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Abstract

Delegation is a very common programming idiom, whereby a task is
carried out by a statically unknown part of the program. Delegation en-
hances the modularity and the extensibility of a program, and, for that
reason, is the main ingredient of many important design patterns. Un-
fortunately, delegation complicates specification and verification: the pro-
grammer must either rely on unsuitably weak specifications imposed by
behavioral subtyping, or compromise automation by resorting to higher-
order logic. In this paper, we present an expressive specification and
verification methodology, in which partial correctness reasoning about
delegation can be carried out in first order logic, using automated SMT
solvers.

1 Introduction

Delegation, passing the responsibility of executing a task to statically unknown
code, the delegate, is a technique used heavily in important design patterns, such
as Command, Visitor, Chain of Responsibility, Template [9]. A positive aspect,
and a common theme in delegation patterns, is that a delegate can be chosen
and/or constructed at run-time, making it possible for a program to exhibit
significant extensibility in its behavior.

The downside of delegation is that it creates challenges for modular speci-
fication and verification [17, 27], that stem from the fact that the construction
and the use of delegates are decoupled. This means that a typical client of a del-
egate does not have static knowledge of the behavior of the delegate it is using.
The question that arises is how to write modular specifications that enable the
automatic verification of the whole program, in the presence of delegation. To
demonstrate the problem, we show some examples written in a toy programming
language based on closures, i.e. first-class procedures.

Example 1 (Commands) An important delegation-based design pattern is the
Command pattern. In it, operations that update a document, are stored into
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“command” delegates. The user of the application may generate new commands,
e.g. by composing existing ones in various ways.

In our example, a command is a closure that takes a reference to a document,
processes it, and returns no result. For simplicity, we use a record that contains
a single integer number v to represent the “document”.

type Doc = { v : int; }; //this denotes a mutable record type
type Command = Doc→ (); //this denotes a closure type

The following command divides 100 by the number contained in a document:

val inverse = procedure (d : Doc) { d.v := 100/d.v; }

The keyword val introduces a constant value, as in Scala.
For a more involved example, suppose that we want to create a command

that adds x to the content of a document, for a given number x. Since x is
arbitrary, we need to create a factory that takes x as a parameter and returns
the desired command. We call the factory createAdd:

val createAdd =
procedure (x : int) returns Command
{ result := procedure (d : Doc) { d.v := d.v + x; }; }

Here we use the keyword returns in the signature of the procedure to refer
to its return type and the keyword result within its body as the variable that
holds its return value.

Closures capture their lexical environment. Here, the closure returned by
createAdd remembers ( captures) the value of the formal parameter x even when
it goes out of scope.

The command inverse is easy to decorate with pre- and postconditions. It is
not so easy to do the same for the factory procedure createAdd, whose specifi-
cation must talk about (the specification of) the command that it returns. This
is important for the caller, who needs to know when it is permitted to call the
command (its precondition), as well as what effects this command has (its post-
condition).

This is the first and simplest example of the phenomenon that recurs through-
out the paper: the need for specifications that talk about other specifications.

Example 2 (Chain of Responsibility) We can now proceed to something
more complex: we show a factory that takes two different commands and com-
bines them. In particular, our factory takes a boolean predicate on documents,
passed as a pure (side-effect free) closure b, and two commands c1 and c2. It
produces a command that acts as c1 if b is true and as c2 otherwise. The name
of our procedure is chain:
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val chain =
procedure (b : Doc→f bool, c1 : Command, c2 : Command)

returns Command
{

result := procedure (d : Doc)
{ if(eval b(d)) { call c1(d); }

else { call c2(d); }
};

}

Here, the notation →f creates types of pure closures. We use the keyword call
to invoke non-pure closures and the keyword eval to evaluate pure closures.

The factory chain can be used several times to form chains of responsibility,
in which commands may operate only on inputs for which they are responsible,
and otherwise delegate the processing to the commands that follow in the chain.

As a last item in a chain we may use a command that always fails:

val fail = procedure ( : Doc) { abort; }

The chain of responsibility factory is even harder to specify, because it is
both a factory and a delegant. The same principle however appears again: its
specification must talk about the specifications of its inputs and its output.

The classical approach to deal modularly with the issue of statically unknown
code is behavioral subtyping [20]. Behavioral subtyping restricts the specifica-
tions of a subclass so that they comply to those of the superclass. A client of
an object o, which only knows the dynamic type C of o, can safely assume the
specification of C when using o.

Behavioral subtyping alone cannot help us with delegation. Adapted to our
examples, behavioral subtyping would entail that all command delegates comply
to a common “supertype” specification. But then we would be in a dilemma. If
the super type specification is weak enough to allow for all possible command
delegates that get created, then it does not suffice to verify the clients. If, on
the other hand, we want a specification that is strong enough for the proof of a
client, then that may contradict the behavior of some command delegates.

Example 3 (Chain Client) Consider the following client code, using the def-
initions of Ex. 1 and 2:

val createChain =
procedure () returns Command
{ var sub20, t : Command;

sub20 := call createAdd(−20);
t := call chain(function (d1 : Doc) { d1.v > 10 }, sub20, fail);
result := call chain(function (d1 : Doc) { d1.v ≤ 0 }, inverse, t);

};
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val client =
procedure ()
{ var c : Command; c := call createChain();

var d : Doc; d := new Doc; d.v := 15;
call c(d); assert d.v = −5;
call c(d); assert d.v = −20;

};

where the keyword function creates a pure closure, and the keyword var a new
variable. The reader is invited to ascertain that both assertions in client succeed.

We want to prove the assertions in client modularly, i.e., by only looking
at its own code and the specifications of the closures it uses. To do that using
behavioral subtyping, we must be able to prove that the unknown command object
c behaves at least according to the following super type specification:

CommandSuperType(d : Doc)
requires d.v = 15 ∨ d.v = −5
ensures (old(d.v = 15) ⇒ d.v = −5) ∧ (old(d.v = −5) ⇒ d.v = −20)

However, this specification is already violated by the command inverse, as well
as by the middle command-node of the chain c.

On the other hand, if we gave weaker specifications to the command super
type, such that all our command delegates comply, then these specifications alone
would be insufficient to verify the procedure client.

Current research to attack the problem focuses on higher order logic solutions
[11, 12, 2, 13, 30, 22, 16, 29], in which one can quantify over unknown predicates,
and therefore over the specifications of delegates. Higher order specifications are
expressive enough to solve the problem of specifying delegation-based patterns.
However, a significant amount of interaction with a proof checker, such as Coq
[10] is required by the user.

1.1 Our Approach

Our focus is different from the approaches presented above: we are interested in
automated verification using first-order provers, in particular, SMT solvers such
as Simplify [7] and Z3 [21]. SMT solvers are used in many modern program
verifies such as ESC/Java [5], Spec# [1], and VCC [6]. In these systems, all
the information that the programmer writes to guide the verifier is part of
the program and its specification. The programmer does not interact with the
prover in any other way. Supporting this style of automatic verification requires
a formalization in first order logic1.

The idea of our approach is to allow our specifications to be defined in
terms of other specifications, by introducing specification functions. Specifica-
tion functions evaluate the pre/postconditions of closures at any state. Using

1Integer arithmetic is allowed, since SMT solvers can deal with it effectively.
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specification functions, we can write first order logic specifications that are ex-
pressive enough to deal with delegation.

Our solution is expressed directly in the Boogie intermediate language [18].
The Boogie verifier translates its programs into SMT-solver input, using a stan-
dard wp-calculus.

1.1.1 Contributions of this Paper

To the best of our knowledge, the methodology sketched here is the first fully
formalized treatment of the problem in first order logic, targeting SMT solvers,
and with a full proof of soundness. The latter is of particular importance, since
the idea of specifications that talk about other specifications may introduce
inconcistency, an issue that is dealt with in Sect. 2.4.

The concept of specification functions is not new: it appears in [8] and in
[24]. However, [8] is not focusing on automated verification and provides a
higher order logic formalization, while [24] provides incomplete formalization
and no soundness proof.

As a proof-of-concept, the examples presented here, are written directly
into the Boogie language and posted on-line at http://n.ethz.ch/~kassiosi/
projects/delegation-bpl-examples/. The prover behaves as expected with
all the examples.

1.1.2 Simplifications made in this Paper

For simplicity, in this paper we introduce no information hiding or data ab-
straction mechanisms, since we consider this topic orthogonal to the problem
at hand. This simplification makes it unnecessary to use special techniques for
framing, such as abstract predicates [25], or dynamic frames [14]. In [15], we
show how we can add such features to the language. In the paper, we also re-
strict our interest to partial correctness; reasoning about timing and termination
is considered orthogonal.

1.1.3 Summary of the Paper

In Sect. 2, we show the programming and specification language of the paper
and we show how to use it to specify delegation based examples. The discus-
sion is informal. The formal semantics of both languages is given in Sect. 3.
Sect. 4 shows a translation of the programming/specification language to the
intermediate language of the Boogie verifier. In Sect. 5 we prove our verification
methodology of Sect. 4 sound with respect to the semantics of Sect. 3.

2 Specification

In this section, we present our programming and specification language. We
show how to specify the examples from the Introduction, as well as one extra
example. Finally, we also sketch a solution to an important soundness problem.
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P ::= TD D S program
TD ::= type I = T ; type decl.
T ::= int | bool | I type

| (T )→ [T |()] | (T )→f T | { I : T ; }
D ::= var I : T | val I = V variable/constant
S ::= L := E; | if(E){S}[else{S}] statement

| [L :=]call E(E); | L := new T ;
| assert E; | abort;

L ::= [E.]I | result l-value

E ::= L | V | UO E | E BO E | eval E(E) expression
V ::= true | false | N | null | PD | FD value

PD ::= procedure (I : T ) [returns T ] {D S} procedure def.

FD ::= function (I : T ) {E} function def.
UO ::= ¬ | + | − unary operator
BO ::= + | − | ∗ | / | ∧ | ∨ | ⇒ | ⇐ binary operator

Non-terminal I stands for identifiers. Non-terminal N stands for natural
numbers. The operators ::= | [] and the overline are BNF metasymbols.

Capital letters are non-terminals. Everything else is literal.

Figure 1: Syntax of the Programming Language

The presentation here is informal. The formal details are provided in Sec. 3.

2.1 Programming Language

In Fig. 1 we see the syntax of our programming language. The informal seman-
tics of most constructs of the language is obvious. Here we explain only the
creation and use of closures.

Expressions of the programming language can contain procedure definitions,
introduced with the keyword procedure. When a procedure definition gets
evaluated, its body is not executed. Instead, a new closure is created. A closure
is a value that encapsulates the procedure definition, together with the current
lexical environment, i.e., all variables and constants that are visible at the point
where the procedure definition appears.

It is important to point out the difference between a procedure definition
and a closure. A procedure definition is a static expression. A closure is a value
generated dynamically when a procedure definition is evaluated. One procedure
definition may create arbitrarily many closures. For example, consider the pro-
cedure definition inside the body of createAdd in Ex. 1. Each time createAdd
is invoked, this inner definition creates a new closure. A closure gets invoked
using a call command. When the closure is invoked, its body is executed in the
lexical environment that the closure has stored.

A program may also contain function definitions, introduced with the key-
word function. When a function definition is evaluated, then, like with pro-
cedural definitions, the body is not evaluated, and instead a pure closure is
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Q ::= [Q.]I | result | true | false spec. expression

| N | null | ∅ | { [Q.]I } | ∆Q

| UO Q | Q BO′ Q | eval Q(Q)

| old(Q) | ∀I : T ·Q | ∀̇ ·Q | fresh(Q)

| pre(Q) | post(Q) | mod(Q) | exec(Q)
BO′ ::= BO | ∪ | ∩ | ⊆ spec. binary operator

Non-terminal definitions that appear in Fig. 1 are valid here.

Figure 2: Specification Language Syntax

created. The pure closure is a value that encapsulates the function definition
together with the current lexical environment. To evaluate the body of a pure
closure, we use keyword eval within an expression. As with non-pure closures,
evaluation is going to happen in the lexical environment that is stored in the
pure closure.

For simplicity, we do not allow eval expressions or procedure / function def-
initions within the body of function definitions. This ensures that the evaluation
of any expression of the programming language terminates and that it creates
no new closures. The principal reason for introducing this restriction, is to
avoid solving the problem of circular definitions for both pure and non-pure
closures. It is however straightforward to extend the semantics in order to lift
this restriction.

2.2 Specification Language

In this section, we equip each procedure definition with classical pre/post-
conditions and modifies clauses. We use the standard keywords requires,
ensures, and modifies respectively. We also equip functional definitions with
preconditions. We introduce and explain our new specification constructs, and
we see how they can be used to specify the examples that we have seen so far.
The language of specification expressions is shown in Fig. 2.

Specifying procedures with pre/postconditions is standard, and we will not
elaborate further on this. In what follows, we show the new constructs of our
specification language, that help us with delegation.

2.2.1 The “modifies” Clause.

The treatment of “modifies” clauses is not entirely standard. The modifies
keyword is followed by a specification expression whose type is “set of l-values”.
For example, one can write modifies {x, o.y} to allow modification of the value
of variable x, as well as field y of record o. As is usual, allocation of new memory
is also allowed. We denote the type of “sets of l-values” by reg for region.

The specification language provides operators to construct expressions of
type reg and to reason about them. So we are allowed to write “modifies”
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clauses such modifies {x} ∪ {o.y} or “requires” clauses like requires X ⊆ Y ,
where X and Y are specification expressions of type reg.

2.2.2 Specification Functions and Related Notation

Specification Functions. To make it possible for specifications of closures
to talk about those of other closures, the specification language supports three
keywords pre, post, and mod. Their syntax is similar to that of a regular
mathematical function. The first parameter is always a closure-valued expres-
sion c. Then follows a series of expressions x1, x2, .. whose number and types
correspond to the parameters expected by the type of c. The operator post
also takes an expression of the result type of c, if there is one.

The expressions pre(c, x) and post(c, x, r) evaluate to a boolean. The for-
mer one is true if and only if the precondition of c with parameters the x is true
in the current state. The latter is true if and only if the precondition of c with
parameters the x is true in the current pre-state and the postcondition of c with
parameters the x and return value r is true in the current pre- and post-states.
The expression mod(c, x) evaluates to a value of type reg. It is equivalent to
the “modifies” clause of c with parameters the x in the current state. If the
precondition is false, then it evaluates to ∅.

It is important to point out that the expressions pre(c, x), mod(c, x), and
post(c, x, r) are state-dependent (in fact, post depends on two states), even
though the syntax leaves this dependency implicit. Their semantic counter-
parts are functions whose dependency on the state is explicit. These semantic
functions are called specification functions.

As an example of the use of specification functions, consider the postcon-
dition of createAdd of Ex. 1. It can contain a condition that says that the
precondition of the result of createAdd is true, if its parameter is non-null:

ensures ∀d : Doc · d 6= null ⇒ pre(result, d)

Universal State Quantification. The above “ensures” clause is not enough.
What it says, is that the return closure can be called at the current state, as
long as its parameter is non-null. What we really want to say, is that the return
closure can be called at all states, as long as its parameter is non-null. To
introduce universal quantification over all states, we use the symbol ∀̇. If Q is
a state-dependent expression, then ∀̇ · Q is true if and only if Q is true in all
states. In our example, we write:

ensures ∀̇ · ∀d : Doc · d 6= null ⇒ pre(result, d)

This says that the precondition of result is true in all states, if its parameter
is not null.
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Quantification over two States. In fact, ∀̇ is a universal quantification over
two states, one prestate and one poststate. Therefore ∀̇ introduces a context
in which two-state operators, like post and old can be used. For example,
the following postcondition of createAdd describes the behavior of the returned
closure:

ensures ∀̇ · ∀d : Doc · post(result, d) ⇒ d 6= null ∧ d.v = old(d.v) + x

This says that if the returned closure is invoked, at any state, it will increase
the value of d.v by x. Note that we do not need to mention the precondition
d 6= null explicitly here. By our convention, for prestates in which d = null,
the value returned by post(result, d) is false, making the implication trivially
true.

Fresh closures. When a closure has been created during the execution of
an other closure, it is desirable for the client to know so (see Sect. 2.4). To
specify this, we use the keyword fresh. The keyword fresh appears in two-state
contexts. It takes one closure-valued argument and asserts that this closure did
not exist in the prestate. Closure factories use fresh to annotate that their
result is fresh; in our example we write:

ensures fresh(result)

Example 4 Our notation suffices to specify all the examples of Ex. 1 and 2.
For example, the procedure definition createAdd of Ex. 1 is annotated as follows:

val createAdd =
procedure (x : int) returns Command

ensures ∀̇ · ∀d : Doc · d 6= null ⇒ pre(result, d)

ensures ∀̇ · ∀d : Doc ·mod(result, d) ⊆ {d.v}
ensures ∀̇ · ∀d : Doc · post(result, d) ⇒ d.v = old(d.v) + x
ensures fresh(result)
{ result :=

procedure (d : Doc)
requires d 6= null modifies {d.v} ensures d.v = old(d.v) + x
{ d.v := d.v + x; }; }

Both procedure definitions are very easily verified in this example. The inner
procedure definition is trivial. The outer procedure definition does not see the
code of the inner procedure definition, but still verifies only using the specifica-
tions of the inner procedure definition. What is now returned to the client, is a
closure together with a description of its behavior.

The client can take this closure and use it immediately. More interestingly,
the closure can be combined into a network of other closures, like the chain of
responsibility. To do that, we use procedures such as chain of Ex. 2. Here is
how this procedure is annotated with specifications (its body together with the
internal specifications is omitted):
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val chain =
procedure (b : Doc→f bool, c1 : Command, c2 : Command)

returns Command

ensures ∀̇ · ∀d : Doc · pre(b, d) ∧ pre(c1, d) ∧ pre(c2, d)

ensures ∀̇ · ∀d : Doc ·mod(result, d) ⊆ mod(c1, d) ∪ (mod(c2, d))

ensures ∀̇ · ∀d : Doc·
ensures fresh(result)

post(result, d)
⇒ (old(eval b(d))⇒ post(c1, d)) ∧ (¬old(eval b(d))⇒ post(c2, d))

{...}

The specifications of chain and those of individual commands (like inverse
from Ex. 1) and command factories (like createAdd from Ex. 1) can be used to
create arbitrary complex nets of commands, with known behavior. The procedure
createChain of Ex. 3 is an example of such use. The annotation of this command
with specification is as follows (the body is again omitted):

val createChain =
procedure () returns Command

ensures ∀̇ · ∀d : Doc · d 6= null ∧ (d.v < 0 ∨ d.v > 10) ⇒ pre(result, d)

ensures ∀̇ · ∀d : Doc · mod(result, d) ⊆ {d.v}
ensures ∀̇ · ∀d : Doc·

post(result, d)
⇒ (old(d.v) < 0⇒ d.v = 100/old(d.v))

∧ (old(d.v) > 10⇒ d.v = old(d.v)− 20)
ensures fresh(result)
{...}

Not only these procedure definitions verify, but they return information strong
enough to verify the procedure client of Ex. 3. By contrast, the verification of
the following two procedures fails, because they both violate the precondition of
our chain.

val badClient1 =
procedure ()
{ var c : Command; c := call createChain();

var d : Doc; d := new Doc; d.v := 0;
call c(d); //precondition violated

}
val badClient2 =

procedure ()
{ var c : Command; c := call createChain();

var d : Doc; d := new Doc; d.v := 5;
call c(d); //precondition violated

}

The Boogie translation of all the above examples is available at http: // n.
ethz. ch/ ~ kassiosi/ projects/ delegation-bpl-examples/ .
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Auxiliary Notation. In what follows, we also make use of two more opera-
tors, ∆ and exec.

The operator ∆ takes a one-state reg-valued expression Q and produces a
two-state specification that guarantees that nothing changes in the heap except
the locations described by Q. For example, ∆{x} is a two-state specification
that ensures that only the value of variable x may differ between the two states.
The operator ∆, like the modifies clause, allows the allocation of new memory.

The keyword exec is an abbreviation defined as follows:

exec(c, x1, .., xn, r) = (post(c, x1, .., xn, r) ∧ ∆(mod(c, x1, .., xn)))

In other words, exec summarizes the functional and the framing behavior that
we observe when we invoke a closure.

2.3 Ghost Parameters

In this section, we implement a custom while loop. A formalization of such a
general construct would typically need higher-order logic. However, by passing
extra information by the client as ghost parameters, we can avoid this. In our
example, passing the loop invariant suffices to avoid higher-order logic.

Example 5 (Custom While Loop) The while procedure takes the condition
and the loop body as a pure and a non-pure closure respectively. The procedure
takes also the loop invariant as a ghost pure closure parameter.

val while =
procedure (condition : ()→f bool , body : ()→ () , inv : ()→f bool)

requires ∀̇ · pre(inv) ∧ pre(condition) ∧ pre(body)
requires eval inv()

requires ∀̇·
old(eval condition() ∧ eval inv()) ∧ exec(body)

⇒ eval (inv) ∧ mod(body) = old(mod(body))
modifies mod(body)
ensures ¬eval condition() ∧ eval inv()
{

if(eval condition()){ call body(); call while(condition, body, inv); }
};

The specification expresses the usual partial correctness conditions for while
loops: the invariant has to hold before the loop and after every iteration. If the
loop terminates, its iteration condition will be false and the invariant will hold.
Furthermore, the loop promises to respect the frame of its body. For simplicity,
we assume that the modifies clause of the body remains constant throughout the
iteration, and that all the involved closures have preconditions that are true in
all heaps.

The specification of the while procedure allows the clients to reason about
invocations of the loop, as in the following example:
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var i, j, x : int;
i := 0 ; j := 5 ; x := 7;
call while

( function (){i < 5} ,
procedure ()

modifies {i, j}
ensures i = old(i) + 1 ∧ j = old(j)− 1
{i := i+ 1; j := j − 1; } ,
function (){i+ j = 5 ∧ i ≤ 5}

);
assert i = 5 ∧ j = 0 ∧ x = 7;

2.4 Avoiding Circular Dependencies between Specifica-
tion Functions

In our methodology, specifications of procedures talk about specifications of
other procedures. If we are not careful, this may cause circularity in the defini-
tion of specifications, and therefore inconsistency. The easiest way to produce
such an inconsistency is to talk about one’s own specification:

val f = procedure () requires ¬pre(f) {};

It is usually not easy to detect circularity. There might be larger circles than
the one we show above, but, more importantly, there may be circles through
the heap, as in:

var x : ()→ ();
val f = procedure () requires ¬pre(x) {};
x := f ;

This problem does not appear in function definitions, because we have explic-
itly forbidden evaluations within evaluations, ensuring that an eval expression
always terminates.

To prevent the unsoundness, we need to prevent circularity. It suffices to
define a well-founded ordering on closures @ and impose the restriction that
the specification functions of a closure c2 may be depend on the specification
functions of another closure c1, if and only if c1 @ c2. The well-foundedness of
@ prevents circular dependency and ensures consistency.

A temptingly easy way to define c1 @ c2 is to compare the size of the types
of c1 and c2, as in [15], where the size of a type is defined as follows:

size(int) = size(bool) = size(T ) = 1 for any record type, and pure closure type T
size((T1, .., Tn)→ R) = 1 + size(R) +

∑n
i=1 size(Ti)

size((T1, .., Tn)→ ()) = 1 +
∑n

i=1 size(Ti)

The restriction makes it safe for a specification function to depend on the spec-
ification functions of the parameters and the result of the closures it describes.

However, this is too strict in some cases. It is typical in delegation patterns
for delegates to depend on other delegates of the same type. Such a situation
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exists in Chain of Responsibility. For such cases, we decide to allow c2 to depend
on c1, if c1 was created before c2.

In particular, if closure c was the n-th closure to be created during an execu-
tion, we say that its order is n. We denote the order of a closure c by order(c).
We denote the type of a value v by type(v). Finally, we define @ as follows:

c1 @ c2 ⇔ size(type(c1)) < size(type(c2))
∨ (size(type(c1)) = size(type(c2)) ∧ order(c1) < order(c2))

This modest improvement is actually quite important. Our ordering allows
the specifications of closures to depend on others of the same type, supporting
such typical delegation chains, but at the same time gives a simple criterion to
ensure absence of circular definitions. All our examples in the previous sections
respect the dependency restriction imposed by @.

The verification system alone can calculate @ in most cases (see Sect. 4.1),
so we felt that it is not necessary to include it to the specification language.

To avoid an easy misunderstanding, we should stress that we do not impose
any restriction on recursion in programs. We only forbid circularity in the
dependencies of specification functions. For example, the implementation of
while in Sect. 2.3, is a recursive procedure.

3 Formal Semantics

Before detailing our automated verification methodology, we present the formal
semantics of the specification and programming language of the previous section.

3.1 Notation

The following list summarizes the notation used in this section.

• [X]Y is the set of total maps from X to Y .

• [X]?Y is the set of partial maps from X to Y

• A map m maps x to m[x].

• Dom(x) is the domain of the partial map x.

• x 7→ y|z is the map such that m[x] = y and w : Dom(m)−{x} ⇒ m[w] = z[w].

• A tuple is created as follows: (x; y; ...). To get an item from a tuple, we use ↓
• If X,Y are expressions and x a variable, then X(Y/x) denotes expression X

with all free occurrences of x substituted with Y .

• Id,Exp, LV,NameI,Stm, Spec,Type are the set of identifiers, programming lan-
guage expressions, l-values, identifier introductions (i.e., val and var instruc-
tions), statements, specification expressions, and programming language types,
respectively.

• N,Z,Bool are the sets of naturals, integers, and booleans, respectively.
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3.2 State and Value Model

Identifiers. For simplicity, we want to have the property that every variable
and constant declaration in the program introduces a unique identifier. This is
of course not true in our language, because of scoping. However, this techni-
cality can be easily overcome, by translating the program into an equivalent in
which all declarations (including formal parameters) introduce unique identi-
fiers. From now on, we assume that our programs satisfy this property. The
set of all unique identifiers is denoted Id. We make a further distinction into
identifiers that denote variables (IdV ) and identifiers that denote constants and
formal parameters (IdC):

Id = IdV ∪ IdC IdV ∩ IdC = ∅

Heaps. Assume an infinite set Loc of locations or addresses. A heap is a
partial mapping from locations to program values. The set of heaps is denoted
Heap and the set of program values by Val:

Heap = [Loc]?Val

As we have seen, the lexical environment of a closure gets captured. In
practice this entails that some local variables, that would otherwise be on the
stack, have to live on the heap. For our purposes, it is enough to assume that
there is no stack at all and that every variable lives on the heap.

Variable Environments. At any given point of a program, an identifier cor-
responds to a location. In fact, identifiers are mapped to different locations,
according to the closure that is being executed at the time.

This motivates the notion of variable environment, a mapping from identi-
fiers to locations. The set of variable environments is denoted Env. An impor-
tant property of a variable environment is that no two distinct identifiers are
mapped to the same location (never two variables refer to the same memory
location):

Env ⊆ { e : [IdV ]Loc | ∀i, j : Dom(e) · i 6= j ⇒ e[i] 6= e[j] }

Notice that we are using⊆ instead of equality here. The reason is that records
are also mappings from identifiers to locations, and we want to distinguish
records from variable environments.

Also notice that we are formalizing environments as total mappings, in con-
trast to heaps, which are formalized as partial mappings. Total mappings are
formally simpler and therefore preferable, whenever possible. We are never in-
terested in the domain of an environment (this part is taken care of by the type
checker before us), so we can use total mappings here. In the case of heaps, this
is not so: any allocation of new memory must ensure that the new locations are
not already used in the heap for something else.
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Values. A value is a boolean, an integer, null, a record, or a closure. Notice
that, like environments, records are simply total mappings from identifiers to
distinct locations. The set of all closures is denoted Cl:

Rec ⊆ [IdV ]Loc
Val = Z ∪ Bool ∪ {null} ∪ Rec ∪ Cl

Furthermore, we want the following properties: (a) no two distinct records may
use the same location:

∀r, r′ : Rec, i : Dom(r), j : Dom(r′) · r 6= r′ ∨ i 6= j ⇒ r[i] 6= r[j]

and (b) no record uses a location used by a variable environment:

∀r : Rec, e : Env, i : Dom(r), j : Dom(e) · r[i] 6= e[j]

Notice that the first axiom guarantees also that one record maps distinct
identifiers to distinct locations, a property that we also met in environments.

Constant Environments. Our language supports constants. These include
the formal parameters of procedure and function definitions. We store these
in a seperate map, called the constant environment. The type of this map is
denoted Const. A constant environment maps identifiers to values.

Const = [IdC ]Val

During execution, we have a pair of a variable environment E and a constant
environment C. We refer to the pair (E;C) as the environment of the execution.

Closures. A first-order formalization does not permit storing the actual body
of a closure as a value. Instead, each closure contains a token that uniquely
represents the procedure or function definition from which it was created. We
call this token the key of the procedure or function definition. Keys are used
to connect closures to their body and their specifications. We denote the set of
keys CK.

Apart from the key, a closure carries its lexical environment. This means
that a closure has a variable environment component that remembers all the
variables that the closure captures, as well as a constant environment component
that remembers all the constants that it captures. Non-pure closures also carry
their order, for reasons that we saw in Sect. 2.4. The definition of Cl is thus:

Cl = NPCl ∪ PCl
NPCl = CK× Env × Const× N
PCl = CK× Env × Const

We define

key(c) = c ↓1 env(c) = c ↓2 cst(c) = c ↓3 order(c) = c ↓4
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For any closure type T , we assume the existence of a unique closure key
uninitT , that describes the value of an uninitialized T -typed variable. The
precondition of any closure coming from uninitT is false (i.e., no uninitialized
closure may be invoked).

States. The state of execution is described by the current heap, the current
lexical environment (i.e. a variable and a constant environment), the current
return value (corresponding to the value of the special variable result), and a
number which is greater than the order of each closure ever created, called the
max-order of the state. The set of states is denoted by Σ:

Σ = Heap× Env × Const× Val× N

3.3 Semantics of Programs

Expressions. The denotation of expressions is a function [[]]E that takes an
expression and a state. The function produces a value. Expressions have also a
subtle side effect: they create and insert new closures in the heap. This means
that they change the max-order of the state. The function [[]]M is a function
that takes an expression and a state and returns the new max-order after the
evaluation of the expression. The function is [[]]L takes an l-value and a state
and produces the location pointed to by the l-value:

[[·]]E : Exp× Σ→ Val
[[·]]M : Exp× Σ→ N
[[·]]L : LV × Σ→ Loc

The semantics of expressions can be seen in Fig. 3. Obvious cases, like unary
and binary operators, are omitted.

Statements. For the semantics of statements, we define a uninitialized value
def(T ) for each type T , as follows:

def(T ) = null if T is a record type
def(T ) = (uninitT ; ∅; ∅; 0) if T is a non-pure closure type
def(T ) = (uninitT ; ∅; ∅) if T is a pure closure type
def(T ) : T otherwise (underspecified)

In Fig. 4 we show a big-step operational semantics of our language. The
described ternary relation  takes a pre-state, an identifier introduction or
statement, and a post-state:

(·, ·) · : Σ× (NameI ∪ Stm)× Σ

Again, trivial cases, like conditionals and sequential composition, are omitted.
It is instructive to see the semantics of the closure invocation. The actual

parameters are evaluated in the calling environment E,C. Their values are ac-
cumulated to the constant environment c of the closure that is being invoked, so

16



L-values, constants and result. For simplicity, we assume that no proce-
dure/function definitions appear in l-values.

I : IdV ⇒ [[I]]L((H;E;C;R;M)) = E[I] [[E.I]]L(σ) = [[E]]E(σ)[I]
[[L]]E(σ) = H[[[L]]L(σ)] [[L]]M((H;E;C;R;M)) = M
I : IdC ⇒ [[I]]E((H;E;C;R;M)) = C[I] I : IdC ⇒ [[I]]M((H;E;C;R;M)) = M
[[result]]E((H;E;C;R;M)) = R [[result]]M((H;E;C;R;M)) = M

Closures: Assume that

• The function definition function (x){B} has unique closure key u.

• The procedure definition procedure (y){S} has unique closure key u′.

Then:

[[function (x){B}]]E((H;E;C;R;M)) = (u;E;C)
[[function (x){B}]]M((H;E;C;R;M)) = M
[[procedure (y){S}]]E((H;E;C;R;M)) = (u′;E;C;M)
[[procedure (y){S}]]M((H;E;C;R;M)) = M + 1

Pure Closure Evaluation: Assume that

• The function definition function (x1, .., xn){B} has unique closure key u.

• [[E]]E((H;E;C;R;M)) = (u; e; c) and [[E]]M((H;E;C;R;M)) = m1.

• For all i: [[Ei]]E((H;E;C;R;mi)) = vi and [[Ei]]M((H;E;C;R;mi)) = mi+1.

Then:

[[eval E(E1, .., En)]]E((H;E;C;R;M)) = [[B]]E((H; e;x1 7→ v1|..|xn 7→ vn|c;R;mn+1))
[[eval E(E1, .., En)]]M((H;E;C;R;M)) = mn+1

Figure 3: Semantics of Expressions
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The semantics of statements and name introductions are as follows:

I : IdV l : Loc− Dom(oH) E = I 7→ l|oE H = l 7→ def(T )|oH
(var I : T , (oH; oE;C;R;M)) (H;E;C;R;M)

I : IdC C = I 7→ [[V ]]E((H;E; oC;R; oM))|oC M = [[V ]]M((H;E; oC;R; oM))

(val I = V , (H;E; oC;R; oM)) (H;E;C;R;M)

l = [[L]]L((oH;E;C;R; oM)) : Dom(H) H = l 7→ [[E]]E((oH;E;C;R; oM))|oH
M = [[E]]M((oH;E;C;R; oM))

(L := E , (oH;E;C;R; oM)) (H;E;C;R;M)

R = [[E]]E((H;E;C; oR; oM)) M = [[E]]M((H;E;C; oR; oM))

(result := E , (H;E;C; oR; oM)) (H;E;C;R;M)

For the invocation statement, we show only the case with a return value. Assume that
the procedure definition procedure (x1, .., xn) returns T {S} has unique closure key
u. Assume also that the return variable for the procedure definition is rv.

[[E]]E((oH;E;C;R; oM)) = (u; e; c; o) c1 = c m1 = [[E]]M((oH;E;C;R; oM))
rcl = [[L]]L((oH;E;C;R; oM)) : Dom(oH)
∀i · ci+1 = xi 7→ [[Ei]]E((oH;E;C;R;mi))|ci
∀i ·mi+1 = [[Ei]]M((oH;E;C;R;mi))

(S, (oH; e; cn+1; dummy;mn+1)) (h′; e′; c′; r;M)
H = rcl 7→ r|h′

(L := call E(E1, .., En) , (oH;E;C;R; oM)) (H;E;C;R;M)

Figure 4: Semantics of Statements

that the body of the closure can see them. The body of the closure S is executed
in the environment e; cn+1, where cn+1 is the constant environment of the clo-
sure together with all the actual parameters as constants. After the execution,
the caller resumes in its own environment E;C, which has not changed.

3.4 Semantics of Specifications

The denotation of specification expressions is given by a function [[]]S . This
takes a specification expression and translates it against two states2.

Notice that we only need one variable environment and one constant envi-
ronment (the environment changes during the execution of the specified closure
are ignored in the caller). We also require only one return value.

Furthermore, to implement the restrictions of Sect. 2.4, we introduce one
extra argument, the current closure. This is the closure whose specification is
currently being evaluated. In Sect. 4.2, we see how this parameter is being used
to avoid circular definitions.

A specification expression returns either a value (for pre/postconditions, this
value is a boolean), or a set of locations (for example, the semantics of a modifies
clause is a set of locations).

2For one-state specifications, the second state is omitted.
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The discussion above explains the, rather complicated, signature of [[]]S :

[[·]]S : Spec× Heap× Heap× N× N× Env × Const× Val× NPCl→ Val ∪ 2Loc

For each non-pure closure type T , we introduce three specification functions
preT , postT and modT . For example, if T = (T1, .., Tn)→ R, then

preT : Heap× N× NPCl× T1 × ..× Tn → Bool
postT : Heap× Heap× N× N× NPCl× T1 × ..× Tn ×R→ Bool
modT : Heap× N× NPCl× T1 × ..× Tn → 2Loc

The function preT and modT take one heap and one max-order as parameter,
because they are to be evaluated in one state. The function postT takes two
such pairs.

The function preT is defined accordingly for pure closure types T . Together
we define a function evalT :

preT : Heap× N× PCl× T1 × ..× Tn → Bool
evalT : Heap× N× PCl× T1 × ..× Tn → R

We show how specification functions are axiomatized in Sect. 4.2. For the
time being, we use them as uninterpreted symbols in our semantics.

The semantics of specification expressions is given in Fig. 5 (everything ex-
cept specification functions) and Fig. 6 (specification functions). Constants,
unary, and binary operators are omitted.

4 Verification

In our verification technique, we are using Boogie, a tool which is based on SMT
solvers to verify programs against their specification.

Our technique makes several passes through the program to be verified:

• The first pass is trivial: it changes the identifiers of the program so that
each declaration creates a unique identifier, and it assigns a unique key to
each procedure and function definition.

• The second pass discovers environment invariants for each scope that
occurs in the program.

• The third pass creates an axiomatization that links the specifications that
appear in any procedure / function definition to the corresponding speci-
fication functions.

• The fourth pass creates a Boogie procedure per each procedure definition
in the program and annotates it with appropriate specifications. This
step is not needed for function definitions (the axiomatization of eval in
the third step is enough).
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Identifiers and Record Fields (a helper function [[·]]LS plays the same role as [[·]]L
for programming language expressions):

I : IdV ⇒ [[I]]LS(H, oH,M, oM,E,C,R, D) = E[I]
[[Q.I]]LS(H, oH,M, oM,E,C,R, D) = [[Q]]LS(H, oH,M, oM,E,C,R, D)[I]
[[L]]S(H, oH,M, oM,E,C,R, D) = H[[[L]]LS(H, oH,M, oM,E,C,R, D)]
[[{Q1, .., Qn}]]S(H, oH,M, oM,E,C,R, D) =
{ [[Qi]]LS(H, oH,M, oM,E,C,R, D) | i : {1, .., n} }

I : IdC ⇒ [[I]]S(H, oH,M, oM,E,C,R, D) = C[I]
[[result]]S(H, oH,M, oM,E,C,R, D) = R

Special Specification Constructs:

[[∆Q]]S(H, oH,M, oM,E,C,R, D) =
∀l : Dom(oH)− [[Q]]S(oH, oH, oM, oM,E,C,R, D) · H[l] = oH[l]

[[old(Q)]]S(H, oH,M, oM,E,C,R, D) = [[Q]]S(oH, oH, oM, oM,E,C,R, D)

[[∀̇ ·Q]]S(H, oH,M, oM,E,C,R, D) =
∀h′, h : Heap,m′,m : N · [[Q]]S(h′, h,m′,m,E,C,R, D)

[[fresh(Q)]]S(H, oH,M, oM,E,C,R, D) =
(oM ≤ order([[Q]]S(H, oH,M, oM,E,C,R, D)) < M)

Universal Quantification over Values:

[[∀x : T ·Q]]S(H, oH,M, oM,E,C,R, D) =
∀v : T · [[Q(v/x)]]S(H, oH,M, oM,E,C,R, D)

Figure 5: Semantics of Specifications without Specification Functions

Finally, the usual Boogie process is followed: using a standard wp-calculus,
all Boogie procedures are translated into SMT formulas, to be fed into an SMT
solver, which returns the answer.

Our technique concerns the first four passes. The first one is trivial. In this
section, we detail the next three passes. The soundness of verification is proved
in Sec. 5.

4.1 Environment Assumptions

The purpose of this pass is to address an incompleteness that stems from the fact
that Boogie supports only flat procedures, while our source language supports
nesting. Consider the following code:

var x : int;
val g = procedure (z : int) { x := x+ z };
val f = procedure () { val h = procedure (z : int) { g(z); x := x+ 1; }; };

The code is legal. In particular, the procedure h accesses legaly the visible
variable x and the visible constant g. However, x and g are not declared as part
of the signature of h. The Boogie procedure that corresponds to h must get all
information about x and g by somewhere else.

Assume that u is the key of a procedure definition. In this section, we define
a predicate ψu that collects this static information about the environment of
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Pure Closures. Assume that

• [[Q]]S(H, oH,M, oM,E,C,R, D) = (u; e; c)

• type((u; e; c)) = T = (T1, .., Tn)→f RT

• For all i, [[Qi]]S(H, oH,M, oM,E,C,R, D) = vi

. Then:

[[eval Q(Q1, .., Qn)]]S(H, oH,M, oM,E,C,R, D) = evalT (H,M, (u; e; c), v)
[[pre(Q,Q1, .., Qn)]]S(H, oH,M, oM,E,C,R, D) = preT (H,M, (u; e; c), v)

Non-Pure Closures. Assume that

• [[Q]]S(H, oH,M, oM,E,C,R, D) = D′ = (u; e; c;m)

• type(D′) = T = (T1, .., Tn)→ RT

• For all i, [[Qi]]S(H, oH,M, oM,E,C,R, D) = vi

Then:

[[pre(Q,Q1, .., Qn)]]S(H, oH,M, oM,E,C,R, D) =

{
preT (H,M, D′, v) if D′ @ D

false o.w.

[[mod(Q,Q1, .., Qn)]]S(H, oH,M, oM,E,C,R, D) =

{
modT (H,M, D′, v) if D′ @ D

∅ o.w.

[[post(Q,Q1, .., Qn, R)]]S(H, oH,M, oM,E,C,R, D) ={
postT (H, oH,M, oM, D′, v,R) if D′ @ D

false o.w.

The case for closures without return values just omits the return value from post.
The operator exec is defined by:

exec(Q,Q1, .., Qn, R) ≡ post(Q,Q1, .., Qn, R) ∧ ∆(mod(Q,Q1, .., Qn))

Figure 6: Semantics of Specifications - Specification Functions
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the definition. We then include this information as a precondition of the Boogie
procedure that corresponds to the definition.

The information that we gather is:

• Which variables are visible.

• The values of constants.

• The relation between the orders of constant non-pure closure constants.

The signature of ψu is:

ψu : Heap× Env × Const→ Bool

and we define it as a conjunct of various conditions. In particular, ψu(H,E,C)
contains:

• E[x] : Dom(H), for any visible variable.

• C[x] = v, for any visible constant declaration val x = v; where v is a primitive
value.

• key(C[x]) = u′, for any visible constant declaration val x = d; where d is a
procedure or function definition with key u′.

• Let c1, c2 be two non-pure-closure-valued visible constants. If c1 is introduced
before c2 in the same scope, or if c1 is introduced in a scope that includes the
scope of c2, then ψu(H,E,C) contains the conjunct order(C[c1]) < order(C[c2]).

• Let f be a non-pure-closure-valued formal parameter of a scope that includes u.
Let c be a non-pure-closure-valued constant introduced in a scope in which f is
visible. Then ψu(H,E,C) contains the conjunct order(C[f ]) < order(C[c]).

The intention is that at the beginning of the execution of a closure with key u, the
conjunct ψu(H,E,C) is true (where H,E,C constitute the heap and the environment
of the current state). This is proved in Thm. 1 below.

Going back to our example, assume that g has key ug and f has key uf . Then
ψu(H,E,C) is given by:

ψu(H,E,C) = ( E[x] : Dom(H) ∧ key(C[g]) = ug ∧ key(C[f ]) = uf

∧ key(C[h]) = u ∧ order(C[h]) > order(C[f ]) > order(C[g]) )

4.2 Axiomatization of Specification Functions

In this pass, we axiomatize the specification functions. This means, we provide Boo-
gie axioms that associate the specification functions preT , postT , and modT with the
respective specifications declared in the procedure and function definitions. This ax-
iomatization is used in the semantics of Fig. 6.

For example, consider the following procedure definition f , with key u (in context
var x : int;):

procedure (y : int) modifies {x} ensures x = old(x) + y { x := x+ y; }
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This procedure definition triggers the following axiomatization:

∀h : Heap, d : NPCl, m : N, y : Z · key(d) = u⇒ preint→()(h,m, d, y)

∀h : Heap, d : NPCl, m : N, y : Z · key(d) = u⇒ modint→()(h,m, d, y) ⊆ {env(d)[x]}
∀h, oh : Heap, m, om : N, d : NPCl, y : Z·

key(d) = u⇒ (postint→()(h, oh,m, om, d, y) = (h[env(d)[x]] = oh[env(d)[x]] + y))

that is, for any closure d generated by this procedure definition:

• the precondition of d is always true.

• the modifies clause of d is always {x}.
• the postcondition of d is equivalent to “the new value of x is equal to the old

value of x plus y”.

4.2.1 Non-Pure Closures

Let u be a key for a procedure definition with type3 T = (T1, .., Tn) → R. Let
P,Q,M be respectively the pre/postcondition and the modifies clause of that proce-
dure definition. Let x1, .., xn be the formal parameters and r be the return variable
of the procedure definition. Then the specification function axiomatization generates
the following axioms:

∀h : Heap, m : N, d : NPCl, v : T · key(d) = u ⇒
preT (h,m, d, v) = [[P ]]S(h, h,m,m, env(d), x1 7→ v1|..|xn 7→ vn|cst(d) , dummy, d)

∀h : Heap, m : N, d : NPCl, v : T · key(d) = u ∧ preT (h,m, d, v) ⇒
modT (h,m, d, v) = [[M ]]S(h, h,m,m, env(d), x1 7→ v1|..|xn 7→ vn|cst(d) , dummy, d)

∀h : Heap, m : N, d : NPCl, v : T · key(d) = u ∧ ¬preT (h,m, d, v) ⇒
modT (h,m, d, v) = ∅

∀h, oh : Heap, m, om : N, d : NPCl, v : T , r : R · key(d) = u ⇒
postT (h, oh,m, om, d, v, r)

= preT (oh, om, d, v) ∧ [[Q]]S(h, oh,m, om, env(d), x1 7→ v1|..|xn 7→ vn|cst(d) , r, d)

Each one of these axioms defines one specification function in terms of the actual
specification written in the code. The value dummy is never used. The axioms respect
our convention that post returns false and that mod returns ∅, when the precondition
is not satisfied.

The axiomatization presented here completes the formalization of the solution
which was sketched in Sect. 2.4. The trick lies in the final parameter of the semantics,
the “current closure”. Suppose that we evaluate a specification annotation of a closure
d1. Each time a pre, post, or mod subexpression is evaluated, the semantics of Fig. 6
equate it to the corresponding specification function pre, post, or mod, only if their
closure-parameter d2 is “lower” than the current one in the @-ordering, i.e. d2 @ d1.
In turn, the axiomatization presented here, changes the “current closure” argument to
d2, when evaluating the related specification annotation of d2. Since @ is well-founded,
this can happen only finitely many times, which avoids definitional circles.

3For procedures without return value, the simplifications are immediate.
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4.2.2 Pure Closures

Let u be a key for a function definition with type T = (T1, .., Tn) →f R. Let
P,B be resp. the precondition and the body of that function definition. Let x1, .., xn
be the formal parameters of the function definition. Then the specification function
axiomatization generates the following axioms:

∀h : Heap, m : N, d : PCl, v : T · key(d) = u ⇒
preT (h,m, d, v)

= [[P ]]S(h, h,m,m, env(d), x1 7→ v1|..|xn 7→ vn|cst(d) , dummy1, dummy2)

∀h : Heap, m : N, d : PCl, v : T · key(d) = u ⇒
evalT (h,m, d, v)

= [[B]]S(h, h,m,m, env(d), x1 7→ v1|..|xn 7→ vn|cst(d) , dummy1, dummy2)

The values dummy1 and dummy2 are never used.

4.3 Translation to Boogie Procedures

The final pass of the process, translates every procedure definition into a Boogie pro-
cedure. It is this Boogie procedure that is used by the verifier to check the correctness
of procedure definitions. The verification process is done independently of the other
procedure definitions. Function definitions do not need this pass: their axiomatization
as Boogie functions is enough.

The Boogie procedure operates on four global parameters H,E,C,M, which consti-
tute the state of the program (except for the return value). It takes a closure-valued
parameter me, which represents the current closure. If the procedure definition has a
return value, then the Boogie procedure has a return value called result.

Let u be a key for a procedure definition with return type R. Let P,Q,M be the
pre-/post-condition and the modifies clause of that procedure definition resp. Let S
be the body of the procedure definition. The translation of the procedure definition
in Boogie is:

procedure proc u(me : NPCl) returns (result : R)
requires key(me) = u ∧ 0 ≤ order(me) < M ∧ ψu(H,E,C);
requires [[P ]]S(H,H,M,M,E,C, dummy,me);
modifies H,E,C,M;
ensures [[Q]]S(H,old(H),M,old(M),E,C, result,me);
ensures
∀l : Dom(old(H))− [[M ]]S(old(H),old(H),old(M),old(M),E,C, dummy,me))·

H[l] = oH[l];
{

Translate(S)
}

where Translate takes the body S written in the source language and translates it into
Boogie.

The first Boogie precondition is a conjunctions of facts that are already known
about the closure under specification: its key, the fact that its order is below the
maximum order of the state, and the environment assumptions ψu(H,E,C), that we
constructed in the second pass of the translation phase (Sect. 4.1). The formal pa-
rameters of the procedure definition are in C. The second Boogie precondition is the
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translation of the precondition of the procedure definition as written in the source
language.

The Boogie modifies clause does not correspond to the source language modifies
clause. It only asserts that the state is being changed by this Boogie procedure, but
provides no other detail. The translation of the source language modifies clause comes
later in the Boogie postconditions.

The first Boogie postcondition is the translation of the postcondition of the proce-
dure definition as written in the source language. The second Boogie postcondition is
the translation of the source language modifies clause: it expresses that no allocated
location changes its value, unless it is included in the source language modifies clause,
evaluated at the prestate.

The body of the Boogie procedure is a translation of the source language statements
of the procedure definition, into their Boogie counterparts. This translation follows
exactly the operational semantics of Fig. 4, except for non-pure closure invocation and
pure closure evaluation. Therefore, in our discussion of Translate, we omit all other
statements.

Translation of Invocations and Evaluations. To translate closure invoca-
tions and evaluations modularly, we assume no knowledge of the respective proce-
dure or function definition bodies. Therefore, we cannot use the semantics of Fig. 3
and Fig. 4. We use specification functions instead. In particular, the source code
L := call E(E1, .., En); gets translated into the Boogie code shown in Fig. 7, while
the translation of eval E(E1, .., En) is shown in Fig. 8. Thm. 3 below, shows that this
translation is correct.

Let us focus on the translation of closure invocation (similar comments apply to
closure evaluation). The steps taken are no different than the normal Boogie invo-
cation. First, the parameters are calculated. Then the precondition is asserted and
the state is havoced. Finally, the postcondition and the frame condition are assumed
and the returned value is written to the proper place in the state. The difference here
is that the pre/postconditions and the modifies clause are statically unknown, which
is the reason why we use the mechanism of specification functions to refer to them
dynamically.

The assumption of the history invariants at the end of the invocation is easily
justified by the semantics of the language.

5 Soundness

In this section, we prove the soundness of our methodology in a series of theorems.
By the term soundness we mean two things:

• The translation process cannot cause inconsistencies to the background axiom-
atization. An inconsistency to the axioms used by the verifier, means that all
proof obligations are trivially true, i.e., all programs verify trivially (this is also
called a miracle).

• The translation process is faithful to the semantics of the programming and the
specification language. In particular, in our partial correctness methodology, if a
program verifies, this means that executing any closure from a state that satisfies
its precondition, then the execution will either fail to terminate, or terminate in
a state that satisfies the postcondition of the closure.
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// retrieve the closure
var c := [[E]]E((H;E;C; result;M));

// evaluate the parameters
var v1 := [[E1]]E((H;E;C; result;M)); M := [[E1]]M((H;E;C; result;M));
..
var vn := [[En]]E((H;E;C; result;M)); M := [[En]]M((H;E;C; result;M));

// assert precondition and save the pre-state
assert preT (H,M, c, v1, .., vn);
var oH := H; var oM := M;

// havoc the state
havoc H,M;

// assume the postcondition and the frame condition
var rv : R;
assume postT (H, oH,M, oM, c, v1, .., vn, rv);
assume ∀l : Dom(oH)−modT (oH, oM, c, v1, .., vn) · H[l] = oH[l];

// assume history invariants
assume Dom(H) ⊇ Dom(oH);
assume M ≥ oM;

// return value
var rl := [[L]]L((oH;E;C; result; oM));
H[rl] := rv;

where T is the type of the closure and R is the return type.

Figure 7: Translation of invocation L := call E(E1, .., En); to Boogie

Before evaluating an expression that contains eval E(E1, .., En), we check if the
precondition of that evaluation is true:

var c := [[E]]E((H;E;C; result;M));
var v1 := [[E1]]E((H;E;C; result;M)); M := [[E1]]M((H;E;C; result;M));
..
var vn := [[En]]E((H;E;C; result;M)); M := [[En]]M((H;E;C; result;M));
assume preT (H,M, c, v1, .., vn);

The translation of eval E(E1, .., En) within the expression is simply:

evalT (H,M, c, v1, .., vn)

where T is the type of the closure.

Figure 8: Translation of evaluation to Boogie
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5.1 Free Conditions

A free condition is an assumption that we insert at a given point in a program, to
facilitate the verification. This assumption may be used freely by the prover, as a
lemma. A free condition must be justified by the semantics of the programming
language: we must be able to prove, using the semantics of the programming language,
that the condition is always true at the point where it is inserted. Otherwise, we risk
miraculous behavior.

In our translation process, we insert the following free conditions:

• In Boogie procedures we introduce three free preconditions: the first one specifies
the key for the “me” closure, the second one specifies that its order does not
exceed M, and the third one is the environment assumption ψu(H,E,C).

• After a closure invocation, we assume two history invariants: first that the
domain of H has not decreased, and second that M has not decreased.

Except for the environment assumption, it is easy to see that the rest of our free
conditions hold at the points of their insertion. The following theorem proves the
correctness of environment assumptions.

Theorem 1 Let u be a closure key and c a closure that was created from u. Let H be
the heap and E,C the environment at the beginning of the execution (or evaluation) of
u. Then ψu(H,E,C).

Proof: We only prove the second conjunct, i.e., C[x] = v for a visible definition
val x = v; The proofs of the other conjuncts are similar.

We first make one remark. Assume the execution of val x = v;. The semantics of
Fig. 4, guarantee that C[x] = v at any subsequent point in the scope of the definition
of x.

Let D be a procedure or function definition, from which x is visible. Let k be the
nesting scope of D, and k′ the nesting scope of val x = v; Since x is visible from D,
there is some procedure definition D′ at nesting scope k′, that contains D, and that
appears after val x = v;. In the trivial case, k = k′, and D coincides with D′.

Notice that, to reach D′, the introduction val x = v; must be executed first. By
the above remark, C[x] = v when we reach D′.

We now prove the theorem by induction on k′ − k.
Base Case: In the base case, D and D′ coincide. This proves that C[x] when D

is reached. Let d be a closure created by D. Then, at the point of the creation of d,
cst(d) = C, which means that an execution of d starts at a state where C[x] = v.

Induction Hypothesis: If k − k′ = n, then any closure created from D, starts
executing at a state where C[x] = v.

Induction Step: We prove that C[x] = v at D, if k− k′ = n+ 1. Let D′′ be the im-
mediate procedure definition containing D. To create any closure d from D, one needs
to execute a closure d′′ created by D′′. By the induction hypothesis, any such d′′ starts
at a state where C[x] = v. When D is reached, the semantics of Fig. 4 guarantee that
C[x] = v is true. Let d be a closure created by D. Then, at the point of the creation
of d, cst(d) = C, which means that an execution of d starts at a state where C[x] = v. �
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5.2 No Miracles

To prove that our source language cannot produce any miraculous behavior, we must
prove our axiomatization correct. Our axiomatization is non-trivial, since it involves
mutually recursive definitions (Sect. 4.2.1). We prove here that these definitions are
consistent, which prevents miracles.

Theorem 2 The axiomatization of specification functions presented in Sect. 4.2.1 is
consistent.

Proof: The axiomatization is a mutually recursive definition. To prove it con-
sistent, one must find a well-founded ordering and a measure in which the ordering
decreases. We choose @ as our well-founded ordering. It is enough to prove that
the specification functions of any closure d depend only on specification functions of
closures d′ such that d′ @ d.

Let d be a closure. Its specification functions depend on a semantic function f
whose “current closure” is d. By the semantics of Fig. 5, we see that f does not
depend on the specification functions of any closure d′ such that d′ 6@ d. In fact, the
only interesting cases are the semantics of the keywords pre, mod, and post, which
depend on the specification functions of a closure d′ only if d′ @ d. �

As we have already commented, the specification functions of pure closures are not
recursive, and therefore trivially consistent.

5.3 Translation Correctness

Finally, we prove our translation correctness theorem, as explained in the introduc-
tion of this section. The theorem uses the weakest precondition semantics of Boogie.
The “weakest precondition” function wp, takes a series of Boogie statements S and a
predicate on two states Q and returns a predicate on one state P = wp(S, Q). The
condition P (σ) is necessary to ensure that the execution of S from state σ to state σ′

satisfies Q(σ′, σ).

Theorem 3 Assume

• P is a piece of arbitrary type-correct code in the source language.

• M is the translation of P into Boogie.

• M verifies.

• σ is a state and (P, σ) σ′.

• P is a predicate on one state and Q is a predicate on two states.

• ∀σ : Σ · P (σ)⇒ wp(M, Q)(σ).

• P (σ).

Then Q(σ′, σ).

Proof: This theorem can be proved by induction on the derivation trees of the
operational semantics. As we have said, the Boogie translation follows the operational
semantics, except in closure invocation and evaluation. Therefore, it suffices to prove
this theorem for the closure invocation (using the inductive assumption that the the-
orem holds for any code higher in the derivation tree). We only give the proof for
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invocation of non-pure closures here. For simplicity, we omit the passing of formal
parameters and the return variable (we only consider the type ()→ ()). We also omit
the proof for the evaluation of pure closures, which is similar but simpler.

Our statement is call E; Let d = [[E]]E(σ) be the closure under invocation. Let its
closure key be u, its environment ed, cd its body S, its precondition PRE, its modifies
clause MOD, and its postcondition POST.

The translation is:

var d := [[E]]E(σ);
assert pre()→()(H,M, d);

var oH := H; var oM := M;
havoc H,M;
assume post()→()(H, oH,M, oM, d);

assume ∀l : Dom(oH)−mod()→()(oH, oM, d) · H[l] = oH[l];
assume Dom(H) ⊇ Dom(oH);
assume M ≥ oM;

From the fact that P (σ) we derive that

wp(M, Q)(σ)

which is equivalent to

pre()→()(oH, oM, d)

∧ ∀h, e, c, r,m·
post()→()(h, oH,m, oM, d)

∧ (∀l : Dom(oH)−mod()→()(oH, oM, d) · h[l] = oH[l])
∧ e = oE ∧ c = oC ∧ r = oR ∧ Dom(h) ⊇ Dom(oH) ∧ m ≥ oM

⇒ Q((h; e; c; r;m), (oH; oE; oC; oR; oM))

where d = [[E]]E(σ) and σ = (oH; oC; oE; oR; oM).
The above formula is equivalent to

pre()→()(oH, oM, d)

∧ ∀h,m·
post()→()(h, oH,m, oM, d)

∧ (∀l : Dom()→()(oH)−mod(oH, oM, d) · h = oH[l])
∧ Dom(h) ⊇ Dom(oH) ∧ m ≥ oM

⇒ Q((h; oE; oC; oR;m), (oH; oE; oC; oR; oM))

Call the above condition A.
By the axiomatization of Sect. 4.2.1, the first conjunct of A gives us

[[PRE]]S(oH, oH, oM, oM, ed, cd, dummy, d)

Notice that the precondition of the Boogie translation of u is satisfied, (as discussed
in Sect. 5.1, the free preconditions are given by the semantics of the programming
language). Therefore, we conclude (inductively) that the postcondition is also satisfied.
In particular, we have

[[POST ∧ ∆(old(MOD))]]S(H, oH,M, oM, ed, cd, dummy, d)
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where σ′ = (H,E,C,R,M).
By the axiomatization of Sect. 4.2.1, and since pre()→()(oH, oM, d), we get:

post()→()(H, oH,M, oM, d) ∧ (∀l : Dom(oH)−mod()→()(oH, oM, d) · H = oH[l])

We now instantiate A for h = H and m = M. The conditions

Dom(H) ⊇ Dom(oH) ∧ M ≥ oM

are free (see Sect. 5.1). This implies

[[Q]]S((H; oE; oC; oR;M), (oH; oE; oC; oR; oM))

By the semantics of the invocation, oE = E, oC = C, and oR = R, which gives

[[Q]]S((H;E;C;R;M), (oH; oE; oC; oR; oM))

which is what we wanted to prove. �

6 Experience

We translated all the examples shown in this paper into Boogie and posted them
online. The translation process was straightforward. All the examples behaved as
expected.

The ease by which Boogie verifies the examples is due to the fact that our method-
ology is very SMT-friendly. Not only do we formalize everything in first order logic,
but we also avoid existential quantification, a feature with which SMT solvers cannot
cope easily. A frequent complaint of users of SMT solvers is the difficulty of finding
the correct triggers4 [7]. We found that this is not a problem in our methodology,
due to the fact that our axioms are definitional, which means that they have obvious
triggers. For example, a definitional axiom ∀x, y, z · f(x, y, z) = ... has f(x, y, z) as an
obvious triggering expression.

Most of the time, a delegate is either executed immediately, passed over, or inserted
into a larger network of delegates. These are uses that our methodology handles very
well, as we also demonstrate in our on-line Boogie code. Other design patterns are also
very naturally expressed using our methodology are Builder (the createChain proce-
dure of Ex. 3 is actually a builder object), Factory (createAdd, chain, and createChain
are factories), and Visitor.

However, there are delegation-based design patterns, such as the Template, for
which our current technique is usually weak. The problem with such patterns is that
intermediate states of the execution of a delegate often become important, something
that our formalism does not handle well. Model programs [27] handle this situation
better. Inspired by model programs, we are currently extending our work to that
direction. A general exposition of this extension is beyond the scope of the present

4Triggers are auxiliary annotation that helps the prover instantiate the correct universal
quantifications.
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paper, but an interesting example, that even goes beyond the expressive power of model
programs, appears in Sect. 2.3, where the power of delegation is used to implement a
custom “while” loop.

7 Related Work

In this section, we discuss other verification techniques that deal with delegation.

7.1 Techniques based on Higher-Order Logic

The most comprehensive framework for dealing with imperative higher-order language
features is that of Yoshida, Honda and Berger [11, 12, 2, 13, 30], a total correctness
Hoare-logic based framework. While it covers all technical aspects of delegates, the
language provides no explicit abstract state or other means of human annotation,
relying instead on existential quantifications. We are not aware of any use of the
framework in a verification tool.

Delegation is also treated in Hoare Type Theory [22], a framework that unifies types
with Hoare-logic specifications and targets a higher-order imperative language. Hoare
Type Theory is supported by the tool Ynot [23] which delegates proof obligations to
the Coq theorem prover. The programmer interacts with Coq to construct proofs of
correctness. Instead, in our approach, all the interaction with the prover happens only
with annotations within the programming language.

Recently, Higher-Order Separation Logic [3] has been employed to deal with del-
egates. An exploration of higher-order frame rules appears in [4], but the language
does not involve first-class delegates and the modularity is static. A stronger lan-
guage is used in [16], where several design patterns are elegantly formalized. In [29]
a more comprehensive framework is presented for dealing with delegates in a Higher-
Order Separation Logic context, since it addresses issues like state capturing, state
abstraction, and framing. We are not aware of a tool that supports [29].

The idea of specification functions appears in an early theoretical work [8], which
however does not escape higher-order logic.

7.2 Approaches not using Higher-Order Logic

A very important work for delegation-based patterns is JML’s model programs [27].
Model programs are specifications that are written in programming style. The prob-
lem with this approach is that it sometimes generates too strong specifications. In
particular, a procedure that implements a model program style of specification follows
necessarily the syntactic structure of the model program. This may rule out many
interesting implementations, but, more importantly, is based on the fact that the con-
trol flow of the procedure is statically known. In the Chain of Resposibility pattern of
Ex. 2, we have shown a case where the control flow of a delegate is dynamically cre-
ated, which rules out the model-program specification style. The same is true for the
“while loop” of Ex. 5. It must be admitted however that model programs tend to be
concise and easy to use, and therefore a better match for patterns, in which the control
flow is known statically and is fairly complex (the Template pattern usually generates
such cases). In our future work, we wish to extend our methodology to support the
model program-style of specification together with our specification functions.
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Our technique of reducing delegates to first order objects is a variant of Reynold’s
defunctionalization [26]. Reynold’s work provides the mechanism by which the trans-
formation from higher-order programs to first order programs can be realized, but does
not concern itself with specification and verification. It seems that defunctionalization
is the primary tool that takes us from the higher-order logic of [8] to first-order logic.

The mechanism of specification functions appears also in [24]. However our work
goes further in providing a complete formalization and a soundness proof. This is
especially important for the methodology, because of the unsoundness issue discussed
in Sect. 2.4.

8 Conclusion

We have introduced the first fully formalized modular specification and verification
methodology for delegation, that is friendly to automated SMT-based program veri-
fiers. We have proved the soundness of the methodology, and we have used it succes-
fully to some non trivial examples, which are posted on-line at http://n.ethz.ch/

~kassiosi/projects/delegation-bpl-examples/.
We plan to apply the ideas from this paper to the verification of Scala’s traits,

whose “super-calls” resemble delegation. Another direction for future work is the com-
bination of our technique with verification methodologies based on permissions such
as implicit dynamic frames [28, 19], as well as with the approach of model programs
[27]. An integration of our specification and verification technique to a full-blown
object-oriented language like C# or Scala is also future work.
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