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Abstract. There are two dominant approaches for the construction of
automatic program verifiers, Verification Condition Generation (VCG)
and Symbolic Execution (SE). Both techniques have been used to develop
powerful program verifiers. However, to the best of our knowledge, no
systematic experiment has been conducted to compare them.
This paper reports on such an experiment. We have used the specification
and programming language Chalice and compared the performance of
its standard VCG verifier with a newer SE engine called Syxc, using
the Chalice test suite as a benchmark. We have focused on comparing
the efficiency of the two approaches, choosing suitable metrics for that
purpose. Our metrics also suggest conclusions about the predictability
of the performance. Our results show that verification via SE is roughly
twice as fast as via VCG. It requires only a small fraction of the quantifier
instantiations that are performed in the VCG-based verification.

1 Introduction

During the last years, automated program verification has progressed signifi-
cantly. This progress is due to advances in each of the three layers that comprise
an automatic verification tool: the specification methodology, the program ver-
ifier, and the theorem prover. The program verifier layer extracts proof obliga-
tions from the specified program and passes them to the theorem prover. There
are two prevalent approaches to design program verifiers:

– Verification Condition Generation (VCG) uses programming calculi such as
weakest preconditions [9] to compute a formula whose validity entails the
correctness of the program. VCG is used in many state-of-the-art verifiers,
in particular, those built on top of the intermediate languages Boogie [18]
and Why [10]. Examples of VCG-based verifiers are Chalice [21], Dafny [17],
ESC/Java [7], Frama-C [1], Spec# [3], and VCC [8].

– Symbolic Execution (SE) [14] executes a program using symbolic instead
of concrete values and accumulates constraints on those values, which are
used to generate proof obligations. SE has gained momentum especially in
the separation logic world (for instance, jStar [24], Smallfoot [5], and Veri-
Fast [12]), but has also been used in combination with other specification
methodologies, for instance in KeY [4] and Syxc [28].



To the best of our knowledge, there has been no systematic comparison of the
two approaches. Such a comparison would provide insights into the workings of
current verification tools and useful guidance for the design of future ones. This
guidance is especially important since the choice of specification methodology
no longer dictates a verification approach. For instance, dynamic frames are
supported in the VCG-based Dafny and the SE-based KeY [27]. Permission-
based methodologies such as separation logic are supported in the VCG-based
Chalice and the SE-based Syxc; VeriCool [29] supports both VCG and SE in a
single tool.

This paper reports on an experiment we conducted to compare verification
condition generation and symbolic execution. We used the Chalice language [21]
and compared its standard VCG-based verifier [20] to a new SE engine [28]. Both
verifiers use Z3 [22] as theorem prover. Chalice is an interesting target for such
a comparison for several reasons: (1) It is small enough to make it feasible to
develop two verifiers for the same language. (2) It provides a variety of features
that make verification challenging, in particular, dynamic memory allocation
and multi-threading. (3) Chalice’s specification methodology is closely related
to separation logic [25] such that our observations can be expected to apply also
to verifiers for that methodology.

We ran both verifiers on the Chalice test suite. Our experiment focuses mainly
on the efficiency of the verification by measuring run times. However, we also
measured the number of quantifier instantiations performed by Z3, which gives
an impression of how predictable the performance is, as well as the number of
conflicts encountered during the verification, which characterizes the size of the
search space. The results of these measurements are reported in Sec. 3. They
show that the SE-engine Syxc is about twice as fast as the VCG-based Chalice
verifier on most benchmarks. It requires much less quantifier instantiations and
generally leads to fewer conflicts. Further comparisons, for instance, about the
ease of understanding verification failures, are left as future work.

The initial comparisons of the performance of the two verifiers identified
several outliers. Their investigation lead to interesting observations about the
design of Syxc, which we discuss in Sec. 4.

2 Background

In this section, we provide the background on verification condition generation
and symbolic execution that is used in the rest of the paper. We assume for both
approaches that loops are annotated with loop invariants.

2.1 Verification Condition Generation

Verification condition generators use a programming calculus such as a weakest
precondition calculus to compute a verification condition (VC), a pure logical
formula whose validity entails the correctness of the program w.r.t. its specifica-
tion. The VC is then fed to the theorem prover. Many modern program verifiers



generate verification conditions by first translating the program and its specifi-
cation into an intermediate language such as Boogie [18] or Why [10] and then
computing the VC on the intermediate representation.

Since a verification condition is a pure logic formula, it must include all
knowledge that is needed to prove the correctness of the program. This knowledge
includes many properties of the programming language semantics, for instance,
about values and types. For imperative languages, it also contains a heap model,
typically expressed as a global map from locations to values. All aspects of the
verification, including reasoning about heap properties such as aliasing, are then
left to the theorem prover.

A characteristic of the VCG approach is that it computes only one VC per
module and, thus, invokes the theorem prover only once per module. On the
upside, dealing with one large VC allows the theorem prover to apply optimiza-
tions. On the downside, the VC tends to be large, even for small programs,
which increases the complexity for the theorem prover and complicates quanti-
fier instantiation because the prover will in general find more matching patterns.
Another drawback of large VCs is that they are undecipherable to the human,
so VCG-based debugging needs extra tool assistance [23].

2.2 Symbolic Execution

Symbolic execution [14] verifies a program by simulating an execution with vari-
ables that do not take concrete values, but whole expressions (known as symbolic
values). Knowledge about the symbolic values is accumulated in a logical for-
mula called the path condition. When a branch in the control flow is encountered,
the execution takes both branches and conjoins the appropriate formula to the
path condition of each branch. The prover is called each time an assertion needs
to be proved. The prover is then given the path condition as an assumption and
a relatively simple proof obligation.

A known limitation of this approach is its exponential execution time in the
number of branches. Since SE verifies each path through a program indepen-
dently, this may cause inefficiencies when there are redundancies between the
proof obligations for different paths. With VCG, one would hope that theorem
provers detect and exploit such redundancies in the single large verification con-
dition, avoiding or moderating the exponential blowup of SE.

Berdine et al. [5] have noticed that the heap topology described by a separa-
tion logic specification can be treated independently of the rest of the information
that the formula contains. This observation makes it possible for an SE-verifier
to deal with heap properties inside the verifier, without sending them to the
prover. This approach is implemented in Smallfoot and has been adopted by
VeriCool, VeriFast, as well as the verifier Syxc that we used for our experiment.
Smallfoot-style symbolic execution produces proof obligations that are simpler
than VCs, because more reasoning is done within the program verifier and less
in the theorem prover.

A potential drawback of this division of labor is that the prover has only
partial access to the information that is available to the verifier, for instance,



because heap properties are not encoded in the proof obligation sent to the
prover. This may mean that the prover can prove less than in the VCG approach.

Understanding the implications of Smallfoot-style SE in terms of efficiency,
predictability, and completeness was one of the motivations for our experiment.
While building Syxc, we encountered several instances of the incompleteness
problem, and a striking instance of the exponential branching problem, which
we report on in Sec. 4.

3 Experiment and Results

In this section, we describe the set-up of our experiment and discuss our mea-
surements. The tools and the benchmarks that were used in the experiments can
be found on-line under http://www.pm.inf.ethz.ch/people/schwerhoffm/

vstte_sevcg_verifiers.zip

Benchmarks. For the experiment we have utilized 29 test cases from the cur-
rent Chalice test suite. These test cases exercise the main Chalice features such
as fractional permissions, objects, threads, locks, and message passing. The de-
velopment of the Chalice test suite was unrelated to the present experiment. We
separated the test cases into correct and incorrect programs. Both tools verify
all the correct programs and reject all incorrect programs.

The Chalice test suite includes additional examples that we could not bench-
mark, because Syxc does not yet support all features the Chalice language offers.
For five examples we also had to (1) manually desugar certain expressions be-
cause they are not supported by Syxc, and to (2) remove a few methods that
used unsupported features.

Verification in Chalice is modular, that is, each method is verified without
considering its callers or the implementations of methods it calls. Therefore, the
total size of the benchmark programs is less important than the size of individual
methods. The largest two programs are two implementations of AVL trees, one
iterative and one recursive. The recursive version is by far the largest benchmark
in terms of lines of code and number of methods, whereas the iterative version
includes the longest method.

Verification Tools. The VCG-based Chalice verifier used in our experiments
is built from revision 08870c66a385. This is a slightly outdated version that does
not use the new Chalice permission model [11], which is not yet implemented in
Syxc. It uses the Boogie build from revision ba07abf9500e and Z3 3.1 x64. Boogie
has been limited to a single error per Boogie procedure, since this comes closest
to the behavior of Syxc, which is limited to one error per Chalice method. Both
tool chains use the SMTLib2 front-end of Z3 and log their interactions with Z3.
In this configuration Z3 is used via std-io, not via an API.

The Syxc tool chain comprised the same Chalice build in order to parse the
input, and the same Z3 installation. It uses Z3 in a configuration that is nearly



identical to that of Boogie, with two minor differences: (1) Z3 responds to every
command it receives, and not only to satisfiability checks, and (2) declarations
are global instead of scope-local to optimize the verification of multiple paths.

Both the standard VCG-based Chalice verifier and the SE engine Syxc are
written in Scala 2.8.

Two possibly relevant differences between the Z3 encoding generated by Boo-
gie and by Syxc are (1) Syxc currently uses a “weak” Z3 type system, in the sense
that there are not types (sorts) for snapshots, references and lists, all of which
are encoded as integer-typed symbols. (2) Syxc uses the same sequence axioms
as Boogie, except that they only range over integers, whereas Boogie’s sequence
axioms are polymorphic. Sequences are used by six out of the 22 examples in
our test suite.

The Metrics. In the experiment, we measured for each benchmark program:

– Verification time (wall time) in seconds
– Number of quantifier instantiations that Z3 performed during the verification
– Number of conflicts encountered by Z3 during the verification time

Verification time is the total run time, including parsing and type checking,
symbolic execution or verification condition generation, and time spent in the
prover. Since Chalice and Syxc use the same parser and type checker, differences
in the measurements can be attributed to the actual verification.

The number of quantifier instantiations is interesting, because it serves as an
indication of the predictability of the verifier. Quantifier instantiation is guided
by heuristics, which are often overly sensitive to small changes in the program
or specification. The fewer quantifier instantiations a technique needs, the less
it depends on heuristics.

A conflict is a failed attempt by the prover to assign a value to a variable.
More instantiation attempts indicate that the prover had to explore a larger
search space before finding a satisfying assignment.

Experiment. The experiments have been run on an Intel Core2 Quad CPU
Q9550 2.83GHz, 4GB RAM, with Windows 7 Enterprise x64. For each bench-
mark program, the statistics have been collected by verifying the program with
the VCG-based Chalice verifier and with Syxc, and then running Z3 on the in-
teraction log file in order to get statistics from Z3. This has been done ten times
for each file and each verifier. The numbers of these ten runs have been averaged.
The run times of both verifiers have been measured with the same tool.

Results. The results of the experiment are summarized in Fig. 1. For each
program, we show: lines of code, number of methods, the results of SE, the
results of VCG, and finally, for each metric, the percentage of the result of SE
over the result of VCG. Times are measured in seconds. Incorrect programs are
in folder “fail”. Correct programs are in folder “hold”.
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Fig. 1. Results of the Experiment



The standard deviation of the averages (not shown in the table) is negligible
in all measurements. For run time, the worst deviation is 3% of the mean time,
observed for the fail\cell example in the VCG tool. For the other metrics, VCG
has no deviation (deterministic behavior), while SE has very minor deviations
only in the large examples (these are attributed to the non-determinism of some
standard Scala collection libraries). The insignificant deviation indicates that
the results are stable and repeatable.

A consistent observation is that the execution time of SE is in the range of
40% to 50% of that of VCG. Thus, SE outperforms VCG, by what seems to be
a constant factor.

An interesting observation is that the performance benefit of SE in the two
largest programs (the AVL tree implementations) is bigger: there, the execution
time of SE drops to around 20% of the time of VCG. This is promising, but
far from conclusive for the scalability of SE. To draw reliable conclusions about
scalability, we would need more and larger benchmarks. However, we chose not
to develop extra benchmarks just for this experiment.

The number of quantifier instantiations in SE is consistently under 10% of
that in VCG. Although it was expected that less quantifier instantiations would
occur in SE because heap properties are handled outside the prover, such a dif-
ference was beyond our expectations. This is an indication that the performance
of SE might be more predictable than the performance of VCG.

The percentage of conflicts had a greater variation than the percentage in
the other metrics. Still conflicts in SE are consistently much fewer than in VCG,
indicating that SE verification is “more focused” (explores a smaller proof space)
than VCG.

We did not find significant differences in the results between correct and
incorrect benchmark programs, although we intuitively believed that SE would
deliver verification errors earlier. That said, given the small number of failing
test cases that we have, this observation should be taken with a grain of salt.

Among the test cases, there is one outlier, the “iterator” program, in which
VCG marginally outperforms SE. We are currently looking into this outstanding
behavior, with the hope of discovering interesting design issues, as happened with
outliers in previous experiments (see for example Sec. 4.2).

4 Additional Observations

In Sec. 2.2, we mentioned two challenges for symbolic execution: (1) the potential
incompleteness caused by separating heap properties from path conditions and
reasoning about the former in the verifier and about the latter in the prover (in
Smallfoot-style SE), and (2) the exponential branching problem. The comparison
to the VCG-based Chalice verifier exposed problems related to both challenges
in an earlier version of Syxc: Syxc was not able to prove some examples that
Chalice proved soundly, and for one example, the relative performance of Syxc
was significantly worse than for the other examples. In this section, we discuss



the problems and describe the solution that is implemented in the current version
of Syxc.

4.1 Heap Compression

Smallfoot-style SE is more susceptible to incompleteness than VCG, since the SE
verifier does not give all the available heap-related information to the theorem
prover. Dealing with such incompletenesses is not straightforward and involves
several design trade-offs. In this subsection, we show one such incompleteness
and its solution.

In Smallfoot-style SE, information about a heap location is expressed by a
heap chunk t.f 7→ t′, where t, t′ are symbolic values and f is a field name. The
heap chunk t.f 7→ t′ means that access to the field f of the object t is granted
and that t′ is the value of that field. Syxc adds fractional permissions, so a
Syxc heap chunk has the following form: t.f 7→ t′#p. The extra information p
is the percentage of permission granted. Heap chunks are stored in the symbolic
heap, which is used by the verifier to decide access permissions, ideally without
consulting the prover. The relationship between symbolic values is encoded in
the path condition, which is available to the prover when a proof obligation is
checked.

Suppose that a program acquires the heap chunks t1.f 7→ t2#30% and
t3.f 7→ t4#30%. Suppose also that the path condition implies t1 = t3. This sit-
uation illustrates two sources of incompleteness caused by the division of labor
between the verifier and the prover. First, the verifier fails to show an assertion
that we have 60% permission to t1.f , because without consulting the prover, it
cannot derive the needed information t1 = t3 from the path condition. Second,
the prover fails to show an assertion that t2 = t4, because this equality is a
consequence of the contents of the symbolic heap, which is not available to the
prover.

We fix this problem by using the path condition and the theorem prover to
compress the symbolic heap, that is, to reflect aliasing information as follows:
For each pair of heap chunks t1.f 7→ t2#p1 and t3.f 7→ t4#p2:

– Ask the prover if t1 = t3 follows from the path condition.
– If yes, then:

• Replace the two heap chunks by one: t1.f 7→ t2#p3
• Add to the path condition the following conjuncts: t1 = t3, t2 = t4,
p3 = p1 + p2

Notice that the compression process introduces more equalities into the path
condition. The stronger path condition may justify more compression. Therefore,
we compress the symbolic heap iteratively, an operation that costs O(n3) queries
to the prover (where n is the number of heap chunks).

A related problem appears when we have the following two heap chunks:
t1.f 7→ t2#60% and t3.f 7→ t4#60%. Since the accumulative permission to a
field cannot exceed 100%, we can conclude from this symbolic heap that t1 6= t3.



To allow the prover to exploit this knowledge, we add it to the path condition
during the heap compression.

The need for heap compression is due to the fact that Smallfoot-style SE does
not include heap (and permission) properties in the proof obligations sent to the
prover, while they are included in the verification condition produced by a VCG-
based verifier. Our experiments show that SE outperforms VCG even though we
have to perform the explicit heap compression. Nevertheless, we believe that it
has a lot of potential for optimization, for instance, it could be performed on
demand only when a proof fails.

Our experience with VCG and SE suggests that the higher efficiency of SE
does not necessarily come at the price of less precision. However, tool developers
have to be careful to enable the necessary information flow between the symbolic
heap and the path condition.

4.2 Branching

Symbolic execution verifies each path through a module separately. In addition
to the branches introduced by control flow, Syxc also introduces branches when
it needs to represent properties expressed as implications. For example, the Chal-
ice specification b⇒ acc(e.f) means that if b is true then the current thread has
write access to field e.f , and no access permission otherwise. Since such a condi-
tional permission cannot be represented with the heap chunks described above,
Syxc branches. One branch adds b to the path condition and an appropriate
heap chunk for e.f to the symbolic heap, whereas the other branch adds ¬p to
the path condition and leaves the symbolic heap unchanged.

Experiments with an earlier version of Syxc identified “Peterson’s Algorithm”
from the Chalice test suite as a significant outlier: while SE performed better
than VCG in the other examples, it performed significantly worse here. Our
analysis revealed that the bad performance was caused by excessive branching
on implications. However, all the implications in this example were pure, that
is, did not contain any access permission predicates. Therefore, the whole im-
plication could be added to the path condition, and no branching is necessary.
Implementing this change made SE outperform VCG again.

Our experience suggests that the theorem prover has better ways to handle
implications than just case splits; the larger proof obligation with the implica-
tions allows the prover to avoid redundant proofs. This seems to confirm the
intuition that VCG outperforms SE in case of heavy branching.

Note that our solution is possible only for pure implications, because a pure
implication does not influence the symbolic heap. To alleviate the problem of
branching on impure implications, we consider introducing “conditional” heap
chunks. Initial experiments in this direction show some promise.

5 Related Work

As mentioned earlier, there is a multitude of tools that support SE in the style of
Smallfoot [5]. These include jStar [24], VeriCool [29], VeriFast [12], and Syxc [28].



Of those, Smallfoot, jStar, and VeriFast use a fragment of separation logic [26]
as their specification language, while the target programming language differs.
VeriCool and Syxc use implicit dynamic frames [29]. VeriFast and Syxc also sup-
port fractional permissions [6]. Implicit dynamic frames have similar expressive
power to the fragment of separation logic used by SE tools [25].

The KeY system [4] uses a different form of symbolic execution that does not
separate heap properties from “pure” properties, in the style of Smallfoot. The
specification language of KeY is JML [16] with dynamic frames [13]. The KeY
approach admits some degree of interaction with the prover. Our comparison
focuses on Smallfoot-style SE. It is not clear to what degree our observations
apply to KeY-style SE.

Tools that are based on VCG include Chalice [20], Dafny [17], ESC/Java [7],
Frama-C [1], Regional Logic [2], Spec# [3], VCC [8], and VeriCool [29]. Most of
them employ the intermediate languages Boogie [18] or Why [10]. Chalice and
VeriCool support implicit dynamic frames (in Chalice with fractional permis-
sions), Dafny supports dynamic frames, and Spec# and VCC support ownership
[19].

VeriCool [29] supports both SE and VCG. The authors report on experiments
using the visitor pattern and an artificial example that show an overwhelming
advantage for SE [30]. Our experiments do not confirm this result, even though
our tools are similar to VeriCool (based on implicit dynamic frames, Smallfoot-
style SE, and Z3). We decided to perform our comparison using Chalice and Syxc
rather than VeriCool because the specification language supported by VeriCool’s
VCG engine is significantly different from the one supported by its SE engine,
which means that we could not have tried the exact same code in both en-
gines. For example, the VeriCool specification language for SE does not support
quantification.

VSTTE 2010 hosted a software verification competition [15]. The evaluation
focused on the quality of specifications and the strength of the verification, but
does not permit a comparison of the efficiency of verification approaches like the
one we present here.

6 Conclusion

In this paper, we reported on an experiment that compared two dominant ap-
proaches for the construction of automated program verifiers, Verification Condi-
tion Generation and Symbolic Execution. Our experiment shows that SE is gen-
erally more efficient, leads to a smaller search space for the prover, and requires
fewer quantifier instantiations. Even though the differences in the run times are
noticeable, they are just a constant factor. Future experiments will have to show
whether more substantial differences exist for larger modules. Another topic for
future work is to compare other important criteria, such as completeness, the
ease of understanding and fixing verification errors, as well as the performance
on more substantial failing cases. The latter is also a strong indicator of the



responsiveness of the tools in an interactive setting, in which the program and
its specifications are developed over several iterations of running the tool.

We believe that experimental evaluation is an important aspect of advancing
the field of software verification. The VSTTE verification competition provides
interesting insights in to the strength of various verifiers (tools and their users).
Our experiment complements the competition by providing a comparison of two
verification approaches in terms of their efficiency. We hope that it will encourage
others to perform additional studies that will help the community to better
understand the impact of design decisions on the performance of verification
tools.
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