
A Discipline for Program Verification

Based on Backpointers and Its Use
in Observational Disjointness

Ioannis T. Kassios1,� and Eleftherios Kritikos2

1 ETH Zurich, Switzerland
ioannis.kassios@inf.ethz.ch

2 National Technical University of Athens, Greece
eleftherios.kritikos@gmail.com

Abstract. In the verification of programs that manipulate the heap,
logics that emphasize localized reasoning, such as separation logic, are
being used extensively. In such logics, state conditions may only refer to
parts of the heap that are reachable from the stack. However, the cor-
rect implementation of some data structures is based on state conditions
that depend on unreachable locations. For example, reference counting
depends on the invariant that “the number of nodes pointing to a certain
node is equal to its reference counter”. Such conditions are cumbersome
or even impossible to formalize in existing variants of separation logic.

In the first part of this paper, we develop a minimal programming
discipline that enables the programmer to soundly express backpointer
conditions, i.e., state conditions that involve heap objects that point to
the reachable part of the heap, such as the above-mentioned reference
counting invariant.

In the second part, we demonstrate the expressiveness of our method-
ology by verifying the implementation of concurrent copy-on-write lists
(CCoWL). CCoWL is a data structure with observational disjointness,
i.e., its specification pretends that different lists depend on disjoint parts
of the heap, so that separation logic reasoning is made easy, while its im-
plementation uses sharing to maximize performance. The CCoWL case
study is a very challenging problem, to which we are not aware of any
other solution.

1 Introduction

The advent of separation logic [1] has revolutionized reasoning about programs
with rich heap structure. The main motivation behind this line of work is local-
ized reasoning (also referred to as “reasoning in the small”). In particular, the
specifier is only allowed to talk about the locations of the heap s/he has explicit
permission to, completely ignoring the rest of the heap. In separation logic, a
state condition contains its own permissions. For example, x �→ 3 is a condition

� The first author was funded by the Hasler Foundation.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 149–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 I.T. Kassios and E. Kritikos

that not only expresses the fact that 3 is the content of memory location x, but
also that the programmer is permitted to read and write to x.

State conditions that contain their own permissions are called self-framing
[2–4]. A self-framing assertion has the important property that it cannot be
falsified by an unknown program. As a result, the localized verification of our
program cannot be falsified when this program is composed (sequentially, paral-
lelly, through method call, or through thread forking) with other programs. In
concurrent variants of separation logic, permissions can be split [5] (e.g., in frac-
tions [6]), thus enabling shared resources without data races. These well-known
extensions of separation logic, maintain this important property: all expressible
state conditions are self-framing.

Self-framing conditions cannot talk about objects that are unreachable by the
pointers of the program under verification. However, there are cases when such
conditions would be desirable.

For example, assume that we have a concurrent program operating on a graph.
Normally, none of its threads has access to the whole graph, because that would
mean that only one thread can perform changes, which defeats the purpose of
concurrency. Consider now the following examples of node invariants :

– Reference counting. The value of the reference counter of a node N is equal
to the number of nodes N ′ such that N ′.f = N .

– Priority Inheritance Protocol [7]. The priority of a node is the minimum of
its initial priority and the priority of the node pointing to it (see also [8]).

– The union-find structure. In this structure each node represents a set of
nodes. The set represented by a node N is {N} unioned with the sets rep-
resented by all nodes that point to N .

Assume that a thread T has access to a node N . The invariant of N involves
nodes that are unreachable from N , and therefore inaccessible to T . This makes
the invariant of N non-self-framing, and therefore inexpressible in existing vari-
ants of separation logic.

All the examples of node invariants that we mentioned are conditions which
may involve unreachable heap objects that point to reachable heap objects. We
call such conditions backpointer conditions. Our purpose is to enable the “rea-
soning in the small” style of separation logic, in verification problems that involve
backpointer conditions.

1.1 Contributions

In this paper, we propose an extension of separation logic with a minimal pro-
gramming discipline that makes it possible to express backpointer conditions in
a self-framing way. Our methodology enables the verification, in the localized
style of separation logic, of data structures with backpointer node invariants.

Furthermore, we use our technique to verify the case study of concurrent copy-
on-write lists (hence CCoWL). This is a challenging problem of observational
disjointness : the structure pretends that it supports mutually disjoint mutable

Backpointers and Observational Disjointness 151

sequences of integers, even though it uses data sharing under the hood, to en-
hance performance. The clients are happy to use the facilities of separation logic
to verify their programs as if the lists were actually heap-disjoint, but the verifier
of the implementation is faced with a challenging reference counting mechanism.
We are not aware of other solutions to the CCoWL verification problem.

1.2 Structure of the Paper

The paper is organized as follows: In Sect. 2, we motivate and introduce the
discipline of backpointers. In Sect. 3, we show how the discipline can be used to
verify CCoWLs, highlighting the most important parts of the implementation
and the correctness proof. In Sect. 4, we discuss the relationship of our method-
ology to related work and point out some possibilities for future work. Sect. 5
concludes.

Our online technical report [9] contains an appendix with the full specification,
implementation and correctness proof of the CCoWL example.

2 The Backpointers Discipline

In this section, we introduce the discipline of backpointers. We start by intro-
ducing the background (Sect. 2.1) on which we work, a framework for locking,
monitor invariants, and deadlock avoidance borrowed from Chalice [10]. We then
extend our language with the backpointer formalism (Sect. 2.2) and provide an
argument about the soundness of this extension (Sect. 2.3).

2.1 Background

Records and Locking. Our language supports mutable records. A monitor is
associated with each record and a monitor invariant is also associated with each
monitor. The monitor invariant is an expression written in separation logic with
fractional permissions.

Consider the following definition:

s t r u c t Pa i r
{

x , y : i n t

i n v a r i a n t ∃X,Y ∈ Z · t h i s . x �→X ∗ t h i s . y
0.5�−−→ Y ∧ X>0

}

The definition introduces a set Pa i r . The members of Pa i r are: (a) the special
record n u l l and (b) records r such that r . x and r . y are heap locations that
store integers.

152 I.T. Kassios and E. Kritikos

Assume that t h i s is a non-null record of type Pa i r . The monitor invariant
associated with t h i s asserts that t h i s . x stores a positive value. It also grants
write (full) access permission to t h i s . x and 50% permission to t h i s . y. In
general, when we write monitor invariants, t h i s refers to the current record and
may be omitted when referring to its fields.

We are interested in thread-modular verification. From the point of view of
the current thread, a record can be in one of the following three conditions: (a)
local, (b) shared and not held by the current thread, (c) shared and held by the
current thread. Fig. 1 shows all these conditions, together with the commands
that perform the transitions between them.

localr := new R;
shared

not held by T
shared

held by Tshare r;

acquire r;

release r;

Fig. 1. A record’s life cycle from the point of view of thread T

The invariant of a monitor is always true when the associated record is shared
but not held by any thread. To hold a record, a thread must acquire it. As long
as it holds the record, the thread may invalidate the monitor invariant but must
ensure that the invariant holds before it releases the record. Similarly, a thread
that shares a record must first ensure that the associated invariant holds.

Sharing and releasing means that the current thread loses all permissions
that are contained in the invariant. Acquiring means that the thread gains these
permissions and that it may furthermore assume that the invariant holds imme-
diately after the record is acquired.

The Chalice locking model has a simple mechanism to prevent cyclic depen-
dencies between “acquire” requests, and thus to prevent deadlock [10]. Assume
that Ord is a set equipped with a strict partial ordering � . We furthermore as-
sume that � is dense in the sense that if a� b then there exists c∈Ord such that
a� c� b. Every shared record is associated with a value in Ord called its lock-
level. A thread is allowed to acquire a record, only when that record is greater
in � than all the other records that the thread holds.

The rules that govern record creation, sharing, releasing and acquiring are
shown in Fig. 2. In it:

– l o c a l and sha r ed are abstract predicates that indicate that a record is
local or shared resp. The second argument of sha r ed equals the lock-level
of the record.

– Both predicates imply that their first argument, the record, is non-null:

sha r ed (r ,) ∨ l o c a l (r) ⇒ r
=nu l l

Backpointers and Observational Disjointness 153

– sha r ed is infinitely divisible, i.e.,

sha r ed (r ,µ) ⇐⇒ sha r ed (r ,µ) ∗ sha r ed (r ,µ)

This means that, unlike in Chalice, the lock-level of an object is immutable.

– Each shared record has a single lock-level:

sha r ed (r ,µ) ∗ sha r ed (r ,µ′) ⇒ µ=µ′

– If r, r′ are records, the notation r � r′ is a shorthand for:

∃µ ,µ′∈ Ord · sha r ed (r ,µ) ∗ sha r ed (r′ ,µ′) ∗ µ� µ′

We extend this notation to “compare” a record r to a set of records:

R � r ⇐⇒ ∀r′ ∈ R · r′ � r

Note that R� r ⇒ r
∈R
– Inv (r) is the monitor invariant of record r

– h e l d is a thread-local variable whose value is the set of all records held by
the current thread

– newRec is an abstract predicate describing the situation directly after a new
record is created. It gives access to all fields fi of the new record r, initializes
them to the default value of their type and asserts that r is local:

newRec (r) ⇐⇒ r.f1 �→d1 ∗ . . . ∗ r.fn �→dn ∗ l o c a l (r)

– The default value of all record types is nu l l

The share command can specify bounds for the lock-level of the record being
shared. We omit the rules for these variants of share for brevity.

Counting Permissions. Counting permissions are an important alternative to
fractional permissions. The idea is as follows. A counting permission is a natural
number n, or −1. At any given execution time, there is one thread that holds a
non-negative counting permission n to a heap location and n threads that hold
a −1 counting permission. We call the holder of counting permission n the main
thread for that heap location.

The main thread can give away −1 counting permissions, increasing its own
counting permission accordingly. The holders of −1 counting permissions may
return their counting permission to the main thread, decreasing its counting
permission accordingly. If n = 0, then the main thread is the only thread that
can access the location and thus has write privileges. Otherwise, all involved
threads have read-only access.

We do not need to invent new notation for counting permissions. Instead, we
introduce an infinitesimal fractional permission ε to stand for the −1 counting
permission. Then the counting permission n corresponds to fractional permission
1− nε. This approach is taken in the current Chalice permission model [11].

154 I.T. Kassios and E. Kritikos

{emp}
r :=new R

{newRec (r)}
{ l o c a l (r) ∗ Inv (r) ∗ h e l d �→O ∧ r
∈O}

share r

{sha r ed (r ,) ∗ h e l d �→O}
{sha r ed (r ,µ) ∗ h e l d �→O ∗ O � r}

acqu i re r

{sha r ed (r ,µ) ∗ h e l d �→O∪{ r } ∗ Inv (r)}
{sha r ed (r ,µ) ∗ h e l d �→O ∗ Inv (r) ∧ r∈O}

r e l e a s e r

{sha r ed (r ,µ) ∗ h e l d �→O−{ r }}
Fig. 2. Commands on records

2.2 Backpointers

To make the backpointer properties self-framing, we impose a restriction on the
assignments which may potentially invalidate such properties.

Tracked Fields. Our first step is to identify those reference-valued fields, whose
value influences backpointer invariants. We mark these fields as tracked, because
we want to track assignments to them.

s t r u c t C { t racked f :D ; }

Backpointer Definitional Axiom. Suppose now that a record type C has a tracked
field f of type D (where C,D are not necessarily different). To express back-
pointer properties, it should be possible to refer to “all allocated records of type
C that point to the record d of type D through the field f”. We write d.(C.f)−1

to refer to that set. In other words, the definitional axiom of backpointers is (for
every state σ):

�∀c ∈ αC, d ∈ αD · c ∈ d.(C.f)−1 ⇔ c.f = d
�
(σ) (1)

where

– �E� (σ) evaluates expression E in state σ
– αT is the set of all non-null allocated records of type T in a given state

If C is clear from the context, we simply write d.f−1.

Backpointer Fields. The value of the expression (C.f)−1 is not associated with
any permission, which is what makes it non-self-framing. To fix this, we turn
(C.f)−1 into a field of D. This field has access permissions like any regular

Backpointers and Observational Disjointness 155

field. However, it is a ghost field: it does not appear in the actual program; it
is only part of its specification annotation. Furthermore, even explicit “ghost
assignments” to it are forbidden1.

Tracked Assignments. Assume now that record r points to record q through a
tracked field f . Consider the assignment:

r.f :=p

Notice that this assignment changes not only the value of r.f , but also that of
q.f−1 and p.f−1. The situation is depicted graphically in Fig. 3. Since the values
of two backpointer fields are changed, the thread that executes the assignment
must have full permission to those fields. In the case q or p are the nu l l reference,
then, of course, we do not require access to their backpointer fields.

We introduce two axiomatic rules for tracked assignments2. First, for the case
p �= q:

{
r=R
=nu l l ∧ p=P
=Q ∧ r.f �−→ Q

∗ (p
=nu l l ⇒ p.f−1 �−→ S1) ∗ (Q
=nu l l ⇒ Q.f−1 �−→ S2)

}
r.f :=p

{
r=R
=nu l l ∧ p=P
=Q ∧ r.f �−→ p

∗ (p
=nu l l ⇒ p.f−1 �−→ S1 − {r}) ∗ (Q
=n u l l ⇒ Q.f−1 �−→ S2 ∪ {r})
}

and second, for the contrived case p = q

{ r=R
=n u l l ∧ p=P ∧ r.f �−→ P ∗ (P
=n u l l ⇒ P.f−1 �−→ S) }
r.f :=p

{ r=R
=n u l l ∧ p=P ∧ r.f �−→ P ∗ (P
=n u l l ⇒ P.f−1 �−→ S) }

Example 1. In this simple example, we will show how the backpointers discipline
makes it possible to express reference counting, and how we can use reference
counting to protect shared data from mutation.

Suppose that we have two types C e l l and C l i e n t . Clients have a reference
field f to cells. Many clients may share a cell and we are interested in keeping
track of them. Therefore f is a tracked field:

s t r u c t C l i e n t { t racked f : C e l l ; }

1 In this sense, backpointer fields are like JML’s model fields [12]. Unlike model fields
however, backpointer fields are associated with permissions.

2 For simplicity, assume that r and p are local variables.

156 I.T. Kassios and E. Kritikos

r

q p

o1o2o3. . . o′1 o′2 o′3 . . .

q.f−1 p.f−1

f

Before

r

q p

o1o2o3. . . o′1 o′2 o′3 . . .

q.f−1 p.f−1

f

After

Fig. 3. Assignment to a tracked field r.f := p. This diagram depicts the case where p
is not equal to the original value q of r.f and where both p and q are non-null.

A cell has an integer field data and a reference counter r e fCoun t . If n clients
point to the cell, then each of them holds ε permission and 1−nε remains in the
monitor invariant of the cell. The reference counter must be equal to n. Using
the ghost field f −1 , the requirement is stably expressible:

s t r u c t C e l l
{

data , r e fCoun t : i n t ;

i n v a r i a n t ∃B · f −1 �→B ∗ r e fCoun t �→ |B | ∗ data
1−|B|ε�−−−−→

}

It is impossible for a client to add/remove a reference to a cell c without first
acquiring it (because one needs write access to c . f −1 to perform such an assign-
ment). After acquiring c, if the client wishes to release c, it must also update the
reference counter appropriately, since otherwise the monitor invariant of c will
not hold. Here is an example of a client which correctly adds a reference to a
cell:

acqu i re c ;
c l :=new C l i e n t ;
c l . f :=c ;
c . r e fCoun t := c . r e fCoun t +1;
r e l e a s e c ;

Backpointers and Observational Disjointness 157

Every client that references c holds an ε permission to c . data . For example,
in the above code, the client has gained an ε permission to c . data , because it
added a new reference to c.

A holder of an ε permission to c . data can probe the reference counter of c,
to see if it shares the cell with any other client. If the reference counter is 1,
then the holder may acquire the cell, combine its ε permission with the 1 − ε
permission to c . data, and obtain write permission to c . data . Here is a client
that does this correctly:

// he re : c . data
ε�−→

acqu i re c ;
i f (c . r e fCoun t e r =1)
{

// he re we can prove c . data �→
c . data :=42;

}

So long as the reference counter is greater than 1, it is not possible for a client
to gain write access to the data. �

2.3 Soundness

In this subsection, we give an brief informal argument to explain why the back-
pointers discipline is sound.

The extension of a specification and programming language with backpointers
imposes the soundness requirement that the definitional axiom of backpointers
(1) is a system invariant, i.e., a property that holds at any given state during
the execution of the program.

Consider a programming language that supports all the features that we have
introduced so far: mutable records, locking, assignment, conditionals, procedures,
sequential and parallel composition. Assume a standard small step semantics for
that programming language. The rule for field assignment in this language is

�e1 �= nu l l � (σ) ⇒ 〈e1.f := e2, σ〉 � σ[(�e1� (σ).f) � �e2� (σ)] (2)

where 〈s, σ〉 is a configuration,� is the operational semantics relation and [· � ·]
is the update notation.

The introduction of backpointers entails the following change to the opera-
tional semantic rules:

– Rule (2) applies only when f is a non-tracked field
– Backpointers are introduced as ghost fields. Explicit assignments to them

are forbidden.
– If f is a tracked field, then (2) is replaced by the following rule

�e1 �= nu l l � (σ) ⇒ 〈e1.f := e2, σ〉 � σ′[o.f � �e2� (σ)] (3)

where
o = �e1� (σ)

158 I.T. Kassios and E. Kritikos

σ′ =

{
σ′′[o.f−1 �

�
e1.f.f

−1
�
(σ)− {o}] if �e1.f �= n u l l � (σ)

σ′′ otherwise

σ′′ =

{
σ[�e2� (σ).f−1 �

�
e2.f

−1
�
(σ) ∪ {o}] if �e2 �= n u l l � (σ)

σ otherwise

– The rule for the creation of new records is revised as follows:
• The new record can only be assigned to a local variable3

• All reference-typed fields of the new record are initialized to nu l l and
all backpointer fields of the new record are initialized to ∅

To prove that (1) is a system invariant, we perform a standard induction on the
structure of the statements of the language. Notice that (1) can only be falsified
by rule (3) and by the creation of new records.

It is easy to see that (3) does not falsify (1). For the creation of new records,
we also assume that there are no dangling pointers, as is the case with languages
that support garbage collection. Under this assumption, the creation of new
records as described above does not falsify (1).

3 Concurrent Copy-on-Write Lists

We now turn our attention to a hard verification problem, that of concurrent
copy-on-write lists (CCoWL). We discuss how backpointers help us verify this
data structure.

In this section, we highlight the most important aspects of the verification.
As we commented above, the specifications, implementations, and proof outlines
for all the procedures can be found in [9].

3.1 Description of the Problem

A CCoWL data structure supports a record called list, which represents a mu-
table sequence of integers. One can create new empty sequences, insert items
at the beginning of an existing sequence, update an item at a specific index,
and copy one sequence to another. For simplicity, we restrict ourselves to the
operations mentioned here, which can already generate all possible graphs in the
underlying data structure.

The clients of lists, which may be one or more threads, are given the impres-
sion that every list is completely heap-disjoint from all the others and thus can
reason about mutations using ordinary separation logic. The specification of the
procedures that are available to the clients is shown in Fig. 4. In it, l i s t (l ,L) is
an abstract predicate that expresses the fact that the list record l represents the
integer sequence L, the operator ++ denotes concatenation, and the expression
L[i � v] denotes the sequence L with the content of index i updated to value v.
Indexes are zero-based.

3 Assignment to a field is considered syntactic sugar.

Backpointers and Observational Disjointness 159

{newRec (t h i s) ∗ h e l d �→O}
i n i tEmpty (t h i s)

{ l i s t (t h i s , []) ∗ h e l d �→O ∗ O � t h i s}
{newRec (t h i s) ∗ l i s t (other , L) ∗ h e l d �→O ∗ O � o t h e r}

copy (t h i s , o t h e r)

{ l i s t (t h i s , L) ∗ l i s t (other , L) ∗ h e l d �→O

∗ O � t h i s ∗ O � o t h e r}
{ l i s t (t h i s , L) ∗ h e l d �→O ∗ O � t h i s}

i n s e r t (t h i s , newValue)

{ l i s t (t h i s , [newValue]++L) ∗ h e l d �→O}
{ l i s t (t h i s , L) ∗ h e l d �→O ∗ O � t h i s ∧ 0≤i ndex <|L | }

s e t (t h i s , index , v a l u e)

{ l i s t (t h i s , L [i n d e x� va l u e]) ∗ h e l d �→O}
Fig. 4. Public Specification of CCoWLs

For example, consider the following client:

l i s t 1 :=new L i s t ;
i n i tEmpty (l i s t 1) ;
i n s e r t (l i s t 1 , 3) ; i n s e r t (l i s t 1 , 2) ; i n s e r t (l i s t 1 , 1) ;
l i s t 2 :=new L i s t ;
copy (l i s t 2 , l i s t 1) ;
s e t (l i s t 1 , 1 , 4) ;

We can use ordinary separation logic and the specifications of Fig. 4 to prove
that, at the end of the execution, l i s t 1 contains the sequence [1, 4, 3], and
l i s t 2 contains [1, 2, 3].
Behind the scenes however, the data structure performs lazy copying: all op-

erations are implemented with reference manipulations as long as this does not
influence the clients’ disjointness illusion. Copying happens only when necessary.

The underlying representation uses linearly linked lists of node records. First
the implementation creates such a linked list to represent that l i s t 1 contains
the sequence [1,2,3] (Fig. 5a). After that, a new list l i s t 2 is created and it is
initialized by copying l i s t 1 . The client may pretend that the lists are disjoint,
but the implementation is being lazy: it just sets the head node reference of
l i s t 2 to point to the head node of l i s t 1 , producing the situation in Fig. 5b.
Finally, the client sets the item 1 of l i s t 1 to 4. The change must influence only
l i s t 1 and not l i s t 2 . The implementation must now copy the first two nodes
of the common underlying structure, and then perform the set operation in a
way that ensures that l i s t 2 is not affected. The last node remains shared. The
final situation is shown in Fig. 5c.

160 I.T. Kassios and E. Kritikos

list1

1A :

2B :

3C :

list1

1A :

list2

2B :

3C :

list1

1A′ :

4B′ :

3C :

2B :

1A :

list2

(a) (b) (c)

Fig. 5. An example of CCoWL history

To achieve this copy-on-write effect, the nodes are equipped with a reference
counter. When a s e t operation occurs, then the affected list is traversed from
the head to the index where the update should happen. During the traversal,
the reference counter of all the nodes is examined. As long as the reference
count equals 1, the procedure knows that only one list is affected. As soon as
the procedure meets a reference count greater than 1, it knows that, from that
point on, more than one lists are affected. At that point, the procedure copies
the nodes of the list all the way to the index where the update should happen.

Starting from Fig. 5c, a s e t (l i s t 1 , 1 , 10) operation will only find ref-
erence counts of 1 in its way and will perform no copying. On the contrary,
s e t (l i s t 1 , 2 , 10) will find that the reference count of the node it is trying
to mutate is 2, thus it must copy this node, separating the two lists completely.

3.2 Record Definitions, Abstract Predicates, and Invariants

Our implementation contains L i s t and Node records. A L i s t record contains a
reference to a head node. The reference should be tracked, because it should be
counted in the reference count of the head node.

s t r u c t L i s t { t racked head : Node }

If head points to n u l l , then the list record represents the empty sequence.
A Node record contains a value, a tracked reference to the next node, and a

reference count. We defer the monitor invariant of nodes for later.

s t r u c t Node
{

va lue , r e fCoun t : i n t ;
t racked next : Node ;
i n v a r i a n t . . .

}

Backpointers and Observational Disjointness 161

We now define the abstract predicate l i s t . The definition uses the auxiliary
abstract predicate node :

pred i ca te l i s t (t h i s : L i s t , L :Z∗)
{

∃H ∈Node · sha r ed (t h i s ,) ∗ t h i s . head �→H
∗ ((node (H , L) ∗ t h i s �H) ∨ (H=nu l l ∧ L= []))

}

pred i ca te node (t h i s : Node , L :Z∗)
{

L
= [] ∧
∃N ∈Node ·

t h i s . v a l u e
ε�−→L [0] ∗ t h i s . next

ε�−→ N ∗ sha r ed (t h i s ,)
∗ ((node (N , L [1 . .]) ∗ t h i s �N) ∨ (N=nu l l ∧ | L |=1))

}

The predicate node traverses the structure following recursively the next refer-
ences of the node records it encounters. The represented sequence is not empty.
The first item L [0] of the sequence is stored in field va l u e . The rest of the se-
quence L [1 . .] is represented by the node pointed to by field next , if one exists.
The lock-order of node n is below that of n . next , because we intend to acquire
monitors of nodes in the order in which we traverse the structure. Similarly, the
lock-order of a list l is below that of l . head.

If a node record n is reachable from a list record l, then it contributes to the
value of the sequence that l represents. We then say that l is interested in n.

Note that each holder of a l i s t (l ,L) predicate has ε access to all the va l u e

and next fields of the nodes in which l is interested. The rest of the permissions
to these fields are in the monitors of their respective records. So, if a node record
interests n different lists, then it stores in its monitor 1 − nε permission to its
fields va l u e and next .

So far, this pattern is exactly the same as the one we have seen in Ex. 1. There
is however a complication: the reference counter of a node does not indicate how
many lists are interested in it. For example, consider Fig. 6, in which a possible
state of a CCoWL structure is shown. Both nodes A and B interest three lists,
however their reference counters are 2 and 1 respectively.

To deal with this problem, we introduce a ghost field in Node. This field counts
how many lists are interested in the current node. We call it t r an sRe fCoun t (for
transitive reference counter). In Fig. 6, we see not only the reference counters
but also the transitive reference counters of all the nodes.

We now know the following about the monitor invariant of the Node type:

– It grants permission 1 − T ε to the fields va l u e and next , where T is the
value of the transitive reference counter:

va l u e
1−Tε�−−−→ V ∗ next

1−Tε�−−−→ N

162 I.T. Kassios and E. Kritikos

list1

refCount = 2

transRefCount = 2

refCount = 2

transRefCount = 3
A:

refCount = 1

transRefCount = 3
B:

list2

refCount = 1

transRefCount = 1

list3

Fig. 6. Reference and Transitive Reference Counters in a CCoWL

– It grants full access to the fields head−1 and next −1 :

head−1 �→B1 ∗ next −1 �→B2

– The value of the reference counter is equal to |B1|+|B2|. The field r e fCoun t

is granted full access, as it should be possible for the thread that acquires
the node to update the reference counter correctly:

r e fCoun t �→|B1|+ |B2|

Notice that the value of the transitive reference counter is equal to the sum of
the transitive reference counters of all nodes that point to the current node plus
the number of list records that point directly to the current node. In order to
be able to express this condition, we must grant to the monitor invariant of the
current node read access to the t r an sRe fCoun t field of all the nodes that point
to the current node. We give them 0.5 permission:

∃F ∈Node→ Z · �n ∈ B2 ·n . t r an sRe fCoun t
0.5�−−→ F (n)

The value of the field t r an sRe fCoun t is given by

T = |B1| +
∑

n ∈ B2 ·F (n)

The permission to the field t r an sRe fCoun t cannot be 1, since, as we have
discussed above, the node N that follows the current one has 0.5 permission to
it. Therefore, the invariant conjunct that relates t r an sRe fCoun t to its value is:

t r an sRe fCoun t
0.5�−−→ T

The final detail: if N is nu l l , then there is no other node that has 0.5 permission
to the current node’s t r an sRe fCoun t field. In this case, the monitor invariant
of the current node should include the extra permission:

Backpointers and Observational Disjointness 163

N=n u l l ⇒ t r an sRe fCoun t
0.5�−−→ T

Putting it all together, the definition of Node, together with the monitor invari-
ant, is:

s t r u c t Node
{

va lue , r e fCoun t : i n t ;
ghost t r an sRe fCoun t : i n t ;
t racked next : Node ;
i n v a r i a n t ∃T ∈ Z , N ∈Node , B1 ∈ 2Head , B2 ∈ 2Node , F ∈Node→ Z ·

va l u e
1−Tε�−−−→ ∗ next

1−Tε�−−−→ N ∗ head−1 �→B1 ∗ next −1 �→B2

∗ r e fCoun t �→|B1|+ |B2| ∗ t r an sRe fCoun t
0.5�−−→ T

∗ (�n ∈ B2 ·n . t r an sRe fCoun t
0.5�−−→ F (n))

∗ (N=nu l l ⇒ t r an sRe fCoun t
0.5�−−→ T)

∧ T = |B1| +
∑

n ∈ B2 ·F (n)
}

3.3 Some Highlights of the Implementation

In this section, we discuss three interesting aspects of the implementation: how
lists gain and lose interest to nodes and how the updating procedure decides
how to substitute in-place update by copy-and-update.

Gaining Interest. In our procedures, the only place where a list gains interest
to new nodes is lazy list copying. When a list is copied, only the head refer-
ence of the target list changes. The target list gains interest to all the nodes of
the source list. To ensure that our bookkeeping is correct, we must update the
transitive reference counters of all these nodes. We do this with a ghost proce-
dure4 addOneToTransRefCount, which traverses the whole list and adds 1 to
all transitive reference counters.

Losing Interest. Our copy-and-update procedure node copy set takes as pa-
rameters (besides the obvious index/value pair) a source node t h i s and a
target node new node. The precondition of node copy set asserts that the
caller has a predicate node (t h i s , L) . Its postcondition returns a predicate
node (new node , L [i n d e x� va l u e]) . The predicate node (t h i s , L) of the
precondition is lost. Indeed, the permissions node (t h i s , L) are taken away
from the thread. Those monitors of the nodes to which the source list loses in-
terest obtain an extra ε permission to the corresponding va l u e and next field.
For the nodes to which no interest is lost, the thread maintains its ε permissions,
but they are now part of the node (new node , L [i n d e x� va l u e]) predicate.
In this way, no permission to fields va l u e and next is ever lost.

4 A ghost procedure updates the state by assigning only to ghost fields, and therefore
is not executed in the actual program.

164 I.T. Kassios and E. Kritikos

For example, consider the situation in Fig. 5b. The permission to the va l u e

and next fields that is stored in the monitor of nodes A,B,C is 1 − 2ε. There
is a thread that holds a l i s t (l i s t 1 , [1 , 2 , 3]) predicate, that grants ε per-
mission to the va l u e and next fields of these nodes. Now s e t (l i s t 1 , 1 , 4)

is called. Since the reference count of A is 2, a new node A′ is created and the
node copy set procedure is called with source A and target A′. The procedure
takes away the node (A , [1 , 2 , 3]) predicate of the caller and returns a new
node (A′ , [1 , 4 , 3]) predicate. The final state is shown in Fig. 5c.

List l i s t 1 lost interest in nodes A,B. The ε permissions to their va l u e and
next fields are returned from the node (A , [1 , 2 , 3]) predicate back to their
monitor, which now maintains 1−ε permission to these fields. The list maintained
interest to node C, so an ε permission to the va l u e and next fields of C is trans-
ferred from node (A , [1 , 2 , 3]) to node (A′ , [1 , 4 , 3]) . The monitor of C has
1− 2ε permission to those fields, as before. The predicate node (A′ , [1 , 4 , 3])

has ε permission to the va l u e and next fields of the newly generated A′ and B′

nodes. There was no loss of permission; only permission transfer.

Setting without Copying. As we have explained, the algorithm decides to start
the copy-and-update procedure once it sees a reference counter greater than 1.
To verify that this policy is indeed correct, we include a precondition to our
update-in-place procedure node set that the transitive reference counter of the
node it is applied to equals 1.

The algorithm calls node set on the next node, under the circumstance “I
have not yet seen a reference counter greater than 1 and the reference counter
of the next node is 1”. In our formalism, this is translated into:

t h i s . r e fCoun t �→1 ∗ t h i s . t r an sRe fCoun t
0.5�−−→1

∗ t h i s . next �→N ∗ N . r e fCoun t �→1 ∧ N
=nu l l

From this condition, together with the fact that Inv (t h i s) and Inv (N) hold,
one must prove that the value of the transitive reference counter of N is 1. In
the following, we explain how we prove this property.

Let B1 be the value of N . head−1 and B2 be the value of N . next −1 .
By the definitional axiom, we know that t h i s∈B2. By Inv (N) , we con-
clude that B2={ t h i s } and B1=∅. Again by Inv (N) , we get that the value of
N . t r an sRe fCoun t is equal to the value of t h i s . t r an sRe fCoun t , which is 1.

The above argument applies when node set recursively calls itself. Initially
however, it is procedure s e t (the update procedure on lists) that decides whether
it should call node set or node copy set on its head node. The argument for
this decision is similar.

4 Discussion

4.1 Related Work

Invariant Disciplines. An invariant discipline is a set of rules that speci-
fiers and programmers have to follow to ensure that some state (or history)

Backpointers and Observational Disjointness 165

conditions remain true throughout a computation (or at specific states thereof).
Some such conditions are independent of the program, for example, our method-
ology guarantees that the backpointer definitional axiom (1) holds in any state
σ. We call these conditions system invariants. Some other conditions are given
by the programmer, for example object or monitor invariants. There are several
flavors of treating program-specific invariants, mostly focusing on the special
case of object invariants [13]. Various forms of ownership [14, 15] are popular
invariant disciplines.

Parkinson [16] comments that object invariants are inflexible, in comparison
to the use of abstract predicates. Summers et al. [8] answer by making the case
for object invariants as an independent specification tool. Most of their argu-
ments have to do with the usefulness of object invariants in practical software
engineering contexts; but they also provide an example (the priority inheritance
protocol [7]) as one in which object invariants can turn a seemingly global prop-
erty (in our terminology, a backpointer property) into a local one. It seems,
the authors argue, that the priority inheritance protocol example is not easy to
handle with abstract predicates alone.

Our paper provides a monitor invariant discipline that can handle such back-
pointer examples. The discipline consists of restricting the use of assignments to
tracked fields. We have expressed our discipline not as a set of rules, as is com-
mon, but by using permissions in the separation logic style. Our proposal makes
it possible to treat backpointer conditions as special cases of separation logic
conditions, turning them into local properties, which supports the argument of
[8], in the concurrent case.

Our verification of CCoWLs is influenced by considerate reasoning [17], a
framework in which it is possible for a procedure to “notify” via specification
annotations all interested parties about the object invariants that it might break.
Our specification and implementation of addOneToTransRefCount is a direct
adaptation of their addToTotal method.

Observational Disjointness. While separation logic has been a revolution in the
specification of heap-intensive computations, it has been observed, especially
in the context of concurrency, that the association of separating conjunction
with actual heap separation is too restrictive: sometimes we want the client(s)
to “observe” disjointness, but, at the same time, allow the implementers the
opportunity to share heap under the hood.

In our work, we make use of a standard solution to loosen the heap disjoint-
ness requirement: fractional and counting permissions. Furthermore, our use of
backpointers permits us to maintain bookkeeping information about the clients
of observationally disjoint data structures. These two ingredients together suffice
for the verification of the CCoWL case study.

Concurrent abstract predicates [18] support the hidden sharing of state with
the use of capabilities, i.e., special predicates that allow exclusive access to a
shared region. This idea has been successfully applied to the specification and
verification of indexing structures [19]. The work presented here cannot substi-
tute for capabilities. On the other hand, it is not clear how one would handle

166 I.T. Kassios and E. Kritikos

the CCoWL example with CAPs. It seems that backpointers and CAPs are
orthogonal tools and could be integrated into a single specification language.

Fictional Separation Logic [20] is an ambitious mathematical framework that
allows the implementer to choose their own separation algebra as part of the
implementation. This idea completely decouples heap disjointness from sepa-
rating conjunction. The use of fractional permissions as well as other examples
of observational disjointness are shown to be special cases of this very general
methodology. The generality comes at the price of complexity at the part of the
implementer, so it remains an open question if this idea scales up to reasonably-
sized programs. Furthermore, it seems that fictional separation logic has no
provision for object and monitor invariants, nor does it provide the means of
mentioning unreachable parts of the heap, like we do.

In [21], the verification of snapshotable trees is proposed as a challenge. The
problem is very similar to the CCoWLs: the clients see a mutable tree and
immutable snapshots of previous states of that tree. A snapshot can be created
at any time. All snapshots and the tree appear to be heap-disjoint, but, in fact,
the implementation uses lazy copying and shares as much as possible. There are
four different versions of the structure, one of which is verified by the authors,
using whole-heap predicates (and therefore restricting it to sequential programs).

The fact that snapshots are immutable is a very crucial difference compared
to the CCoWL example, in which all lists are mutable. In the terminology of [22]
snapshotable trees are partially persistent, while CCoWLs are fully persistent.
The implementers of snapshotable trees need no permission accounting, because
they do not wish to reclaim write permissions to the part of the structure that
becomes immutable. Contrary to that, we ensure that no permissions are lost.
For example, suppose that exactly two lists l1, l2 are interested in a node n. At
this state, no thread can change the fields of n. Suppose now that l2 loses interest.
The fields of n become mutable again: the list l1 may gain write permissions to
them. To achieve this, the bookkeeping of backpointers is essential (see also
Sect. 3.3, “losing interest”).

4.2 Evaluation and Work in Progress

Two significant questions that have not been answered so far are (a) how ex-
pressive is the new specification language and (b) how automatable it is.

Expressiveness. In the Introduction, we have mentioned three examples, in which
backpointers seem useful. From these examples, we have focused on reference
counting, which we have used in a very complex example, CCoWLs, which we
have specified, implemented and verified.

It is worth mentioning that our CCoWL example is a fully-persistent data
structure [22]. It is a further research direction to investigate how much our
proof technique generalizes to fully-persistent data structures in general.

Besides reference counting and the CCoWLs, we have also specified, imple-
mented, and verified the priority inheritance protocol. We are currently working
on specifying union-find structures; a challenging problem for which backpointers
seem to be particularly promising.

Backpointers and Observational Disjointness 167

We believe that the potential of the methodology has not yet been fully ex-
plored and we expect new interesting case studies to be revealed as experience
accumulates.

Automation. We have implemented a prototype verifier for backpointers as an
extension of Chalice. We have tested it on a suite of 20 unit tests, observing
significant variation in verification times, which is undesirable.

To counter the problem we have experimented with various degrees of restrict-
ing the automation. For example, we have given the programmer the possibility
to control the triggering of backpointer and set theoretic axioms. We have also
introduced explicit annotations for the application of the frame rule, for the
framing of aggregate expressions.

The automation of the CCoWL case study has been extremely challenging.
At the time of this writing, our tool has verified all but one of the procedures
of the present example. The verification of most procedures happens within less
than 5 minutes, which is satisfactory. The procedure node set copy verifies in
90 minutes. The verification of one of the branches of the procedure node set

unfortunately seems not to terminate.
To conclude, the automation of the discipline does not yet deliver consistently

low verification times and seems to diverge in some cases. Much improvement
has been achieved since the beginning of the project, but further research is
required to achieve consistently satisfactory performance and less annotation.

5 Conclusion

We have introduced an invariant discipline to enhance the expressiveness of
separation logic with backpointer conditions. We have used our methodology
to specify and verify concurrent copy-on-write lists, a challenging case study of
observational disjointness, which, to the best of our knowledge, has not been
tackled before.

Acknowledgements. The authors are deeply grateful to P. Müller and to the
three anonymous ESOP reviewers, whose deep and insightful comments signifi-
cantly helped improve the quality of the paper.

References

1. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE Computer Society (2002)

2. Parkinson, M.J., Summers, A.J.: The Relationship between Separation Logic and
Implicit Dynamic Frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011)

3. Smans, J., Jacobs, B., Piessens, F.: Implicit Dynamic Frames: Combining Dynamic
Frames and Separation Logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

168 I.T. Kassios and E. Kritikos

4. Kassios, I.T.: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL 2005, pp. 259–270 (2005)

6. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

7. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

8. Summers, A., Drossopoulou, S., Müller, P.: The need for flexible object invariants.
In: IWACO 2009, pp. 1–9. ACM (2009)

9. Kassios, I.T., Kritikos, E.: A discipline for program verification based on back-
pointers and its use in observational disjointness. Technical Report 772, Dept. of
Computer Science, ETH Zurich (2012),
http://pm.inf.ethz.ch/publications/getpdf.php?bibname

=Own&id=KassiosKritikos12.pdf

10. Leino, K.R.M., Müller, P.: A Basis for Verifying Multi-threaded Programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

11. Heule, S., Leino, K.R.M., Müller, P., Summers, A.: Fractional permissions without
the fractions. In: FTfJP 2011 (2011)

12. Leavens, G., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In: Kilov,
I., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and
Systems, pp. 175–188. Kluwer (1999)

13. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A Unified Frame-
work for Verification Techniques for Object Invariants. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

14. Leino, K.R.M., Müller, P.: Object Invariants in Dynamic Contexts. In: Odersky,
M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

15. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

16. Parkinson, M.: Class invariants: the end of the road? In: IWACO 2007 (2007)
17. Summers, A.J., Drossopoulou, S.: Considerate Reasoning and the Composite

Design Pattern. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS,
vol. 5944, pp. 328–344. Springer, Heidelberg (2010)

18. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

19. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse,
M.: A simple abstraction for complex concurrent indexes. In: OOPSLA 2011, pp.
845–864. ACM (2011)

20. Jensen, J.B., Birkedal, L.: Fictional Separation Logic. In: Seidl, H. (ed.) ESOP
2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012)

21. Mehnert, H., Sieczkowski, F., Birkedal, L., Sestoft, P.: Formalized Verification of
Snapshotable Trees: Separation and Sharing. In: Joshi, R., Müller, P., Podelski, A.
(eds.) VSTTE 2012. LNCS, vol. 7152, pp. 179–195. Springer, Heidelberg (2012)

22. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. In: STOC 1986, pp. 109–121. ACM (1986)

http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=KassiosKritikos12.pdf

	A Discipline for Program Verification Based on Backpointers and Its Use in Observational Disjointness
	Introduction
	Contributions
	Structure of the Paper

	The Backpointers Discipline
	Background
	Backpointers
	Soundness

	Concurrent Copy-on-Write Lists
	Description of the Problem
	Record Definitions, Abstract Predicates, and Invariants
	Some Highlights of the Implementation

	Discussion
	Related Work
	Evaluation and Work in Progress

	Conclusion
	References

