >;

function inv() : bool
reads this, rep;
decreases len;
{ this ∈ rep ∧ null 6∈ rep ∧ len > 0
∧ (n = null ⇒ rep = {this} ∧ len = 1)
∧ (n 6= null

⇒ n ∈ rep ∧ n.rep ⊆ rep ∧ this 6∈ n.rep ∧ len = n.len + 1 ∧ n.inv())
}
}

class List
{

var c : Node;
ghost var len : int;
ghost var rep : set < object >;

function inv() : bool ...//similar to the Node class

method Init()
modifies this;
ensures len = 0 ∧ fresh(rep− {this}) ∧ inv();
{ c := null; len := 0; rep := {this}; }

method insert(x : int)
requires inv();
modifies rep;
ensures inv() ∧ len = old(len) + 1 ∧ get(0) = x;
ensures ∀i : int · 1 ≤ i < len ⇒ get(i) = old(get(i− 1));
ensures fresh(rep− old(rep));
{

var p : Node;
p := new Node; p.v := x; p.n := c; c := p;
len := len + 1; c.len := len; rep := rep ∪ {p};
if(c.n = null) { c.rep := {c}; } else { c.rep := {c} ∪ c.n.rep; }
}
...
}

Figure 11: The List class in Dafny
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from unallocated objects. In this encoding, the clause modifies F ; can be
expressed as the following extra Boogie postcondition:

∀o, f · H[o, f ] = old(H)[o, f ] ∨ (o, f) : old(F ) ∨ ¬old(H)[o, alloc]

Similarly, the clause reads F ; in the specification of a pure function1 g() can
be expressed as the following proof obligation:

∀H′ : Heap · (∀o : F, f · H[o, f ] = H′[o, f ])⇒ g()H = g()H′

where EH is expression E evaluated in heap H.
However, such an encoding is bad, because it introduces proof obligations

with a lot of universal quantifiers. Dafny’s approach is different:

• In any method, the encoding of every assignment o.f := E induces a
Boogie-assertion

assert o : old(F );

where F is the footprint of the method.

• In any function, each occurrence of a field o.f induces a Boogie-assertion

assert o : F ;

where F is the footprint of the function.

This makes the check of footprint compliance fast, avoiding the big cost of
proving quantifier-laden formulas, but, at the same time, enforces the program-
mer to be careful when writing function bodies. As an example, let us look at
the definition of inv() in Fig. 11. The declared footprint is {this} ∪ rep. This
might seem to be superfluous, since this should be included in rep. However,
there is no such information in the precondition of the invariant. In order to be
able to refer to this and its fields we must put it explicitly in the footprint.

Self-framing. When a ghost field is used to store the value of a dynamic
frame, there is no direct definition of the dynamic frame. Self-framing is ensured
by the fact that there is no explicit assignment to any unknown dynamic frame.

To demonstrate this, we show in Fig. 12 the encoding of the method prepend
in Dafny, and in Fig. 13 a client that depends heavily on frame disjointness.

1For simplicity, without arguments.
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method prepend(p : List)
requires p 6= null ∧ rep ∩ p.rep = ∅ ∧ inv() ∧ p.inv();
modifies rep ∪ p.rep;
ensures inv() ∧ len = old(len + p.len);
ensures ∀i : int · 0 ≤ i < old(p.len) ⇒ get(i) = old(p.get(i));
ensures ∀i : int · old(p.len) ≤ i < len ⇒ get(i) = old(get(i− p.len));
ensures fresh(rep ∪ p.rep− old(rep ∪ p.rep));
{

if(p.c 6= null)
{

call prepend aux(p.c); c := p.c;
len := len + p.len; rep := {this} ∪ p.c.rep;
assert ∀i : int · 0 ≤ i < old(p.len) ⇒ old(p.get(i)) = get aux(i, c);
//this assertion is used as a lemma to help Dafny
}
}

method prepend aux(q : Node)
requires q 6= null ∧ rep ∩ q.rep = ∅ ∧ inv() ∧ q.inv();
modifies q.rep;
decreases q.len;
ensures q.inv() ∧ q.len = old(len + q.len);
ensures ∀i : int · 0 ≤ i < old(q.len) ⇒ get aux(i, q) = old(get aux(i, q));
ensures ∀i : int · old(q.len) ≤ i < q.len ⇒ get aux(i, q) = old(get(i− q.len));
ensures fresh(q.rep− old(q.rep ∪ rep));
ensures old(q.rep) ∪ rep− {this} = q.rep ∧ this 6∈ q.rep;
{
q.rep := q.rep ∪ rep− {this}; q.len := q.len + len;
if(q.n 6= null){ call prepend aux(q.n); } else { q.n := c; }
}

Figure 12: The method prepend in Dafny

method client()
{

var A,B,C : List;
A := new List; call A.Init();
B := new List; call B.Init();
C := new List; call C.Init();
call A.insert(1); call B.insert(2); call A.insert(3); call B.insert(4);
call C.insert(10); call A.prepend(B); call C.insert(20);
assert A.len = 4 ∧ A.get(0) = 4 ∧ A.get(1) = 2;
assert A.get(2) = 3 ∧ A.get(3) = 1;
assert C.len = 2 ∧ C.get(0) = 20 ∧ C.get(1) = 10;
assert A.rep ∩ C.rep = ∅;
}

Figure 13: A client of List in Dafny
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Dealing with Recursion. As we see in the Dafny code, recursive defini-
tions still exist: in particular, the pure function inv() is recursive. This may
cause matching loops, which, as we commented above, are dangerous for the
underlying SMT solver.

To deal with this problem, Dafny employs the use of so-called limited func-
tions. This means that the encoding of recursive definitions into Boogie employs
a low-level SMT mechanism to ensure that a recursive function definition may
be used as an axiom at most once. The mechanism of limited functions avoids
the problem, at the cost of weakening the prover. Limited functions may be
switched off on demand, when a proof requires more unrollings, but this hap-
pens rarely.

Discussion. The use of ghost variables, as is supported by Dafny, is a very
flexible solution for the automation of the verification of Dynamic Frames. The
manual updates to specification-only variables provide extremely valuable guid-
ance to the prover. On the other hand, it is an annotation overhead which may
by itself be a source of bugs. The methods prepend and prepend aux of Fig. 12
are cases where this overhead is very heavy.

The flexibility of the Dafny language has another price: the specifications of
methods and functions become quite verbose. This is a problem with Dynamic
Frame specifications in general, that Dafny does not address.

The Dafny program described in this section has been verified by the Dafny
program verifier 2.0.0.0, on top of Boogie version 2.0.0.0 and the Z3 SMT solver,
version 2.15.

5.2 Recursion with Folding

The next methodology that we explore is the use of explicit folding and unfolding
of recursive definitions. The idea is as follows: suppose that we have a recursive
definition x = f(x). We do not allow the prover to use this definition as a
rewrite rule from left to right, unless we specifically unfold it. Dually, we do
not allow the definition as a rewrite rule from right to left, unless we specifically
fold it.

Suppose that x, as defined above, is of boolean type. If we know x, we
cannot get our hands to f(x), unless we specifically unfold x. Then, we give up
knowledge of x, and gain knowledge of f(x). In the opposite direction, folding
f(x) gives up knowledge of f(x) and produces knowledge of x.

Metatheoretically, we can show that this makes x behave as the least fixpoint
of its definition: x is true if and only if it can be proved true by its definition. Like
the invariants of Dafny, explicit folding and unfolding enables the programmer
to perform inductive proofs in first order logic.

In Implicit Dynamic Frames [38], perhaps the most important variant of Dy-
namic Frames, the “accessibility” predicate acc(o.f) is introduced. Knowledge
of acc(o.f) means knowledge that the field o.f is in the footprint of the method
or function where it appears. The footprint is now defined not in a modifies
clause, but in the precondition, e.g.,
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requires acc(this.x) ∧ acc(this.y);

means that the method/function has permission to write/read the fields x and
y of the current object.

A (possibly recursive) definition that contains accessibility predicates can
happen in what is called an abstract predicate (after the related notion intro-
duced in [32] for Separation Logic), or simply a predicate. The following is a
typical predicate that gives access to all the nodes in a linearly linked list:

predicate inv
{ acc(this.v) ∧ acc(this.n) ∧ (this.n 6= null⇒ this.n.inv) }

It is such predicates that can be folded and unfolded.
For example, suppose that we have a linearly linked list starting from a node

c, and we have permission (knowledge of) c.inv. Suppose that we want to write
to c.n.v. We must do the following:

• Unfold c.inv. This loses permission to c.inv and gains permission to its
body. Provided that c.n 6= null, the permission that we now have is

acc(c.v) ∧ acc(c.n) ∧ c.n.inv

• Unfold c.n.inv. Now we have the permission

acc(c.v) ∧ acc(c.n) ∧ acc(c.n.v) ∧ (c.n.n 6= null⇒ c.n.inv)

• This permission includes acc(c.n.v), which is what we want. Now we can
write to acc(c.n.v).

The above description indicates that accessibility predicates and abstract
predicates can be understood as resources in the sense of linear logic. The
Implicit Dynamic Frames theory proceeds one step further: there is only one
resource acc(o.f) for any field o.f . This means that

acc(o.f) ∧ acc(o.f) ⇔ false

Furthermore, suppose that we know A ∧ B, where A and B are arbitrary
predicates. Since there is only one resource acc(o.f), that resource can be folded
in either A or B or none of the two, but it cannot be folded in both of them.
This means that the part of the heap that A talks about is disjoint from that
of B. Conjunction in Implicit Dynamic Frames is separating, as in the case of
the ∗ operator of Separation Logic. This entails two things:
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• The formalism gives up the normal “non-separating” conjunction.

• Disjointness of frames becomes very concise, as in the case of Separation
Logic.

Chalice [24] is a language and a verifier based on Implicit Dynamic Frames.
In Fig. 14, we see the List example written in Chalice. For simplicity, we only
see the specifications that have to do with permissions. The example has been
verified by Syxc [37], a Symbolic Execution tool, using the Z3 v.1.15 solver.

Specification Style. Fig. 14 is a typical example of the specification style of
Implicit Dynamic Frames.

The recursive predicate inv gives access to the whole linked list, but must
be explicitly unfolded to do so.

The specification of insert requires inv to be ensured by its environment.
Since it involves a change of the field c, that predicate must be unfolded. A new
node is created and assigned to c. Before folding inv, we must fold the invariant
c.inv of the new head-node.

The specification of prepend(p) is more complex. The specification requires
both the current object and object p to be valid. The separating conjunction
ensures that their invariants share no locations. The postcondition returns inv,
but not p.inv. The reason is that the client is not meant to use the p object
anymore. The same is true in the corresponding Dafny implementation.

Within prepend, access to p.c is required, so p.inv is unfolded. If p.c is null,
there is nothing to do, but p.inv is not folded back: the method is not required
to do that.

If p.c is not null, then we have to call prepend aux on p.c, like in the cor-
responding Dafny implementation. We must give it access to p.c.inv, and to
acc(c), since this method modifies c. In fact, we give it access to the unfolded
version of inv, because the folding of q.inv in the end of the method requires
this to succeed.

A striking difference from Dafny and other traditional specification theories
is the fact that pre/postconditions have side-effects, and in particular permission
exchange between the caller and the callee.

Definedness of Predicates and Pure Functions. Separating conjunction
is usually the argument behind the definedness of a predicate. For example, the
inv definitions of both Node and List are in the form:

some access permissions ∧ recursive occurrence

Given the metatheoretical invariant that there are only finitely many access
permissions at any point in the execution of a program, and that the access per-
missions that appear to the left of ∧ may not appear to its right, this definition
provides a measure of termination.
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class Node
{

var v : int;
var n : Node;

predicate inv { acc(v) ∧ acc(n) ∧ (n 6= null⇒ n.inv) }
}

class List
{

var c : Node;

predicate inv { acc(c) ∧ (c 6= null⇒ c.inv) }

method insert(x : int)
requires inv;
ensures inv;
{

var p : Node;
unfold inv;
p := new Node; p.v := x; p.n := c; c := p;
fold c.inv; fold inv;
}

method prepend(p : List)
requires inv ∧ p 6= null ∧ p.inv;
ensures inv;
{

unfold p.inv;
if(p.c 6= null)
{

unfold inv;
call prepend aux(p.c); c := p.c;
fold inv;
}
}

method prepend aux(q : Node)
requires q 6= null ∧ q.inv ∧ acc(c) ∧ (c 6= null⇒ c.inv);
ensures q.inv ∧ acc(c);
{

unfold q.inv;
if(q.n 6= null) { call prepend aux(q.n); } else { q.n := c; }
fold q.inv;
}
}

Figure 14: The List example written in Chalice
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We have not shown Implicit Dynamic Frame pure functions so far. Their
well-definedness has the same issues as in Dafny. However, Implicit Dynamic
Frames provide yet another measure of termination.

Consider the following definition of a pure function that calculates the length
of the list of nodes that starts from the current node:

function len()
requires inv;
{ unfolding inv in n = null ? 1 : 1 + n.len() }

This definition requires inv to be true when len() is evaluated. To perform
the evaluation, we perform an in-place unfolding of inv, using the keyword
unfolding. This permits us to check field n, and evaluate its len function
recursively. When the evaluation ends, then inv is folded back.

Notice that, since inv is well-defined, it cannot be unfolded for ever. There-
fore, a recursive call that happens withing an unfolding block is always safe.

Footprint Compliance. We have already explained how footprint compli-
ance works in Chalice. The use of access predicates avoids quantified formulas.
However, it requires the programmer to explain to the prover, in the sense of
folding/unfolding how their program has permission to write to a field.

Self-framing. The issue of self-framing in Implicit Dynamic Frames manifests
itself as follows. Suppose that we have permission to A ∧ B, and that we lose
(e.g., through (un)folding) permission to A. We should still have permission
to B. For this to be possible, and therefore for the whole methodology to be
sound, A and B must be self-framing, i.e., any permission that is needed to
evaluate them must be contained in them. Example of a self-framing expression
is acc(o.x) ∧ o.x = 10. On the other hand, the expression o.x = 10 is not
self-framing.

In a program, all specifications and all predicate definitions must be self-
framing. This means that o.x = 10 is not allowed by itself as a precondition
or a postcondition. Similarly, o.len() is not allowed (where len is the function
defined above). The correct self-framing version for the latter expression is
o.inv ∧ o.len(): if we have the precondition of o.len(), then we have all the
permissions needed to evaluate it.

Implicit Dynamic Frames employ a purely syntactic way to check self-framing.
In fact, the algorithm is so simple that it may reject obviously correct self-
framing expressions. For example, acc(o.x) ∧ o.x = 10 is accepted, because the
algorithm checks the expression from left to right. On the other hand, the the-
oretically equivalent o.x = 10 ∧ acc(o.x) is rejected, because the algorithm has
not “seen” acc(x) before reaching the expression o.x = 10. This behavior may
seem counter-intuitive, but on the other hand it is simple, sound, and efficient.

Dealing with Recursion. As we saw, recursion in predicates is dealt with
using explicit folds and unfolds. On the other hand, recursion in functions may
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also produce matching loops and must be somehow tamed. There is no general
solution here: each tool takes its own measures.

Discussion. Implicit Dynamic Frames brings Dynamic Frames closer to Sep-
aration Logic. They notation in this theory is significantly more concise than
the ghost field solution, thanks to the use of separating conjunction. Further-
more, as we discussed above, many issues, such as footprint compliance and
self-framing checks, are performed very easily.

On the other hand, Implicit Dynamic Frames throws away non-separating
conjunction, reverting to a form of linear logic. Such a non-standard logic, in
which specifications have side-effects to the ghost state, may be not so intu-
itive for the specifier. It is also not known how much this loses in terms of
expressiveness.

The explicit use of folds/unfolds is very helpful for the prover, and, occa-
sionally reveals interesting bugs, but most of the time becomes tiring to the
programmer. The verifier VeriCool [39] tries to infer such statements automati-
cally, but, in the author’s opinion, for most interesting examples this is a burden
and not a help for the programmer.

6 Related Work

The frame problem [29] has been recognized as one of the hardest issues for
the specification of object-oriented programming since the late nineties [10].
Previous attempts to deal with the problem include Data Groups [21], as well as
Leino and Nelson’s methodology [28]. Data Groups resembles Dynamic Frames,
but is less expressive. The methodology of [28] is complicated and only deals
with the problem partially.

A school of thought in the area is the use of Ownership [7]. Ownership-
based frameworks are used to describe heap topologies and policies of mutation,
among other things. They can thus be used to address the framing problem.
The Universes type system [31] is designed for this purpose, and has been
used in Spec# [25, 2], one of the strongest and most comprehensive verification
languages up to today. VCC [8] is another popular tool based on ownership.
Ownership based solutions tend to be very simple and intuitive, but they have
typically problems with patterns that use sharing, such as the Iterator pattern
[13] (for example, the Spec# solution for sharing [3] has modularity issues [17]).
Research on Ownership is currently very active.

Separation Logic [35] started off as a low level extension of Hoare-logic with
a new operator, that of separating conjunction. With the invention of Abstract
Predicates [32], it became a mainstream solution to the frame problem. Most
Separation Logic-based theories are not oriented to automation. Those that
are, typically reduce the specification language to a small subset of the original
(for example they throw away non-separating conjunction, just like Implicit
Dynamic Frames) and then apply Symbolic Execution [20]. Such tools are
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[16, 33, 5]. The semantic relationship of the separation logics supported by
these tools to Implicit Dynamic Frames is explored in a recent paper [34].

Besides the ideas presented here, the automation of verification of Dynamic
Frames is a focus of Regional Logic [1], which uses ghost fields in a way similar
to Dafny. Dynamic Frames is also used in the new version of the KeY verifier
[36, 4], a partially automated symbolic execution engine. The verification there
may be done using ghost fields, but fully second-order inductive definitions are
also allowed, since the option of interaction is open.

Implicit Dynamic Frames is a variant of Dynamic Frames introduced in [38],
together with VeriCool, the first tool that supported this style of specification.
The language Chalice [24], which we used in this tutorial, extended Implicit
Dynamic Frames with Fractional Permissions [6]. Chalice can be used to verify
absence of deadlocks and data races, as well as functional properties, in lock-
based concurrent programs, using thread modularity. Chalice was also extended
with modest support for message passing [27]. The concurrency features of
Chalice are not presented in this tutorial. An instructive tutorial is [26]. The
first verifier that came with Chalice is a VCG tool based on Boogie. Syxc [37]
is a newly developed SE tool.

7 Conclusion

In this tutorial, we have presented the formalism of Dynamic Frames, and we
outlined two approaches that can be used to automate the verification of pro-
grams that are specified using this formalism. It is hoped that the information
collected here can motivate and support further research on the problem.
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