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Abstract. Closures, first-class citizen procedures that are able to cap-
ture their lexical environment, increase the expressiveness of object-
oriented languages such as C#, Scala, and various dynamic languages.
However, closures make program specification and verification more dif-
ficult. For instance, a verification methodology must allow specifications
to describe the behavior of one method relatively to the specification of
another method passed as argument, and it must allow specifications to
describe the behavior of a closure without exposing its captured state.
This paper presents a modular specification and partial correctness ver-
ification methodology for closures. Our solution is based on first-order
logic and, thus, well suited for automatic verification with SMT solvers.
We present an encoding of our methodology in the Boogie program veri-
fier. Using this encoding, we have verified a series of interesting examples
that cover the main applications of closures such as delegation patterns
and even the creation of custom control flow.

1 Introduction

A closure represents a first-class citizen procedure that is able to capture its
lexical environment. Closures in an imperative language are a very powerful
feature, since they can be used to succinctly implement important delegation-
based design patterns such as Strategy and Command [12], to model objects,
and even to create custom control flow.

Even though closures were introduced very early [28], they were ignored
for a long time by mainstream object-oriented programming languages such as
Java and C++. With their introduction into C# [10], Scala [26], and dynamic
languages such as Python [2] and Ruby [11], closures now gain the popularity
they deserve.

It can be argued that closures can be mimicked by objects, which have been
studied extensively, and therefore the specification and verification of closures
presents nothing new. This is however not so. Closures capture their lexical envi-
ronment, something that objects do not automatically do. Furthermore, closures
are much more concise and flexible than objects and therefore motivate a differ-
ent style of programming. For example, implementing custom control structures
is a common practice with closures. Such applications pose new challenges for
the specification and verification.



Current research on closures [14, 15, 3, 16, 29, 24, 19] in imperative program-
ming languages is using higher-order logic. When implemented, these method-
ologies use higher-order logic provers, such as Coq [13], to create proofs inter-
actively. Our focus is different: we are interested in automatic verification using
automatic first-order provers, in particular, SMT solvers such as Simplify [7] and
Z3 [8]. SMT solvers are used in many modern program verifies such as ESC/Java
[9], Spec# [1], and VCC [6]. In these systems, all the information that the pro-
grammer writes to guide the verifier is part of the program and its specification.
The programmer does not interact with the prover in any other way. Supporting
this style of automatic verification requires a first-order formalization of closures.

In this paper, we present a specification and partial correctness verification
methodology for closures that is amenable to automatic verification. We show
that our specification language is expressive enough not just to capture the two
essential characteristics of closures (being first-class and capturing their environ-
ment), but also to deal elegantly with specifications that talk about other speci-
fications as well as with custom control structures. The examples presented here,
as well as other interesting examples, are already verified using the Boogie pro-
gram verifier [22] and available online at www.pm.inf.ethz.ch/publications/closures.

The programming language used here only contains the features immediately
relevant for closures. In particular, the only values we use are primitives and
closures. Objects can be supported as a straightforward extension of the language
with records, but we omit this feature for simplicity. We believe that other
features of object-oriented programming such as inheritance, subtyping, and
dynamic binding are orthogonal to closures and, therefore, omitted.

var f, g : () → Int , n,m : Int;
val counter =
proc (x : Int) returns result : () → Int

〈 var count : Int;
val inc = proc () returns r : Int 〈r := count ; count := count + 1〉;
count := x;

call inc; // A
result := inc;

〉;
f := call counter(40) ; call f ; n := call f ;

assert n = 42;
g := call counter(99) ; m := call f ; n := call g ; n := n + m;

assert n = 143;

Fig. 1. Nested closures capturing state.
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1.1 Introduction to Closures

The term “closure” is often used to refer to only those procedures that are used
as first-class citizens, that is, passed as parameters to or returned from other
procedures, or assigned to variables. We prefer a more uniform terminology: in
a language that supports closures, all procedures and side-effect free functions

are called closures, regardless of their use in the program.

The program in Fig. 1 demonstrates the basic features of closures. It im-
plements a simple counter. First, a value counter is introduced. As in Scala,
the keyword val indicates that counter is a constant: its value cannot change
by an assignment. The right-hand side of the definition of counter is a closure

occurrence, an expression that is introduced using the keyword proc.

The closure takes an integer parameter x. The return type of the closure is
() → Int; the elements of this type are closure instances that take no parameters
and return an integer. A program variable result is introduced to carry the return
value. It is the final value of this variable that is returned to the caller.

In the body of the closure occurrence that we equated to constant counter, a
local integer variable count is introduced. The variable count will hold the value of
the counter at all times. A nested closure occurrence follows and it is equated to
the constant inc. This introduces an instance of that closure, accessible through
the name inc. Note that a closure occurrence is different from a closure instance:
there may be many instances coming from one occurrence. In general, it is not
known statically how many instances of an occurrence exist at a given state in a
computation. In our example, each time counter is invoked, a new instance of inc
(as well as a corresponding new instance of the variable count) is created. After
the introduction of inc, the variable count is initialized to the formal parameter
of the enclosing closure occurrence, x.

The closure instance inc that is created can access the variable count. The
purpose of inc is to return the value of count and to increase it by 1. The
closure instance inc is invoked once in its definitional environment (Line A), for
demonstration purposes (the call operator denotes closure invocation).

Finally, the closure instance inc is assigned to variable result. This means
that the closure instance inc will be returned by the closure instance counter to
its caller. This demonstrates the first-class citizenship of closure instances; they
can be assigned to variables and returned from other closure instances.

Now the main program follows: counter is invoked and variable f gets as-
signed a closure instance that increments a counter that begins at 41. We may
invoke f , each time increasing the value of the counter. At the second invocation,
we assign its value to n, and we see that n gets the value 42. This demonstrates
closures capturing their environment. Although we are out of the lexical scope
of variable count, the closure instance f still remembers it.

As we mentioned above, another invocation of counter will generate a new
instance of count and therefore of inc. The rest of the code demonstrates that
the two counters are indeed separate.
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1.2 Approach and Contributions

To specify the behavior of closures, we equip every closure occurrence with a
precondition, a postcondition, and a modifies-clause to declare potential heap
modifications. While reasoning about such specifications is well understood for
traditional procedures, closures lead to several challenges. In the following, we
outline these challenges and our solutions.

Environments. The first challenge is to model the state capturing feature of
closures. Closure instances carry with them a lexical environment, in which they
execute. This environment is different from the local state that the fields of an
object carry. In particular, unlike objects, many closure instances share (parts
of) their lexical environments. For example, in Fig. 1, the closure instances f

and g capture environments that partly overlap (they both agree on variable n

for example, while they disagree on count). This observation suggests that the
notion of the captured environment should play a prominent role in our state
model. In Sect. 2, we introduce a state model, in which lexical environments are a
runtime component of the state. Using this state model, we show the encoding in
Boogie of the source programs, together with their standard pre/postcondition
specifications.

Specification Functions. The Boogie encoding is straightforward for most pro-
gramming constructs, but not for closure invocations. The problem with closure
invocations is caused by the fact that closures are first-class citizens and there-
fore can be stored in variables, returned from other closures, and so on. This
means that the invoked closure occurrence and, in particular, its specification
may not be known statically, as illustrated by the invocations of f and g in
Fig. 1.

Furthermore, the fact that a closure may take closures as parameters or
return closures as results means that its specification must talk about these
closures. In particular, the specification must talk about the specifications of
its parameters and its results. This phenomenon occurs in our small example:
the closure counter must ensure that the closure instance that it returns has a
certain precondition (always true in this case) and a certain postcondition (it
increments a variable by 1 and it returns its previous value).

To deal with both issues, we introduce specification functions pre, post, and
others, whose job is to record the specification of a closure. Remarkably, the
specification functions for a certain closure are defined by local assumptions,
which encapsulates their behavior. On the other hand, these functions are known
globally, which makes it possible to use them in the encoding of invocations of
unknown closures occurrences and in specifications of closures.

A further application of specification functions is state abstraction. We intro-
duce an optional abstraction specification function, locally defined, but known
by the client. This deals with cases like our running example, where specifica-
tions need to express properties of a closure’s captured state without referring
to hidden variables such as count.
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Dynamic Frames. The framing problem occurs in all modular programming
methodologies. In Sect. 4, we show how we deal with the framing problem, by
employing a simplified version of dynamic frames [17].

We then present another interesting example, which reflects a specification
and verification challenge in [20], and which concerns delegation. Delegation in-
volves working with unknown closures, the delegates. It is hard to decide even
whether an invocation of a delegate is valid (that is, its precondition holds) at
the place where it happens. We use specification functions and dynamic frames
to solve the problem.

Custom Control Structures. In Sect. 5, we deal with a very powerful feature of
closures: the creation of custom control flow. In particular, we present a custom
while loop written using closures. The treatment of such very general constructs
with pre/postconditions is hard, since loops can be used to achieve any satisfiable
postcondition. To verify the loop and its clients, we use ghost parameters to pass
specification-related information, in particular a loop invariant. The example
verifies without introducing fixpoints or any higher-order logic constructs.

V ::= 0|1|...|true|false| [proc (I : T )[ returns I : T ]] 〈P 〉 values

E ::= I | V | U E | E B E | (E) expressions

T ::= Int | Bool | () | (T ) → T types

D ::= var I : T | val I = V declarations

P1 ::= I := E | if E then ( P1 )

| [I :=]call E[( E )] | assert E

statements

P ::= D P1 programs

Fig. 2. Programming Language. The only metasymbols in the rules are |, [], ::=, the
overline, and the double-overline. The overline α means zero or more comma sepa-
rated occurrences of α. The double overline α means zero or more semicolon separated
occurrences of α. Capital letters are non-terminal symbols. Non-terminal I denotes
identifiers. Non-terminal U denotes primitive unary operators. Non-terminal B de-
notes primitive binary operators. Notice also that the proc and returns keywords
are optional in closures: they can be omitted if there are no formal parameters and
no return values, resp. We will introduce the syntax of specifications along with our
methodology.

The syntax of our programming language is shown in Fig. 1.2. The semantics
of the language should be clear after the discussion of Fig. 1. We will later intro-
duce specification constructs as well as additional statements and expressions.
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2 Environments

To handle state capturing, we introduce environments, that is, mappings from
identifiers to locations. In this section, we present a state model that supports
environments and show how we use environments to translate source code and
specifications to BoogiePL, the input language of the Boogie verifier.

2.1 State Model

Closures are first-class citizen procedures. This means that the instances of clo-
sures are treated as values within the program. A first-order formalization would
not permit storing the actual code of a closure as a value. Instead, each closure
instance will contain a token that uniquely represents the closure occurrence
from which it was created. We call this token the key of a closure occurrence.
Keys are used to connect a closure instance to its code and specification.

A closure occurrence may create many different closure instances, which must
be clearly separated from each other. For example, the program in Fig. 1 creates
two closure instances out of the closure occurrence equated to inc and assigns
them to variables f and g. What is different about these two instances is that each
of them captures a different variable count. This means that count corresponds
to a different location each time counter is called and that difference is significant
since this location is captured and remembered by the corresponding instance
of inc. This motivates the notion of environment, a mapping from identifiers to
the actual locations that they represent in memory. The two instances of inc will
share the same key, but they will carry with them two different environments.

Environments Env, closure instances CI, and values Val are defined as follows:

Env = [Ident]Loc
CI = CK× Env

Val = Bool ∪ Int ∪ CI

where Ident is the set of identifiers, Loc is the set of locations (addresses), and
CK is the set of closure keys. The BoogiePL notation [X ]Y represents a map

from objects of type X to objects of type Y

Example 1. Consider the program in Fig. 1, and let uC be the key of the closure
occurrence that is equated to counter and uI the key of the closure occurrence
that is equated to inc. When executing the program, three closure instances
are created: (uC ; e0), (uI ; e1), and (uI ; e2), for some environments e0, e1, e2. The
domains of the environments e1 and e2 are both equal to:

{f, g, n,m, counter, count, inc}

Environments e1 and e2 agree on identifiers f , g, n, m, and counter, but they
do not agree on count and inc. �
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Even though our language has no allocation and deallocation constructs,
we need a heap to store the values of program variables that are captured by a
closure and, therefore, still live even when their scope expires. Program variables
that are not captured could be stored on the stack. However, we consider this
to be a compiler optimization that we ignore; instead of performing a static
analysis to determine which variables are being captured, we require that formal
parameters and return variables are never captured (and, thus, live on the stack),
whereas all local variables live on the heap.

The heap is modeled as a mapping from locations to values:

Heap = [Loc]Val

To obtain the value of a particular variable x, we first consult an environment
e to obtain x’s heap location and that a heap h to obtain the value stored in
this location: h[e[x]]. The indirection via environments allows us in particular to
model closure instances that share certain heap locations.

A closure occurrence C is a special case of expression, which is encoded
as (u; e), where u is the key of the closure occurrence and e is the current
environment. We see here that a new closure instance is created, which captures
the environment e in which the interpretation happens.

2.2 Encoding of Closure Occurrences

To verify a program, we need to prove that each closure occurrence satisfies its
specification. For this purpose, we encode each closure occurrence together with
its specification and body into a BoogiePL procedure. Boogie then generates
verification conditions to prove that procedure implementations satisfy their
specifications. Like closure occurrences, BoogiePL procedures are specified using
pre/postconditions and a modifies clause.

In our state model, the state is a pair of a heap and an environment. We
refer to the current heap by the global variable H. The environment of a closure
instance is passed as an argument E of type Env to the BoogiePL procedure.
This encoding of the state reflects that all executions of closure instances share
one heap, but typically operate on different environments.

Example 2. Assume the following specification for the closure occurrence inc in
Fig. 1 (for the time being, we omit all modifies specifications):

proc () returns r : Int
requires true

ensures r = old(count) ∧ count = old(count) + 1
〈r := count ; count := count + 1〉

This gets translated into the following BoogiePL procedure:
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procedure I(E : Env) returns (r : Int)
requires true;

modifies H,A;

ensures r = old(H)[E[count]] ∧ H[E[count]] = old(H)[E[count]] + 1;
{
r := H[E[count]] ; H[E[count]] := H[E[count]] + 1;

}

�

The encoding of statements in the source language is straightforward, as the
statements of the source language have equivalent BoogiePL statements. Closure
invocations are an exception, discussed in the next section.

For declarations, we use a global variable A whose type is

AllocFlag = [Loc]Bool

to ensure that newly-declared variables get assigned fresh locations. The source-
language declaration,

var x : T ;

gets translated to:

var newLocation : Loc;
assume ¬A[newLocation];
E[x] := newLocation;
A[newLocation] := true;

In the above code, we see a BoogiePL assume statement. Such statements
introduce local assumptions for the current state, which are passed on to the
prover. In the present example, the assumption guarantees that the location
that is given to the identifier x is unallocated before the declaration.

Since no deallocation construct exists, we add to all procedures a free post-
condition that deallocation did not happen during the execution:

free ensures ∀l ∈ Loc · old(A)[l] ⇒ A[l] ;

A free postcondition in BoogiePL may be assumed at the call site, but need not
be proven for the procedure implementation.

3 Specification Functions

With the encoding presented in the previous section, we can encode invocations
of closures whose closure occurrence is known statically by simple calls to the
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corresponding BoogiePL procedures. In this section, we show how to encode
invocations of arbitrary closure instances and how to write specifications that
talk about other specifications.

We address both problems by introducing specification functions in the Boo-
giePL encoding. These functions record the specifications of closure instances.
We use them to encode invocations of statically-unknown code and in closure
specifications to refer to specifications of other closures.

3.1 Specification Functions Basics

Let us first present the technicalities behind specification functions and later
show how these are used to deal with the two problems mentioned above.

The type of a closure instance has the form (T1, .., Tn) → RT, where the Ti

are n (possibly zero) types of the formal parameters and RT is the result type
(which can be () if there is no return value). For each such closure type T , we
introduce globally two functions preT and postT with the following signatures:

preT ∈ CI× Heap× AllocFlag × T1 × ..× Tn → Bool

postT ∈ CI× Heap× AllocFlag × Heap× AllocFlag × T1 × ..× Tn ×RT → Bool

Function preT takes a closure instance, the current heap and allocation infor-
mation, and the actual arguments and yields whether the precondition of the
closure holds. Function postT in addition takes the initial heap and allocation
information, which are needed to encode old()-expressions, and the return value,
and yields whether the postcondition holds. Both functions are defined by lo-

cal assumptions where a closure occurrence is declared. Therefore, even though
all BoogiePL procedures know of the existence of the specification functions,
they cannot use their definition for a specific closure instance directly in their
reasoning. This serves the purpose of encapsulation.

Example 3. Consider the declaration of inc in Fig. 1 and its specification given
in Ex. 2. Assuming that uI is the key for the closure occurrence, the declaration
is translated as follows:

// declaration of constant inc
var incLocation : Loc;
assume ¬A[incLocation];
E[inc] := incLocation;
A[incLocation] := true;

// equation of inc to an expression
H[E[inc]] := (uI ;E);

// axiomatization of closure occurrence
assume ∀h ∈ Heap, a ∈ AllocFlag, e ∈ Env · pre()→Int

((uI ; e), h, a) = true;

assume ∀oldh, h ∈ Heap, olda, a ∈ AllocFlag, r ∈ Int, e ∈ Env·
post()→Int

((uI ; e), oldh, olda, h, a, r) =

(r = oldh[e[count]] ∧ h[e[count]] = oldh[e[count]] + 1);

�
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3.2 Encoding of Closure Invocations

In Fig. 1, we have an invocation of inc at line A. Since inc is a constant, we
know that its value is precisely the closure instance (uI ; e), and so we can encode
the invocation by a call of the corresponding procedure, using BoogiePL’s call
statement, which generates a proof obligation for I’s precondition (it asserts it),
assigns arbitrary values to (havocs) all variables possibly modified by I, and
then assumes I’s postcondition:

tmp := call I(E);

However, in general the closure occurrence to be invoked is not known statically
such as in the invocations of f and g. They are variables and they are assigned
the return value of invocations of counter. Such invocations are encoded using
the specification functions. The encoding resembles the meaning of BoogiePL’s
call statement: first the precondition is asserted, then H and A are havoced, the
postcondition and the free postcondition are assumed, and finally the result is
assigned to the appropriate location.

Example 4. The encoding of

n := call f ;

is:

assert pre()→Int
(H[E[f ]],H,A);

oldHeap := H ; oldAlloc := A ; havoc H,A, tmp;
assume post()→Int

(oldHeap[E[f ]], oldHeap, oldAlloc,H,A, tmp);

assume ∀l ∈ Loc · old(A)[l] ⇒ A[l] ;
H[E[n]] := tmp;

where tmp is a fresh variable. �

3.3 Specifications About Specifications

Since the verification of closure invocations requires information about the clo-
sure instance’s specification functions, this information has to be passed on from
the place where the closure instance is created (and where the specification
functions are defined by local assumptions) to all the places where the closure is
invoked. This information passing requires that the specifications of closures that
take or return closure instances need to express properties of the specification
functions of those closure instances. For instance, the specification of the closure
occurrence counter of Fig. 1 needs to express properties of its result closure such
that clients of counter can invoke the result closure. To write such specifications,
we allow the use of pre and post in specifications to refer to the specification
functions (we omit the type subscript since we apply these functions to closure
instances of statically known types).
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Example 5. The following postcondition of counter expresses that the precondi-
tion of the result closure is always true, which allows clients to invoke the result
closure. We will present a stronger specification for counter later.

val counter = proc (x : Int) returns result : () → Int

requires true

ensures ∀h ∈ Heap, a ∈ AllocFlag · pre(result, h, a)

�

3.4 The Abstraction Specification Function

In Fig. 1, clients do not see the variables count of the closure instances f and
g, but they still must be aware of f ’s and g’s captured state because the result
of invocations depends on it. To preserve information hiding, we provide clients
with an abstraction of the state data. This section introduces state abstraction
in our framework.

To support state abstraction, we extend the types of closures to also include
an abstraction type, that is, the type of an abstract value of the state of the
closure instance:

(T ) → T [;T ]

For every type

T = (T1, .., Tn) → RT;AT

we introduce a specification function absT to access the abstract value of a closure
instance:

absT ∈ CI× Heap× AllocFlag × T1 × ..× Tn → AT

In the source language, the abstraction function is defined locally in the closure
specification, using the special keyword abstract followed by an expression of
the abstraction type. This introduces, like for the other specification functions,
a local assumption that defines the function absT for that closure occurrence.

Example 6. In Fig. 1, we can use the abstraction function to abstract away
variable count. The following abstract clause in the specification of inc expresses
that the abstract value of a closure instance is the value of count. This is of course
not a substantial abstraction, but it is good enough for our small example.

val inc =
proc () returns r : Int
requires true

ensures r = old(count) ∧ count = old(count) + 1
abstract count

〈...〉
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The type of inc is now () → Int; Int. A local assumption is introduced:

assume ∀e ∈ Env, h ∈ Heap, a ∈ AllocFlag · abs()→Int;Int((uI ; e), h, a) = h[e[count]] ;

�

In the source language, we can access the abstract value at the current heap
using the abs operator.

Example 7. We can use abs to specify counter. Using the abstraction, the spec-
ification of counter can be more substantial than in Ex. 5:

val counter =
proc (x : Int) returns result : () → Int

requires true

ensures ∀h ∈ Heap, a ∈ AllocFlag · pre(result, h, a)
ensures abs(result) = x + 1
ensures ∀oldh, h ∈ Heap, olda, a ∈ AllocFlag, r ∈ Int·
post(result, oldh, olda, h, a, r) ⇒

r = (abs(result))oldh;E;olda
∧ (abs(result))h;E;a = (abs(result))oldh;E;olda + 1

〈...〉;
f := call counter(40) ; call f ; n := call f ;

assert n = 42;

In the above code, Eh;e;a denotes the evaluation of expression E in heap h,
environment e, and allocatedness map a.

The two new postconditions say (a) that the abstract value when the call
returns is equal to x + 1, where x is the parameter of counter, and (b) the
postcondition of the result closure ensures that the abstracted value will increase
by one and that the return value of the invocation will equal the old abstract
value. The code of counter is omitted. The part of the client that verifies with
the new specification is also shown. �

3.5 Syntactic Sugar in the Specification Language

As we see in Ex. 6, the need to talk about various heaps and allocatedness maps,
as well as the need to quantify over them complicated specifications. To alleviate
the problem we introduce the following conventions:

– The current heap H and the old heap old(H), as well as the current and the
old allocatedness map A and old(A), may appear in a specification

– Quantifications over these four variables are permitted. Such quantification
hide the global variables with the same names. In particular a one-heap
universal quantification will be abbreviated by ∀1:

(∀1 · E) = (∀H ∈ Heap,A ∈ AllocFlag ·E)
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and a two-heap universal quantification by ∀2:

(∀2 · E) = (∀H, old(A) ∈ Heap,A, old(A) ∈ AllocFlag ·E)

– We introduce keywords pre and post, which always apply on these four
variables, that is:

post(f, v1, .., vn, r)

abbreviates

post(f, old(H), old(A),H,A, v1, .., vn, r)

and the same for pre

Example 8. With the syntactic sugar that we introduced, the specification in
Ex. 6 becomes much more readable:

val counter =
proc (x : Int) returns result : () → Int

requires true

ensures (∀1 · pre(result)) ∧ abs(result) = x + 1
ensures

∀2 · ∀r ∈ Int · post(result, r) ⇒
r = old(abs(result)) ∧ abs(result) = old(abs(result)) + 1

�

4 Dynamic Frames

With the machinery introduced so far, we addressed the two main challenges of
closures: we can encode captured state via environments and express properties
of this state via abstraction, and we can specify properties of closure instances
via specification functions. The remaining issue is how to deal with the frame

problem, that is, how to express which part of the heap is guaranteed not to be
modified by a closure. For this purpose, we use a simplified version of dynamic

frames [17]. In this section, we introduce the background on dynamic frames
used in this paper and show how to apply the methodology to the example of
Fig. 1 and an example for delegation.

4.1 Basics of Dynamic Frames

Dynamic frames specify the possible side-effects of a closure by providing for each
closure a frame—a set of locations that serves as the “footprint” of the closure.
No allocated location outside the frame must be modified by the closure. Even
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though a client may not see the variables contained in the frame, it may refer to
all of them using the frame as their abstract representation.

In this paper, we use a simplified version of dynamic frames, where the frame
of a closure is constant, that is, does not depend on the heap. This restriction
simplifies our examples, as framing, although essential, is not the main focus of
the paper. An extension to heap-dependent frames is possible.

It is not important for the client to know the exact locations included in
a frame. What is important, is to know that the frame is disjoint from other
locations that are of interest to the client. If we know for example that the frame
of a closure is disjoint from the address of a variable, then we are sure that the
invocation of the closure will not change the value of that variable.

To formalize the above scheme, we need to express two concepts. First, we
say that a frame F frames an expression E (denoted by F frames E) if the
value of E will not change if all the locations of F maintain their values:

F frames E = ∀2 · (∀l ∈ F · old(H)[l] = H[l]) ⇒ old(E) = E

Second, we say that a frame F is respected by a closure invocation, if the
invocation does not modify any allocated location outside of F . The closure
is allowed to allocate new locations and to modify them. Respecting a frame
F (denoted by ∆F ) is a two-heap specification expression formally defined as
follows:

∆F = ∀l ∈ Loc · ¬old(A)[l] ∨ l ∈ F ∨ H[l] = old(H)[l]

Now, we can say that if a closure C respects a frame F , a frame G is disjoint
from F , and E is an expression framed by G, then the invocation of C will not
change the value of E:

∆F ∧ F ∩G = ∅ ∧ (G frames E) ⇒ E = old(E)

This theorem is called the framing theorem. The client uses the framing theorem
to ensure that invocations do not change important values that are unrelated to
them. To make use of the framing theorem, we must show how each of the three
conjuncts to the left of the implication are ensured.

Respecting the Frame. The frame of a closure occurrence is specified using a
modifies clause, which indicates a set of locations. For example, the specification
of inc in Fig. 1 should be given the following specification:

modifies {E[count]}

which can be abbreviated by

modifies count
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The frame of a specification is captured by yet another specification function,
modT (for any closure type T ). If T = (T1, .., Tn) → RT, then

modT ∈ CI× T1 × ..× Tn → 2Loc

The modT specification function is defined with local assumptions, like the other
specification functions.

To make sure that the closure respects the frame, we add ∆F to the post-
condition of the corresponding BoogiePL procedure, and the translation of each
invocation.

Example 9. The specification of inc includes the following modifies clause:

modifies {E[count]}

This clause leads to the following postcondition in the BoogiePL procedure for
the closure occurrence:

ensures ∀l ∈ Loc · ¬old(A)[l] ∨ l ∈ {E[count]} ∨ H[l] = old(H)[l] ;

which expresses that the closure modifies only locations that were not allocated
in the pre-state or that are contained in the closure’s frame. The modifies clause
is also reflected by the local assumption for modT :

assume ∀e ∈ Env · mod()→Int(uI ; e) = {e[count]} ;

where (uI ; e) is the closure instance stored in inc. Finally, invocations of this
closure instance include an additional assumption:

assume ∀l ∈ Loc · ¬old(A)[l] ∨ l ∈ mod()→Int (H[E[f ]]) ∨ H[l] = old(H)[l] ;

�

When counter returns a result, the client does not know the variable count,
but counter’s specification can use the specification function mod()→Int, to refer
to the frame of the closure instance that it returns. We use keyword mod in the
source language to refer to any mod T specification function.

Establishing and Maintaining Disjointness. In our simplified version of dynamic
frames, frames do not vary with state, so maintaining frame disjointness is trivial.
To establish the disjointness of existing frames with a newly created frame, we
only need to follow two simple rules. First, any frame in use must be fully
allocated, which is denoted by alloc(F ):

alloc(F ) = ∀l ∈ F · A[l]
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Second, a newly created frame must only contain fresh locations, that is, loca-
tions that were initially unallocated and are now allocated. This motivates the
following notation, for the freshness specification:

fresh(F ) = ∀l ∈ F · ¬old(A)[l] ∧ A[l]

Given the fact that deallocation never happens, these two conventions guarantee
that frames always remain disjoint.

The postcondition of counter, which we showed in Ex. 6 and 8, must be
enriched with a conjunct that the frame of the new closure instance is fresh:

ensures fresh(mod(result))

This postcondition allows clients of counter to prove that the result closures of
two invocations of counter operate on disjoint frames. In the main program from
Fig. 1, this allows us to prove that invocations of f and g do not interfere.

Framing Expressions. The last conjunct that we need to apply the framing
theorem is that a certain frame F frames an expression E. In our running ex-
ample, we want the frame of the new closure instance to frame the evaluation of
its abstraction function. We add the following conjunct to the postcondition of
counter:

ensures mod(result) frames abs(result)

Verifying the Counter Example. All these specifications that we added to
the running example make it possible to verify the whole code. The fresh-
ness specifications guarantee that the frames of f and g are disjoint. The
frames specifications guarantee that the value of the abstraction of f does
not change when g is invoked and vice versa. The example with all its as-
sertions verifies. The complete encoding of the example can be found on
www.pm.inf.ethz.ch/publications/closures (filename Counter.bpl).

4.2 A Delegation Example

Delegation based patterns (such as the Strategy, Chain of Commands, and Com-
mand design patterns [12]) are at the heart of programming with closures, as
well as of object-orientation. Delegation means that a specific task is not car-
ried out by the running method M , but passed on to another object, method,
or closure D, the delegate. We then say that M delegates the task and we call
it the delegant. The delegate is usually passed to the delegant as a parameter.
This indirection achieves great flexibility, because there may be many delegates,
carrying out the task in many different ways, even in (or especially in) ways that
were not conceived at the creation time of the delegant.
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The challenge that delegation causes is in the specification of the delegant
[20]. Typically, the job of the delegant is not to achieve a certain postcondition,
but to invoke the delegate. Specifying the delegant then, again, requires specifi-
cations about specifications, in this case, about the specification of the delegate.
Moreover, it is even hard to determine whether the delegate is allowed to be
invoked at a certain point (that is, whether its precondition holds). This is for
instance the case when the precondition of the delegant requires the precondi-
tion of the delegate to hold, but the heap is modified before the delegate gets
invoked and, thus, it is not obvious that the delegate’s precondition still holds
after the heap modification. Using specification functions and dynamic frames,
we are able to address these challenges elegantly.

Example 10. In Fig. 3, we show an example, which represents the gist of a specifi-
cation and verification challenge [20]. We have a closure f , which calls a delegate
g (in Line A). We want to know that the precondition of g holds at that point.
The global variable x, the local variable y, and the invocation of an unknown
closure instance h serve to make the framing problem harder and more interest-
ing.

var y : Int ; var h : () → () ;

val f = proc (g : () → ())
〈 var x : Int ; x := 3 ; y := 4 ;

call h ; call g ; // A
〉;

Fig. 3. A Delegation Example.

The problem is how to specify f in such a way that it verifies, that is, such
that the preconditions of all closure instances hold at the place of their invo-
cation. This is achieved by a precondition for f that expresses the following
properties:

– The preconditions of g and h initially hold.
– The frames of g and h frame their respective preconditions.
– The frames of g and h are fully allocated. This guarantees their disjointness

from x, and therefore the fact that the assignment to x does not interfere
with the preconditions of g and h.

– The location of y is not included in the frames of g and h. This guarantees
that the assignment to y is non-interfering.

– The frames of g and h are disjoint, which guarantees that invoking h does
not interfere with the precondition of g.

The following precondition summarizes all that formally:
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pre(g) ∧ pre(h) ∧ mod(g) frames pre(g) ∧ mod(h) frames pre(h)
∧ alloc(mod(g) ∪mod(h)) ∧ E[y] 6∈ (mod(g) ∪mod(h))
∧ mod(g) ∩mod(h) = ∅

Using that precondition, the example verifies. A subtle observation is the follow-
ing: if we want f to not change the content of h, we also need to include

E[h] 6∈ mod(g) ∪mod(h)

in the precondition. This example too can be found under the URL
www.pm.inf.ethz.ch/publications/closures (filename Delegation.bpl). �

5 Custom Loops

In this section, we illustrate the expressiveness of our methodology by specifying
and verifying the implementation of a while loop via closures. In this and many
other examples, it is convenient to have functional closures, which are side-effect
free and, thus, simplify framing and verification in general. For instance, the
condition of our custom while loop can be expressed via a functional closure.

5.1 Functional Closures

A functional closure is a closure which returns a result but does not change the
state. Like imperative closures, functional closures are first-class and they store
their own environment, in which they are evaluated. Unlike imperative closures,
their evaluation takes place in an expression and not in an invocation statement.

A functional closure occurrence is an expression written using the syntax
dEe, where E is a programming language expression. The type of dEe is written
Tf where T is the type of E.

To evaluate a functional closure instance, the special keyword eval is used. An
eval f expression retrieves the environment of closure instance f and evaluates
f in the current heap and that environment. Notice the difference between call

and eval: the former is a statement, whereas the latter is an expression and,
in particular, may be used within specifications. For example, the following is a
valid programming language expression:

eval dx + 1e + 2 − eval g

Functional closures are treated very similarly to imperative closures. Their
occurrences are given a unique key and their instances are identified by a key and
their environment. For every functional type Tf , there is a specification function
for the evaluation of the instance:

evalT ∈ CI× Heap× AllocFlag → T
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The definition of evalT happens with a local assumption at the place where the
functional closure occurrence appears. The evaluation operator eval is encoded
straightforwardly by a call to the respective evalT function.

For simplification of our mathematics, we require all functional closure in-
stances to be total, that is, they may invoked in any heap. Preconditions for func-
tional closures are analogous to preconditions for imperative closures. Moreover,
our functional closures take no parameters but an extension is straightforward.

5.2 A Custom While Loop

The specification of the custom while loop differs significantly from the usual
pre/postcondition style of specifications, since while loops have such a wide
application span that they can be used to achieve any satisfiable postcondition.
On the other hand, using induction and fixpoints to define such constructs does
not serve our purposes, since it exceeds first-order logic.

To deal with the problem in a first-order setting, we use ghost parameters.
Ghost parameters are specification-only parameters that do not appear in the
final program, but are used only for reasoning. Using ghost parameters, we al-
low the clients to pass on specification-related information, such as loop invari-
ants. Such information is needed by first-order theories to verify very general
constructs like while loops. Ghost parameters appear to the end of the formal
parameter list, and they are separated from the ordinary parameters with a
semicolon.

Example 11. We implement and specify the custom while loop as follows:

val while =
proc (condition : Boolf , body : () → () ; inv : Boolf )
requires eval inv

∧ ∀2 · old(eval condition ∧ eval inv) ∧ spec(body) ⇒ eval inv
modifies mod(body)
ensures ¬eval condition ∧ eval inv

〈if eval condition then (call body ; call while(condition, body; inv))〉 ;

where spec(S) is an abbreviation of

old(pre(S)) ⇒ post(S) ∧ ∆(mod(S))

The specification expresses the usual partial correctness conditions for while
loops: The invariant has to hold before the loop and after every iteration. In our
methodology, the client of while passes the invariant as a functional closure, and
proves that it initially holds and that it is preserved by the body of the loop. The
implementer of while promises that if the loop terminates, its iteration condition
will be false and the invariant will hold.

Furthermore, the loop promises to respect the frame of its body. This is an
oversimplification that comes from the fact that frames do not change with state.
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If we had the full dynamic frames theory, we would also pass a frame to the loop
as a ghost parameter.

The above specification allows clients to reason about invocations of the loop.
For instance, we can verify the following code:

var i, j, x : Int;
i := 0 ; j := 5 ; x := 7;
call while ( di < 5e ,

proc () modifies i, j ensures i = old(i) + 1 ∧ j = old(j) − 1
〈i := i + 1 ; j := j − 1〉 ;

di + j = 5 ∧ i ≤ 5e);
assert i = 5 ∧ j = 0 ∧ x = 7;

The need to give a specification to the imperative closure passed as loop body
makes the specification somewhat verbose. We expect that at least for simple
examples, such specifications can be inferred.

The while example can be found online under the URL
www.pm.inf.ethz.ch/publications/closures (filename While.bpl). �

6 Soundness

The encoding of our methodology in BoogiePL does not introduce any axioms.
Therefore, the only potential source of unsoundness are the local assumptions
that we add for each closure occurrence and for each closure invocation. How-
ever, these assumptions correspond exactly to the specifications of the BoogiePL
procedures generated for each closure occurrence. Therefore, the verification of
these procedures justifies the assumptions by showing that they are feasible.
Therefore, the only situation that might lead to unsoundness is circular rea-
soning, that is, if an assumption was used to verify the code that is supposed
to justify the assumption. In this section, we restrict closure specifications to
prevent such circular reasoning and guarantee soundness of the encoding.

Circular reasoning potentially occurs when a specification function is defined
in terms of itself. Consider the following example:

var x : () → ();
val f = proc () requires pre(x) modifies mod(x) ensures post(x) 〈call x;〉;
x := f ;

All works well: f only calls x and it is reasonable to adopt its specification exactly.
However, x and f have the same type, which means that x could equal f (see the
assignment that follows the closure occurrence). This means that the definition
of specification functions of f is circular! In particular, after the assignment
x := f , our local assumptions imply that the precondition of f is equal to
the precondition of x, which is equal to the precondition of f , etc. While this
example does not cause unsoundness, it illustrates that unanticipated recursion
through the heap is potentially dangerous. The following example, regardless of
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the body of f , is actually unsound because in heaps in which x = f , we have
pre(f) = ¬pre(f):

var x : () → ();
val f = proc () requires ¬pre(x) 〈...〉;
x := f ;

To prevent circular definitions, we introduce an important restriction. This
restriction ensures that all closure types are ordered, and that the specification
functions of a closure occurrence may be defined only in terms of specification
functions that are smaller in that ordering. The requirement restricts specifica-
tions, but does not prevent recursive closure implementations.

To establish an ordering, we define the size of a type of the programming
language as follows:

– The size of Int and Bool and () is 1.
– The size of Tf is the size of T plus 1.
– The size of (T1, .., Tn) → RT is equal to the sum of sizes of the Ti and of RT

plus 1.

We restrict our specifications as follows: any specification function (preT , modT ,
postT , absT , and evalT ) may be defined only in terms of specification functions
of types U whose size is strictly less that T .

This ensures non-circularity of the definitions, and therefore prevents the
unsoundness. Notice that all our previous examples respect this restriction, while
the example of the present section does not: the types of f and x are equal. Notice
also that the restriction is not unreasonably strong: it allows a specification to
talk about the specification functions of the formal parameters and the result
value.

To avoid any misinterpretation, we should stress that the above restriction
does not forbid recursion. It forbids the circular definitions of specification func-
tions, that may result by (probably unwanted and unanticipated) recursions
through the heap. In particular, the following recursive definition, which does
not use specification functions, is permitted:

var i : Int;
val f = proc () requires true modifies i ensures i = 0

〈if i > 0 then (i := i− 1 ; call f ;)〉

Note that if i starts off negative, then we have non-termination. This is not a
problem for a partial correctness framework such as ours.

Going back to the problematic example, consider the following variation:

var i : Int ; var x : () → ();
val f = proc ()〈call x;〉 ; x := 〈i := 0;〉 ;
call f ; assert i = 0;
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It is unfortunate that we cannot verify this code, since the specification of f
must find a way to reason about the specification of x, which is not permitted
anymore. A way to deal with this issue is to attach specifications to closure
variables. If variable x is constrainted by a specification S, an assignment x := y

should assert that the closure instance y respects S in all heaps. For example,
the following example attaches a specification to x:

var i : Int;
var x : () → () requires true modifies i ensures i = 0;
val f = proc () requires true modifies i ensures i = 0 〈call x;〉 ;
x := 〈i := 0;〉; // A
call f ;

assert i = 0;

Note that the code would still verify if we changed the assignment in Line A to
x := f , even though that would induce non-termination. Again, partial correct-
ness allows this to happen. On the other hand, the following assignment in Line
A would not verify:

x := 〈i := 1;〉

because it does not satisfy the assertion that the assigned closure instance re-
spects the specification of x.

7 Related Work

The most comprehensive framework for dealing with imperative higher-order
language features is that of Yoshida, Honda and Berger [14, 15, 3, 16, 29], a total
correctness Hoare-logic based framework. While it covers all technical aspects
of closures, the language provides no explicit abstract state or other means of
human annotation, relying instead on existential quantifications. We are not
aware of any use of the framework in a verification tool.

Closures are also treated in Hoare Type Theory [24], a framework that unifies
types with Hoare-logic specifications and targets a higher-order imperative lan-
guage. Hoare Type Theory is supported by the tool Ynot [25] which delegates
proof obligations to the Coq theorem prover. The programmer interacts with
Coq to construct proofs of correctness. Instead, in our approach, all the inter-
action with the prover happens only with annotations within the programming
language.

Recently, Higher Order Separation Logic [4] has been employed to deal with
closures. An exploration of higher order frame rules appears in [5], but the lan-
guage does not involve first-class closures and the modularity is static. A stronger
language is used in [19], where several design patterns are elegantly formalized.
The main idiom used in that formalization is delegation; there is no discussion
on state capturing, specification changes, and custom control flow.
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Currently, one of the best solutions for delegation-based patterns is JML’s
model programs [27]. Model programs are specifications that are written in the
style of abstract programs. The problem with this approach is that it sometimes
generates too strong specifications. In the present paper, we deal with delega-
tion using only abstraction mechanisms, such as the specification functions. This
approach typically generates weaker specifications, mainly dealing with framing
issues. Ex. 10 shows that interesting problems posed by delegation can be solved
this way. However, it is interesting, and one of our goals, to extend our method-
ology with support similar to model programs.

The Ex. 10 is the running example of [23], where we use closure invariants to
guarantee properties that need to hold whenever a closure is invoked. However,
maintaining these invariants is complicated. Other challenges of closures such as
captured state and specifications about specifications are not addressed in that
paper.

8 Conclusion

We have introduced, step by step, a specification and verification methodology
for closures. Our solution is modular and designed with automated verification
in mind. Modularity is achieved by verifying each closure separately. Automated
verification with SMT solvers is enabled by a first-order formalization. We have
encoded and verified all the examples presented in this paper in the Boogie
program verifier.

Our approach orchestrates a lot of formalism. We showed a state model with
environments, to model state capturing. We introduced specification functions
that make it possible to encode arbitrary invocations and to have specifications
about other specifications. We used an abstraction specification function for state
abstraction. We used dynamic frames to deal with the framing problem. Finally,
we showed how to use ghost parameters and functional closures to verify custom
control flow closures.

Closures have many more applications than the ones shown here. Among
other things, they are employed to mimic aspects [18], in the generation of native
and non-native code (as in .NET LinQ), in patterns involving self-changing code
and in delegation based patterns, such as Strategy, Command, etc. [12]. We plan
to extend our specification methodology to treat applications like the above,
especially targetting the delegation problem. For the treatment of delegation,
we plan to extend our methodology with model programs [27]. We also plan to
use the full theory of dynamic frames, in which more interesting examples can
be handled.

Acknowledgments. We are grateful to Gary Leavens for an interesting discus-
sion and to the anonymous referees of a predecessor of this paper.
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