
DISS. ETH NO. 19971

A Formal Definition of JML in Coq

and its Application to

Runtime Assertion Checking

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
Hermann Lehner

Dipl. Informatik-Ing. ETH

born October 25, 1978
citizen of Bürchen, VS
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Abstract

The Java Modeling Language (JML) is a very rich specification language
for Java, which many applications use to describe the desired behavior of a
program. The meaning of JML is described in a reference manual using nat-
ural language. The richness of JML, and the inherent ambiguity of natural
language leads to many different interpretations of the same specification
constructs in different applications.

We present a formalization of a large subset of JML in the theorem prover
Coq. A formally defined semantics of JML provides an exact, unambiguous
meaning for JML constructs. By formalizing the language in a theorem
prover, we not only give a mathematically precise definition of the language
but enable formal meta-reasoning about the language itself, its applications,
and proposed extensions. Furthermore, the formalization can serve as JML
front-end of a verification environment.

Frame conditions are expressed in JML by the assignable clause, which
states the locations that can be updated by the method. For abstraction,
the clause can mention dynamic data groups, which represent a set of heap
locations. This set depends on the program state and may contain a large
number of locations.

We present the first algorithm that checks assignable clauses in the
presence of dynamic data groups. The algorithm performs very well on
realistic and large data structures by lazily computing the set of locations
in data groups and by caching already-computed results. We implemented
the algorithm in OpenJML.

As an important contribution to runtime assertion checking, and as an
interesting application of our formalization of JML in Coq, we proved in Coq
that our algorithm behaves equivalently to the formalized JML semantics.
This shows not only soundness and completeness of our algorithm to check
assignable clauses, but also the usefulness and expressiveness of our JML
formalization.
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Zusammenfassung

Die Spezifikationssprache JML (Java Modeling Language) wird von zahlrei-
chen Anwendungen benutzt, um das erwünschte Verhalten von Java-Pro-
grammen zu beschreiben. Die Sprache verfügt über einen sehr umfang-
reichen und reichhaltigen Satz an Sprachkonstrukten, welcher in einem Re-
ferenzhandbuch in natürlicher Sprache beschrieben ist. Dies führt dazu,
dass viele Anwendungen dieselben Sprachkonstrukte unterschiedlich inter-
pretieren.

Wir präsentieren die Formalisierung eines grossen Teils von JML im
Theorembeweiser Coq. Durch eine formale Semantik werden die Sprachkon-
strukte klar und eindeutig beschrieben. Durch das Verwenden eines Theo-
rembeweisers ermöglichen wir ausserdem maschinenüberprüfbare Aussagen
über die Sprache selbst, ihre Applikationen oder denkbare Erweiterungen.
Darüber hinaus kann unsere Formalisierung als Teil einer Verifikations-Um-
gebung genutzt werden.

Mit der assignable Anweisung kann in JML festgelegt werden, welche
Stellen des dynamischen Speichers von einer Methode überschrieben werden
dürfen. Zu Abstraktionszwecken kann die Anweisung dynamische Daten-
gruppen verwenden, welche jeweils eine Menge von Speicherstellen repräsen-
tieren. Diese Menge ist abhängig vom Ausführungszustand des Programms
und kann sehr viele Elemente enthalten.

Wir präsentieren den ersten Algorithmus, der assignable Anweisun-
gen, welche dynamische Datengruppen verwenden, überprüft. Dadurch dass
der Inhalt von Datengruppen nur wenn nötig berechnet wird sowie durch
geschicktes Zwischenspeichern von bereits berechneten Ergebnissen, ist der
Algorithmus sehr effizient selbst bei realistischen und grossen Datenstruk-
turen. Eine Implementierung des Algorithmus in OpenJML liegt vor.

Als wichtigen Beitrag zur Laufzeitüberprüfung von Programmen, aber
auch als eine interessante Anwendung unserer Formalisierung von JML in
Coq führen wir den Beweis in Coq, dass sich unser Algorithmus genau wie
in der Semantik beschrieben verhält. Dies zeigt nicht nur die Korrektheit
und Vollständigkeit unseres Algorithmus, sondern auch die Brauchbarkeit
und Ausdruckskraft unserer JML Formalisierung.
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Online Resources

The Coq sources of our formalization of JML and the proof of the runtime
assertion checker are too big to be printed as an Appendix. We refer the
interested reader to the web-presence of this work. Beside the thesis and the
formalization in Coq, we provide examples and the OpenJML implementa-
tion of our algorithm on this page.

http://jmlcoq.info/
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Chapter 1

Introduction

1.1 Motivation

In 1969, flying to the moon required just some ten thousand lines of assem-
bler code [4] and even though the landing was a success, it didn’t happen
without a serious software problem during the descent [3]. Since this early
computer era, software systems have become several magnitudes larger and
more complex, and have found their way into nearly every sector of our daily
lives. And still, software is most often the failing component in a system;
be it the ATM that is out of order, the mobile phone that randomly re-
boots, or the car’s board computer that refuses to start the engine for some
spurious reason. We have got used to the fact that software is unreliable
[43] and often treat software quality as nice to have but not indispensable.
However, with the ever-growing dependency on software, its quality needs
to be a central concern of software producers. The fact that cyber crime,
which most often exploits software vulnerabilities, has become a real threat
[31, 23] supports the call for better-quality assurance for software.

We can ensure and increase software quality by different quality control
techniques, that is, by testing (unit tests, integration tests, system tests,
etc.), static analyses (code-style check, dead code analysis, etc.), or formal
verification (proven correct behavior of code). [1, 82]. However, the immense
complexity and size of today’s software makes quality control an inherently
difficult and expensive task.

Today’s most common quality control technique is testing [8, 56]. While
testing is a very good means to ensure the quality requirements of hardware
(e.g., testing the strength of a metal beam), it is less successful in ensuring
the quality of software. Testing means that we run (parts of) the software
for some set of inputs and compare the computed results to expected results.
By cleverly choosing the inputs, we can be reasonably sure that the software
behaves as expected in the anticipated situations. However, we can never
guarantee the complete absence of errors by testing. As the input space of a
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2 CHAPTER 1. INTRODUCTION

program is normally infinite or at least unfeasibly large, we always test only
a tiny fraction of possible inputs and have to hope that all other inputs are
treated correctly by the software as well.

Our vision is that tomorrow’s most common quality control techniques
are based on formal specifications of the behavior of the software. The idea
has been introduced as “Design by Contract” [57] by Meyer. The code is
equipped with human- and machine-readable specifications that describe
the desired behavior of the software. While contracts are a built-in concept
in Eiffel[58], specification languages have been introduced for many other
object oriented languages such as Larch for C++ [45], Spec# for C# [5]
and the Java Modeling Language (JML) for Java [46].

Such specifications can be used for a great variety of tools and applica-
tions [10, 47]. For instance, we can automatically generate unit tests from
specifications [59, 84], introduce runtime assertion checks [58, 14], perform
static analyses [78, 32, 33], or do formal verification [5, 79, 2, 62]. As op-
posed to contracts in Eiffel, theses specification languages not only use a side
effect free subset of expressions from their respective language, but feature
powerful additional constructs in order to be more expressive. For instance,
it’s possible to quantify over variables of any type, define frame conditions
using abstraction [54], or specify a program by defining a model [49, chapter
15].

A specification language like JML, which is the focus of this thesis, is
extremely feature-rich. Furthermore, there are a large number of tools that
support some subset of the language to perform different kinds of verifica-
tion. While the semantic meaning of certain JML constructs often depends
on the tool, it is the reference manual [49] that defines the baseline. The
manual is a draft of 200 pages written in natural language that explains the
language constructs in greater or lesser detail, depending roughly on their
popularity and the general understanding of the intended meaning. Quite
often, the natural language description is not precise enough to clearly and
unambiguously describe the language constructs. In these situations, a for-
mally defined semantics for the specification language in a mathematical
language helps to ensure that all tools and applications implement the same
understanding of the language constructs.

As the specification language is defined on top of the underlying pro-
gramming language and adds another layer of constructs, defining a formal
semantics for a specification language is a challenging task. If this work is
done on paper like in Bruns’ thesis [9], it provides a good and unambiguous
understanding of the semantics of JML constructs. However, the semantics
cannot directly be used by an application, and checking the consistency of
the semantics can only be done by manual inspection. Therefore, we believe
that it is well-advised to use a proof system to formalize a semantics of such
a complex language as we can use the proof system to perform validations of
the formalization. Furthermore, a formalization in a theorem prover can be
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used by a great number of applications. In a technical report [48], Leavens
et al. describe a preliminary definition of a core subset of JML in PVS[22].
Their main goal is to unambiguously define a core part of JML. However, our
main motivation is to use the formalization for meta-reasoning on JML but
also as part of a program verification environment. By “meta-reasoning”,
we understand to prove properties of the JML language or to show that a
JML based verification technique is correct.

We want to show the usefulness of our formalization by an application
that is not only a challenge to formalize but also an important contribution
on its own. We develop the first algorithm to check frame conditions in
the presence of data abstraction at runtime [50] and formally prove the
correctness of the algorithm with respect to our formalization of JML.

Frame conditions define which heap locations a method may modify,
and, more importantly, that everything else in the heap stays unchanged.
To verify interesting program properties, it is important to know the side
effects of a method, which are specified by the frame conditions. In JML,
a method specification expresses such frame conditions by the use of the
assignable clause. This clause declares the heap locations that may be
updated during method execution.

To achieve information hiding, an assignable clause can mention data
groups to abstract away from concrete locations [52, 51]. For any field of
an object, we can specify which data group(s) it belongs to. That is, a data
group defines a set of concrete locations. A data group is static if it only
contains fields of the same object. Otherwise, the data group is dynamic.
Dynamic data groups are crucial to specify frame properties for aggregate
or recursive data structures, but make reasoning about assignable clauses
an inherently non-modular and difficult task.

JML’s semantics for checking frame conditions is to determine upon
method invocation the set of locations in the data groups mentioned in the
assignable clause. The number of locations in a dynamic data group is
unknown at compile time and can grow as fast as the heap itself. Therefore,
a näıve implementation of the semantics would lead to a large memory and
time overhead.

Our algorithm differs significantly from this näıve implementation and
checks assignable clauses efficiently at runtime. The motivation for such
checks is twofold: first, we can use a runtime assertion checker (RAC) to
check a program’s validity with little effort and small annotation overhead
before starting to prove its correctness in an interactive theorem prover. In
this way, we find bugs early and reduce the risk of getting stuck in an ex-
pensive manual proof. Second, if we use an automatic verification tool, we
often get spurious error messages because of under-specification or deficien-
cies of the prover. In this case, we can use runtime assertion checks to see
if the program really violates the specification for the input values from the
counter example.
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Many static verification tools [2, 12, 32, 55, 78, 79] support assignable
clauses to some extent; some partly support static data groups, but no static
verification tool currently handles dynamic data groups. To precisely reason
about dynamic data groups, a verification environment produces proof obli-
gations that have to be discharged manually, as checking the containment
in a dynamic data group is essentially a reachability problem, which is not
handled well by SMT solvers. Existing static analyses can only provide an
over-approximation that is too imprecise to be useful. The situation for run-
time assertion checkers is similar: the RAC for JML presented in Cheon’s
dissertation [14] does not provide checks for assignable clauses. Ye [83]
adds limited support for static data groups only.

In these tools, assignable clauses are interpreted quite differently. Some
tools allow a method to assign to locations that are not mentioned in
assignable clauses as long as the original value is written back before
the method terminates, other tools do not check assignable clause if the
method does not terminate. Again other tools ignore aliasing. Tools that
perform static analyses typically do not allow to call a method whose
assignable clauses contains locations that are not assignable in the caller.

The quite heterogenous interpretations of assignable clauses in existing
tools, as well as the fact that our algorithm differs a lot from a näıve im-
plementation of the semantics are a strong motivation for formally proving
the equivalence between the runtime assertion checker and the semantics.
Moreover, the proof is an interesting and challenging application of our for-
malization.

1.2 Goals

A Formal Definition of JML in Coq

We want to formally define an interesting and realistic subset of the spec-
ification language JML in a state of the art theorem prover. The subset
covers all constructs that are needed to provide interesting program spec-
ifications, including preconditions, normal and exceptional postconditions,
frame conditions, object invariants, and local assertions, just to mention the
most important ones. We define the exact subset in section 2.3.

Enable Meta-Reasoning as well as Program Verification Our for-
malization should serve several purposes. Beside the obvious goal of having
a formal and therefore unambiguous semantics for JML, we want to be able
to do meta-reasoning on the specification language itself. Furthermore, we
want to be able to integrate the formalization into a program verification
environment like the Mobius PVE [62].

To integrate the formalization in a verification environment, we want to
provide an interface to JML specifications that can be used by the verifica-
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tion environment to generate proof obligations. Furthermore, it’s necessary
to formalize JML such that it’s possible to conveniently embed JML anno-
tated Java programs in Coq.

Emphasis on the Relevant Software Qualities In order to be useful,
our formalization needs to fulfill the following three software qualities:
Readability Only if the formal definition of JML is readable and under-
standable by people working in the formal verification area, will it be used
for different applications as described above.
Maintainability As the formalization only covers a subset of JML, it
is important to ensure maintainability of the formalization. Enlarging the
supported subset means that some existing need to be changed in order
to support the new constructs. Furthermore, one might want to actually
change the semantics of certain constructs. For instance, besides the se-
mantics for object invariants defined in the reference manual, there exist
several proposals of different semantics that allow modular reasoning. The
formalization is maintainable if the design of the formalization allows such
changes in a clear and straight-forward way. Part of maintainability is also
a decent documentation of the semantics, which should be provided in this
thesis.
Usability In the previous goal, we already emphasized that the formal-
ization should not only provide an unambiguous definition of JML, but also
provide a basis for a variety of applications. The design needs to embrace
these different use cases and allow easy integration in other systems.

An Efficient RAC for Assignable Clauses

We want to develop an efficient way of checking JML’s assignable clauses
at runtime in the presence of dynamic data groups. The code instrumenta-
tions by our algorithm should exactly enforce the semantics of assignable
clauses. Most notably, the checks should be performed independently of if
and how a method terminates (as opposed to the implementation of most
tools). Furthermore, the algorithm should not enforce that the assignable

clause of a callee contains only locations that are also assignable in the caller
(which is a significant over-approximation).

Manage to Check a Non-Modular Property at Runtime Dynamic
data groups lead to non-modular reasoning because their size is only bound-
ed by the size of the heap. Our goal is to develop an algorithm that can
deal well with the introduced non-modularity.

Minimize Time Overhead at Reasonable Costs We want to focus on
minimizing time overhead while keeping the memory footprint reasonable.
As we see the runtime assertion checker as a means to quickly check if
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a program behaves as expected, time is more of an issue than memory,
especially as the latter is normally available in these days. In the average
case, the algorithm should not tear down the performance significantly. In
the worst case, it should still be possible to run an annotated program for
fairly large data structures. It would not be much of a runtime assertion
checker, if it couldn’t handle realistic data structures.

A Machine Checkable Proof of the RAC

We want to create a machine checkable proof of correctness of the algorithm
to check assignable clauses at runtime. Our goal is to show that such proofs
are scientifically interesting, because for certain language constructs, a run-
time assertion checker instruments the code in a way that cannot obviously
be mapped to the semantics of the respective JML construct. Our check of
assignable clauses is a good example for a non-trivial connection between
the runtime assertion checker implementation and the intended semantics.

Prove Soundness and Completeness We want to show that our run-
time assertion checker is sound an complete. That is, the checker does not
allow an assignment to a heap location if the semantics forbids it (sound-
ness), but also that it does allow assignment to any heap location which is
assignable according to the semantics (completeness). While the soundness
criterion is not debatable, the second is, as it prevents the algorithm to
perform any kind of over-approximation.

Showcase the Usefulness of the JML Formalization Beside the di-
rect result of having a proof, that is, the certainty that our algorithm is
correct, we also want to show that our formalization of JML can be used to
perform challenging meta-reasoning on the language and its tools. There-
fore, the proof should be well documented (in this thesis) and its structure
should be an elegant application of the formal definition of JML. To achieve
this best, we also want this proof to have the same software qualities as the
formalization.

1.3 Approach

In this section we give a short high-level summary of the approach. Each
subsequent technical chapter contains a more detailed section on the ap-
proach.

A Formal Definition of JML in Coq We provide a formalization of
JML in the theorem prover Coq [19], which has been used to reason about
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programming languages on several occasions. We base our work on an exist-
ing formalization of the Java Virtual Machine [70]. Therefore, we can reuse
the formalization of underlying language concepts like the object model.
In order to improve readability and usability, we make heavy use of nota-
tions, which are additional directives for the parser and pretty printer of
Coq. Throughout the formalization, we apply the concept of separation of
concerns: we encapsulate different parts of the formalization in modules,
such that individual parts of the formalization can be exchanged without
influencing everything else. This greatly improves the maintainability of
the formalization and also has a positive impact on usability. For instance,
we can easily exchange one part of the formalization and formally show
equivalence between the original and the exchanged part.

An Efficient RAC for Assignable Clauses We overcome the non-
modularity of dynamic data groups by applying lazy evaluation techniques
that we base on observation of typical uses of dynamic data groups. Instead
of evaluating the content of assignable data groups upon method invoca-
tion, we determine upon field assignment if the field location is contained
in an assignable data group. Furthermore, we introduce data structures for
representing data groups and assignable clauses that allow to compute
static data group membership in constant time. Finally, we avoid perform-
ing the same computation multiple times by introducing caches that store
all intermediate results during a method execution.

A Machine Checkable Proof of the RAC We prove soundness and
completeness of the runtime assertion checker by showing that the semantics
and the runtime assertion checker are bisimilar [69, 61], that is, they are
equivalent. We apply a refinement strategy that uses the semantics as the
abstract model and concretize the model in each refinement step to end up in
a model that describes the runtime assertion checker. The modular nature
of the formalization allows us to elegantly define the different models and
plug them into the formalization in order to prove the equivalence of the
refinements.

1.4 Scientific Contributions

• We provide the first formal definition of a rich specification language
like JML with a useful subset that is tailored towards both program
verification and meta-reasoning. The formalization is written in a
successful and popular theorem prover and embraces changes and ex-
tensions. Thus, we make sure that our work can be used as a solid
foundation for future work in the area.
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• We present the first algorithm that faithfully checks assignable clau-
ses with dynamic data groups. Our work closes a gap in the runtime
assertion checker for JML. Our algorithm can be adapted to check sim-
ilar currently unsupported constructs such as the accessible clause.

• We perform the first proof of correctness and completeness of a run-
time assertion checker for a specification language construct. Even
though checking assignable clauses is a difficult task where the code
instrumentation significantly differs from the semantics description,
we can show that it’s possible to exactly define the effect of the instru-
mentation and prove that the runtime assertion checker enforce the
semantics without over-approximation.

1.5 Related Work

We split our discussion of related work into several areas. Fig. 1.1 visualizes
the related work in four overlapping ellipses that represent the different
research areas. On the upper left, we have related work that concentrates
on describing the JML semantics in a formal way. On the upper right, we
have tools that we compare to our work. On the lower right, we discuss
work that explicitly concentrates on assignable clauses, and on the lower
left, we discuss work that formalizes languages in a theorem prover.

Figure 1.1: The most relevant related work, arranged by research fields.
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Formal Semantics of JML In the field of formal semantics for JML,
we have the work by Bruns and the preliminary definition of core JML by
Leavens et al., which define a formal semantics independently from an ap-
plication. In the case of the JML tools JIVE and LOOP, a formal semantics
of JML is discussed on paper. Beside explaining the overall approach of the
related work, we emphasize the handling of the assignable clause for JML
semantics and tools, as it’s interesting to see how differently this clause is
treated.

Bruns describes in his diploma thesis [9] a formal semantics for JML on
paper. It is a very thoroughly and nicely written semantics that helps to
understand the exact meaning of JML constructs, that can help to agree on
a common understanding of JML specifications. Their semantics differs in
certain points to ours where either the reference manual is not specific or
where one of us deliberately changed the semantics from the one presented
in the reference manual. One difference is how the semantics handles side ef-
fects in specifications. While expressions in Bruns’ semantics not only yield
a value but also a post-state which corresponds to the solution presented by
Darvas and Müller [26], expressions in specifications do not change the state
in our formalization of the semantics. While the former is more accurate, the
latter is simpler. Therefore, we cannot handle object creations in specifica-
tions properly. However, our modular formalization of the semantics would
allow to implement a different handling of specification expressions with-
out problems. Another interesting difference is the handling of assignable
clauses. While a method does not have to respect its assignable clause if
it does not terminate, our semantics states that assignable clauses need to
be respected in any case, no matter if the method terminates or not.

The preliminary definition of Core JML [48] in PVS by Leavens, Nau-
mann, and Rosenberg was the first work that formalized JML in a theorem
prover. As the title suggests, only the very core parts of JML are formal-
ized in this work. This mainly covers many aspects of behavioral subtyping.
While it covers these aspects in detail, the formalization doesn’t contain the
definition of any other part of JML. Thus, we cannot really compare the
work to our approach.

The LOOP tool by van den Berg, Jacobs, Poll et al. [79] generates PVS
or Isabelle[66] proof obligations for a given JML annotated Java program.
The tool automatically translates JML annotated Java programs into their
special purpose logic, which is described by Jacobs and Poll in [39] and ex-
tended in [80]. The LOOP tool is mainly used to prove non-trivial properties
of JavaCard [13] applications. As opposed to our approach, their logic is
designed to serve one specific purpose, that is, being used in the verifica-
tion tool. The logic is based on standard Hoare logic [37] and extends the
Hoare triples with JML specific constructs and can handle abrupt termina-
tion. The actual verification is done in PVS or Isabelle, using tailor-made
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proof strategies to simplify the process. The Logic used in the LOOP tool
covers modifies clauses that behave differently than assignable clauses.
It only guarantees that the values of all heap locations not mentioned in
the modifies clause are the same in the pre- and post-state. Means of data
abstraction like data groups are not handled in the LOOP tool.

Similar to the LOOP tool, the JIVE system [60] is an interactive veri-
fication environment that produces proof obligations in a Hoare style logic
for PVS for JML annotated JavaCard code. For this system, Darvas and
Müller define a formalized subset of JML in [27]. JIVE implements the uni-
verse type system [30, 63] to enable modular verification of invariants and
assignable clauses. However, their semantics of assignable clauses allows
to temporarily change the value of non-assignable locations, as long as the
original value is restored upon method termination. The issue is discussed
but not addressed, as the underlying logic does not provide a way of checking
such properties throughout method execution.

Related JML Tools ESC/Java2, the KeY approach, Krakatoa, and
JML’s runtime assertion checker are interesting tools that choose quite dif-
ferent approaches to JML based program verification. These projects do not
provide a formal semantics of JML but implement it as part of the tool in
form of translations from JML to proof obligations for some kind of prover
or as code instrumentations.

ESC/Java2 [32] is a powerful static checker for JML. It provides various
checks for a large subset of JML. The latest version is integrated in the Mo-
bius Program Verification Environment [62]. Its main goal is to find common
programming errors quickly without full functional verification. That is, it
neither needs or wants to be sound nor complete. The tool creates proof
obligations that may or may not be discharged by an automated theorem
prover like Simplify [29] or more recently Z3 [28]. ESC/Java2 is the only tool
that can deal with assignable clauses and dynamic data groups. However,
ESC/Java2 can only check an over-approximation of the semantics due to
the dynamic nature of data groups. The checker does not allow to call a
method whose assignable clause contains locations that are not assignable
in the current method. Therefore, it requires the user to exactly specify the
assignable clause of all methods in the program, as a left out assignable
clause is interpreted as assignable \everything.

The KeY program verification tool by Beckert, Hähnle, Schmitt et al.
[6, 2] does not rely on a general purpose theorem prover but translates JML
(or OCL) specifications into proof obligations in dynamic logic [72]. Dy-
namic logic features rules for each Java language construct. Verifying a
program means to symbolically execute the dynamic logic program by ap-
plying the correct rules, and to use induction for recursive calls and loops.
While the LOOP and similar tools provide a set of proof strategies (tactics)
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to simplify proofs in the underlying theorem prover, KeY introduces a con-
cept called taclets. A taclet is basically a sequent calculus rule equipped
with the information when to apply it. As JML constructs are not em-
bedded in the underlying dynamic logic, the generated proof obligations do
not directly resemble the JML specifications. For assignable clauses, the
translation from JML to dynamic logic introduces in the generated proof
obligations that state that all heap locations except for the ones mentioned
in the assignable clause stay unchanged when calling this method. This
corresponds to the modifies semantics that we explained for the LOOP
tool. To introduce a means of abstraction to assignable clauses, Schmitt,
Ulbrich, and Weiß introduce the concept of dynamic frames[44] in dynamic
logic [76] as an interesting alternative to dynamic data groups.

Krakatoa [55] is a verification tool for Java that generates proof obliga-
tions in Coq to be discharged manually using the Why front-end[34]. The
tool nicely relates the generated proof obligations by highlighting the part
of the JML specifications that led to the current proof obligation. The spec-
ification language of Krakatoa is similar to JML and contains an assigns
clause to specify a list of locations that can be assigned. However, it is not
possible to apply any kind of abstraction in the description of assignable lo-
cations. The translation of JML to proof obligations in Coq is not formally
defined.

Cheon’s runtime assertion checker for JML [14] instrument Java source
code to enforce the JML specifications. While they present the runtime
checks in detail and discuss their approach to check many JML constructs
thoroughly, they do not formally prove that the code instrumentations ac-
tually enforce the semantics, or even stronger that the runtime checks lead
to equivalent behavior to the semantics. Cheon’s runtime assertion checker
provides data structures to represent assignable clauses and data groups
but does not generate checks for it. Ye uses these data structures in his
thesis [83] to implement an assignable clause checker in the presence of
static datagroups only. The checks have a time overhead linear in the size
of the set of locations from the assignable clause, whereas our algorithm
for static datagroups works in constant time.

Work on Assignable Clauses There are two interesting projects that
specifically concentrate on JML’s assignable clause. The ChAsE tool that
performs static checks for assignable clauses and Spoto’s and Poll’s static
analysis to reason about assignable clauses.

The ChAsE tool by Cataño and Huisman [12] is a static analysis tool
for assignable clauses. The tool provides a simple means to discover com-
mon specification mistakes, but is not designed to be sound. It performs
a purely syntactic check on assignable clauses, ignores aliasing, and does
not support data groups. At the time when ChAsE was written, ESC/Java
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did not check assignable clauses yet, which means that ChAsE filled a big
gap in the static checking of JML specifications. Today, as described above,
ESC/Java2 checks assignable clauses, which makes the use of this tool
obsolete.

Spoto and Poll [78] formalized a trace semantics for a sound reasoning on
assignable clauses. Their approach takes aliasing into account, but data
groups are not supported. They conclude that JML’s assignable clause
may be unsuitable for a precise and correct static analysis, with which we
agree.

Language Formalizations in Theorem Provers Our work is the first
to formally define the semantics and runtime checks of assignable clauses
in a theorem prover, therefore, no other work is in the overlapping area of
the two research fields.

There exist many formalizations of (imperative) languages in theorem
provers. Beside the already discussed formalization of core JML in PVS, we
want to relate our work to von Oheimbs Java formalization in Isabelle/HOL
and to two textbook implementations of language formalizations in Coq.

Von Oheimb presents in [81] a formalization of Javalight, which is similar
to JavaCard, in Isabelle/HOL. They present the formalization of syntax,
type system and wellformedness properties and an operational semantics of
Javalight. As applications of their formalization, they show type safety of
the formalized type system and introduce an axiomatic semantics in form of
a Hoare logic and prove soundness and completeness w.r.t. the operational
semantics. Their work is in many aspects similar to our formalization. How-
ever, their aim is clearly meta-reasoning on the language, which results in
a quite smaller formalization, as they do not have to provide an implemen-
tation of the abstract data types to embed actual Java programs in the
theorem prover.

“Software Foundations” is a great book by Pierce et al. [71] entirely gen-
erated from Coq sources. It is a textbook suited for a one semester course
on formal semantics in Coq. If this book had been available at the time we
started our formalization of JML, we would have spent less effort to formal-
ize JML, as it covers many interesting aspects of language formalizations
in Coq in great detail. Beside many other topics, the book formalized a
very simple imperative language (IMP) with the usual language constructs,
that is, variable declarations, assignments and simple control structures. It
formalizes this simple language very carefully and puts a great emphasize on
how this task is done most elegantly in Coq, which is natural for a textbook
on Coq. In addition to the operational semantics of the language, a Hoare
style logic is developed to perform reasoning over IMP programs. Further-
more, the book introduces the formalization of interesting type systems in
Coq, including records and subtyping. By choosing a simple toy language,
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they avoid many problems that arose in our formalization due to the com-
plex language that we formalized. For instance the absence of circularly
dependent data types or no method calls. Similarly to our formalization,
the book makes use of notations in Coq to improve understandability of the
Coq source text.

The CompCert project [53] aims at creating a proven correct realistic
compiler for C by completely writing the compiler in Coq. The CompCert
C compiler is a nice showcase example of formalizing an imperative lan-
guage in a theorem prover. The project shows that it’s possible to develop
large scale formalizations in Coq. The language coverage is continuously
being increased. Since just recently, expressions can produce side effects,
which means that method calls are now correctly formalized as expressions
rather than as statements. While the whole project is quite impressive,
the language formalization of the chosen C subset is naturally simpler than
our formalization, as there is no dynamic method binding, inheritance, and
other object oriented constructs to formalize. Other simplifications to the
language is that their method bodies simply contain a statement (which
might be a compound statement), and not a block of statements as we for-
malize it. The difficulty with blocks and statements is that the two concepts
are mutually dependent, which is difficult to formalize in a theorem prover,
and blocks introduce a structure of local variable scopes.

1.6 Overview

In the remainder of this chapter, we present the conventions and preliminary
work. Chapter 2 presents our formalization of JML in Coq, which includes
a deep embedding of the Java and JML syntax and the definition of their
semantic meaning. Chapter 3 presents our algorithm to efficiently check
assignable clauses at runtime in the presence of dynamic data groups.
Chapter 4 presents a machine checkable refinement proof of our runtime
assertion checker presented in chapter 3, based on the JML formalization of
chapter 2. Chapter 5 concludes this thesis by summarizing our achievements,
reporting on the experiences and discussing the future work.

1.7 Conventions

In this section, we present the notation, font, and styles that we use to
identify different constructs throughout this thesis. We need to clearly dis-
tinguish between Coq program text, and JML source code as in many ex-
planations, we talk about both languages at the same time, and often, both
languages feature the same keywords and symbols.
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Coq Source Text

Listing 1.1 shows an example Coq text, that shows all syntax features that
we discuss in this paragraph. Whenever we refer to Coq source text, we
use this sans serif font. Coq constructs like Fixpoint or Prop are high-
lighted in bold, keywords like match or intros are highlighted. We use
(∗ this italic font ∗) for comments and ” this font” for notations. We use
this conventions not only in listings, but also in the text. Coq supports the
use of UTF-8 symbols. Thus, we use these symbols for better readability.
For example, we use the symbol ∀ instead of its ASCII counterpart forall.
We also use nice arrows, for example ⇒ instead of =>. In listings, we use
ellipsis points “. . . ” to indicate omitted code. The omitted code can be just
one line but may also be a huge portion of the formalization. If it helps
with understanding the code, we add a comment after the ellipsis points to
indicate what we omit.

Quite often, we replace certain Coq constructs with simpler mathemat-
ical notations that are intuitively understandable. For instance, we prefer
to write “elem ∈ stack” instead of the original version “In elem stack”. We
also overload such operators and use them for different data types. For ex-
ample, we use the operation ∈ not only for stacks, but also for lists, sets of
any type, and other collections. By defining the appropriate notations in
Coq, we can profit from a much easier to read Coq program text.

We use small numbers to refer to a certain line in a listing. Often, we
put that number in front of a whole sentence, if the sentence talks about a
construct mentioned on that line. The following paragraph is an example of
how we usually refer to lines in listings:

Listing 1.1 shows the implementation of the recursive function
11 truncate. The function has two parameters: n, which is the target
size of the stack, and s, which is the stack that should be truncated
to this size. 12 The function performs a pattern matching on the
result of nat compare n |s | . 13-17 If n is smaller than the size of s, 15

we remove the top of the stack and call truncate on the new stack.
It can never occur that we have an empty stack at hand in this
case, but nevertheless, 16 we need to define the behavior, as pattern
matchings in Coq always need to be complete. 18 If n is not smaller
than the size of the stack, the function doesn’t change s.

1 Require Import List.
2

3 Section Stack.
4

5 Variable A: Type.
6 Definition stack := list .
7
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8 Notation ”e ∈ list” := (In e list) (at level 30).
9 Notation ”| s |” := (length s ).

10

11 Fixpoint truncate (n : nat) (s : stack A) : stack A :=
12 match nat compare n |s| with
13 | Lt ⇒
14 match s with
15 | h :: t ⇒ truncate n t
16 | ⇒ nil
17 end
18 | ⇒ s
19 end.
20

21 . . . (∗ Other definitions omitted ∗)
22

23 (∗∗ The size of a stack that has been truncated is exactly n. ∗)
24 Lemma truncate 1:
25 ∀ n (s : stack A),
26 n ≤ | s | →
27 n = |truncate n s |.
28 Proof. intros . unfold truncate in ` ∗. . . . Qed.
29

30 . . . (∗ Other proofs omitted ∗)

Listing 1.1: An example Coq program text

Sometimes, we refer to Coq text that isn’t actually part of our formal-
ization, normally, to show an alternative way of defining a construct, wrong
statements, or possible applications of the formalization. In this case, we
leave away the border and the background of the listing:

(∗ Use this axiom if you’re stuck ∗)
Axiom MagicalProofSimplifier:
∀ (x : nat),

x = 42.

Coq Proofs

We discuss proofs mostly on a conceptual level, all details can be checked in
the Coq sources. To describe a proof, we often show simplified intermediate
steps of a proof. Listing 1.2 shows a proof excerpt from lemma truncate 1 in
listing 1.1. Above the line, we show the 1-9 relevant hypotheses to prove the
10 goal below the line. Each hypothesis gets a name, in this case “H” and
“H0”. As with Coq text, we perform some additional prettifying, to make
the goals and hypotheses more readable.
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1 H : n ≤ |a :: s |
2 H0 : n <
3 S
4 (( fix length ( l : list A) : nat :=
5 match l with
6 | nil ⇒ 0
7 | :: l ’ ⇒ S | l ’|
8 end) s)
9

10 n ≤ | s |

Listing 1.2: Proof excerpt

JML Source Code

Listing 1.3 shows an example JML source code, which shows all relevant syn-
tax constructs. We always use typewriter font for Java and JML code.
Java-keywords like class or this are highlighted in bold, JML-keywords
like requires or \result are highlighted. We use /* italic font */ for
comments that are not JML contracts. Please note that although JML
contracts are always within Java comments, we do not format them as com-
ments. We use this conventions not only in listings, but also in the text.
Again, we use ellipsis points “. . . ” to indicate omitted code in listings.

We will use this code to explain certain JML constructs in the next
section. Thus, the example is slightly big.

1 class Node {

2 JMLDataGroup struct;

3 JMLDataGroup footprint;

4

5 private Node left; //@ in struct;

6 /*@ maps left.struct \into struct; */

7 /*@ maps left.footprint \into footprint; */

8

9 private Node right; //@ in struct;

10 /*@ maps right.struct \into struct; */

11 /*@ maps right.footprint \into footprint; */

12

13 Item item;

14 /*@ maps item.footprint \into footprint; */

15

16 //@ assignable this.item;

17 Node(Item i) { item = i; }
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18

19 /*@ public normal_behavior

20 @ {|

21 @ requires ! this.contains(i);

22 @ assignable this.struct;

23 @ also

24 @ requires this.contains(i);

25 @ assignable \nothing;

26 @ |}

27 @ ensures this.contains(i);

28 @*/

29 void insert (Item i) { . . . }

30

31 boolean /*@ pure */ contains(Item i) { . . . }

32

33 private void balance() { . . . }

34

35 . . . // Other methods omitted.

36 }

Listing 1.3: Excerpt of class Node.

From time to time, when it seems fit, we introduce some Coq concepts
that should help to read and understand the Coq text in this thesis in form
of a Coq tutorial:

A made-to-measure Coq Tutorial

Part 1 Conventions

We mark these tutorials with the icon you can see at the side and use
slanted font throughout the tutorial. The tutorials do not introduce new
concepts and ideas, but just concentrate on explaining how something can
be done in Coq.

Proof. In proofs, we use normal upright font, even within a tutorial.

A reader with a good background in Coq can safely ignore these tutorials
and continue to read after the following line that marks the end of the
tutorial:
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1.8 Preliminaries

In this section, we provide a short introduction of the theorem prover Coq
and interesting aspects of the specification language JML. In both cases,
the introduction is tailored to understand the subsequent chapters. For a
more in-depth introduction to Coq, we refer to the excellent Coq Tutorial
by Giménez and Castéran [35] and the introduction to JML by Leavens,
Backer, and Ruby [46].

1.8.1 Coq

Coq is an interactive theorem prover that implements a calculus of inductive
constructions, which is the original calculus of constructions [20] with the
extension of inductive definitions [21, 35]. We can define a formalism in Coq
using functional programming constructs as well as inductive definitions and
prove properties of the formalization by providing a proof script which can
be efficiently executed by Coq in order to check the proof.

Inductive Definitions

Inductive definitions have a name and a type and zero or more rules that
define the inductive type. Each rule has an unique name called constructor.
While it is not possible to have a recursive occurrence of the inductive type in
a non positive position, Coq does not prevent the user from writing inductive
definitions that do not reduce the size of the term.

Example. The following inductive definition is not allowed, as its possible
to prove False with such a definition, see [35, section 3.4.1]:

Inductive paradox :=
| rule : ¬ paradox → paradox.

However the following definition is fine, even though useless, as applying
the constructor rule on the term “ useless ” leaves us again with the premise
useless , we didn’t gain anything by applying the only constructor of the
inductive type.

Inductive useless :=
| rule : useless → useless .

Let’s look at an inductive definition of the operator≤ on natural numbers
in Coq:

Inductive le (n : nat) : nat → Prop :=
| le n : le n n
| le S : ∀ m : nat, le n m → le n (S m).



1.8. PRELIMINARIES 19

The (mutual) inductive definition takes one parameter n and the yields
a term of type nat → Prop which is a function from peano numbers to the
type of logical propositions in Coq. The definition consists of two rules.
The first rule, le n , states that any number n is smaller or equal than itself.
The second rule, le S , states that for any number m, if n ≤m holds then
n ≤m+1 holds. The inductive definition is well-founded because of the first
rule and covers all possible pairs of n and m because of the second rule.

The Curry-Howard Isomorphism

According to the Curry-Howard isomorphism [77], which applies for the
calculus of constructions, a proof of a proposition in Coq is a function whose
type is the proposition itself.

Because of the way the Curry-Howard isomorphism is implemented in
Coq, there is no syntactic distinction between types and terms. A type is
always a term of another type. In the following example, we show this on the
simple type nat of peano numbers. Coq features three built-in basic types,
Set, Prop, and Type, which we will quickly introduce in the examples. We
call (only) these types sorts.

Example. The type of the term “3” is nat, which stands for natural num-
bers. The term “nat” is of sort Set, which is the type of other language
specification constructs like list , or bool. Finally, “Set” is of sort Type.

The same applies to propositions. For propositions, the type–term cor-
respondence is much less obvious, but much more interesting. A proposition
is of course a term of sort Prop, but also a type itself. If we can prove a
proposition, the prove is a term of that type and the proposition holds. If
we cannot prove it, the proposition may be a type that is not inhabited;
there might not exists a term of such a type. In this case, we do not know
if the proposition holds or not. If we can prove the negation of the propo-
sition, we know that the proposition is a non-inhabited type. We show the
Curry-Howard isomorphism with a slightly larger example.

Example. Let’s look at the term “0 ≤2”. Its sort is Prop, which is the type
of all logical propositions. The sort of “Prop” is again Type. Interestingly,
the term “0≤2” is also a type itself. If and only if we find a term of this
type, the proposition holds. So how does a term look like whose type is
0≤2?

The term “0≤2” is a notation for “ le 0 2”. If we look at the inductive
definition of le above, it becomes clear how to build a term of this type: we
start with the constructor le n with parameter n set to 0, that is, “ le n 0”.
This term has type 0 ≤0. We can apply the term “ le S 0 0”, which has
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type 0 ≤0 → 0 ≤1. Thus, the resulting type is 0 ≤1 and we can apply
le S again to get 0 ≤2: “ le S 0 1 ( le S 0 0 ( le n 0))” : 0 ≤2.

Of course, we do not have to build these terms manually to prove a
proposition, but we can use the proof language of Coq to create these terms:

The following excerpt defines a lemma that states the proposition in
question. The proof can be performed by the auto tactic, which tries to
apply constructors of the involved inductive definitions up to a certain times.

Lemma zero le four: 0 ≤ 2.
Proof. auto. Qed.

We were able to prove the proposition, thus there needs to exist a term
of this type. We can actually look at the term built by the proof by printing
out the lemma:

Print zero le four .

ZeroLEFour = le S 0 1 (le S 0 0 ( le n 0))
: 0 ≤2

If we generalize our term to “∀ n : nat , 0 ≤n”, we perform a proof
by induction on n and the resulting proof obligations can be discharged
automatically again.

Lemma zero le n : ∀ n : nat , 0 ≤n.
Proof. induction n;auto. Qed.

The term generated by the proof is actually a program that computes
the deviation sequence shown above for any input n. The function nat ind
is the inductive principle of type nat, which takes 4 the proposition to prove,
5 the proof of the base case whose type is 0 ≤0 as we have seen above, 6 the
proof of the step case whose type is ∀ n0 : nat, 0 ≤n0 → 0 ≤S n0, and of
course n as arguments.

1 zero le n =
2 fun n : nat ⇒
3 nat ind
4 (fun n0 : nat ⇒ 0 ≤n0)
5 ( le n 0)
6 (fun (n0 : nat) (IHn : 0 ≤n0) ⇒ le S 0 n0 IHn)
7 n

Below, we show the definition of nat ind. It is a recursive function (3

fix F) that performs a pattern matching on the argument n. 5 If it is 0, the
supplied proof of the base case is applied, 6 otherwise the proof of the step
case is applied and F is called recursively with n0, which is n−1.

1 nat ind =
2 fun (P : nat → Prop) (f : P 0) (f0 : ∀ n : nat, P n → P (S n)) ⇒
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3 fix F (n : nat) : P n :=
4 match n with
5 | 0 ⇒ f
6 | S n0 ⇒ f0 n0 (F n0)
7 end

Short Introduction to Other Constructs

Parameters, Variables, Axioms, and Hypotheses These four con-
structs declare an identifier of some term (type). If the term is of sort Prop,
it makes more sense to use Axiom or Hypothesis, otherwise Parameter or
Variable are appropriate, depending on the scope in which the identifier is
declared. Semantically, the four constructs are identical.

Example. The first two identifiers are declared reasonably, whereas the latter
two are in principle correct but should use a different construct for better
readability.

(∗ good examples ∗)
Parameter n : nat.
Hypothesis H : answer = 42.
(∗ type−correct but bad examples ∗)
Variable even or odd : ∀ n, even n ∨ odd n.
Axiom b : bool.

Mind that with any of these declarations, we can introduce propositions
in the proof environment that are not inhabited and thus lead to inconsis-
tency.

Definitions and Fixpoints The constructs Definition and Fixpoint are
used to define non-recursive and recursive functions, respectively. Coq en-
forces that recursive functions are defined such that one parameter of the
function always structurally decreases, which ensures termination on a syn-
tactic level.

Example. The following recursive function is structurally decreasing on the
first argument as we remove the head of the list upon each recursive call.
Therefore, it is syntactically ensured that the function terminates eventually.
It computes the sum of all numbers in a list. The function performs a
syntactic pattern matching on parameter l in order to either deal with the
empty list or to split the list into head and tail.

Fixpoint sum (l : list nat) : nat :=
match l with
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| nil ⇒ 0
| h :: t ⇒ h + sum t
end.

Functions in Coq are always total. For every possible term in the domain,
the function needs to define a term in the range of the function. However,
we can simulate partial functions by yielding a term of type option A, where
A is the desired return type of the function. The option type has two con-
structors, None and Some A.

Example. In this example, we define a function that returns the maximum
of a list if the list is not empty. The function relies on a standard library
function 7 max: nat → nat → nat that yields the bigger of the two provided
numbers. If 3 the list is empty, the function yields None with which we
indicate that the function is not defined in this case. If 4 the list is not
empty, we call Max on the tail and perform a pattern matching on that
result. If 6 the tail is empty and thus Max t yielded None, the maximum
is obviously the value of the head. Otherwise, 7 the call to Max t yielded a
number n in which case the function yields the maximum of h and n.

1 Fixpoint Max(l : list nat) : option nat :=
2 match l with
3 | nil ⇒ None
4 | h :: t ⇒
5 match Max t with
6 | None ⇒Some h
7 | Some n ⇒Some (max h n)
8 end
9 end.

We conclude the preliminary chapter on Coq at this point. Further
information about more concrete aspects of Coq are available in the Coq
tutorials that are spread over the chapters 2 and 4.

1.8.2 JML

In this section, we provide a short introduction to the aspects of JML that
are relevant for this thesis and a more in-depth discussion of method specifi-
cations and the JML constructs needed to specify method frame conditions.

Overview

JML provides a great variety of means to specify many different aspects
of Java programs. The most common constructs are the requires and
ensures clauses to specify the pre- and post-conditions of a method, the



1.8. PRELIMINARIES 23

signals clause to specify exceptional behavior of a method, object and
static invariants that specify the consistent state of an object and a type,
respectively, as well as the assignable clause to specify the frame condition
of a method.

Invariants have to hold in all visible states. In short, the visible state
semantics requires all invariants to hold in the pre- and post-state of meth-
ods, with certain exceptions. For instance, the invariants of an object do
not need to hold (and can not be assumed to hold) in the pre-state of a
constructor of that object. The visible state semantics allows to break any
invariant between visible states, as long as they are re-established in the
upcoming visible state. We refer to the section 8.2 of the reference manual
[49] for a detailed discussion.

Beside type- and method-specifications, JML features the annotation
statements assert and assume to specify local assertions and assumptions
in method bodies and the maintaining clauses to specify loop invariants.
All these clauses and statements contain an expression that evaluates to a
boolean value.

In order to express interesting properties in specifications, JML adds
primary expressions to the side effect free subset of Java expressions. The
most relevant JML primaries are the \old(expr) expression, which can oc-
cur in annotation statements and specification clauses that are evaluated in
the post-state of the method and which evaluates the supplied expression
expr in the pre-state of the method, the \result expression, which can oc-
cur in ensures clauses to refer to the value returned by the method, the
\fresh(l1, . . . , ln) expression, which asserts that the supplied locations are
fresh, that is, their object have not been allocated in the pre-state of the
current method.

Beside these common constructs, JML features a large number of con-
structs that are more specialized but at the same time less supported by
tools. This is why JML defines language levels ‘0’ to ‘3’, as well as ‘C’ for
concurrency related constructs and ‘X’ for experimental features. Level ‘0’
constructs should be supported by all tools. The higher the number of the
level, the less common the constructs are and thus less support is available
[49, section 2.9].

Method Specifications

Method specifications like the requires, ensures, signals, as well as the
assignable clauses are organized in specification cases. The requires

clause(s) defines in which situations the specification case applies. A method
can have an arbitrary number of specification cases and cases from over-
written methods are inherited. A specification case can be lightweight or
heavyweight. The specification of the constructor 17 Node in listing 1.3 shows
an example of a lightweight specification case. It only contains a single
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assignable clause, everything else is omitted. The specification is visible
wherever the method is visible. The method 29 insert contains a heavy-
weight specification case. The difference is that heavyweight specification
cases contain a visibility modifier and they are marked as behavior, nor-
mal behavior, or exceptional behavior. Normal behavior cases implicitly add
the clause “signals (java.lang.Exception) false”, which means that
the method must not terminate exceptionally. Analogously, exceptional be-
havior cases implicitly add the clause “ensures false”, which means that
the method must not terminate normally if the case applies. Furthermore,
heavyweight specification cases can contain nested specification cases. In
the specification case of insert, we see one heavyweight specification case
that contains two nested specification cases and an ensures clause.

All of the mentioned forms of specification cases can be syntactically
desugared into flat (non-nested) behavior specification cases. We want to
show this intuitively with the specification of insert.

Example. Let’s first understand exactly what the specification of method
insert expresses. 21,22 If the method contains yields false, that is, if
the item i is not contained in the tree with the current node as root, then
this.struct is assignable (we will see later what this means exactly). 24,25 if
item i is already contained in the tree, nothing is assignable in the method.
In both cases 27, we want to ensure that the item i is contained in the tree
in the post-state of the method. We also know that the method must not
terminate exceptionally, as the normal behavior specification always applies,
because either of the two requires clauses holds.

By flattening the nested cases and adding the signals clauses as described
above, we can desugar the specification of insert into the following speci-
fication cases:

/*@ public behavior

@ requires ! this.contains(i);

@ assignable this.struct;

@ ensures this.contains(i);

@ signals (java.lang.Exception) false;

@ also

@ public behavior

@ requires this.contains(i);

@ assignable \nothing;

@ ensures this.contains(i);

@ signals (java.lang.Exception) false;

@*/
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Frame Conditions

We can specify frame conditions in JML using the assignable clause and
data groups. We introduce both concepts in detail as we concentrate on
frame conditions in the chapters 3 and 4.

Before we present the two concepts, we need to agree on the following
notation that we will use in this section and in chapter 3:

• At runtime, a field of an object is called a location. For convenience,
we define a function obj (·) that yields the object of a location. For
example, obj (o.f ) yields o.

• We introduce the binary relation m1 ↪→ m2 which states that method
m2 is called by m1 at runtime. We also introduce the reflexive transitive
closure: m1 ↪→∗ m2, meaning, m1 is m2 or m1 is a direct or transitive
caller of m2.

Assignable Clauses We can specify the frame of a method using the
clause assignable l1,. . .,ln;, where li has the form o.f to refer to a field of
an object. JML provides several other forms to specify assignable locations
which we will introduce in section 2.4.1, but it’s sufficient to stick to this
one form to explain the concept.

The semantics of an assignable clauses is defined as follows. The fields
mentioned in the clause are evaluated to a set of locations. This evaluation is
performed in the pre-state of the method, that is, upon method invocation.
The assignable clause only restricts assignment to locations that already
existed in the pre-state of the method.

Let Am be the set of locations from the assignable clause of method
m. Furthermore, let FC

m be the set of locations that have been freshly
allocated during the execution of m. The little triangle C indicates that
this set contains the locations that have been freshly allocated in m and all
methods directly or transitively called by m.

Let’s assume a method m that is called by m′ (i.e., m′ ↪→ m). According
to the JML semantics, a location is assignable in m if it is either freshly
allocated or it is in the set of locations evaluated from the assignable

clause of m and it was already assignable in m′. We can write this condition
as follows:

Aeffective
m = FC

m ∪ (Am ∩ Aeffective

m′ ).

We call Aeffective
m the set of locations that are effectively assignable in m.

An important consequence of JML’s semantics is that it is permitted to call a
method whose assignable clause contains locations that are not assignable
in the caller, as the set of effectively assignable locations contains the inter-
section of the assignable locations of the two methods.
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Example. Let’s assume that we are calling the method balance (see 33

listing 1.3) in method insert. The method balance does not contain a
specification, as it is intended for internal use only and the programmer
did not bother to specify it. We treat an omitted assignable clause as
“assignable \everything”. That is, the method can assign to any location
on the heap.

Even though this assignable clause clearly allows assignment to locations
that are not assignable in insert, the call is permitted. However, during
the execution of the method balance, only the locations specified in the
assignable clause of insert can be updated.

Data Groups Data groups are sets of locations. Every field of a program
defines its own data group that initially contains only the field itself.

If we are not interested in the value of the field but only its data group,
JML provides a special type JMLDataGroup to indicate that the field just
serves as a declaration of the corresponding data group.

To add all locations in the data group of a location o.f to a data group
of the same object o, JML uses the in clause at the field declaration.

Example. In the class Node in listing 1.3, the two fields left and right are
declared to be in the data group of the field struct. We declare struct of
type JMLDataGroup, since we are interested in its data group, but not its
value. By this declaration, the data group of field struct contains the three
locations this.struct, this.left, and this.right.

To add all locations in the data group of a location o.f to a data group
of another object, JML uses the maps . . . \into clause. Adding locations
from other objects makes a data group dynamic; the set of locations in the
data group now depends on the program state.

Example. For instance in class Node, we add the data groups left.struct

and right.struct to the data group of field struct. The fields left and
right are called pivot fields, as an update of one of these fields changes
the contents of data group struct. Since left.struct and right.struct

also have a data group themselves, we essentially nest data groups in our
example.

Upon evaluation of an assignable clause in method m, the semantics
states that each data group mentioned in the assignable clause is evaluated
to a set of locations. We call this process unfolding of the data group. Data
groups that contain nested data groups do not evaluate to nested sets of
locations, but result in one single set of locations which is added to the set
Am.
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Figure 1.2: A set of Node objects. Shapes depict the struct data groups.
Objects within the shape contain fields that the data group contains. Arrows
depict references. Left: The situation in the pre-state. Right: The state
after assigning b to a.left.

Example. Fig. 1.2 shows the dynamic data group of a.struct in light gray.
One can see that a.struct also contains all locations that are mentioned
in nested data groups, depicted by a darker gray. The left picture shows
the initial state where the pivot field a.left points to node c, the right
picture depicts the data group of a.struct after executing the statement
a.left = b. White shapes depict data groups that are not in a.struct.
This example illustrates that dynamic data groups may contain different
locations in different program states.
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Chapter 2

A JML Formalization in Coq

In this chapter, we introduce a deep embedding of a large subset of JML in
Coq. That is, we define the syntax of all JML language constructs as data
types in Coq and provide a semantic meaning for the interesting aspects of
JML. In order to describe the semantics of these constructs, we also provide
an embedding of the domain for JML annotated Java source code, that is,
we formalize an execution state, based on a deterministic heap model for
reference types and a model for Java primitive types.

Overview. Section 2.1 introduces the approach that we have chosen to for-
malize JML in Coq. Section 2.2 presents an architectural overview of the
formalization and section 2.3 describes the language subset that we for-
malized. The following three sections present the highlights of the actual
formalization in Coq: section 2.4 introduces the data types in Coq that
define the syntax elements of JML and section 2.5 presents the domain on
which the semantics presented in 2.6 operates.

2.1 Approach

As discussed in the introduction, one of the goals of our work is to provide
a formalization that has a wide variety of applications. We achieve this by
separating the semantics of JML specifications from the operational seman-
tics, and providing a direct interface to JML annotations. This gives us the
freedom to use the formalization not only as part of a verification environ-
ment, but also in other applications, for instance to prove properties of the
JML language itself, or, as we do in chapter 4, to formalize and prove the
correctness of a JML tool such as the runtime assertion checker.

In order to properly separate these two concerns (the semantics of JML
constructs and the operational semantics), we distinguish between the data
structures in the program state used by Java and the data structures added
for JML. The Java data structures, such as the current heap or local vari-
ables, are visible to an application of the JML semantics, whereas the JML

29
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data structures, such as the pre-heap or the set of assignable locations, are
additions to the program state that are only visible within the definition of
the JML semantics.

The approach of providing a direct interface to JML specifications in-
stead of “baking” the JML semantics into a verification environment comes
at a price: we cannot enforce that the interface is used correctly. For
instance, a verification environment could request the precondition of a
method but then use it as postcondition. Therefore, it is important to
provide a clear and simple interface together with a precise description of
how to use it. The interface contains two parts to access JML specifica-
tions: an annotation table and a frame conditions interface. The following
two paragraphs introduce both parts.

Most JML constructs express a property that holds at a given point
in the program. For instance, an ensures clause describes a proposition
that holds upon normal termination of a method, in its post-state. Some
constructs are associated with several points in the program, for instance
object invariants, which hold at all visible states of a program execution.
For these constructs, our interface to JML annotations provides a so called
annotation table. For any program point, this table provides access to a
proposition that combines the properties stemming from all JML constructs
associated with this program point.

There are a few JML constructs whose semantics cannot be described
in terms of properties at certain program points, but which rather describe
properties that need to be valid throughout execution of a program. The
most prominent such construct is the assignable clause, which defines the
heap locations that may be updated during the execution of a method.
Other examples are the accessible clause, which declares the read effects
of a method, or the working_space clause, which declares the maximum
memory consumption for a method (however, these two constructs are very
uncommon). In order to faithfully define the semantics of such constructs,
we need to identify the situations that either influence the property defined
by the construct, or may break it. For these situations, our interface needs
to provide functions that either update some JML data structures in the
program state that reflect the property, or express a predicate that needs to
hold in the current situation. The assignable clause is the only construct
supported by our formalization that requires such special treatment. The
frame conditions interface contains all functions that are necessary to deal
with all aspects of assignable clauses.

In section 2.6.1, we present the JML specifications interface in detail,
including a precise description of the situations in which the individual func-
tions from the interface need to be applied.



2.2. ARCHITECTURE 31

2.2 Architecture

Figure 2.1 gives an overview of our JML formalization in Coq. The different
parts of the formalization are depicted by boxes. Usually, such a box cor-
responds to one Module in Coq. The figure also depicts the dependencies
between modules: modules can use functionality from modules below them.
For instance, JML Program State depends on JML Semantics Interface, that
itself indirectly depends on Java Program State, and so JML Program State
has access to the Java Program State.

Helpers

Basic JML Syntax

Notations

Syntactic Rewriting

Implementation

Syntactic Rewritings

Full JML Syntax

Full JML Syntax

Implementation

JML Semantics Interface

Java

Primitive Types

Java

Heap Model

Java Program State

Domain Functions

JML Semantics

Definition

Applications

- Formal Operational Semantics of JML

- Formalization of Runtime Assertion Checker

- Verification Condition Generator

- ...

JML Program State

Figure 2.1: Overview of the JML formalization. Gray boxes depict imple-
mented (constructively defined) modules as boxes, whereas white boxes de-
pict modules that contain axiomatized definitions (see section 2.2.2). Mod-
ules with grayed out text are not discussed in this thesis, but available in
the Coq formalization.

Syntax We split the definition of the JML syntax into two parts. The
Basic JML Syntax defines a syntactic subset, to which the Full JML Syntax
can be reduced by applying Syntactic Rewritings. In this thesis, we present
the basic syntax in section 2.4 and briefly explain the rewriting steps in
section 2.4.2, but omit the definition of the Full JML Syntax. We use ax-
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iomatized abstract data types to define the syntax constructs. The upside
of this decision is that the data types are relatively small and readable.
Parameters declare the function signatures and Axioms describe the de-
sired behavior. The downside is that the axioms could potentially lead to
inconsistencies, furthermore, we cannot represent a concrete instance of a
JML program without actually implementing the axiomatized data types.
Therefore, our formalization also provides an implementation of the axiom-
atized JML syntax constructs: we define functions that match the signature
and prove the axiomatized properties as lemmas. However, this part of our
implementation is not important to understand the formalization of JML
and we completely omit it in this thesis.

Domain With the formalization of Java Primitive Types as well as the
Java Heap Model, we define the domain of the JML semantics. In Domain
Functions, we define a set of functions that help to operate on these con-
structs, for example functions for casting primitive types, or functions to
determine if a value has the right type to be assigned to a field. As part of
the domain, we also define a data type for the Java Program State so that
it can be extended with JML constructs later on.

JML Semantics As explained in the last section, the JML Semantics
Interface provides access to JML specifications. Beside the already-men-
tioned signatures of the annotation table and the frame condition interface,
it defines the signatures of functions to create an initial program state, and
a new frame for a given method. The JML Semantics Definition provides
an implementation of the interface that reflects the JML Semantics as de-
scribed in [49]. The semantics operates on the JML Program State, which is
an extension of the Java Program State. Section 2.6.2 presents the definition
of the JML semantics and the necessary additions to the program state.

Figure 2.1 suggests that there could also be different implementations
of the interface. As a matter of fact, in the process of defining a correct
runtime assertion checker for assignable clauses, we will add different imple-
mentations of the same interface.

2.2.1 Basis of the Formalization

We base our development on the Bicolano Java bytecode formalization [70],
adapted to Java source code. Many aspects of the formalization do not
differ between source code and bytecode. The Java Heap Model and the
formalization of numbers in Java Primitive Types originate in Bicolano. We
also reuse the Bicolano formalization of Java syntax down to method bodies,
with minor changes to integrate the JML extensions into the language. On
several occasions, we stick to the Bicolano formalization, even when there is
another way of specifying a construct.
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The reasons for this are two-fold. From a software engineering point
of view, reusing a component comes with many advantages. We can rely
on a carefully written formalization of the Java language and concentrate
on the formalization of JML, instead of spending effort on defining basic
Java language features. Furthermore, common theorem prover development
environments do not offer any refactoring assistance. On the other hand,
keeping our formalization close to Bicolano minimizes the effort of relat-
ing the two worlds. For instance, it facilitates the formalization a sound
translation from JML to its bytecode counterpart, BML [11, 16] as another
application of the JML semantics.

2.2.2 Axiomatizations in Coq

As depicted in the figure by the white boxes, we allow to use axiomatized
definitions in several parts of the formalization. However, axiomatizations
comes with the risk of introducing inconsistencies into the formalization.
Therefore, we need to identify the situations in which an axiomatization
can be considered to be safe:

• The axiomatization describes a model that is backed up by an im-
plementation of the model in another module. That is, we show the
consistency of the axiomatized model by providing a concrete instan-
tiation. For example, the Full JML Syntax Implementation provides
a concrete implementation of the abstract data types axiomatized in
Basic JML Syntax.

• The axiomatization describes the behavior of a function as a predicate,
and is accompanied by a proof that for all possible input parameters
of the function in question, the predicate holds for exactly one result
value. We will discuss axiomatized functions in detail in tutorial 11
later on.

• The consistency of the axiomatization is shown as a result of related
work. For example, we use an axiomatized heap model which has been
proven to be consistent in [73]

• The axiomatization is straight-forward and not a central part of the
formalization of JML. A good example is the axiomatized dictionary
presented in section 2.5.2. In such cases, we do not to prove the
consistency of the formalization.

2.3 Language Coverage

Table 2.1 gives an overview of the scope of our project. We split the cov-
erage into syntax and semantics definitions. Often, a construct is defined
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on a syntactic level without a semantic meaning. That is, we define the
abstract data type to represent a syntactic construct, but we do not provide
a semantic interpretation for the given construct.

Java Version Although quite some effort has been spent in the JML
community to port JML from Java 1.4 to Java 5 and 6, we decided to stick
to Java 1.4 constructs only. The main reason is that the JML constructs
for Java 1.4 are pretty stable, whereas JML support for newer constructs,
such as generics or enums, is still a moving target. Most notably, none of
these new constructs are discussed in the JML reference manual, which is
the basis for our formalization.

Syntax Coverage We cover most syntax constructs of Java and JML.
However, we completely ignore certain aspects of the language. Firstly, we
do not add a formalization of floating point numbers and big integers to
Bicolano, as we see these issues as a mere distraction for our work. Sec-
ondly, we do not reason about concurrency as part of this work. The other
constructs that we omit in this work are either not suitable for a formal-
ization in Coq, not well defined at the time when this formalization was
started (such as the safe math extension) or were left away to simplify the
formalization without making the result significantly less interesting.

Semantics Coverage We aim at defining the semantics for all level 0
JML constructs and interesting level 1 concepts. On level 1, we focus on the
most useful constructs as well as constructs that lead to interesting aspects
of the formalization. Among others, we concentrate on dynamic data groups
(which are crucial to facilitate the definition of non-trivial frame properties),
the modifier pure, and generalized quantifiers, which are satisfactory use-
cases for defining non trivial JML expressions formally.

It is not our goal to come up with as complete as possible an operational
semantics for Java. This would blow up the scope of this project. We define
a subset that is necessary to perform the correctness proof of our runtime
assertion checker for assignable clauses, see chapter 4.

2.4 Definition of JML Syntax Constructs

In this section we give an overview of the JML syntax definition. We high-
light only the interesting aspects and parts that we need in the following
chapters, and leave out many constructs that look similar to what we’ve
already shown.

We aim to facilitate the representation of any well-formed program in
our formalization. However, we do not impede that an ill-formed program
can be represented. For instance, it’s possible to represent the assignment
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Constructs Syntax Coverage Semantics Coverage

Java 1.4 Full support except for
long integers, string lit-
erals, floating point num-
bers, concurrency, and in-
ner classes.

Operational semantics for
the most interesting con-
structs, including method
calls, field updates, and
object creation.

JML Level 0 Full support Full support

JML Level 1 Full support except for
the constructs
\implies_that,
\for_example,
set-comprehension, and
safe math extensions.

Support for interesting
constructs such as the
pure modifier, dynamic
data groups, and general-
ized quantifiers.

JML Level 2 Full support except for
safe math extensions.

–

JML Level 3 Full support. –
JML Level C Full support except for the

lockset ordering operators.
–

JML Level X The \readonly modifier. –

Table 2.1: Coverage of our formalization

5 = a; in our data types. For certain applications of the formalization, one
might need to add a well-formedness predicate that restricts the inputs to
only valid and type correct programs. We believe that it is beneficial for the
formalization to separate the two concerns, as the data types that represent
JML constructs become much simpler.

Outline. In the so-called “Basic JML Syntax” presented in subsection
2.4.1, we define JML constructs in their simplest form. In subsection 2.4.2,
we briefly describe a syntactic rewriting in Coq that desugars JML con-
structs into this basic form. Subsection 2.4.3 introduces additional rules for
the Coq parser: so called Notations to dramatically improve the readability
of embedded JML constructs in Coq.

Before we go ahead, we have a look at the different possibilities there
are for defining the syntax of a language in Coq.

A made-to-measure Coq Tutorial

Part 2 Inductive and Abstract Data Types

To define syntax constructs in Coq, we either introduce inductive or
abstract data types, depending on their purpose and complexity.
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Listing 2.1 shows an example of an inductive definition that merely
describes an enumeration. The data type Visibility is of sort Set and
contains the elements Package, Protected, Private , Public, Spec Public, and
Spec Protected. We can perform pattern matching on the inductive data
type. However, Coq doesn’t allow partial pattern matching, all cases need
to be addressed. This ensures that we need to deal with all possibilities
for a given type. However, it’s possible to apply a single action to several
matchings, and to use the wildcard “ ” that matches with all constructors
that have not been addressed already. The definition isJMLVisibility shows
both concepts in action.

1 Inductive Visibility : Set :=
2 | Package | Protected | Private | Public
3 | Spec Public | Spec Protected.
4

5 Definition isJMLVisibility (v : Visibility ) : bool :=
6 match v with
7 | Spec Public | Spec Protected ⇒ true
8 | ⇒ false
9 end.

Listing 2.1: An example for a simple inductive definition and pattern match-
ing on it

We also use inductive definitions to define simple record types. In listing
2.2, we define the type Literal of sort Set to express integer and boolean
Java literals, using the predefined sorts bool and Z for booleans and integer
numbers, respectively. We can use pattern matching to extract the data
from the record type as shown in definition Literal2Z that yields 0 for false ,
1 for true, and z for the integer literal z.

1 Inductive Literal : Set :=
2 | BoolLiteral (b : bool)
3 | IntLiteral (z : Z).
4

5 Definition Literal2Z ( l : Literal ) : Z :=
6 match l with
7 | BoolLiteral b ⇒ if b then 1 else 0
8 | IntLiteral z ⇒ z
9 end.

Listing 2.2: An example for a inductive definition carrying additional data

For more complex data types, we choose to define abstract data types
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using the Coq module system. We introduce a Module Type that features a
Parameter t, which will be the type of our abstract data type and functions
that operate on t. The example in listing 2.3 shows a possible definition
of local variable signatures. In the module type VARSIG TYPE We declare
parameter t of sort Type to be the type for variable signatures. The module
type declares two functions over t: the function name, which yields the
name of the parameter, the function type, which yields the static type of
the parameter, and an axiom eq dec that states equality to be decidable for
type t.

To use the abstract data type, we can implement a module that adheres
to the signature of the module type VARSIG TYPE. To achieve this, we
need to define (we also say “implement”) type t as well as the two functions
name and type. We also need to prove the proposition eq dec as a lemma.
Alternatively, 12 we can just declare such a module without providing a
definition. However, that way we do not get any guarantees that such a
module can really be constructed and that the axioms are consistent. 15,18

At the end of the listing, we show how we can access identifiers from a
module using fully qualified names.

1 Parameter VarName : Set.
2 Inductive StaticType : Set :=
3 (∗ omitted ∗)
4

5 Module Type VARSIG TYPE.
6 Parameter t : Type.
7 Parameter name : t → VarName.
8 Parameter type : t → StaticType.
9 Axiom eq dec : ∀ v1 v2 : t , {v1=v2}+{¬v1=v2}.

10 End VARSIG TYPE.
11

12 Declare Module VARSIG : VARSIG TYPE.
13

14 (∗∗ Example: Declare a variable signature ∗)
15 Parameter vsig : VARSIG.t.
16

17 (∗∗ Example: Check the type of function ’name’ applied to ’ vsig ’ ∗)
18 Check VARSIG.name vsig.

Listing 2.3: An example for a definition of local variable signatures as an
abstract data type, using Coq’s module system.

In our development, we often declare the type of an abstract data type
outside the module-type, and give it an unambiguous name. In listing 2.4,
we again define local variable signatures; this time we declare VarSig of sort
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Type outside VARSIG TYPE, and change the affected signatures accordingly.

1 Parameter VarSig : Type.
2

3 Module Type VARSIG TYPE.
4 Parameter name : VarSig → VarName.
5 Parameter type : VarSig → StaticType.
6 Axiom eq dec : ∀ v1 v2 : VarSig , {v1=v2}+{¬v1=v2}.
7 End VARSIG TYPE.

Listing 2.4: The same definition as in listing 2.3. This time, we use param-
eter VarSig as the type for the abstract data type

2.4.1 Basic Syntax Constructs

In JML, some syntax constructs come in different flavors. For instance,
and most notably, there are many different kinds of method specifications
in JML: lightweight, normal behavior, exceptional behavior, nested, or even
just omitted specification cases. There can be specification cases with mul-
tiple occurrences of the same kind of method specification clause, or omitted
clauses.

In the basic syntax, we define the JML syntax constructs in their simplest
form, as long as a transformation from the more complex can be performed
in a straight-forward way in a syntactic rewriting. That is, the supported
subset is identical to the full syntax as described in section 2.3, but in a
simpler form.

In the case of method specifications, the basic syntax only defines behav-
ior specification cases in which each clause appears exactly once. In section
2.4.2, we present the simplifications in the basic syntax together with the
rewriting steps from the full syntax.

In the following paragraphs, we present interesting or relevant constructs
from the basic syntax, starting with the abstract data type Program.

JML Programs

The abstract data type for a JML program in listing 2.5 declares two func-
tions class and interface that yield the abstract data type of a class and of
an interface, respectively, for a given name. If the program doesn’t contain
a class or an interface with the specified name, these functions yield None.

The predicate defined Class holds if and only if the program contains
a given abstract data type for a class. For the defined classes of a pro-
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gram, no two can have the same name, and class must act as the inverse of
CLASS.name. The predicate defined Interface is defined accordingly.

1 Parameter Program : Type.
2

3 Module Type PROG TYPE.
4

5 Parameter class : Program →ClassName →option Class .
6 Definition defined Class (p : Program) (cl : Class) : Prop :=
7 class p (CLASS.name cl) = Some cl.
8

9 Parameter interface : Program →InterfaceName → option Interface .
10 Definition defined Interface (p : Program) (i : Interface ) : Prop :=
11 interface p (INTERFACE.name i) = Some i.
12

13 End PROG TYPE.

Listing 2.5: The abstract data type for JML Programs

Classes and Interfaces

As classes and interfaces share similar properties, we define one abstract data
type TYPEDEF.t for both constructs. On the last two lines in listing 2.6 we
define the two types class and interface to be synonyms for this abstract
data type. Furthermore, the two types ClassName and InterfaceName are
synonyms for the type TypeDefName.

The TYPEDEF module declares several functions to access the different
properties of a class or interface. Again, it’s not our concern to restrict the
abstract data type to make it impossible to represent invalid JML constructs.
For instance, if t represents an interface, the function superClass should yield
None ,and several other constraints apply.

We define fields, model fields, and methods in the same way that we
define classes and interfaces in programs: accessor functions retrieve the
element by its name, and predicates state whether or not an element is a
member of the class or interface.

1 Module Type TYPEDEF TYPE.
2 Parameter t : Type.
3 Parameter name : t → TypeDefName.
4 Parameter visibility : t → Visibility .
5 Parameter superInterfaces : t → list t .
6 Parameter superClass : t → option t .
7 Parameter typeSpec : t → TypeSpec.
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8 . . .
9

10 Parameter field : t → ShortFieldName →option Field .
11 Definition definedField (c : t) ( f : Field ) :=
12 field c (FIELDSIGNATURE.name (FIELD.signature f)) = Some f.
13

14 Parameter method : t → ShortMethodSignature →option Method.
15 Definition definedMethod (c : t) (m : Method) :=
16 method c (METHOD.signature m) = Some m.
17 . . .
18 End TYPEDEF TYPE.
19

20 Declare Module TYPEDEF : TYPEDEF TYPE.
21

22 Definition Class := TYPEDEF.t.
23 Definition Interface := TYPEDEF.t.

Listing 2.6: The abstract data type for classes and interfaces

The JML type specifications can be accessed by the function typeSpec.
We show a condensed version of the abstract data type of type specifications
in listing 2.7, only showing the details for invariants and omitting all other
constructs. A class or interface can contain an arbitrary number of the same
type declaration construct. For instance, a class can contain not just one,
but several invariants, and each invariant is either a static or an instance
invariant and has its own visibility modifier.

We can access the predicate defining an invariant by the function pred,
which yields an inductive data type for a JML expression, which we will
illuminate later.

1 Module TYPESPEC.
2 Module Type INVARIANT TYPE.
3 Parameter t : Type.
4 Parameter pred : t → Expression .
5 Parameter visibility : t → Visibility .
6 Parameter isStatic : t → bool.
7 . . .
8 End INVARIANT TYPE.
9 Declare Module INVARIANT : INVARIANT TYPE.

10

11 . . .
12

13 Module Type TYPESPEC TYPE.
14 Parameter t : Type.
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15 Parameter invariant : t → list INVARIANT.t.
16 . . .
17 End TYPESPEC TYPE.
18 Declare Module TYPESPEC : TYPESPEC TYPE.
19 End TYPESPEC.
20 Definition TypeSpec := TYPESPEC.TYPESPEC.t.

Listing 2.7: The abstract data type for JML type specifications

A made-to-measure Coq Tutorial

Part 3 Modules and Name Conflicts

A module in Coq opens a new name space. Furthermore, modules can
be nested. Within new name spaces, we can reuse existing names without
generating conflicts. The module 18 TYPESPEC of listing 2.7 happens to
have the same name as the 1 enclosing module. To access an element of an
inner module, we need to use its fully qualified name. For instance, in the 20

term which defines the type TypeSpec to be a synonym for the cumbersome
type TYPESPEC.TYPESPEC.t.

If we are hiding an element from outside a module by introducing an
element of the same name within module, we can still access the former
from within the module by using its fully qualified name.

We define several predicates and definitions for easier handling of the
abstract data type for classes and interfaces. We highlight just one predicate
that we will use later on. This gives an impression of how we can work with
the abstract data types that we have defined.

In listing 2.8, we define the predicate SubType sub super which holds if
sub is a subtype of super or if sub and super are equal. In order to define
such a predicate, we define a predicate direct subtype that holds if either
super is declared to be the super class of sub, or if it is one of the interfaces
of sub. We express this in an inductive definition with two constructors.
The predicate holds if one of the constructors applies.

The definition of SubType is the reflexive transitive closure over the pred-
icate direct subtype . We use the predicate clos refl trans from the Coq
standard library, parameterized by the type of the elements: TYPEDEF.t,
the predicate for one step: direct subtype , and the two types in question:
sub and super.

1 Inductive direct subtype (sub super: TYPEDEF.t) : Prop :=
2 | direct subtype extends :
3 TYPEDEF.superClass sub = Some super →
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4 direct subtype sub super
5 | direct subtype implements :
6 super ∈ (TYPEDEF.superInterfaces sub) →
7 direct subtype sub super.
8

9 Definition SubType (sub super : TYPEDEF.t) : Prop :=
10 clos refl trans TYPEDEF.t (direct subtype) sub super.

Listing 2.8: The two predicates SubType and direct subtype

A made-to-measure Coq Tutorial

Part 4 Inductive Predicates

We can read inductive definitions in Coq as a set of inference rules.
Each constructor of the inductive definition corresponds to one rule. For
the definition of direct subtype , we get the two inference rules:

direct subtype extends
TYPEDEF.superClass sub = Some super

direct subtype sub super

direct subtype implements
super ∈ (TYPEDEF.superInterfaces sub)

direct subtype sub super

Instead of using an inductive definition, we could define the predicate
direct subtype in a more direct fashion:

Definition direct subtype (sub super: TYPEDEF.t) : Prop :=
TYPEDEF.superClass sub = Some super ∨
super ∈ (TYPEDEF.superInterfaces sub).

Although this definition looks simpler, its handling in the Coq proof
system is less comfortable than using the inductive definition. So, quite
often even when we could write a definition, we choose to use an inductive
definition to express a predicate.

Fields

Following the definitions in Bicolano, we provide two separate modules for
fields and field signatures. This separation sometimes requires us to perform
an additional operation to retrieve a field from a type definition.



2.4. DEFINITION OF JML SYNTAX CONSTRUCTS 43

1 Parameter Field : Type.
2 Parameter ShortFieldName : Set.
3 Parameter ShortFieldSignature : Set.
4 Definition FieldName := TypeDefName ∗ ShortFieldName.
5 Definition FieldSignature := TypeDefName ∗ ShortFieldSignature.
6

7 Module Type FIELDSIGNATURE TYPE.
8 Parameter name : ShortFieldSignature → ShortFieldName.
9 Parameter type : ShortFieldSignature → StaticType.

10 Axiom eq dec : ∀ f1 f2 : ShortFieldSignature , {f1=f2}+{¬f1=f2}.
11 End FIELDSIGNATURE TYPE.
12

13 Module Type FIELD TYPE.
14 Parameter signature : Field → ShortFieldSignature .
15 Parameter dataGroups : Field → list DATA GROUP.t.
16 . . .
17 End FIELD TYPE.

Listing 2.9: The abstract data types for field signatures and fields

A field in JML can be contained in several data group declarations. To
that end, the function dataGroups in module FIELD yields a list of abstract
data types for data groups. Listing 2.10 shows how we define this data type.

In JML, we can either declare a field to be statically contained in a
data group, using the “in” keyword, or we can declare a dynamic data
group dependency between two fields using the “maps . . . into” clause. If
the data group relation is dynamic, we can use the function pivotTarget to
access the target of the dynamic data group definition, which is either a field
or “*” to represent all fields of the target object. The function isDynamic
distinguishes between static and dynamic declarations. The definition of
isDynamic relies on the fact that for a well-formed program, a dynamic data
group declaration always specifies a pivot target.

Each data group declaration can mention one or more data groups. This
is why the function dataGroups yields a list of field signatures, 14 which must
be non-empty.

1 Inductive PivotTarget :=
2 | FieldDg ( fsig : FieldSignature ). (∗ Represents: target . fsig ∗)
3 | AllFieldsDg . (∗ Represents: target .∗ ∗)
4

5 Module Type DATA GROUP TYPE.
6 Parameter t : Type.
7 Parameter pivotTarget : t → option PivotTarget .
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8 Parameter dataGroups : t → list FieldSignature .
9 . . .

10

11 Definition isDynamic (dg : t) : bool :=
12 if pivotTarget dg then true else false .
13

14 Axiom dataGroups not nil: ∀ t , dataGroups t 6= nil .
15 End DATA GROUP TYPE.

Listing 2.10: The abstract data types for field signatures and fields

A made-to-measure Coq Tutorial

Part 5 Syntactic Sugar for Pattern Matching

We can use the term “ if opt then x else y”, as seen on line 11 of listing
2.10 to perform a case distinction on variable “opt : option T”. If opt con-
tains some element of type T then the term evaluates to x. If opt is equal to
None, the term evaluates to y. The following pattern matching is equivalent
to the term above:

match opt with
| Some ⇒ x
| None ⇒ y
end.

Methods

Similarly to fields, we follow Bicolano and have separate modules for meth-
ods and method signatures. Listing 2.11 shows the two modules.

1 Module Type METHODSIGNATURE TYPE.
2 Parameter name : ShortMethodSignature →ShortMethodName.
3 Parameter parameters : ShortMethodSignature → list Param.
4 Parameter result : ShortMethodSignature →option StaticType.
5 . . .
6 End METHODSIGNATURE TYPE.
7

8 Module Type METHOD TYPE.
9 Parameter signature : Method →ShortMethodSignature.

10 Parameter specs : Method → list SpecificationCase .
11 . . .
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12 End METHOD TYPE.

Listing 2.11: The abstract data types for method signatures and methods

We are mainly interested in method specifications, accessed by the func-
tion specs. In listing 2.12, we highlight two method specifications, requires
clauses and assignable clauses. The other clauses are formalized similarly.
In the basic syntax, a specification case is always a “full behavior case” that
contains each specification construct exactly once. Thus, the functions 20

requires and 21 assignable yield one instance of the given construct.

1 Module METHODSPEC.
2

3 Module Type REQUIRES TYPE.
4 Parameter t : Type.
5 Parameter pred : t → optional Expression .
6 Parameter isSame : t → bool.
7 End REQUIRES TYPE.
8

9 Module Type ASSIGNABLE TYPE.
10 Parameter t : Type.
11 Parameter storeRefs : t → optional StoreRefList .
12 End ASSIGNABLE TYPE.
13

14 . . .
15

16 Module Type SPECIFICATION CASE TYPE.
17 Parameter t : Type.
18 Parameter visibility : t → Visibility .
19 . . .
20 Parameter requires : t → REQUIRES.t.
21 Parameter assignable : t → ASSIGNABLE.t.
22 . . .
23 End SPECIFICATION CASE TYPE.
24

25 End METHODSPEC.

Listing 2.12: The abstract data types for method specifications

Even though all constructs need to be mentioned in a specification case,
they can be declared \not_specified. To that end, we introduce the induc-
tive type optional A which behaves pretty much like option A and can be
parametrized by any type A, see listing 2.13. The reason for introducing the
type optional instead of just using option lies in the readability of embedded
JML specifications. If a clause is set to be NotSpecified, it is clear that the
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clause has explicitly been set to \not_specified, whereas the correspond-
ing constructor None from the option type might suggest that the clause is
not mentioned in the specification.

1 Inductive optional (A : Type) : Type :=
2 | NotSpecified
3 | Specified (t : A).

Listing 2.13: The data type optional to express \not_specified method
clauses in a readable way

Each kind of method specification clause is defined as a nested module
within METHODSPEC. Each module features a parameter t as the type of
the abstract data type for the method clause, and one or several accessor
functions depending on the clause. The data type for requires clauses has
a function pred that either yields NotSpecified if the clause has been marked
as such, or a boolean expression. The clause has another function isSame
that yields true to represent the special clause requires \same. In this case,
the value of pred is irrelevant.

In JML, the assignable clause mentions a list of store ref s. A store ref
is either the keyword \nothing, which denotes that the method doesn’t have
side effects, \everything, which denotes that the method may potentially
change every location in the heap, or a term that identifies one or more
heap locations. There are many forms of identifying heap locations, see
[49, section 12.7]. In the subsequent formalization, we support the following
forms:

• A static field reference.

• A path o.f1 . . . fn, where o is either this or a method parameter and
f1 . . . fn are field identifiers.

• All fields of an object: o.f1 . . . fn.∗.

In listing 2.14, we introduce the data type StoreRef.

1 Inductive StoreRefPrefix :=
2 | ThisRef
3 | ParamRef (param : Param)
4 | PathRef (target : StoreRefPrefix ) ( fsig : FieldSignature ).
5

6 Inductive StoreRef :=
7 | StaticFieldRef ( fsig : FieldSignature )
8 | FieldRef ( target : StoreRefPrefix ) ( fsig : FieldSignature )
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9 | AllFieldsRef ( target : StoreRefPrefix ).
10

11 Inductive StoreRefList :=
12 | Nothing
13 | Everything
14 | StoreRefs ( sr : list StoreRef ).

Listing 2.14: The data types for store refs

In JML, a method has to obey not only its own specification cases, but
also those inherited from its super types. For that reason, we want to be
able to identify all the specification cases that are defined for a method. In
listing 2.15, we show an inductively defined predicate DefinedCase c m sc; it
holds if the specification case sc is declared at method m in c or a super type
of c. The inductive definition reads as follows 3: if there is a class c’ such
that c’ = c or c is a subtype of c’ and 4 if that class c’ features a method
m’ with a signature m and 5 if that method m’ declares the method case sc,
then 6 we define that predicate DefinedCase c m sc holds. In tutorial 4 on
page 42 we explain why we sometimes choose an Inductive definition instead
of a more direct definition.

1 Inductive DefinedCase (c: Class )(m:Method)(sc:SpecificationCase ):Prop:=
2 | DefinedCase def : ∀ m’ c ’,
3 SubType c c’ →
4 TYPEDEF.method c’ (METHOD.signature m) = Some m’ →
5 In sc (METHOD.specs m’) →
6 DefinedCase c m sc.

Listing 2.15: Inductive Definition of a predicate DefinedCase

Statements and Blocks

A method body in Java is a block of statements that can contain nested
blocks. This mutual dependency introduces a hurdle when defining the ab-
stract data types, as we cannot use an abstract data type before it has been
defined in the text. In the upcoming tutorial, we learn how Coq supports
mutual dependent types, but we cannot apply this technique in the case of
abstract data types. Thus, we proceed as follows to define statements and
blocks.

We introduce three data types. An inductive data type representing the
different kinds of statements, and two abstract data types, one for statements
and one for blocks. All three constructs have mutual dependencies that we
need to resolve.

Firstly, we define the inductive data type as sketched in listing 2.16 to
define both Java and JML statements. As we haven’t defined the abstract
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data types for statements and blocks yet, we add two parameters Statement
and Block of sort Type to the inductive definition. We can now use these
types to refer to statements and blocks, respectively, for instance in the
argument block of constructor Compound. Other than the two parametric
types, the inductive data type for statements doesn’t contain any surprises.

1 Inductive StatementType {Statement Block: Type}: Type :=
2 (∗∗ Java statements ∗)
3 | Compound (block : Block)
4 | ExprStmt (e : Expression)
5 | WhileLoop (anno : LoopAnnotation)
6 ( test : Expression) (body : Statement)
7 . . .
8

9 (∗∗ JML statements ∗)
10 | LocalAssertion (expr : Expression) ( label : option Expression)
11 (redundantly : bool)
12 . . .

Listing 2.16: The inductive data type StatementType to define the different
kinds of statements

Secondly, we define the module STATEMENT, see listing 2.17. It contains
a parameter b of sort Type. We declare b as the type of the abstract data
type for blocks. Function pc yields a “program counter” that we assign
to each statement. The program counter for statements is unique within
a method body. We use it to retrieve statements from blocks or methods.
The function type yields a StatementType that we have just defined before.
At this point, 6 we can assign t and b to the two parameters Statement and
Block.

1 Module Type STATEMENT TYPE.
2 Parameter t : Type. (∗ ADT for Statements ∗)
3 Parameter b : Type. (∗ ADT for Blocks ∗)
4 Parameter label : t → option Label.
5 Parameter pc : t → PC.
6 Parameter type : t → StatementType (Statement := t) (Block := b).
7 End STATEMENT TYPE.

Listing 2.17: The abstract data type for statements

Thirdly, we define the module BLOCK as in listing 2.18 in which we
use the previously declared type STATEMENT.b. The data type contains
a list of local variables as well as several axiomatized functions to access
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statements in a block and to navigate through statements.

10 Axiom elem def defines the behavior of the function elem in terms of
the functions statementAt and STATEMENT.pc. It states that: if function
elem yields true for a given pc of a block, then there exists a statement at
that program counter in the block. The statement retrieved by the function
statementAt at this position contains the same pc as program counter.

12 Axiom statementAt def defines the behavior of statementAt. If the
function yields a statement for a given pc, the statement’s program counter
is set to pc. We have omitted here further axioms defining the behavior of
the functions first , last , and next.

1 Module Type BLOCK TYPE.
2 Definition t := STATEMENT.b.
3 Parameter localVariables : t → list Var.
4 Parameter elem : t → PC →bool.
5 Parameter statementAt : t → PC →option STATEMENT.t.
6 Parameter first : t → option PC.
7 Parameter last : t → option PC.
8 Parameter next : t → PC →option PC.
9

10 Axiom elem def : ∀ t pc, elem t pc = true →
11 ∃ s , statementAt t pc = Some s ∧STATEMENT.pc s = pc.
12 Axiom statementAt def : ∀ t pc s ,
13 statementAt t pc = Some s →STATEMENT.pc s = pc.
14 . . .
15

16 End BLOCK TYPE.

Listing 2.18: The abstract data type for blocks
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Part 6 Mutually Dependent Types

We have just seen how we can deal with mutual-dependent abstract data
types. For inductive data types, definitions, or fixpoints, that mutually
depend on each other, Coq provides the following solution.

We can define several such constructs together, using the keyword with.
In this way, all constructs are defined at the same point in the text and thus
can refer to each other. An application is the definition of the inductive type
StaticType, which we have already encountered on several occasions.

We define the data type StaticType to be either a primitive type or a
reference type, as shown in listing 2.19. A reference type can be an array of
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any StaticType, which introduces a cyclic dependency. By defining the two
data types together, we are allowed to keep that dependency.

1 Inductive StaticType : Set :=
2 | ReferenceType (rt : refType)
3 | PrimitiveType (pt : primitiveType )
4 with refType : Set :=
5 | ArrayType (type : StaticType) (um : utsModifier )
6 | TypeDefType (td : TypeDefName) (um : utsModifier)
7 | NullType.

Listing 2.19: The mutually dependent types StaticType and refType

Expressions

Listing 2.20 shows a short excerpt of the inductive data type for Java and
JML expressions. As discussed earlier, it is possible to build ill-formed
expressions. For instance, the optional target of fields and methods can
only be an expression that evaluates to an object reference type, but this
doesn’t reflect in our data type, in which we can set any kind of expression
as target. It is the semantics that will deal with the well-formedness of
expressions.

1 Inductive BinaryIntOp : Set :=
2 | Addition | Multiplication
3 . . .
4 | BitwiseAnd | BitwiseXor
5 . . .
6

7 Inductive Expression : Type :=
8 (∗∗ Java expressions ∗)
9 | literal ( l : Literal )

10 | new (t : StaticType)
11 | method (method : MethodSignature)
12 ( target : option Expression)
13 (params: list Expression)
14 | field ( field : FieldSignature )
15 ( target : option Expression)
16 | UnaryBoolExpr (op : UnaryBoolOp) (expr : Expression)
17 | BinaryIntExpr (op : BinaryIntOp)
18 ( left : Expression) ( right : Expression)
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19 | Assignment ( left : Expression) ( right : Expression)
20 . . .
21

22 (∗∗ JML expressions ∗)
23 | Quantification (q : Quantifier ) (var : Var) (range : Expression)
24 (expr : Expression ).
25 . . .

Listing 2.20: The inductive data type for expressions, along with two exam-
ples for inductive definitions of operators.

2.4.2 Syntactic Rewritings

In the basic syntax description, we provide simplified versions of three con-
structs: method specifications that consist of a list of full behavior spec-
ification cases, quantified expressions that feature exactly one quantified
variable, and loop annotations with a field expression ; a predicate which
expresses the conjunction of all loop invariants. We provide a syntactic
rewriting from the full forms of these constructs into their simplified forms.
In our technical report on the formalization [42], we describe the extended
syntax and the syntactic rewriting in detail. This thesis only presents the
general idea of the rewriting. While the rewriting of quantified expressions
and loop invariants is straight-forward, the desugaring of method specifica-
tion cases deserves a short description.

The syntactic rewriting of method specification cases directly follows the
technical report [74] by Raghavan and Leavens. The authors split up the
desugaring of method specifications into eleven steps; we perform eight of
these steps, the remaining three steps being unnecessary as our semantics
can deal with the sugared version directly.

Desugaring Non-null for Arguments This desugaring adds an addi-
tional “requires p != null” to each specification case of the method for
every parameter p that is implicitly or explicitly declared to be non-null. If
the method doesn’t feature any specification cases, these additional requires
clauses are added to a new lightweight specification case.

Desugaring Non-null Results This desugaring adds an additional en-
sures clause “ensures \result != null” to every non-exceptional specifi-
cation case if the method is declared non_null. If no specification case is
defined, we add the additional ensures clause to a new lightweight specifi-
cation case.

Desugaring pure This desugaring adds two clauses to every specifica-
tion case of pure methods. The additional clauses are “diverges false”
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and, in case of a constructor “assignable this.*”, otherwise “assignable
\nothing”. Again, if the method has no specification, the clauses are added
to a new lightweight specification case.

Desugaring Empty Specifications This desugaring adds a default spec-
ification to the given method if the method features no explicit specification
and the first three desugarings didn’t create a lightweight specification case
already. The default specification is a lightweight specification case with
the clause “requires \not_specified” for any non-override method or
“also requires false” for an override method.

Desugaring Nested Specifications This desugaring recursively flattens
nested specification cases into a semantically equivalent list of specification
cases. As opposed to the description in the underlying report, we do not
have to deal with variable capturing issues when merging several definitions
of quantified variables into one case, as all quantified variables introduced
in specifications are globally unique already.

Desugaring Lightweight, Normal, and Exceptional Specifications
This desugaring transforms lightweight, normal- and exceptional behavior
specification cases into behavior specification cases. For normal behavior
cases this amounts to adding a clause “signals (Exception e) false”.
For exceptional behavior cases, we add a clause “ensures false”. For
lightweight specification cases, the visibility is set to the visibility of the
enclosing method and a default clause is added for every clause kind that is
missing in this case.

Standardizing Signals Clauses This desugaring standardizes every sig-
nals clause “signals (ET n) P”, where variable n is the declares the ex-
ception object of type ET , into a signals clause “signals (Exception e)

(e instanceof ET) ⇒ P ′”. P ′ denotes expression P where every occur-
rence of n is substituted by “(ET) e”. This rewriting becomes interesting
when performing the next desugaring step. We can easily merge several
signals clauses into one by using one unified exception variable e.

Merging Multiple Clauses of the Same Kind This desugaring merges
multiple clauses of the same kind within a specification case into a single
clause. For instance, two requires clauses “requires p1; requires p2 ”
are merged into a single requires clause “requires p1 && p2 ”. Note that
we build the conjunction of p1 and p2 and not the disjunction, as the clauses
appear in the same specification case.
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2.4.3 Notations

An implementation of the data types defined in this chapter allow us to
embed JML programs in Coq. However, without using Coq notations, it’s
very inconvenient to read the resulting statement data type in Coq. The
quite simple if statement in listing 2.21 results in the data type shown in
listing 2.22. If we want to use our formalization as part of a program verifier,
this embedding means a lot of trouble for the user as he has a hard time to
understand the JML annotations and the program that he wants to verify.
The whole idea of being able to embed a JML program in an interactive
theorem prover is pointless if we cannot read what we want to verify.

1 if (i % 2 == 0) {

2 sumEven += i;

3 } else {

4 sumOdd += i;

5 }

Listing 2.21: A simple Java statement

1 STATEMENT.Build t 5%Z None (IfStmt (RelationalExpr IntEquality
2 (BinaryIntExpr Remainder (var x) ( literal ( IntLiteral 2)))
3 ( literal ( IntLiteral 0))) (STATEMENT.Build t 5%Z None (Compound
4 (BLOCK.Build t [] [STATEMENT.Build t 6%Z None (ExprStmt
5 (IntAssignmentExpr AssignmentAddition (var sumEven) (var i )))])))
6 (Some (STATEMENT.Build t 7%Z None (Compound (BLOCK.Build t []
7 [STATEMENT.Build t 7%Z None (ExprStmt (IntAssignmentExpr
8 AssignmentAddition (var sumOdd) (var i )))]))))).

Listing 2.22: The same statement embedded in Coq

We can solve the issue by making heavy use of notations, that is, addi-
tional rules for the Coq parser and pretty printer. With clever notations in
place, we manage to embed JML code in Coq while maintaining readability.
Listing 2.23 shows the same data type with our notations enabled. Although
there is some unavoidable noise such as the constructors var, int , and stmt,
and quite a few brackets, the code remains readable. A user who wants to
verify this statement is able to read and understand the code and directly
map it to the original JML code.

1 5% :> ife ((var i ) mod (int 2) == (int 0)) {: 5 :>>
2 [6 :> stmt ((var sumEven) += (var i))]
3 :} else {: 7 :>>
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4 [7 :> stmt ((var sumOdd) += (var i))]
5 :}

Listing 2.23: The same statement embedded in Coq, using notations

In listings 2.24 and 2.25, we show a nested specification case in JML and
its counterpart in Coq, using notations to make the code readable, respec-
tively. Again, there is a bit of added noise, for instance, the constructors
spec case and simple case to identify the data type, and the use of empty
lists “ [] ” for omitted or default parts of the specification case.

1 normal_behaviour

2 requires x != null

3 {|

4 requires x.getValue() ≥ 0;

5 ensures \result == x.getValue();

6 also

7 requires x.getValue() < 0;

8 ensures \result ≥ 0;

9 |}

Listing 2.24: An example of a nested specification case in JML

1 spec case [ public ] normal behaviour (
2 nested case [] []
3 [requires (: (var x) != null :)]
4 {|
5 simple case [] []
6 [requires (: (callT (var x) getValue []) ≥ ( int 0) :)]
7 [ensures (: \result == (callT (var x) getValue []) :)]
8 ;
9 simple case [] []

10 [requires (: (callT (var x) getValue []) < (int 0) :)]
11 [ensures (: \result ≥ ( int 0) :)]
12 |}
13 ).

Listing 2.25: The same nested specification case embedded in Coq, using
notations

Listing 2.25 illustrates why we add quite so many different kinds of
brackets around the JML constructs in our notations. If we look at the
3 first requires clause in the Coq representation, we see that the expres-
sion is surrounded by a special pair of brackets: “ (: . . . :)”. If we look
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at the data type for method level specifications on page 45, we see that
a requires clause isn’t of type Expression, but optional Expression, as the
requires clause is either \not_specified or an expression, which we ex-
press by using the type optional described on page 46. So we would write
“ requires ( Specified ((var x) != null ))”.

As we need to put brackets around the optional type anyway, we believe
it’s more readable, if we add different brackets around the optional type,
which allows us to omit the keyword Specified and also to omit the brackets
around the expression itself.

A made-to-measure Coq Tutorial

Part 7 Notations

We give here a quick discussion of two definitions of notations in Coq.
We use the notation from listing 2.26 to define a block that contains a list of
statements. As a block is basically a Compound statement, the block needs
to have a PC associated.

Coq allows us to declare an arbitrary-length list of variables of the same
type in a notation using the two dots in the term “x ; .. ; y”. All other
special symbols, that is, brackets and punctuations, are considered as termi-
nal symbols for the parser. All identifiers are considered variables and are
treated as non-terminal symbols.

2-6 The definition of the notation is now clear: we build a Compound
statement that itself contains a block of the list of statements. To talk
about an arbitrary list as declared in 1 “x ; .. ; y”, we need to use the
construct 6 “(cons x .. (cons y nil ) ..) ”. It defines how to build up the
data type for the list and defines what to do with the last element, that is,
append nil .

1 Notation ”{: pc :>> x ; .. ; y :}” :=
2 (STATEMENT.Build t
3 pc (∗ the pc of the statement ∗)
4 None (∗ the label of the statement ∗)
5 (Compound STATEMENT.t STATEMENT.b (BLOCK.Build t
6 (cons x .. (cons y nil ) ..)))) : jml scope .

Listing 2.26: The notation for an unlabeled block containing any number of
statements

We can specify the level (precedence) of the notation and its associativ-
ity, if we want to. Listing 2.27 shows the example of the “+” operator in
Java, which has left associativity and is set to level 50, whereas for instance
multiplication has level 40. Thus, we do not need to put brackets around
sub-expressions to specify the default evaluation order.
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Heap Frame AddsState

Frame Parameters
Local

Variables
PC

Return
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Adds

Figure 2.2: The program state, consisting of the heap, the method frame and
auxiliary data structures. Gray boxes denote data structures that are imple-
mented here, white boxes denote data structures that have to be provided
by the implementation of the JML semantics, as we will see later.

1 Notation ”x + y” := (BinaryIntExpr Addition x y )
2 (at level 50, left associativity ) : jml scope .

Listing 2.27: The notation for a binary operation on expressions

2.5 A Domain for Java Programs in Coq

In this section, we present the definition of the domain for Java in Coq.
We introduce a program state which can be extended with auxiliary data
structures on demand, an abstract data type for the heap, data structures
for various elements of method frames, and a formalization for basic data
types of Java source code.

2.5.1 The Program State

Our definition of the domain features an extensible formalization of the
program state. In its basic form, the program state represents the state of
a Java program with no support for additional data structures needed by
the JML semantics. The implementation of the JML semantics can add its
data structures either globally, or locally to the currently executed method.

Fig. 2.2 depicts the structure of the program state. The state only con-
tains the frame of the currently executing method and not a whole method
frame stack. This significantly simplifies the model of the program state. If,
for some reason, an application of the domain needs access to the method
frames of the callers, the corresponding information can be stored in the
auxiliary data structures, as we will see later.
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In this subsection, we present the three abstract data types STATE,
FRAME, and ADDS (for “additions”), which define the structure of the
program state and provide an implementation for accessing and updating
individual elements of the state.

State

Listing 2.28 shows the complete module type STATE. The module type
declares the two modules Adds and Frame. In other words, the module
type STATE declares that any implementation of STATE has to define two
modules Add and Frame that adhere to the specified module types. As
opposed to most of the module types that we’ve seen in section 2.4.1, STATE
already provides an implementation of all other constructs, instead of only
declaring the function signatures and providing an axiomatization. As a
consequence, we are able to implement a module of type STATE in the
following way, where MyAdds is some implementation of module type ADDS
and MyFrame is some implementation of module type FRAME:

Declare Module MyState : STATE
with Module Adds := MyAdds
with Module Frame := MyFrame.

In the last part of tutorial 2 on page 35, we presented two alternative
ways to create a module of a given module type: either implement the whole
module, or just declare it. There is a third, elegant way to define a module
of a module type: we can implement just certain elements of the module
and carry the other elements over from the existing module type. This is
how we defined MyState above.

The state provides access to the following constructs: the current heap
h, the method frame fr , and the additions adds. We also define a function
build that takes a heap, a frame, and additions, and yields a state containing
these elements.

1 Module Type STATE.
2 (∗ Parametric modules, to be defined upon declaration ∗)
3 Declare Module Adds : ADDS.
4 Declare Module Frame : FRAME.
5

6 (∗ Implementation of the module ∗)
7 Record t : Type := make {
8 h : Heap.t;
9 fr : Frame.t;

10 adds : Adds.t
11 }.
12
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13 Definition set h (st : t) (h : Heap.t) : t :=
14 make h (fr st) (adds st ).
15 Definition set fr (st : t) ( fr : Frame.t) : t :=
16 make (h st) fr (adds st ).
17 Definition set adds (st : t) (adds : Adds.t) : t :=
18 make (h st) ( fr st) adds.
19

20 Definition build := make.
21

22 End STATE.

Listing 2.28: The module type for a program state
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Part 8 Implementation of a Data Type

Let’s take a closer look at the implementation of module STATE. 7

We define a Record with three fields h, fr , and adds. This defines a type
t : Type and three functions with the following signatures:

h : t → Heap.t.
fr : t → Frame.t.
adds : t → Adds.t.

Using a Record is a very convenient way to implement an abstract data
type. Beside the accessor functions that we get for free from the record
definition, we provide three functions to set individual fields of the record.
As there is no built-in way of changing individual fields of records, we need
to implement this by creating a new record and copying over all fields from
the old record except for the field we want to change, which we set to the
new value.

We do not need to implement the function build , as the definition of
the record generates a function make with exactly the desired behavior. We
simply define build to be an alias for make. We could of course directly
use the name “build” in the definition of the record, but we stick to the
convention that within a data type, we use “make” to create records, while
from outside, we provide a function build to build a variable of the data type.
Sometimes, this involves additional computation and not just the creation
of the record.

Frame

The module type FRAME, sketched in listing 2.29 is very similar to the
module type STATE. The module type declares the module Adds to store
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local auxiliary data structures, which have to be provided upon declaration
of a frame module in the same way we declared a state module:

Declare Module MyFrame : FRAME
with Module Adds := MyFrameAdds.

Beside the already discussed additions and the type t as the type of a
frame, we provide functions to access and update dictionaries for parameters
and local variables, the current program counter, and the return value.

In addition to the fields of the record, the module provides some defini-
tions for easier access to some frame constructs. For instance, the reference
this is stored as parameter with the predefined name paramThis, if the
method has a receiver. The definition 14 this simplifies access to the refer-
ence this.

The definition build is, as opposed to the one in module type STATE,
not trivial. The reason is that not all information stored in the record needs
to be provided, most of it can either be computed or set to default initial
values. The only information that we need to build a new frame is the
method for which we build the frame, the parameters, and the additions
(for which we cannot assume any default values; we simply do not know
what’s inside this data structure at this point). We set the program counter
pc to the program counter of the first statement of the body, if the method
has a body, otherwise, to a default value NoBodyPC. Initially, there are no
local variables defined in the method, and we choose to set the return value
to Normal None which stands for no return value and normal termination.
At this point, it really doesn’t matter what we choose as return value, as
the method execution hasn’t even been initiated when creating the frame
for it.

1 Module Type FRAME.
2 (∗ Parametric module, to be defined upon declaration ∗)
3 Declare Module Adds : ADDS.
4

5 (∗ Implementation of the module ∗)
6 Record t : Type := make {
7 params : ParamDict.t;
8 vars : VarDict. t ;
9 pc : PC;

10 ret : ReturnVal;
11 adds : Adds.t
12 }.
13

14 Definition this ( fr : t) : option Object :=
15 match ParamDict.get (params fr) paramThis with
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16 | Some (Ref loc) ⇒ Some loc
17 | ⇒ None
18 end.
19

20 . . . (∗ other setters and getters omitted ∗)
21

22 Definition build ( callee :Method)(params:ParamDict.t)(adds:Adds.t): t :=
23 let pc’ := match METHOD.body callee with
24 | Some body ⇒STATEMENT.pc (METHODBODY.compound body)
25 | None ⇒NoBodyPC
26 end in
27 make params VarDict.empty pc’ (Normal None) adds.
28 End FRAME.

Listing 2.29: The module type for a method frame

Additions

Both the state and the frame feature a module of type ADDS to store aux-
iliary information. From what we have seen, this module features a type t
as the type of the abstract data type. Consequently, we define the module
type ADDS as in listing 2.30. We simply define a parameter t and do not
specify any other construct of the module. An implementing module can
add additional elements as needed.

1 Module Type ADDS.
2 Parameter t : Type.
3 End ADDS.

Listing 2.30: The module type for additions

Notations

We introduce notations to dramatically simplify the access and update of
fields of the program state. We define the notations on the program state
according to the following conventions.

Accessor Notations Accessing a field1 of the state or the method frame
can be done by “constr@field”. Where constr refers to a variable of type
State . t or Frame.t and field refers to a field defined in a construct or its
auxiliary data structures. Such expressions can be chained: For example, if

1By “field” we refer to a field of the record in the state, not a Java field!
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we want to access a field this defined in the method frame of state st, we
write ” st@fr@this ”.

Update Notations To update a field in the state or method frame, we
use the notation “constr [field := value ]”, where constr is either of type
State . t or Frame.t, field is the field of the construct to be updated and value
is the new value for the field. Again, we can chain updates and also mix it
with access notations:

st [ fr := st@fr [ ret := result ]][ h := h’]

This term updates the frame and the heap of state st. We access the
frame of st by “st@fr” and update the field ret with the value result . The
updated frame is then stored as new frame of st. In this updated state, we
set h’ as heap.

Notations for Operations We introduce special notations for more spe-
cific operations on fields of the state or frame. The general form is as follows:
“constr [field :op value ]”, where value is the value which is used by opera-
tion op to update field .

For instance, if the type of a field is a set, we provide the following
set-operations as notations.

• “constr [field :+ value ]” adds value to the set represented by field .

• “constr [field :∪ value ]” unions the sets value and field and stores
the result into field

• “constr [field :∩ value ]” intersects the sets value and field and stores
the result into field

2.5.2 Domain constructs

In this section, we introduce two abstract data types: a general purpose
dictionary and a heap model. We use the dictionary to represent local vari-
ables and parameters. It will also become handy for several other constructs
that we will introduce later on. The Coq standard library does feature a
dictionary, but requires the type of the keys to feature decidable equality,
which is necessary to constructively define the dictionary. However, for our
purpose, this only adds unnecessary complexity to the formalization.

A General Purpose Dictionary

The module type DICT in listing 2.31 features two parameters 4 Key and 5 Val
that have to be set to the types for the keys and the values when declaring
a concrete dictionary. The dictionary stores key-value pairs of the specified
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types and provides the usual operations to update and query the dictionary.
8 The functions get d k retrieves the value assigned to the supplied key k
if it exists in the dictionary d . Otherwise, it yields None. 9 The function
update d k v updates or adds the pair k → v to dictionary d and yields the
updated dictionary, depending on if the key k was already in the dictionary.
10 The function remove d k yields a dictionary in which the key-value pair
for key k has been removed from dictionary d , if the key existed in the
dictionary in the first place. We describe the behavior of these functions
with the following axioms: 20 get update same states that looking up a value
for a key that has been updated yields the updated value. 24 get remove none
states that looking up a removed key in a dictionary always yields None. 22

get update old states that updating a key with a value preserves all other
key-value pairs in the dictionary. Analogously, 26 get remove old states that
removing a key from a dictionary leaves all other key-value pairs unchanged.

Beside these basic operations, we provide some more sophisticated query-
ing functions for the dictionary. 12 The function In v d is a predicate that
is true if value v is stored in dictionary d ; that is, there exists at least one
key-value pair that has v as value. 13 The function singleton is a shorthand
for creating dictionaries with one key-value pair.

14,15 The functions content and keys yield a list of all values and a list
of all keys in a dictionary, respectively. The order of the elements in the
list is not specified, but is of course deterministic, since content and keys
are functions. 28,30 The axioms content 1 and keys 1 specify the behavior of
the the two functions. content 1 states that a value is in the list yielded by
content if and only if the value is stored in the dictionary. keys 1 states that
a key is in the list yielded by keys if and only if there exists a key-value pair
for the given key in the dictionary.

16 The function filter d f yields a list of values that are associated to
keys for which the predicate f holds. 32 The axiom filter 1 describes this
behavior.

1 Module Type DICT.
2 Parameter t : Type.
3

4 Parameter Key : Type.
5 Parameter Val : Type.
6

7 Parameter empty : t .
8 Parameter get : t → Key → option Val.
9 Parameter update : t → Key → Val → t .

10 Parameter remove : t → Key → t .
11

12 Definition In (d : t) (v : Val) : Prop := ∃ k, get d k = Some v.
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13 Definition singleton (k : Key) (v : Val) : t := update empty k v.
14 Parameter content : t → list Val.
15 Parameter keys : t → list Key.
16 Parameter filter : t → (Key → Prop) → list Val.
17

18 Axiom get empty :
19 ∀ v, get empty v = None.
20 Axiom get update same :
21 ∀ d k v , get (update d k v) k = Some v.
22 Axiom get update old :
23 ∀ d k k’ v , k 6= k’ → get (update d k v) k’ = get d k ’.
24 Axiom get remove none:
25 ∀ d k, get (remove d k) k = None.
26 Axiom get remove old:
27 ∀ d k k ’, k 6= k’ → get (remove d k) k’ = get d k ’.
28 Axiom content 1: ∀d v,
29 List . In v (content d) ↔ In v d.
30 Axiom keys 1 : ∀ d k,
31 List . In k (keys d) ↔ get d k 6= None.
32 Axiom filter 1 : ∀ d f v,
33 List . In v ( filter d f) ↔ (∃ k, get d k = Some v ∧ f k).
34 End DICT.

Listing 2.31: The abstract data type for a dictionary

We can now declare data structures to represent a local variable store
and the parameters of a method, using the dictionary, as shown in listing
2.32 below.

1 Parameter Var : Set.
2 Parameter Param : Set.
3

4 Declare Module VarDict : DICT
5 with Definition Key := Var
6 with Definition Val := Value.
7

8 Declare Module ParamDict : DICT
9 with Definition Key := Param

10 with Definition Val := Value.

Listing 2.32: Definition of a local variable and method parameter store
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The Heap Model

We reuse Bicolano’s heap model with some adjustments. The heap model
is based on an axiomatized object store model presented in [73]. The model
introduces an inductive data type Location, see listing 2.33, to access three
different constructs in the heap: static fields, instance fields, and array
elements. Static fields can be directly addressed by their field signature;
instance fields need the target object together with the field signature. Nat-
urally, array cells can be addressed by the array object and the offset of the
cell.

1 Inductive Location : Set :=
2 | StaticField ( fsig : FieldSignature )
3 | InstanceField (obj : Object) ( fsig : FieldSignature )
4 | ArrayElement (obj : Object) (pos : Int . t ).
5

6 Declare Module LocDec : DecidableType
7 with Definition t := Location
8 with Definition eq := eq (A := Location).
9

10 Declare Module LocSet : WS with Module E := LocDec.

Listing 2.33: The inductive data type Location to access different constructs
in a heap.

We often want to store sets of locations in a data type. To this end, we
define two modules for locations. Firstly, a module LocDec that defines a
decidable type over locations. We define parameter t and eq of module type
DecidableType from the standard library. Naturally, we set t to be Location.
We set eq to the built in Leibnitz equality. Secondly, we define a module
LocSet that defines a mathematical set of locations. We specify the module
E in module type WS from the standard library to be the decidable type for
locations that we just defined before. We also introduce notations for all
common set operations for better readability of terms with set operations.

The abstract data type sketched in listing 2.34 defines a heap model with
the following four functions. The function get h loc yields the value at the
heap location specified by loc. This only succeeds if loc is compatible to
what is actually stored at that location in h. The function update h loc v
updates the location denoted by loc in h by with v and yields the updated
heap. The function typeof h obj yields the runtime type of object with
the identifier obj or None if there is no allocated object or array with this
identifier in the heap. Thus, we can use the function typeof to check if an
object identifier refers to an allocated object or not. The function new h p t
yields a tuple of the newly allocated location in the heap and the updated
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heap, or None if there are no more locations that can be allocated. Those
four functions are described by a total of thirteen axioms that define the
behavior of the heap model. In the proof in chapter 4, we will make use of
some of these axioms, and will explain them as needed.

1 Module Type HEAP.
2 Parameter t : Type.
3 Parameter get : t → Location → option Value.
4 Parameter update : t → Location → Value → t .
5 Parameter typeof : t → Object → option ObjectType.
6 Parameter new : t → Program → ObjectType → option(Object ∗ t ).
7 . . .
8 End HEAP.

Listing 2.34: Excerpt of the axiomatized heap model

Basic Data Types

Values A value can either be a boolean or a number, or a reference, or
null; listing 2.35 shows the inductive definition to represent values.

Instead of adding the value null as a separate constructor we could
instead introduce it as a special object identifier. But as most subsequent
definitions need to distinguish between references that point to an address
in the heap and null anyway, it’s easier to keep Null as a constructor so that
we get a separate case when performing pattern matching over a value.

1 Inductive Value : Type :=
2 | Bool (b : Prop)
3 | Num (n : num)
4 | Ref (o : Object)
5 | Null .

Listing 2.35: Definition of values

Boolean Type There are two alternatives for representing the Java type
boolean in Coq. We can either use the existing inductive type bool of sort
Set from the Coq standard library or we can directly use the sort Prop; that
is, conflate the representation of booleans with the notion of true and false
at the prover level.

The type bool has the advantage that we can use pattern matching on a
variable of this type when defining a function. It is the natural choice if we
aim to produce a computable implementation of the functions that operate
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on the data type. The library already defines functions on the data type to
represent propositional logic. However, we cannot express first order logic
terms with this data type because of the lack of quantifiers.

The sort Prop is the type of propositions in Coq. The advantage of using
sort Prop to represent the Java boolean type is that we can directly map
any JML first order logic term to a proposition.

In particular, the possibility to use Coq’s quantifiers in boolean terms
simplifies many semantic definitions drastically. For this reason, we decided
to use Prop to represent boolean values.

However, to specify the semantics of some constructs, we actually want
to use the type bool instead of a proposition. For example, if we apply a
filter to a list in Coq, the filter needs to be of type bool. To facilitate the
use of such constructs, we introduce an axiomatized function from Prop to
bool, see listing 2.36. The function is partially defined: if we can prove P,
the function P2b P yields true of type bool. If ¬ P is provable, the function
P2b P yields false . Otherwise we do not know the value of P2b P.

1 Parameter P2b : Prop →bool.
2 Axiom P2b true: ∀ (P : Prop) , P → P2b P = true.
3 Axiom P2b false: ∀ (P : Prop) , ¬P →P2b P = false.

Listing 2.36: An axiomatized function from Prop to bool

Number Types We use the Bicolano formalization of Java numbers in
Coq2. Listing 2.37 shows the definition of an abstract data type for Java
numbers in the module type NUMERIC. The definition is based on the
type Z from the Coq standard library which can represent arbitrarily large
integer numbers. The module type defines the range of numbers that can
be represented, as a function of the parameter power. Furthermore, the
function smod defines the behavior in the case of overflow and underflow.
The operations on numbers are then specified as axiomatized functions. We
only show the example of the operation add. In Java, we always calculate
exactly and then fit the number into the valid range. This is what axiom
add prop states.

1 Module Type NUMERIC.
2 Parameter t : Set.
3 Parameter toZ : t → Z.
4 Parameter power : Z.
5 Definition half base := 2ˆpower.
6 Definition base := 2 ∗ half base .

2Not including floating point numbers, as discussed in section 2.3
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7 Definition range (z : Z) : Prop := −half base ≤z < half base .
8 Parameter range prop : ∀ x: t , range (toZ x).
9 . . .

10 Definition smod (x:Z) : Z :=
11 . . .
12

13 Parameter add : t → t → t .
14 Axiom add prop : ∀ i1 i2 ,
15 toZ (add i1 i2) = smod (toZ i1 + toZ i2).
16

17 . . .

Listing 2.37: Representation of Java numbers in Coq

We can now define modules of type NUMERIC for each Java number type
with the corresponding value for power. Finally, we combine all (covered)
numeric types in Java into one inductive data type num, for easier handling.
See listing 2.38 below.

1 Declare Module Byte : NUMERIC with Definition power := 7.
2 Declare Module Short : NUMERIC with Definition power := 15.
3 Declare Module Int : NUMERIC with Definition power := 31.
4

5 Inductive num : Set :=
6 | I : Int . t → num
7 | B : Byte.t → num
8 | Sh : Short. t → num.

Listing 2.38: Declaration of the different modules for Java numbers.

We define a set of widening and narrowing operators on numeric values.
The function i2s is an example for a narrowing operation from int to short.
In listing 2.39, we show the function signature and its axiomatization. The
first axiom defines the behavior of i2s if the resulting short is positive, that
is, if the last 16 bits of the integer represent a value in the interval [0 .. 215).
The second axiom defines the behavior for the interval [215 .. 216).

1 Parameter i2s : Int . t → Short. t .
2

3 Axiom i2s prop1 : ∀ i ,
4 ( Int .toZ i ) mod 2ˆ16 < 2ˆ15 →
5 ( Int .toZ i ) mod 2ˆ16 = Short.toZ (i2s i ).
6

7 Axiom i2s prop2 : ∀ i ,
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8 2ˆ15 ≤( Int .toZ i ) mod 2ˆ16 →
9 ( Int .toZ i ) mod 2ˆ16 − 2ˆ16 = Short.toZ (i2s i).

Listing 2.39: An axiomatized narrowing operation from integers to shorts.

References A reference points to an object in the heap. As we do not
deal with pointers in Java, it is sufficient to define a data type for object
identifiers. Thus, we introduce the type Object of sort Set.

2.6 A Formal Semantics of JML in Coq

In this section, we introduce the interface to JML specifications and its
implementation. As discussed at the beginning of this chapter, the inter-
face provides direct access to JML specifications at the cost of being less
in control of how the interface is used by an application. Thus, we strive
to document the JML interface thoroughly and clearly, and keep the imple-
mentation as simple and readable as possible.

2.6.1 An Interface to JML Specifications

Listing 2.40 shows the module type JML that defines the JML interface. A
module that implements the interface needs to provide the following ele-
ments.

• An implementation of the program State. The underlying domain de-
fines the program state for Java, which needs to be extended with
additional data structures in order to express the semantics of JML
constructs such as the pre-heap. The module needs to provide an im-
plementation of the two modules FrameAdds and Adds, which define
the local and global auxiliary data structures, respectively. With an
implementation of these additions, the module defines a fully imple-
mented program state.

• A definition of the initial State. The module needs to provide an
implementation of the function InitState , which yields the initial state
of programs. The function yields the state in the main method is
called. Depending on the implementation of the semantics, auxiliary
data structures may need to be built up at this point to get a proper
state to start with.

• A definition of how to build new frames. Similarly to the initial state,
a new frame for an invoked method needs to be built up by the im-
plementation of the JML semantics. The module provides an imple-
mentation of the function NewFrame. The function takes the invoked
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method, its parameters, and the current state as input and yields the
frame in which the first statement in the method body can be executed.

• An implementation of the JML semantics. Last but not least, the mod-
ule needs to provide an implementation of the modules AnnotationTable
and Assignables . The two modules define the meaning of the supported
JML constructs, using the syntax definition, the underlying domain,
and the auxiliary data structures for the program state as defined
above. In the two subsequent paragraphs, we inspect the module types
of these two modules and explain the individual function signatures.

1 Module Type JML.
2 (∗ To be implemented ∗)
3 Declare Module FrameAdds : ADDS.
4 Declare Module Adds : ADDS.
5

6 (∗ Define Frame and State ∗)
7 Declare Module Frame : FRAME with Module Adds := FrameAdds.
8 Declare Module State : STATE with Module Frame := Frame
9 with Module Adds := Adds.

10

11 (∗ To be implemented ∗)
12 Parameter InitState : ParamDict.t → State . t .
13 Parameter NewFrame : Method →ParamDict.t →State.t →Frame.t.
14

15 Declare Module AnnotationTable : ANNOTATION TABLE State.
16 Declare Module Assignables : ASSIGNABLES State.
17 End JML.

Listing 2.40: The module type JML defines the program state and gives
access to JML specifications. An implementation of this module can be
used as parameter to an operational semantics for Java.

The Annotation Table Interface

The annotation table shown in listing 2.41 provides access to the predicates
generated from the JML specifications, that either need to be asserted or
can be assumed at given program points by the application of the seman-
tics. The functions of the annotation table are pretty much self-explanatory.
Nevertheless, we provide a short description of the functions and discuss in
which situations to apply them.

• The functions Precondition and Postcondition yield the predicate de-
fined by JML specifications that is supposed to hold in the pre- and
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post-state of the corresponding method, respectively. The predicate
not only includes the directly related method specification clauses
such as requires, ensures, or signals, but also object invariants
and initially clauses. An application of the JML semantics can
assume that the predicate yielded by Precondition actually holds in
the pre-state of a method, and must assert the predicate yielded by
Postcondition in the post-states(s) of the method. Furthermore, the
two functions can be used to verify method calls: the predicate yielded
by Precondition of a callee needs to be asserted before calling it, and
the predicate yielded by Postcondition of a callee can be assumed upon
method return.

• If the supplied program counter points to either an assert or assume
statement, the function LocalAssertion yields the predicate argument
of the construct, which the application of the semantics can use as
follows. A verification environment needs to prove assert statements,
and uses assume statements to help the verification of the current goal.
A runtime assertion checker should check assert statements and may
ignore assume statements.

• For any kind of loop, the function LoopInvariant yields the conjunction
of all loop invariants defined for the loop. The predicate needs to hold
at the beginning and end of each loop iteration. Thus, in case of a
loop that does not contain a break statement, the predicate yielded by
LoopInvariant needs to hold after the loop terminated. In the presence
of a break statement, the JML reference manual suggests to precede
the break by an assert statement that defines what property holds
upon exiting the loop via the break statement, since the loop invariant
doesn’t need to hold at that point.

It may be surprising that the signatures of Postcondition, LocalAssertion ,
and LoopInvariant only feature one state although we need access to the pre-
state of the method, for instance to evaluate \old expressions. The reason
is that we can store the necessary information to reconstruct a pre-state
in the auxiliary data structures of the current method frame. There is a
good reason behind this decision: If we wanted to support \old expressions
with a label as second argument, which indicates to execute expression in the
program state at the labeled position instead in the pre-state of the method,
we would need access not only to the pre-state of the method, but also to
the states at given labeled positions in the method. In our approach, we can
achieve this by adding the information to reconstruct those states into the
auxiliary data structures of the program state and we do not need to change
the signature of the JML semantics interface just in order to accommodate
the additional feature.
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1 Module Type ANNOTATION TABLE (State : STATE).
2 Parameter Precondition:
3 Program →Class → Method →State. t → Prop.
4 Parameter Postcondition:
5 Program →Class → Method →State. t → Prop.
6 Parameter LocalAssertion:
7 Program →Class → Method →PC →State . t → option Prop.
8 Parameter LoopInvariant:
9 Program →Class → Method →PC →State . t → option Prop.

10 End ANNOTATION TABLE.

Listing 2.41: The interface of the annotation table

The Interface for Frame Conditions

We briefly recapitulate some important properties of assignable clauses:
assignable clauses cannot be checked at a given point of the method, but
needs to be preserved throughout method execution. Not only do we need
to ensure throughout method execution that we only assign to assignable
locations, these locations also depend on dynamic data groups that change
during method execution. Fresh locations from new objects are assignable
even if not mentioned in the assignable clause. Invoked methods not only
have to obey the own assignable clause, but also must not change locations
that are not assignable in any transitive caller.

To deal with all aspects of assignable clauses, we define the module
type ASSIGNABLE that provides functions that need to be used by the
application of the semantics at appropriate places. For each function, we
define the point at which it needs to be applied in order to serve its purpose.

• The function FieldUpdateCheck needs to be called before assigning to a
field. The function yields a predicate that holds if the field is assignable
in the current situation. The parameter of type Location refers to the
field that is about to be updated.

• The function MethodCallAction needs to be called upon method invo-
cation and allows the semantics to update its auxiliary data structures
in the method frame to reflect the changes of assignable locations from
the assignable clause of the callee. The parameters of types Class
and Method specify the callee. The yielded state is an updated copy
of the state provided as parameter.

• The function NewObjectAction needs to be called upon object creation.
The semantics can update its auxiliary data structures to ensure that
all locations of the new object are assignable for the current method.
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The parameter of type Object refers to the object identifier of the
newly created object.

• The function MethodReturnAction needs to be called upon method
return and gives the semantics the possibility to perform clean up
operations on its auxiliary data structures. The first parameter of
type State . t refers to the post-state of the callee, whereas the second
parameter of type State . t refers to the state of the caller as of the
point of invocation of the callee.

• The function FieldUpdateAction needs to be called upon a field update.
Any change in the heap structure also changes the content of dynamic
data groups. If the semantics uses auxiliary data structures that reflect
dynamic data groups, it needs to update them at this point. The
parameter of type Location refers to the field to be updated and the
parameter of type Value refers to the new value that will be assigned
to the field.

1 Module Type ASSIGNABLES (State : STATE).
2 Parameter FieldUpdateCheck:
3 Program →Location → State . t → Prop.
4 Parameter MethodCallAction:
5 Program →Class → Method →State. t → State . t .
6 Parameter NewObjectAction:
7 Program →Object → State . t → State . t .
8 Parameter MethodReturnAction:
9 Program →State . t → State . t → State . t .

10 Parameter FieldUpdateAction:
11 Program →Location → Value → State . t → State . t .
12 End ASSIGNABLES.

Listing 2.42: The interface to handle frame properties

2.6.2 The Definition of the JML Semantics

In this section we describe the implementation (definition) of the modules
AnnotationTable and Assignables . This implementation defines the semantic
meaning of the supported JML constructs. We place emphasis on faithful-
ness to the JML reference manual and readability of the definitions – we
do not intend to produce a semantics that can be computed efficiently or
exported as program. Thanks to the modular structure of our formalization,
these aspects can be added as applications of the formalization at any time
later on.
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Figure 2.3: A state with no global auxiliary data structures and several
auxiliary data structures on the level of method frames. All data types
are now defined, thus, all boxes are gray. The size of the boxes does not
correspond with the size of the data structure.

As usual, we present the definition of the semantics starting with the
top-most definitions from the annotation table and the Assignables module,
and dive into details as we go along. We highlight interesting aspects while
avoiding repetitive or uninteresting parts of the semantics’ definition.

Additions to the Program State

In order to express the semantics of JML constructs, we enrich the Java
method frame with additional data structures. Listing 2.43 shows the mod-
ule FrameAdds, an implementation of the module type ADDS, which we use
to build up a JML method frame. The module accommodates the following
data structures: a set of heap locations, a set of object identifiers, a tuple of
a heap data type and a parameter dictionary, and a dictionary containing
quantified variables.

The function assignables yields the set of heap locations that can be
assigned to throughout the method execution. The set of object identi-
fiers that we get from function fresh refers to the objects that have been
freshly allocated during the method execution; this includes objects created
in (transitive) callees of the method. The function pre provides the means
to reconstruct the pre-state of the current method. It yields the heap and
the parameter dictionary. As a last accessor function, we introduce quants
that yields a dictionary of variables. The JML semantics uses Variables from
this dictionary to evaluate quantifiers in JML expressions. We instantiate
the type t : Type, declared in ADDS, to be the type of the record, that is
t rec .
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The remainder of the module defines functions that facilitate accesses
to and updates of individual elements of the record. We highlight three
functions that work on the set of assignable heap locations and omit the
other accessor and update functions, which behave similarly, for the other
data structures.

The function set assignables is a typical setter, which takes the cur-
rent frame fr and a set of locations x and yields a new frame in which
the assignable locations have been set to x . Using this function, we define
more useful functions that directly provide set-operations on assignable lo-
cations in the frame. Function inter assignables takes a frame fr and a
set of locations and yields a frame that contains as assignable locations the
intersection of the pre-existing assignable locations and the provided set x .
15,17 We can see the use of notations to use the set intersection symbol “∩” to
represent the function AMSet.inter and the union of a singleton set “∪ {x}”
to represent the function AMSet.add

1 Module FrameAdds <: ADDS.
2

3 Record t rec : Type := make {
4 assignables : AMSet.t;
5 fresh : LocSet.t ;
6 pre : Heap.t ∗ ParamDict.t;
7 quants : VarDict. t
8 }.
9

10 Definition t := t rec .
11

12 Definition set assignables ( fr : t) (x : AMSet.t) : t :=
13 make x (fresh fr ) (pre fr ) (quants fr ).
14 Definition inter assignables ( fr : t) (x : AMSet.t) : t :=
15 set assignables fr (( assignables fr ) ∩ x).
16 Definition add assignable ( fr : t ) (x : Address) : t :=
17 set assignables fr (( assignables fr ) ∪ {x}).
18

19 . . .
20

21 End FrameAdds.

Listing 2.43: The auxiliary data structures for the frame

This implementation of the JML semantics doesn’t need to store any
data into global auxiliary data structures. Therefore, we instantiate the
data type t of module Adds in listing 2.44 to be an inductive type Singleton
that only contains one simple constructor. Thus, any variable of type Adds.t
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is equal to any other. Therefore, if the heaps and the frames in a two states
are equal, the whole states are equal.

1 Module Adds <: ADDS.
2 Inductive Singleton : Type :=
3 | singleton : Singleton .
4 Definition t := Singleton .
5 End Adds.

Listing 2.44: A minimalistic implementation of module Adds

Definition of the Initial State

We set up the initial state of a program as shown in listing 2.45. 11 We use
the predefined but unspecified heap InitHeap and 8 the predefined method
InitMethod whose body invokes main with the corresponding arguments. For
each concrete program run, the InitMethod needs to be specified according
to the command line arguments. Apart from InitHeap and InitMethod, ev-
erything is naturally set to empty initial values.

1 Definition InitState : State . t :=
2 let adds := FrameAdds.make
3 LocSet.empty
4 ObjSet.empty
5 (InitHeap, ParamDict.empty)
6 VarDict.empty in
7 let frame := Frame.build
8 InitMethod
9 ParamDict.empty

10 adds in
11 State . build InitHeap frame Adds. singleton .

Listing 2.45: The initial state of the program.

Definition of New Frames

To perform a method invocation, an operational semantics or any other
application of the JML semantics needs to build a new frame for the callee.
7 We initialize the frame using the function build from data type FRAME
that we’ve presented in listing 2.29 on page 59. The auxiliary data structures
are initialized as follows: 3 the assignable locations are initially the set of
effectively assignable locations Aeffective of the caller; that is, the union of its
assignable and fresh locations. Upon evaluation of the assignable clause(s)
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of the callee, this set will be intersected with the evaluated locations, but
it will never be extended to more assignable locations. 4 Naturally, the set
of newly allocated objects is initialized to the empty set. 5 We store the
current heap, which is the pre-heap of the method and the parameters to
the field pre. 6 Furthermore, we initialize the quantified variables to an
empty dictionary. Even if we use the method in a quantified expression, we
cannot access the quantified variables within the method, but would need
to pass them as parameters to the method.

1 Definition NewFrame (m:Method) (p:ParamDict.t) (st:State.t) : Frame.t :=
2 let adds := FrameAdds.make
3 st@fr@assignables ∪ ObjSet2LocSet st@fr@fresh
4 ObjSet.empty
5 (st @h , p)
6 VarDict.empty in
7 Frame.build m p adds.

Listing 2.46: The definition of how to build a new frame

Implementation of the Annotation Table Interface

Precondition Listing 2.47 shows the implementation of the function
Precondition of the AnnotationTable module. The precondition of a method
is a conjunction of three predicates.

2-7 The first part defines which object invariants have to hold at this
point. As we implement the visible state semantics for invariants, all object
invariants are assumed upon method entry, except for the invariants of the
current object if we are in a constructor of the object. To that end, we
perform a case split on the kind of method. If the method is a constructor,
we quantify over all invariants of all object but this. If the method is not
a constructor, we quantify over all invariants of all objects.

Furthermore, we quantify over all static invariants in our program. In
our formalization, we ignore the issues of static initialization and assume
that all types are fully initialized upon program start.

Finally, we state as the last part of the precondition, that there needs to
be at least one specification case for this method that defines a requires

clause that holds in the current state. We have already discussed the defini-
tion of DefinedCase on page 47. The predicate holds if the supplied specifi-
cation case sc is defined for method m in class c, that is, sc is either declared
in m of class c or any super-class of c.

1 Definition Precondition(p:Program)(c:Class)(m:Method)(st:State.t ):Prop:=
2 match METHOD.kind m , st @fr @this with
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3 | Constructor , Some loc ⇒
4 ∀ o : Location, o 6= loc → EvalObjectInvariant p m o st
5 | , ⇒
6 ∀ o : Location, EvalObjectInvariant p m o st
7 end
8 ∧
9 ∀ c ’, EvalStaticInvariant p c’ m st

10 ∧
11 ∃ sc , DefinedCase c m sc ∧ EvalRequires p m sc st .

Listing 2.47: The definition of the precondition of a method

A made-to-measure Coq Tutorial

Part 9 Pattern Matching on Several Variables

The pattern matching that we perform in the definition Precondition
mentions two comma-separated variables on which we perform a matching
simultaneously. This is a very convenient short cut instead of nesting two
matchings. A case matches, if and only if all constructors match. For each
pattern, we can use the default match “ ” independently. Internally, the 2-7

pattern matching is rewritten as nested matchings, e.g.:

match METHOD.kind m with
| Constructor ⇒

match st @fr @this with
| Some loc ⇒∀ o , o 6= loc → EvalObjectInvariant p m o st
| ⇒ ∀ o : Location, EvalObjectInvariant p m o st
end

| ⇒ ∀ o : Location, EvalObjectInvariant p m o st
end

Listing 2.48 shows the definition of the function EvalObjectInvariant . At
first glance, we can see that the signature of the function doesn’t match
its use in listing 2.47. The reason is that all evaluation functions for the
JML semantics are defined within a section that declares the following three
variables to specify the whereabouts of the current evaluation: variable p
of type Program, variable c of type Class, and a variable m of type Method.
We explain Coq sections in more details in the next tutorial.

If the method is declared as helper , we directly yield True, that is, we do
not evaluate the invariants in this case. If we want to evaluate the invariants
of object o for a non-helper method m, we generate a predicate that states
the following. 6 If the type of object o in the heap is an object with a class
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or interface name cn, and 7 if this name cn belongs to a class or interface
t specified in the program, then 8 for all invariants 9 defined in object o, 10

check the invariants hold in a state in which we set this to the object o.
As explained in section 2.3, the coverage of the syntax is nearly complete,

whereas we only define the semantics for JML level 0. Thus, the universe
type modifier um show up in the type, but we ignore it in the evaluation
function.

If any of the premises (6-9) of this predicate doesn’t hold, the predicate
obviously holds, which is the desired behavior. That is, we do not evaluate
the invariants for a non-allocated object o, or in an inconsistent state where
the type of o mentioned a non-existent class or interface.

10 We have an interesting application of the notations introduced in sub-
section 2.5.1. With the term “st [ fr := st@fr [ this := o]]”, we update the
state st with a new frame, which we produce by updating the parameter
this in the old state st@fr with o. Without our notations, this term would
have the following form:

(State . set fr st (Frame.set param (State. fr st) paramThis (Ref o)))

1 Definition EvalObjectInvariant (o : Object) (st : State . t) : Prop :=
2 if METHOD.isHelper m then
3 True
4 else
5 ∀ cn um t,
6 Heap.typeof st@h o = Some (Heap.ObjectObject cn um) →
7 LookupTypedef p cn = Some t →
8 ∀ inv ,
9 DefinedInvariant t inv →

10 EvalPredicate (INVARIANT.pred inv) st[fr := st@fr [ this := o ]].

Listing 2.48: The evaluation function for object invariants

The evaluation function for requires clauses in listing 2.49 is straight-
forward. We access the predicate of the requires clause of the specifica-
tion case sc, which yields the type optional Expression, see listing 2.12 on
page 45. We perform a pattern matching on the type optional , presented in
listing 2.13 on page 46. We use notations for the two constructors. (: expr :)
denotes that the requires clause is specified and contains the expression expr
as predicate. If the requires clause is specified, we evaluate the predicate,
otherwise, we yield the predicate NotSpecifiedRequires which is set to True.
However, an application of the semantics might want to set the defaults dif-
ferently, in which case the definition for NotSpecifiedRequires can be changed
accordingly.
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1 Definition EvalRequires (sc : SpecificationCase ) (st :State . t) : Prop :=
2 match REQUIRES.pred (CASE.requires sc) with
3 | (: expr :) ⇒ EvalPredicate expr st
4 | \ not specified ⇒ NotSpecifiedRequires
5 end.

Listing 2.49: The evaluation function for requires clauses

A made-to-measure Coq Tutorial

Part 10 Sections

Sections in Coq provide a nice way of simplifying the signatures of defini-
tions considerably. In the case above, most evaluation functions need access
to the abstract data types for the current program, class, and method. We
could have added them as parameters to each evaluation function, but this
makes the signatures of the definitions cumbersome. It is better to introduce
a section with the mentioned variables, see listing 2.50. Within the section,
all definitions can access these variables. With the 8 Check command, we
ask Coq to print out the signature of EvalObjectInvariant ; 9 the comment
shows the output. Unsurprisingly, EvalObjectInvariant is a function from
Location to State . t to Prop. If we print the signature of the same function
after the section EvalHelpers has been closed, we get a more complex sig-
nature from Program to Method to Location to State . t to Prop. As we can
verify in listing 2.48, the body of EvalObjectInvariant uses the variables p
and m, so the two additional arguments are added at the beginning.

1 Section EvalHelpers.
2 Variable p : Program.
3 Variable c : Class .
4 Variable m : Method.
5 Definition EvalObjectInvariant (o : Location) (st : State . t) : Prop :=
6 . . .
7

8 Check EvalObjectInvariant.
9 (∗ Output: Location → State. t → Prop ∗)

10 End EvalHelpers.
11

12 Check EvalObjectInvariant.
13 (∗ Output: Program →Method →Location → State. t → Prop ∗)

Listing 2.50: The usefulness of Coq sections
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Postcondition The definition for postconditions, shown in listing 2.51,
consists of a conjunction of three predicates, preceded by the definition of
variable st ’ to represent the pre-state of the current method.

4-11 The first part of the postcondition describes which object invariants
need to be considered, depending on the kind of method for which we com-
pute the postcondition. In the case of a constructor, we quantify over the
evaluation of all object invariants. Additionally, we evaluate all initially
clauses of the current object in this case. The postcondition of a finalizer
excludes the object invariants of the object that is being finalized. For a
normal method execution, the postcondition includes all object invariants.

As in the precondition, we evaluate the static invariants of all types in
the second conjunct, without considering static initialization issues.

Finally, 15-32 we define in which cases the method specification clauses
for normal and exceptional termination apply. We only need to consider
the specification cases that are defined for method m and whose requires

clause holds in the pre-state of the method. For these cases, we evaluate the
ensures clause if the method terminated normally, or the signals clause
as well as the signals_only clause if the method terminated exceptionally.
The field ret of the method frame yields a ReturnVal which is an inductive
type with the two constructors Normal val and Exception e. Thus, we can
perform a pattern matching on the return value to determine if the method
terminated normally or exceptionally.

1 Definition Postcondition (p : Program) (c : Class) (m : Method)
2 (st : State . t) : Prop :=
3 let st ’ := pre state m st in
4 match METHOD.kind m , st @fr @this with
5 | Constructor , Some loc ⇒
6 (∀ o : Location, EvalObjectInvariant p m o st) ∧
7 EvalInitially p c m st
8 | Finalizer , Some loc ⇒
9 ∀ o : Location, o 6= loc → EvalObjectInvariant p m o st

10 | , ⇒ ∀ o : Location, EvalObjectInvariant p m o st
11 end
12 ∧
13 ∀ c ’, EvalStaticInvariant p c’ m st
14 ∧
15 ∀ sc , DefinedCase c m sc →
16 match Frame.ret st@fr with
17 | Normal ⇒
18 EvalRequires p m sc st ’ →
19 EvalEnsures p m sc st
20 | Exception ⇒
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21 EvalRequires p m sc st ’ →
22 ( EvalSignals p m sc st ∧ EvalSignalsOnly p sc st)
23 end.

Listing 2.51: The definition of the postcondition of a method

The evaluation function for ensures clauses is comparable to the func-
tion EvalRequires, shown in listing 2.49. However, the evaluation functions
for signals and signals_only clauses differ quite a bit and we present them
in the following paragraphs. The function EvalInitially is straight-forward.
It quantifies over all initially clauses defined in the current object.

Listing 2.52 shows the evaluation function for signals clauses. 2 We
extract the signals clause from the specification case and assign it to the
variable s. 3 The premise sets the value of e to the exception object stored
in the frame. As we call EvalSignals within the Exception case of a pattern
matching on the return value, we know for sure that the premise holds. 4 We
store the returned exception as parameter to the method frame which can be
accessed by the predicate of the signals clause. The last part of the evalua-
tion function is again similar to the evaluation function for requires clause.
Either the clause is specified and the predicate evaluated, or the clause is
not specified and the function yields the default value NotSpecifiedSignals .

1 Definition EvalSignals (sc : SpecificationCase ) (st : State . t) : Prop :=
2 let s := CASE.signals sc in
3 ∀ e, Exception e = Frame.ret st@fr →
4 let fr ’ := (Frame.set param st@fr (SIGNALS.exception s) (Ref e)) in
5 match SIGNALS.pred s with
6 | (: expr :) ⇒ EvalPredicate expr st [ fr :=fr ’]
7 | \ not specified ⇒ NotSpecifiedSignals
8 end.

Listing 2.52: The evaluation function for signals clauses

The function for the signals_only clause is evaluates to True, if and
only if the the exception from the return value is a subtype of one of the
types declared in the signals_only clause. We see this behavior expressed
in 4-5 listing 2.53. The function assign compatible , defined as part of the
heap model, tests if the object at location loc could be assigned to the type
t, that is, the runtime type of loc is a subtype of t.

1 Definition EvalSignalsOnly (sc : SpecificationCase ) (st :State . t) : Prop:=
2 let s := CASE.signalsOnly sc in
3 ∀ loc , Exception loc = Frame.ret st@fr →
4 ∃ t , t ∈ (SIGNALS ONLY.types s) ∧



82 CHAPTER 2. A JML FORMALIZATION IN COQ

5 assign compatible p st@h (Ref loc) t .

Listing 2.53: The evaluation function for signals_only clause

Local Assertions and Assumptions As described in the paragraph on
the annotation table interface on page 69, The JML semantics offers access
to the predicate of an assume or assert statement, and the interface de-
scription describes how to use the predicates to reflect the JML semantics.
The function LocalAssertion yields the predicate of the assume or assert

statement, if there is such a JML statement at the given program counter,
otherwise it yields None.

Loop Invariants The function LoopInvariant yields a predicate consisting
of the conjunction of all loop invariants, if the statement at program counter
pc is a loop. If the loop does not contain a maintaining clause, the function
yields the default value NotSpecifiedLoopInvariant . As for local assertions
and assumptions, it’s up to the application of the semantics to use the
predicate as described in the annotation table.

Evaluation of JML Expressions

In the annotation table functions, we use function EvalPredicate to evalu-
ate JML predicates into Coq propositions. In JML, predicates are boolean
expressions. Thus, the function EvalPredicate is a synonym for the func-
tion EvalBoolExpression shown in listing 2.54. In the following, we present
how JML expressions are evaluated. JML expressions are a subset of Java
expressions with additional JML operators and primary expressions. JML
expressions need to be side effect free, that is, a JML expression is not sup-
posed to change any existing element in the state. However, JML expressions
can allocate new objects as long as side effects cannot be observed, for in-
stance by comparing object identities. This behavior is called weak-purity.
Therefore, JML expressions can only allocate new objects in the state and
change their fields. To faithfully map this behavior of weak-purity. Darvas
et al. discuss this matter in detail [24, 25]. In their approach, JML ex-
pressions not only yield a value when evaluating, but also track the store
changes during the evaluation of the expression. This is necessary to create
new objects in specifications and access their fields later on in specifications.
In our current formalization of JML expressions, we do not track the state
changes during the evaluation of JML expressions. Thus, we cannot access
locations from objects created within specifications.

We provide three functions to evaluate expressions. One function to
evaluate boolean expressions, one to evaluate expressions of a reference type,
and one to evaluate numeric expressions. As expressions can be nested, and
because the three kinds of expressions are mutually dependent, we need to
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define the evaluation functions as three Fixpoints that are defined together
using the keyword with, as described in tutorial 6 on page 49. As usual,
we want to explain the essential and interesting aspects of the evaluation of
JML expressions. In the listing 2.54 we show the JML expressions that we
want to discuss in the following paragraphs, but we omit large parts of the
Fixpoint definitions, indicated by ellipsis points “. . . ”.

The three functions have a common structure: each function performs
a pattern matching on the expression e. For some expressions, the func-
tion directly defines the evaluation of the expression. Among others, the
expressions 9 e1 <: e2 3 and 25 this are examples for this approach. This is
reasonable for simple definitions. If the evaluation of an expression is more
complex, we call an evaluation function to evaluate that kind of expression.
Examples for this approach are 6 BinaryCondBoolExpr and 15 the evaluation
of the JML primary expression \fresh, which call the evaluation functions
EvalBinaryCondBoolOp and EvalFresh, respectively.

Before we discuss the evaluation of some interesting kinds of expression,
let’s have a closer look at the arguments of the function 4-5 EvalExpression .
The first arguments are the functions EvalBoolExpression, EvalRefExpression,
and EvalNumExpression. This way, the function EvalExpression , which is de-
fined earlier in the program text has access to the three evaluation functions
to evaluate nested boolean, reference, and numeric expressions. Thus, we
combine the two techniques presented in the subsection “Statements and
Blocks” in 2.4.1 on page 47 and tutorial 6 on page 49 to deal with the
mutually recursive nature of expressions.

In tutorial 10 on page 79 how to use sections to introduce variables that
can be accessed by all definitions within the section and need to be provided
as additional arguments from outside the section.

1 Fixpoint EvalBoolExpression (e: Expression) (st :State . t) : Prop :=
2 match e with
3 | var | param | field | method | \ result . . . ⇒
4 v2b (EvalExpression EvalBoolExpression EvalRefExpression
5 EvalNumExpression e st)
6 | BinaryCondBoolExpr op e1 e2 ⇒
7 EvalBinaryCondBoolOp EvalBoolExpression op e1 e1 st
8

9 | e1 <: e2 ⇒
10 types compatible p (EvalType EvalRefExpression e1 st)
11 (EvalType EvalRefExpression e2 st)
12 | \old e ⇒
13 EvalBoolExpression e ( pre state m st)

3e1 <: e2 states that the evaluation of e1 yields a subtype of the evaluation of e2
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14

15 | \ fresh flist ⇒
16 EvalFresh EvalRefExpression flist st
17

18 | \forall qvar ; r ; e ⇒
19 ∀ v, EvalQuantifier EvalBoolExpression qvar r e v st
20 . . .
21 end
22

23 with EvalRefExpression (e: Expression) (st :State . t) : option Location :=
24 match e with
25 | this ⇒
26 v2l (ParamDict.get(Frame.params st@fr) paramThis)
27

28 | null ⇒
29 None
30 . . .
31 end
32

33 with EvalNumExpression (e : Expression) (st : State . t) : num :=
34 match e with
35 | BinaryIntExpr op e1 e2 ⇒
36 EvalBinaryNumOp op (EvalNumExpression e1 st)
37 (EvalNumExpression e2 st)
38 | Quantification q v r e ⇒
39 I ( EvalGeneralizedQuantifier EvalBoolExpression EvalNumExpression
40 q v r e st)
41 . . .
42 end.

Listing 2.54: The evaluation functions for boolean, reference, and numeric
expressions

Evaluation of Expressions Common to all Types There are quite
some JML Expressions that can be evaluated the same way, regardless of
the type of the expression. Examples are the evaluation of local variables,
parameter, field access, method calls, or access to the special \result vari-
able, to name some interesting candidates. In listing 2.54, we show 4-6 these
cases in the function EvalBoolExpression. A nearly identical handling for
these cases is also present in EvalRefExpression and EvalNumExpression, but
we omit them in the listing. We propagate the evaluation of these expres-
sions to the function EvalExpression , shown in listing 2.55. At that point,
we are not interested in the arguments of the different constructors, since
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we just forward the whole expression e to EvalExpression . Thus, we use un-
derscores to match the right number of arguments, without storing them in
variables. The function EvalExpression yields an option Value. Depending
on which function we call it from, we know whether the value should be a
boolean, reference, or number. In the case of EvalBoolExpression (for which
we expect to get a boolean value), the function v2b extracts the boolean
value from its input of type option Value. If input is not a boolean value,
the function yields the default value for booleans, UndefinedProp.

The definition of EvalExpression in listing 2.55 is very similar to the
definition of the typed evaluation function above with the difference, that
the function yields a Value instead of a boolean, reference or number. Local
variable and parameter access is straight-forward and can be evaluated in
one line, we simply retrieve the value stored in the corresponding dictionary
in the program state. We discuss the evaluation of fields and methods in
the following two paragraphs. The evaluation of the JML variable \result

extracts the value from the ret field of the method frame. If the method
terminated normally, EvalResult yields the returned value if there is any; in
case of exceptional termination, the function builds a Value from the yielded
exception object reference.

1 Definition EvalExpression (e: Expression) (st :State . t) : option Value :=
2 match e with
3 | var l ⇒ VarDict.get st@fr@vars l
4 | param par ⇒ ParamDict.get st@fr@params par
5 | field fsig o ⇒ EvalFieldAccess fsig o st
6 . . .
7 | method msig o params ⇒ EvalMethodInvocation msig o params st
8 | \ result ⇒ EvalResult st
9 | ⇒ None

10 end.

Listing 2.55: The evaluation functions for expressions common to booleans,
references and integers

Field Access The function EvalFieldAccess shown in listing 2.56 yields
the value of the static or instance field identified by fsig . In case of an
instance field, the second argument contains an expression for the target of
the field access, which evaluates to a heap location. Note that the data type
FieldSignature not only contains a field identifier, but also the class name
in which the field is defined, see listing 2.9 on page 43. Therefore, we only
need fsig to access a static field in the heap.

If we try to access a field in a non-wellformed expression, the function
yields None instead of a value. This is the case if we try to access an instance
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field without a target expression, if the field specified by fsig doesn’t exist
in the target object, if the target expression doesn’t evaluate to a object
reference, and if there doesn’t exist a static field with the given signature.

1 Definition EvalFieldAccess ( fsig : FieldSignature )( target :option Expression)
2 (st :State . t) : option Value :=
3 match target with
4 | Some target’ ⇒
5 match EvalRefExpression target ’ st with
6 | None ⇒ None
7 | Some loc ⇒ Heap.get st@h (Heap. InstanceField loc fsig )
8 end
9 | None ⇒Heap.get st@h (Heap. StaticField fsig )

10 end.

Listing 2.56: The evaluation function for field access

Method Invocation Listing 2.57 shows the part of EvalMethodInvocation
that deals with dynamic method invocation. We omit static method invoca-
tion as it is very similar but simpler than the dynamic invocation. We also
omit all the helper functions used to build up the parameters, but shortly
describe them in the text.

Firstly, 4 we evaluate the parameters of the method. The variable actuals
contains a list of Expressions that the function EvalParams evaluates into a
list of Values. We store that list into the variable pv. 6 We then perform
a pattern-matching on target to decide if we perform a dynamic or static
method invocation. 7 If target contains an expression, we assume dynamic
method invocation. 8 We evaluate the target to an object reference and 10

retrieve the type of the target object. If the target evaluates to a proper
heap location, 12 the function Lookup tries to find a method with signature
msig in the class denoted by cn or one of its super-classes. On success, 13 the
function yields the class name cn’ in which the method could be found and
the abstract data type of the method in question, m’. 14 If we retrieve the
abstract data type c’ for the class with the name cn’, we build a new method
frame to invoke m’. 16 With the function lv2params, we build a dictionary
of all parameters. The function retrieves the list of parameters from m’
and assigns a list of values to the parameters. Since we perform a dynamic
method invocation, the first parameter is this. Thus, we add a reference
value of the target object to the list pv. 17 With this parameter dictionary
we can now create the frame for method m’. At this point, everything is set
up to actually execute the method.

A method in a JML expression is always pure, that is, deterministic and
side effect free. Such a method behaves like a mathematical function. In
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our semantics, we declare a function EvalPureMethod which yields the result
of the method invocation.

1 Definition EvalMethodInvocation (msig : MethodSignature)
2 ( target :option Expression) ( actuals : list Expression)
3 (st :State . t) : option Value :=
4 let pv := EvalParams (METHODSIGNATURE.parameters (msig)2)
5 actuals st in
6 match target with
7 | Some target’ ⇒
8 match EvalRefExpression target ’ st with
9 | Some target’loc ⇒

10 match Heap.typeof st@h target ’ loc with
11 | Some (Heap.LocationObject cn um) ⇒
12 match Lookup p cn (msig)2 with
13 | Some (cn’, m’) ⇒
14 match PROG.class p cn with
15 | Some c’ ⇒
16 let params := lv2params m’ ((l2v (Some target’loc )):: pv) in
17 let fr ’ := NewFrame m’ params st in
18 EvalPureMethod p c’ m’ st[ fr :=fr ’]
19 . . .
20 end.

Listing 2.57: The evaluation function for method invocation

We can use the method’s specifications to axiomatize the behavior of
the function EvalPureMethod. The axiom EvalPureMethod def in listing 2.58
describes the evaluation function in terms of its pre- and postcondition. This
axiom is delicate, as it can introduce inconsistency in the case of a spurious
postcondition that doesn’t hold for any return value. Rudich et al. discuss
the issue of well-formedness of pure method specifications in [75].

1 Axiom EvalPureMethod def:
2 ∀ p c m st ,
3 Precondition p c m st →
4 Postcondition p c m
5 st [ fr := st@fr [ ret := Normal (EvalPureMethod p c m st)]].

Listing 2.58: The axiom EvalPureMethod def
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A made-to-measure Coq Tutorial

Part 11 Axiomatized Functions

In listing 2.57, we use a function 12 Lookup to retrieve the method for
a given method signature and class name. The signature of Lookup below
indicates that we use option as return type. That is, the function may or
may not find a method.

Program→ClassName→ShortMethodSignature→option(ClassName∗Method).

Bicolano, from which we use the formalization of classes and methods to
a great extent, does not feature such a function Lookup. However, it features
a predicate lookup as shown in listing 2.59 4. The predicate holds if the
tuple ClassName ∗ Method corresponds to the dynamically-bound method
for signature msig in class cn in program p.

1 Inductive lookup(p:Program) (cn:ClassName) (msig:ShortMethodSignature):
2 (ClassName ∗ Method) →Prop :=
3 | lookup no up :
4 ∀ meth ,
5 findMethod p (cn, msig) = Some meth →
6 lookup p cn msig (cn, meth)
7 | lookup up :
8 findMethod p (cn, msig) = None →
9 ∀ super res , direct subclass name p cn super →

10 lookup p super msig res →
11 lookup p cn msig res .

Listing 2.59: The inductive definition of the predicate lookup

Such a predicate is useful in proofs and in inductive definitions, but we
cannot use it in a function definition, as it doesn’t yield the method we’re
looking for, but just states weather or not a method is the right one.

The constructor 3 lookup no up covers the base case if a method with
signature msig is declared in the class with name cn. In this case, lookup
trivially holds. The constructor 7 lookup up describes the step case if the
class with name cn doesn’t define a method msig. In this case, lookup holds
for some tuple res if the predicate holds in the direct super-class super.

We axiomatize the function Lookup as shown in listing 2.60 The axiom
Lookup def states that Lookup yields some method if and only if the predicate
lookup holds for that method. The axiom Lookup undef states that the
function Lookup yields no method if and only if the predicate lookup does
not hold for any cn’ and m.

4This version of lookup is already a refactored, nicer version of the original Bicolano
lookup, but with the same signature.
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1 Axiom Lookup def:
2 ∀ p cn msig cn’ m ,
3 Lookup p cn msig = Some (cn’,m) ↔ lookup p cn msig (cn ’, m).
4

5 Axiom Lookup undef:
6 ∀ p cn msig ,
7 Lookup p cn msig = None ↔ (∀ cn’ m, ¬ lookup p cn msig (cn ’, m)).

Listing 2.60: The axiomatization of Lookup

To axiomatize a function based on a predicate, two important properties
need to be ensured:

• The predicate needs to behave like a function. That is, for the param-
eter of the predicate that acts as return value of the function, there is
only one possible value for which the predicate holds.

• Coq functions are always total, that is, we need to ensure that there
exists a value for the return type for which the predicate holds in
any possible environment. We can use option T as return type of the
function to manage it.

To show the first property, we need to show that there is only one possible
cn’ and m for which the predicate lookup holds in a given environment
specified by p, cn and, msig.

To show the importance of this property, we try to show that our axioms
are inconsistent with the following lemma:

Lemma Lookup evil:
∀ p cn msig cn1 cn2 m1 m2,
lookup p cn msig (cn1, m1) →
lookup p cn msig (cn2, m2) →
(cn1, m1) 6= (cn2, m2) →
False .

As this is the first time we show how to do a proof in Coq, we perform
every step in detail to give the interested reader a feeling for how proofs
are done in Coq. However, for the sake of readability, the proof obligations
are already quite simplified, e.g., we remove hypotheses from the goals if we
do not use them any more. In proofs later on, we would not go into such
details.

Proof. After introducing the premises as hypotheses, our goal is simply
“False”. To prove the proof obligation, we need to find a contradiction
in its hypotheses.
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H1: lookup p cn msig (cn1,m1)
H2: lookup p cn msig (cn2,m2)
H3: (cn1,m1) 6= (cn2,m2)

False

Apply axiom Lookup def on both hypotheses.

H1 Lookup p cn msig = Some (cn1,m1)
H2 Lookup p cn msig = Some (cn2,m2)
H3 (cn1,m1) 6= (cn2,m2)

False

Rewrite H1 in H2.

H2 Some (cn1,m1) = Some (cn2,m2)
H3 (cn1,m1) 6= (cn2,m2)

False

Use the inversion tactics in H2, see [19, section 10.5]

H3 (cn1,m1) 6= (cn2,m2)
H4 cn1 = cn2
H5 m1 = m2

False

Use the elim tactics in H3, which puts the negation of H3 as goal.

H4 cn1 = cn2
H5 m1 = m2

(cn1,m1) = (cn2,m2)

Rewrite H4 and H5 in the goal.

(cn2,m2) = (cn2,m2)

Finally, Coq is able to prove the goal with the tactic trivial .

In order to “defuse” this lemma, we need to show that its premise never
holds without using the axioms we’re about to justify.5 We need to prove
that H1, H2, and H3 from the lemma always lead to a contradiction, for
instance by showing that (cn1, m1) and (cn2, m2) are always equal if H1
and H2 hold, which is exactly the first property we discussed above.

So if we want to axiomatize a function as in listing Lookup def, we state
the following lemma, listing 2.61, which is relatively easy to prove.

5It is a good idea to put the lemma before the axioms in the Coq source, so that there
is no way the lemma could use them.
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1 Lemma lookup func:
2 ∀ p cn msig m m’,
3 lookup p cn msig m →
4 lookup p cn msig m’ →
5 m = m’.
6 Proof.
7 intros .
8 induction H.
9 inversion H0.

10 subst ; rewrite H in H1; inversion H1; trivial .
11

12 rewrite H in H1; inversion H1.
13

14 inversion H0.
15 rewrite H3 in H; inversion H.
16

17 apply IHlookup; clear IHlookup.
18 inversion H1; inversion H4.
19 rewrite H10 in H7.
20 inversion H9; inversion H12.
21 unfold PROG.defined Class in H13, H16.
22 rewrite H7 in H16; rewrite H16 in H13; inversion H13.
23 rewrite H20 in H18; rewrite H18 in H15; inversion H15.
24 rewrite H21 in H11; rewrite ← H11 in H8; rewrite H8.
25 trivial .
26 Qed.

Listing 2.61: Lemma lookup func that ensures that lookup is only valid for
one method.

Again, as it’s the first time, we show the proof script of this lemma and
explain it in detail, to give the reader an impression of the Coq development.

Proof. We prove the lemma by induction on the structure of the induc-
tive term 3 “lookup p cn msig m”. 9-12 The base case, that is, construc-
tor lookup no up, is fairly simple to prove by 9 splitting up the term 4

“lookup p cn msig m’” into its two constructors. If we compare both base
cases, we 10 easily figure out that the resulting method needs to be the same.
If we have constructor lookup no up for 3 and lookup up for 4, we can 12 show
a contradiction in the hypotheses.

The induction step case, that is, constructor lookup up, is a bit more
interesting. Again, 14 we split the term 4 “lookup p cn msig m’” into its
two inductive cases. 15 If the cases do not match, we again get contradicting
hypotheses. If we compare both constructors lookup up, we get the following
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goal.

. . .
H1 direct subclass name p cn super
H2 lookup p super msig res
H0 lookup p cn msig r ’
IHlookup lookup p super msig r ’ → res = r’
H4 direct subclass name p cn super0
H5 lookup p super0 msig r ’

res = r’
17 We apply the induction hypothesis IHlookup which has the premise

“lookup p super msig r ’” that is nearly identical to hypothesis H5. We now
need to prove that this premise holds. 18-24 The remainder of the proof
uses the slightly awkward inductive definition direct subclass name from Bi-
colano to show that super and super0 are equal, which is clear when looking
at H1 and H4 for a language with single inheritance. Proving this fact in-
volves a lot of unfolding of definitions and rewriting of hypotheses, but we do
not want to discuss this in details. We can then use the fact super = super0,
to rewrite the goal to “lookup p super0 msig r ’” which is identical to H5 and
the goal can therefore be proven by 25 trivial .

Java Operators The only operator evaluation function that we look at is
used in 43-44 listing 2.54. The function EvalBinaryNumOp evaluates a binary
operation on numbers to a numeric value. We pass the operator and the
result of the evaluations of the operands to the function.

Listing 2.62 shows the definition of this function. It takes care of the
conversion of the different numeric types of the operands and the result, as
described in chapter 5 of the Java language specification [36]. We perform a
simultaneous matching on both operands and apply widening and narrowing
operations where necessary.

The type of the result is the larger type of the two operands. To com-
pute the value, both operands are converted to integers and handed to the
function EvalBinaryIntOp which yields the result of the integer operation.
The definition of this function is not very interesting, as it simply calls the
corresponding functions of the abstract data type for numbers, described in
paragraph about Java numbers on page 66.

1 Definition EvalBinaryNumOp (op : BinaryIntOp) (n1 n2 : num) : num :=
2 match n1 , n2 with
3 | I i1 , I i2 ⇒ I ( EvalBinaryIntOp op i1 i2)
4 | I i1 , B b2 ⇒ I ( EvalBinaryIntOp op i1 (b2i b2))
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5 | I i1 , Sh s2 ⇒ I ( EvalBinaryIntOp op i1 ( s2i s2))
6 | B b1 , I i2 ⇒ I ( EvalBinaryIntOp op (b2i b1) i2)
7 | B b1 , B b2 ⇒ B (i2b (EvalBinaryIntOp op (b2i b1) (b2i b2)))
8 | B b1 , Sh s2 ⇒ B (i2b (EvalBinaryIntOp op (b2i b1) ( s2i s2)))
9 | Sh s1, I i2 ⇒ I ( EvalBinaryIntOp op ( s2i s1) i2)

10 | Sh s1, B b2 ⇒ B (i2b (EvalBinaryIntOp op ( s2i s1) (b2i b2)))
11 | Sh s1, Sh s2 ⇒ Sh(i2s (EvalBinaryIntOp op ( s2i s1) ( s2i s2)))
12 end.

Listing 2.62: The evaluation functions for binary integer operators

The \fresh Expression We focus on the definition of the construct
\fresh, representative for many other JML operators. The JML primary
expression \fresh takes a list of expressions as parameters and expresses
that the evaluations of the parameters are references to objects that have
been freshly allocated during method execution. That is, in the pre-state of
the method, these objects were not yet allocated.

We discuss the definition of \fresh shown in listing 2.63, starting with
the innermost constructs. We evaluate each expression in the list flist
to a heap location by mapping the evaluation function for reference ex-
pressions to each element of flist . The innermost pattern matching re-
places the option Location yielded by EvalRefExpression with a Location. 6 If
EvalRefExpression yields None, which is the only other option to Some loc,
we yield the location UndefinedLocation. For all locations in the computed
list, the heap function typeof should then yield None in the pre-heap. Thus,
the object is not allocated in that heap. For this definition to be correct, we
need to specify that UndefinedLocation is not allocated, which is a natural
choice.

1 Definition EvalFresh ( flist : list Expression) (st : State . t) : Prop :=
2 ∀ loc ,
3 loc ∈ (map (fun e ⇒
4 match EvalRefExpression e st with
5 | Some loc ⇒ loc
6 | ⇒ UndefinedLocation
7 end) flist ) →
8 Heap.typeof (st@fr@preheap) loc = None.

Listing 2.63: The evaluation function for \fresh expressions

Quantified Expressions We define the function EvalQuantifier to eval-
uate the body of quantified expressions. A quantified expression in JML
has the form “quant qvar ; r ; e”, where quant is one of \forall and
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\exists. The variable qvar is the variable we quantify over, r is a range
predicate that specifies the valid range for values of qvar and e is the quan-
tified expression.

In listing 2.54 we show 21 the case for the simplified version of \forall
that only quantifies over one variable qvar. In JML, a quantifier can men-
tion a list of quantified variables. We desugar these expressions into nested
quantified expressions with only one variable each. We use the Coq quanti-
fiers ∀ and ∃ to quantify over the value v, which is passed as argument to
the function EvalQuantifier .

The definition of the function in listing 2.64 reveals what happens to the
value v that we quantified over. We store the value v assigned to the key
qvar into the dictionary quants of the frame additions. Then we evaluate the
range predicate r and the expression e in a state with the updated frame into
two Coq propositions. The function EvalQuantifier holds, if the evaluation
of r implies the evaluation of e.

1 Definition EvalQuantifier (qvar : Var) (r : Expression) (e : Expression)
2 (v : Value) (st : State . t) : Prop :=
3 let fr ’ := st@fr [quants:= VarDict.update st@fr@quants qvar v] in
4 let e’ := EvalBoolExpression e st [ fr :=fr ’] in
5 let r ’ := EvalBoolExpression r st [ fr :=fr ’] in
6 r ’ → e ’.

Listing 2.64: The evaluation function for universal and existential quantifi-
cation

Implementation of the Frame Conditions Interface

The implementation of the frame condition interface reflects the semantic
understanding of assignable clauses in the presence of static and dynamic
data groups.

Listing 2.65 shows the definition of function FieldUpdateCheck. The func-
tion describes a proposition that is equivalent to True if the assignment is
permitted by the assignable clause. Concretely, the definition states that 3

the field is in the set of assignable locations or 5 the field’s target is a freshly
allocated object. The function LocInObjSet extracts the object identifier
from the location loc and checks if the set st@fr@fresh contains that object
identifier.

1 Definition FieldUpdateCheck (p:Program) (loc:Location) (st :State . t ):
2 Prop :=
3 loc ∈ st@fr@assignables
4 ∨
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5 LocInObjSet loc st@fr@fresh .

Listing 2.65: The implementation of the function FieldUpdateCheck

Listing 2.66 shows the definition of function MethodCallAction. The
method updates the set of assignable locations in the method frame ac-
cording to its specification.

Upon method frame creation for the callee, the set of assignable locations
in the new frame has been initialized to the assignable locations from the
caller. Now, 3 we evaluate the assignable clause of the callee to a set
of locations, locs , and 4 intersect the two sets. Thus, the new content of
assignables is the locations that can be assigned to in the current method
as well as all transitive callers. In the presence of data groups, the evaluation
of the assignable clause is tricky. We devote the next subsection to this
matter.

1 Definition MethodCallAction (p:Program)(c:Class)(m:Method)(st:State.t ):
2 State . t :=
3 let locs := UnfoldDatagroups p st@h (EvalAssignableClause p c m st) in
4 st [ fr := st@fr [ assignables :∩ locs ]].

Listing 2.66: The implementation of the function MethodCallAction

Listing 2.67 shows the definition of function NewObjectAction. The
method frame contains an auxiliary data structure fresh to store newly
allocated objects. We keep this data structure up to date by adding the
object identifier obj to the set of new objects upon object creation.

1 Definition NewObjectAction (p:Program) (obj:Object) (st :State . t) :
2 State . t :=
3 st [ fr := st@fr [ fresh :+ obj ]].

Listing 2.67: The implementation of function NewObjectAction

Listing 2.68 shows the definition of function MethodReturnAction. The
function builds the program state of the caller after the execution of the
callee has terminated. We take the global data structures from the post
state of the callee and update the fresh objects in the method frame of the
caller. Thanks to our notations, all of these operations can be written in one
relatively simple term. st c refers to the post-state of the callee and st refers
to the state of the caller as of method invocation. We replace the method
frame of st c by the frame from the caller, but not before we union the sets
of fresh objects from the caller and the callee. Thus, we get a program state
that represents the post state of the call, from the callers point of view.
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1 Definition MethodReturnAction (p:Program) (st c:State.t) (st :State . t ):
2 State . t :=
3 st c [ fr := st@fr [ fresh :∪ st c@fr@fresh ]].

Listing 2.68: The implementation of function MethodReturnAction

Listing 2.69 shows the definition of function FieldUpdateAction. As this
implementation of the semantics of assignable clauses doesn’t use any aux-
iliary data structures that depend on the value of fields, there is nothing to
do in this function.

Although not used in this implementation, we keep the function in the
interface for frame conditions, as we might want to express the semantics of
assignable clauses differently, using auxiliary data structures that depend
on the current structure of the dynamic data groups, see chapter 4.

1 Definition FieldUpdateAction (p:Program) (loc:Location) (v:Value)
2 (st :State . t) : State . t :=
3 st .

Listing 2.69: The implementation of function FieldUpdateAction

Evaluation of Assignable Locations

The definition MethodCallAction uses the two functions EvalAssignableClause
and UnfoldDatagroups to retrieve the heap locations that are declared assign-
able in the callee’s specification.

The function EvalAssignableClause shown in listing 2.70 yields the lo-
cations directly represented by the assignable clauses of all specifications
whose requires clause holds, we call them valid cases. The yielded set does
not include the locations that are implicitly assignable via a data group.
The function 3 ValidStoreRefs yields the list of assignable store refs of all
valid specification cases. It yields the store ref \nothing if either all valid
specification cases declare assignable \nothing or some of the cases are
assignable \not_specified and the application of the JML semantics de-
cides to treat undefined assignable clauses as assignable \nothing. This
can be achieved by defining the parameter NotSpecifiedAssignableClause to
be \nothing. ValidStoreRefs yields the store ref \everything if there is at least
one valid specification case that contains assignable \everything or one
with assignable \not_specified and the application of the JML semantics
decides to treat undefined assignable clauses as assignable \everything.
This is the default setting in our semantics.

We then perform a pattern matching on the result of ValidStoreRefs .
The two cases \nothing and \everything are trivial. The third case puts all
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locations denoted by the list of store refs into the resulting set of locations.
The function 9 StoreRef2Location yields a singleton set if the store ref denotes
a single location in the heap, that is, a field or an array location, and a set of
several locations if the store ref denotes all fields of an object or a range of
array elements. Beside the fact that a store ref can denote several locations,
its evaluation is essentially the same as evaluating a field or array access.
StoreRef2Location evaluates the target to an object identifier if the store ref
is not a static field, and then builds a location for each field identifier or
array index.

1 Definition EvalAssignableClause (p:Program) (c:Class) (m:Method)
2 (st :State . t) : LocSet.t :=
3 match ValidStoreRefs p c m st with
4 | \nothing ⇒ LocSet.empty
5 | \everything ⇒ AllLoc st@fr@preheap
6 | StoreRefs srl ⇒
7 fold right
8 (fun sr locs ⇒
9 LocSet.union (StoreRef2Location p st@fr sr ) locs )

10 LocSet.empty
11 srl
12 end.

Listing 2.70: The function EvalAssignableClause

Unfolding of Data Groups The function UnfoldDatagroups shown in
listing 2.71 takes the set of heap locations yielded by EvalAssignableClause
and unfolds the data groups of these locations, that is, adds all locations
that are contained in the data groups to the set of assignable locations.

We provide an axiomatic definition of UnfoldDatagroups, based on a pred-
icate FieldInDg p h f dg, that holds if field f is directly or transitively con-
tained in the data group dg in the environment specified by program p and
heap h.

The axiom UnfoldDatagroups def states that 3 a field f is in the set yielded
by UnfoldDatagroups p h dgs if and only if 5 there exists a data group dg in
the set dgs that contains the field f, where dgs is the set of locations that
should be unfolded.

1 Parameter UnfoldDatagroups: Program →Heap.t →LocSet.t → LocSet.t .
2 Axiom UnfoldDatagroups def: ∀ p h f dgs,
3 f ∈ (UnfoldDatagroups p h dgs)
4 ↔
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5 ∃ dg, dg ∈ dgs ∧ FieldInDg p h f dg.

Listing 2.71: An axiomatization of function UnfoldDatagroups

Data Group Membership Listing 2.72 shows the inductive definition
of predicate FieldInDg. The definition features a step case and three base
cases. FieldInDg step defines transitivity: if field f is in a data group dg’,
and dg’ is in dg, then f is also in dg. FieldInDg same defines reflexivity: a
field is always in its own data group. The two remaining rules define the
cases that field f is directly contained in dg, either statically or dynamically.

1 Inductive FieldInDg (p:Program)(h:Heap.t):Location→ Location→ Prop :=
2 | FieldInDg step : ∀ f dg dg’,
3 FieldInDg p h dg’ dg →
4 FieldInDg p h f dg’ →
5 FieldInDg p h f dg
6 | FieldInDg same : ∀ f dg,
7 f = dg →
8 FieldInDg p h f dg.
9 | FieldInDg static : ∀ f dg,

10 direct FieldInDg static p f dg →
11 FieldInDg p h f dg
12 | FieldInDg dynamic : ∀ f dg pivot ,
13 direct FieldInDg dynamic p h f dg pivot →
14 FieldInDg p h f dg

Listing 2.72: The inductive definition of predicate FieldInDg

We can determine static data group membership on a purely syntactical
level. Field f is statically contained in dg exactly when the following three
propositions are true.

1. The locations f and dg are instance fields.

2. The two fields f and dg are defined in the same object.

3. The field f features a static data group declaration, that is, an “in”
clause, that mentions the field dg.

Listing 2.73 shows the definition of the predicate direct FieldInDg static
as an inductive data type. 4,5 We express the first proposition by defining that
f and dg are equal to instance fields with fresh variables for object identifiers
and field signatures. 6 The second property is expressed by stating that the
just-mentioned object identifiers are equal. The third property is slightly
more difficult to express, as we need to extract the information from the
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DATA GROUP data type accessed by the function dataGroups in the FIELD
data type, see 2.4.1 on page 42. 7 We define the variable field to be the
field data type with signature field fsig in program p. 8 The field’s list of
data group declarations contains a data group dg decl that is 9 static and 10

contains the field signature of dg.

1 Inductive direct FieldInDg static (p:Program):Location→Location→Prop:=
2 | direct FieldInDg static def :
3 ∀ dg f dg obj dg fsig f obj f fsig field dg decl ,
4 (∗ 1 ∗) f = Heap.InstanceField f obj f fsig →
5 dg = Heap.InstanceField dg obj dg fsig →
6 (∗ 2 ∗) dg obj = f obj →
7 (∗ 3 ∗) findField p f fsig = Some field →
8 dg decl ∈ (FIELD.dataGroups field) →
9 DATA GROUP.isDynamic dg decl = false →

10 dg fsig ∈ (DATA GROUP.dataGroups dg decl) →
11 direct FieldInDg static p f dg.

Listing 2.73: The inductive definition of predicate direct FieldInDg static

Dynamic data groups depend on the value of pivot fields that defines
the relationship between the data group and the field. Field f is dynami-
cally contained in data group dg via the pivot field pivot exactly when the
following four propositions are true.

1. The locations f, dg, and pivot are instance fields.

2. The fields pivot and dg are defined in the same object.

3. The field pivot points to the object in which f is defined. For this, we
need to have the heap in the environment.

4. The field pivot features a dynamic data group declaration, that is, a
“maps . . . \into” clause, that mentions the field signature of dg as
data group and the field signature of f as target.

In listing 2.74 we present the inductive definition of the predicate direct
FieldInDg dynamic. It is very similar to the predicate for static data groups.
Again, the numbers in comments relate the premises of the inductive defi-
nition to the items above.

1 Inductive direct FieldInDg dynamic (p : Program)(h : Heap.t): Location →
2 Location → Location → Prop :=
3 | direct FieldInDg dynamic def :
4 ∀ dg f dg obj dg fsig f obj f fsig pivot obj pivot fsig pivot field
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5 pivot loc dg decl ,
6 (∗ 1 ∗) f = Heap.InstanceField f obj f fsig →
7 dg = Heap.InstanceField dg obj dg fsig →
8 pivot = Heap.InstanceField pivot obj pivot fsig →
9 (∗ 2 ∗) dg obj = pivot obj →

10 (∗ 3 ∗) Heap.get h pivot = Some (Ref f obj)→
11 (∗ 4 ∗) findField p pivot fsig = Some pivot field →
12 dg decl ∈ (FIELD.dataGroups pivot field) →
13 DATA GROUP.isDynamic dg decl = true →
14 DATA GROUP.pivotTarget dg decl = Some (FieldDg f fsig) →
15 dg fsig ∈ (DATA GROUP.dataGroups dg decl) →
16 direct FieldInDg dynamic p h f dg pivot .

Listing 2.74: The inductive definition of predicate direct FieldInDg dynamic

2.7 Summary

In this chapter we presented a formalization of JML in Coq, which is suit-
able for both meta-reasoning and program verification. Its extendible and
modular definition allows easy integration of new aspects and constructs.
Furthermore, the separation of the JML semantics from the operational se-
mantics of Java enables to use the formalization as part of an already existing
verification environment. As opposed to other formal JML definitions, our
formalization faithfully describes the behavior of assignable clauses.



Chapter 3

An Efficient RAC for
Assignable Clauses

In this chapter we present the first algorithm to check assignable clauses
at runtime, in the presence of dynamic data groups. Dynamic data groups
turn the checking of assignable clauses into a difficult and inherently non-
modular task. A data group contains different members over time and can
get very large, only bounded by the number of allocated objects in the heap.

Following the description of the semantics of assignable clauses in sec-
tion 1.8.2 on page 22, we could come up with a näıve way of implementing
a runtime assertion checker: upon method invocation, we create a set of
assignable locations and unfold all data groups in that set. We intersect
the resulting set with the set of effectively assignable locations of the caller
(because the frame conditions from both the caller and the callee need to
be respected). Furthermore, we keep track of a set of fresh locations which
we update upon object creation and pass to the caller upon method return
(because the caller can update locations that are freshly allocated in the
callee). Checking if a location is assignable would be a simple lookup in the
set of assignable locations and the fresh set. The time and memory overhead
of this approach is linear to the number of locations in the assignable and
fresh sets for each method invocation.

This approach has two major shortcomings. Firstly, unfolding all data
groups mentioned in an assignable clause in the pre-state of a method is
very expensive if the data groups are large (which is a realistic assumption).
Secondly, it is often the case that many of these locations would not be
updated during the execution of the method. That is, we might spend a
significant effort in unfolding a huge data group without ever actually using
most of the gained information. We discuss both issues in more detail in
section 3.4 on page 111.

Overview. Section 3.1 explains the approach we choose to overcome the
issues described above. Section 3.2 introduces an example that we will use

101
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in the following sections to explain the algorithm. Section 3.3 introduces
the algorithm to check assignable clauses with static data groups. In this
section, we concentrate on the representation of assignable clauses as well
as the efficient operations based on bitsets and hash-based data structures.
Section 3.4 starts with observations on dynamic data groups followed by the
algorithm to check assignable clauses with dynamic data groups. Section
3.5 introduces two optimizations that are easy to accomplish and necessary
to achieve the goal that the algorithm does not perform worse than the
näıve implementation in any case. We conclude the chapter with section
3.6 where we briefly discuss the implementation of the runtime assertion
checker in Java, present an experimental evaluation of the algorithm for an
example that showcases a difficult data structure to handle, and discuss the
theoretical results on time and space overhead.

3.1 Approach

Our algorithm concentrates on minimizing the time overhead while keeping
the memory footprint acceptable. While it is not possible to define an al-
gorithm for this task that clearly performs better than the näıve version in
every case, it is certainly possible to come up with a solution that can check
assignable clauses with only little time overhead and moderate memory
consumption in the average case. In the worst case, we want our algorithm
to perform no worse than the näıve implementation of the semantics dis-
cussed at the start of this chapter. In order to achieve our goal, we attack
the problem from three sides.

• We provide efficient implementations of two operations that are heav-
ily used in our algorithm: checking if an assignable clause men-
tions a certain location or data group, and collecting all static data
groups that contain a location. We introduce new data structures for
assignable maps and for static data groups, based on bitset operations,
to achieve this goal.

• We reduce memory consumption and runtime overhead by introducing
the concept of lazy unfolding of dynamic data groups to avoid unneces-
sary overhead. Instead of unfolding the data groups of an assignable

clause in the pre-state of the method, we track the changes to dynamic
data groups during method execution and only store the difference be-
tween the pre-state and the current state. We can decide at compile
time which operations trigger a change to the dynamic data groups
and instrument the code at that point to store the changes.

• We optimize time complexity by caching the result of checking whether
a location is assignable, as this information can be reused within the
same method.
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3.2 Running Example

We introduce a running example which we refer to in the subsequent sections
in order to illustrate how our algorithm works. The example introduces
a balanced binary tree implementation of an in-memory data store. We
assume the typical situation for a data store: it contains a large number of
items and the content of the store changes frequently.

The store can be accessed through the public interface of class Store,
which we present in listing 3.1. The store features two public fields struct

and footprint of type JMLDataGroup. The type JMLDataGroup indicates
that the only purpose of the fields is the data groups that they implicitly
define. The data group struct contains all heap locations that are used to
structure the storage, but not the items. The data group footprint contains
all heap locations that refer to data currently being stored. Using these two
data groups, we can define frame conditions for the interface methods of the
store, without revealing implementation details.

Let’s look at the specification of the method 14 put. The 11 assignable

clause allows the method to change the internal structure of the store ar-
bitrarily, but no other heap location can be assigned to. Most notably, no
data from the stored items can be updated.

The implementation of put 18 delegates the task to the root node of the
internal tree, if the store already contains at least one item, or 16 creates a
new root node containing the first item.

The tree consists of nodes of type Node. The field root is 5 statically
contained in the data group struct of the store. Furthermore, root features
a data group struct, which we 6 declare to be dynamically contained in
data group struct of the store. Finally, root also features a data group
footprint, which we 7 declare to be dynamically contained in data group
footprint of the store.

We declare the method 22 contains to be pure, which allows us to use
it in specifications. It yields true if the store contains a node with an item
equal to i.

1 public class Store {

2 public JMLDataGroup struct; // 0

3 public JMLDataGroup footprint; // 1

4

5 private Node root; //@ in struct; // 2

6 /*@ maps root.struct \into struct; */

7 /*@ maps root.footprint \into footprint; */

8

9 /*@ public normal_behavior

10 @ requires true;



104 CHAPTER 3. AN EFFICIENT RAC FOR ASSIGNABLE CLAUSES

11 @ assignable this.struct;

12 @ ensures this.contains(i);

13 @*/

14 public void put(Item i){

15 if (root == null){

16 root = new Node(i);

17 } else {

18 root.insert(i);

19 }

20 }

21

22 public /*@ pure */ boolean contains(Item i){ . . . }

23

24 . . . // Other fields and methods omitted.

25 }

Listing 3.1: Excerpt of the class Store. We highlight the field declarations
and the methods put to add new items into the store, and contains to
query the presence of an item in the store. We provide an enumeration of
the fields in the comments behind the field declarations, which will help to
explain the algorithm in the next sections.

Listing 3.2 shows an excerpt of class Node. As we have seen in the
definition of the root node in Store, the Node class features the two data
groups struct and footprint. Moreover, a node has two children, left
and right that contain subtrees of nodes, as well as the payload of type
Item.

The fields left and right are part of the structure of the store, thus we 5,9

declare them to be statically contained in struct. Furthermore, the struct
data group of the left subtree is declared to be 6 dynamically contained in
the struct data group of the current node. Similarly, left.footprint is
dynamically contained in the data group footprint of the current node.
The same applies to the data groups struct and footprint of the right
subtree. Furthermore, we declare that the data group footprint of the
item is dynamically contained in the data group footprint of the current
node.

The class Node provides a 17 constructor, which allows us to directly
initialize a node with a given item. The method 20 insert is used by the
put method of Store to insert a new item into the tree at the appropriate
position. For both the constructor and the method insert, we provide a
lightweight method specification that only mentions the assignable clause.
Furthermore, the Node class features a private method 22 balance in order
to rebalance the tree after insertion and deletion of nodes. We choose not
to provide any specifications for this internal method.
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1 class Node {

2 JMLDataGroup struct; // 0

3 JMLDataGroup footprint; // 1

4

5 private Node left; //@ in struct; // 2

6 /*@ maps left.struct \into struct; */

7 /*@ maps left.footprint \into footprint; */

8

9 private Node right; //@ in struct; // 3

10 /*@ maps right.struct \into struct; */

11 /*@ maps right.footprint \into footprint; */

12

13 Item item; // 4

14 /*@ maps item.footprint \into footprint; */

15

16 //@ assignable this.item;

17 Node(Item i) { item = i; }

18

19 //@ assignable this.struct;

20 void insert (Item i) { . . . }

21

22 private void balance() { . . . }

23

24 . . . // Other methods omitted.

25 }

Listing 3.2: Excerpt of the class Node. We highlight the field declarations,
the insert method and a private method balance. Again, we provide an
enumeration of the fields in the comments behind the field declarations.

Finally, we introduce class Item in listing 3.3. The class features a data
group footprint which contains the fields id and payload. If an item is
stored in a node, the data group footprint of Item is contained in the data
group footprint of the node, as we can see in 14 listing 3.2.

The class features a method copy which behaves similarly to clone. If
the other item is selected, the fields id and payload of this item are set
to point to the same objects. Furthermore, the other item is deselected.

The assignable clause of the method allows the update of any location
contained in footprint as well as the field selected of other.

1 public class Item implements Comparable {

2 public JMLDataGroup footprint; // 0

3
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4 private String id; //@ in footprint; // 1

5 private /*@ spec_public */ boolean selected; // 2

6

7 private Object payload; //@ in footprint; // 3

8

9 /*@ public normal_behavior

10 @ requires other != null && other.selected = true;

11 @ assignable this.footprint, other.selected;

12 @ ensures this.equals(other);

13 @*/

14 public void copy(Item other){

15 id = other.id;

16 payload = other.payload;

17 other.selected = false;

18 }

19 . . . // Other fields and methods omitted.

20 }

Listing 3.3: Excerpt of the class Item. The class stores an arbitrary payload
under a given id. We provide an enumeration of the fields in the comments
behind the field declarations, which will be used in section 3.3.1.

3.3 Checking Assignable Clauses with Static Data
Groups

As a first step, we present an algorithm to check assignable clauses in the
presence of static data groups only. Thus, we do not have to deal with the
non-modularity introduced by dynamic data groups. However, we need to
come up with a very efficient way of checking static data group member-
ship, since we use this operation very frequently when checking assignable

clauses with dynamic data groups, as presented in the next section.

3.3.1 Data Structures

Our goal is to check assignable clauses in the presence of static data groups
in constant time. The following operations are involved in the check for field
updates:

1. Looking up all assignable fields of a given object.

2. Looking up all data groups that contain a given location.

3. Deciding whether or not the intersection between two sets of fields of
an object is empty.
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We introduce the following data structures to perform all three tasks in
constant time.

Field Identifiers

We enumerate the fields of a class such that at runtime, even in the presence
of inheritance, every field of an object has a unique number. In listings 3.1,
3.2, and 3.3 from the running example, we show these numbers in comments
behind field declarations, to help the reader to understand the algorithm.

We use the assigned numbers as positions in bitsets and arrays. Thus we
start numbering with 0 and increment the number by one for each field. If
the class inherits fields from a super type other than Object, the first field
gets as number the total number of fields from the super-types.

Assignable Locations

As explained in section 1.8.2, the evaluation of assignable clauses leads to
a set of locations. We represent this set by a map from objects to bitsets,
in which the keys of the map are the objects of the locations, and each
bit of the bitset represents a field of that object. The position of the bit
corresponds to the number assigned to the field. If a field of an object is
declared to be assignable, its corresponding bit is set.

As opposed to the semantic description of data groups in section 1.8.2,
we do not unfold the data groups mentioned in the assignable clause. To
clarify the difference to the semantics, we introduce the notation Adeclared

m

to refer to the locations that are explicitly declared to be assignable in m.
Thus, as opposed to the set Am, Adeclared

m doesn’t contain the locations that
stem from unfolding the data groups.

This design allows us to perform the first operation mentioned in section
3.3.1 in constant time, as we use a hash map as the underlying data structure
for Adeclared

m , and there are only a handful of elements in the hash map.

Example. For method copy of class Item in listing 3.3, we represent the
assignable clause this.struct, other.selected by the following assign-
able map:

Adeclared
copy = {this 7→ [X · · · ] , other 7→ [ · X · · ]}

The first bit in the bitset of object this represents field footprint and
the second bit in the bitset of object other represents field selected.

To retrieve the bitset of a given object o in an assignable map A, we
write A[o]. We overload the notation to query whether or not a location is
mentioned in a set A. That is, A[o.f ] yields true if o.f is in A and false
otherwise. If the map does not contain an object o, A[o] yields an empty
bitset. To store object o with bitset bs in A, we write A[o]← bs.
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Example. Adeclared
copy [other] yields [ · X · · ], that is, other.selected is de-

clared to be assignable, whereas Adeclared
copy [other.struct] simply yields false.

Fresh Locations

If an object is newly created, all locations of that object are fresh. To
represent the set of fresh locations FC, we need to save only the set of newly
allocated objects, which implicitly gives us the set of fresh locations.

The query FC[o] yields true if the object o is newly allocated since the
beginning of the current method execution, and false otherwise.

Static Data Groups

For each field, we use a bitset to represent the data group(s) the field belongs
to. That is, we equip every class with an array of bitsets.

Example. For class Item, we represent the static data groups by the following
array.

footprint

id

selected

payload


[X · · · ]
[XX · · ]
[ · · X · ]
[X · · X ]



To access the data groups that statically contain field f of class c, we
write D static[c@f ]. For simplicity, we may also write D static[o.f ] to get the
static data groups of field f of class c, where o is of type c.

Example. D static[Item@id] yields [XX · · ], which means that id is in the
data group of footprint (the first bit) and of course in its own data group
(the second bit).

We set up the data structures for static data groups such that we can
perform the second and third operation described in section 3.3 in constant
time. The second operation involves one array access, and the third opera-
tion involves computing the intersection of two bitsets, which is possible in
constant time.

We can safely assume constant time operations on bitsets, because we
have an upper bound on the number of fields that we can define in a class.
Thus, we only need a fixed sized bitset, which results in constant time op-
erations. Usually, a class doesn’t declare more than 64 fields. In this case
we can even fit the bitset into one double-word and get a very good perfor-
mance.
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3.3.2 Code Instrumentation

An assignable clause restricts assignments throughout a method execution.
This implies that checks of the assignable clause need to be performed
throughout a method execution and not only in pre- and post-states. In the
following, we present the code instrumentation to build up the necessary
data structures and to check the validity of a field update. The relevant
statements are: field updates (as these might violate the assignable clause),
object creation (to track fresh locations), method invocation (to evaluate
assignable clauses in the pre-state of a method and merge assignable sets),
and method return (to update the assignable sets from the caller).

Method Invocation

Upon invocation of method m from within method m′, we evaluate the
assignable clause of m to the set Adeclared

m . For all locations o.f in the
assignable clause, we enable the bit that represents f in the bitsetAdeclared

m [o].
To do this, we perform the following update: Adeclared

m [o] ← Adeclared
m [o] ∪ B(f)

where B(f) is the bitset in which only the bit for field f is enabled.

Furthermore, we compute the intersection of the Adeclared
m and the merged

assignable locations of m′, which we denote byAmerged

m′ . The merged assignable
locations correspond to the effective assignable locations Aeffective

m′ defined in
the semantics, but without unfolding of data groups. Thus, in an environ-
ment where m′ is called by m′′, we define:

Amerged

m′ = FC
m′ ∪

(
Adeclared

m′ ∩ Amerged

m′′
)

This merging can be performed efficiently. However, we do not discuss
its details, as we will have to replace this aspect of the algorithm when
dealing with dynamic data groups below.

Example. For method copy of class Item, we have shown in section 3.3.1
that Adeclared

copy is {this 7→ [X · · · ] , other 7→ [ · X · · ]}. Let’s assume that
Amerged

m′ is {this 7→ [X · · · ] , store 7→ [ · X · ]}, where m′ is the caller of
copy, and store refers to an object of type Store. The intersection of the
assignable maps Adeclared

copy ∩ A
merged

m′ would then yield the map:

{this 7→ [X · · · ]}

Field Update

Updating a field is the only way to violate an assignable clause. According
to the semantics defined in section 1.8.2, we need to check before an update
of a location o.f in a method m called by m′ if o.f is in the set Aeffective

m .
This is the case if either the object o has been freshly allocated during the
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execution of m and therefore is a member of the set FC
m, or o.f is in the set

Am and it was already assignable in m′ upon invocation of m.
Checking if o.f is in the set of fresh locations FC

m is performed by FC
m[o].

Checking if o.f is assignable in the set of assignable locations Am is per-
formed by Adeclared

m [o]∩D static[o.f ] 6= ∅. That is, we get the bitset representing
the assignable fields of object o in Adeclared

m and intersect it with the bitset
representing the data groups that contain f . If the intersection of the two
bitsets is not empty, either Adeclared

m contains o.f , or it contains at least one
data group that contains o.f . Checking if o.f was already assignable in m′

can be done similarly by Amerged

m′ [o] ∩ D static[o.f ] 6= ∅. We can combine the
last two checks by accessing the bitset representing the assignable fields of
object o of Adeclared

m ∩ Amerged

m′ and then computing the intersection with the
static data group:

FC
m[o] ∨

(
Adeclared

m ∩ Aeffective

m′
)

[o] ∩ D static[o.f ] 6= ∅

In the paragraph on method invocation above, we have shown that we
can compute Adeclared

m ∩ Aeffective

m′ once and for all upon method invocation.
Therefore, all of the remaining operations for a field update can be per-
formed in constant time, which means that we can check the assignable

clauses for field updates in constant time in the presence of static data groups
only.

Example. We continue the example from the section on method invoca-
tion on the preceding page where Adeclared

copy ∩ Amerged

m′ results in the map
{this 7→ [X · · · ]}. The body of method copy performs three field up-
dates. For the first assignment, 16 id = other.id we evaluate the check as
follows:

FC
m[this]︸ ︷︷ ︸
false

∨
(
Adeclared

m ∩ Amerged

m′
)

[this]︸ ︷︷ ︸
[X · · · ]

∩ D static[Item@id]︸ ︷︷ ︸
[XX · · ]︸ ︷︷ ︸

[X · · · ]

6= ∅

So, the field update can be performed. Similarly, the assignment to
payload can be performed. However, we are not allowed to perform the
third assignment 18 other.selected = false even though it would be al-
lowed by the assignable clause of copy. The reason is, that the location
other.selected was not assignable in m′ upon invocation of copy.

Object Creation

On creation of a new object o in method m, all locations of o are fresh
in m and in every transitive caller mi of m. According to the semantics of
fresh sets, we would have to add all fields of o to FC

m as well as to each
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FC
mi

. Since any caller of m can observe newly allocated locations only after
m returns, we add o only to FC

m and update the callers later. Because of
this simplification, the instrumentation of object creation can be performed
in constant time and produces a memory overhead linear in the number of
newly allocated objects.

Method Return

Before a method m may return to its caller m′, the set of fresh locations FC
m

needs to be added to FC
m′ . This operation can be done with time overhead

linear in the number of objects in FC
m and does not increase the memory

overhead as FC
m will be consumed by the garbage collector eventually.

3.4 Checking Assignable Clauses with Dynamic
Data Groups

We extend the algorithm for checking assignable clauses to deal with dy-
namic data groups, that is, data groups that contain fields from other objects
and therefore depend on the heap. From the running example in section 3.2,
we observe two properties of dynamic data groups that we describe in this
section. These properties not only hold for this individual example, but ap-
ply in the general case. As dynamic data groups are inherently non-modular,
we need to base the design of our algorithm on these observations, in order
to profit in the average case from a dramatic speed up.

Data Group Size versus Data Groups per Location We typically
use dynamic data groups to refer to the locations in all objects of a data
structure. The data groups struct and footprint in the running example
showcase this use of dynamic data groups. The more objects we add to
the data structure, the bigger such data groups get, independently of the
particular kind of the data structure. However, the number of data groups
that contain a given location differs a lot depending on the data structure,
and is typically related to the lookup time complexity. Table 3.1 compares
the number of locations in a data group versus the number of data groups
that contain a location. In all cases, we assume that the data structure
contains n elements and the data group in question contains a fixed number
of locations per element. In this setting, we always get O(n) locations in
the data group.

In case of a linked list, the locations at the tail of the list are contained
in all data groups of the elements in front. Thus, we also get O(n) for
the number of data groups that contain a given location. The situation is
more interesting for trees. Still, the number of locations in a data group is
linear in the number of nodes in the tree. However, there are only O(log n)
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Data Structure # locations per data group # data groups per location

List O(n) O(n)
Tree O(n) O(log n)
Hashtable O(n) O(1)
Graph O(n) O(1) . . . O(n)

Table 3.1: Comparison of data group size versus the number of data groups
that contain a location.

data groups that contain a given location, namely the transitive parents of
the node containing the location. In case of data structures based on hash
tables, we look at an even greater difference between the two numbers. If
the hash table is not degraded, that is, the overflow lists in the buckets are
not large, we look at a constant number of data groups that contain a given
location. If we look at a graph structure, the topology and the connectedness
of the nodes in the graph greatly influence the number of data groups that
contain a given field. A completely connected graph results in O(n) data
groups that contain a location, whereas in a star topology, we get a constant
number of data groups for a given location.

To sum up, it is often much easier to ask the question of which data
groups contain a given location, rather than asking the question of which
locations are contained in a data group. This holds especially for tree-like
and hash-based data structures, whereas linked lists present a case in which
the difference is minimal.

Specificness of Assignable Clauses Dynamic data groups allow us to
be unspecific in assignable clauses. Instead of mentioning the exact loca-
tions that a method can or will update, we talk about possibly unspecific
groups of locations.

The assignable clause we use in the specification of method put in class
Store on page 103 is quite unspecific. We allow assignment to all fields,
that make up the internal structure of the store. On the one hand, this is
because we do not want to reveal implementation details of the store and
thus need to find a way of abstracting away from these. On the other hand,
we simply do not know at compile time exactly which locations might be
changed. We need to allow the method to update anything that might get
updated in any situation.

From the assignable clause of a method, we can conclude which parts
of the heap definitively stay unchanged. This information is usually more
interesting than to exactly pinpoint the heap locations that actually might
get changed. The main purpose of the assignable clause of method put

is to guarantee that only the structure of the store might get changed, and
not the content of the stored items or anything else.
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A central implication of using unspecific assignable clauses is that the
implementation of the method often assigns to only a small fraction of the
locations that may be assigned to. In the case of the method put, it only
assigns to one single left or right field to add an item if no balancing
happens, and a couple of left and right fields if we need to rotate subtrees
in order to balance the tree. But in no case will the method update all
locations mentioned in struct or even a number of the same magnitude.

Conclusions from the Observations From the first observation we
learn that in many data structures, the number of data groups that contain
a location can be many magnitudes smaller than the number of locations in
a data group. The second observation shows that we often assign to a small
fraction of the locations that are actually declared to be assignable. There-
fore, we avoid unfolding data groups in the pre-state of a method, and rather
find out upon field assignment if there exists a data group mentioned in the
assignable clause that contains the field. This decision raises the following
three issues:

• We have to spend more effort to check if a field is assignable, as the
information is not directly available.

• We can no longer merge sets of assignable locations. If we were merging
two sets that contain partially overlapping dynamic data groups we
would have to unfold the data groups to find out which locations are
in the intersection. Since we decided not to unfold data groups, we
cannot merge anymore.

• As the content of dynamic data groups may change over time, we
need to keep track of all changes in dynamic data groups in order to
reconstruct the assignable locations as in the pre-state of the method.

In the following sections, we explain how we can efficiently cope with
these issues.

3.4.1 Data Structures

We do not change any of the existing data structures for checking assignable
clauses, but add data structures to represent dynamic data groups. We
design our data structures such that it is possible to quickly find all data
groups that dynamically contain a location.

Dynamic Data Groups

To represent dynamic data groups, we add an array of sets of tuples of two
locations to each object. With this data structure, we store for each field
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of the object a set of data groups that dynamically contain the field along
with the pivot field on which the data group is defined. We call this data
structure back-links; from the location back to the data groups. The first
location in the tuple is the pivot field and the second location in the tuple
is the data group that contains the field.

Example. For the object g of class Node (see Fig. 1.2 on page 27), we
represent the dynamic data groups with the following array:

struct

footprint

left

right

item


{(c.right, c.struct)}
{(c.right, c.footprint)}
{}
{}
{}


The entries for the fields struct and footprint contain a back-link to

their respective data groups: struct is directly contained in the data group
c.struct via the pivot c.right, similarly, footprint is directly contained
in the data group c.footprint via the same pivot.

We do not introduce back-links for fields that are not directly contained
in a data group. Thus, because the fields left and right are indirectly
contained in the data group c.struct via struct, we do not introduce a
back-link for them. For the same reason, item doesn’t get a back-link.

With this back-link data structure and the bitset representation of static
data groups, we can efficiently compute the set of all data groups that con-
tain a given location. We introduce the notation Dh [o.f ] to refer to the set
of dynamic and static data groups that contain o.f directly or indirectly in
heap h. As opposed to static data groups, the content of a dynamic data
group changes along with the heap. Thus, we need to provide the heap as
argument to specify in which heap the content of the data group is evaluated.

Example. We assume the heap structure as shown in Fig. 1.2 for heap h (the
left part). We want to retrieve all data groups that contain g.right: firstly,
g.struct is a data group that statically contains g.right. Secondly, the
data group c.struct dynamically contains g.struct via pivot c.right,
and thus also contains g.right. Finally, a.struct dynamically contains
c.struct via pivot a.left. Thus, the yielded set of data groups is the
following:

Dh [g.right] = {g.struct, c.struct, a.struct}

In the algorithm for checking assignable clauses in the presence of dy-
namic data groups, we will have to ignore back-links that use certain pivot
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fields. Thus, we add another parameter that specifies the excluded pivots
to the notation to access data groups of a field. We write DXh [o.f ] to refer
to all data groups that contain location o.f in heap h without using any of
the eX cluded pivot fields. To facilitate this restriction, we store the pivot
fields along with the data groups in the back-link data structure.

Example. If we exclude the pivot a.left when computing the data groups
in the situation of the previous example we get the following set of data
groups:

D{a.left}h [g.right] = {g.struct, c.struct}

The data group a.struct is no longer in the resulting set of data groups
for field g.right, because a.left is on the path from a.struct to g.right.

We are going to explain in more details how we compute the set of data
groups D[o.f ] for location o.f in section 3.5.

Stack of Assignable Maps and Fresh Locations

Since we can no longer merge assignable clauses from the caller and the
callee efficiently upon method invocation, we now have to check for each
field update whether the updated location is assignable in all methods on
the call stack. To facilitate this check, we provide access to the assignable
maps of all methods on the call stack by passing a stack of assignable maps
to the callee (rather than one merged assignable map). Furthermore, we
provide access to the fresh locations of all methods on the call stack.

The notations to refer to the assignable map or the fresh locations of
a method stay unchanged. With Adeclared

mi
, we denote the assignable map for

some method mi on the call stack and with FC
mi

, we denote the set of fresh
locations of that method.

Stack of Updated Pivots

In our algorithm we need to keep track of changes to the dynamic data
groups during method execution. Therefore, we introduce a stack of sets of
updated pivots. For all methods on the call stack we can access the set of
pivots that have been updated since their respective pre-states.

We are going to use these sets to identify the back-links that we want
to exclude when checking the assignability of a heap location. Thus, we
introduce the notation Xmi to refer to the set of updated (and therefore
excluded) pivots for some method mi on the call stack.
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3.4.2 Code Instrumentation

In order to support dynamic data groups, we need to change the code instru-
mentation for field updates and method invocations, whereas object creation
and method return stay unchanged.

Method Invocation

Upon an invocation of method m we evaluate the assignable clause of m
to the map Adeclared

m as described in section 3.3.2, but we do not intersect the
assignable sets of the caller and the callee. Instead, we push the map of
assignable locations Adeclared

m to the assignable stack that already contains the
assignable maps of all (transitive) callers. Furthermore, we push empty sets
to the stack of fresh locations and updated pivots. Upon method invocation,
no object has been newly allocated and no pivot field has been updated yet
in method m.

Field Update

The runtime checks introduced before a field update are considerably more
complex when dealing with dynamic data groups than for static data groups
only. Without the concept of merged assignable maps, we need to check
explicitly for each method on the call stack, if a location is assignable in
that method. Furthermore, we need to compute if a field is contained in an
assignable data group possibly via many indirections.

Before updating a location o.f in method m, we need to check that for
every method mi on the call stack of m, o.f is either fresh or contained in
the set of assignable locations. More formally:

∀mi ·mi ↪→∗ m→ o.f ∈ FC
mi
∨ o.f ∈ Ami .

Checking o.f ∈ FC
mi

: Since we do not update the set of fresh locations
for all transitive callers of m (see the section on object creation on page 110),
it is not sufficient to check if FC

mi
[o] yields true to determine if o as been

newly allocated during the execution of mi. We need to check if there exists
a (transitive) callee mk in which o has been newly allocated. We write
∃mk ·mi ↪→∗ mk ∧ FC

mk
[o].

Although this looks more complicated than directly putting fresh loca-
tions into the set of fresh location of all callers, it allows us to simplify the
runtime assertion checker implementation considerably: when checking the
assignability of o.f , we evaluate the assignability for the top most method
on the call stack (that is, the most current method) and work our way down
the stack. As soon as we find a method mk in which o has been newly cre-
ated and o.f was assignable in all methods between the current one and mk,
we know that o.f is assignable and we can stop. For any transitive caller
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of mk down to the main method of the program, mk is the witness for which
the condition from the last paragraph holds.

Checking o.f ∈ Ami: Since we do not unfold dynamic data groups upon
method invocation, we need to perform additional computation to check if
o.f is assignable upon field assignment. The location o.f is in the assignable
map Ami of method mi, if we find a data group dg that both dynamically
contains the location o.f , and is mentioned in the assignable clause of
method mi. We can write ∃dg · dg ∈ Dh0(mi)[o.f ] ∧ dg ∈ Adeclared

mi
, where

h0(mi) refers to the pre-heap of method mi. As assignable clauses are to
be evaluated to a set of locations in the pre-state of a method, and this
involves the unfolding of data groups, we need to use the pre-heap when
determining the data groups that contain o.f .

To sum it up, we check the following assertion at runtime prior to an
update of location o.f in method m:

∀mi ·mi ↪→∗ m→
∃mk ·mi ↪→∗ mk ∧ FC

mk
[o] ∨

∃dg · dg ∈ Dh0(mi)[o.f ] ∧ Adeclared
mi

[dg ]

The time complexity for finding a data group that dynamically contains
o.f is linear in the size of D[o.f ] multiplied by the number of methods
on the call stack. However, we can dramatically speed up this lookup by
introducing caches for finding dynamic data groups, see Sec. 3.5.

Example. Again, we consider the heap structure on the left side of Fig. 1.2.
We now discuss the situation in which the insert method of class Node

adds a new node to d.left, that is, no balancing needs to take place. Let’s
assume that insert has been called via a.insert by the method put of the
Store object store that contains node a as root. Naturally, at the bottom
of the method stack, we have the main method, which we choose to annotate
with assignable \nothing.

Table 3.2 shows the stack of assignable maps, the fresh sets, and the list
of data groups that contain c.left. According to the formula above, we
check for each method mi on the call stack the following condition before
updating d.left: either Adeclared

mi
mentions a data group of d.left, or the

object d has been newly allocated during the execution of mi. The set
Dh0(mi)

[d.left] evaluates to the same set in case of the top three methods
on the stack. For the pre-heap of method main the object d is not allocated,
thus Dh0(main)

[d.left] yields only the data groups that statically contain

the location, that is, {d.struct}.
We can easily verify that c.left is assignable: d.insert mentions

d.struct in its assignable clause, with is a data group that contains
d.left according to Dh0(d.insert)

[d.left]. Similarly, the check succeeds
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mi Adeclared
mi FC

mi Dh0(mi)
[d.left]

d.insert d.struct - d.struct, a.struct, store.struct
a.insert a.struct - d.struct, a.struct, store.struct
store.put store.struct - d.struct, a.struct, store.struct
...

main - store, a, . . . , h d.struct

Table 3.2: The Call Stack for the update of d.left

for the methods a.insert and store.put. Both methods mention a data
group that contains c.left. For method main the check succeeds as object
d has been newly allocated during the execution of main and is therefore in
the set of fresh locations.

In the example above, we concentrate on the back-link data structure,
which enables the efficient evaluation of Dh0(d.insert)

[d.left] and thus an
efficient way of checking assignable clauses with dynamic data groups. In
the following example, we want to perform a similar experiment, but focus
on object creation issues.

Example. We want to verify that the following method doesn’t break any
involved assignable clause:

1 //@ assignable \nothing

2 void createStore(Item i){

3 Store store = new Store();

4 store.put(i);

5 . . .
6 }

The interesting check happens when the constructor of class Node assigns
the item i to field item. Let’s again look at the method call stack, table
3.3.

mi Adeclared
mi

FC
mi

Dh0(mi)
[d.left]

root.Node root.item - root.footprint, store.footprint
store.put store.struct root root.footprint

createStore - store root.footprint
...

Table 3.3: The Call Stack for the update root.item = i

For the constructor of class Node, the assignment is fine because the
assignable clause directly mentions the field item. For the method put
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the assignment is fine because the object root has been newly created in
this method. Interestingly, the assignment is also permitted in method
createStore although the method neither mentions the field or its data
groups in the assignable clause nor does it contain the object root in its
fresh set. The reason is that the object has been newly allocated in a callee
of createStore, namely the method put. Therefore, the following condition
holds with witness store.put for mk, and thus the check for createStore

succeeds: ∃mk · createStore ↪→∗ mk ∧ FC
mk

[root]

Updating a Pivot Field Whenever we update a pivot field of a data
group, we change the content of the data group. This is a problem because
upon a method call, we do not unfold the data groups mentioned in the
assignable clause of the callee, even though the semantics of assignable
clauses prescribes that the set of assignable locations is to be determined
in the pre-state of the method. In the above assertion for the field update
check, we circumvent the problem by assuming that we can compute the set
of data groups for a location using the pre-heap of the method. However,
the runtime assertion checker can not rely on the availability of the complete
pre-heap for each method in the call stack. Consequently, the solution is
to track any change to the content of the data groups mentioned in the
assignable clauses of all method on the call stack.

We apply a technique that we call lazy unfolding. The first time we
update a pivot field of a data group that is directly or indirectly contained
in an assignable mapAdeclared

mi
during the execution of a method mi, we perform

the following two operations in order to preserve the content of assignable
data groups in mi:

1. We add the pivot field to the set of excluded pivots Xmi . As we de-
scribed in the section on dynamic data groups on page 113 we can pro-

vide this set of excluded pivots to the computation DXmi
h [o.f ], which

yields all data groups that contain location o.f without using any of
the pivots mentioned in Xmi .

2. We add the location to which the pivot pointed before the update
directly to the map of assignable locations Adeclared

mi
. Therefore, the

location stays assignable although the pivot field points to a different
location after the update.

The following formula describes the main property of the lazy unfolding:

∀o.f · ∃dg · dg ∈ DXmi
h [o.f ] ∧ Adeclared

mi
[dg ] ↔

∃dg · dg ∈ D

1.︷ ︸︸ ︷
Xmi ∪ {p}
h ′ [o.f ] ∧

(
Adeclared

mi
∪ {g}

)︸ ︷︷ ︸
2.

[dg ]
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Figure 3.1: The same situation as in Fig. 1.2. The cross depicts the excluded
pivot field.

The property states that performing the lazy unfolding does not influence
the assignability of any field. The variable p refers to the pivot field which
points to location g in heap h before it gets updated. The heap h′ is the
resulting heap from the field update. We identify the two involved operations
of the lazy unfolding.

With the lazy unfolding, we manage to eliminate the occurrence of h0(mi)
in the check. According to the property above, we preserve the content of
assignable data groups upon pivot field update. Any other change to the
heap does not influence dynamic data groups. Thus, we can replace the

pre-heap by the current heap in DXmi
h [o.f ].

∀mi ·mi ↪→∗ m→
∃mk ·mi ↪→∗ mk ∧ FC

mk
[o] ∨

∃dg · dg ∈ DXmi
h [o.f ] ∧ Adeclared

mi
[dg ]

Example. Fig. 3.1 shows how the lazy unfolding works. The left side depicts
the heap structure before we perform the assignment a.left = b whereas
the right side depicts the situation after the update. The shapes around
the objects visualize the struct data groups of the different objects. The
grayed out data groups depict the assignable data groups if we assume the
assignable clause of the method we’re looking at mentions a.struct. To
preserve the assignable locations of the pre-state, we add c.struct explic-
itly to the assignable map, which preserves the assignability of the locations
of objects c and d. Furthermore, we add a.left to the set of excluded pivots
which makes the back-link from b.struct to a.struct invalid, which essen-
tially renders the locations of objects b, e, and f not assignable. Looking at
the locations in the gray shapes, one can see that we effectively preserved
the assignability of locations in the state on the left-hand side although the
data group changed in the meantime.
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3.5 Optimizations

As we have shown in the last section, the time overhead to check if a location
o.f is assignable depends on the height of the call stack and on the size of
the set of data groups D[o.f ]. For every update of location o.f , we check
if o.f is assignable in all assignable maps on the stack. For each method on
the stack, this involves to compute the set D[o.f ] and to check if it contains
a data group that is mentioned in the assignable map. There are two simple
but effective optimizations:

• Stop computing the set D[o.f ] as soon as an assignable data group
has been found.

• Determine the assignable data groups during the computation and
store the result.

The first optimization is very straight-forward. To evaluate D[o.f ], we
collect all data groups that are reachable via back-links from o.f . For each
data group that we find, we can directly check if it is assignable. If yes, we
can stop the evaluation.

The second optimization requires us to represent the set D[o.f ] such that
we can determine which data groups in the set are assignable if we eventually
find a data group that is mentioned in an assignable map. In the example
below, we show how the implementation of the runtime assertion checker
represents D[o.f ] and what data groups can be marked as assignable.

To store this information, we equip each assignable map with a cache
that stores all the additional information from the queries since the method
invocation. The information in the cache stays valid during method execu-
tion. Therefore, caches become especially useful if we assign to the same set
of locations several times in a method, for instance when doing a computa-
tion in a loop.

Example. In order to highlight the usefulness of caches and to explain the
details on how to collect the data groups of a field, we need to introduce a
heap data structure in which a pivot field is not always directly contained in
exactly one data group. Nothing prevents us from creating a heap structure
as shown on the left side in Fig. 3.2 using six objects of class Node: a . . . f.
The heap data structure is not a tree, but an directed graph that even
includes cycles.

In this situation, we want to check if the location f.left is assignable if
Adeclared

mi
contains a.struct. According to the formula of the check, we need

to find a witness for dg for which the following condition holds: ∃dg · dg ∈
D{a.left}h [f.left] ∧ Adeclared

mi
[dg ].
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Figure 3.2: Generation of the tree of data groups for field f.left. The
labeled circles denotes objects, black arrows denote pivot fields, white arrows
denote back-links.

Figure 3.3: Intermediate and final step of the tree generation with early stop
and caching.
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Intuitively, we can see that the set D{a.left}h [f.left] contains the data
group struct from all objects in the graph. That is, f.left is assignable
as it is contained in a.struct.

As explained earlier, the implementation of the runtime assertion checker
computes this set using the back-link data structure. The implementation
represents the set as a tree of data groups, which we show on the right side
of Fig. 3.2. The advantage is that the tree preserves the information via
which pivot fields f.left is contained in a data group. To build the tree,
we need to detect cycles in the data group structure and break them up. We
do this by not inserting a data group to the tree if it has already been added
earlier as a transitive parent. Therefore, the tree can contain duplicates, but
cycles are broken up. Furthermore, back-links over excluded pivot fields are
ignored.

Building the tree of data groups is the most expensive operation in the
check for assignable locations, thus we seek to stop early when building the
tree. As soon as we find a data group that is mentioned in the assignable
clause, we can stop building up the tree.

Fig. 3.3 shows the process of building the tree. We collect data groups of
f.left using a depth first strategy. Whenever a data group is contained in
several other data groups via different back-links, we pick one and continue
to search for a data group that is contained in the assignable map. On the
left side of the figure, we already collected the struct data groups of the
objects f and d, and chose to continue with b, c and e. Here we need to
break a cycle and do not add c again. Thus, we cannot continue the search
for an assignable data group on that branch and need to find another path.

We need to go all the way back to the node d where we had more than
one back-link to choose from. This time, we choose a and find that its data
group struct is in fact assignable. In this process, we not only learned that
f.left is assignable, but we can also deduce that any data group on the path
from a.struct to f.left is for sure assignable. The right side of Fig. 3.3
shows the end result. We store into the cache of the assignable map that
the data groups a.struct, d.struct, and f.struct are in fact assignable
as well as the field f.left. The next time the evaluation of D[o.f ] hits any
of these data groups, a lookup in the cache will immediately yield that the
data groups are assignable.

One might be tempted to mark the data groups on the unsuccessful
branch as non-assignable. However, this is not always correct due to the
fact that we removed some edges to avoid cycles. In fact, the data groups
e.struct, c.struct, and b.struct are indeed assignable.
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3.6 Implementation and Evaluation

As a proof of concept, we implemented the algorithm described in this paper
to check assignable clauses in Java programs.

To test the efficiency of our algorithm, we chose a doubly-linked list,
where the nesting of data groups is as deep as the number of nodes in the
list: every node is equipped with a struct data group that contains the
next and previous fields and dynamically contains the struct field of the
successor node. The list itself also features the fields head and tail as well
as the data group struct that contains the struct data group of the head
in the list. This data structure represents the worst case for our algorithm,
as the fields in the list contain O(n) data groups if there are n nodes in the
list, see table 3.1 on page 112.

We performed experiments with different list operations to measure the
performance of our algorithm1. The most interesting experiment has been to
reverse large doubly-linked list, which involves operations on every node of
the list and changes the structure of the dynamic data groups completely. In
fact, every pivot field gets assigned to, which leads to a complete unfolding
of the data group. This is the worst case scenario for our algorithm, which
tries to avoid unfolding as much as possible.

Surprisingly, we need only a bit more than one seconds to add 10’000
nodes to a list and reverse it with the runtime assertion checker enabled.
We spend around 80% of the time to add the nodes, and 20% of the time
to reverse the list. The memory footprint is around 20MB before reversing
the list and grows to 25MB during reversing because of the caches that
get filled in the process. If we switch off runtime assertion checking for
the same example, the program terminates within half a second and uses
around 2.5MB. When repeating the experiment with 20’000 nodes, time and
memory consumption doubles for both versions.

For the doubly-linked list, the runtime overhead of our checker is a factor
of 2 and the memory overhead is a factor of 10. For the main applications of
runtime assertion checking (to prepare static verification and to reproduce
possibly spurious verification errors), we consider this overhead acceptable,
especially for recursive data structures such as our doubly-linked list. We
expect the overhead to be significantly smaller for non-recursive aggregate
structures, where dynamic data groups are not nested as deeply.

Encouraged by the good performance of the prototype, we integrated our
algorithm into OpenJML [68] which allowed us to extend our experiments.
Beside others, we implemented the tree data structure and ran the run-
time assertion checker on them. There are two practical issues that deserve
attention.

Firstly, the compiled library code doesn’t contain the code instrumenta-

1On a desktop computer with a single core 3.4 GHz CPU
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tions necessary to check assignable clauses. Therefore, library code called
by our own methods might not respect the assignable clauses defined in
these methods. This can be fixed by annotating the library code and recom-
pile it with our runtime assertion checker.

Secondly, the performance of the checks can be significantly influenced
by both the specification and the implementation. We want to illustrate
this with an example that uses the doubly linked list that we introduced at
the beginning of this section. With this data structure, we can achieve the
greatest differences due to the fact that the data structure poses a worst
case scenario.

Example. As described above, each node in the list has a data group struct

that contains all previous and next fields of the trailing nodes. The fol-
lowing example is somewhat artificial, but nicely shows what influences the
overhead introduced by the runtime assertion checker. We do not discuss
the efficiency or usefulness of the code itself, but concentrate on the runtime
assertion checking aspects.

We want to create a linked list that contains the numbers 0 to 10000 in
ascending order. We show four implementations that all produce the same
list, but with different impacts for the runtime assertion checker overhead.

Our first implementation adds the numbers using a method addTail

which adds the given number at the tail of the list. Its assignable clause
is unnecessarily unspecific and permits to change any location in the data
group list.struct.

1 for (int i = 0 ; i ≤ 10000 ; i++) {

2 list.addTail(i);

3 }

4

5 //assignable list.struct;

6 void addTail(int i) { . . . }

The fact that we add nodes to the tail in combination with the unspecific
assignable clause of addTail leads to a quadratic overhead for the runtime
assertion checker. Each time the loop invokes addTail, Adeclared

addTail is set to
list.struct with empty caches, and no lazy unfolding yet. Thus, each
time, the runtime assertion checker needs to check if the next field of the
last node is assignable, which it can only do by traversing through the back-
links from the last node all the way back to the first node and finally the list
object itself. Only then, the checker can confirm that the field is assignable.
As soon as the method addTail terminates, this information gets lost. Upon
the next invocation, the same query is going to be performed again, for one
more node in the list. We would require some kind of global cache to avoid
computing the same results over and over again, but this cache would be
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very hard to keep up to date and would only accelerate the checker in a
small number of situations, like this artificial example.

We can significantly speed up the checker if we provide a more spe-
cific assignable clause to addTail. The overhead of the runtime assertion
checker becomes linear, as the list does not have to be traversed each time
a node is added:

1 //assignable list.tail, list.tail.next;

2 void addTail(int i) { . . . }

The checker also creates only a linear overhead if we append elements at
the head of the list rather than the tail, even with an unspecific assignable
clause for addHead. In this case, the function addHead writes to this.head

and this.head.previous (as well as the fresh locations of the newly created
node). In both cases, the checker can reach list.struct in linear time,
independently of the size of the list.

1 for (int i = 10000 ; i ≥ 0 ; i--) {

2 list.addHead(i);

3 }

4

5 //assignable list.struct;

6 void addHead(int i) { . . . }

The last version that we present to create such a list does not involve
to call a method to add new nodes to the list, but inlines the code in the
loop. In this case, we assume that list.struct is assignable in the current
environment.

1 for (int i = 10000 ; i ≥ 0 ; i--) {

2 Node n = new Node(i);

3 if (list.tail = null){

4 list.head = list.tail = n;

5 } else {

6 n.previous = list.tail;

7 list.tail = list.tail.next = n;

8 }

9 }

In this case, we also generate only a linear overhead to check assignability
although it is again unspecific. The reason is that during execution of the
method, all nodes in the list are freshly created and put into the set of fresh
locations. Thus, checking if n.previous is assignable is trivial. Further-
more, the assignments to list.tail and list.tail.next can be checked
in linear time.
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3.7 Theoretical Results

Our algorithm depends mainly on the following factors: the size of the set of
dynamic data groups that contain a location (|D|), the size of the assignable
sets (|A|), and the size of the call stack (|cs|),

Time Complexity Field update is the only operation that may generate
a significant time overhead. The check if a location is assignable has a time
complexity of O(|D| × |cs|) if the result is not cached in any assignable
map, and O(|cs|) if the result is cached in all assignable maps. That is, the
caches have a big impact on the performance if we have a deep nesting of
assignable clauses. We also see that we do not have a good solution for
recursive method calls, where |cs| gets big.

In our running example, |D| is logarithmic to the number of nodes in the
tree, which leads to a very good performance.

Memory Overhead The data structures that produce a significant mem-
ory overhead are the ones for storing the sets of assignable locations, includ-
ing caches, as well as the fresh sets. That is, the memory overhead depends
on the number of assignable locations mentioned in the assignable clauses,
the amount of lazy unfolding, and of course the number of methods on the
call stack. We get an overhead of O(|A|× |cs|), where the size of A depends
on how much unfolding happened already.

In our running example, if we have a method with an assignable clause
stating ‘a.struct’ |A| initially contains only the location a.struct and our
memory overhead is very small. For each left or right pointer that we
assign to in a method, we add one more location to that set, and, if we
completely reorder the whole tree, end up in a complete unfolding of the
data group.

3.8 Summary

In this chapters we presented an algorithm to efficiently check JML’s assign-
able clause in the presence of dynamic data groups at runtime. Due to
the non-modularity of dynamic data groups, this is a difficult task that
requires to avoid to compute unnecessary information. We implemented
this algorithm in OpenJML and performed experiments that show that our
approach works for reasonably large data structures. With this algorithm,
we made it possible to deal with non-modular data abstraction at runtime.
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Chapter 4

Correctness Proof of the
RAC for Assignable Clauses

In this chapter, we formally prove the correctness of the runtime assertion
checker for assignable clauses, which we introduced in the last chapter. We
show that the runtime assertion checker is equivalent to the JML semantics
for the chosen Java and JML subset. A formal proof of a runtime assertion
checker involves formalizing an operational semantics for JML (Ssem) as
well as an operational semantics for Java with the runtime assertion checks
and instrumentations (Srac) and to prove that both semantics are bisimular.
That is, the two semantics behave equivalently.

Fig. 4.1 depicts the property described above. The predicate Rsem
rac de-

scribes the bisimulation relation. For any st sem and st rac, ifRsem
rac (st sem, st rac)

holds, the two states are in a bisimulation relation. We say: st sem and st rac

correspond. The diagram reads as follows: If st sem and st rac correspond,
and we perform a step in both semantics, then the resulting states st ′sem and
st ′rac still correspond.

This proof is a good evaluation of the JML formalization, presented in
chapter 2. The next section introduces the proof strategy and shows how
the proof can be formalized as application of the JML semantics.

st sem
Ssem //

OO

Rsem
rac

��

st ′semOO

Rsem
rac

��
st rac

Srac // st ′rac

Figure 4.1: The property that we want to prove.

129



130 CHAPTER 4. CORRECTNESS PROOF OF THE RAC FOR ASSIGNABLE CLAUSES

4.1 Approach

We prove the correctness of the runtime assertion checker with a refinement
strategy. Each refinement is one more step away from the JML semantics,
as defined in section 2.6.2, into the direction of the algorithm presented
in chapter 3. For each refinement, we prove that the semantics defined in
the refinement is bisimilar to the semantics defined in the last refinement
(or the JML semantics, in case of the first refinement). Therefore, we can
chain together the refinements and argue that the last refinement, which
is the most concrete model of the algorithm, is in fact bisimilar to the
JML semantics. The following enumeration lists the refinements and shortly
explains what aspect of the algorithm is covered in the refinement.

1. Do not unfold data groups in the pre-state of the method: we replace
the flat set of assignable locations (see section 2.6.2 on page 73) by a
stack of assignable locations (see section 3.4.1 on page 115).

2. Introduce the concept of lazy unfolding. The first time a pivot field
gets updated, we unfold all assignable data groups that use that pivot
field (see the paragraph on updating pivot fields in section 3.4.2 on
page 119). In other words, we save the pre-state of the involved
assignable data groups.

3. Introduce the back-link data structures to quickly find all data groups
that dynamically contain a location (see section 3.4.1 on page 113).

Fig. 4.2 gives an overview of the involved parts of the correctness proof
in Coq. It is an extension of Fig. 2.1. The parts that we have already
seen are Syntax & Domain, which we do not show in details in this figure,
the JML Semantics Interface, as well as the JML Semantics Definition, which
implements the interface and operates on the JML Program State.

We provide three refinements of a runtime assertion checker for assign-
able clauses. Each refinement is an implementation of the JML Semantics
Interface and operates on its own implementation of the program state:
RAC1 State, RAC2 State, and RAC3 State. The first refinement, introduced
in section 4.5, accesses the pre-heap of each method in the call stack in order
to unfold the data groups in the right state for each set of assignable locations
in the stack. The second refinement, introduced in section 4.6, eliminates the
need for saving the whole pre-heap of each method by introducing the lazy-
unfolding. However, without the back-link data structure, it’s not possible
to define the lazy unfolding constructively, we need to axiomatize it. This is
fine, since we constructively define the lazy unfolding in the third refinement,
introduced in section 4.7.

On top of the four different implementations, that is, definitions of the
JML Semantics Interface, we define a very stripped down Java operational
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semantics, introduced in section 4.3. It supports just the interesting as-
pects of the language to prove the correct checking of assignable clauses,
as discussed in 3. In section 4.4, we prove that the operational seman-
tics is deterministic. The operational semantics takes an implementation
of the JML Semantics Interface as argument, and applies the functions from
the interface at the appropriate places. As we only prove the correctness
of the runtime assertion checker for assignable clauses, we do not apply
the functions of the annotation table, but only the functions of the frame
conditions interface. In fact, we can now very easily create the different
operational semantics described above. Thus, Ssem is the operational se-
mantics parametrized with the JML Semantics Definition, whereas Srac is the
operational semantics parametrized with the 3rd Refinement of RAC, which
is why we also call it Srac3. In the same manner, we can create Srac1 and
Srac2.

Having defined the different operational semantics, we can now perform
the bisimulation proofs for all involved semantics. For each refinement, we
prove that the two neighboring semantics are bisimilar, which in the end
allows us to conclude that Ssem and Srac are in fact bisimilar, and therefore,
the main theorem on the following page holds.

JML Semantics Interface

JML Semantics

Definition

Java Operational Semantics

1st Refinement

of RAC

3rd Refinement

of RAC

2nd Refinement

of RAC

Proof of 1st Refinement

Proof of 3rd Refinement

Correctness Proof of Runtime Assertion Checker for Assignable Clauses

Syntax & Domain

JML Program State

Proof of Determinism

Proof of 2nd Refinement

RAC1 State RAC2 State RAC3 State

Figure 4.2: Overview of the correctness proof of the runtime assertion
checker. Again gray boxes depict parts that are defined in a constructive
way, whereas white boxes may contain axiomatic definitions.
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4.2 The Main Theorem

We discussed the intuitive proof goal at the beginning of this chapter and
depicted it with Fig. 4.1. We want to define a bisimulation between the JML
semantics and runtime assertion checker. That is, the semantics and the
runtime assertion checker behave equivalently. The following now formally
states the property that we are going to prove in this chapter.

Theorem 4.1. Correctness of Runtime Assertion Checker

If one starts in a state st sem and executes a step in the JML operational
semantics to get state st ′sem, and given a state st rac that corresponds to state
st sem, then there exists a state st ′rac that one gets by executing the same step
in the runtime assertion checker and that corresponds to st ′sem.

Moreover, if one can execute a step in the runtime assertion checker from
st rac to st ′rac, and st sem corresponds to st rac, then there exists a correspond-
ing st ′sem that one gets by executing the same step in the JML operational
semantics:

st ′sem

Rsem
rac

��
st ′rac

∀ st sem, st rac, st ′sem, r ·
S sem(st sem, st ′sem, r)→
Rsem

rac (st sem, st rac)→
∃ st ′rac·
S rac(st rac, st ′rac, r) ∧
Rsem

rac (st ′sem, st ′rac)

st ′sem

st ′rac

Rsem
rac

OO
∀ st rac, st sem, st ′rac, r ·
S rac(st rac, st ′rac, r)→
Rsem

rac (st sem, st rac)→
∃ st ′sem·
S sem(st sem, st ′sem, r) ∧
Rsem

rac (st ′sem, st ′rac)

S (st , st ′, r) is an inductively defined predicate that holds if the state st ′

is a state that we can reach by performing one step on state st . The variable
r is a step value. In both cases r is the result of the execution. It contains
a Java value if the performed step evaluates an expression. Furthermore, it
contains the information if the execution terminated normally or exception-
ally. We discuss the type of r below in section 4.3. In the theorem, we use
the same step value r in both involved semantics. Thus, we also show that
performing steps in both semantics yield the same result value.

The fact that our theorem relies on predicates to model state transitions
rather than functions raises an issue: if S is nondeterministic, that is,
performing a step on a state can lead to several possible outcomes, our nice
commutative diagram from in Fig. 4.1 doesn’t reflect the actual situation
any more.

Fig. 4.3 visualizes the issue. Let’s assume there are several possibilities
to perform a step in both semantics. Dotted lines in the diagram depict
possible alternatives. In Ssem, we happen to take the top most transition,
whereas in Srac, we nondeterministically pick the transition on the bottom
in a step. Starting from corresponding states, the outcome of performing a
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st sem
//

OO

Rsem
rac

��

st ′sem11Ssem

--

st rac
//

11
q1 q1

q1 q1
q1 q1

q1

st ′rac
--

Srac

OO

Rsem
rac

��

Figure 4.3: The commutative diagram falls apart if the semantics (Ssem or
Srac) are nondeterministic.

step on both semantics may lead to states that do not correspond any more.
In the diagram, we can see that the states st ′sem and st ′rac do not stand in a
correspondence relation. However, we could still prove our theorem in this
situation, as there exists a state that can be reached by performing a step in
Srac and that corresponds to st ′sem, we depict this connection in the diagram
with dashed lines.

There are two solutions to this problem. We can either restate our
theorem and additionally enforce that for any possible state in one semantics,
there is a correlation to any possible state in the other semantics, or we prove
that our semantics is deterministic. Because our semantics S∗ are indeed
deterministic, we prefer to separate the two concerns and prove determinism
of the operational semantics independently of the correctness proof of the
runtime assertion checker.

4.3 An Operational Semantics for Java

We define an operational semantics for Java that we can configure with
different implementations (refinements in our case) of the JML semantics:

Module OperationalSemantics (jml : JML).

The module jml provides access to the definition of the program state
as well as to the implementation of the annotation table and the frame
condition interface, see listing 2.40. The operational semantics uses these
definitions at the appropriate places.

We define a deviation system for a big step semantics with four mutually
dependent inductive definitions in Coq whose signatures we show in listing
4.1. The definition ExpressionStep defines the evaluation of one step in a
Java expression. The definition ListSteps evaluates a list of expressions, for
instance the list of method parameters, into a list of values, one expression
per step. The definitions StatementStep and BlockStep evaluate statements
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and block of statements, respectively. With these four definitions, we can
describe the evaluation of Java source code.

1 Inductive ExpressionStep (p : Program):
2 Expression → State . t → State . t → StepValue → Prop :=
3 . . .
4 with ListSteps (p : Program):
5 list Expression → State . t → State . t → list StepValue → Prop :=
6 . . .
7 with StatementStep (p : Program) :
8 Method →BLOCK.t →State.t → State . t → StepValue → Prop :=
9 . . .

10 with BlockStep (p : Program) :
11 Method →BLOCK.t →State.t → State . t → StepValue→ Prop :=
12 . . .

Listing 4.1: The inductive data types for an operational semantics in Java

Each of the four definitions use the type StepValue to specify the out-
come of the step. The listing 4.2 shows the definition of the inductive data
type. The operation semantics uses constructor normal step to specify that
a statement- or block-steps could be executed successfully. The constructor
normal step v indicates that a step in an expression succeeded and that the
evaluation yields the contained value. The last two constructors describe
a step that leads to an exceptional state in the evaluation. We choose to
provide two separate constructors for Java Errors and Exceptions, as it’s
likely that a semantics may want to ignore JVM errors and only deal with
subtypes of Exception. With the two constructors, a different handling can
be defined on a syntactical level by pattern matching.

1 Inductive StepValue :=
2 | normal step : StepValue
3 | normal step v : Value → StepValue
4 | exception step : Object → StepValue
5 | error step : Object → StepValue.

Listing 4.2: The definition StepValue

A made-to-measure Coq Tutorial

Part 12 Dealing with Mutual Induction in Proofs

To perform a proof by induction on an inductive definition, Coq provides
a command induction X, where X is a variable of an inductive type. However,
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in the presence of mutual induction, the command induction can be applied,
but doesn’t generate useful induction hypotheses, as it overlooks the mutual
dependency.

We need to build our own induction scheme that generates the correct
induction hypotheses, see 4.3. Coq provides two commands Scheme and
Combined Scheme to build the predicate mutual ind that can be used to
perform a proof by mutual induction on the deviation system. There is very
little documentation on this commands, found at [18].

1 Scheme expr step ind := Minimality for ExpressionStep Sort Prop
2 with expr steps ind := Minimality for ListSteps Sort Prop
3 with stmt step ind := Minimality for StatementStep Sort Prop
4 with block step ind := Minimality for BlockStep Sort Prop.
5

6 Combined Scheme mutual ind from expr step ind, expr steps ind,
7 stmt step ind , block step ind .

Listing 4.3: Generation of the predicate mutual ind, to perform proofs by
induction on the operational semantics.

The predicate mutual ind forces us into a certain form when reason-
ing about the operational semantics. Listing 4.4 shows the conclusion of
mutual ind. To prove a property of the semantics, we need to build a goal
with the same shape, so that we can apply mutual ind to it. The properties
that we want to prove are P, P0, P1, and P2. What we get by applying
mutual ind are a set of goals, one for each inductive case, with the correct
induction hypotheses.

1 mutual ind: ∀ (p : Program) ,
2 . . . (∗ a premise for each inductive case ∗) →
3 (∀ e : Expression , ∀ t t0 : State . t , ∀ s : StepValue,
4 ExpressionStep p e t t0 s → P e t t0 s)
5 ∧
6 (∀ l : list Expression , ∀ t t0 : State . t , ∀ l0 : list StepValue,
7 ListSteps p l t t0 l0 → P0 l t t0 l0)
8 ∧
9 (∀ m : Method, ∀ t : BLOCK.t, ∀t0 t1 : State . t , ∀ s : StepValue,

10 StatementStep p m t t0 t1 s → P1 m t t0 t1 s)
11 ∧
12 (∀ m : Method, ∀ t : BLOCK.t, ∀t0 t1 : State . t , ∀ s : StepValue,
13 BlockStep p m t t0 t1 s → P2 m t t0 t1 s)

Listing 4.4: the conclusion of predicate mutual ind
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In the following, we concentrate only on the first of the four mutual
definitions, ExpressionStep, as it contains all interesting constructs that are
involved in checking assignable clauses: the method invocation and return,
field assignment, and object creation.

Instance Field Assignment Listing 4.5 shows the rule for successful
assignment to an instance field. The following properties hold:

3 The current expression is an assignment expression to an instance field.

4-7 The evaluation of the target of the assignment expression in state st
returns normally and yields a new state st1 and object obj. We set
location loc to refer to the field’s location. The type of the evaluated
target object is a reference type in which a field with signature fsig is
defined.

8 The predicate FieldUpdateCheck, defined in the supplied implemen-
tation of the frame condition interface, holds. That is, the field is
assignable. Note that the operational semantics doesn’t need to un-
derstand how or why a field is assignable, it simply calls the corre-
sponding function from the jml module to answer the question. The
implementation of the module, which also provides the definition of
State . t, can access its auxiliary data structures to answer the ques-
tion, while the operation semantics is not even aware of any auxiliary
data structures.

9,10 The evaluation of the right-hand side of the assignment in state st1
returns normally and yields a new state st2 and the value v. This
value has a Java type that can be assigned to the field.

11 The function FieldUpdateAction is called to update the auxiliary data
structures in st2 to reflect the field update. The function is not sup-
posed to change anything else in the state st2.

12 The resulting state st ’ contains the heap in which the field loc is
updated with value v.

1 | assignment instance field ok :
2 ∀ e v obj fsig expr target st st1 st2 st ’ st3 loc cn um,
3 e = Assignment (field fsig (Some target)) expr →
4 ExpressionStep p target st st1 (normal step v (Ref obj)) →
5 loc = (Heap.InstanceField obj fsig ) →
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6 Heap.typeof st2@h obj = Some (Heap.ObjectObject cn um) →
7 defined field p cn fsig →
8 FieldUpdateCheck p loc st1 →
9 ExpressionStep p expr st1 st2 (normal step v v) →

10 assign compatible p st2@h v (FIELDSIGNATURE.type (snd fsig)) →
11 FieldUpdateAction p loc v st2 = st3 →
12 st ’ = st3[h:= Heap.update st2@h loc v] →
13 ExpressionStep p e st st ’ (normal step v v)

Listing 4.5: The constructor assignment instance field ok of the definition
ExpressionStep. The underlined functions are defined in the frame conditions
interface of the provided jml module.

Method Invocation Listing 4.6 shows the rule for the successful call and
return of a method that returns a value. Successful meaning that neither the
call itself nor the callee raises an error or an exception. Thus the following
properties hold:

4 The expression at hand is a method call.

5-8 The expression o evaluates to the target object for the call, which will
be the this object in the callee, and a new state st1. The lookup
of method signature msig in the type of the target object cn yields a
method m’. Furthermore, there exists a class c’ with name cn in the
program.

9-11 The list of parameter expressions evaluate into a list of values and the
resulting state st2, none of these evaluations terminate exceptionally
or throw an error. The function nv2v transforms the list of StepValues
yielded by ListSteps to a list of values, throwing away everything that
is not a normal step v. Therefore, if the length of the two lists are the
same, the original list only contained normal step values.

12,13 The variable fr c1 refers to a new frame initialized with a parameter
dictionary that contains the object this as well as the computed values
of the parameters. State st3 is st2 in which we replace the frame by
fr c1 .

14 The call to MethodCallAction allows the provided JML semantics to
update the auxiliary data structures for the method invocation.

15-18 The body of method m’ executes normally in a state st c ’ and yields
a value v.

19 The function MethodReturnAction builds the resulting state st ’ of the
method call, using the relevant parts from the callers state st2 and the
callees state st c ’ and updating the auxiliary data structures.
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1 | method vcall ok:
2 ∀ e st st1 st2 st3 st c st c ’ st ’ fr c1 msig o cn um this ps psnv psv
3 v cn’ m’ c’ b body,
4 e = method msig (Some o) ps →
5 ExpressionStep p o st st1 (normal step v (Ref this )) →
6 Heap.typeof st1@h this = Some (Heap.ObjectObject cn um) →
7 lookup p cn (snd msig) (cn’ , m’) →
8 PROG.class p cn = Some c’ →
9 ListSteps p ps st1 st2 psnv →

10 psv = nv2v psnv →
11 length psv = length psnv →
12 fr c1 = NewFrame m’ (lv2params m’ ((Ref this)::psv)) st2 →
13 st3 = st2[ fr :=fr c1 ] →
14 MethodCallAction p c’ m’ st3 = st c →
15 METHOD.body m’ = Some body →
16 STATEMENT.type (METHODBODY.compound body) = Compound b →
17 BlockStep p m’ b st c st c ’ normal step →
18 Normal (Some v) = Frame.ret st c’@fr →
19 MethodReturnAction p st c’ st2 = st’ →
20 ExpressionStep p e st st ’ (normal step v v)

Listing 4.6: The constructor method vcall ok of the definition ExpressionStep.
The underlined functions are defined in the frame conditions interface of the
provided jml module.

Object Creation Listing 4.7 shows the rule for successful creation of an
object of a given type. The following properties hold:

3 The expression at hand is an object creation expression.

4 We successfully retrieve a new object o of the specified type from the
heap model, together with a new heap h’.

5 The function NewObjectAction updates the auxiliary data structures
in st to reflect the object creation.

6 The resulting state st ’ contains the new heap h’.

1 | new object ok:
2 ∀ e o st st ’ st1 h’ cn um,
3 e = new (ReferenceType (TypeDefType cn um)) →
4 Heap.new st@h p (Heap.ObjectObject cn um) = Some (o , h’) →
5 NewObjectAction p o st = st1 →
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6 st ’ = st1[h:= h’] →
7 ExpressionStep p e st st ’ (normal step v (Ref o))

Listing 4.7: The constructor new object ok of the definition ExpressionStep.
The underlined functions are defined in the frame conditions interface of the
provided jml module.

4.4 Proof of Determinism

We can prove determinism of the operational semantics without knowing
the implementation of the parameter jml. That is, no matter what JML
semantics we use, the operational semantics is deterministic. We want to
prove the following theorem:

Theorem 4.2. Deterministic Operational Semantics

If we perform a step from state st to st ′ with step value r ′ in the oper-
ational semantics with an arbitrary implementation of the module jml, and
if we also find a state st ′′ and a step value r ′′ by executing the same step,
then the resulting states and the step values must be equal:

∀ st , st ′, r ′ · S ∗ (st , st ′, r ′)→
∀ st ′′, r ′′ · S ∗ (st , st ′′, r ′′) →
st ′ = st ′′ ∧ r ′ = r ′′

We express theorem 4.2 in Coq as shown in listing 4.8. We follow the
structure given by the mutual induction principle mutual ind shown in list-
ing 4.3 on page 135. For each of the four mutual inductive definitions, we
state the desired property and build the conjunction of the four properties.

1 Theorem OpSem deterministic:
2 ∀ p,
3 (∀ e st st ’ r ’,
4 ExpressionStep p e st st ’ r ’ →
5 ∀ st ’’ r ’’,
6 ExpressionStep p e st st ’’ r ’’ →
7 st ’ = st ’’ ∧ r ’ = r ’’)
8 ∧
9 (∀ l st st ’ r ’,

10 ListSteps p l st st ’ r ’ →
11 ∀ st ’’ r ’’,
12 ListSteps p l st st ’’ r ’’ →
13 st ’ = st ’’ ∧ r ’ = r ’’)
14 ∧
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15 (∀ m b st st ’ r ’,
16 StatementStep p m b st st ’ r ’ →
17 ∀ st ’’ r ’’,
18 StatementStep p m b st st ’’ r ’’ →
19 st ’ = st ’’ ∧ r ’ = r ’’)
20 ∧
21 (∀ m b st st ’ r ’,
22 BlockStep p m b st st ’ r ’ →
23 ∀ st ’’ r ’’,
24 BlockStep p m b st st ’’ r ’’ →
25 st ’ = st ’’ ∧ r ’ = r ’’).

Listing 4.8: Theorem 4.2 in Coq

Proof. We prove the theorem by mutual induction on the deviation system
S ∗ (st , st ′, r ′). By applying the predicate mutual ind, we get a goal for each
constructor of the four definitions ExpressionStep, ListSteps , StatementStep,
and BlockStep.

Firstly, we need ensure that there are never two different rules in the
deviation system that can be applied in the same situation. As our opera-
tional semantics only features one rule per language construct, this property
is certainly true. Secondly, we need to show that each rule is deterministic,
that is, cannot produce more than one possible outcome.

Case Method Call: Let’s highlight the case of a method call, which is the
most interesting case to prove. Looking at the definition of the method
call in listing 4.6 we can see that the following lines can introduce non-
determinism, all other lines are function applications that naturally do not
lead to non-determinism:

5 ExpressionStep p o st st1 (normal step v (Ref this ))

7 lookup p cn (snd msig) (cn’ , m’)

9 ListSteps p ps st1 st2 psnv

17 BlockStep p m’ b st c st c ’ normal step

In case of lines 5, 9, and 17, we can apply the induction hypotheses that we
get from mutual ind. For line 7, we need to show that the predicate lookup
behaves like a function, that is, there is only one possible cn’ and m’ in a
given environment. We have already discussed this proof in detail in tutorial
11. Therefore, we can show that a method call is always deterministic.

The proofs of the other cases are analogous. A special note deserves ob-
ject creation. In our heap model, the allocation of new objects is performed
by the function Heap.new and is therefore deterministic by definition.
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4.5 First Refinement

“Don’t unfold those data groups!”

In the first refinement, Srac1, we want to avoid unfolding the data groups
in the pre-state of a method. We replace the unfolded set of assignable
locations with a stack of assignable locations, in which the data groups are
not unfolded, as explained in section 3.4.

4.5.1 Additions to the Program State

In order to decide if a location is assignable, we need to be able to judge
if a location was contained in an assignable data group in the pre-state.
As we do not yet introduce the concept of back-links and lazy unfolding,
we store the pre-heaps of all methods along with the assignable locations.
Thus, the type of the assignable field in the auxiliary data structure for
frames is stack (Heap.t ∗ LocSet.t). The stack contains the assignable sets
of all methods on the call stack. This is necessary as we can not compute
the intersection of sets of assignables, see 3.4. The type (Heap.t ∗ LocSet.t)
is a tuple in Coq. The function fst applied to a variable of this type yields
the first element of the tuple, in our case the heap, and the function snd
yields the second element of the tuple, in our case a set of locations. We
introduce notations (a)1 for ( fst a) and (a)2 for (snd a). The type stack
is our implementation of a stack in Coq, which we will highlight below.
Analogously, we replace the set of fresh objects by a stack of sets of fresh
objects.

Fig. 4.4 depicts the FrameAdds data structure for this refinement. The
remaining fields of FrameAdds are left unchanged, as well as the global aux-
iliary data structure Adds.

Effectively, we make the situation worse in this refinement. Instead of
unfolding the data groups in the pre-state and store one set of locations
that may contain all allocated locations in the heap, we now store a stack
of assignable set, along with a copy of the whole heap for each method in
call stack. However, as we discussed in the overview at the beginning of the
chapter, it is the first step into the right direction.

4.5.2 The Implementation of a Stack Data Type in Coq

We implement a stack data structure in Coq, based on the data type list
from the standard library. All operations and properties of lists are avail-
able for stack. Additionally, we add the operations shown in listing 4.9. The
meaning of empty, singleton , push, and pop is self-explanatory. 6 peek yields
the top element of the stack without removing it, or None if the stack is
empty, whereas 7 peekd does the same but yields the default-element pro-
vided as second parameter if the stack is empty. 10 apply top applies a
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Figure 4.4: The auxiliary data structures FrameAdds of Srac1, in the situation
m′′ ↪→ m′ ↪→ m

function of type A → A to the top most element of the stack, if the stack
contains at least one element, otherwise, the unchanged (empty) stack is
yielded. Similarly, 11 replace top replaces the top most element by another.

We add another two operations that are quite specialized, mainly to
simplify some definitions in the next refinement. Nevertheless, we introduce
them now: The operation 12 truncate removes so many elements from the top
of the stack that its size is not bigger than specified by the first parameter.
If the stack is not bigger in the first place, truncate doesn’t modify the stack.
13 level takes two stacks as parameters and truncates the larger stack to the
size of the smaller one, so that the two stacks, yielded as tuple, have the
same size.

1 Definition stack := list .
2 Variable A : Type .(∗ The element type of the stack ∗)
3

4 Parameter empty : stack A →bool.
5 Parameter singleton : A → stack A.
6 Parameter peek : stack A → option A.
7 Parameter peekd : stack A →A → A.
8 Parameter push : A →stack A → stack A.
9 Parameter pop : stack A → stack A.

10 Parameter apply top : (A → A) → stack A → stack A.
11 Parameter replace top : A → stack A → stack A.
12 Parameter truncate : nat → stack A → stack A.
13 Parameter level : stack A → stack A → (stack A ∗ stack A).

Listing 4.9: The interface of the abstract data type for stacks in Coq, based
on list .
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A made-to-measure Coq Tutorial

Part 13 Avoiding Undecidability in Implementations

The implementations of the operations above are straight-forward. How-
ever, when writing a function in Coq, we often deal with the problem that
certain underlying operations yield a value of type Prop. In this case, we
cannot just perform a syntactic pattern matching on that value, as it might
be undecidable.

In the paragraph on the definition of boolean in our domain model
on page 65, we introduce the axiomatized function P2b: Prop →bool to
circumvent this problem. However, using this function means that we need
to prove that either P or ¬P holds, where P is the proposition passed to the
function. With this proof, and the axioms P2b true and P2b false we can
then continue to evaluate the function.

This sound like additional headache, and we should avoid it as much as
possible. To show this, let’s have a closer look at a possible (but misguided)
implementation of function truncate:

Fixpoint truncate (n : nat) (s : stack A) : stack A :=
if P2b (n < |s |) then

match s with
| :: t ⇒ truncate n t
| ⇒ []
end

else s .

The test n < |s | is of type Prop. We use the function P2b to get a bool,
which we can use in the if . . . then. . . else. . . construct. While this definition
is very readable, using it involves to prove for a given n and s, that n < |s |
or its negation ¬(n < |s|) holds. Only then, we can execute the function. As
a consequence, we can use this function only in proofs, but not to actually
compute a result or even extract it to a program.

To avoid this problems in the first place, we want to define functions
in Coq that only depend on decidable types. For our implementation of
truncate, we can use the library function

nat compare: nat → nat → comparison
which yields for two peano numbers a value of the inductive data type
comparison with the three constructors Lt, Eq, and Gt. Thus, we can perform
a pattern matching on this result. Listing 4.10 shows the actual implemen-
tation of truncate in our development.

1 Fixpoint truncate (n : nat) (s : stack A) : stack A :=
2 match nat compare n |s| with
3 | Lt ⇒
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4 match s with
5 | :: t ⇒ truncate n t
6 | ⇒ []
7 end
8 | ⇒ s
9 end.

Listing 4.10: The implementation of operation truncate.

The use of nat compare instead of < also raises new issues. In order
to prove properties on truncate, we need to reason about the properties of
nat compare a great deal in order to prove simple facts. The standard library
provides a good start, but ultimately, we need quite some additional lemmas
just to deal with this fact. For instance, the following pretty obvious fact
requires a non-trivial proof:

∀ n m, nat compare n m = Lt ↔ nat compare m n = Gt.

Or written in mathematical form: n < m↔ m > n

We prove a selection of useful lemmas about the operations truncate
and level . Listing 4.11 shows the lemmas for operation truncate. 1 Lemma
truncate 1 states that the size of the truncated stack is exactly the requested
size n, if the stack contained at least n elements before. 3,5 The lemmas
truncate nil and truncate n nil state that truncate yields [] ( nil ), if either

the requested size n is 0 or the input stack was empty already. 7 truncate same
states that truncating a stack to its own size doesn’t modify the stack after
all. 1 truncate pop states that truncating a stack to its size minus one is
the same as performing the operation pop on the stack. 11 map truncate
states that it does not make a difference if we first apply a function f to all
elements of the stack and then truncate, or the other way round. Finally,
14 truncate truncate states that truncating a stack to some size and then
truncate it to an even smaller (or same) size can be replaced by truncating
the stack to the smaller size directly.

1 Lemma truncate 1:
2 ∀ (n : nat) (s : stack A), n ≤ | s | → n = |truncate n s |.
3 Lemma truncate nil:
4 ∀ (s : stack A), truncate 0 s = [].
5 Lemma truncate n nil:
6 ∀ (n : nat), truncate n [] = [].
7 Lemma truncate same:
8 ∀ (s : stack A), truncate | s | s = s.
9 Lemma truncate pop:
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10 ∀ (n : nat) (s : stack A), | s | = n+1 → truncate n s = pop s.
11 Lemma map truncate:
12 ∀ (f : A → B) (n : nat) (s : stack A),
13 map f (truncate n s) = truncate n (map f s).
14 Lemma truncate truncate:
15 ∀ (n m : nat) (s : stack A),
16 n ≤m → truncate n s = truncate n (truncate m s).

Listing 4.11: A set of lemmas about operation truncate

Listing 4.12 shows the lemmas for operation level . 1 level 1 states that
the size of two leveled stacks is the same. 3 level eq states that leveling two
stacks of the same size results in the same stacks. 5,7 The lemmas level le
and level ge describe the relation between level and truncate.

1 Lemma level 1:
2 ∀ (s s ’ t t ’ : stack A), (s ’, t ’) = level s t → | s ’| = |t ’|.
3 Lemma level eq:
4 ∀ (s t : stack A), (s , t) = level s t ↔ | s | = |t |.
5 Lemma level le:
6 ∀ (s t : stack A), (s , truncate | s | t) = level s t ↔ | s | ≤ | t |.
7 Lemma level ge:
8 ∀ (s t : stack A), (truncate | t | s , t) = level s t ↔ | t | ≤ | s |.

Listing 4.12: A set of lemmas about operation level

The proofs of all lemmas are performed by induction on the size of the
stack.

4.5.3 The Bisimulation Relation

We introduce the bisimulation relation Rsem
rac1 between Ssem and Srac1 in list-

ing 4.13. The predicate CorrespondingState holds for a st sem and a st rac1, if
the heaps of both states are identical, and if the frames correspond. Mind
that we do not need to argue that the additions to the state, Adds, are equal,
as they are implemented as singleton, that is, the data type contains exactly
one value and is therefore two variables of this type are always equal.

1 Definition CorrespondingState (p : Program) (st rac : State . t)
2 (st sem : Sem.State.t) : Prop :=
3 st sem@h = st rac@h ∧
4 CorrespondingFrame p st rac@fr st sem@fr .

Listing 4.13: The definition the bisimulation relation Rsem
rac1 between the

semantics Ssem and Srac1.
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Listing 4.14 shows the definition of corresponding frames: two frames
fr sem and fr rac1 correspond, if all fields except for assignables and fresh are
equal. 10 The fresh set of Ssem contains the same elements than the top ele-
ment of the stack fresh in Srac1 Furthermore, 11 the predicate Corresponding−
FreshAssignables needs to hold, and 14 we state that the stack of fresh objects
is not empty.

1 Inductive CorrespondingFrame(p:Program):Frame.t→Sem.Frame.t→Prop:=
2 | CorrespondingFrame def:
3 ∀ fr rac fr sem ,
4 fr sem@params = fr rac@params →
5 fr sem@vars = fr rac@vars →
6 fr sem@pc = fr rac@pc →
7 fr sem@ret = fr rac@ret →
8 fr sem@pre = fr rac@pre →
9 fr sem@quants = fr rac@quants →

10 fr sem@fresh [=] peekd fr rac@fresh ∅ →
11 CorrespondingFreshAssignables p
12 fr sem@assignables fr sem@fresh
13 fr rac@assignables fr rac@fresh →
14 fr rac@fresh 6= [] →
15 CorrespondingFrame p fr rac fr sem .

Listing 4.14: The definition of corresponding method frames. For the bisim-
ulation relations of the following refinements, we will omit the 4-10 trivial
parts.

In listing 4.15, we show to the most interesting part of the correspondence
relation, which describes the relation between the sets of assignable locations
and fresh objects in Ssem and their corresponding stack data structures in
Srac1. The predicate holds if and only if for any heap location loc 5 that
is either in the assignable set, or a location of a fresh object in Ssem, the
following is true in Srac1: 7,8 for each method in the call stack, 9-11 either
the location’s object has been freshly allocated in that method or any of its
callees, or 13,14 the location is in the set of assignable locations after unfolding
the data groups contained in the set in the method’s pre-state.

As the stacks of assignable locations and fresh objects contain an element
for each method on the call stack, we can refer to an element that belongs
to a given method on the call stack by its position. Thus, we quantify over
the number n and restrict its range to valid positions in the stack by the
premise 8 n < |a rac | , in order to quantify over the entries of the stack for
all methods on the call stack.

Moreover, we can use the position of an element in these stacks to identify
if an element belongs to a callee or a caller of some method in the call stack,
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as the order of the stack entries corresponds to the order of the methods
in the call stack. Thus, by the limitation of m: 10, m ≤n ∧m < |f rac | , we
express that m refers to a position in the stacks that corresponds to a callee
of the method at position n.

With the function “nth”, we get the element at the nth position of a
stack, or a default value otherwise. For instance 11 nth m f rac∅ yields the
mth element in the stack of fresh object sets, or an empty set otherwise.

1 Definition CorrespondingFreshAssignables (p: Program)
2 (a sem : LocSet.t) (f sem : ObjSet.t)
3 (a rac : stack (Heap.t ∗ LocSet.t)) ( f rac : stack ObjSet.t) : Prop :=
4 ∀ ( loc : Location),
5 loc ∈ a sem ∨LocInObjSet loc f sem
6 ↔
7 ∀ (n : nat),
8 n <|a rac| →
9 (∃ (m : nat),

10 m ≤n ∧m < |f rac |
11 ∧ loc ∈ (ObjSet2LocSet (nth m f rac ∅)))
12 ∨
13 loc ∈ (UnfoldDatagroups p (nth n a rac (InitHeap,∅))1
14 (nth n a rac (InitHeap,∅))2).

Listing 4.15: The interesting part in this refinement: the relation between
the fresh and assignable sets of the two involved semantics.

4.5.4 Implementation of the Frame Conditions Interface

From the five functions in the frame condition interface, we implement tree of
them different to the semantics. The first is FieldUpdateCheck, which needs
to deal with the fact that the assignable locations have not been unfolded
in the pre-state. The second is MethodCallAction, which has less work to
do for the same reason. The third is MethodReturnAction, which deals with
stacks of fresh object sets rather than just one such set.

The definition of FieldUpdateCheck, shown in listing 4.16, is basically
the property defined on the right side in CorrespondingFreshAssignables, see
4.15. It checks if loc or a data group that contains loc is assignable in each
element of the assignable stack or if there exists object that has been freshly
allocated during the execution of the method that contains the location.
The only difference is that we do not check if the location is in the unfolded
set of assignable locations, but rather check if there exists a data group
that contains the location and that is mentioned in the assignable set. It
is natural that the correspondence relation and the field update checks are
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closely related, as the outcome of this check is the only relevant information
that needs to correspond in the two semantics of the bisimulation. To check if
a field is contained in a data group, we use the inductive predicate FieldInDg,
which we presented in listing 2.72 on page 98.

1 Definition FieldUpdateCheck(p:Program)(loc:Location)(st :State . t ):Prop :=
2 ∀ (n : nat),
3 n < | st@fr@assignables | →
4 (∃ (m : nat),
5 m ≤n ∧m < |st@fr@fresh|
6 ∧ loc ∈ ObjSet2LocSet (nth m st@fr@fresh ∅))
7 ∨
8 ∃ dg, dg ∈ (nth n st@fr@assignables (InitHeap,∅))1 ∧
9 FieldInDg p (nth n st@fr@assignables (InitHeap,∅))2 loc dg.

Listing 4.16: The Srac1 implementation of FieldUpdateCheck.

Upon method invocation, the Srac1 definition of MethodCallAction, shown
in listing 4.17, evaluates the assignable clause into a set of locations, but
does not unfold the data groups. This set, together with the current heap is
stored in the stack of assignable locations. The function EvalAssignabeClause
is defined to yield the same set of locations than its counterpart in Ssem, for
corresponding states.

The function MethodCallAction is called in a state that already contains
the new frame for the method. This frame features an element on top of the
assignable stack that has been initialized with the set LocSetAll, which rep-
resents the default assignable clause assignable \everything. Therefore,
the implementation behind the notation “:+” does not put a new element
on the stack, but replaces the top most element of the assignable stack with
the new value.

1 Definition MethodCallAction (p : Program) (c : Class) (m : Method)
2 (st : State . t) : State . t :=
3 let locs := EvalAssignableClause p c m st in
4 st [ fr :=st@fr[ assignables :+ (st@h, locs )]].

Listing 4.17: The Srac1 implementation of MethodCallAction.

Upon method return, MethodReturnAction of Srac1 adds the set of fresh
objects from the caller to his own set of fresh objects, see listing 4.18. The
function computes the union of the top most elements of the fresh stacks
from caller and callee and replaces the top element of the caller with the
new set.

With peekd we retrieve the top element of the fresh stack of the callee. In
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order for this to operate as expected, the stack must not be empty (hence,
we added the information at line 14 in listing 4.14). Behind the notation
“:∪”, we hide the details of the update, which are:

apply top (ObjSet.union f c ) fr@fresh
where ObjSet.union f c is the curried function to compute the union between
the given set of fresh objects of the callee and a set provided as argument.

1 Definition MethodReturnAction (p:Program) (st c:State.t) (st :State . t)
2 : State . t :=
3 st c [ fr :=st@fr[ fresh :∪ (peekd st c@fr@fresh ∅) ]].

Listing 4.18: The Srac1 implementation of MethodReturnAction.

4.5.5 Proof of the First Refinement

The way we build up the different semantics involved in the refinements
allows us to apply an elegant way of proving the correctness of each refine-
ment. The semantics only differ in the implementation of the supplied jml
module. Therefore, by proving that the different implementations of the
functions in the jml module preserve the correspondence between states, we
can elegantly show that the two semantics are in fact bisimilar.

In this first refinement, the interesting proofs are the correctness proofs
for the functions FieldUpdateCheck and MethodCallAction. Of course, we
also provide a correctness proof of all other functions of the frame condi-
tions interface in our formalization. However, these proofs are either not
interesting or similar to (but simpler than) the proof for MethodCallAction.

We present the proof of the first refinement as follows: firstly, we show
that FieldUpdateCheck behaves equivalently for corresponding states and
that the Srac1 implementation of MethodCallAction preserves the correspon-
dence between states in Ssem and Srac1. Secondly, we prove the main theo-
rem for this refinement, which states that the semantics Ssem and Srac1 are
bisimilar.

Correctness Proof of the Frame Condition Implementation

Lemma 4.3. Correct Field Update Check

For corresponding states, the field update checks in Ssem and Srac1 are
equivalent.

1 Lemma FieldUpdateCheck Correct:
2 ∀ loc p st rac st sem,
3 CorrespondingState p st rac st sem →
4 ( Rac1.Assignables .FieldUpdateCheck p loc st rac
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5 ↔
6 Sem.Assignables.FieldUpdateCheck p loc st sem ).

Listing 4.19: Correctness of Srac1 version of FieldUpdateCheck

Proof. By introducing the 3 premise and by unfolding the involved defini-
tions, we get a hypothesis that states the property defined by Corresponding−
FreshAssignables , see 4.15. For reasons that we discussed on page 147, the
definitions of FieldUpdateCheck of Ssam and Srace are equivalent to the left
and right side of the full implication of this property, respectively.

The Srac1 definition of FieldUpdateCheck differs from the correspondence
relation only in the unfolding of data groups:

H4 : loc
∈ UnfoldDatagroups p (nth n stRac@fr@assignables (InitHeap, ∅))1

(nth n stRac@fr@assignables (InitHeap, ∅))2

∃ dg,
dg ∈ (nth n stRac@fr@assignables (InitHeap, ∅))2
∧ FieldInDg p (nth n stRac@fr@assignables (InitHeap, ∅))1 loc dg

Listing 4.20: Proof excerpt

Checking the definition of UnfoldDatagroups in listing 2.71 on page 97,
we realize that the goal is equivalent to H4.

Lemma 4.4. Correct Method Call Action
Fig. 4.5 depicts the proof idea for the function MethodCallAction of Srac1.

Starting from two corresponding states st sem and st rac1, the application of
functions MethodCallAction on these states yields the states st ′sem and st ′rac1,
and these two states correspond.

This only needs to hold if the states st sem and st rac1 contain a new method
frame. Hence, the the set of fresh objects in st sem is empty, the top element
of the fresh stack in st rac1 is the empty set as well, and the top element of
the assignable stack in st rac1 is the set of all locations.

st sem
Sem.Assignables.MethodCallAction //

OO

Rsem
rac1

��

st ′semOO

Rsem
rac1

��
st rac1

Rac1.Assignables .MethodCallAction // st ′rac1

Figure 4.5: MethodCallAction preserves the relation Rsem
rac1.
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1 Lemma MethodCallAction Correct:
2 ∀ p c m st rac st rac ’ st sem st sem’ st rac assignables st rac fresh ,
3 ( st sem@fr@fresh = ∅
4 ∧ st rac@fr@assignables = ((InitHeap,LocSetAll) :: st rac assignables )
5 ∧ st rac@fr@fresh = (∅ :: st rac fresh )) →
6

7 CorrespondingState p st rac st sem →
8 Sem.Assignables.MethodCallAction p c m st sem = st sem’ →
9 Rac1.Assignables .MethodCallAction p c m st rac = st rac ’ →

10 CorrespondingState p st rac ’ st sem ’.

Proof. We start the proof of this lemma by unfolding all involved definitions.
The only part of the program state that MethodCallAction touches, is the
field assignable in the method frame. Thus, all parts of the correspondence
relation that do not mention the assignables field can trivially be discharged.

We are left with the definition of CorrespondingFreshAssignables, for which
we need to show equivalence after the update of the assignables field. In
Ssem, we intersect the existing assingable locations with the unfolded set of
assignable locations from the method’s specification. In Srac1, we replace the
top most element in the assignable stack by a tuple containing the pre-heap
of the method and non-unfolded set of assignable locations from method’s
specification.

Hinit : st sem@fr@fresh = ∅
∧ st rac@fr@assignables =(InitHeap,LocSetAll ):: st rac assignables
∧ st rac@fr@fresh = ∅ :: st rac fresh

H0 : st sem@h = st rac@h
H9 : CorrespondingFreshAssignables p

st sem@fr@assignables
st sem@fr@fresh
st rac@fr@assignables
st rac@fr@fresh

CorrespondingFreshAssignables p
(st sem@fr@assignables ∩ UnfoldDatagroups p st sem@h

EvalAssignableClause p c m st sem))
st sem@fr@fresh
( replace top (st rac@h, EvalAssignableClause p c m st rac)

st rac@fr@assignables )
st rac@fr@fresh

Listing 4.21: Proof excerpt
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In order to explain the proof strategy, let’s have a look at the unfolded
version of the goal:

1 . . .
2

3 ∀ loc : Location,
4 loc ∈ (st sem@fr@assignables
5 ∩ UnfoldDatagroups p st sem@h (EvalAssignableClause p c m st sem)
6 ∨ LocInObjSet loc st sem@fr@fresh
7 ↔
8 (∀ n : nat,
9 n < | replace top (st rac@h, EvalAssignableClause p c m st rac)

10 st rac@fr@assignables |) →
11 (∃ m : nat,
12 m ≤n ∧m < |st rac@fr@fresh |
13 ∧ loc ∈ ObjSet2LocSet (nth m st rac@fr@fresh ∅))
14 ∨
15 loc ∈ UnfoldDatagroups p
16 (nth n
17 ( replace top (st rac@h, EvalAssignableClause p c m st rac)
18 st rac@fr@assignables ) (InitHeap, ∅) )1
19 (nth n
20 ( replace top (st rac@h, EvalAssignableClause p c m st rac)
21 st rac@fr@assignables ) (InitHeap, ∅) )2)

Listing 4.22: Proof excerpt

We discuss both directions of the full implication at line 7:

“→”: We know that 4,5 the location loc is both in st sem@fr@assignables and
the unfolded set yielded by EvalAssignableClause because it cannot be in 6

st sem@fr@fresh, as this would contradict to the hypothesis Hinit.

We perform a case split on n. If n = 0, we choose the right hand side
of the 14 disjunction. The 0th element of the stack in which we replaced the
top is of course the replacement itself. Therefore, we can rewrite H0 and
simplify the access to the first and second part of the tuple to get the goal,
where H10 originates in the 5 premise of the last goal:

. . .
H10 : loc

∈ UnfoldDatagroups p st sem@h EvalAssignableClause p c m st sem

loc ∈ UnfoldDatagroups p st rac@h (EvalAssignableClause p c m st rac)

Listing 4.23: Proof excerpt
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We know from H0 that the heaps are equal, furthermore the function
EvalAssignableClause yields equal sets of locations for corresponding states,
thus we can prove this goal.

If n > 0, we look at any but the first stack element. As the first element
is the only one that got changed, we can use H9, which states the desired
property for the original assignable stacks, to prove the goal.

“←”: We need to prove that loc is 4 in st sem@fr@assignables and 5 in the
unfolded set of assignable locations from the method’s specification, because
we know from Hinit that loc is definitively not in the 6 fresh set. In the
following, we discuss the proof of both sides of the conjunction.

To prove that loc∈st sem@fr@assignables, we use the correspondence re-
lation in H9. In order to apply (the unfolded version of) H9 to the goal, we
need to show that loc is assignable in st rac before the update:

. . .

∀ loc : Location,
(∀ n : nat,

n < | st rac@fr@assignables |)
→ (∃ m : nat,

m ≤n ∧m < |st rac@fr@fresh |
∧ loc ∈ ObjSet2LocSet (nth m st rac@fr@fresh ∅))

∨
loc ∈ UnfoldDatagroups p

(nth n st rac@fr@assignables (InitHeap, ∅) )1
(nth n st rac@fr@assignables (InitHeap, ∅) )1

Listing 4.24: Proof excerpt

Again, we perform a case split on n. If n = 0, we know from the second
part of Hinit, that loc is certainly in the unfolded set of the first stack ele-
ment, as it contains all locations. As the first stack element stays unchanged
after the application of MethodCallAction, we can trivially prove the goal for
n > 0.

To prove that loc is in the unfolded set of assignable locations in st sem
(this is the second part of the conjunction from before), we set n to 0 and
show that the right part of the disjunction (15-21 in listing 4.22) needs to hold
because the left part does definitively not hold because of Hinit. Analogously
to the forward direction, we can then show that the two unfolded sets are
identical.

Proof of the Bisimulation Property

Theorem 4.5. Correctness of the First Refinement
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If one starts in a state st sem and performs a step in the semantics to get
state st ′sem, and given a state st rac1 that corresponds to state st sem, then there
exists a state st ′rac1 that one gets by applying the same step in the runtime
assertion checker and that corresponds to st ′sem.

Moreover, if one can perform a step in the runtime assertion checker
from st rac1 to st ′rac1, and st sem corresponds to st rac1, then there exists a
corresponding st ′sem which one gets by performing the same step in the se-
mantics:

st sem
Ssem //

OO

Rsem
rac1

��

st ′semOO

Rsem
rac1

��
st rac1

Srac1 // st ′rac1

Proof. The proof of both statements is completely symmetrical, we will only
discuss the forward direction Ssem → Srac1.

Similar to the proof of determinism, we need to state the property for all
four inductive definitions of a step and perform a proof by mutual induction.
We discuss the three interesting cases method call, field update, and object
creation. Of course, we prove both directions of all cases in the formalization.

Case Field Update: Listing 4.25 shows the proof obligation for field up-
date. We rearranged and commented the generated hypotheses for a better
understanding.

2-11 The hypotheses H – H10 represent define a field update in Ssem, we
can directly relate them to the premises of the rule for field assignment
in listing 4.5 on page 136.

14 The hypothesis H11 states that the initial states are corresponding.

17-22 H2 is the induction hypothesis for the call to ExpressionStep in H1.
Thus, we know that we can evaluate the target of the assignment and
preserve the correspondence.

25-29 H5 is the induction hypothesis for the call to ExpressionStep in H4.
Thus, the right hand side of an assignment can be evaluated while
preserving the correspondence.

1 (∗ Case: perform a field update in OpSem (Ssem) ∗)
2 H : e = Assignment (field fsig (Some target)) expr
3 H1 : OpSem.ExpressionStep p target st st1 (normal step v (Ref obj))
4 H0 : loc = Heap.InstanceField obj fsig
5 H6 : Heap.typeof st2@h obj = Some (Heap.ObjectObject cn um)



4.5. FIRST REFINEMENT 155

6 H7 : defined field p cn fsig
7 H3 : Sem.Assignables.FieldUpdateCheck p loc st1
8 H4 : OpSem.ExpressionStep p expr st1 st2 (normal step v v)
9 H8 : assign compatible p st2@h v (FIELDSIGNATURE.type (fsig)2)

10 H9 : Sem.Assignables.FieldUpdateAction p loc v st2 = st3
11 H10 : st ’ = st3 [h := Heap.update st2@h loc v]
12

13 (∗ The initial states correspond ∗)
14 H11 : CorrespondingState p st rac st
15

16 (∗ Induction Hypothesis for H1 ∗)
17 H2 : ∀ st rac : State . t ,
18 CorrespondingState p st rac st
19 → (∃ st rac ’ : State . t ,
20 CorrespondingState p st rac ’ st1
21 ∧ OpRac1.ExpressionStep p target st rac st rac ’
22 (normal step v (Ref obj )))
23

24 (∗ Induction Hypothesis for H4 ∗)
25 H5 : ∀ st rac : State . t ,
26 CorrespondingState p st rac st1
27 → (∃ st ’ rac : State . t ,
28 CorrespondingState p st ’ rac st2
29 ∧ OpRac1.ExpressionStep p expr st rac st ’ rac (normal step v v))
30

31 ∃ st ’ rac : State . t ,
32 CorrespondingState p st ’ rac st ’
33 ∧ OpRac1.ExpressionStep p e st rac st ’ rac (normal step v v)

Listing 4.25: Proof excerpt

We want to find an instance for the existential variable in the goal, that
is, we need to construct a state st ’ rac that corresponds to st ’ and that
can be reached by performing one expression step starting from st rac .

We construct this state step by step: By H2 and the fact that the premise
of H2 holds because of H11, we know that there exists a corresponding state
to st1, we call it st1 rac . From this, we can perform the same reasoning
with H5 to get a state st2 rac that corresponds to st2. From the definition
of FieldUpdateAction, we learn that st2 = st3. We can now create a state
st ’ rac by updating the heap in st2 rac in the same way as H10 updates
st3.

We provide st ’ rac as a witness to the existential in the goal. We now
have to prove that this witness is the right one, that is, it corresponds to
st ’ and we can indeed perform one step in Srac that leads to this state.

The first part is trivial, because we just constructed st ’ rac from the
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induction hypotheses H2 and H5 that state that the resulting states are
corresponding. We prove the second part by applying the correct rule, that
is, inductive constructor from ExpressionStep in Srac1. The correct choice
is naturally the same rule that was applied on Ssem, thus, we apply the
constructor assignment instance field ok with the appropriate instantiation
for the universal quantifiers.

Most of the variables are identical in Ssem and Srac1, only the state vari-
ables differ. Applying this constructor results in ten new sub-goals to prove,
one for each premise of the assignment rule, but most of them can be im-
mediately discharged by the trivial tactic, if the sub-goal exactly matches
a hypothesis. Examples are hypotheses H0 or H7 that are not dependent of
the semantics used. But also the two induction hypotheses provide the 21-22,29

means to trivially discharge sub-goals that contain the inductive definitions.
We are left with three sub-goals. The first is the Srac1 counterpart of H3:

Rac1.Assignables .FieldUpdateCheck p loc st1 rac

We apply lemma 4.3, to discharge this sub-goal.
The remaining two sub-goals are the counterparts of H6 and H8, that

use st2 rac instead of st2 to access the heap. Because we know that st2 rac
and st2 correspond, we can rewrite the sub-goals to exactly match H6 and
H8.

Case Method Call: Listing 4.26 shows the proof obligation for a method
call. We rearranged and commented the generated hypotheses for a better
understanding.

Analogous to the case from field update, we split the hypotheses of the
generated goal into three categories: 2-17 the premises of the method call
rule, 20 the premise of our property that we want to prove, and 23-38 generated
induction hypotheses for the nested calls to perform a step.

1 (∗ Case: perform a method call in OpSem (Ssem) ∗)
2 H : e = method msig (Some o) ps
3 H0 : OpSem.ExpressionStep p o st st1 (normal step v (Ref this0 ))
4 H2 : Heap.typeof st1@h this = Some (Heap.ObjectObject cn um)
5 H3 : lookup p cn (msig)2 (cn’, m’)
6 H4 : PROG.class p cn = Some c’
7 H5 : OpSem.ListSteps p ps st1 st2 psnv
8 H7 : psv = OpSem.nv2v psnv
9 H8 : length psv = length psnv

10 H9 : fr c1 = Sem.NewFrame m’ (lv2params m’ (Ref this0 :: psv)) st2
11 H10 : st3 = st2 [ fr := fr c1 ]
12 H11 : Sem.Assignables.MethodCallAction p c’ m’ st3 = st c
13 H12 : METHOD.body m’ = Some body
14 H13 : STATEMENT.type (METHODBODY.compound body) = Compound b
15 H14 : OpSem.BlockStep p m’ b st c st c’ normal step
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16 H16 : Normal (Some v) = st c’@fr@ret
17 H17 : Sem.Assignables.MethodReturnAction p st c’ st2 = st’
18

19 (∗ The initial states correspond ∗)
20 H18 : CorrespondingState p st rac st
21

22 (∗ Induction hypotheses for H0, H5, H14 ∗)
23 H1 : ∀ st rac : State . t ,
24 CorrespondingState p st rac st
25 → (∃ st ’ rac : State . t ,
26 CorrespondingState p st ’ rac st1
27 ∧ OpRac1.ExpressionStep p o st rac st ’ rac
28 (normal step v (Ref this0 )))
29 H6 : ∀ st rac : State . t ,
30 CorrespondingState p st rac st1
31 → (∃ st ’ rac : State . t ,
32 CorrespondingState p st ’ rac st2
33 ∧ OpRac1.ListSteps p ps st rac st ’ rac psnv)
34 H15 : ∀ st rac : State . t ,
35 CorrespondingState p st rac st c
36 → (∃ st ’ rac : State . t ,
37 CorrespondingState p st ’ rac st c ’
38 ∧ OpRac1.BlockStep p m’ b st rac st ’ rac normal step)
39

40 ∃ st ’ rac : State . t ,
41 CorrespondingState p st ’ rac st ’
42 ∧ OpRac1.ExpressionStep p e st rac st ’ rac (normal step v v)

Listing 4.26: Proof excerpt

The proof strategy is identical to field update. We construct a state
st ’ rac that corresponds to st ’ and that can be reached by performing one
step in Srac1 starting from st rac .

We already have everything we need to construct st ’ rac . We use H1
to get st1 rac . From this, we use H6 to get st2 rac . From a lemma that
shows that Rac1.NewFrame is correct, that is, preserve the correspondence
relation, we can construct a st3 rac that corresponds to st3. Using the
lemma 4.4, we set a state st c rac to be the corresponding state to st c .
From H15 we get the state st c ’ rac and finally use the correctness lemma
for Rac1.Assignables .MethdReturnAction to construct a corresponding state
to st ’ .

We use st ’ rac as witness for the existential quantifier in the goal. The
41 left hand side of the conjunction is trivially true, as we have just used the
correspondence relation to create st ’ rac , and the 42 right hand side can be
proven by applying the method call rule of Srac1. This creates sixteen new
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sub-goals, from which fourteen can be discharged trivially. The remaining
two (the counterparts of H2 and H16) can be discharged by unfolding the
appropriate correspondence relations to show that the heap (in case of H2)
and the return value (in case of H16) are identical in corresponding states.

Case Object Creation: Listing 4.27 shows the proof obligation for object cre-
ation. We can prove it by constructing a state st ’ rac using Rac1.Assignables
.NewObjectAction. The definition is accompanied by a correctness lemma
that shows that the function preserves correspondence of states. We use
st ’ rac as witness and apply the rule for object creation of Srac1. Finally,
we unfold the correspondence relation on the initial states to show that st@h
and st rac@h yield the same heap.

1 (∗ Case: object creation in OpSem (Ssem) ∗)
2 H : e = new (ReferenceType (TypeDefType cn um))
3 H0 : Heap.new st@h p (Heap.ObjectObject cn um) = Some (o, h’)
4 H1 : Sem.Assignables.NewObjectAction p o st = st1
5 H2 : st ’ = st1 [h := h’]
6

7 (∗ The initial states correspond ∗)
8 H3 : CorrespondingState p st rac st
9

10 ∃ st ’ rac : State . t ,
11 CorrespondingState p st ’ rac st ’
12 ∧ OpRac1.ExpressionStep p e st rac st ’ rac (normal step v (Ref o))

Listing 4.27: Proof excerpt

4.6 Second Refinement

“Lose those heaps!”

In the second refinement, we define the semantics Srac2 which eliminates
the need to store the whole heap for each element of the stack of assignable
locations. We realize the lazy unfolding of data groups, as introduced in the
paragraph on updating pivot fields on page 119.

4.6.1 Additions to the Program State

Once more, we change the signature of the field assignable of the auxiliary
data structures for method frames. While it is stack (Heap.t ∗ LocSet.t)
in Srac1, we change it to stack (LocSet.t ∗ LocSet.t) in Srac2. The second
element of the tuple is the set of assignable locations, which is identical to
Srac1. However, the first element of the tuple is now the set of pivot fields
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Figure 4.6: The auxiliary data structures FrameAdds of Srac2, in the situation
m′′ ↪→ m′ ↪→ m

that got assigned to during method execution. Thus, data groups using
these pivot field should not be considered when checking if a location is
contained via dynamic data groups in the set of assignable locations. We
name these locations excluded pivots.

Fig. 4.6 depicts the FrameAdds data structure for this refinement. The
remaining fields of FrameAdds are left unchanged, as well as the global aux-
iliary data structure Adds.

In this refinement, we set things right again after we introduced addi-
tional copies of the whole heap in the last refinement. Now, the auxiliary
data structures do not contain any unnecessary information any more.

4.6.2 Dealing with Excluded Pivots

In the presence of excluded pivot fields, we need to adapt the definitions of
data group unfolding and membership. If a field is contained in a data group
via a dynamic data group defined on an excluded pivot field, we ignore this
data group for the field.

Data Group Unfolding and Membership

The definition of UnfoldDatagroups rac, shown in listing 4.28 is nearly iden-
tical to the definition UnfoldDatagroups in listing 2.71 on page 97. The only
difference is, that instead of providing the heap in which the data groups
should be unfolded, the function expects the current heap and a set of ex-
cluded pivots as arguments. From the axiomatization, we see that the ex-
cluded pivots are passed to a predicate FieldInDg rac . The predicate holds,
if field f is in data group dg , without using any pivot field from ep. So let’s
look at the definition of FieldInDg rac to finally see the difference between
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Srac1 and Srac2.

1 Parameter UnfoldDatagroups rac : Program →Heap.t →
2 (∗ excluded pivots ∗) LocSet.t → (∗ data groups ∗) LocSet.t → LocSet.t .
3 Axiom UnfoldDatagroups rac def: ∀p h ep dgs f ,
4 f ∈ (UnfoldDatagroups rac p h ep dgs)
5 ↔
6 ∃ dg, dg ∈ dgs ∧FieldInDg rac p h ep f dg).

Listing 4.28: Axiomatized function to unfold data groups in the presence of
excluded pivots.

Listing 4.29 shows the interesting constructor of the implementation of
FieldInDg rac . The definition closely resembles FieldInDg from listing 2.72
with except for 6 the additional check that the pivot from directFieldInDg
dynamic is not a member of the set of excluded pivots, ep.

1 Inductive FieldInDg rac (p : Program) (h : Heap.t) (ep : LocSet.t ):
2 (∗ field ∗) Location → (∗ dg ∗) Location → Prop :=
3 . . .
4 | FieldInDg rac dynamic : ∀ field dg pivot ,
5 direct FieldInDg dynamic p h field dg pivot →
6 pivot 6∈ ep →
7 FieldInDg rac p h ep field dg
8 . . .

Listing 4.29: The predicate FieldInDg rac .

Although the difference between the unfolding of data groups in Srac1

and Srac2 are small, we need quite some additional information to be able
to show the correspondence between the two semantics. We prove a set
of lemmas about UnfoldDatagroups rac and FieldInDg rac to facilitate the
correctness proofs for the frame condition functions.

Facts about Data Group Unfolding and Membership

The following definitions and lemmas highlight the most prominent and
interesting facts about the Srac2 implementation of data group unfolding
and membership. We relate the new implementation to the original one of
Ssem, and also flesh out central properties of the new definitions.

Facts about definition FieldInDg rac

Lemma 4.6. The Srac2 implementation FieldInDg rac is equivalent to
FieldInDg, if the set of excluded pivots is empty.
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1 Lemma FieldInDg rac 1:
2 ∀ p h f dg,
3 FieldInDg p h f dg ↔ FieldInDg rac p h ∅ f dg.

Proof. Both directions of the full implication by structural induction over
the shape of the inductive definition FieldInDg and FieldInDg rac , respec-
tively. As the set of excluded pivots is empty, the additional premise pivot 6∈ep
in constructor FieldInDg rac dynamic always holds.

Lemma 4.7. Allocating a new object in the heap doesn’t affect the predicate
FieldInDg rac .

1 Lemma FieldInDg rac 2:
2 ∀ p h h’ lt obj pivots a dg,
3 Heap.new h p lt = Some (obj, h’) →
4 ( FieldInDg rac p h pivots a dg ↔ FieldInDg rac p h’ pivots a dg).

Proof. Both directions of the full implication by structural induction over
FieldInDg rac . We discuss only one direction as the proofs are fairly similar.

“→”: The only constructor of FieldInDg rac that leads to a non trivial proof
obligation is FieldInDg rac dynamic. After some unfolding, besides another
set of fairly simple goals, we end up in the following proof obligation:

H : Heap.new h p (ObjectObject cn um) = Some (obj, h’)
H3 : pivot loc = Heap.InstanceField pivot obj pivot fsig
H4 : Heap.get h pivot loc = Some (Ref field obj )

Heap.get h’ pivot loc = Some (Ref field obj )

Listing 4.30: Proof excerpt

Hypothesis H is the premise of the original goal, the other hypotheses
originate in premises of the definition of direct FieldInDg dynamic . The goal
essentially reads as “If we allocate a new object in the heap, the value of
field pivot loc doesn’t change. It is pretty obvious, but we do not have the
information in any hypothesis that obj and pivot obj are not equal, that is
why our proof is a bit more indirect as one might think.

We first show pivot obj 6= obj. A non-equality a 6= b can be simpli-
fied to a = b → False. Thus, after introduction, we get pivot obj = obj as
additional hypothesis and need to prove False.

H : Heap.new h p (Heap.ObjectObject c u) = Some (obj, h’)
H3 : pivot loc = Heap.InstanceField pivot obj pivot fsig
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H4 : Heap.get h pivot loc = Some (Ref field obj )
H11 : pivot obj = obj

False

Listing 4.31: Proof excerpt

We need to find a contradiction in the hypotheses to prove False. Indeed,
we can find such a contradiction. On the one hand, we know from the heap
model, that the newly created object obj cannot be allocated in heap h. On
the other hand, we state in H4 that reading the field pivot loc , yields a
value. Thus, the field’s object is obviously allocated in h, and according to
H11, that object is obj.

With the information that pivot obj 6= obj, we can basically finish the
proof by applying an axiom from the heap model. The axiom states: If we
allocate object obj , the value of any field from any object except for obj
doesn’t change.

Lemma 4.8. If field f is in data group dg without using any pivots from
the set excluded ∪ {pivot}, then f is also in dg if the set of excluded pivots
is just excluded.

1 Lemma FieldInDg rac pivots 1:
2 ∀ p h pivot excluded f dg,
3 FieldInDg rac p h (excluded ∪ {pivot}) f dg →
4 FieldInDg rac p h excluded f dg.

Listing 4.32: Lemma FieldInDg rac pivots 1

Proof. By structural induction over the premise without any non-trivial
goals.

Lemma 4.9. If a field f is in data group dg in the presence of the excluded
pivots excluded, and if f is not any more in dg if we add pivot to that set
of excluded pivots, then there exists a path from f to some dg1 via pivot to
some dg’ to dg.

1 Lemma FieldInDg rac pivots 2:
2 ∀ p h f dg excluded pivot ,
3 FieldInDg rac p h excluded f dg →
4 ¬ FieldInDg rac p h (excluded ∪ {pivot}) f dg →
5 ∃ dg1,
6 FieldInDg rac p h (excluded ∪ {pivot}) f dg1 ∧
7 ∃ dg’,
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8 direct FieldInDg dynamic p h dg1 dg’ pivot ∧
9 FieldInDg rac p h excluded dg’ dg.

Listing 4.33: Lemma FieldInDg rac pivots 2

Proof. We prove the lemma by structural induction over the first premise.
In any of the three base cases of FieldInDg rac , it’s easy to find the right
witnesses for dg1 and dg. The challenging case is if f is not directly contained
in dg, but transitively. We get the following goal.

pivots ’ := pivots ∪ {pivot}
H : FieldInDg rac p h pivots dg’ dg
H1 : FieldInDg rac p h pivots f dg’
H0 : ¬ FieldInDg rac p h pivots ’ f dg
IHFieldInDg rac1 : ¬ FieldInDg rac p h pivots ’ dg’ dg → . . .
IHFieldInDg rac2 : ¬ FieldInDg rac p h pivots ’ f dg’ → . . .

∃ dg1 : Location,
FieldInDg rac p h pivots ’ f dg1
∧ (∃ dg2 : Location,

direct FieldInDg dynamic p h dg1 dg2 pivot
∧ FieldInDg rac p h pivots dg2 dg)

Listing 4.34: Proof excerpt

By applying the step case FieldInDg rac step of the inductive definition
FieldInDg rac , we divide the path from f to dg into two paths, one from f
to some data group dg’ and one from dg’ to dg. The field pivot must be
in either of the two paths, otherwise we contradict H0. Thus, either the
premise of the first or the second induction hypothesis holds. From the
respective hypothesis, we get witnesses for both dg1 and dg2.

If we apply the first induction hypothesis, we still need to prove
FieldInDg rac p h pivots ’ f dg1. From the induction hypothesis, we get
FieldInDg rac p h pivots ’ dg’ dg1. From the case split, we get that
pivot is (only) in the path between dg’ and dg, thus we know
FieldInDg rac p h pivots ’ f dg’, thus, by applying the step rule, we can
prove the goal.

If we apply the second induction hypothesis, we need to prove
FieldInDg rac p h pivots dg2 dg. From the induction hypothesis, we get
FieldInDg rac p h pivots dg2 dg’, from H we get the second part of the path.
Again, we can apply the step rule to prove the goal.

Basic Facts about UnfoldDatagroups rac

Lemma 4.10. If the set of excluded sets is empty, UnfoldDatagroups rac is
equivalent to UnfoldDatagroups.
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1 Lemma UnfoldDatagroups rac 1:
2 ∀ p h dgs f ,
3 f ∈ (UnfoldDatagroups p h dgs)
4 ↔
5 f ∈ (UnfoldDatagroups rac p h ∅ dgs).

Proof. By applying the axioms that define the two functions
UnfoldDatagroups and UnfoldDatagroups rac and by lemma 4.6.

The outcome of unfolding data groups in Srac2 depends on three inputs:
The heap, the excluded pivots, and of course the set of assignable locations
that we want to unfold.

We defined in Ssem that an assignable clause is evaluated (including
unfolding of data groups) in the pre state of the method. To achieve this,
we access the pre-heap in Srac1 to unfold the data groups when necessary.
Now, we do not have the pre-heap any more, but only the current heap,
which can be different for each application of UnfoldDatagroups rac. Thus,
we need to define, under which circumstances the unfolding of data groups
leads to the same set of locations.

First, while keeping the excluded pivots and the set of assignable loca-
tions fixed, we define which heaps we can consider equivalent for unfolding
data groups. The predicate in listing 4.35 holds if all pivot fields that are
not contained in the set of excluded pivots have the same value in the two
heaps. Any other element in the heap can change arbitrarily.

1 Definition EquivAssignableHeap (p : Program) (h h’ : Heap.t)
2 (excluded : LocSet.t) : Prop :=
3 ∀ loc ,
4 PivotField p loc →
5 loc 6∈ excluded →
6 Heap.get h loc = Heap.get h’ loc .

Listing 4.35: Equivalent Heaps for unfolding data groups

We prove the validity of our assessment of equivalent heaps by the fol-
lowing lemma.

Lemma 4.11. If two heaps are equivalent according to EquivAssignableHeap,
unfolding the same assignable clauses in both heaps yields equal sets.

1 Lemma UnfoldDatagroups rac 2:
2 ∀ p h h’ excluded assignables ,
3 EquivAssignableHeap p h h’ excluded →
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4 UnfoldDatagroups rac p h excluded assignables [=]
5 UnfoldDatagroups rac p h’ excluded assignables .

Proof. By unfolding the definitions, applying UnfoldDatagroups rac def and
discharging some trivial goals, we get to the essence of this lemma:

H : ∀ loc : Location,
PivotField p loc →
loc 6∈ excluded →
Heap.get h loc = Heap.get h’ loc

H1 : FieldInDg rac p h excluded f dg

FieldInDg rac p h’ excluded f dg

Listing 4.36: Proof excerpt

This proof obligation shows only the “→” direction of the set-equality.
We perform an induction on the structure of hypothesis H1. The only con-
structor of FieldInDg rac that deals with the heap is FieldInDg rac dynamic.
After unfolding of H1 in this case, We can instantiate the variable loc in
H by the pivot specified by direct FieldInDg dynamic , see 5 listing 4.29 on
page 160. We apply the same constructor to the goal, with the appropriate
variables, and get the following goal.

H : PivotField p pivot loc →
pivot loc 6∈ pivots →
Heap.get h pivot loc = Heap.get h’ pivot loc

(∗ from FieldInDg rac dynamic ∗)
H1 : pivot loc 6∈ pivots
(∗ from unfolding of direct FieldInDg dynamic ∗)
H3 : pivot loc = Heap.InstanceField pivot obj pivot fsig
H4 : Heap.get h pivot loc = Some (Ref field obj )
H5 : findField p pivot fsig = Some pivot f
H6 : dg ∈ (FIELD.dataGroups pivot f)
H7 : DATA GROUP.isDynamic dg = true
. . .

Heap.get h’ pivot loc = Some (Ref field obj )

Listing 4.37: Proof excerpt

The goal is nearly identical to H4, except for the different heap variable.
Hypothesis H would help, if we can proof its premises. The premises state
that predicate PivotField needs to hold for pivot loc , and that the location
is not in the set of excluded pivots. Listing 4.38 shows the definition of
PivotField . In the current context, the predicate obviously holds, as all its
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premises are hypotheses in the goal. We also know from H6 that pivot loc
is not in excluded. Thus, we can finish the proof by applying H.

1 Inductive PivotField (p : Program) (loc : Location) : Prop :=
2 | PivotField def : ∀ fsig obj f dg,
3 loc = Heap.InstanceField obj fsig →
4 findField p fsig = Some f →
5 dg ∈ (FIELD.dataGroups f) →
6 DATA GROUP.isDynamic dg = true →
7 PivotField p loc .

Listing 4.38: The predicate PivotField

Lemma 4.12. Allocating a new object in a heap has no influence in unfold-
ing the data groups in an assignable clause.

1 Lemma UnfoldDatagroups rac 3:
2 ∀ p h h’ lt obj pivots assignables ,
3 Heap.new h p lt = Some (obj, h’) →
4 UnfoldDatagroups rac p h pivots assignables [=]
5 UnfoldDatagroups rac p h’ pivots assignables .

Proof. By unfolding the definitions, applying UnfoldDatagroups rac def and
lemma 4.7

4.6.3 Lazy Unfolding of Data Groups

If we change the heap during method execution, we need to check if the
resulting heap is still equivalent for a given element in the stack of assignable
locations. Otherwise, we need to perform the lazy unfolding for that stack
element and pivot.

Listing 4.39 shows the definition SavePreState that performs this task.
The function gets the pivot field which will be updated, and an element of
the assignable stack. 3 If the pivot element is already contained in the set of
excluded pivots, the pivot has already been changed earlier and the pre-state
is already preserved. Nothing needs to be done. Otherwise, 6 the function
retrieves all fields that are directly dynamically contained in a data group
via the pivot in question. 7 It then adds the pivot to the set of excluded
pivots, and the retrieved fields to the assignable locations.

1 Definition SavePreState (p : Program) (h : Heap.t) (pivot : Location)
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2 ( assignable : LocSet.t ∗ LocSet.t) : (LocSet.t ∗ LocSet.t) :=
3 if pivot ∈ (assignable)1 then
4 assignable
5 else
6 let fields := AssignablePivotTargets p h pivot assignable in
7 ( assignable )1 ∪ {pivot}, (assignable )2 ∪ fields.

Listing 4.39: The function SavePreState

Listing 4.40 shows the axiomatization of function AssignablePivotTargets .
For a given pivot field and an element of the assignable stack, the function
yields the fields that are assignable via a dynamic data group trough the
pivot. The axiom is straight-forward: 4 f is in the result, if 6 it is directly
contained in a data group via pivot and if 7 that data group is assignable.

1 Parameter AssignablePivotTargets: Program →Heap.t → Location →
2 (LocSet.t ∗ LocSet.t) → LocSet.t .
3 Axiom AssignablePivotTargets def: ∀ p h pivots aset pivot f ,
4 f ∈ (AssignablePivotTargets p h pivot ( pivots , aset ))
5 ↔
6 ∃ dg’, direct FieldInDg dynamic p h f dg’ pivot ∧
7 ∃ dg , FieldInDg rac p h pivots dg’ dg ∧ dg ∈ aset .

Listing 4.40: The axiomatized function AssignablePivotTargets

We prove a set of lemmas on SavePreState. The first lemma ensures the
most important property of SavePreState: It doesn’t affect the unfolding of
data groups.

Lemma 4.13. Saving the pre-state for a pivot field preserves the outcome
of unfolding data groups.

1 Lemma SavePreState 1:
2 ∀ p h pivot excluded assignable ,
3 let a’ := SavePreState p h pivot (excluded, assignable ) in
4 UnfoldDatagroups rac p h excluded assignable [=]
5 UnfoldDatagroups rac p h (a’)1 (a’)1.

Proof. Firstly, we perform a case split on pivot ∈ excluded. If the excluded
set of pivots already contains pivot , SavePreState yields the unmodified in-
put, and thus the goal is trivially true. If pivot is not contained in excluded
we actually have to save the pre-state, and a’ is the updated assignable stack
element.

After some unfolding of definitions and some simplifications, we get the
following goals for the two direction of the set-equality.



168 CHAPTER 4. CORRECTNESS PROOF OF THE RAC FOR ASSIGNABLE CLAUSES

“→”: If dg is in the set of assignable locations and field f is contained in
the data group dg, then there exists a data group dg’ in the updated set of
assignable locations and f is contained in dg’ without using the pivot field
pivot .

1 H : pivot 6∈ excluded
2 H0 : dg ∈ assignable
3 H1 : FieldInDg rac p h excluded f dg
4

5 ∃ dg’ : LocSet. elt ,
6 dg’ ∈
7 assignable ∪ (AssignablePivotTargets p h pivot (excluded, assignable ))
8 ∧
9 FieldInDg rac p h (excluded ∪ {pivot}) f dg’

Listing 4.41: Proof excerpt

We perform another case split on the question if f is still in dg if we add
pivot to excluded. If so, we can use dg as witness for dg’. The 6,7 first part
of the goal can be proven because of H0, we know that dg is in assignable ,
so it’s certainly in assignable∪ •. The 9 second part is trivially true as it is
exactly the hypothesis for this case.

Interesting is the case if f is no more in dg if we add pivot to the excluded
pivots. In this setting, we can apply lemma 4.9 to get the following goal,
after using dg’ from H3 as witness for the existential in the goal.

1 H : pivot 6∈ excluded
2 H0 : dg ∈ assignable
3 H1 : FieldInDg rac p h excluded f dg
4 H3 : FieldInDg rac p h (excluded ∪ {pivot}) f dg’
5 ∧ (∃ dg’’ : Location,
6 direct FieldInDg dynamic p h dg’ dg ’’ pivot
7 ∧ FieldInDg rac p h excluded dg’’ dg)
8

9 dg’ ∈
10 assignable ∪ (AssignablePivotTargets p h pivot (excluded, assignable ))
11 ∧
12 FieldInDg rac p h (excluded ∪ {pivot}) f dg’

Listing 4.42: Proof excerpt

In this case, we do not know if dg’ is in the set assignable , but we know
for sure from H0 and the second part of 6,7 H3, that it is an assignable pivot
target. The second part of the goal is exactly the 4 first part of H3. Hence,
we can prove this goal.
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“←”: The proof backwards is similar but simpler. This time we know that
f is assignable in the updated stack element.

1 H0 : dg’ ∈
2 assignable∪(AssignablePivotTargets p h pivot (excluded, assignable ))
3 ∧
4 FieldInDg rac p h (excluded ∪ {pivot}) f dg’
5

6 ∃ dg : LocSet. elt ,
7 dg ∈ assignable ∧ FieldInDg rac p h excluded f dg

Listing 4.43: Proof excerpt

If dg’ is in the set assignable , we apply lemma 4.8 to 4 H0 and use dg’
as witness for the existential. If dg’ is an assignable pivot target, we use
the definition of AssignablePivotTargets and some unfolding of definitions to
end up in the following goal.

H : pivot 6∈ excluded
H0 : direct FieldInDg dynamic p h dg’ dg’’ pivot
dg : Location
H2 : FieldInDg rac p h excluded dg’’ dg
H3 : dg ∈ assignable
H1 : FieldInDg rac p h (excluded ∪ {pivot}) f dg’

FieldInDg rac p h pivots f dg

Listing 4.44: Proof excerpt

We can apply lemma 4.8 in H1. Thus, we define in the hypotheses a
path from field f via dg’ directly to dg. Applying twice the step rule of
FieldInDg rac and once the rule FieldInDg rac dynamic with the information
in H, we prove this goal.

4.6.4 Equivalence Relation on Assignable Clauses

We now look at the bigger picture and define under which circumstances two
states express the same assignable locations. Listing 4.45 shows the pred-
icate EquivAssignables and its helper EquivAssignables ind . The predicate
compares the two stack of assignable locations in the supplied states.

If one stack is larger than the other, we 15 truncate the larger stack to the
size of the smaller stack before we compare the elements. 10,11 Two equally
large stacks of assignable locations are equivalent, if all corresponding stack
elements of the two stacks contain the same locations after unfolding.
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1 Inductive EquivAssignables ind (p : Program) (h h’ : Heap.t)
2 (a a’ : stack (LocSet.t ∗ LocSet.t)) : Prop :=
3 | EquivAssignables base :
4 a = [] → a’ = [] →
5 EquivAssignables ind p h h’ a a’
6 | EquivAssignables step :
7 ∀ head tail head’ tail ’,
8 a = head:: tail → a’ = head ’:: tail ’ → | tail | = | tail ’| →
9 EquivAssignables ind p h h’ tail tail ’ →

10 UnfoldDatagroups rac p h (head )1 (head )2 [=]
11 UnfoldDatagroups rac p h’ (head’)1 (head’)2 →
12 EquivAssignables ind p h h’ a a ’.
13

14 Definition EquivAssignables (p : Program) (st st ’ : State . t) : Prop :=
15 let (a, a’) := level st@fr@assignables st ’ @fr@assignables in
16 EquivAssignables ind p st@h st ’@h a a ’.

Listing 4.45: The Relation EquivAssignables.

We define a set of properties on the equivalence relation over stacks
assignable locations.

Lemma 4.14. Performing a lazy unfolding for a pivot loc on a stack of
assignable locations yields an equivalent stack of assignable locations.

1 Lemma SavePreState 3:
2 ∀ p loc st v,
3 let (a, a’) := level st@fr@assignables
4 (map (SavePreState p st @h loc) st@fr@assignables ) in
5 EquivAssignables ind p st@h (Heap.update st@h loc v) a a ’.

Proof. We prove this fact by structural induction on the stack of assignable
locations. To prove an individual stack element, we use lemmas 4.13 and
4.11 and quite some massaging of the proof term.

We prove reflexivity, symmetry and transitivity for EquivAssignables.
While the first two properties are straight-forward, we need to tweak a
little on the transitivity, as it’s not true in general. Because we ignore the
additional stack elements if one stack is larger than the other, we do not
have transitivity, if the stack in the middle is strictly smaller than one of
the other stacks.

Fig. 4.7 shows the situation on the left side where transitivity applies, and
the problematic situation on the right side. If the stack in the middle is at
least as big as the other two, we can conclude from the equivalence between
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A B C A B C

?

Figure 4.7: The problem with transitivity of EquivAssignables. The situation
on the left is ok, but not the situation on the right. Boxes depict stack
elements, solid arrows depict checked equivalence between elements. The
gray elements are not checked to be equivalent.

A and B, and the equivalence between B and C that A and C are equivalent.
If, however, the stack in the middle is smaller than the two others, then we
can still have a situation in which stack A and B are equivalent, concerning
just the bottom three elements, and B and C are equivalent, also concerning
only the bottom three elements, but A and C might not be equivalent, as
we now check also the element on the fourth position (in gray). Thus, we
restrict transitivity to only the situations on the left. This restriction will
not pose a problem in the upcoming proofs, as during program execution,
we can never encounter a situation as depicted on the right. The transitivity
lemma gets a bit cumbersome, though.

Lemma 4.15. If the stack of assignable location in states st and st ’ are
equivalent, and the same is true for states st ’ and st ’’ , and if the stack in
st ’ is not smaller than the other two stacks, then the stacks of assignable
locations of states st and st ’’ are equivalent.

1 Lemma EquivAssignables trans:
2 ∀ p st st ’ st ’’,
3 let x := st@fr@assignables in
4 let x’ := st ’ @fr@assignables in
5 let x ’’ := st ’’ @fr@assignables in
6 EquivAssignables p st st ’ →
7 EquivAssignables p st ’ st ’’ →
8 min |x| |x ’’| ≤ |x ’| →
9 EquivAssignables p st st ’’.

Proof. We split the goal into two subgoals. The smallest stack is either x or
x ’’ . Both proofs are obviously very symmetrical, let’s say that x is smaller.
By some rewriting and application of lemma level le , see 4.12 on page 145,
we get the following proof obligation.

H : EquivAssignables ind p st@h st ’@h x (truncate |x| x ’)
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H0 : let (a, a’) :=
match nat compare |x’| |x ’’| with
| Eq ⇒ (x ’, x ’’)
| Lt ⇒ (x ’, truncate |x ’| x ’’)
| Gt ⇒ (truncate |x ’’| x ’, x ’’)
end in

EquivAssignables ind p st ’@h st ’’ @h a a’
H1 : |x| ≤ |x ’|
H2 : |x| ≤ |x ’’|

EquivAssignables ind p st@h st ’’ @h x (truncate |x| x ’’)

Listing 4.46: Proof excerpt

We have three cases in H0. In all cases, we truncate a and a’ to the size
of x. Depending on the case, we get the situation that we truncate a stack
twice. For instance, in the case Lt, we truncate x ’’ first to the size of x’ and
then to the size of x. As we know from H1 and H2 that x has the smallest
size, we can apply lemma truncate truncate to eliminate the first truncate.
In all cases, we end up in a situation where we truncate both attributes x’
and x ’’ of EquivAssignables ind to the size of x.

H0 : EquivAssignables ind p st ’@h st ’’ @h
(truncate |x| x ’) (truncate |x| x ’’)

Now, we have two hypotheses that assume equivalence between x and x’,
as well as x’ and x ’’ , all truncated to the size of x, and we want to show that
x is equivalent to x ’’ , truncated to the size of x. We can prove this goal by
structural induction on any of the stacks, in a lengthy, but straight-forward
proof.

4.6.5 The Bisimulation Relation

Listing 4.47 shows the only interesting aspect of the bisimulation relation
Rrac1

rac2 between Srac1 and Srac2. The stacks of assignable locations in Srac1

and Srac2 correspond, if they have the same size and if unfolding the data
groups in the elements at the same position in both stacks leads to equal
sets.

1 Inductive CorrespondingAssignables (p : Program) (h : Heap.t)
2 (rac : stack (Heap.t ∗ LocSet.t))
3 (rac2: stack (LocSet.t ∗ LocSet.t)):=
4 CorrespondingAssignables def :
5 length rac = length rac2 →
6 (∀ n,
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7 UnfoldDatagroups p
8 (nth n rac (InitHeap, ∅))1
9 (nth n rac (InitHeap, ∅))2 [=]

10 UnfoldDatagroups rac p h
11 (nth n rac2 (∅,∅))1
12 (nth n rac2 (∅,∅))2) →
13 CorrespondingAssignables p h rac rac2.

Listing 4.47: The definition CorrespondingAssignables

4.6.6 Implementation of the Frame Conditions Interface

From the five functions in the frame condition interface, we implement four
of them different to Srac1. The first is FieldUpdateCheck, see listing 4.48,
which uses the predicate FieldInDg rac which we just introduced. The second
is MethodCallAction, see listing 4.49, which stores an empty set of excluded
pivots in the top most element of the assignable stack, rather than the pre-
heap of the method. The third is MethodReturnAction, which cannot reuse
the stack of assignable locations from the caller any more. The fourth is
FieldUpdateAction, which performs the lazy unfolding.

1 Definition FieldUpdateCheck(p:Program)(loc:Location)(st :State . t ):Prop :=
2 ∀ n,
3 n < | st@fr@assignables | →
4 (∃ m,
5 m ≤n ∧m < |st@fr@fresh|
6 ∧ loc ∈ ObjSet2LocSet (nth m st@fr@fresh ∅))
7 ∨
8 ∃ dg, dg ∈ (nth n st@fr@assignables (∅,∅))1 ∧
9 FieldInDg rac p st@h (nth n st@fr@assignables

10 (∅,∅))2 loc dg.

Listing 4.48: The Srac2 implementation of FieldUpdateCheck.

1 Definition MethodCallAction (p : Program) (c : Class) (m : Method)
2 (st : State . t) : State . t :=
3 let locs := EvalAssignableClause p c m st in
4 st [ fr :=st@fr[ assignables :+ (∅, locs )]].

Listing 4.49: The Srac2 implementation of MethodCallAction.

Listing 4.50 shows the definition of FieldUpdateAction. 3 It checks if the
field we are about to update is a pivot field. If so, 4 it performs a lazy un-
folding of all data groups defined over pivot . This needs to be performed per
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stack element, because the situation can be different in each stack element.
Here is an example: suppose we have three methods in the call stack, m′′ ↪→
m′ ↪→ m. Let’s say we update a field pivot in m′′ and in m. For the update
in m′′, there is only one element on the stack, the assignable locations for
m′′. We save the pre-state for pivot in the single stack element, representing
the assignable clause of m′′. Now we call m′, and finally m, and again assign
a new value to pivot . this time, it should save the pre-state of the stack ele-
ment for m′, and m. However, it should not change the assignable locations
for m′′. As we have seen on page 166, the definition of SavePreState takes
care of not overwriting an already saved pre-state.

1 Definition FieldUpdateAction (p : Program) (pivot : Location)
2 (new loc : Value) (st : State . t) : State . t :=
3 if ( isPivot p pivot) then
4 st [ fr :=st@fr[ assignables := map (SavePreState p st@h pivot)
5 st@fr@assignables ]]
6 else
7 st .

Listing 4.50: The Srac2 implementation of FieldUpdateAction.

Listing 4.51 shows the definition of MethodReturnAction in Srac2. In addi-
tion to updating the newly allocated objects in the stack of fresh objects, we
use the stack of assignable locations form the callee as the stack of assignable
locations of the caller, after removing the top most element, which corre-
sponds to the assignable clause of the callee. As we have just seen, updat-
ing a pivot field may possibly change all elements of the assignable stack.
This is why we need to proceed with the most current stack of assignable
locations.

1 Definition MethodReturnAction (p : Program) (st c : State . t)
2 (st : State . t) : State . t :=
3 st c [ fr :=st@fr[ fresh :∪ (peekd st c@fr@fresh ∅) ]
4 [ assignables := pop st c@fr@assignables ]].

Listing 4.51: The Srac2 implementation of MethodReturnAction.

4.6.7 Proof of the Second Refinement

We present the proof of the second refinement as follows: firstly, we show for
each function of the frame conditions interface which yields a new state, that
the stack of assignable locations is equivalent to the stack from the input
state. We then prove a theorem that states that performing any possible step
in Srac2 preserves the equivalence of stacks of assignable locations. Secondly,
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we show that the Srac2 implementations of the frame conditions interface
preserve correspondence between states from Srac1 and Srac2. Finally, we
prove the main theorem for this refinement that states that the semantics
Srac1 and Srac2 are in fact bisimilar.

Proof of Preservation of Equivalent Assignable Clauses

Before we can prove that the stacks of assignable locations stay equivalent
for any possible step in our semantics, let’s think about the size of the stacks.
It is a fact that in each step of the semantics, the size of the stack in the
input state is equal to the size of the stack in the output state. This may
surprise at first, but becomes clear, considering the big-step semantics. The
only operation that changes the stack size is the method call step. Upon
the call, we increase the stack size by one. In a big step semantics, the step
includes returning to the caller after the method execution has terminated.
Thus, we remove again the top most element and end up in the same stack
size again. We prove this fact in our formalization by mutual induction.
With this in mind, let’s prove the theorem on equivalent stacks.

Theorem 4.16. Equivalent Stacks of Assignable Clauses
Any possible step of the operational semantics Srac2 results in a state,

whose stack of assignable locations is equivalent to the stack from the input
state.

Proof. We prove the theorem as usual by mutual induction. All the hard
work has already been done in the lemmas, we basically need to apply the
right lemmas to prove the theorem. We only present the case of method
call, all other cases are similar but simpler.

Case Method Call: We are confronted with the following proof obligation.
2-7 The first two hypotheses come from the fact described above that stack
sizes are equal at the begin and the end of a step. 10-17 The hypotheses H4
to H21 are the premises of the method call rule, and 19-21 the hypotheses H5,
H10, and H19 are the induction hypotheses for the steps in H4, H9, and
H18.

1 (∗ Hypotheses about the size of stacks ∗)
2 H : ∀ e st st ’ r , OpRac2.ExpressionStep p e st st ’ r →
3 | st@fr@assignables | = |st ’ @fr@assignables |
4 H0 : ∀ l st st ’ r , OpRac2.ListSteps p l st st ’ r →
5 | st@fr@assignables | = |st ’ @fr@assignables |
6 H2 : ∀ m b st st ’ r , OpRac2.BlockStep p m b st st’ r →
7 | st@fr@assignables | = |st ’ @fr@assignables |
8

9 (∗ Hypotheses from the method call rule ∗)
10 H4 : OpRac2.ExpressionStep p o st st1 (normal step v (Ref this ))
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11 H9 : OpRac2.ListSteps p ps st1 st2 psnv
12 H13 : fr c1 = NewFrame m’ (lv2params m’ (Ref this :: psv)) st2
13 H14 : st3 = st2 [ fr := fr c1 ]
14 H15 : MethodCallAction p c’ m’ st3 = st c
15 H18 : OpRac2.BlockStep p m’ b st c st c ’ normal step
16 H21 : MethodReturnAction p st c’ st2 = st’
17 . . .
18 (∗ Induction hypotheses ∗)
19 H5 : EquivAssignables p st st1
20 H10 : EquivAssignables p st1 st2
21 H19 : EquivAssignables p st c st c ’
22

23 EquivAssignables p st st ’

Listing 4.52: Proof excerpt

We use the transitivity of EquivAssignables (lemma 4.15) to solve the
goal. The induction hypotheses are a good starting point, but we need to
prove additional equivalences of stacks of assignable locations, to fill the
gaps.

We create a new method frame in st2 and evaluate the assignable

clause of the method, which results in state st c . Thus, we can assert
EquivAssignables st2 st c because NewFrame pushes an element onto the
assignable stack, leaving the existing content unchanged, and the function
MethodCallAction changes only the element on top. Furthermore, we can
assert the equivalence between st c ’ and st ’ because MethodReturnAction
takes the assignable stack from st c ’ , removes the top most element and
stores the resulting stack in st ’ .

Now we get the whole chain of equivalent stacks of assignable locations,
and we apply the transitivity lemma 4.15 several times to prove the goal.
In the process of applying the transitivity lemma, we need to prove for
each application of the lemma, that the size of the stack in the middle is not
strictly smaller than the other two stacks. We can prove this with hypothesis
H, H0, and H2 for the recursive steps, and by unfolding the definitions of
the frame condition interface in the other cases.

Correctness Proof of the Frame Condition Implementation

Lemma 4.17. Correct Field Update Check

The field update checks of the semantics Srac1 and Srac2 are equivalent
for corresponding states.

1 Lemma FieldUpdateCheck Correct:
2 ∀ loc p st rac1 st rac2 ,
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3 CorrespondingState p st rac1 st rac2 →
4 ( Rac1.Assignables .FieldUpdateCheck p loc st rac1
5 ↔
6 Rac2.Assignables .FieldUpdateCheck p loc st rac2 ).

Proof. By unfolding all involved definitions, we get to the following proof
obligation for the forward direction of the proof. The hypotheses H0 to H3
originate in the correspondence relation. H4 and the goal are the unfolded
FieldUpdateCheck definitions. H5 is the premise of the goal introduced as
hypothesis. We omit to discuss the backwards direction, which is symmet-
rical.

H0 : | st rac1@fr@assignables | = | st rac2@fr@assignables |
H1 : ∀ (n:nat),

UnfoldDatagroups p
(nth n st rac1@fr@assignables (InitHeap, ∅))1
(nth n st rac1@fr@assignables (InitHeap, ∅))2 [=]

UnfoldDatagroups rac p st rac2@h
(nth n st rac2@fr@assignables (∅, ∅))1
(nth n st rac2@fr@assignables (∅, ∅))2

H2 : | st rac1@fr@fresh | = | st rac2@fr@fresh |
H3 : ∀ (n : nat) (d : ObjSet.t ),

nth n st rac1@fr@fresh d [=] nth n st rac2@fr@fresh d
H4 : ∀ n : nat,

n < | st rac1@fr@assignables | →
(∃ m : nat,

(m ≤n ∧m < |st rac1@fr@fresh |) ∧
loc ∈ (ObjSet2LocSet (nth m st rac1@fr@fresh ∅))) ∨

(∃ dg : Location,
dg ∈ (nth n st rac1@fr@assignables (InitHeap, ∅))2 ∧
FieldInDg p (nth n st rac1@fr@assignables (InitHeap, ∅))1 loc dg)

n : nat
H5 : n < | st rac2 @fr @assignables |

(∃ m : nat,
(m ≤n ∧m < |st rac2@fr@fresh |) ∧
loc ∈ ObjSet2LocSet (nth m st rac2@fr@fresh ∅)) ∨

(∃ dg : Location,
dg ∈ (nth n st rac2@fr@assignables (∅, ∅))2 ∧
FieldInDg rac p st rac2@h (nth n st rac2@fr@assignables (∅,∅))1 loc dg)

Listing 4.53: Proof excerpt

We take the following route from here. The goal and H4 are already
nearly identical. The only difference is the use of different stacks of fresh
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objects, however, H2 and H3 state that both stacks are equivalent. Further-
more, H4 uses FieldInDg to compute if loc is contained in the data group
dg, whereas the goal uses FieldInDg rac . With the information from H1 and
the definition of UnfoldDatagroups and UnfoldDatagroups rac, we can prove
the goal.

Lemma 4.18. Correct Method Call Action

Starting from corresponding states, applying MethodCallAction in seman-
tics Srac1 and Srac2 leads to corresponding states.

1 Lemma MethodCallAction Correct:
2 ∀ p c m st rac1 st rac1 ’ st rac2 st rac2 ’,
3 CorrespondingState p st rac1 st rac2 →
4 Rac1.Assignables .MethodCallAction p c m st rac1 = st rac1 ’ →
5 Rac2.Assignables .MethodCallAction p c m st rac2 = st rac2 ’ →
6 CorrespondingState p st rac1 ’ st rac2 ’.

Proof. The only part of the state that is affected by MethodCallAction, is the
stack of assignable locations. Thus, the interesting subgoal is the equivalence
between stack of assignable locations, after applying MethodCallAction on
the states. After some unfolding and simplifications, we get the following
proof obligation.

. . .

UnfoldDatagroups p
(nth n

( replace top
(st rac1@h, EvalAssignableClause p c m st rac1)
st rac1@fr@assignables ) (InitHeap, ∅))1

(nth n
( replace top

(st rac1@h, EvalAssignableClause p c m st rac1)
st rac1@fr@assignables ) (InitHeap, ∅))2

[=]
UnfoldDatagroups rac p st rac2@h

(nth n
( replace top

(∅, EvalAssignableClause p c m st rac2)
st rac2@fr@assignables ) (∅, ∅))1

(nth n
( replace top

(∅, EvalAssignableClause p c m st rac2)
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st rac2@fr@assignables ) (∅, ∅))2

Listing 4.54: Proof excerpt

The proof follows the usual pattern. We perform a case split on n. If
n = 0, we get the following goal:

. . .

UnfoldDatagroups p st rac1@h
(EvalAssignableClause p c m st rac1)

[=]
UnfoldDatagroups rac p st rac2@h ∅

(EvalAssignableClause p c m st rac2)

Listing 4.55: Proof excerpt

As we know from the correspondence between st rac1 and st rac2 , both
heaps are the same. Furthermore, the sets yielded by EvalAssignableClause
are equal in corresponding states. By apply lemma 4.10 we can solve the
goal.

If n > 0, we can directly use the correspondence relation of st rac1 and
st rac2 to prove the goal, as only the first elements of the stacks get changed
by MethodCallAction.

Lemma 4.19. Correct Method Return Action
If the input states to the Srac1 and Srac2 implementation of the function

MethodReturnActions correspond, and if the stack of assignable locations of
the state yielded by the callee in Srac2 is equivalent to the stack from the
caller but contains one more element, then the states yielded by both imple-
mentations correspond.

1 Lemma MethodReturnAction Correct:
2 ∀ p st rac1 st rac1 c st rac1 c ’ st rac2 st rac2 c st rac2 c ’,
3 CorrespondingState p st rac1 c st rac2 c →
4 CorrespondingState p st rac1 st rac2 →
5 Rac1.Assignables .MethodReturnAction p st rac1 c st rac1 = st rac1 c ’ →
6 Rac2.Assignables .MethodReturnAction p st rac2 c st rac2 = st rac2 c ’ →
7 EquivAssignables p st rac2 st rac2 c →
8 | st rac2@fr@assignables | + 1 = | st rac2 c@fr@assignables | →
9 CorrespondingState p st rac1 c ’ st rac2 c ’.

Proof. Again, we only focus on the correspondence of the stack of assignable
locations. We get the following goal to prove, after some massaging. The
left hand side of the set equivalence originates in the unfolding of the Srac1



180 CHAPTER 4. CORRECTNESS PROOF OF THE RAC FOR ASSIGNABLE CLAUSES

implementation of MethodReturnAction, whereas the right hand side of the
equivalence originates in the Srac2 implementation.

. . .

UnfoldDatagroups p
(nth n st rac1@fr@assignables (InitHeap, ∅))1
(nth n st rac1@fr@assignables (InitHeap, ∅))2

[=]
UnfoldDatagroups rac p st rac2 c@h

(nth n (pop st rac2 c@fr@assignables ) (∅, ∅))1
(nth n (pop st rac2 c@fr@assignables ) (∅, ∅))2

Listing 4.56: Proof excerpt

From the correspondence relation between st rac1 and st rac2 , we learn
that we can replace st rac1@fr@assignables by st rac2@fr@assignables on the
left side of the equivalence. We need to prove the equivalence of two stacks of
assignable locations in Srac2, for which we assumed equivalence in a premise
of the lemma. Furthermore, we assume in the lemma that st rac2 c contains
one more element, which is the one we pop from the stack on the right hand
side of the equivalence. Thus, by unfolding the definition of EquivAssignables
and applying lemma truncate pop, we can prove that the two resulting sets
are indeed equivalent.

Lemma 4.20. Correct Field Update Action
The Srac2 implementation of FieldUpdateAction preserves the correspon-

dence relation between states, after the field has been updated with the new
value.

1 Lemma FieldUpdateAction Correct:
2 ∀ p loc st rac1 v st rac1 ’ st rac2 st rac2 ’,
3 CorrespondingState p st rac1 st rac2 →
4 Rac1.Assignables .FieldUpdateAction p loc v st rac1 = st rac1 ’ →
5 Rac2.Assingables .FieldUpdateAction p loc v st rac2 = st rac2 ’ →
6 CorrespondingState p
7 st rac1 ’[ h:=Heap.update st rac1@h loc v]
8 st rac2 ’[ h:=Heap.update st rac2@h loc v ].

Proof. The implementation of FieldUpdateAction in Srac2 distinguishes be-
tween loc being a pivot or not. If loc is a pivot, we get the following proof
obligation, which states the correspondence of the stacks of assignable loca-
tions in both resulting states
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UnfoldDatagroups p
(nth n st rac1@fr@assignables (InitHeap, ∅))1
(nth n st rac1@fr@assignables (InitHeap, ∅))2

[=]
UnfoldDatagroups rac p (Heap.update st rac2@h loc v)

(nth n (map (SavePreState p st rac2@h loc) st rac2@fr@assignables )
(∅, ∅))1

(nth n (map (SavePreState p st rac2@h loc) st rac2@fr@assignables )
(∅, ∅))2

Listing 4.57: Proof excerpt

We can prove equivalence between each set in the stack, and thus con-
clude that the intersection over the stack of sets is equivalent. Lemma 4.13
states that saving the pre-state for a pivot field does not affect the unfolding
of a set of locations. Furthermore, lemma 4.11 states that we can change
the value of loc without affecting the unfolding, because loc has been put
into the set of excluded pivots by SavePreState.

If loc is not a pivot, changing its value does not affect the unfolding of
data groups. We can directly apply lemma 4.11.

Proof of the Bisimulation Property

Theorem 4.21. Correctness of the Second Refinement

If one starts in a state st rac1 and performs a step in the semantics to
get state st ′rac1, and given a state st rac2 that corresponds to state st rac1, then
there exists a state st ′rac2 that one gets by applying the same step in the
runtime assertion checker and that corresponds to st ′rac1.

Moreover, if one can perform a step in the runtime assertion checker
from st rac2 to st ′rac2, and st rac1 corresponds to st rac2, then there exists a
corresponding st ′rac1 which one gets by performing the same step in the se-
mantics:

st rac1
Srac1 //

OO

Rrac1
rac2

��

st ′rac1OO

Rrac1
rac2

��
st rac2

Srac2 // st ′rac2

Proof. The proof of the main theorem of the second refinement follows the
same reasoning than the proof of theorem 4.5. Thus, we do not show the
proof again in details. We perform a mutual induction on the the four
inductive definitions of steps. We use the induction hypotheses to reason
about the mutual applications of steps, and the correctness lemmas of the
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Srac2 implementation of the frame condition interface to reason about the
application of these functions.

4.7 Third Refinement

“There is no magic any more.”

In the third refinement, our goal is to concretize the dynamic data group
inclusion by introducing back-links as part of the program state. By building
up data structures using these back-links, we can replace the axiomatically
defined functions UnfoldDatagroups rac and AssignablePivotTargets with con-
crete implementations. Effectively, we eliminate the last bit of “magic” in
the formalization of the runtime assertion checker.

This refinement defines the semantics Srac3, which is reasonably close to
the implementation of the RAC for assignable clauses in OpenJML. The al-
gorithms are identical and the auxiliary data structures in the program state
can directly be mapped to Java constructs used in the RAC implementa-
tion. From Srac3 we can conclude that the algorithm presented in chapter 3
is correct, that is, checks the frame conditions as described in the semantics.

There is one thing that might deserve another refinement: caches. For
most data structures and applications, caches improve the performance of
the checker dramatically. However, the logic behind caches is reasonably
simple: for each set of assignable locations in the stack, we store the set
of locations that have been determined to be assignable. As assignable
locations do not change over time for a given stack element, caches do not
need to be cleverly updated or invalidated. Thus, we can safely assume that
introducing caches doesn’t change the behavior of the RAC.

4.7.1 Additions to the Program State

We add a global auxiliary data structure to store back-links. All other data
structures stay unchanged compared to Srac2. Fig. 4.8 presents the com-
plete picture of the data structures used to model the state of the runtime
assertion checker for assignable clauses.

Listing 4.58 introduces the data structures to store back-links in the
program state. We declare two dictionaries: LocDict is a dictionary from a
location to a set of locations, and Backlinks is a dictionary from locations
to a LocDict dictionary. The key of an entry in Backlinks refers to a field,
the keys in LocDict are pivots, and the set of locations in LocDict refer to
the data groups that contain the field via the corresponding pivot. Thus,
for each field that is dynamically contained in a data group, the back-links
data structure reveals which are these data groups and via which pivot field
they are making the connection.
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Figure 4.8: The complete state data structure in Srac3, in the situation m′′ ↪→
m′ ↪→ m. We add a back-link dictionary as global auxiliary data structure.
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1 Declare Module LocDict: DICT
2 with Definition Key := (∗ pivot ∗) Location
3 with Definition Val := (∗ data groups ∗) LocSet.t .
4

5 Declare Module Backlinks : DICT
6 with Definition Key := (∗ field ∗) Location
7 with Definition Val := LocDict.t .
8

9 Module Adds <: ADDS.
10 Record t rec : Type := make {
11 backlinks : Backlinks . t
12 }.
13 Definition t := t rec .
14 End Adds.

Listing 4.58: The data structure for back-links, and the implementation of
the module Adds in type State . t

For easier handling, we introduce three functions set backlink , remove
backlink , and get backlinks . The functions take care of special cases which
an application of the data structure should not care about: if we set the
first back-link for a field, the dictionary Backlinks doesn’t contain an entry
for this field yet, and we need to create a LocSet.t dictionary, before we can
store the back-link. Similarly, the implementation for removing back-links
from the data structure depends on the presence of a LocSet.t for the given
field. get backlinks yields the LocDict dictionary for a given field f, if it is
present, or an empty dictionary otherwise.

Listing 4.59 shows the predicates CorrectBacklink and CorrectBacklinks .
The former holds if 5 there exists a back-link from f to dg via pivot if and only
if 3 f is directly contained in the data group dg via pivot . The latter property
quantifies over all fields, pivots, and data groups and therefore relates the
whole auxiliary data structure for back-links to the actual situation in the
heap.

1 Definition CorrectBacklink (p : Program) (st : State . t)
2 (f dg pivot : Location) : Prop :=
3 direct FieldInDg dynamic p st@h f dg pivot
4 ↔
5 ∃ dgs, LocDict.get ( Backlinks get st@bl f) pivot = Some dgs ∧dg ∈ dgs.
6

7 Definition CorrectBacklinks (p : Program) (st : State . t) : Prop :=
8 ∀ f dg pivot , CorrectBacklink p st f dg pivot .

Listing 4.59: Correctness condition for back-links
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4.7.2 Implementation of Data Group Relations

Prior to this refinement, we provided two inductive predicates for static and
dynamic data group inclusion, direct FieldInDg static and direct FieldInDg
dynamic, respectively, see the paragraph on data group membership on
page 98. Now, we implement several functions to cover different aspects
of static and dynamic data group membership and prove their correctness.
We present two dynamic data group membership aspects and omit static
data group inclusion in this description, as they are very similar, but sim-
pler.

The first function, DynamicDGs is shown in 4.60. The function yields a
list of data groups that contain a given field via a given pivot.

As opposed to the predicate direct FieldInDg dynamic , DynamicDGs just
takes the signature of the target field. The pivot field together with the
signature of the target field is all it needs to compute the list of data groups.
The reason why we use a field in the predicate is because the predicate is
more general than this function.

Let’s have a closer look at the definition. 4 If pivot is an instance field,
we 7,8 extract the dynamic data groups and 9-17 keep the data group decla-
rations that mention f sig as pivot target. We use 14 the decidable equality
FsigDec.eq dec to compare field signatures. Finally, 18,19 we retrieve the lists
of data groups from the remaining data group declarations and chain them
together.

1 Definition DynamicDGs (p : Program) (f fsig : FieldSignature )
2 (pivot : Location) : list Location :=
3 match pivot with
4 | Heap. InstanceField pivot obj pivot fsig ⇒
5 match findField p pivot fsig with
6 | Some pivot f ⇒
7 let dgs dyn := filter (fun dg ⇒ DATA GROUP.isDynamic dg)
8 (FIELD.dataGroups pivot f) in
9 let dgs f target :=

10 filter
11 (fun dg ⇒
12 match DATA GROUP.pivotTarget dg with
13 | Some (FieldDg fsig) ⇒
14 if FsigDec.eq dec fsig f fsig then true else false
15 | ⇒ false
16 end)
17 dgs dyn in
18 let dg fsig := flat map DATA GROUP.dataGroups dgs f target in
19 map (Heap.InstanceField pivot obj ) dg fsig
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20 | ⇒ []
21 end
22 | ⇒ []
23 end.

Listing 4.60: An implementation of a dynamic data group lookup

Beside the more general applications, we can see why we prefer the induc-
tive definition direct FieldInDg dynamic over such functions: it’s a bit of a
pain to read and understand the meaning of such a function compared to the
simple and straight-forward inductive predicate. However, we now actually
built a function instead of just describing its behavior. In order to be useful
in proofs, and to settle our doubts about this implementation, we show that
the function DynamicDGs behaves as specified by direct FieldInDg dynamic .

Lemma 4.22. The list of locations yielded by DynamicDGs p fsig pivot
contains exactly the data groups that contain the field with signature fsig
via pivot.

1 Lemma DynamicDGs Correct:
2 ∀ p h f obj f fsig pivot dg,
3 Heap.get h pivot = Some (Ref f obj) →
4 dg ∈ (DynamicDGs p f fsig pivot)
5 ↔
6 direct FieldInDg dynamic p h (Heap. InstanceField f obj f fsig ) dg pivot .

Proof. “→”: In this direction, we assume the function DynamicDGs with
arbitrary inputs and need to show that direct FieldInDg dynamic holds. We
introduce a case split on each term over which the function performs a
matching. If we pick invalid cases, DynamicDGs yields the empty list, and
thus, we get a hypothesis dg ∈ [] which is obviously false and the case is
trivially discharged. In valid cases, we get an additional hypothesis from
the case distinction which we use to prove the goal. For functions on lists
such as map and filter , the standard library provides the lemmas which,
applied in the right way, allows us to discharge the proof obligation.
“←”: If we assume the predicate direct FIeldInDg dynamic and need to show
that the function yields the right list of data groups, we unfold the pred-
icate and get a set of hypotheses that describe the dynamic data group
membership. We eliminate the pattern matchings in the goal by applying
the corresponding hypothesis which describes what cases can occur. For
instance, the 3 pattern matching on variable pivot can be removed in the
goal as we get a hypothesis from the predicate which states that pivot is an
instance field. The remainder of the proof is straight-forward by applying
standard library lemmas for the list manipulation functions.
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We define a second function whose behavior can be described with the
predicate direct FieldInDg dynamic . The function PivotTargets : Program →
(∗ pivot ∗) Location → list FieldSignature yields a list of field signatures
that are targets of dynamic data group definition for a given pivot field. We
prove the following lemma about this function.

Lemma 4.23. The list of field signatures yielded by PivotTargets p pivot
contains exactly the fields that are dynamically contained in a data group
via pivot.

1 Lemma PivotTargets Correct:
2 ∀ p h f fsig f obj pivot ,
3 Heap.get h pivot = Some (Ref f obj) →
4 In f fsig (PivotTargets p pivot)
5 ↔
6 ∃ dg, direct FieldInDg dynamic p h
7 (Heap. InstanceField f obj f fsig ) dg pivot .

Proof. We prove this lemma similar to the proof of DynamicDGs Correct.

4.7.3 Operations on Back-Links

We define two high level operations on back-links, see listings 4.61 and 4.62.
The first is SetBacklinks. It updates the back-link dictionary for a given pivot
field. Firstly, the implementation 9 retrieves a list of all field signatures that
are directly contained in a data group via the pivot field. For each field 6

composed from the field signature in the list and the object pivot points to,
SetBacklinks 6,7 adds an entry to the LocDict of the back-link data structure
with key pivot and the set of data groups that directly contain f via pivot
as value.

1 Definition SetBacklinks (p : Program) (pivot : Location) (v : Value)
2 (bl : Backlinks . t) : Backlinks . t :=
3 match v with
4 | Ref obj ⇒
5 fold right
6 (fun f bl ’ ⇒ set backlink bl ’ (Heap. InstanceField obj f) pivot
7 ( list2LocSet (DynamicDGs p f pivot)))
8 bl
9 (PivotTargets p pivot)

10 | ⇒ bl
11 end.

Listing 4.61: The operation SetBacklinks
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The second operation is RemoveBacklinks. It deletes all back-links from
the data structure that are defined over a given field pivot . Similar to the
latter operation, RemoveBacklinks 20 retrieves a list of all field signatures
that are pivot targets. For each field composed of the 15 object referred
by pivot and a field signature from the list, the function 18 removes all data
groups that use pivot by removing the entry with key pivot from the LocDict
dictionary for the pivot field.

1 Definition RemoveBacklinks (p : Program) (pivot : Location)
2 (st : State . t) : Backlinks . t :=
3 match Heap.get st@h pivot with
4 | Some (Ref obj) ⇒
5 fold right
6 (fun f bl ⇒ remove backlink bl (Heap. InstanceField obj f) pivot)
7 st@bl
8 (PivotTargets p pivot)
9 | ⇒ st@bl

10 end.

Listing 4.62: The operation RemoveBacklinks

The following lemma states the desired behavior of the two operations.
It relies on a couple of other lemmas that we omit in this description.

Lemma 4.24. Correctness of Back-Link Operations
4-8 Given that loc refers to a pivot field and v a value that can be assigned

to loc. 12 If the back-link data structure correctly reflects the situation in the
heap before the update, 11 removing all back-links that use loc as pivot and
adding new back-links for all pivot targets of loc in object v leads to a back-
link data structure that correctly reflects the heap in which we update loc by
v.

1 Lemma SetRemoveBacklinks Correct:
2 ∀ p loc st st ’ f dg pivot v cn um loc obj loc fsig ,
3 (∗ Specification of ’ loc ’ ∗)
4 PivotField p loc →
5 loc = Heap.InstanceField loc obj loc fsig →
6 Heap.typeof st@h loc obj = Some (Heap.ObjectObject cn um) →
7 defined field p cn loc fsig →
8 assign compatible p st@h v (FIELDSIGNATURE.type (loc fsig)2) →
9 (∗ Correctness of back−link update ∗)

10 st ’ = st[h := (Heap.update st@h loc v)]
11 [ bl := (SetBacklinks p loc v (RemoveBacklinks p loc st ))] →
12 CorrectBacklink p st f dg pivot →
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13 CorrectBacklink p st ’ f dg pivot .

Proof. Upon introduction of all quantified variables and the premises as
hypotheses, we unfold CorrectBacklink and are confronted with a full impli-
cation.

“→”: If f is directly contained in data group dg via the field pivot in the
updated heap, there exists a back-link from f to dg via pivot in the updated
back-link data structure:

. . . (∗ Other Hypotheses from premises ∗)
H4 : direct FieldInDg dynamic p st@h f dg pivot ↔

(∃ dgs : LocDict.Val,
LocDict.get ( get backlinks st@bl f) pivot = Some dgs ∧dg ∈ dgs)

H5 : direct FieldInDg dynamic p (Heap.update st@h loc v) f dg pivot

∃ dgs : LocDict.Val,
LocDict.get

( get backlinks (SetBacklinks p loc v (RemoveBacklinks p loc st)) f)
pivot = Some dgs ∧dg ∈ dgs

Listing 4.63: Proof excerpt

Hypothesis H4 states that the back-link data structure is correct before
update.

We distinguish between the cases loc = pivot and loc 6= pivot .

Case loc = pivot: We can guess the correct witness for the existentially
quantified variable dgs. We use list2LocSet (DynamicDGs p field fsig pivot),
where field fsig is the field signature of f. For this witness, we need to be
able to prove the right part of the conjunction, which states that dg is in
dgs. We can deduce this from H5 and lemma 4.22. Furthermore, as loc
is pivot we know from lemma Heap.get update same and the definition of
direct FieldInDg dynamic , that v must be the object in which f is defined.

We use lemma 4.23 to introduce the list of pivot targets for pivot . By
structural induction on the list, we prove the left hand side of the conjunc-
tion, that is, that we create the correct back-link for all pivot targets of
loc.

The base case is trivial as the assumption that the pivot targets are
empty contradicts with H5. In the step case, we distinguish the cases if

field fsig is the field signature added in the inductive step or if it is already
in the tail of the list of pivot targets.

In the earlier case, we update exactly these elements in the back-link
data structure that we read subsequently. Thus, we apply the lemma
get update same for both involved dictionaries: Backlink and LocDec. In
the latter case, we update different elements in the back-link data structure
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than we read. Thus, we can apply the lemma get update old from the dic-
tionary formalization, which removes the update operation. Now we can
apply the induction hypothesis.
Case loc 6= pivot: Using lemma Heap.get update old, we can remove the
update on the heap in H5 as we are reading a different location than we
update. Thus, we know that the right hand side of the full implication in
H4 holds. In two lemmas that we omit in this description, we prove that we
can remove the application of SetBacklinks in the current goal, as we do not
read the same elements from the back-link data structure than we update.
For the same reasons, we can remove the application of RemoveBacklinks
from the goal. Thus, the goal states the same than the right hand side of
H4, which holds.
“←”: If there exists a back-link from f via pivot to dg in the updated
back-link data structure, f is directly contained in data group dg via pivot :

H4 : direct FieldInDg dynamic p st@h f dg pivot ↔
(∃ dgs : LocDict.Val,

LocDict.get ( get backlinks st@bl f) pivot = Some dgs ∧dg ∈ dgs)
H5 : ∃ dgs : LocDict.Val,

LocDict.get
( get backlinks (SetBacklinks p loc v (RemoveBacklinks p loc st)) f)
pivot = Some dgs ∧dg ∈ dgs

direct FieldInDg dynamic p (Heap.update st@h loc v) f dg pivot

Listing 4.64: Proof excerpt

Case loc = pivot: We either assign null to loc, an object, or an array. In
the first case, SetBacklinks doesn’t update the back-links and we can remove
the application of SetBacklinks in H5. We now claim in hypothesis H5 that
we retrieve some set of data groups for field f via pivot , although we just
removed all back-links via pivot loc, which is in this case pivot . In a separate
lemma, we show that this can never holds. In the second and third case,
that is, if we update loc with a reference type, we distinguish between the
cases that f is defined in that reference type or not.

If f is a field of the reference type assigned to loc, we need to perform
another case split on the question if the signature of f is in the list of pivot
targets or not. If yes, we solve the goal by structural induction on that list.
Similar to the forward direction, the base case is trivial, and we perform
another case split in the step case to distinguish if the signature of f has
been added in the induction step or if it was already in the tail of the list.
We solve both cases analogously to the forward direction.

If f is not a pivot target, we can remove the application of SetBacklinks
and RemoveBacklinks from H5 as they can not influence the non-existent
back-links on f. We can use the rewritten H5 to show that the left hand
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side of H4 holds, which is not possible if f is not a pivot target.
If f is not defined in the reference type that gets assigned to loc, we

again know that updating the back-link data structure for pivot loc cannot
influence the back-links from of f
Case loc 6= pivot: We prove this case analogously to this case in the forward
direction.

4.7.4 A Tree of Back-Links

As introduced in section 3.5, the runtime assertion checker builds a tree
of data groups using the back-links in the process of checking assignable

clauses. Listing 4.65 shows the inductive definition of that tree. A node in
the tree contains a location l and a (possibly empty) list of children dgs,
and each child is again a tree. The tree allows us to write constructive
implementations of operations that we had to define axiomatically in the
last refinement.

1 Inductive DGTree := DGNode (l : Location) (dgs: list DGTree).

Listing 4.65: The data type of the tree of back-links

As natural as this definition is, as useless the automatically generated
induction principle used by the tactics induction is. Thus, we need to define
our own induction principle “by hand”. The following tutorial describes the
problem and a decent solution.

A made-to-measure Coq Tutorial

Part 14 Creating Custom Induction Principle

In the inductive definition above, we define the type DGTree, which has a
mutual dependency with type list DGTree. When generating the induction
principle for DGTree, Coq doesn’t realize the mutual induction and produces
the following principle:

1 DGTree ind
2 : ∀ P : DGTree →Prop,
3 (∀ ( l : Location) (dgs : list DGTree),
4 P (DGNode am dgs)) →
5 ∀ t : DGTree, P t

It reads as follows: 5 In order to prove a property P for a tree t, we need
to prove that 3,4 the property holds for a node with an arbitrary location l
and an arbitrary list of children dgs.

To get the idea how the induction principle should look like, let’s intro-
duce a binary tree with the children left and right , and two kind of nodes:
Leafs and Branches.
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Inductive DGBinaryTree :=
| Leaf
| Branch (l : Location) ( left : DGBinaryTree) (right : DGBinaryTree).

In this case, Coq correctly generates the necessary induction hypotheses:

1 DGBinaryTree ind
2 : ∀ P : DGBinaryTree →Prop,
3 P Leaf →
4 (∀ ( l : Location) ( left : DGBinaryTree),
5 P left →
6 ∀ right : DGBinaryTree,
7 P right →
8 P (Branch l left right )) →
9 ∀ t : DGBinaryTree, P t

It reads as follows: 9 In order to prove a property P for a binary tree
t, we need to prove that 3 the property holds for leafs, and, given that the
property holds 5 for the left and 7 the right child, 8 the property holds for a
branch with an arbitrary location l . — Much better.

So, how can we convince Coq to generate an induction principle that
doesn’t overlook the mutual dependency in DGTree? It turns out we cannot.
In tutorial 12, we learned how to use the Scheme command to generate
induction principles for mutually inductive definitions. This approach fails
because we do not mutually define two inductive data types, using the with
construct, but the mutual dependency only arises from the parameter A of
list A, which we set to the enclosing type DGTree.

The only way to get a usable induction principle is to build it completely
manually, which also involves manually applying it in proofs. Chapter 14.3.3
of [7] describes exactly this issue. In a very non-trivial manner, they con-
struct an induction principle, with the following type:

1 DGTree ind2
2 : ∀ (P : DGTree →Prop) (Q : list DGTree →Prop),
3 (∀ (a : Location) ( l : list DGTree),
4 Q l → P (DGNode a l)) →
5 Q [] →
6 (∀ t : DGTree,
7 P t →
8 ∀ l : list DGTree,
9 Q l →

10 Q (t :: l )) →
11 ∀ t : DGTree, P t

Let’s again read this. Firstly, besides the property P, which we are
interested in, there is a second property Q. It basically states the same as
P but for a list of trees instead for a single tree. It’s part of the proving
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effort to come up with the correct Q. Once we have Q that corresponds to
P, applying the induction principle gives us three proof obligations:

3,4 If Q holds for the children of a node, then P needs to hold for that
node with any location l .

5 Property Q needs to hold for the empty list.

6-10 If property P holds for an individual tree t and Q holds for a list of
trees l then Q needs to hold for the list t :: l .

This is an inductive principle that we can actually use. We’ll see it in
action in proofs below.

Listing 4.66 shows the definition of the function BuildDGTree, which build
the tree of data groups for a given location. Although this refinement is all
about getting rid of the “magic”, we cannot directly implement the function,
but need to axiomatize it. The reason is that Coq requires us to define
recursive functions that operate on a structurally-decreasing argument, in
order to ensure that the recursion is well-founded. We cannot provide this,
as the underlying data structure is not an inductive type. One alternative
is to use a Program Fixpoint instead of a Fixpoint, for which we can specify
any kind of termination measure. However, dealing with the experimental
Program commands introduced a lot of extra-complexity and leads to more
fragile Coq code. Therefore we decide to axiomatize BuildDGTree and prove
that the axiom cannot introduce an inconsistency.

1 Inductive ValidDGTree (p:Program) (bl:Backlinks . t) (excluded:LocSet.t)
2 (f : Location) ( available : LocSet.t) : DGTree →

Prop :=
3 | ValidDGTree def:
4 ∀ dg dgs flist ,
5 filter
6 (fun f ’ ⇒ f ’ ∈ available)
7 (LocSet.elements
8 ( fold right
9 LocSet.union

10 ∅
11 (LocDict. filter
12 ( Backlinks get bl f)
13 (fun pivot ⇒ pivot 6∈ excluded))))
14 ++ (StaticDGs p f) = flist →
15 length dgs = length flist →
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16 (∀ n f ’’ f ’ dgs ’,
17 n < length dgs →
18 nth n flist f ’’ = f’ →
19 nth n dgs (DGNode f’’ []) = dgs’ →
20 ValidDGTree p bl ep f ’ ( available \ {f ’} dgs’) →
21 dg = DGNode f dgs →
22 ValidDGTree p bl excluded f available dg.
23

24 Parameter BuildDGTree: Program →Backlinks.t → (∗excluded∗) LocSet.t →
25 (∗ field ∗) Location → (∗ available ∗) LocSet.t → DGTree.
26

27 Axiom BuildDGTree def: ∀p bl excluded f tree available ,
28 ValidDGTree p bl excluded f available tree
29 ↔
30 BuildDGTree p bl excluded f available = tree.

Listing 4.66: The axiomatized function BuildDGTree

Let’s have a detailed look at the definitions above.

24,25 We declare a function BuildDGTree which takes an environment con-
sisting of the current program and the back-links data structure, a set of
excluded pivots, the field that becomes the root of the tree and a set of
locations that have not yet been added to the tree. This set of available
locations needs to be initialized with all locations in the heap1. We use this
set to detect cycles in data group relations.

27-30 The axiom BuildDGTree def states, that BuildDGTree yields a tree for
which the inductive predicate ValidDGTree holds.

1-22 The predicate ValidDGTree specifies how such a tree looks like. As
opposed to inductive predicates in the previous refinement, we define it in
terms of constructed instead of described data structures, as we want to be
as close as possible to the implementation.

7-13 We construct a list of data groups that directly contain f dynamically
via a pivot that is not in the set of excluded pivots. 11 LocDict. filter yields
the set of values whose keys pass the filter. The a value itself is a set of
locations, thus, we 8,9 fold the set of set of locations into a flat set. Finally, 7

we transform the set into a list. 5,6 From this list, we remove the data groups
that are not in the set of available locations and 14 add the locations that
statically contain f. Of course, we could also change the order of the last
two operations.

Next, we specify the list of subtrees dgs of the current node. For each
data group in the list flist we have a corresponding subtree in dgs. Thus,
we know that 15 there are as many subtrees in the node as data groups in
flist , 17-19 the root node of each subtree in dgs contains the location which

1The heap is finite.
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is stored at the same position in flist , and 20 each subtree is again a valid
subtree. The function ‘nth pos list d ’ yields the element at position pos in
list , or the default value d , if pos is too big.

For each subtree, we remove the location of its root node from the set of
available locations to avoid cycles.

In tutorial 11, we show how we can safely axiomatize a function like
BuildDGTree. We need to prove that there exists exactly one tree for which
the predicate ValidDGTree holds in a given situation. The following two
lemmas ensure this property.

Lemma 4.25. There is only one possible tree for which the predicate
ValidDGTree holds in a given situation.

1 Lemma ValidDGTree func: ∀p bl excluded tree f available ,
2 ValidDGTree p bl excluded f available tree →
3 ∀ tree ’,
4 ValidDGTree p bl excluded f available tree ’ →
5 tree = tree ’.

Proof. We prove this lemma by structural induction on tree . We apply the
home brewed induction principle BGTree ind2 as follows:

elim tree using
DGTree ind2
with

(Q := fun dgs ⇒
∀ t f available ,
In t dgs →
ValidDGTree p bl excluded f ( available \ {f}) t →
∀ t ’,
ValidDGTree p bl excluded f ( available \ {f}) t ’ → t = t ’).

Listing 4.67: Proof excerpt

We need to define Q, as explained in tutorial 14. It states the property
that needs to hold for the children of a node in order to prove the lemma
for the node. It expresses that each subtree in the list is the only possible
one. Naturally, the property is very similar to the lemma itself.

By applying the induction principle, we get tree subgoals.

The first subgoal is the most challenging one: If we know that Q holds
for the children of a node, then P holds for the node. After unfolding
the predicates ValidDGTree for both tree and tree ’ and writing tree as
DGNode f dgs and tree ’ as DGNode f dgs’, and some heavy rewriting, we
need to prove the following subgoal.
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H : ∀ (t : DGTree) (f : Location) ( available : LocSet.t ),
t ∈ dgs →
ValidDGTree p bl excluded f ( available \ {f}) t →
∀ t ’ : DGTree,
ValidDGTree p bl excluded f ( available \ {f}) t ’ → t = t’

H7 : ∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),
n < (length dgs) →
(nth n flist f ’’) = f’ →
(nth n dgs (DGNode f’’ nil )) = t’ →
ValidDGTree p bl excluded f ’ ( available \ {f ’}) t ’

H13 : |dgs| = |dgs ’|
H14 : ∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),

n < (length dgs’) →
(nth n flist f ’’) = f’ →
(nth n dgs’ (DGNode f’’ nil )) = t’ →
ValidDGTree p bl excluded f ’ ( available \ {f ’}) t ’

dgs = dgs’

Listing 4.68: Proof excerpt

Hypothesis H originates in Q, H7 originates in ValidDGTree for tree , we
get H13 from the fact that dgs as well as dgs’ have the same length than
flist , and H14 originates in ValidDGTree for tree ’ . The proof is now a

matter of sedulity. We want to show that both lists of children are identical.

From hypothesis H, we learn that if a tree is in dgs, and if it is valid,
then this is the only possible valid tree. So we introduce an assertion that
states that for any position in dgs, the tree is identical to the tree at the
same position in dgs’. We apply H and set the quantified variable f in H
to the location at the same position in flist . We now need to show that
both trees are in fact valid trees. We can apply H7 and H14 to prove this.
From the fact that we have cleverly chosen f, and because we compare trees
at the same positions of dgs and dgs’, we can discharge the premises of the
hypotheses. With the above assertion, we can prove by induction over the
length of dgs, that both lists are identical.

The second goal can trivially be discharged, because Q applied to the
empty list results in the false hypothesis t∈[].

The third goal can also be discharged in a relatively simple way. We get
the following proof obligation:

H : ∀ (f : Location) ( available : LocSet.t ),
ValidDGTree p bl excluded f available tree →
∀ tree ’ : DGTree, ValidDGTree p bl excluded f available tree ’ →
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tree = tree’
H0 : ∀ (t : DGTree) (f : Location) ( available : LocSet.t ),

t ∈ tail →
ValidDGTree p bl excluded f ( available \{f}) t →
∀ t ’ : DGTree,
ValidDGTree p bl excluded f ( available \{f}) t ’ → t = t’

H1 : t ∈ (tree:: tail )
H2 : ValidDGTree p bl excluded f ( available \{f}) t
H3 : ValidDGTree p bl excluded f ( available \{f}) t ’

t = t’

Listing 4.69: Proof excerpt

We can split H1 into two cases. Either t = tree or t is in tail . In the
former case, we can rewrite t to tree and apply H. In the latter case, we can
directly apply H0, because we know that t is in the tail of the list.

Lemma 4.26. There always exists a tree for which the predicate ValidDGTree
holds.

1 Lemma ValidDGTree ∃: ∀p bl excluded available ,
2 ∀ f , ∃ dg, ValidDGTree p bl excluded f available dg.

Proof. We prove this lemma by induction on the cardinality of the set of
available locations.

Case | available | = 0: For any field f, the valid tree of data groups is
DGNode f [] if the set of available locations is empty. In the definition of
ValidDGTree we 6 filter the list of data groups that directly contain f by
available locations. As no location is available, the resulting list of subtrees
is empty. We prove this fact by induction over the list of data groups.

Case | available | = n+1: In the induction step, we need to prove the fol-
lowing goal.

IHn : ∀ available : LocSet.t ,
n = | available | →
∀ f : Location,
∃ dg : DGTree, ValidDGTree p bl excluded f available dg

H : n+1 = |available |

∃ dg : DGTree, ValidDGTree p bl excluded f available dg

Listing 4.70: Proof excerpt
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IHn is the induction hypothesis from the induction over the cardinality.
H states that the cardinality of available contains one more location than
any set of available locations in IHn.

We know there exists a valid tree for a given set of available locations.
We now need to show that there also exists a valid tree if we add one more
location to the set. The prove is not obvious, as we do not know what
location we add to the set. It may or may not influence the shape of the
tree. If it influences the tree, we do not know where and how the tree
changes.

As we would not be able to actually build a witness for the existentially
quantified variable dg, we choose an indirect approach to solve this goal and
switch to classical logic for a while. This doesn’t hurt as we do not plan to
extract programs from our proofs.

If we know that there exists a list of subtrees such that ValidDGTree holds
for dg, we’re fine. In classical logic, we can turn around the thought and
prove that it is not true that there is no such list of subtrees which satisfies
ValidDGTree. And twisting the thought around once more, if it were true
that there is no such list of subtrees, we could prove False. So let’s prove
False in the following setting, where we omitted the two hypotheses IHn and
H.

1 subgoal
. . . (∗ IHn, H ∗)
flist ’ := LocSet.elements

( fold right LocSet.union ∅
(LocDict. filter ( Backlinks get bl f)

(fun f ’’ ⇒ f ’’ 6∈ excluded)))
++
StaticDGs p f

flist := filter (fun f ’’ ⇒ f ’’ ∈ available) flist ’
H1 : ∀ dgs : list DGTree,

(|dgs| = | flist | ∧
(∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),
n < |dgs| →
nth n flist f ’’ = f’ →
nth n dgs (DGNode f’’ []) = t’ →
ValidDGTree p bl excluded f ’ ( available \ {f ’}) t ’)) → False

False

Listing 4.71: Proof excerpt

flist ’ is the list of data groups that directly contain f, before filtering
out the locations that are not in m. flist is the outcome of the filtering. H1
states the (wrong) claim that any list of trees doesn’t satisfy the property
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which is necessary to make ValidDGTree hold for a DGNode that uses this list
as children. The property corresponds to one of the premises of ValidDGTree,
see 16-20 listing 4.66 on page 193.

We prove this goal by induction on the list flist ’ . In case of the empty
list, we instantiate dgs in H1 with the empty list. We apply H1 to the goal
and need to prove that dgs has the same size than flist , which is trivial as
both lists are empty, and we need to prove the right part of the conjunction,
which describes dgs. This is also trivially true, as the premise n < |dgs| is
false if dgs is empty.

In the step case of the induction on flist ’ , we get the following proof
obligation after applying the induction hypothesis and some rewriting. The
induction step adds the location a to the unfiltered list of data groups.

IHn : ∀ available : LocSet.t ,
n = | available | →
∀ f : Location,
∃ dg : DGTree, ValidDGTree p bl excluded f available dg

H : n+1 = |available |
flist := filter (fun f ’’ ⇒ f ’’ ∈ available) (a :: flist ’)

H1 : ∀ dgs : list DGTree,
(|dgs| = | flist | ∧
(∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),
n < |dgs| →
nth n flist f ’’ = f’ →
nth n dgs (DGNode f’’ []) = t’ →
ValidDGTree p bl excluded f ’ ( available \ {f ’}) t ’)) → False

flist0 := filter (fun f ’’ ⇒ f ’’ ∈ available) flist ’
H0 : |dgs0| = | flist0 | ∧

(∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),
n < |dgs0| →
nth n flist0 f ’’ = f’ →
nth n dgs0 (DGNode f’’ []) = t’ →
ValidDGTree p bl excluded f ’ ( available \ {f ’}) t ’)

False

Listing 4.72: Proof excerpt

We get flist0 and H0 that originate in the induction hypothesis. H0
says that there exists the list of trees dgs0 with the desired property.

We perform a case split on the check if a∈m which happens during con-
struction of the list flist . If a is not in m, the two lists flist and flist0
are identical and we instantiate the universally quantified variable dgs in H1
by dgs0. We then apply H1 to the goal. As a result, we need to prove the
premise of H1, which is identical to H0.
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If a is in the set of available locations m, we instantiate dgs in H1 with
dg ’:: dgs0 where dg’ is a valid tree for location a that we get from the first
induction hypothesis IHn. We can use this induction hypothesis because we
remove location a from the set of available locations m and thus reduce the
cardinality of m by one. Again, we then apply H1 to the goal and finish the
proof in a straight-forward way.

4.7.5 Implementation of FieldInDg

We provide a function FieldInDg rac3, see listing 4.73, which yields true if
field f is in data group dg, ignoring pivots from the set excluded, and false
otherwise. The function needs access to the program p and to the back-link
data structure bl.

The function computes the result by building up a tree of data groups
for f, starting with field f as root. The direct children in the tree are the
data groups that directly contain f, their children are the data groups that
contain the direct data groups and so forth. Once the tree of data groups
is built, the function searches for the data group dg in the tree. In the Java
implementation, we stop building up the tree as soon as dg has been found
and we use caches to avoid building up the three in the first place. Beside
this difference, the algorithm is identical.

1 Definition FieldInDg rac3 (p : Program) (bl : Backlinks . t)
2 (excluded : LocSet.t) ( f : Location) (dg : Location) : bool :=
3 InDGTree dg (BuildDGTree p bl excluded f (LocSetAll \ {f })).

Listing 4.73: The function FieldInDg rac3

As mentioned earlier, we instantiate the set of available locations with a
set that contains all heap locations, LocSetAll. We describe the set with the
following axiom: ∀ loc , loc ∈ LocSetAll.

Listing 4.74 shows the implementation of the function InDGTree. If dg
is the stored in the current node, the function yields true, otherwise, the
function applies itself to all subtrees and yields the disjunction of all answers.
That is, at least one subtree needs to contain dg in order to make the
disjunction true. If there is a path from f to dg in FieldInDg rac there is
also a path in the intermediate definition, but without possible loops.

1 Fixpoint InDGTree (dg : Location) ( tree : DGTree) : bool :=
2 match tree with
3 | DGNode f dgs ⇒
4 if dg = f then true
5 else fold right (fun tree ’ ⇒ (orb (InDGTree dg tree ’))) false dgs
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6 end.

Listing 4.74: Implementation of the function InDGTree, where orb is the
boolean or function

For better handling in proofs, we also introduce a predicate InDG, listing
4.75, which states the same as InDGTree but in form of an inductive predicate
with two constructors: either the data group dg is the root of the current
tree or it is in one of the subtrees.

1 Inductive InDG (dg : Location) ( tree : DGTree) : Prop :=
2 | InDG base:
3 ∀ dgs,
4 tree = (DGNode dg dgs) →
5 InDG dg tree
6 | InDG step:
7 ∀ dgs f tree ’,
8 tree = (DGNode f kids) →
9 dg 6= f →

10 In tree ’ dgs →
11 InDG dg tree’ →
12 InDG dg tree.

Listing 4.75: Predicate InDG

Lemma 4.27. The predicate InDg dg tree holds if and only if the function
InDgTree finds location dg in the tree tree .

1 Lemma InDGTree Correct:
2 ∀ tree dg,
3 InDG dg tree ↔ InDGTree dg tree = true.

Proof. “→”: We prove the forward direction by induction on the term
InDG dg tree. In the base case, we compute one step of the definition
InDGTree and directly find the location dg. In the step case, we get the
following proof obligation by unfolding InDGTree once.

H : tree = DGNode f dgs
H0 : dg 6= f
H1 : tree ’ ∈ dgs
IHInDG : InDGTree dg tree’ = true
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fold right (fun t ’ ⇒ orb (InDGTree dg t’)) false dgs = true

Listing 4.76: Proof excerpt

We need to prove that the disjunction of InDGTree applied to all subtrees
is true, which is the case if the function is true for at least one subtree. From
the hypotheses H1 and IHInDG, we know that there exists a tree tree ’ which
is a subtree and for which the function yields true.
“←”: We prove the backward direction by induction on the tree, that is,
we need to apply our custom built induction principle and manually come
up with the property Q that needs to hold for the children of a node, see
tutorial 14 on page 191.

elim tree using
DGTree ind2
with

(Q := fun dgs ⇒
∀ dg tree ’,
tree ’ ∈ dgs →InDGTree dg tree’ = true → InDG dg tree ’).

Listing 4.77: Proof excerpt

The three resulting subgoals require similar solving strategies than the
recursive case above.

Correctness proof of FieldInDg rac3. We prove that FieldInDg rac3 is
equivalent to predicate FieldInDg rac from the second refinement by intro-
ducing an intermediate predicate FieldInDg rac2, see listing 4.78. The inter-
mediate form is very similar to FieldInDg rac , but introduces a set of visited
locations, which is used to disallow cycles in the search paths. It is obvious
that the intermediate form is equivalent to the second refinement.

1 Inductive FieldInDg rac2 (p : Program) (h : Heap.t) (excluded : LocSet.t)
2 ( visited : LocSet.t ): (∗ field ∗) Location → (∗dg∗) Location → Prop :=
3 | FieldInDg rac2 static : ∀ f dg dg’,
4 direct FieldInDg static p f dg’ →
5 dg’ 6∈ visited →
6 FieldInDg rac2 p h excluded ( visited ∪ {dg’}) dg’ dg →
7 FieldInDg rac2 p h excluded visited f dg
8 | FieldInDg rac2 dynamic : ∀ f dg pivot dg ’,
9 direct FieldInDg dynamic p h f dg’ pivot →

10 pivot 6∈ excluded →
11 dg’ 6∈ visited →
12 FieldInDg rac2 p h excluded ( visited ∪ {dg’}) dg’ dg →
13 FieldInDg rac2 p h excluded visited f dg
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14 | FieldInDg rac2 base : ∀ f dg,
15 f = dg →
16 FieldInDg rac2 p h excluded visited f dg.

Listing 4.78: The intermediate form of predicate FieldInDg, introducing a
measure to guarantee termination.

In the following, we present the proof of correspondence of the interme-
diate form and the implementation FieldInDg rac3.

Lemma 4.28. In an environment with a back-link data structure that cor-
rectly represents the data group relations, FieldInDg rac3 yields true if and
only if its counterpart FieldInDg rac2 holds.

1 Lemma FieldInDg rac3 Correct:
2 ∀ p excluded st f dg ,
3 CorrectBacklinks p st →
4 (FieldInDg rac2 p st@h excluded {f} f dg
5 ↔
6 FieldInDg rac3 p st@bl excluded f dg = true).

Proof. “→”: We prove the forward direction by structural induction over
FieldInDg rac2. We only discuss the most interesting case, which is the
constructor FieldInDg rac2 dynamic. In the proof obligation below, we have
already introduced the variable tree and hypothesis H4 by lemma 4.26 and
replaced the goal by InDG dg tree using axiom BuildDGTree def and lemma
4.27. Hypotheses H to H3 originate in the definition of FieldInDg rac2,
IHFieldInDg rac2 is the generated induction hypothesis.

H : CorrectBacklinks p st
H0 : direct FieldInDg dynamic p st@h f dg’ pivot
H1 : pivot 6∈ exluded
H2 : dg’ 6∈ visited
H3 : FieldInDg rac2 p st@h excluded ( visited ∪ {dg’}) dg’ dg
IHFieldInDg rac2 : InDG dg

(BuildDGTree p st@bl excluded dg’
(LocSetAll \ ( visited ∪ {dg’})))

tree : DGTree
H4 : ValidDGTree p st@bl excluded f (LocSetAll \ visited ) tree

InDG dg tree

Listing 4.79: Proof excerpt
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The idea of the proof goes as follows: The induction hypothesis tells us
that we can build a tree with location dg’ in its root, that contains dg. We
have to show, that this tree is one of the subtrees of tree . Therefore, we
need to unfold the definition of ValidDGTree in H4 to continue reasoning.
The following proof excerpt only shows the additional hypotheses from the
unfolded H4.

. . .
H5 : tree = DGNode f dgs
H7 : LocSet.elements

( fold right LocSet.union ∅
(LocDict. filter ( Backlinks get st@bl f)

(fun f ’’ : LocDict.Key ⇒ f ’’ 6∈ excluded)))
++ StaticDGs p f = flist ’

H8 : filter (fun f ’’ ⇒ f ’’ ∈ (LocSetAll \ visited )) flist ’ = flist
H9 : |dgs| = | flist |
H10 : ∀ (n : nat) (f ’’ f ’ : Location) (t ’ : DGTree),

n < |dgs| →
nth n flist f ’’ = f’ →
nth n dgs (DGNode f’’ []) = t’ →
ValidDGTree p st@bl excluded f ’ ((LocSetAll \ visited ) \ {f ’}) t ’

. . .

Listing 4.80: Proof excerpt

We prove an assertion that dg’ is in the list flist ’ . From H0, we know
that dg’ is a data group that directly contains f. From hypothesis H we know
that the back-link data structure st@bl reflects the current situation in the
heap, and from H7 we see that flist ’ is built up such that it contains all data
groups that directly contain f. Thus, this assertion holds. Furthermore, we
can show that dg is also contained in the list flist , as H2 states that dg’ is
not in the set of already visited locations.

As dg’ is in the list flist , we learn from H10 that there exists a valid sub-
tree of tree with location dg’ in its root. Using the axiom BuildDGTree def
once more, and the induction hypothesis, we conclude that dg is indeed in
tree .

“←”: For the backward proof, we assume that the tree of back-links for field
f contains dg and want to prove that FieldInDg rac2 holds in this situation.

We can unfold the definition of FieldInDg rac3, apply lemma 4.27 and
axiom BuildDGTree def to get the following proof obligation.

H : CorrectBacklinks p st
H0 : InDG dg tree
H1 : ValidDGTree p st@bl excluded f (LocSetAll \ {f}) tree
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FieldInDg rac2 p st@h excluded {f} f dg

Listing 4.81: Proof excerpt

We prove the goal by structural induction on InDG dg tree. We skip the
base case and focus on the step case. After unfolding ValidDGTree and some
rewriting, we get:

H : CorrectBacklinks p st
(∗ Step case of InDG ∗)
H0 : tree = DGNode f dgs
H8 : dg 6= f
H9 : tree ’ ∈ dgs
H10 : InDG dg tree’
(∗ Unfolding of ValidDGTree ∗)
. . .
(∗ Induction hypothesis ∗)
IH : ∀ (n : nat) (f ’’ f ’ : Location) (dgs’ : DGTree),

n < |dgs| →
nth n flist f ’’ = f’ →
nth n dgs (DGNode f’’ []) = dgs’ →
InDG dg dgs’ →
FieldInDg rac2 p st@h excluded (LocSetAll\( available \{f ’})) f ’ dg

FieldInDg rac2 p st@h excluded (LocSetAll \ available ) f dg

Listing 4.82: Proof excerpt

From the step case of InDG, we get a subtree tree ’ that contains the
location dg. The location in the root of the tree, let’s call it f ’ , is a data
group that directly contains f. If it is a dynamic data group inclusion,
we apply FieldInDg rac2 dynamic. From ValidDGTree in the hypothesis, we
can conclude that the pivot connecting f and f ’ is not excluded, and that
f ’ is not in the set of already visited locations. We are left with proving
that FieldInDg rac2 holds for field f ’ and data group dg. By applying the
induction hypothesis IH, we complete the proof for the dynamic case. The
proof for the case that f is statically contained in f ’ is analogous.

4.7.6 Implementation of Lazy Unfolding Operations

The main operation of the lazy unfolding is SavePreState, which adds a
pivot to the list of excluded pivots and puts the fields that are assignable
through a dynamic data group over the pivot field to the set of assignable
locations. The implementation of SavePreState relies on the axiomatized
function AssignablePivotTargets for which we provide an implementation in
this refinement, based on the back-link data structure, see listing 4.83.
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AssignablePivotTargets 12 retrieves the list of fields that contain back-
links. We filter this list by a 5-11 function that yields true, if 8,9 there exists
a back-link via pivot to a data group that is assignable in the supplied
assignable stack element a and false otherwise. Finally, 4 list2LocSet trans-
forms the list of Location into a LocSet.

1 Definition AssignablePivotTargets ( p : Program) (bl : Backlinks . t)
2 (pivot : Location) (a : LocSet.t ∗ LocSet.t) : LocSet.t :=
3 list2LocSet (
4 filter
5 (fun f ⇒
6 match LocDict.get ( Backlinks get bl f) pivot with
7 | Some dgs ⇒
8 if LocSet. fold (fun dg b ⇒ (Assignable p bl dg a) || b)
9 dgs false then true else false

10 | None ⇒ false
11 end)
12 (Backlinks .keys bl )).

Listing 4.83: Implementation of the function AssignablePivotTargets

The definition of the function Assignable is straight-forward, see listing
4.84. We remember that the first part of the tuple a is the set of excluded
pivots, and the second part is the set of assignable locations declared in a
given method. f is assignable if there exists at least one location dg in (a)2
such that there is a path from f to dg without using any pivot mentioned in
(a)1.

1 Definition Assignable (p : Program) (bl : Backlinks . t)
2 (f : Location) (a : LocSet.t ∗ LocSet.t) : bool :=
3 LocSet. fold
4 (fun dg b ⇒ (FieldInDg rac3 p bl (a)1 f dg) || b) (a)2 false .

Listing 4.84: The function Assignable

Lemma 4.29. Correctness of AssignablePivotTargets
In an environment with correct back-links and two equal assignable stack

elements, the set of assignable pivot targets is equal in Srac2 and Srac3.

1 Lemma AssignablePivotTargets Correct:
2 ∀ p st a1 a2 pivot ,
3 CorrectBacklinks p st →
4 (a1)1 [=] (a2)1 →
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5 (a1)2 [=] (a2)2 →
6 Rac2.AssignablePivotTargets p st@h pivot a1
7 [=]
8 Rac3.AssignablePivotTargets p st@bl pivot a2.

Proof. We prove this lemma by unfolding the definitions of CorrectBacklinks
and both AssignablePivotTargets and applying standard library lemmas for
the involved list and set operations. Finally we apply lemma 4.28 to relate
FieldInDg rac3 which is used in the definition of Assignable to FieldInDg rac ,
used in Srac2.

In the implementation of AssignablePivotTargets as well as Assignable, we
use LocSet. fold (fun l b ⇒ (f l ) || b) s false , where f is a function from
Location to bool, and s is the set that we fold with boolean or, beginning
with false . By induction over the list, we can prove once and for all, that
such a folding expresses the proposition ∃ l , l ∈ s ∧(f l) = true

4.7.7 The Bisimulation Relation

Listing 4.85 shows the interesting aspect of the bisimulation relation 16 Rrac2
rac3

between Srac2 and Srac3. Two states correspond, if 19,20 all fields are equal
and 21 the back-link data structure of the state in Srac3 reflects the actual
situation in the heap.

The predicate 1 EqualAssignables defines equal stacks of assignable loca-
tions. Two stacks are considered equal, if 3 they have the same size and if 4-6

each set from one state is equal to the set at the same position in the other
state.

1 Inductive EqualAssignables (a1 a2: list (LocSet.t ∗ LocSet.t)) :=
2 | EqualAssignables def :
3 |a1| = |a2| →
4 (∀ n a,
5 (nth n a1 a)1 [=] (nth n a2 a)1 ∧
6 (nth n a1 a)2 [=] (nth n a2 a)2) →
7 EqualAssignables a1 a2.
8

9 Inductive CorrespondingFrame : Rac2.Frame.t → Frame.t → Prop :=
10 | CorrespondingFrame def:
11 ∀ fr rac2 fr rac3 ,
12 . . . (∗ all fields are identical ∗)
13 EqualAssignables fr rac2@assignables fr rac3@assignables →
14 CorrespondingFrame fr rac2 fr rac3 .
15

16 Inductive CorrespondingState(p:Program):Rac2.State.t→State.t→Prop :=
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17 | CorrespondingState def :
18 ∀ st rac2 st rac3 ,
19 CorrespondingFrame st rac2@fr st rac3@fr →
20 st rac2@h = st rac3@h →
21 CorrectBacklinks p st rac3 →
22 CorrespondingState p st rac2 st rac3 .

Listing 4.85: Excerpt of the definition CorrespondingState, which describes
the bisimulation relation between Srac1 and Srac2

4.7.8 Implementation of the Frame Conditions Interface

The two function FieldUpdateCheck and FieldUpdateAction are directly af-
fected by the changes in this refinement, whereas the other functions are
implemented the same way as in the second refinement. Thus, we only con-
centrate on the first two functions here and in the correctness proof section
below. Naturally, we implement all functions of the frame condition inter-
face in the Coq formalization and prove the correspondence to the second
refinement for each function.

The Srac3 version of FieldUpdateCheck shown in listing 4.86 uses the func-
tion Assignable, which computes the boolean value true if loc is assignable
and false otherwise, see listing 4.84. Otherwise, the definition

1 Definition FieldUpdateCheck (p:Program) (loc:Location) (st :State . t)
2 : Prop :=
3 ∀ n,
4 (n < length st@fr@assignables ) →
5 (∃ m,
6 (m ≤n ∧m < length st@fr@fresh) ∧
7 loc ∈ (ObjSet2LocSet (nth m st@fr@fresh ∅)))
8 ∨
9 Assignable p st@bl loc (nth n st@fr@assignables (∅,∅)) = true.

Listing 4.86: The Srac3 implementation of FieldUpdateCheck.

Listing 4.87 shows the Srac3 implementation of FieldUpdateAction. The
difference to the second refinement is the additional update of the back-links
data structure, if the updated field is a pivot, in order to keep the back-links
in sync with the actual data group structure in the heap. In a first step, we
remove all back-links from the data structure that use pivot as pivot, and
in a second step, we add back-links to all new pivot-targets.

1 Definition FieldUpdateAction (p : Program) (pivot : Location) (v : Value)
2 (st : State . t) : State . t :=
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3 if ( isPivot p pivot) then
4 st [ fr := st@fr [ assignables :=
5 map (SavePreState p st@bl pivot) st@fr@assignables ]]
6 [ bl := SetBacklinks p pivot v (RemoveBacklinks p pivot st )]
7 else
8 st .

Listing 4.87: The Srac3 implementation of FieldUpdateAction.

4.7.9 Proof of the Third Refinement

We present the proof of the third refinement as follows: firstly, we show
the correctness of the two interesting frame condition functions presented
above. Secondly, we prove the main theorem for this refinement that states
that the semantics Srac2 and Srac3 are in fact bisimilar. By this proof, we
show that the implementation of the runtime assertion checker is enforcing
the semantics of assignable clauses.

Correctness Proof of the Frame Condition Implementation

We discuss only the proof of the correctness lemma for FieldUpdateAction
since the correctness proofs of the other functions are either not interesting
or very similar to proofs already presented in the second refinement.

Lemma 4.30. Correct Field Update Action

The implementation of FieldUpdateAction in Srac3 preserves the corre-
spondence relation, after the field has been updated with the new value.

1 Lemma FieldUpdateAction Correct:
2 ∀ p loc st rac2 v st rac2 ’ st rac3 st rac3 ’ cn um loc obj loc fsig ,
3 loc = Heap.InstanceField loc obj loc fsig →
4 Heap.typeof st rac3@h loc obj = Some (Heap.ObjectObject cn um) →
5 defined field p cn loc fsig →
6 assign compatible p st rac3@h v (FIELDSIGNATURE.type (loc fsig)2) →
7 CorrespondingState p st rac2 st rac3 →
8 Rac2.Assignables .FieldUpdateAction p loc v st rac2 = st rac2 ’ →
9 Rac3.Assignables .FieldUpdateAction p loc v st rac3 = st rac3 ’ →

10 CorrespondingState p
11 st rac2 ’[ h:=Heap.update st rac2@h loc v]
12 st rac3 ’[ h:=Heap.update st rac3@h loc v ].

Proof. The implementation of FieldUpdateAction update the stack of assign-
able locations and in case of Srac3 the back-link data structure. Thus, the
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only non-trivial goals are to prove that EqualAssignable holds in both states
and that the back-link data structure stays correct.

To prove that the two resulting stacks of assignable locations are equal,
we show that they contain the same number of elements and that each set in
the stack is equal. The earlier is obvious, we do not add or remove elements
in the stack. The latter claim is requires a bit more discussion. We need
to show that starting from equal stacks of assignable locations, applying
the functions SavePreState in both semantics to each element of the stacks
results again in equal stacks.

The only difference in the two implementation of SavePreState is the
application of the axiomatized function AssignablePivotTargets in Srac2 and
the implemented function AssignablePivotTargets in Srac3. We have shown
in lemma 4.29, that the two functions yield equal sets of assignable pivot
targets. Thus, for each element of the stack, SavePreState preserves the
equality.

To prove the correctness of the back-link data structure after the update,
we apply lemma 4.24.

Proof of the Bisimulation Property

Theorem 4.31. Correctness of the Third Refinement

If one starts in a state st rac2 and performs a step in the semantics to
get state st ′rac2, and given a state st rac3 that corresponds to state st rac2, then
there exists a state st ′rac3 that one gets by applying the same step in the
runtime assertion checker and that corresponds to st ′rac2.

Moreover, if one can perform a step in the runtime assertion checker
from st rac3 to st ′rac3, and st rac2 corresponds to st rac3, then there exists a
corresponding st ′rac2 which one gets by performing the same step in the se-
mantics:

st rac2
Srac2 //

OO

Rrac2
rac3

��

st ′rac2OO

Rrac2
rac3

��
st rac3

Srac3 // st ′rac3

Proof. The proof of the main theorem of the second refinement follows the
same reasoning than the proof of theorem 4.5. Thus, we do not show the
proof again in details. We perform a mutual induction on the the four
inductive definitions of steps. We use the induction hypotheses to reason
about the mutual applications of steps, and the correctness lemmas of the
Srac3 implementation of the frame condition interface to reason about the
application of these functions.
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st sem
Ssem //

OO

Rsem
rac1

��

GG

Rsem
rac3

��

st ′semOO

Rsem
rac1

��

WW

Rsem
rac3

��

st rac1
Srac1 //

OO

Rrac1
rac2

��

st ′rac1OO

Rrac1
rac2

��
st rac2

Srac2 //
OO

Rrac2
rac3

��

st ′rac2OO

Rrac2
rac3

��
st rac3

Srac3 // st ′rac3

Figure 4.9: The proof concept: by defining the correspondence relation as
combination of the relations from the three refinements.

4.8 Proof of the Main Theorem

We combine the bisimulation relations of the three refinements to prove the
main theorem 4.1 on page 132. Fig. 4.9 depicts the approach. We show that
if we execute a step in Ssem from state st sem to state st ′sem, and given a step
st rac3 that corresponds to st sem, executing the same step in Srac3 leads to a
state st ′rac3 that corresponds to st ′sem. We show the backward direction of
the theorem accordingly. We prove the theorem applying the bisimulation
relation theorems of all three refinements.

The bisimulation relationRsem
rac3 is defined as the conjunction of the bisim-

ulation relations of the three refinements:

Rsem
rac3(st sem, st rac3) :=

∃st rac1, ∃st rac2,Rsem
rac1(st sem, st rac1) ∧Rrac1

rac2(st rac1, st rac2) ∧Rrac2
rac3(st rac2, st rac3)

Proof. We only discuss the forward direction of the theorem, the backwards
direction is analogous.

We assume that we have two corresponding states st sem and st rac3. Fur-
thermore, a step in Ssem yields the state st ′sem. From the definition of Rsem

rac3

we learn that there exist two states st rac1 and st rac2 such that the corre-
spondence relations of the refinements hold. From the forward direction of
the bisimulation theorem of the first refinement, we learn that there exists
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a state st ′rac1 that corresponds to st ′sem and that we get by executing the
step in Srac1. By applying the bisimulation theorem of the second and the
third refinement, we get the states st ′rac2 and st ′rac3. Thus, we know by
construction that Rsem

rac3 (st ′sem,st ′rac3) holds.
We also need to be sure that there exist two corresponding states st sem

and st rac3 to start with. We can easily construct corresponding states to the
initial state of a system as described in section 2.6.2 on page 75, by choosing
empty or default values for all additional data structures.

Thus, we know for any state in Ssem which is reachable by executing a
step from the initial state of the system, that there exists a corresponding
state in Srac3 that we can reach by the same sequence of steps form the
initial state of Srac3.

4.9 Summary

In this chapter we proved that the runtime assertion checker for assignable
clauses in the presence of dynamic data groups behaves equivalently to the
semantics. This is a strong result as showed that a difficult and non-modular
task at runtime not only enforces the semantics, but is also precise, that
is, does not over-approximate the semantics. Besides, we showed in this
chapter that our formalization of JML is well suited to perform complex
meta-reasoning on JML’s semantics.



Chapter 5

Conclusion

We conclude this thesis by summarizing our achievements, giving a short
description of the experiences that we have made during this work, possible
and likely future work that build on top of this thesis and a final statement.

5.1 Achievements

We succeeded to formalize an interesting subset of JML in the theorem
prover Coq and we have shown its usefulness by proving soundness and
completeness of our algorithm to efficiently check frame conditions in JML,
which we also presented in this thesis. We accomplished the following in our
work.

A Formal Definition of JML Constructs in Coq We formally defined
the relevant JML constructs in Coq by deeply embedding the constructs in
the theorem prover. We took care to that the semantics of each construct
is clearly presented. Thus, our formalization can be used along with the
reference manual [49] to unambiguously understand the meaning of JML
constructs.

A JML Front-End for Program Verification Our formalization of
JML can be used as a front-end of a verification environment such as the
Mobius PVE [62]. The formalization provides a well defined interface to
access the JML specifications of a given program. Furthermore, it’s possible
to embed JML annotated Java source code in our formalization in a read-
able and elegant way, thanks to heavy use of notations. In addition to the
formalization in Coq, we provide a Java front-end to automatically translate
JML annotated Java files to the corresponding Coq embedding.

A Solid Basis for Meta-Reasoning on JML By the modular structure
of our formalization and the emphasis on readability and usability, we pro-
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vided a solid basis to perform meta-reasoning on the specification language
and its tools. We performed several proofs of concepts to ensure that the
formalization is suited for meta-reasoning. With the formalized syntactic
rewritings from the full form of JML constructs to their more basic form as
described in [42] and the proof of the runtime assertion checker, there are
already two interesting applications of meta-reasoning on JML, that use our
formalization as basis.

An Efficient Algorithm to Check Frame Conditions at Runtime
We presented an algorithm to check assignable clauses in the presence of
static and dynamic data groups. Our algorithm performs well, in particular,
on recursive data structures with large and deeply nested dynamic data
groups by introducing the concept of lazy unfolding of data groups. We
provide the foundation to close a big gap in the runtime assertion checker of
JML. The algorithm has been tested against recursive data structures with
a prototypical implementation of a runtime assertion checker as well as an
OpenJML implementation of the algorithm.

A Machine Checkable Proof of a Runtime Assertion Checker We
formally proved the soundness and completeness of our runtime assertion
checker for assignable clauses. It is the first proof of a runtime assertion
checker. We have made clear that such a proof is necessary to trust in the
results of a runtime assertion checker, as the algorithm of the checker sig-
nificantly differs from a näıve implementation of the semantics. By proving
the runtime assertion checker for assignable clauses with dynamic data
groups, we have proven one of the most difficult constructs for a runtime
assertion checker. While the proof is an important contribution on its own,
it also serves as an interesting application of our semantics and shows that
it’s possible to perform complex reasoning with our formalization.

5.2 Experience

Working with Coq We started our work with no prior experience in Coq
but with a decent understanding of formal verification and language seman-
tics. Thanks to Bertot’s excellent book “Coq’Art: The Calculus of Inductive
Constructions” [7] and Giménez’ and Castéran’s tutorial on (co)inductive
types in Coq [35], we managed to quickly get a good understanding of the
theorem prover and the underlying logic.

The Bicolano formalization of the Java virtual machine [70], which we
used as basis for our formalization, heavily uses the Coq module system
[15]. However, the way Bicolano use the module system leads to significant
code duplication in order to implement a module type. Nevertheless, we
left the module structure unchanged as we intended to take over as much
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as possible from Bicolano, which otherwise proved to be a very good basis
for our formalization. Of course, we properly used the module system for
our own parts to avoid these problems. In our technical report about the
formalization, we discuss this issue in more details [42, section 4.1.2].

One thing that we did rewrite in Bicolano is the way classes and inter-
faces are formalized. While the two constructs are different abstract data
types in the original Bicolano formalization, we combined them into one
abstract data type, as they are quite similar for specification purposes, see
[49, section 6.1].

While we were working on the formalization of JML, Coq got updated
from version 8.0 to 8.3 with significant changes and improvements. We
ported our formalization three times to a new version with small and oc-
casional changes to our definitions and proofs. As we were adopting new
language concepts and tactics, our sources are not backward compatible and
require the currently newest Coq version 8.3.

With more than 14’000 lines of Coq sources (not counting empty lines
and comments), our formalization can be considered quite large, which oc-
casionally led to technical problems with Coq. During our work on the
formalization, we encountered several minor deficits and two major bugs in
Coq that quickly got fixed upon our bug-reports. In one case, we could not
reduce the size of the exampel that triggers the bug, as it was mainly the
size of the formalization that led to the bug. Again, the Coq development
team was very forthcoming by fixing the bug after we gave them access to
our repositories.

Listing 5.1 shows a summary of the lines of code for each file of our
formalization, as generated by the tool coqwc. We can see that the core
part of the formalization of JML takes about 2’500 lines, which is about
the same size than the proof of the third refinement alone. Beside the fact
that the proof is quite challenging, this is also the case because we did
set an emphasis on the clarity of the overall proof structure, but not on a
perfectly optimized proof script itself. Thus, the proofs could be made more
condensed and user tactics might introduce more automation. While this
would be worthwhile in a Coq textbook, it’s not the first priority if we are
more interested in the result of the proof than the proof scripts themselves.
Anyhow, we achieve maintainability of the proofs by decently structuring
the proof and outsourcing interesting sub-goals into separate lemmas.

We also had to experience that a machine checked proof is only as good
as the model on which we perform reasoning. Concretely, we have had a
subtle error in the semantics of assignable clauses, which we carried through
all refinements. That is, we performed a machine checked proof that all re-
finements behave equivalently to the semantics, which itself was not entirely
accurate in the first place. This kind of errors can only be found by manual
inspection of the semantics and by performing machine checked validation
of the semantics by proving desired properties of the JML constructs.
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1 spec proof comments

2

3 // Helpers

4 43 35 0 EqBoolAux.v

5 51 36 27 ListFunctions.v

6 42 136 46 ListHelpers.v

7 2 12 0 LogicHelpers.v

8 34 19 20 OptionHelpers.v

9 33 43 0 PosAux.v

10 59 0 0 Prelude.v

11 124 296 1 Stack.v

12 28 7 81 TaggedList.v

13 21 21 23 ZHelpers.v

14

15 // Formalization of JML

16 952 0 246 JMLProgram.v

17 178 0 105 JMLNotations.v

18 120 0 19 JMLExpressionNotations.v

19 7 0 2 JMLSyntax.v

20 56 0 3 JMLNumeric.v

21 579 205 85 JMLDomain.v

22 719 9 146 JMLSemantics.v

23

24 // Operational Semantics

25 120 92 35 JMLOpSem.v

26

27 // Syntactic Desugaring & Implementation

28 132 0 224 JMLFull2Basic.v

29 1023 26 438 JMLFull2BasicImpl.v

30 50 0 29 JMLProgramPlus.v

31 1712 241 364 JMLProgramPlusImpl.v

32

33 // Correctness Proof of RAC

34 175 616 29 JMLRac.v

35 580 1045 25 JMLRac2.v

36 626 2615 28 JMLRac3.v

37 78 317 16 JMLRac_1_Correct.v

38 115 500 16 JMLRac_2_Correct.v

39 80 297 16 JMLRac_3_Correct.v

40

41 // Total

42 7784 6568 2073 total

Listing 5.1: An overview of the number of lines of specification, proofs, and
comments for each file of the formalization.
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Working with JML JML is a very alive research topic. Many tools based
on JML are actively being developed and a lot of novel techniques are being
proposed to integrate in JML. In the field of frame conditions, two interest-
ing contributions propose an alternative to the non-modular dynamic data
groups as defined in the reference manual. Müller et al. proposed in [64] to
use a hierarchically structured heap and a restrictive programming model
to achieve modular frame conditions. Schmitt et al. recently introduced
dynamic frames [44] for JML [76] in order to overcome the non-modularity
of frame conditions in JML. Even though both proposals pose an interest-
ing alternatives, data groups are still the “official” technology to introduce
abstraction in frame conditions in JML, which is supported by most tools to
some extend. Furthermore, specifying frame conditions using data groups
is very intuitive with little overhead.

When our algorithm to check assignable clauses was ready to be im-
plemented in a JML tool, we were faced with the situation that there are
currently many different implementations of JML runtime assertion checkers
around. While JML2 [40] is the currently official tool, it is being replaced
soon by newer implementations, most notably OpenJML [68], which is based
on the OpenJDK [67], and the jml4c tool [41], which is based on the Eclipse
Java compiler. Beside these two, there are a handful other tools being de-
veloped simultaneously. We decided to go with OpenJML as it’s supposed
to become the main-stream tool for JML.

While the reference manual is written quite precisely, it was often nec-
essary to check different parts of the manual in order to understand the
intended meaning of a construct. Sometimes, reading additional resources
like the preliminary design document [46] or papers and reports that concen-
trate on one specific construct helped a lot to understand the semantics of
JML constructs. However, this additional literature is cited in the reference
manual.

5.3 Future Work

We see interesting future work along several lines. For the formalization of
JML in Coq, we can on the one hand extend the formalized subset, and
on the other hand add additional applications from different fields. For the
runtime assertion checker, we might want to add support for model fields
and introduce more advanced optimizations. In the following, we discuss
the most interesting ideas in more detail.

Formalize Additional Constructs In our formalization, we currently
ignored constructs that are either rarely used in applications or very similar
to handle than already supported ones. Most notably, support for floating
point operations could be added based on the formalization of real numbers
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from the Coq standard library. Another construct that could be added is
the \old expressions equipped with a label, see the last to paragraphs of [49,
section 12.4.2]. Those \old expressions may refer to a state at a given label
rather than the pre-state. This implies that our state model would need to
allow access not only to the pre-state of the method, but the states of all
labels in the current method body. Thanks to our extendible state model,
such a change would be simple to perform without the need of a large-scale
refactoring.

Providing Several Semantics for the Same Construct Beside adding
support for new constructs, an interesting work would be to add different
semantics for existing constructs. Instead of the visible state semantics
for object invariants, we can add ownership and alias control for modular
object invariants, see [65]. As we already provide the necessary additions
on a syntactical level (the universe type modifier), the semantics can be
integrated without changing existing data types. We could use the universe
type system also to define a modular semantics for frame conditions, as
discussed in the last section.

Integrate the Formalization in a Verification Environment Our
formalization is suited to be integrated in the Mobius PVE [62]. It would be
interesting to evaluate the verification environment, which would generate
more convenient proof obligations by using our formalization instead of the
JML to first order logic translation that is currently being used.

Extend the Operational Semantics of Java We cover only a very
small subset of Java in our operational semantics in order to prove the
correctness of the runtime assertion checker. To open the formalization to
different applications, we might need to extend this subset, based on the
Java language reference and existing formalizations of Java [36, 81, 70, 38].

Support for Model Fields in the Runtime Assertion Checker In
a prototypical implementation we already added experimental support for
model fields in the runtime assertion checker for assignable clauses where
we restrict the expressivity of requires clauses in order to be able to perform
efficient checks. We believe that it’s possible to relax these restrictions
quite a bit without dramatically tear down efficiency, but more research is
necessary to come up with the right solution.

Implement Better Optimizations in the Runtime Assertion
Checker With the caches that we introduce per method, we speed up the
checks a lot if the same locations get assigned several times in the same
method. However, the information in the cache gets lost as soon as the
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method terminates. We could implement a more clever caching that only
invalidates information in the cache if it is actually out of date.

Proof the Correctness of the Optimizations If we introduce a more
sophisticated caching to our algorithm to check assignable clauses, we
would have to prove its correctness as one or more additional refinements. A
refinement strategy is very suitable to proof the correctness of optimizations,
that is, prove that they behave equivalently to the non-optimized algorithm.

5.4 Final Statement

We showed in this thesis that it’s possible and worth the effort to formalize a
specification language in a theorem prover to perform both meta-reasoning
over the specification language and program verification.

We hope that our work will be of good use in the research community
and help to motivate others to choose a more formal approach to software
verification.
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[6] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. Number 4334 in Lecture
Notes in Computer Science. Springer-Verlag, 2007.
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[24] Á. Darvas. Reasoning About Data Abstraction in Contract Languages.
PhD thesis, ETH Zurich, Switzerland, 2009.
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[34] J.-C. Filliâtre. Why: A multi-language multi-prover verification tool.
Research Report 1366, LRI, Université Paris Sud, 2003.
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