
Information Hiding and Visibility in Interface Specifications

Gary T. Leavens∗

Iowa State University
Ames, Iowa, USA

leavens@cs.iastate.edu

Peter Müller†

ETH Zurich
Switzerland

peter.mueller@inf.ethz.ch

Abstract

Information hiding controls which parts of a class are
visible to non-privileged and privileged clients (e.g., sub-
classes). This affects detailed design specifications in two
ways. First, specifications should not expose hidden class
members. As noted in previous work, this is important
because such hidden members are not meaningful to all
clients. But it also allows changes to hidden implemen-
tation details without invalidating correctness proofs for
client code, which is important for maintaining verified pro-
grams. Second, to enable sound modular reasoning, certain
specifications must be visible to clients. We present rules
for information hiding in specifications for Java-like lan-
guages, and demonstrate their application to the specifica-
tion language JML. These rules restrict proof obligations to
only mention visible class members, but retain soundness.
This allows maintenance of implementations and their spec-
ifications without affecting client reasoning.

1 Introduction

When following information hiding, clients (including
subclasses) of each class are provided with the information
they need to use that class, but nothing more [28]. This aids
maintenance because hidden implementation details can be
changed without affecting clients. However, information
hiding and its benefits apply not only to code but also to
other artifacts, such as documentation and specifications.

In this paper, we focus on formal interface specifications
and correctness proofs. Formal interface specifications in-
clude contracts written in Eiffel [22], the Java Modeling
Language (JML) [14], and Spec# [3]. We use JML exam-
ples for concreteness, but the rules we present can also be
applied to Eiffel and Spec#. We mainly discuss JML since

∗Supported in part by the US NSF under grant CCF-0429567.
†Funded in part by the Information Society Technologies program of

the European Commission, Future and Emerging Technologies under the
IST-2005-015905 MOBIUS project.

its syntax has visibility modifiers for specification con-
structs, such as invariants and method specification cases.
These modifiers allow one to specify a class’s public (non-
privileged client), protected (subclass), package (friend),
and private (implementation) interfaces [10, 13, 29, 30].

Our contribution is a set of rules for the modular use of
visibility modifiers in specifications. Formalization allows
us to precisely describe the subtle interactions between pro-
grams, specifications, and proofs and to prove soundness.

Our rules could also be applied to similar artifacts. For
example, they could be applied to the weak (incomplete)
specifications embodied in unit test cases and to the infor-
mal specifications embodied in documentation. Like for-
mal specifications they could also be specialized for differ-
ent visibility levels. For example, a unit test case could be
marked as public, which would imply that changes to hid-
den implementation details would not affect its type correct-
ness or meaning. Hence, it would not have to be changed
when hidden details change. Similarly, a class could have
documentation marked as protected, which describes how
its methods affect its protected members.

Information hiding affects specifications in two ways.
First, specifications should not expose hidden implementa-
tion details. Such details cannot be fully understood by all
clients [23]. Also they should not be used in a client’s cor-
rectness proof, since otherwise the proof would be invali-
dated when they change. For example, suppose method add
of a class BoundedList has a public precondition count <
capacity, where count and capacity are protected fields.
Then non-privileged clients do not know what this pre-
condition means exactly; for instance, they do not know
whether count is the number of elements in the list (count-
ing from one) or an array index (counting from zero). Such
details are hidden from clients to enhance maintainability,
which includes maintainability of correctness proofs.

Second, to enable sound modular reasoning, certain
specifications must be visible to clients. For instance, spec-
ifications of virtual (overrideable) methods must be visible
to overriding subclass methods, otherwise the overriding
method cannot respect behavioral subtyping [1, 5, 15, 21].



Another example of the need to make some specifica-
tions visible is related to object invariants. Suppose a class
BoundedList contains a private invariant to express that its
protected capacity field is non-negative. Suppose further
that an analysis (e.g., code review or verification) has shown
that the program maintains this invariant. Now if the im-
plementor of BoundedList strengthens the private invari-
ant, for instance, to require a capacity of at least 1000 ele-
ments, the analysis would have to be repeated to show that
the strengthened invariant is still maintained. The analysis
must be repeated because methods in BoundedList’s pack-
age and in subclasses of BoundedList might break the in-
variant by assigning to the protected capacity field. Such
a repeated analysis illustrates a maintenance (and modular
reasoning) problem. Making the invariant protected would
make it visible to clients that might break it, clarifying what
proofs might break when it changes. Our rules enforce such
visibility, for example by not allowing BoundedList’s pri-
vate invariant to mention the protected capacity field.

In sum, there are two problems. The first is a mainte-
nance problem, which motivates a lower bound on the vis-
ibility of the class members mentioned in a specification:
they must be at least as visible as the specification itself.
The second is a problem of sound modular reasoning, which
motivates an upper bound on the visibility of the class mem-
bers mentioned in certain specifications: they have to be at
most as visible as the specification itself to allow hidden
specifications to be changed without affecting client rea-
soning. Existing work [3, 14, 23] has focused on the first
problem. The recognition and solution of the second prob-
lem are our main contributions.

Maintenance is greatly simplified if the effects of chang-
ing one part of a program or its specification are limited to
a known set of classes. For example when refactoring, tools
have to perform a dependency analysis for each change. Ef-
ficiency of such an analysis is aided by keeping some spec-
ifications hidden. For example, one should keep invariants
that describe implementation hidden so that when either is
changed, clients are not affected. For this reason, not all
specifications should be public—some should be hidden.

We use the notion of visibility to determine the set of
classes potentially affected by changing a specification con-
struct or a type member such as a field or a method.1

Definition 1 (Visibility) A type T is visible in a type S if
(1) T = S, (2) T and S are in the same module (package or
namespace), or (3) S explicitly imports T and T is public.
A specification construct or a class or interface member m
declared in type T is visible in a type S if T is visible in S
and the visibility modifier of m grants visibility to S.

For example in Java a default (package) access field f of
1This paper ignores the possibility of having multiple types in a single

compilation unit and also does not consider nested classes.

class T is visible in a type S if and only if T and S are in
the same package. Therefore, only types in T ’s package are
potentially affected by changes to f (e.g., renaming it).

Our definition of visibility is more restrictive than Java’s
[8] since we require an explicit import, whereas Java per-
mits fully-qualified type names. In particular, a public
member of a type T is not visible in all types of the pro-
gram but only in those that directly or indirectly import T .
Our more restrictive definition improves maintainability be-
cause one does not have to inspect the full text of each type
S to determine whether it uses T . However, the rules we
present are also sound for Java’s notion of visibility.

Outline. The rest of this paper is structured as follows.
Sec. 2 addresses the first information hiding problem de-
scribed above. The following sections address the second
problem for method specifications (Sec. 3), model fields and
data groups (Sec. 4), and invariants (Sec. 5). In each of these
sections, we present general rules that enable sound reason-
ing and efficient proof maintenance. We also show how to
enforce the rules in Java and JML.

2 Information Hiding

This section addresses the first information hiding prob-
lem described above: a specification should not expose im-
plementation details that should be hidden. A specification
construct that mentions a member f exposes f if the speci-
fication construct is visible to a class C but f is not.

Rule 1 (Information Hiding) Every (class or interface)
member mentioned in a specification construct must be vis-
ible wherever the specification construct is visible.

We illustrate this rule using the JML specification in
Fig. 1 of two-dimensional Cartesian points. The coordinates
of a point are stored in the protected fields _x and _y. The
private fields _oldX and _oldY are used in the undo method.
The invariants restrict points to the upper right quadrant.
The first invariant is protected and the second is private.

Following Rule 1, the protected invariant of class Point
must not mention the private fields _oldX and _oldY, be-
cause these fields are not visible to subclasses of Point, un-
like the protected invariant itself. (We will explain in Sec. 5
that it is also not admissible to mention protected fields in
private invariants. Therefore, properties of the private fields
must be expressed in a separate, private invariant.)

However, Rule 1 is violated by move’s specification. This
method’s specification consists of two specification cases
with different visibility modifiers. The specification cases
are separated by the keyword also. The assignable clause
in the protected specification case violates Rule 1 because it
exposes the private fields _oldX and _oldY. The assignable



public class Point {

protected int _x, _y;

private int _oldX, _oldY; // for undo method

//@ protected invariant _x >= 0 && _y >= 0;

//@ private invariant _oldX >= 0 && _oldY >= 0;

/*@ protected normal_behavior
@ requires _x + dx >= 0 && _y + dy >= 0;

@ assignable _x, _y;

@ assignable _oldX, _oldY; // illegal

@ ensures _x == \old(_x + dx)

@ && _y == \old(_y + dy);

@ also
@ private normal_behavior
@ requires _x + dx >= 0 && _y + dy >= 0;

@ assignable _x, _y;

@ assignable _oldX, _oldY; // legal

@ ensures _oldX == \old(_x)
@ && _oldY == \old(_y);
@*/

public void move(int dx, int dy) {

_oldX = _x;

_oldY = _y;

_x += dx;

_y += dy;

}

/*@ private normal_behavior
@ assignable _x, _y;

@ ensures _x == \old(_oldX)
@ && _y == \old(_oldY);
@*/

public void undo() {

_x = _oldX;

_y = _oldY;

}

public void testUndo(Point p) {

int initialX = p._x;

p.move(1, 1);

p.undo();

assert initialX == p._x;

}

// Other methods and constructors omitted.

}

Figure 1. A JML specification for Cartesian points.
Annotation comments start with an at-sign (@),
and at-signs at the beginning of lines are ignored.
Specification cases for a method, which start with
a visibility modifier and normal_behavior, appear
before the method’s header. Preconditions are in-
troduced by the keyword requires, frame axioms
by assignable, and postconditions by ensures.
Each specification case must be obeyed when its
precondition holds. The notation “\old(_x+dx)”
means the pre-state value of _x+dx.

clause in a specification case has to describe all locations
that are potentially assigned by the method when that speci-
fication case’s precondition holds. But mentioning such pri-
vate fields in the assignable clause of a non-private specifi-
cation case exposes these fields. This problem can be solved
using data abstraction, as we explain in Sec. 4.

Rule 1 states a general requirement in terms of visibil-
ity. This rule is carefully written using “visible wherever”
because enforcement is not as simple as it might seem. For
example, in Java Rule 1 is usually satisfied if the members
mentioned in a specification construct have the same or a
less restrictive visibility modifier than the construct itself,
for instance, when both the members and the specification
construct are private. However, this is not always the case
if the member has protected visibility.

Careful enforcement is needed in two kinds of examples.
First, suppose a protected invariant of class C mentions a
protected field f declared in a superclass of C. Then the in-
variant is visible to all classes in C’s package, but f is (gen-
erally) not. Second, suppose a protected invariant of class C
mentions a protected field f declared in another class D of
C’s package. Then the invariant is visible to all subclasses
of C, but f is not. The same lack of transitive visibility can
be caused by protected internal declarations in C# and
Eiffel’s selective availability of feature exports [6].

3 Method Specifications

This section begins our discussion of the second infor-
mation hiding problem described in the introduction. We
explain the visibility requirements that enable sound modu-
lar reasoning, starting with method specifications.

3.1 Visible Preconditions

Preconditions of methods lead to proof obligations for
clients (i.e., callers) of the method, but clients cannot be re-
quired to satisfy hidden preconditions. For instance, since
move’s protected precondition mentions the protected fields
_x and _y, a client cannot use a conditional to check the
precondition before calling the method. Sound modular rea-
soning prohibits a method implementation from relying on
a precondition that is not satisfied by all clients.

In a language like Eiffel or Spec#, each method has one
precondition, which defaults to true. Unsoundness in such
a language is prevented by the following rule [6, Sec. 8.9].

Rule 2 (Visible Preconditions) Each method’s precondi-
tion must either be true or have the same visibility as the
method itself.

In JML, a method specification may have more than one
specification case, each with its own visibility and precon-



dition [12, 13, 31, 32]. Each specification case is a self-
contained contract; that case’s contract must be obeyed
whenever its precondition holds. This allows method spec-
ification to be broken up into more easily understood parts.

A method’s caller must establish the precondition of
some visible specification case (and cannot use non-visible
cases). Thus the effective precondition for a client is the
disjunction of the preconditions in the specification cases
visible to that client. If none are visible, the effective pre-
condition is true. Thus the meaning of a JML method spec-
ification as a whole automatically satisfies Rule 2. It follows
that a specification case whose visibility is less than that
of the method itself can only describe a special case in the
method’s behavior, and cannot limit calls to the method. A
method implementation may assume only the effective pre-
condition for the method’s own visibility, since that is all
that the least privileged clients must establish.

In the specification of move (Fig. 1), both specification
cases, and hence their preconditions, are not public and
therefore they are not visible to clients calling move. Thus,
the effective precondition of move for non-privileged clients
(that are neither subtypes of Point nor in the same package)
is true. This effective precondition is trivially satisfied by
non-privileged clients. However, non-privileged clients are
not able to use the postconditions of the hidden specification
cases, which are not visible to them.

A correctness proof for move may assume only its effec-
tive precondition, true. Since this precondition does not
prohibit calls in which _x + dx < 0 or _y + dy < 0, it is
not sufficient to reestablish the invariants at the end of the
method. An attempt to verify move would find this prob-
lem. While not needed for soundness, such problems can be
avoided by writing at least one specification case with the
same visibility as the method. Another guideline is that one
should make sure that the method’s effective precondition is
at least as strong as the disjunction of the hidden precondi-
tions. The specification in Sec. 4 follows these guidelines.

Hidden specification cases are useful for specifying im-
plementation details for privileged clients [29]. In partic-
ular, protected specification cases are useful for verifying
calls to overridden methods (super-calls). The benefit for
maintenance is the ability to change implementation details
and the corresponding hidden specification cases without
affecting the correctness proofs for non-privileged clients.

3.2 Behavioral Subtyping

The general idea of behavioral subtyping [1, 21] is the re-
quirement that an overriding method has to obey the spec-
ifications of the overridden methods [5, 12, 15]. It allows
one to reason about dynamically-bound methods in a mod-
ular way. In this subsection, we clarify the requirements of
behavioral subtyping in the presence of visibility modifiers.

public class ScreenPoint extends Point {

/*@ also
@ protected normal_behavior
@ requires _x + dx < 0;

@ assignable _x, _y;

@ ensures _x == 0;

@ also
@ protected normal_behavior
@ requires _y + dy < 0;

@ assignable _x, _y;

@ ensures _y == 0;

@*/

public void move(int dx, int dy) {

if(_x + dx >= 0) _x += dx;

else _x = 0;

if(_y + dy >= 0) _y += dy;

else _y = 0;

}

// constructors omitted.

}

Figure 2. Point’s subclass ScreenPoint overrides
the inherited move method and provides additional
JML specification cases that describe how the
method behaves for arguments that do not satisfy
the precondition of the inherited protected speci-
fication case.

Overriding subtype methods cannot be required to obey
supertype specifications that are not visible in the subtype.

Rule 3 (Behavioral Subtyping) Every overriding method
S.m inherits those specification cases of each overridden
supertype method T.m that are visible to type S. The im-
plementation of S.m must satisfy the specification cases for
m given in S as well as all inherited specification cases.

For instance, method move of class ScreenPoint in
Fig. 2 cannot see the private specification case of the over-
ridden move method (Fig. 1). Therefore, it might not obey
this specification case. That actually happens in our exam-
ple, as the overriding method does not update the _oldX and
_oldY fields. So callers of the move method must not use its
private specification case unless they know what implemen-
tation will be bound dynamically to the call.

This is illustrated by method testUndo in Fig. 1, where p
might be an instance of an arbitrary subtype of Point. If p is
a ScreenPoint object, then the call to move would not save
the old value of _x. Then the following call to undo would
not restore the value of _x correctly, and so the assertion
would fail. This shows that it is not sound to use a private
specification case to reason about dynamically-bound calls
even if the specification case is visible at the call site.



If method testUndo would create the object p using
Point p = new Point() instead of taking it as parameter,
then we would know which implementation the call of move
is bound to and it would, therefore, be sound to use its pri-
vate specification to reason about the call. This observation
is generalized by the following lemma. For simplicity, we
ignore invariants here, but we discuss them in Sec. 5.

Lemma 1 If a method T.m satisfies Rule 3 and T.m’s im-
plementation and the implementations of overriding sub-
type methods satisfy their specifications, then the following
properties hold for each call x.m(. . .), where PT.m

i and
QT.m

i denote the precondition and postcondition of T.m’s i-
th specification case including specifications inherited from
supertypes of T according to Rule 3.

(i) If the call x.m(. . .) is dynamically bound, the compile-
time type of x is T , and a precondition PT.m

i that is
visible to both the caller and subclasses of T holds in
the pre-state of the call, then the corresponding post-
condition QT.m

i holds in the post-state of the call.

(ii) If the call x.m(. . .) is statically or dynamically bound
to an implementation S.m and a precondition PS.m

i

that is visible to the caller holds in the pre-state of the
call, then the corresponding postcondition QS.m

i holds
in the post-state of the call.

Proof Sketch: Property (i) follows from the fact that the
call is bound to an implementation S.m, where S is a sub-
type of T . By Rule 3 S.m inherits the specification cases
of T.m that are visible to S. So the specification case
(PT.m

i , QT.m
i ) is inherited as (PS.m

j , QS.m
j ). By assump-

tion T.m’s implementation and the implementation of S.m
satisfy their specifications. Thus, since PT.m

i (= PS.m
j )

holds in the pre-state of the call, S.m establishes QT.m
i

(= QS.m
j ) in the post-state.

Property (ii) is a trivial consequence of the fact that
S.m’s implementation satisfies its specification.

For JML, this lemma generally means that calls to a vir-
tual method can only use that method’s public and protected
specification cases. Private and default access specification
cases are useful to reason about calls to non-virtual (pri-
vate, final, or static) methods, constructors, and also virtual
methods if the caller knows the exact type of the receiver.

Rule 3 facilitates maintenance. Private and default ac-
cess specification cases of a method can be changed without
re-verifying all overrides in subclasses.

4 Model Fields and Data Groups

In this section, we explain how model fields and data
groups can be used to write specifications that follow infor-
mation hiding and explain the related rules. We restrict the

presentation to model fields of single objects, that is, objects
whose representation does not depend on the states of ref-
erenced objects. Aggregate objects introduce complications
related to aliasing that are orthogonal to the concerns of this
paper. We have shown how to address these complications
elsewhere [24, 25].

4.1 Writing Client-Visible Specifications

As we just discussed, clients cannot use the private spec-
ifications of move and undo to reason about dynamically-
bound calls (Rule 3). Non-privileged clients also cannot
use the protected specification case of move (Rule 2). This
means that the specifications given in Figs. 1 and 2 are not
useful for reasoning by non-privileged clients. However,
Rule 1 does not allow these specification cases, as written,
to be made public, because they mention non-public fields.

A standard way to fix this problem of expressing speci-
fications in a client-visible way is by using data abstraction
[9]. JML supports data abstraction through model fields
[4, 16, 19]. A model field is a specification-only field whose
value is determined by applying an abstraction function to
an object state. In Fig. 3, we use JML model fields to pro-
vide a corrected specification for class Point (compare to
Fig. 1). The value of each of the public model fields x and y
is determined by a simple lookup of the corresponding pro-
tected field _x or _y. This relation between model and con-
crete fields is specified by two represents clauses. Follow-
ing Rule 1, these represents clauses are protected since they
mention protected fields. Analogously, the model fields
oldX and oldY are used to abstract from the corresponding
concrete fields _oldX and _oldY.

Each model field is associated with a data group [17].
A data group is a set of locations; it serves two purposes.
First, modular verification requires the ability to determine
whether a field update affects the value of a model field g
even if the represents clause for g is hidden [16]. The data
group of g is a superset of all fields whose update might af-
fect g’s value. Therefore, an update of a field outside g’s
data group is known not to affect g’s value. For this to be
sound, the evaluation of g’s represents clause can only ac-
cess fields within its data group. Second, to enable infor-
mation hiding in assignable clauses, a method m is allowed
to assign to a field f (perhaps via a method call) if m’s
assignable clause directly mentions f or if m’s assignable
clause mentions a model field g, and f is in g’s data group.

In JML, data group membership is declared by in
clauses, which are part of a field declaration and have
the same visibility. Membership is transitive. The clause
in oldX in the declaration of _oldX declares it to be a mem-
ber of oldX’s data group. This membership allows _oldX to
be accessed in the evaluation of the represents clause for
the model field oldX. It also permits methods that mention



public class Point2 {

//@ public model int x, y;

protected int _x; //@ in x;

protected int _y; //@ in y;

//@ protected represents x <- _x;

//@ protected represents y <- _y;

//@ public model int oldX, oldY;

private int _oldX; //@ in oldX;

private int _oldY; //@ in oldY;

//@ private represents oldX <- _oldX;

//@ private represents oldY <- _oldY;

//@ public invariant x >= 0 && y >= 0;

//@ private invariant _oldX >= 0 && _oldY >= 0;

/*@ public normal_behavior
@ requires x + dx >= 0 && y + dy >= 0;

@ assignable x, y, oldX, oldY;

@ ensures x == \old(x + dx) && y == \old(y + dy);

@ ensures oldX == \old(x) && oldY == \old(y);
@*/

public void move(int dx, int dy) {

// implementation like in class Point

}

/*@ public normal_behavior
@ assignable x, y;

@ ensures x == \old(oldX) && y == \old(oldY);
@*/

public void undo() {

// implementation like in class Point

}

// other methods and constructors as for Point.

}

Figure 3. A variant of class Point using model
fields. These allow JML specifications to be visi-
ble to clients without violating information hiding.

oldX in their assignable clause to assign to the concrete
field _oldX without explicitly mentioning it. This shows
how data groups enable information hiding in assignable
clauses. In particular, the assignable clause of Point2’s
move method no longer needs to expose the hidden fields
_oldX and _oldY, which was noted as illegal in Fig. 1.

Public model fields allow us to describe the behavior
of move (and undo) publicly, without violating information
hiding. The public specification of move has several ma-
jor advantages. First, it is useful for all clients. Second,
its precondition is now strong enough to prove that it pre-
serves Point2’s invariants. Third, its public specification
case is visible to subclasses and so can be used to reason
about dynamically-bound calls. Finally, its specification is
simpler, since it no longer has two specification cases.

Nevertheless, the specification of Point2 allows one to
change implementation details, such as the names of the
hidden concrete fields, without changing the public spec-
ifications. Changing such hidden field names would only
entail changes in the hidden represents clauses.

4.2 Rules for Model Fields

Leino and Nelson [16, 20] developed a modular verifi-
cation technique that supports model fields. In this section,
we adopt their rules and show how to enforce them in JML.

Updating a concrete field f might implicitly change the
values of all model fields whose data group contains f . A
method m that updates f has to describe these implicitly
modified model fields in its assignable clause. To allow m
to determine the set of such model fields, they must all be
visible in m. This leads to the following rule.

Rule 4 (Authenticity) If the data group of a model field g
contains a concrete field f , then g must be visible wherever
f is visible.

In our example, the declaration of oldX is visible wher-
ever _oldX is. Therefore, any method that might update
_oldX can also see the declaration of oldX.

Rule 4 allows one to verify the assignable clause of a
method m by only considering visible fields. The benefit for
maintenance is that hidden fields can be added or removed
without affecting the proof for m’s assignable clause.

The semantics of assignable clauses allows a method m
to modify a field f if f is contained in the data group of a
field g mentioned in m’s assignable clause. Therefore, to
determine whether a call to m potentially modifies f , one
must be able to determine whether f is in g’s data group by
only considering visible declarations. Hence the following.

Rule 5 (Data Group Membership) Wherever two fields f
and g are visible, one must be able to determine whether f
is in g’s data group.

In our example, suppose a non-privileged client of undo
wants to determine whether the method potentially modifies
oldX. To such a caller, both x and oldX are visible, and
therefore by Rule 5 any in clauses that connect the two must
also be visible. Since there are no such in clauses, the client
can correctly conclude that oldX remains unchanged.

Lemma 2 In JML, both Rules 4 and 5 automatically follow
from context conditions and Rule 1.

Proof Sketch: By definition, the field f is in g’s data group
if and only if there is sequence of fields gi, where g0 = g,
gn = f , and for all i ∈ {0, . . . , n−1} gi is mentioned in the
in clause of the declaration of gi+1. We show by induction
on n that Rules 4 and 5 are satisfied.



For the base case (n = 1), the in clause of the dec-
laration of a field f mentions g. Since the in clause has
the same visibility as f , Rule 1 guarantees that g is visible
wherever f is, which implies Rule 4. Since the in clause of
f is visible wherever f is, Rule 5 is also satisfied.

For the induction step (n > 1), the in clause of the decla-
ration of a field f mentions a field gn−1. Since the in clause
has the same visibility as f , Rule 1 guarantees that gn−1 is
visible wherever f is. The inductive hypothesis implies that
g is visible wherever gn−1 is and thus also wherever f is.
Therefore, Rule 4 is satisfied.

Since the in clause of f is visible wherever f is, one can
determine whether f is in the data group of gn−1 if both
fields are visible. The inductive hypothesis implies that one
can determine whether gn−1 is in the data group of g if both
fields are visible. Therefore, Rule 5 is satisfied.

5 Object Invariants

Object invariants describe consistency criteria for ob-
jects. In this paper, we use a visible state semantics [26];
that is, invariants have to hold in all visible states. The no-
tion of a visible state is determined by the specification lan-
guage. For instance, in JML the visible states are the pre-
and post-states of all method executions except for methods
that are explicitly declared as helpers (see Sec. 5.2).

As with model fields, we only consider invariants of sin-
gle objects in this paper. See our earlier work [18, 26] for
a discussion of invariants for aggregate objects. Moreover,
we do not consider method calls in invariants.

Recall that each JML invariant has a visibility modifier.

5.1 Dependencies

We say that an invariant depends on a field f if the value
of f is used to determine whether the invariant holds. This
happens if the declaration of the invariant mentions f or a
model field that has f in its data group. For instance, the
first object invariant of class Point2 (Fig. 3) depends on
x and y because these model fields are mentioned in the
invariant and also on _x and _y because these fields are in
the data groups of x and y, respectively.

In languages such as Java, C++, and C#, the object in-
variant of an object o leads to proof obligations for the
methods of o and also for client methods. This is because
clients can directly assign to fields of o without using one
of o’s methods. For instance, privileged clients of class
Point2 may directly assign to the protected fields _x and
_y. Such assignments potentially violate invariants depend-
ing on these fields. Therefore, these invariants must be vis-
ible to the clients in order to prove that they are preserved.

Rule 6 (Visible Invariants) If an object invariant depends
on a field f then the invariant must be visible wherever f is.

Rule 6 can be enforced by a simple syntactic check on
the fields mentioned in an invariant declaration.

Lemma 3 Rule 6 follows from Rule 4 and the requirement
that an invariant that mentions a concrete or model field g
is visible wherever g is visible.

The proof is a trivial case analysis, and so we omit it.
Following Rules 1 and 6, the fields an invariant directly

mentions must be visible to exactly the same classes as the
invariant itself. Suppose an invariant I mentions a field f .
If f is visible to a class where I is not visible, Rule 6 is
violated. By contrast, if I is visible to a class where f is
not visible, Rule 1 is violated. In JML, this means that a
private invariant can only mention private fields, as private
fields and invariants are limited to the class in which they
are declared. The situation is analogous for default access.

However, the situation is not so simple for other visibil-
ity modifiers. We discussed the problems of the protected
modifier in Sec. 2. Perhaps surprisingly, there is also a prob-
lem with public invariants, when one considers subtyping.
Rule 6 prevents a subtype S of T from depending on a field
f of T , even if S’s invariant is public, because by Def. 1, S
and its invariant are in general not visible in T . Therefore,
by Rule 6, the invariant of the subtype S must not depend
on fields of the supertype T . Modular verification requires
that one can reason about a type T without knowing all of
its subtypes [15, 16, 24]. The problem is that methods of T
or its clients may update f and, thereby, violate the invariant
of S. In other words, adding S to a program would require
re-verification of T and its clients, which would be a main-
tenance problem. This problem of object invariants is not
directly related to information hiding because it is neither
solved by making all concrete fields private nor by making
all invariants public. Therefore, instead of discussing this
problem further, we refer the reader to other works that dis-
cuss this problem [16, 24, 26] and solutions [2, 29].

It is important to understand that Rules 1 and 6 do not
prevent public invariants from depending on private fields.
By using model fields, it is possible for an invariant to de-
pend on a field without syntactically mentioning it. There-
fore, invariants can express properties of hidden fields in a
client-visible way. For example, the public invariant of class
Point2 (Fig. 3) indirectly depends on the protected field _x
via the public model field x. This is permitted by Rule 1
because _x is not directly mentioned in the invariant.

Rule 6 enables modular reasoning about invariants be-
cause it is sufficient to prove that a method preserves all vis-
ible invariants. Invariants that are not visible to a method are
preserved automatically because they cannot be violated.

Lemma 4 If a program satisfies Rule 6 and does not con-
tain any helper methods, then each invariant that is poten-
tially violated by a method m is visible in m.



Proof Sketch: Consider an execution of a method m. We
may assume that this execution terminates; otherwise there
is no post-state in which an invariant could be violated. We
continue by induction on the depth of nesting of method
executions.

In the base case, the execution of m does not call any
other methods. Therefore, the only way for m to violate
an invariant is by updating a field f . Type rules guarantee
that f is visible in m and so, by Rule 6, all invariants that
depend on f are visible in m. By the definition of “depends
on,” these invariants are the only ones that are potentially
affected by the update of f . Consequently, all invariants
that are potentially violated by m are visible in m.

For the inductive step, we have to consider (1) field up-
dates and (2) method calls. Case 1 for field updates is anal-
ogous to the base case. In a visible state semantics, which
we are assuming, all invariants hold in the post-state of a
non-helper method. Therefore, case 2 is trivial.

Lemma 4 not only enables modular verification, but also
facilitates maintenance. Since hidden invariants do not
lead to proof obligations for clients, these invariants can be
modified without re-verifying clients. Being able to adapt
private implementation invariants is particularly important
during maintenance and refactoring.

5.2 Helper Methods

It is often useful to exclude the pre- and post-states of
certain methods from the set of visible states. JML declares
such methods with the keyword helper.

Helper methods may violate invariants. This can make it
difficult for a non-helper caller of a helper method to show
that it preserves the invariants. To illustrate this problem,
consider the helper method undoX in Fig. 4, which is an
addition to class Point2.

Method undoX undoes the last change to _x and sup-
plies a new value to _oldX for the next undo operation.
This method potentially violates Point2’s private invariant
since it does not require the new value for _oldX to be non-
negative. If undoX is called from a client C, then C is in
general not able to show that it preserves this invariant be-
cause the private invariant is not visible to C. Note that it
is not enough to know the exact behavior of undoX, which
is specified in Fig. 4, because C does not know how to re-
establish the hidden invariant. The problem would not occur
if undoX were private, because then all callers would be able
to see the private invariant. This shows that the visibility of
helper methods must be restricted.

Rule 7 (Helper Methods) Each invariant that is poten-
tially violated by a helper method must be visible wherever
the helper method is visible.

/*@ protected normal_behavior
@ assignable x, oldX;

@ ensures x == \old(oldX) && oldX == v;

@*/

protected /*@ helper @*/ // illegal

void undoX(int v) {

_x = _oldX;

_oldX = v;

}

Figure 4. A helper method for class Point2, which
is illegal because helpers must be private in JML.

JML enforces this by making helper methods be private.

Lemma 5 If all helper methods are private and the pro-
gram satisfies Rule 6, then Rule 7 is satisfied.

Proof Sketch: Consider an execution of a private helper
method m. We may assume that this execution terminates;
otherwise there is no post-state, and Rule 7 is satisfied triv-
ially. We continue by induction on the depth of nesting of
method executions.

In the base case, the execution of m does not call any
other methods. As in the base case for Lemma 4, we have
that all invariants that are violated by m are visible in m.
Since m is private, they are visible wherever m is visible.

For the inductive step, we have to consider (1) field up-
dates, (2) calls to non-helper methods, and (3) calls to helper
methods. Cases 1 and 2 are identical to the inductive step
for Lemma 4. For Case 3, suppose that m calls a helper
method n. By the inductive hypothesis, each invariant that
is potentially violated by n is visible wherever n is visible.
Since both m and n are private, these invariants are also
visible wherever m is visible.

Rule 7 enables modular reasoning about invariants and
efficient proof maintenance in the presence of helper meth-
ods. That is, Lemma 4 holds also for programs that contain
helper methods.

Lemma 6 If a program satisfies Rules 6 and 7, then each
invariant that is potentially violated by a method m is visi-
ble in m.

Proof Sketch: The proof is analogous to the proof for
Lemma 4. For the inductive step, we have to consider the
additional case that m calls a helper method n. By the
inductive hypothesis, each invariant that is potentially vi-
olated by n is visible in n. By Rule 7, these invariants are
also visible in m.

6 Related Work

Parnas [28] recognized the importance of information
hiding for the maintenance of programs. We apply the con-



cept of information hiding to specifications, using an anal-
ysis based on formal specifications and proofs.

Meyer [23] discusses visibility rules for assertions and
suggests the visible preconditions rule (similar to Rule 2) as
well as a requirement similar to the rule for helper methods
(Rule 7). We extend his work to model fields, invariants,
and Java-like visibility modifiers.

Modular verification requires that the proof obligations
for a class deal only with program and specification ele-
ments that are visible to that class. Thus information hid-
ing and modular verification techniques are closely related.
However, most existing work on modular verification (e.g.,
[1, 3, 9, 16, 32]) supports only a limited form of informa-
tion hiding, whereas the rules presented here support the
full range of visibility found in languages such as Java.

Leino and Nelson’s work on model fields [20] and data
groups [17] suggests the rules for model fields we use.
Whereas their papers consider only the visibility modifiers
private and public, we also discuss the implications for
the other modifiers found in Java and C#.

Müller’s thesis [24] presents sound verification rules
in the presence of information hiding. Our rules support
stronger information hiding, including hiding of invariants.

Ruby and Leavens [29] allow subclass invariants to de-
pend on superclass fields. They achieve soundness by im-
posing additional obligations on subclasses, such as manda-
tory overrides of some superclass methods, and by prohibit-
ing some super-calls.

In Spec# [3], method specifications have the same visi-
bility as the method itself, and invariants are always private.
Spec# enforces Rule 1 and, like JML, allows hidden fields
to be declared public for specification purposes. Spec#
does not use a visible state semantics for invariants. In-
stead, invariants are checked at designated pack statements
[18]. Since Spec# does not enforce Rule 6, client code
has to be re-verified when an invariant is changed. This
re-verification could be avoided by restricting where pack
statements may be placed. However, it is unclear how se-
vere such a restriction would be. In combination with the
rules we propose in this paper, such a placement restriction
would also allow representations of Spec#’s model fields
[19] to be changed without re-verifying client code.

In the Object Constraint Language OCL, assertions have
the same visibility as the element of the UML model they
are associated with. Rule 1 is mentioned in the standard
[27, Sec. 2], but not mandatory. Since none of our rules
are enforced, OCL supports neither modular verification nor
efficient proof maintenance.

7 Conclusions

There are maintenance advantages to having some speci-
fications at different visibility levels. This is especially true

for invariants and other specification language constructs
that describe detailed design decisions about implementa-
tions, such as relationships among hidden fields. Hidden
method specifications are less important, but are still use-
ful, for instance, for verifying calls to overridden methods
(super-calls). This is especially the case when the public
model of an object does not uniquely determine the val-
ues of hidden fields, and in which the hidden details mat-
ter (for instance, for efficiency). Hiding such specifications
allows design decisions to be changed without invalidating
client proofs. It also enables a more efficient dependency
analysis when design decisions are changed. For all these
reasons, such hidden specifications are extensively used in
JML’s specification of parts of the Java libraries.

When specifications can be written at different visibil-
ity levels, there are several soundness problems that arise.
These are avoided by following the rules we have described
above. While the rules are intuitive, they have non-obvious
consequences. For example, Rule 6 prohibits mentioning
public fields in non-public invariants. Another non-obvious
consequence is that helper methods must be private, not
merely hidden (Rule 7). Finally, the rules are careful to use
transitive visibility (“wherever”), since visibility modifiers
such as protected are not transitive in general.

As mentioned in the introduction, these rules can also
be used for unit tests (partial specifications) and documen-
tation (informal specifications) when augmented with a no-
tion of visibility. For example, by Rule 1 a “public” unit test
for a class should not access the class’s private members, for
instance, in the code that decides if a test fails. Similarly,
Rule 3 says that no clients can use “private” documentation
describing dynamically-bound method calls.

While JML already enforces most of our rules, this paper
explores some parts of JML’s semantics for the first time.
In particular the semantics for preconditions described in
Sec. 3.1 is not implemented yet, and restrictions on data-
groups and Rule 6 are not enforced. Some JML tools, in-
cluding ESC/Java2 [11, 7], ignore visibility modifiers in
specifications. Thus documentation and enforcement of
these rules is important future work, as is investigation of
their completeness. JML also relaxes some of our assump-
tions, especially about method calls in invariants and repre-
sents clauses; this gives more problems for future work.

Future work could also extend our rules to cover new
language constructs. Language designers could do this by
first determining the semantics of these constructs in terms
of proof obligations, then sorting out what obligations fall
on the clients and the various entities being specified (such
as methods), and finally constructing rules to make sure that
each client and each such entity can see the specifications
necessary to meet its proof obligations.



Acknowledgments. Thanks to the formal methods club
at ETH for discussions, and to Patrice Chalin, David Cok,
Faraz Hussain, Clyde Ruby, Joseph N. Ruskiewicz, and the
reviewers for comments on drafts.

References

[1] P. America. Designing an object-oriented programming lan-
guage with behavioural subtyping. In J. W. de Bakker, W.-
P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, volume 489 of LNCS, pages
60–90. Springer, New York, NY, 1991.

[2] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology (JOT), 3(6), 2004.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Pro-
gramming System: An Overview. In G. Barthe, L. Burdy,
M. Huisman, J.-L. Lanet, and T. Muntean, editors, Con-
struction and Analysis of Safe, Secure, and Interoperable
Smart Devices (CASSIS), volume 3362 of LNCS, pages 49–
69. Springer, 2005.

[4] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards.
Model variables: cleanly supporting abstraction in design by
contract. Software—Practice & Experience, 35(6):583–599,
2005.

[5] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyp-
ing through specification inheritance. In International Con-
ference on Software Engineering (ICSE), pages 258–267.
IEEE Computer Society Press, 1996.

[6] Standard ECMA-367: Eiffel Analysis, Design and Program-
ming Language. ECMA International, 2005.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
Java. In Programming Language Design and Implementa-
tion (PLDI), volume 37(5) of SIGPLAN Notices, pages 234–
245. ACM, 2002.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Addison-Wesley, 3rd edition, 2005.

[9] C. A. R. Hoare. Proofs of correctness of data representation.
Acta Informatica, 1(4):271–281, 1972.

[10] G. Kiczales and J. Lamping. Issues in the design and docu-
mentation of class libraries. In A. Paepcke, editor, Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), volume 27(10) of ACM SIGPLAN Notices,
pages 435–451, 1992.

[11] J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java
and JML. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS), volume
3362 of LNCS, pages 108–128. Springer, 2005.

[12] G. T. Leavens. JML’s rich, inherited specifications for be-
havioral subtypes. Technical Report 06-22, Department of
Computer Science, Iowa State University, Aug. 2006. To
appear in ICFEM’06.

[13] G. T. Leavens and A. L. Baker. Enhancing the pre- and post-
condition technique for more expressive specifications. In
J. M. Wing, J. Woodcock, and J. Davies, editors, Formal
Methods (FM), volume 1709 of LNCS, pages 1087–1106.
Springer, 1999.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes, 31(3):1–
38, Mar. 2006.

[15] G. T. Leavens and D. A. Naumann. Behavioral subtyping,
specification inheritance, and modular reasoning. Techni-
cal Report 06-20a, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011, Aug. 2006.

[16] K. R. M. Leino. Toward Reliable Modular Programs. PhD
thesis, California Institute of Technology, 1995.

[17] K. R. M. Leino. Data groups: Specifying the modification of
extended state. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), volume 33(10) of
ACM SIGPLAN Notices, pages 144–153, October 1998.

[18] K. R. M. Leino and P. Müller. Object invariants in dynamic
contexts. In M. Odersky, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 3086 of
LNCS, pages 491–516. Springer, 2004.

[19] K. R. M. Leino and P. Müller. A verification methodol-
ogy for model fields. In P. Sestoft, editor, European Sym-
posium on Programming (ESOP), volume 3924 of LNCS,
pages 115–130. Springer, 2006.

[20] K. R. M. Leino and G. Nelson. Data abstraction and infor-
mation hiding. ACM Transactions on Programming Lan-
guages and Systems, 24(5):491–553, September 2002.

[21] B. Liskov and J. M. Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and
Systems, 16(6), 1994.

[22] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[23] B. Meyer. Object-Oriented Software Construction. Prentice

Hall, second edition edition, 1997.
[24] P. Müller. Modular Specification and Verification of Object-

Oriented programs, volume 2262 of LNCS. Springer, 2002.
[25] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular

specification of frame properties in JML. Concurrency &
Computation: Practice & Experience, 15:117–154, 2003.

[26] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for layered object structures. Science of Computer
Programming, 62:253–286, 2006.

[27] OMG. Object constraint language specification, version 2.0.
http://tinyurl.com/k7rfm, May 2006.

[28] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
5(12):1053–1058, Dec. 1972.

[29] C. Ruby and G. T. Leavens. Safely creating correct
subclasses without seeing superclass code. In Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOSPLA), volume 35(10) of ACM SIGPLAN Notices,
pages 208–228, Oct. 2000.

[30] R. Stata and J. V. Guttag. Modular reasoning in the presence
of subclassing. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), volume 30(10) of
ACM SIGPLAN Notices, pages 200–214, 1995.

[31] A. Wills. Specification in Fresco. In S. Stepney, R. Barden,
and D. Cooper, editors, Object Orientation in Z, Workshops
in Computing, chapter 11, pages 127–135. Springer, 1992.

[32] J. M. Wing. A two-tiered approach to specifying programs.
Technical Report TR-299, MIT LCS, 1983.


