
A Discipline for Program Verification based on
Backpointers and its Use in Observational

Disjointness

Ioannis T. Kassios1 and Eleftherios Kritikos2

1 ETH Zurich, Switzerland
ioannis.kassios@inf.ethz.ch

2 National Technical University of Athens, Greece
eleftherios.kritikos@gmail.com

Abstract. In the verification of programs that manipulate the heap,
logics that emphasize localized reasoning, such as separation logic, are
being used extensively. In such logics, state conditions may only refer to
parts of the heap that are reachable from the stack. However, the cor-
rect implementation of some data structures is based on state conditions
that depend on unreachable locations. For example, reference counting
depends on the invariant that “the number of nodes pointing to a certain
node is equal to its reference counter”. Such conditions are cumbersome
or even impossible to formalize in existing variants of separation logic.
In the first part of this paper, we develop a minimal programming disci-
pline that enables the programmer to soundly express backpointer con-
ditions, i.e., state conditions that involve heap objects that point to the
reachable part of the heap, such as the above-mentioned reference count-
ing invariant.
In the second part, we demonstrate the expressiveness of our method-
ology by verifying the implementation of concurrent copy-on-write lists
(CCoWL). CCoWL is a data structure with observational disjointness,
i.e., its specification pretends that different lists depend on disjoint parts
of the heap, so that separation logic reasoning is made easy, while its im-
plementation uses sharing to maximize performance. The CCoWL case
study is a very challenging problem, to which we are not aware of any
other solutions.

1 Introduction

The advent of separation logic [16] has revolutionized reasoning about programs
with rich heap structure. The main motivation behind this line of work is local-
ized reasoning (also referred to as “reasoning in the small”). In particular, the
specifier is only allowed to talk about the locations of the heap s/he has explicit
permission to, completely ignoring the rest of the heap. In separation logic, a
state condition contains its own permissions. For example, x 7→ 3 is a condition
that not only expresses the fact that the number of 3 is the content of memory
location x, but also that the programmer is permitted to read and write to x.

State conditions that contain their own permissions are called stable (self-
framing in other literature [15, 18, 10]). A stable assertion has the important
property that it cannot be falsified by an unknown program. As a result, the
localized verification of our program cannot be falsified when this program is
composed (sequentially, parallely, through method call, or through thread fork-
ing) with other programs. In concurrent variants of separation logic, permissions
can be split [2] (e.g., in fractions [3]), thus enabling shared resources without data
races. These well-known extensions of separation logic, maintain this important
property: all expressible state conditions are stable.

Stable conditions cannot talk about objects that are unreachable by the
pointers of the program under verification. However, there are cases when such
conditions would be desirable.

For example, assume that we have a concurrent program operating on a
graph. Normally, none of its threads has access to the whole graph, because
that would mean that only one thread can perform changes, which defeats the
purpose of concurrency. Consider now the following examples of node invariants:

– Reference counting. The value of the reference counter of a node N is equal
to the number of nodes N ′ such that N ′.f = N .

– Priority Inversion Protocol [17]. The priority of a node is the minimum of
its initial priority and the priority of the node pointing to it (see also [20]).

– The union-find structure. In this structure each node represents a set of
nodes. The set represented by a node N is {N} unioned with the sets rep-
resented by all nodes that point to N .

Assume that a thread T has access to a node N . The invariant of N involves
nodes that are unreachable from N , and therefore inaccessible to T . This makes
the invariant of N unstable, and therefore inexpressible in existing variants of
separation logic.

All the examples of node invariants that we mentioned are conditions which
may involve unreachable heap objects that point to reachable heap objects. We
call such conditions backpointer conditions. Our purpose is to enable the “rea-
soning in the small” style of separation logic, in verification problems that involve
backpointer conditions.

1.1 Contributions

In this paper, we propose an extension of separation logic with a minimal pro-
gramming discipline that makes it possible to express backpointer conditions in
a stable way. Our methodology enables the verification, in the localized style of
separation logic, of data structures with backpointer node invariants.

Furthermore, we use our technique to verify the case study of concurrent
copy-on-write lists (hence CCoWL). This is a challenging problem of observa-
tional disjointness: the structure pretends that it supports mutually disjoint
mutable sequences of integers, even though it uses data sharing under the hood,
to enhance performance. The clients are happy to use the facilities of separa-
tion logic to verify their programs as if the lists were actually heap-disjoint, but

2

the verifier of the implementation is faced with a challenging reference count-
ing mechanism. We are not aware of other solutions to the CCoWL verification
problem.

We view the verification of CCoWL not just as a solution to a difficult prob-
lem, but also as a technique of backpointer bookkeeping that can serve as an
example for the verification of similar data structures; perhaps even as a first
step towards a generalized technique to verify fully persistent data structures [6].

1.2 Structure of the Paper

The paper is organized as follows: In Sect. 2, we motivate and introduce the
discipline of backpointers. In Sect. 3, we show how the discipline can be used to
verify CCoWLs, highlighting the most important parts of the implementation
and the correctness proof. In Sect. 4, we discuss the relationship of our method-
ology to related work and point out some possibilities for future work. Sect. 5
concludes. In Appendix A, we give the specification, the implementation, and
the proof of correctness of all the procedures of the CCoWL example.

2 The Backpointers Discipline

In this section, we introduce the discipline of backpointers. We start by intro-
ducing the background (Sect. 2.1) on which we work, a framework for locking,
monitor invariants, and deadlock avoidance borrowed by Chalice [11]. We then
provide a simple motivating example (Sect. 2.2) and we use it to extend our
language with the backpointer formalism (Sect. 2.3).

Throughout the rest of the paper, familiarity with separation logic, abstract
predicates, and fractional permissions is assumed.

2.1 Background

Records and Locking. Our language supports mutable records. A monitor is
associated with each record and a monitor invariant is also associated with each
monitor. The monitor invariant is an expression written in separation logic with
fractional permissions.

Consider the following definition:

s t r u c t Pa i r
{

x , y : i n t

i n v a r i a n t ∃X,Y ∈ Z · (t h i s . x 7→X ∗ t h i s . y
0.57−−→ Y) ∧ X≥0

}

The definition introduces a set Pa i r . The members of Pa i r are: (a) the
special record nu l l and (b) records r such that r . x and r . y are heap locations
that store integers.

3

Assume that t h i s is a non-null record of type Pa i r . The monitor invariant
associated with t h i s asserts that t h i s . x stores a positive value. It also grants
write (full) access permission to t h i s . x and 50% permission to t h i s . y. In
general, when we write monitor invariants, t h i s refers to the current record and
may be omitted when referring to its fields.

We are interested in thread-modular verification. From the point of view of
the current thread, a record can be in one of the following three conditions: (a)
local, (b) shared and not held by the current thread, (c) shared and held by the
current thread. Fig. 1 shows all these conditions, together with the commands
that perform the transitions between them.

localr := new R; shared held
share r;

acquire r;

release r;

Fig. 1. A record’s life cycle

The invariant of a monitor is always true when the associated record is shared
but not held by any thread. To hold a record, a thread must acquire it. As long
as it holds the record, the thread may invalidate the monitor invariant but must
ensure that the invariant holds before it releases the record. Similarly, a thread
that shares a record must first ensure that the associated invariant holds.

Sharing and releasing means that the current thread loses all permissions
that are contained in the invariant. Acquiring means that the thread gains these
permissions and that it may furthermore assume that the invariant holds imme-
diately after the record is acquired.

The Chalice locking model has a simple mechanism to prevent cyclic depen-
dencies between “acquire” requests, and thus to prevent deadlock. Assume that
Ord is a set equipped with a strict partial ordering @ . We furthermore assume
that @ is dense in the sense that if a@ b then there exists c∈Ord such that
a@ c@ b. Every shared record is associated with a value in Ord called its lock-
level. The maximum lock-level of all already acquired records by this thread is
called its max-lock. A thread can only acquire a record with lock-level greater
than its max-lock.

The rules that govern record creation, sharing, releasing and acquiring are
shown in Fig. 2. In it:

– l o c a l and sha r ed are abstract predicates that indicate that a record is
resp. local or shared. The second argument of sha r ed equals the lock-level
of the record.

– Both predicates imply that their first argument, the record, is non-null:

4

sha r ed (r ,) ∨ l o c a l (r) ⇒ r6=nu l l

– sha r ed is infinitely divisible, i.e.,

sha r ed (r , µ) ⇐⇒ sha r ed (r , µ) ∗ sha r ed (r , µ)

– Each shared record has a single lock-level:

sha r ed (r , µ) ∗ sha r ed (r , µ ’) ⇒µ=µ ’

– If r, r′ are records, the notation r @ r′ is a shorthand for:

∃ µ , µ ’∈ Ord · sha r ed (r , µ) ∗ sha r ed (r′ , µ ’) ∗ µ@ µ ’

We extend this notation to “compare” a record r to a set of records:

R @ r ⇐⇒ ∀r′ ∈ R · r′ @ r

Note that R @ r ⇒r 6∈R
– Inv (r) is the monitor invariant of record r
– he l d is a thread-local variable whose value is the set of all records held by

the current thread
– newRec is an abstract predicate describing the situation directly after a new

record is created. It gives access to all fields fi of the new record r, initializes
them to the default value of their type and asserts that r is local:

newRec (r) ⇐⇒ r.f1 7→d1 ∗ . . . ∗ r . fn 7→dn ∗ l o c a l (r)

– The default value of all record types is nu l l

{emp}
r :=new R

{newRec (r)}

{ l o c a l (r) ∗ Inv (r) ∗ he l d 7→O}
share r

{sha r ed (r ,) ∗ he l d 7→O ∗ O @ r}

{sha r ed (r ,) ∗ he l d 7→O ∗ O @ r}
acqu i re r

{sha r ed (r) ∗ he l d 7→O∪{ r } ∗ Inv (r)}

{(sha r ed (r) ∗ he l d 7→O ∗ Inv (r)) ∧ r∈O}
r e l e a s e r

{sha r ed (r) ∗ he l d 7→O−{ r }}

Fig. 2. Commands on Records and Monitors

5

The share command can specify bounds for the lock-level of the record being
shared, for example:

share r below a
share r above b
share r between a and b

We omit the rules for these variants of share for brevity.

Counting Permissions. Counting permissions are an important alternative to
fractional permissions. The idea is as follows. A counting permission is a natural
number n, or −1. At any given execution time, there is one thread that holds a
non-negative counting permission n to a heap location and n threads that hold
a −1 counting permission. We call the holder of counting permission n the main
thread for that heap location.

The main thread can give away −1 counting permissions, increasing its own
counting permission accordingly. The holders of −1 counting permissions may
return their counting permission to the main thread, decreasing its counting
permission accordingly. If n = 0, then the main thread is the only thread that
can access the location and thus has write privileges. Otherwise, all involved
threads have read-only access.

We do not need to invent new notation for counting permissions. Instead, we
introduce an infinitesimal fractional permission ε to stand for the −1 counting
permission. Then the counting permission n corresponds to fractional permission
1− nε. This approach is taken in the current Chalice permission model [8].

2.2 Non-stable Backpointer Requirements

Suppose that we want a cell with reference counting. Our cell contains an integer
field v a l u e and a reference counter field r e fCoun t . The value of the reference
counter counts how many clients point to the cell.

s t r u c t C e l l
{

va lue , r e fCount : i n t

i n v a r i a n t ∃R ∈ Z · (v a l u e
1−Rε7−−−→ ∗ r e fCoun t 7→R) ∧ R≥1

}
s t r u c t C l i e n t { c e l l : C e l l }

Notice that the monitor invariant holds 1 − Rε permissions to the v a l u e

field. It is intended that each client that points to a cell c holds an ε permission
to c . v a l u e . Thus the reference counter may inform a client whether or not it
has sole access to v a l u e and may write to it.

To show how this works, define a predicate c e l l v a l u e as follows:

pred i ca te c e l l v a l u e (t h i s : C l i e n t , v : i n t)
{

t h i s 6=nu l l ∧

6

∃C∈C e l l · sha r ed (C ,) ∗ t h i s . c e l l 7→C ∗ C . v a l u e
ε7−→v

}

The procedure s e t , shown in Fig. 3, checks the reference counter to see if it has
full access to the cell, before actually updating the value

procedure s e t (t h i s : C l i e n t , newValue : i n t)
r e qu i r e s c e l l v a l u e (t h i s ,)
ensures c e l l v a l u e (t h i s , newValue)

{
acqu i re t h i s . c e l l
i f (t h i s . c e l l . r e fCount 6=1)
{

r e l e a s e t h i s . c e l l
t h i s . c e l l :=new C e l l
t h i s . c e l l . v a l u e :=newValue
t h i s . c e l l . r e fCoun t :=1
share t h i s . c e l l

}
e l s e
{

t h i s . c e l l . v a l u e :=newValue
r e l e a s e t h i s . c e l l

}
}

Fig. 3. Updating the Value of a Cell

The problem here is that the monitor invariant of C e l l does not express the
desired condition that r e fCoun t counts all clients pointing to the current cell.
As a result, this condition may be inadvertently broken by a client.

For example, the procedure s e t of Fig. 3 has a subtle bug. When the refer-
ence count of t h i s . c e l l is more than 1, then it creates a new cell and makes
t h i s . c e l l point to it. This removes a reference from the value of the old
t h i s . c e l l . However, the procedure s e t forgets to update the reference counter
of the old value of t h i s . c e l l . This causes an ε permission to the v a l u e field
of that cell to be lost forever: this heap location is now accidentally rendered
immutable. The error is not caught: the procedure s e t can be verified.

As we commented in the Introduction, the reason why we cannot express
the reference counting condition is that such an condition would be unstable.
Indeed, assignments to pointers outside the heap region that is reachable by a
cell influence the reference counting condition of that cell.

7

2.3 Backpointers

To make the backpointer invariants stable, we impose a restriction on the assign-
ments which may potentially invalidate such invariants. Since separation logic
enforces restrictions to the programs through the use of permissions, we express
our solution using permissions as well.

Tracked Fields. Our first step is to identify those reference-valued fields, whose
value influences backpointer invariants. We mark these fields as tracked, because
we want to track assignments to them. In our running example, the c e l l field
of the C l i e n t record time must be marked tracked:

s t r u c t C l i e n t { tracked c e l l : C e l l }

Backpointer Definitional Axiom. Suppose now that a record type R has a tracked
field f of type Q (where R,Q are not necessarily different). To express back-
pointer invariants in records of type Q, it should be possible to refer to “all
records of type P that point to the current record of type Q through the field
f”. We write q.(P.f)−1 to refer to “the set of all records p : P such that p.f = q”.
In other words, the definitional axiom of backpointers is:

∀p ∈ P, q ∈ Q− {nu l l} · p ∈ q.(P.f)−1 ⇔ p.f = q ∧ p 6= nu l l

If P is clear from the context, we simply write q.f−1.
In our running example, if r is a cell, then r . c e l l −1 is the set of all client

records c such that c . c e l l=r . The reference counting invariant of cell can be
expressed as follows:

t h i s . r e fCount=| t h i s . c e l l −1 |

where |X| returns the cardinality of set X. The keyword t h i s can be omitted.

Backpointer Fields. The value of the expression (P.f)−1 is not associated with
any permission, which is what makes it unstable. To fix this, we turn (P.f)−1 into
a a field of Q. This field has access permissions like any regular field. However,
it is a ghost field: it does not appear in the actual program; it is only part of
its specification annotation. Furthermore, even “ghost assignments” to it are
forbidden. In our running example, the reference counting condition must not
only contain access permission to r e fCoun t , but to c e l l −1 as well:

∃S ∈ 2Cell · r e fCoun t 7→ |S | ∗ c e l l −1 7→S

We can conjoin the above to the invariant of cells, which is now stable and can
express reference counting:

s t r u c t C e l l
{

va lue , r e fCount : i n t

i n v a r i a n t ∃S ∈ 2Cell · v a l u e 1−|S|ε7−−−−→ ∗ r e fCoun t 7→ |S | ∗ c e l l −1 7→S
}

8

Tracked Assignments. Assume now that record A points to record B through a
tracked field f . Consider the assignment:

A.f :=C

Notice that this assignment changes not only the value of A.f , but that of B.f−1

and C.f−1. The situation is depicted graphically in Fig. 4. Since the values of
two backpointer fields are changed, the thread that executes the assignment must
have full permission to those fields. In the case B or C are the nu l l reference,
then, of course, we do not require access to their backpointer fields. The new
rule for assignment to track fields becomes:

{
A6=nu l l ∧
((A.f 7−→ B)
∗ (B6=nu l l ⇒B.f−1 7−→ S1) ∗ (C6=nu l l ⇒C.f−1 7−→ S2)
)

}
A.f :=C

{
A6=nu l l ∧
(

(A.f 7−→ C)
∗ (B6=nu l l ⇒B.f−1 7−→ S1 − {A}) ∗ (C6=nu l l ⇒C.f−1 7−→ S2 ∪ {A})
)

}

In our running example, consider the command t h i s . c e l l :=new C e l l in
the implementation of the s e t procedure (Fig. 3). Before executing the assign-
ment, the thread should have full permission to the field t h i s . c e l l , to the field
t h i s . c e l l . c e l l −1 , and to the field n . c e l l −1 , where n is the newly created
cell. The latter permission is available, because a thread has all permissions to
the fields of a newly created record. The first permission is available because
the thread has the predicate c e l l v a l u e . However, the thread does not have
permission to the field t h i s . c e l l . c e l l −1 , which makes the assignment illegal.

To fix this problem, the program must get the permission to the field
t h i s . c e l l . c e l l −1 . To do that, it must acquire t h i s . c e l l :

. . .
acqu i re t h i s . c e l l ;
t h i s . c e l l :=new C e l l ; // the as s i gnment i s p o s s i b l e now
. . .

However, after executing the assignment, the invariant r e fCoun t 7→ |S | of
the old cell is not valid anymore. The program may not release the old cell, unless
it fixes its reference counter. The solution fixes the bug that we spotted earlier.
The command t h i s . c e l l :=new C e l l should be substituted by the following:

temp:= t h i s . c e l l ;

9

A

B C

O1O2O3
. . . P1 P2 P3

. . .

B.f−1 C.f−1

f

Before

A

B C

O1O2O3
. . . P1 P2 P3

. . .

B.f−1 C.f−1

f

After

Fig. 4. Assignment on a tracked field

acqu i re temp ;
t h i s . c e l l :=new C e l l ;
temp . r e fCount :=temp . re fCount −1;
r e l e a s e temp

Default Value of Backpointer Fields. A backpointer field should be initialized
to ∅. A creation command that assigns the new record to a heap location, such
as t h i s . c e l l :=new C e l l should be understood as a shorthand for a creation
command and an assignment. For example, t h i s . c e l l :=new C e l l is a short-
hand for

t empo ra r y s t a ck va r i ab l e :=new C e l l ;
t h i s . c e l l := t empo ra r y s t a ck va r i ab l e

The creation command above sets the value of t h i s . c e l l . c e l l −1 to ∅. The
tracked assignment that follows sets it to { t h i s }.

Notice that without setting the backpointer fields initially to ∅, the command
command share t h i s of Fig. 3 would not be legal (we would not be able to
prove its precondition).

3 Concurrent Copy-on-Write Lists

We now turn our attention to a hard verification problem, that of concurrent
copy-on-write lists (CCoWL). We discuss how backpointers help us verify this
data structure.

10

In this section, we highlight the most important aspects of the verification.
The specifications, implementations, and proof outlines for all the procedures
can be found in Appendix A.

3.1 Description of the Problem

A CCoWL data structure supports a record called “list”, which represents a
mutable sequence of integers. One can create new empty sequences, insert items
to the beginning of an existing sequence, update an item at a specific index,
and copy one sequence to another. For simplicity, we restrict ourselves to the
operations mentioned here, which can already generate all possible graphs in the
underlying data structure.

The clients of lists, which may be one or more threads, are given the impres-
sion that every list is completely heap-disjoint from all the others and thus can
reason about mutations using ordinary separation logic. The specification of the
procedures that are available to the clients is shown in Fig. 51. In it, l i s t (l ,L)

is an abstract predicate that expresses the fact that the list record l represents
the integer sequence L, the operator ++ denotes concatenation, and the expres-
sion L〈 i→v 〉 denotes the sequence L with the content of index i updated to
value v. Indexes are zero-based.

For example, consider the following client:

l i s t 1 :=new L i s t ;
i n i tEmpty (l i s t 1) ;
i n s e r t (l i s t 1 , 3) ; i n s e r t (l i s t 1 , 2) ; i n s e r t (l i s t 1 , 1) ;
l i s t 2 :=new L i s t ;
copy (l i s t 2 , l i s t 1) ;
s e t (l i s t 1 , 1 , 4)

We can use ordinary separation logic and the specifications of Fig. 5 to prove
that, at the end of the execution, l i s t 1 contains the sequence [1, 4, 3], and
l i s t 2 contains [1, 2, 3].

Behind the scenes however, the data structure performs lazy copying : all
operations are implemented with reference manipulations as long as this does not
influence the clients’ disjointness illusion. Copying happens only when necessary.

The underlying representation uses linearly linked lists of “node” records.
First the implementation creates a such a linked list to represent that l i s t 1

contains the sequence [1,2,3] (Fig. 6a). After that, a new list l i s t 2 is created
and it is initialized by copying l i s t 1 . The client thinks that the lists are disjoint,
but the implementation is being lazy: it just sets the head node reference of
l i s t 2 to point to the head node of l i s t 1 , producing the situation in Fig. 6b.

1 Notice in our specification of lists that before the client can call any operation on
a list l, the client must ensure that it has not locked a record above l in the lock
ordering. This is undesirable, as it exposes the fact that locks are being used by
the implementation. The problem is due to a weakness of the deadlock-avoidance of
Chalice, which is orthogonal to the problem at hand and which we plan to address
in future work.

11

{newRec (t h i s) ∗ he l d 7→O}
i n i tEmpty (t h i s)

{(l i s t (t h i s , []) ∗ sha r ed (t h i s ,) ∗ he l d 7→O) ∗ O @ t h i s}

{newRec (t h i s) ∗ l i s t (o ther , L) ∗ sha r ed (othe r ,µ) ∗ he l d 7→O

∗ O @ o th e r}
copy (t h i s , o t h e r)

{ (l i s t (t h i s , L) ∗ sha r ed (t h i s ,)
∗ l i s t (o the r , L) ∗ sha r ed (othe r ,µ) ∗ he l d 7→O)

∗ O @ t h i s ∗ O @ o th e r}

{ l i s t (t h i s ,L) ∗ sha r ed (t h i s ,µ) ∗ he l d 7→O ∗ O @ t h i s}
i n s e r t (t h i s , newValue)

{ l i s t (t h i s , [newValue]++L) ∗ sha r ed (t h i s ,µ) ∗ he l d 7→O}

{(l i s t (t h i s ,L) ∗ sha r ed (t h i s ,µ) ∗ he l d 7→O ∗ O @ t h i s)

∧ 0≤i ndex <|L | }
s e t (t h i s , index , v a l u e)

{ l i s t (t h i s ,L〈 i n d e x→ v a l u e 〉) ∗ sha r ed (t h i s ,µ) ∗ he l d 7→O}

Fig. 5. Public Specification of CCoWLs

Finally, the client sets the item 1 of l i s t 1 to 4. The change must influence only
l i s t 1 and not l i s t 2 . The implementation must now copy the first two nodes
of the common underlying structure, and then perform the set operation in a
way that ensures that l i s t 2 is not affected. The last node remains shared. The
final situation is shown in Fig. 6c.

To achieve this copy-on-write effect, the nodes are equipped with a reference
counter. When a s e t operation occurs, then the affected list is traversed from
the head to the index where the update should happen. During the traversal,
the reference counter of all the nodes is examined. As long as the reference
count equals 1, the procedure knows that only one list is affected. As soon as
the procedure meets a reference count greater than 1, it knows that, from that
point on, more than one lists are affected. At that point, the procedure copies
the nodes of the list all the way to the index where the update should happen.

Starting from Fig. 6c, a s e t (l i s t 1 , 1 , 10) operation will only find ref-
erence counts of 1 in its way and will perform no copying. On the contrary,
s e t (l i s t 1 , 2 , 10) will find that the reference count of the node it is trying
to mutate is 2, thus it must copy this node, separating the two lists completely.

3.2 Record Definitions, Abstract Predicates, and Invariants

Our implementation contains list and node records. A list record contains a
reference to a head node. The reference should be tracked, because it should be
counted in the reference count of the head node.

12

list1

1A :

2B :

3C :

list1

1A :

list2

2B :

3C :

list1

1A′ :

4B′ :

3C :

2B :

1A :

list2

(a) (b) (c)

Fig. 6. An Example of CCoWL History

s t r u c t L i s t { tracked head : Node }

If head points to nu l l , then the list record represents the empty sequence.
A node record contains a value, a tracked reference to the next node, and a

reference count. We defer the monitor invariant of nodes for later.

s t r u c t Node
{

va lue , r e fCount : i n t ;
tracked next : Node ;
i n v a r i a n t . . .

}

We now define the abstract predicate l i s t . The definition uses the auxiliary
abstract predicate node:

pred i ca te l i s t (t h i s : L i s t , L :Z∗)
{
∃H ∈Node · sha r ed (t h i s ,) ∗ t h i s . head 7→H
∗ ((node (H , L) ∗ t h i s @H) ∨ (H=nu l l ∧ L= []))

}

pred i ca te node (t h i s : Node , L :Z∗)
{

L6= [] ∧ ∃N ∈Node ·
t h i s . v a l u e

ε7−→L [0] ∗ t h i s . nex t
ε7−→ N ∗ sha r ed (t h i s ,)

∗ ((node (N , L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ | L |=1))
}

The predicate node traverses the structure following recursively the next

references of the node records it encounters. The represented sequence is not
empty. The first item L [0] of the sequence is stored in field v a l u e . The rest of

13

the sequence L [1 . .] is represented by the node pointed by field next , if one
exists. The lock-order of node n is below that of n . nex t , because we intend
to acquire monitors of nodes in the order in which we traverse the structure.
Similarly, the lock-order of a list l is below that of l . head.

If a node record n is reachable from a list record l, then it contributes to the
value of the sequence that l represents. We then say that l is interested in n.

Note that each holder of a l i s t (l ,L) predicate has ε access to all the v a l u e

and next fields of the nodes in which l is interested. The rest of the permissions
to these fields are in the monitors of their respective records. So, if a node record
interests n different lists, then it stores in its monitor 1 − nε permission to its
fields v a l u e and next .

So far, this pattern is exactly the same as the one we have seen in the running
example of Sect. 2.3. There is however a complication: the reference counter
of a node does not indicate how many lists are interested in it. For example,
consider Fig. 7, in which a possible state of a CCoWL structure is shown. Both
nodes A and B interest three lists, however their reference counters are 2 and 1
respectively.

To deal with this problem, we introduce a ghost field in the record type Node.
This field counts how many lists are interested in the current node. We call it
t r an sRe fCount (for transitive reference counter). In Fig. 7, we see not only the
reference counters but also the transitive reference counters of all the nodes.

list1

refCount = 2

transRefCount = 2

refCount = 2

transRefCount = 3
A:

refCount = 1

transRefCount = 3
B:

list2

refCount = 1

transRefCount = 1

list3

Fig. 7. Reference and Transitive Reference Counters in a CCoWL

We now know the following about the monitor invariant of the Node type:

– It grants permission 1 − Tε to the fields v a l u e and next , where T is the
value of the transitive reference counter:

v a l u e
1−Tε7−−−→ V ∗ next

1−Tε7−−−→ N

14

– It grants full access to the fields head−1 and next−1 :

head−1 7→B1 ∗ next−1 7→B2

– The value of the reference counter is equal to |B1|+|B2|. The field r e fCount

is granted full access, as it should be possible for the thread that acquires
the node to update the reference counter correctly:

r e fCoun t 7→|B1|+ |B2|

Notice that the value of the transitive reference counter is equal to the sum
of the transitive reference counters of all nodes that point to the current node
plus the number of list records that point directly to the current node. In order
to be able to express this condition, we must grant to the monitor invariant of
the current node read access to the t r an sRe fCount field of all the nodes that
point to the current node. We give them 0.5 permission:

∃F ∈Node→ Z ·�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n)

The value of the field t r an sRe fCount is given by

T = |B1| +
∑
n ∈ B2 ·F (n)

The permission to the field t r an sRe fCount cannot be 1, since, as we have
discussed above, the node N that follows the current one has 0.5 permission to
it. Therefore, the invariant conjunct that relates t r an sRe fCount to its value is:

t r an sRe fCount
0.57−−→ T

The final detail: if N is nu l l , then there is no other node that has 0.5
permission to the current node’s t r an sRe fCount field. In this case, the monitor
invariant of the current node should include the extra permission:

N=nu l l ⇒ t r an sRe fCount
0.57−−→ T

Putting it all together, the definition of Node, together with the monitor
invariant, is:

s t r u c t Node
{

va lue , r e fCount : i n t ;
ghost t r an sRe fCount : i n t ;
tracked next : Node ;
i n v a r i a n t ∃T ∈ Z , N ∈Node , B1 ∈ 2Head , B2 ∈ 2Node , F ∈Node→ Z ·

(v a l u e
1−Tε7−−−→ ∗ next

1−Tε7−−−→ N ∗ head−1 7→B1 ∗ next−1 7→B2

∗ r e fCoun t 7→|B1|+ |B2| ∗ t r an sRe fCount
0.57−−→ T

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ (N=nu l l ⇒ t r an sRe fCount
0.57−−→ T)

) ∧ T = |B1| +
∑
n ∈ B2 ·F (n)

}

15

3.3 Some Highlights of the Implementation

In this section, we discuss three interesting aspects of the implementation: how
lists gain and lose interest to nodes and how the updating procedure decides
how to substitute in-place update by copy-and-update.

Gaining Interest. In our procedures, the only place where a list gains interest
to new nodes is lazy list copying. When a list is copied, only the head refer-
ence of the target list changes. The target list gains interest to all the nodes of
the source list. To ensure that our bookkeeping is correct, we must update the
transitive reference counters of all these nodes. We do this with a ghost proce-
dure2 addOneToTransRefCount, which traverses the whole list and adds 1 to
all transtive reference counters.

Losing Interest. Our copy-and-update procedure node copy set takes as pa-
rameters (besides the obvious index/value pair) a source node t h i s and a
target node new node. The precondition of node copy set asserts that the
caller has a predicate node (t h i s ,L) . Its postcondition returns a predicate
node (new node ,L〈 i n d e x→ v a l u e 〉) . The predicate node (t h i s ,L) of the
postcondition is lost. Indeed, the permissions node (t h i s ,L) are taken away
from the thread. Those monitors of the nodes to which the source list loses in-
terest obtain an extra ε permission to the corresponding v a l u e and next field.
For the nodes to which no interest is lost, the thread maintains its ε permissions,
but they are now part of the node (new node ,L〈 i n d e x→ v a l u e 〉) predicate.
In this way, no permission to fields v a l u e and next is ever lost.

For example, consider the situation in Fig. 6b. The permission to the v a l u e

and next fields that is stored in the monitor of nodes A,B,C is 1 − 2ε. There
is a thread that holds a l i s t (l i s t 1 , [1 , 2 , 3]) predicate, that grants ε per-
mission to the v a l u e and next fields of these nodes. Now s e t (l i s t 1 , 1 , 4) is
called. Since the reference count of A is 2, a new node A′ is created and the
node copy set procedure is called with source A and target A′. The proce-
dure takes away the node (A , [1 , 2 , 3]) predicate of the caller and returns a
new node (A′ , [1 , 4 , 3]) predicate. The final state is shown in Fig. 6c.

List l i s t 1 lost interest to nodes A,B. The ε permissions to their v a l u e and
next fields are returned from the node (A , [1 , 2 , 3]) predicate back to their
monitor, which now maintains 1−ε permission to these fields. The list maintained
interest to node C, so an ε permission to the v a l u e and next fields of C is
transfered from node (A , [1 , 2 , 3]) to node (A′ , [1 , 4 , 3]) . The monitor of C
has 1−2ε permission to those fields, as before. The predicate node (A′ , [1 , 4 , 3])

has ε permission to the v a l u e and next fields of the newly generated A′ and B′

nodes. There was no loss of permission; only permission transfer.

Setting without Copying. As we have explained, the algorithm decides to start
the copy-and-update procedure once it sees a reference counter greater than 1.

2 A ghost procedure updates the state by assigning only to ghost fields, and therefore
is not executed in the actual program.

16

To verify that this policy is indeed correct, we include a precondition to our
update-in-place procedure node set that the transitive reference counter of the
node it is applied to equals 1.

The algorithm calls node set on the next node, under the circumstance “I
have not yet seen a reference counter greater than 1 and the reference counter
of the next node is 1”. In our formalism, this circumstance is translated into the
following condition:

(t h i s . r e fCount 7→1 ∗ t h i s . t r an sRe fCount
0.57−−→1

∗ t h i s . nex t 7→N ∗ N . r e fCount 7→ 1) ∧ N 6=nu l l

From this condition, together with the fact that Inv (t h i s) and Inv (N) hold,
one must prove that the value of the transitive reference counter of N is 1. In
the following, we explain how we prove this property.

Let B1 be the value of N . head−1 and B2 be the value of N . nex t−1 .
By the definitional axiom, we know that t h i s∈B2. By Inv (N) , we con-
clude that B2={ t h i s } and B1=∅. Again by Inv (N) , we get that the value of
N . t r an sRe fCount is equal to the value of t h i s . t r an sRe fCount , which is 1.

The above argument applies when node set recursively calls itself. Initially
however, it is procedure s e t (the update procedure on lists) that decides whether
it should call node set or node copy set on its head node. The argument for
this decision is similar.

4 Discussion

In what follows, we discuss the relationship of our work with invariant disciplines
and research on observational disjointness, as well as topics for future work.

Invariant Disciplines. An invariant discipline is a set of rules that specifiers
and programmers have to follow to ensure that some state (or history) condi-
tions remain true throughout a computation (or at specific states thereof). Some
such conditions are independent of the program, for example, our methodology
guarantees that r ∈ r.f.f−1, in any state, for any non-null record r, and tracked
field f such that r.f 6=nu l l . We call these conditions system invariants. Some
other conditions are given by the programmer, for example object or monitor in-
variants. There are several flavors of treating program-specific invariants, mostly
focusing on the special case of object invariants [7]. Various forms of ownership
[1, 13] are popular invariant disciplines.

In [14], the point is made that object invariants are inflexible, in comparison
to the use of abstract predicates. In [20], the authors answer by making the case
for object invariants as an independent specification tool. Most of their argu-
ments have to do with the usefulness of object invariants in practical software
engineering contexts; but they also provide an example (the priority inheritance
protocol [17]) as one in which object invariants can turn a seemingly global
property (which, in our terminology, a backpointer property) into a local one. It

17

seems, the authors argue, that the priority inheritance protocol example is not
easy to handle with abstract predicates alone.

Our paper provides a monitor invariant discipline that can handle such back-
pointer examples. The discipline consists of restricting the use of assignments to
tracked fields. We have expressed our discipline not as a set of rules, as is com-
mon, but by using permissions in the separation logic style. Our proposal makes
it possible to treat backpointer conditions as special cases of separation logic
conditions, turning them into local properties, which supports the argument of
[20], in the concurrent case.

Our verification of CCWoLs is influenced by considerate reasoning [19], a
framework in which it is possible for a procedure to “notify” via specification
annotations all interested parties about the object invariants that it might break.
Our specification and implementation of addOneToTransRefCount is a direct
adaptation of their addToTotal method.

Observational Disjointness. While separation logic has been a revolution in the
specification of heap-intensive computations, it has been observed, especially
in the context of concurrency, that the association of separating conjunction
with actual heap separation is too restrictive: sometimes we want the client(s)
to “observe” disjointness, but, at the same time, allow the implementers the
opportunity to share heap under the hood.

In our work, we make use of a standard solution to loosen the heap disjoint-
ness requirement: fractional and counting permissions. Furthermore, our use of
backpointers permits us to maintain bookkeeping information about the clients
of observationally disjoint data structures. These two ingredients together suffice
for the verification of the CCoWL case study.

Concurrent abstract predicates [5] support the hidden sharing of state with
the use of capabilities, i.e., special predicates that allow exclusive access to a
shared region. This idea has been successfully applied to the specification and
verification of indexing structures [4]. The work presented here cannot substitute
capabilities. On the other hand, it is not clear how one would handle the CCoWL
example with CAPs. It seems that backpointers and CAPs are orthogonal tools
and could be integrated into a single specification language.

Fictional Separation Logic [9] is an ambitious mathematical framework that
allows the implementer to choose their own separation algebra as part of the
implementation. This idea completely decouples heap disjointness from sepa-
rating conjunction. The use of fractional permissions as well as other examples
of observational disjointness are shown to be special cases of this very general
methodology. The generality comes at the price of complexity at the part of the
implementer, so it remains an open question if this idea scales up to reasonably-
sized programs. Furthermore, it seems that fictional separation logic has no
provision for object and monitor invariants, nor does it provide the means of
mentioning unreachable parts of the heap, like we do.

In [12], the verification of snapshotable trees is proposed as a challenge. The
problem is very similar to the CCoWLs: the clients see a mutable tree and
immutable snapshots of previous states of that tree. A snapshot can be created

18

at any time. All snapshots and the tree appear to be heap-disjoint, but, in fact,
the implementation uses lazy copying and shares as much as possible. There are
four different versions of the structure, one of which is verified by the authors,
using whole-heap predicates (and therefore restricting it to sequential programs).

The fact that snapshots are immutable is a very crucial difference compared
to the CCoWL example, in which all lists are mutable. In the terminology of [6]
snapshotable trees are partially persistent, while CCoWLs are fully persistent.
The implementers of snapshotable trees need no permission accounting, because
they do not wish to reclaim write permissions to the part of the structure that
becomes immutable. Contrary to that, we ensure that no permissions are lost.
For example, suppose that exactly two lists l1, l2 are interested in a node n. At
this state, no thread can change the fields of n. Suppose now that l2 loses interest.
The fields of n become mutable again: the list l1 may gain write permissions to
them. To achieve this, the bookkeeping of backpointers is essential (see also
Sect. 3.3, “losing interest”).

Work in Progress and Future Work. The automation of the backpointer method-
ology is implemented as an extension of the Chalice verifier. Unfortunately, for
many examples that we have tried, including CCoWLs, the verification times
are prohibitively large. The improvement of our tool is work in progress.

The current version of the methodology works for object-based systems, but
does not consider subtyping and inheritance, a topic for further research.

Finally, note that the specifications of CCoWLs expose a significant imple-
mentation detail to the client: the fact that the underlying implementation uses
locks (see Fig. 5). Furthermore, they impose a non-trivial requirement about the
locking behavior of the client. This weakness of the specification is due to the
technicalities of the Chalice deadlock-avoidance policy. We are currently working
to improve this deadlock-avoidance system.

5 Conclusion

We have introduced an invariant discipline to enhance the expressiveness of
separation logic with backpointer conditions. We have used our methodology
to specify and verify concurrent copy-on-write lists, a challenging case study of
observational disjointness, which, to the best of our knowledge, has not been
tackled before.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# specification language:
an overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, CASSIS’04, volume 3362 of Lecture Notes In Computer Science, pages
49–69. Springer-Verlag, 2004.

2. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL’05, pages 259–270, 2005.

19

3. J. Boyland. Checking interference with fractional permissions. In R. Cousot,
editor, SA’03, volume 2694 of Lecture Notes In Computer Science, pages 55–72.
Springer-Verlag, 2003.

4. P. da Rocha Pinto, T. Dinsdale-Young, M. Dodds, P. Gardner, and M. Wheelhouse.
A simple abstraction for complex concurrent indexes. In OOPSLA’11, pages 845–
864. ACM, 2011.

5. T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Con-
current abstract predicates. In ECOOP’10, volume 6183 of Lecture Notes In Com-
puter Science, pages 504–528. Springer-Verlag, 2010.

6. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. In STOC’86, pages 109–121. ACM, 1986.

7. S. Drossopoulou, A. Francalanza, P. Müller, and A. Summers. A unified framework
for verification techniques for object invariants. In ECOOP’08, Lecture Notes In
Computer Science. Springer-Verlag, 2008.

8. S. Heule, K. R. M. Leino, P. Müller, and A. Summers. Fractional permissions
without the fractions. In FTfJP’11, 2011.

9. J. B. Jensen and L. Birkedal. Fictional separation logic. In ESOP’12, volume 7211
of Lecture Notes In Computer Science, pages 377–396. Springer-Verlag, 2012.

10. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In J. Misra, T. Nipkow, and E. Sekerinski, editors, FM’06, vol-
ume 4085 of Lecture Notes In Computer Science, pages 268–283. Springer-Verlag,
2006.

11. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
G. Castagna, editor, ESOP’09, volume 5502 of Lecture Notes In Computer Science,
pages 378–393. Springer-Verlag, 2009.

12. H. Mehnert, F. Sieczkowski, L. Birkedal, and P. Sestoft. Formalized verification of
snapshotable trees: Separation and sharing. In R. Joshi, P. Müller, and A. Podelski,
editors, VSTTE’12, volume 7152 of Lecture Notes In Computer Science, pages 179–
195. Springer-Verlag, 2012.

13. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes In Computer Science. Springer-Verlag, 2002.

14. M. Parkinson. Class invariants: the end of the road? In IWACO’07, 2007.
15. M. Parkinson and A. Summers. The relationship between separation logic and

implicit dynamic frames. In Gilles Barthe, editor, ESOP’11, volume 6602 of Lecture
Notes In Computer Science. Springer-Verlag, 2011.

16. J. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS’02, pages 55–74. IEEE Computer Society, 2002.

17. L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185,
1990.

18. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dy-
namic frames and separation logic. In ECOOP’09, Genoa, pages 148–172. Springer-
Verlag, 2009.

19. A. Summers and S. Drossopoulou. Considerate reasoning and the composite design
pattern. In G. Barthe and M. V. Hermenegildo, editors, VMCAI’10, volume 5944
of Lecture Notes In Computer Science, pages 328–344. Springer-Verlag, 2010.

20. A. Summers, S. Drossopoulou, and P. Müller. The need for flexible object invari-
ants. In IWACO ’09, pages 1–9. ACM, 2009.

20

A Proof Outlines

In the appendix, we provide the full specification, implementation and proof
outlines of the CCoWL verification.

Implementations

The procedure i n i tEmpty initializes its argument to be an empty list

procedure i n i tEmpty (t h i s : L i s t)
{

share t h i s
}

The procedure copy initializes its first list argument by copying (lazily) its
second list argument.

procedure copy (t h i s , o t h e r : L i s t)
{

share t h i s below o th e r ;
acqu i re t h i s ;
acqu i re o th e r ;
i f (o t h e r . head6=nu l l)
{

acqu i re o th e r . head ;
t h i s . head := o the r . head ;
t h i s . head . r e fCoun t := t h i s . head . r e fCount + 1 ;
addOneToTransRefCount (t h i s . head) ;
r e l e a s e t h i s . head

}
r e l e a s e o th e r ;
r e l e a s e t h i s

}

The procedure i n s e r t inserts an item at the beginning of a sequence repre-
sented by a list.

procedure i n s e r t (t h i s : L i s t , new value : i n t)
{

var n : Node ;
n:=new Node ;
n . v a l u e :=new value ;
i f (t h i s . head6=nu l l)
{

acqu i re t h i s . head
}

21

n . nex t := t h i s . head ;
t h i s . head :=n ;
t h i s . head . r e fCoun t :=1;
t h i s . head . t r ansRe fCount :=1;
i f (t h i s . head . nex t 6=nu l l)
{

r e l e a s e t h i s . head . nex t
}
share head between t h i s and head . nex t

}

The procedure s e t takes a list, an index, and a value and updates the rep-
resented sequence by changing the item at the position indicated by the index.

procedure s e t (t h i s : L i s t , index , new value : i n t)
{

var h : Node ;
acqu i re t h i s . head ;
i f (t h i s . head . r e fCount=1)
{

node set (t h i s . head , index , v a l u e)
}
e l s e
{

t h i s . head . r e fCoun t := t h i s . head . re fCount −1;
h:= t h i s . head ;
t h i s . head :=new Node ;
node set copy (h , index , va lue , t h i s . head)

}
}

The procedure node set updates the sequence represented by a node which
is known to be of interest to exactly one list.

procedure node set (t h i s : Node , index , new value : i n t)
{

var h : Node ;
i f (i nd ex=0)
{

t h i s . v a l u e :=new value ;
r e l e a s e t h i s

}
e l s e
{

acqu i re t h i s . nex t ;
i f (t h i s . nex t . r e fCount=1)

22

{
r e l e a s e t h i s ;
node set (t h i s . next , index −1, new value)

}
e l s e
{

t h i s . nex t . r e fCount := t h i s . nex t . re fCount −1;
h:= t h i s . nex t ;
t h i s . nex t :=new Node ;
node set copy (h , index −1, new value , t h i s . nex t) ;
r e l e a s e t h i s

}
}

}

The procedure node set copy updates the sequence represented by a node
by performing copying.

procedure node set copy
(t h i s : Node , index , new value : i n t , new node : Node)

{
new node . r e fCount :=1;
new node . t r ansRe fCount :=1;
i f (t h i s . nex t 6=nu l l)
{

acqu i re t h i s . nex t
}
t h i s . t r an sRe fCount := t h i s . t ransRefCount −1;
i f (i nd ex=0)
{

new node . v a l u e :=new value ;
new node . nex t := t h i s . nex t ;
i f (t h i s . nex t 6=nu l l)
{

t h i s . nex t . r e fCount := t h i s . nex t . r e fCoun t+1
r e l e a s e t h i s . nex t

}
}
e l s e
{

new node . v a l u e := t h i s . v a l u e ;
i f (t h i s . nex t 6=nu l l)
{

new node . nex t :=new Node ;
node set copy

(t h i s . next , index −1, new value , new node . nex t)
}
e l s e

23

{
new node . nex t := nu l l

}
}
share new node between t h i s and new node . nex t ;
r e l e a s e t h i s

}

The ghost procedure addOneToTransRefCount updates the transitive ref-
erence counters of all nodes in which a new list becomes interested.

ghost procedure addOneToTransRefCount (t h i s : Node)
{

i f (t h i s . nex t 6=nu l l)
{

acqu i re t h i s . nex t
}
t h i s . t r an sRe fCount := t h i s . t r an sRe fCount + 1 ;
i f (t h i s . nex t 6=nu l l)
{

addOneToTransRefCount (t h i s . nex t) ;
r e l e a s e t h i s . nex t

}
}

Useful Definitions for the Proofs

First we define some predicates to be used in the proofs.
The predicate i n v expresses the fact that the monitor invariant of a node

is true and, furthermore, the second parameter of i n v is the value of the next

field of that node:

pred i ca te i n v (t h i s , nx : Node)
{
Inv (t h i s) ∧ t h i s . nex t

ε7−→nx
}

The predicate i n v1 expresses the fact that the monitor invariant of a node
is true and, furthermore, its reference counters are both equal to 1 (therefore it
is possible for a holder of a node predicate to write directly to the fields of the
node):

pred i ca te i n v1 (t h i s , nx : Node)
{
∃B1, B2, F ·

(t h i s . v a l u e
1−ε7−−→ ∗ t h i s . nex t

1−ε7−−→nx
∗ t h i s . head−1 7→B1 ∗ t h i s . nex t−1 7→B2

24

∗ t h i s . r e fCount 7→1 ∗ t h i s . t r an sRe fCount
0.57−−→ 1

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ (nx=nu l l ⇒ t h i s . t r an sRe fCount
0.57−−→ 1)

) ∧ 1 = |B1 | + (
∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

}

The predicate brokenT inv expresses the fact that the monitor invariant of
a node is true except the transitive reference counter is off by the third parameter:

pred i ca te brokenT inv (t h i s , nx : Node , p : i n t)
{
∃T,N,B1, B2, F ·

(t h i s . v a l u e
1−Tε7−−−→ ∗ t h i s . nex t

1−Tε7−−−→nx
∗ t h i s . head−1 7→B1 ∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→ |B1 |+ |B2 | ∗ t h i s . t r an sRe fCount
0.57−−→ T+p

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ (nx=nu l l ⇒ t r an sRe fCount
0.57−−→ T+p)

) ∧ T = |B1| +
∑
n ∈ B2 ·F (n)

}

The predicate brokenR inv expresses the fact that the monitor invariant of
a node is true except the reference counter is off by the third parameter:

pred i ca te brokenR inv (t h i s , nx : Node , p : i n t)
{
∃T,N,B1, B2, F ·

(t h i s . v a l u e
1−Tε7−−−→ ∗ t h i s . nex t

1−Tε7−−−→nx
∗ t h i s . head−1 7→B1 ∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→ |B1 |+ |B2 |+p ∗ t h i s . t r an sRe fCount
0.57−−→ T

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ (nx=nu l l ⇒ t r an sRe fCount
0.57−−→ T)

) ∧ T = |B1| +
∑
n ∈ B2 ·F (n)

}

The predicate brokenRT inv expresses the fact that the monitor invariant
of a node is true except the reference counter is off by the third parameter and
that the transitive reference counter is off by the fourth parameter:

pred i ca te brokenRT inv (t h i s , nx : Node , p1 , p2 : i n t)
{
∃T,N,B1, B2, F ·

(t h i s . v a l u e
1−Tε7−−−→ ∗ t h i s . nex t

1−Tε7−−−→nx
∗ t h i s . head−1 7→B1 ∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→ |B1 |+ |B2 |+p1 ∗ t h i s . t r an sRe fCount
0.57−−→ T+p2

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ (nx=nu l l ⇒ t r an sRe fCount
0.57−−→ T+p2)

) ∧ T = |B1| +
∑
n ∈ B2 ·F (n)

}

25

Specifications Proofs

Proof of i n i tEmpty

procedure i n i tEmpty (t h i s : L i s t)
r e qu i r e s newRec (t h i s) ∗ he l d 7→O
ensures l i s t (t h i s , [])

∗ sha r ed (t h i s ,)
∗ he l d 7→O
∗ O @ t h i s

{
// note tha t the i n v a r i a n t o f L i s t i s t r i v i a l l y t r u e

share t h i s

{ sha r ed (t h i s ,)
∗ he l d 7→O
∗ O@ t h i s
∗ t h i s . head 7→ nu l l

}
⇒
{ l i s t (t h i s , [])
∗ sha r ed (t h i s ,)
∗ he l d 7→O
∗ O @ t h i s

}
}

Proof of copy

procedure copy (t h i s , o t h e r : L i s t)
r e qu i r e s newRec (t h i s)

∗ l i s t (o the r , L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O
∗ O @ o th e r

ensures l i s t (t h i s , L)
∗ sha r ed (t h i s ,)
∗ l i s t (o the r , L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O
∗ O @ t h i s
∗ O @ o th e r

{
share t h i s below o th e r ;

{ sha r ed (t h i s ,)
∗ t h i s . head 7→ nu l l
∗ l i s t (o ther , L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O

26

∗ O @ t h i s @ o th e r

}
acqu i re t h i s ;
acqu i re o th e r ;

{ sha r ed (t h i s ,)
∗ t h i s . head 7→ nu l l
∗ l i s t (o ther , L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ o th e r

}
⇒
{∃H ·

sha r ed (t h i s ,)
∗ t h i s . head 7→ nu l l
∗ o th e r . head 7→H
∗ ((node (H ,L) ∗ o th e r @H) ∨ (H=nu l l ∧ L=[]))
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ o th e r

}
i f (o t h e r . head6=nu l l)
{
{∃H ·

sha r ed (t h i s ,)
∗ t h i s . head 7→ nu l l
∗ o th e r . head 7→H
∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ other<H

}
acqu i re o th e r . head ;

{∃H ·
sha r ed (t h i s ,)

∗ t h i s . head 7→ nu l l
∗ o th e r . head 7→H
∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o the r ,H}
∗ Inv (H)
∗ O @ t h i s @ other<H

}
t h i s . head := o the r . head ;

{∃H ·
sha r ed (t h i s ,)

∗ t h i s . head 7→H
∗ o th e r . head 7→H

27

∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o the r ,H}
∗ brokenRT inv (H , ,−1 ,−1)
∗ O @ t h i s @ other<H

}
t h i s . head . r e fCoun t := t h i s . head . r e fCount + 1 ;

{∃H ·
sha r ed (t h i s ,)

∗ t h i s . head 7→H
∗ o th e r . head 7→H
∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o the r ,H}
∗ brokenT inv (H , ,−1)
∗ O @ t h i s @ other<H

}
// see Sect . 3 . 3 , Lo s i ng I n t e r e s t
addOneToTransRefCount (t h i s . head) ;

{∃H ·
sha r ed (t h i s ,)

∗ t h i s . head 7→H
∗ o th e r . head 7→H
∗ node (H ,L)
∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o the r ,H}
∗ Inv (H)
∗ O @ t h i s @ other<H

}
r e l e a s e t h i s . head

{∃H ·
sha r ed (t h i s ,)

∗ t h i s . head 7→H
∗ o th e r . head 7→H
∗ node (H ,L)
∗ node (H ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ other<H

}
⇒

{ l i s t (t h i s ,L)
∗ sha r ed (t h i s ,)
∗ l i s t (o the r ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ o th e r

28

}
}
{ l i s t (t h i s ,L)
∗ sha r ed (t h i s ,)
∗ l i s t (o ther ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O∪{ t h i s , o t h e r }
∗ O @ t h i s @ o th e r

}
r e l e a s e o th e r ;
r e l e a s e t h i s

{ l i s t (t h i s ,L)
∗ sha r ed (t h i s ,)
∗ l i s t (o ther ,L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O
∗ O @ t h i s @ o th e r

}
⇒
{ l i s t (t h i s , L)
∗ sha r ed (t h i s ,)
∗ l i s t (o the r , L)
∗ sha r ed (othe r ,µ)
∗ he l d 7→O
∗ O @ t h i s
∗ O @ o th e r

}
}

Proof of i n s e r t

procedure i n s e r t (t h i s : L i s t , new value : i n t)
r e qu i r e s l i s t (t h i s ,L) ∗ sha r ed (t h i s ,µ) ∗ he l d 7→O ∗ O @ t h i s
ensures l i s t (t h i s , [new value]++L) ∗ sha r ed (t h i s ,µ)

∗ he l d 7→O
{

var n : Node ;
n:=new Node ;
n . v a l u e :=new value ;

{∃H ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→H
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ he l d 7→O
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value

29

∗ n . nex t 7→ nu l l
∗ n . r e fCount 7→
∗ n . t r ansRe fCount 7→
∗ n . head−1 7→∅
∗ n . nex t−1 7→∅

}
i f (t h i s . head6=nu l l)
{

acqu i re t h i s . head
}
{∃H,T ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→H
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ (H6=nu l l ⇒ he l d 7→O∪{H })
∗ (H=nu l l ⇒ he l d 7→O)
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value
∗ n . nex t 7→ nu l l
∗ n . r e fCount 7→
∗ n . t r ansRe fCount 7→T
∗ n . head−1 7→∅
∗ n . nex t−1 7→∅
∗ (H6=nu l l ⇒ Inv (H))

}
n . nex t := t h i s . head ;

{∃H,T ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→H
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ (H6=nu l l ⇒ he l d 7→O∪{H })
∗ (H=nu l l ⇒ he l d 7→O)
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value
∗ n . nex t 7→H
∗ n . r e fCount 7→
∗ (H6=nu l l ⇒n . t r ansRe fCount

0.57−−→ T)
∗ (H==nu l l ⇒n . t r ansRe fCount 7→T)
∗ n . head−1 7→∅
∗ n . nex t−1 7→∅
∗ (H6=nu l l ⇒ brokenRT inv (H , ,−1,−T))

}
t h i s . head :=n ;

{∃H,T ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→n
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))

30

∗ (H6=nu l l ⇒ he l d 7→O∪{H })
∗ (H=nu l l ⇒ he l d 7→O)
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value
∗ n . nex t 7→H
∗ n . r e fCount 7→
∗ (H6=nu l l ⇒n . t r ansRe fCount

0.57−−→ T)
∗ (H==nu l l ⇒n . t r ansRe fCount 7→T)
∗ n . head−1 7→{ t h i s }
∗ n . nex t−1 7→∅
∗ (H6=nu l l ⇒ brokenT inv (H , ,1−T))

}
t h i s . head . r e fCoun t :=1;
t h i s . head . t r ansRe fCount :=1;

{∃H ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→n
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ (H6=nu l l ⇒ he l d 7→O∪{H })
∗ (H=nu l l ⇒ he l d 7→O)
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value
∗ n . nex t 7→H
∗ n . r e fCount 7→1

∗ (H6=nu l l ⇒n . t r ansRe fCount
0.57−−→1)

∗ (H==nu l l ⇒n . t r ansRe fCount 7→ 1)
∗ n . head−1 7→{ t h i s }
∗ n . nex t−1 7→∅
∗ (H6=nu l l ⇒ Inv (H))

}
i f (t h i s . head . nex t 6=nu l l)
{

r e l e a s e t h i s . head . nex t
}
{∃H ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→n
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ he l d 7→O
∗ O @ t h i s
∗ l o c a l (n)
∗ n . v a l u e 7→ new value
∗ n . nex t 7→H
∗ n . r e fCount 7→1

∗ (H6=nu l l ⇒n . t r ansRe fCount
0.57−−→ 1)

∗ (H==nu l l ⇒n . t r ansRe fCount 7→ 1)

31

∗ n . head−1 7→{ t h i s }
∗ n . nex t−1 7→∅

}
⇒
{∃H ·
∗ sha r ed (t h i s ,µ)
∗ t h i s . head 7→n
∗ ((node (H ,L) ∗ t h i s @H) ∨ (H=nu l l ∧ L=[]))
∗ he l d 7→O
∗ O @ t h i s
∗ l o c a l (n)

∗ n . v a l u e
ε7−→new value

∗ n . nex t
ε7−→ H

∗ Inv (n)

}
share head between t h i s and head . nex t

{ sha r ed (t h i s ,µ)
∗ t h i s . head 7→n
∗ he l d 7→O
∗ O @ t h i s @ n
∗ node (n , [new value]++L)

}
⇒
{ l i s t (t h i s , [new value]++L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O

}
}

Proof of s e t

procedure s e t (t h i s : L i s t , index , new value : i n t)
r e qu i r e s (l i s t (t h i s ,L)

∗ sha r ed (t h i s ,µ)
∗ he l d 7→O
∗ O @ t h i s) ∧ 0≤i ndex <|L |

ensures l i s t (t h i s ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O

{
var h : Node ;

// by the p r e c ond i t i o n , the head i s not n u l l

{ ∃H ·
(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O

32

∗ O @ t h i s @H) ∧ 0≤i ndex <|L |
}

acqu i re t h i s . head ;

{ ∃H ·
(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ Inv (H)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L |

}
i f (t h i s . head . r e fCount=1)
{

// see Sect . 3 . 3 S e t t i n g w i thout Copying

{ ∃H ·
(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ i n v1 (H ,)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L |

}
node set (t h i s . head , index , v a l u e)

{ ∃H ·
t h i s . head 7→H

∗ node (H ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O
∗ O @ t h i s @H

}
⇒

{ l i s t (t h i s ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O

}
}
e l s e
{
{ ∃H ·

(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ Inv (H)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L |

}
t h i s . head . r e fCoun t := t h i s . head . re fCount −1;
{ ∃H ·

33

(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ brokenR inv (H , ,−1)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L |

}
h:= t h i s . head ;

{ ∃H ·
(t h i s . head 7→H
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ brokenR inv (H , ,−1)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L | ∧ h=H

}
t h i s . head :=new Node ;

{ ∃H,H ′ ·
(t h i s . head 7→H ′

∗ H ′ . v a l u e 7→
∗ H ′ . nex t 7→ nu l l
∗ H ′ . r e fCount 7→
∗ H ′ . t r an sRe fCount 7→
∗ H ′ . head−1 7→{ t h i s }
∗ H ′ . nex t−1 7→∅
∗ l o c a l (H ′)
∗ node (H ,L)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O∪{H}
∗ brokenT inv (H , , 1)
∗ O @ t h i s @H) ∧ 0≤i ndex <|L | ∧ h=H

}
node set copy (h , index , va lue , t h i s . head)

{ ∃H ′ ·
t h i s . head 7→H ′

∗ node (H ′ ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O
∗ O @ t h i s @H ′

}
⇒

{ l i s t (t h i s ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)
∗ he l d 7→O

}
}
{ l i s t (t h i s ,L〈 i n d e x→ v a l u e 〉)
∗ sha r ed (t h i s ,µ)

34

∗ he l d 7→O

}
}

Proof of node set

procedure node set (t h i s : Node , index , new value : i n t)
r e qu i r e s (node (t h i s ,L)

∗ i n v1 (t h i s ,)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 0≤i ndex <|L |

ensures node (t h i s , L〈 i n d e x→ new value 〉) ∗ he l d 7→O
{

var h : Node ;
i f (i nd ex=0)
{
{ (node (t h i s ,L)

∗ i n v1 (t h i s ,)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 0=index <|L |

}
t h i s . v a l u e :=new value ;

{ node (t h i s ,L〈 i n d e x→ new value 〉)
∗ i n v1 (t h i s ,)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s

}
r e l e a s e t h i s

{ node (t h i s , L〈 i n d e x→ new value 〉) ∗ he l d 7→O }
}
e l s e
{
{ (node (t h i s ,L)

∗ i n v1 (t h i s ,)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 0< i ndex <|L |

}
acqu i re t h i s . nex t ;

{ ∃N ·
(node (t h i s ,L)
∗ i n v1 (t h i s ,N)
∗ Inv (N)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N

35

) ∧ 0< i ndex <|L |
}

i f (t h i s . nex t . r e fCount=1)
{

// see Sect . 3 . 3 , S e t t i n g w i thout Copying

{ ∃N ·
(node (t h i s ,L)
∗ i n v1 (t h i s ,N)
∗ i n v1 (N)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |

}
r e l e a s e t h i s ;

{ ∃N ·
(node (t h i s ,L)
∗ i n v1 (N)
∗ he l d 7→O∪{N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |

}
⇒

{ ∃N ·
(t h i s . v a l u e

ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ node (N ,L [1 . .])
∗ i n v1 (N)
∗ he l d 7→O∪{N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |

}
node set (t h i s . next , index −1, new value)

{ ∃N ·
(t h i s . v a l u e

ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ node (N ,L [1 , . .] 〈 i ndex−1→ new value 〉)
∗ he l d 7→O
) ∧ 0< i ndex <|L |

}
⇒

{ node (t h i s , L〈 i n d e x→ new value 〉) ∗ he l d 7→O }
}
e l s e
{
{ ∃N ·

(node (t h i s ,L)
∗ i n v1 (t h i s ,N)
∗ Inv (N)

36

∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |

}
t h i s . nex t . r e fCount := t h i s . nex t . re fCount −1;
{ ∃N ·

(node (t h i s ,L)
∗ i n v1 (t h i s ,N)
∗ brokenR inv (N , ,−1)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |

}
⇒

{ ∃N,B1, B2, F ·
(t h i s . v a l u e 7→L [0]
∗ t h i s . nex t 7→N
∗ t h i s . head−1 7→B1

∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→1
∗ t h i s . t r an sRe fCount 7→1
∗ (�n∈B2 ·n . t r an sRe fCount 7→F (n))
∗ node (N ,L [1 . .])
∗ brokenR inv (N , ,−1)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |
∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

}
h:= t h i s . nex t ;

{ ∃N,B1, B2, F ·
(t h i s . v a l u e 7→L [0]
∗ t h i s . nex t 7→N
∗ t h i s . head−1 7→B1

∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→1
∗ t h i s . t r an sRe fCount 7→1
∗ (�n∈B2 · n . t r ansRe fCount 7→F (n))
∗ node (N ,L [1 . .])
∗ brokenR inv (N , ,−1)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |
∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ h=N

}
t h i s . nex t :=new Node ;

{ ∃N,N ′, B1, B2, F ·
(t h i s . v a l u e 7→L [0]

37

∗ t h i s . nex t 7→N ′

∗ t h i s . head−1 7→B1

∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→1
∗ t h i s . t r an sRe fCount 7→1
∗ (�n∈B2 · n . t r ansRe fCount 7→F (n))
∗ node (N ,L [1 . .])
∗ brokenT inv (N , ,+1)
∗ l o c a l (N ′)
∗ N ′ . v a l u e 7→
∗ N ′ . nex t 7→ nu l l
∗ N ′ . r e fCount 7→
∗ N ′ . t r an sRe fCount 7→
∗ N ′ . head−1 7→∅
∗ N ′ . nex t−1 7→{ t h i s }
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |
∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ h=N

}
⇒

{ ∃N,N ′, B1, B2, F ·
(t h i s . v a l u e 7→L [0]
∗ t h i s . nex t 7→N ′

∗ t h i s . head−1 7→B1

∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→1

∗ t h i s . t r an sRe fCount
0.57−−→1

∗ (�n∈B2 · n . t r ansRe fCount 7→F (n))
∗ node (N ,L [1 . .])
∗ brokenT inv (N , , 1)
∗ l o c a l (N ′)
∗ N ′ . v a l u e 7→
∗ N ′ . nex t 7→ nu l l
∗ N ′ . r e fCount 7→
∗ N ′ . t r an sRe fCount 7→
∗ N ′ . head−1 7→∅
∗ N ′ . nex t−1 7→{ t h i s }
∗ (�n∈{ t h i s } ·n . t r an sRe fCount

0.57−−→ 1)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
) ∧ 0< i ndex <|L |
∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ h=N

}
node set copy (h , index −1, new value , t h i s . nex t) ;

{ ∃N,N ′, B1, B2, F ·
(t h i s . v a l u e 7→L [0]

38

∗ t h i s . nex t 7→N ′

∗ t h i s . head−1 7→B1

∗ t h i s . nex t−1 7→B2

∗ t h i s . r e fCount 7→1

∗ t h i s . t r an sRe fCount
0.57−−→1

∗ (�n∈B2 · n . t r ansRe fCount 7→F (n))
∗ node (N ′ ,L [1 . .] 〈 i ndex−1→ new value 〉)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s @N @N ′

) ∧ 0< i ndex <|L |
∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ h=N

}
⇒

{ (node (t h i s , L〈 i n d e x→ new value 〉)
∗ i n v1 (t h i s ,)
∗ he l d 7→O∪{ t h i s }
) ∧ t h i s 6∈O

}
r e l e a s e t h i s

{ node (t h i s , L〈 i n d e x→ new value 〉) ∗ he l d 7→O }
}
{ node (t h i s , L〈 i n d e x→ new value 〉) ∗ he l d 7→O }

}
}

Proof of node set copy

procedure node set copy
(t h i s : Node , index , new value : i n t , new node : Node)

r e qu i r e s (node (t h i s , L)
∗ new node . v a l u e 7→ ∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→
∗ new node . t r ansRe fCount 7→
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ brokenT inv (t h i s ,N , 1)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0≤i ndex <|L |
ensures (node (new node ,L〈 i n d e x→ new value 〉)

∗ he l d 7→O
∗ t h i s @ new node
)

39

{
new node . r e fCount :=1;
new node . t r ansRe fCount :=1;

{ (t h i s . v a l u e
ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ ((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))
∗ new node . v a l u e 7→
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ brokenT inv (t h i s ,N , 1)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0≤i ndex <|L |
}

i f (t h i s . nex t 6=nu l l)
{

acqu i re t h i s . nex t
}
{ (t h i s . v a l u e

ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ ((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))
∗ new node . v a l u e 7→
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ brokenT inv (t h i s ,N , 1)
∗ (N 6=nu l l ⇒ Inv (N))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0≤i ndex <|L |
}

t h i s . t r an sRe fCount := t h i s . t ransRefCount −1;
// note tha t the e p s i l o n p e rm i s s i o n s to t h i s . v a l u e
// and t h i s . nex t r e t u r n to the i n v a r i a n t o f t h i s
// s e e Sect . 3 . 3 , Lo s i ng I n t e r e s t

{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))

40

∗ new node . v a l u e 7→
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)
∗ (N 6=nu l l ⇒ brokenT inv (N , , 1))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0≤i ndex <|L |
}

i f (i nd ex=0)
{
{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))

∗ new node . v a l u e 7→
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)
∗ (N 6=nu l l ⇒ brokenT inv (N , , 1))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0=index <|L |
}

new node . v a l u e :=new value ;
new node . nex t := t h i s . nex t ;

{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))
∗ new node . v a l u e 7→ new value
∗ new node . nex t 7→N
∗ new node . r e fCount 7→1

∗ new node . t r ansRe fCount
0.57−−→1

∗ (N 6=nu l l ⇒new node . t r ansRe fCount
0.57−−→1)

∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)

41

∗ (N 6=nu l l ⇒ brokenR inv (N , ,−1))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0=index <|L |
}

i f (t h i s . nex t 6=nu l l)
{

t h i s . nex t . r e fCount := t h i s . nex t . r e fCoun t+1
r e l e a s e t h i s . nex t

}
{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))

∗ new node . v a l u e 7→ new value
∗ new node . nex t 7→N
∗ new node . r e fCount 7→1

∗ new node . t r ansRe fCount
0.57−−→1

∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0=index <|L |
}

⇒
{ ∃N ′ ·

(new node . v a l u e
ε7−→ L〈 i n d e x→ new value 〉 [0])

∗ new node . nex t
ε7−→ N ′

∗ l o c a l (new node)
∗ ((N ′6=nu l l ∧ node (N ′ ,L〈 i n d e x→ new value 〉 [1 . .]))

∨ (N ′=nu l l ∧ | L |=1))
∗ Inv (t h i s) ∗ Inv (new node)
∗ he l d 7→O∪{ t h i s }
)

}
}
e l s e
{
{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))

∗ new node . v a l u e 7→
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

42

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)
∗ (N 6=nu l l ⇒ brokenT inv (N , , 1))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L |
}

new node . v a l u e := t h i s . v a l u e ;

{ (((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))
∗ new node . v a l u e 7→L [0]
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)
∗ (N 6=nu l l ⇒ brokenT inv (N , , 1))
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s }∪{N })
∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L |
}

i f (t h i s . nex t 6=nu l l)
{
{ (node (N ,L [1 . .])

∗ new node . v a l u e 7→L [0]
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ Inv (t h i s)
∗ sha r ed (N ,)
∗ brokenT inv (N , , 1)
∗ he l d 7→O∪{ t h i s }∪{N }
∗ O @ t h i s @N
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L |
}

new node . nex t :=new Node ;

{ ∃N ′ ·

43

(node (N ,L [1 . .])
∗ new node . v a l u e 7→L [0]
∗ new node . nex t 7→N ′

∗ l o c a l (N ′)
∗ N ′ . v a l u e 7→
∗ N ′ . nex t 7→ nu l l
∗ N ′ . r e fCount 7→
∗ N ′ . t r an sRe fCount 7→
∗ N ′ . head−1 7→∅
∗ N ′ . nex t−1 7→{new node}
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s ,N)
∗ sha r ed (N ,)
∗ brokenT inv (N , , 1)
∗ he l d 7→O∪{ t h i s }∪{N }
∗ O @ t h i s @N
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L |
}

node set copy
(t h i s . next , index −1, new value , new node . nex t)

{ ∃N ′ ·
(new node . v a l u e 7→L [0]
∗ new node . nex t 7→N ′

∗ new node . r e fCount 7→1

∗ new node . t r ansRe fCount
0.57−−→1

∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ Inv (t h i s)
∗ node (N ′ ,L [1 . .] 〈 i ndex−1→ new value 〉)
∗ he l d 7→O∪{ t h i s }
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L |
}

⇒
{ ∃N ′ ·

(new node . v a l u e
ε7−→ L〈 i n d e x→ new value 〉 [0])

∗ new node . nex t
ε7−→ N ′

∗ l o c a l (new node)
∗ ((N ′6=nu l l ∧ node (N ′ ,L〈 i n d e x→ new value 〉 [1 . .]))

∨ (N ′=nu l l ∧ | L |=1))

44

∗ Inv (t h i s) ∗ Inv (new node)
∗ he l d 7→O∪{ t h i s }
)

}
}
e l s e
{
{ (new node . v a l u e 7→L [0]

∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s , nu l l)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L|=1 ∧ N=nu l l

}
new node . nex t := nu l l

{ (new node . v a l u e 7→L [0]
∗ new node . nex t 7→ nu l l
∗ new node . r e fCount 7→1
∗ new node . t r ansRe fCount 7→1
∗ new node . head−1 7→B1

∗ new node . nex t−1 7→B2

∗ l o c a l (new node)

∗ (�n ∈ B2 ·n . t r an sRe fCount
0.57−−→ F (n))

∗ i n v (t h i s , nu l l)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
) ∧ 1 = |B1 | + (

∑
n ∈ B2 ·F (n)) = |B1 |+ |B2 |

∧ 0< i ndex <|L|=1 ∧ N=nu l l

}
⇒

{ ∃N ′ ·
(new node . v a l u e

ε7−→ L〈 i n d e x→ new value 〉 [0])
∗ new node . nex t

ε7−→ N ′

∗ l o c a l (new node)
∗ ((N ′6=nu l l ∧ node (N ′ ,L〈 i n d e x→ new value 〉 [1 . .]))

∨ (N ′=nu l l ∧ | L |=1))
∗ Inv (t h i s) ∗ Inv (new node)
∗ he l d 7→O∪{ t h i s }
)

}
}

45

}
{ ∃N ′ ·

(new node . v a l u e
ε7−→ L〈 i n d e x→ new value 〉 [0])

∗ new node . nex t
ε7−→ N ′

∗ l o c a l (new node)
∗ ((N ′6=nu l l ∧ node (N ′ ,L〈 i n d e x→ new value 〉 [1 . .]))

∨ (N ′=nu l l ∧ | L |=1))
∗ Inv (t h i s) ∗ Inv (new node)
∗ he l d 7→O∪{ t h i s }
)

}
share new node between t h i s and new node . nex t ;

{ ∃N ′ ·
(new node . v a l u e

ε7−→ L〈 i n d e x→ new value 〉 [0])
∗ new node . nex t

ε7−→ N ′

∗ sha r ed (new node)
∗ ((node (N ′ ,L〈 i n d e x→ new value 〉 [1 . .]) ∗ new node @N ′)

∨ (N ′=nu l l ∧ | L |=1))
∗ Inv (t h i s)
∗ he l d 7→O∪{ t h i s }
∗ t h i s @ new node
)

}
⇒
{ (node (new node ,L〈 i n d e x→ new value 〉)

∗ Inv (t h i s)
∗ he l d 7→O∪{ t h i s }
∗ t h i s @ new node
)

}
r e l e a s e t h i s

{ (node (new node ,L〈 i n d e x→ new value 〉)
∗ he l d 7→O
∗ t h i s @ new node
)

}
}

Proof of addOneToTransRefCount

ghost procedure addOneToTransRefCount (t h i s : Node)
r e qu i r e s node (t h i s ,L)

∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
∗ brokenT inv (t h i s , ,−1)

ensures node (t h i s ,L)
∗ node (t h i s ,L)

46

∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
∗ Inv (t h i s)

{
{ ∃N ·

t h i s . v a l u e
ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ ((node (N ,L [1 . .]) ∗ t h i s @N) ∨ (N=nu l l ∧ |L |=1))
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
∗ brokenT inv (t h i s , ,−1)

}
i f (t h i s . nex t 6=nu l l)
{

acqu i re t h i s . nex t
}
{ ∃N ·

t h i s . v a l u e
ε7−→ L [0]

∗ t h i s . nex t
ε7−→ N

∗ ((node (N ,L [1 . .]) ∗ t h i s @N ∗ Inv (N))
∨ (N=nu l l ∧ |L |=1))

∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s ,N })
∗ O @ t h i s
∗ brokenT inv (t h i s , ,−1)

}
t h i s . t r an sRe fCount := t h i s . t r an sRe fCount + 1 ;

{ ∃N ·
t h i s . v a l u e

2ε7−→ L [0]

∗ t h i s . nex t
2ε7−→ N

∗ ((node (N ,L [1 . .]) ∗ t h i s @N ∗ brokenT inv (N))
∨ (N=nu l l ∧ |L |=1))

∗ (N=nu l l ⇒ he l d 7→O∪{ t h i s })
∗ (N 6=nu l l ⇒ he l d 7→O∪{ t h i s ,N })
∗ O @ t h i s
∗ Inv (t h i s)

}
i f (t h i s . nex t 6=nu l l)
{
{ ∃N ·

t h i s . v a l u e
2ε7−→ L [0]

∗ t h i s . nex t
2ε7−→ N

∗ node (N ,L [1 . .])
∗ brokenT inv (N)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
∗ Inv (t h i s)

47

}
addOneToTransRefCount (t h i s . nex t) ;

{ ∃N ·
t h i s . v a l u e

2ε7−→ L [0]

∗ t h i s . nex t
2ε7−→ N

∗ node (N ,L [1 . .])
∗ node (N ,L [1 . .])
∗ Inv (N)
∗ he l d 7→O∪{ t h i s ,N }
∗ O @ t h i s @N
∗ Inv (t h i s)

}
r e l e a s e t h i s . nex t

{ ∃N ·
t h i s . v a l u e

2ε7−→ L [0]

∗ t h i s . nex t
2ε7−→ N

∗ node (N ,L [1 . .])
∗ node (N ,L [1 . .])
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s @N
∗ Inv (t h i s)

}
⇒

{ node (t h i s ,L)
∗ node (t h i s ,L)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
∗ Inv (t h i s)

}
}
{ node (t h i s ,L)

∗ node (t h i s ,L)
∗ he l d 7→O∪{ t h i s }
∗ O @ t h i s
∗ Inv (t h i s)

}
}

48

