
ByteCode 2007

Formal Translation of Bytecode into
BoogiePL

Hermann Lehner1 and Peter Müller2

ETH Zurich, Switzerland

Abstract

Many modern program verifiers translate the program to be verified and its specification into a simple
intermediate representation and then compute verification conditions on this representation. Using an
intermediate language improves the interoperability of tools and facilitates the computation of small ver-
ification conditions. Even though the translation into an intermediate representation is critical for the
soundness of a verifier, this step has not been formally verified. In this paper, we formalize the translation
of a small subset of Java bytecode into an imperative intermediate language similar to BoogiePL. We prove
soundness of the translation by showing that each bytecode method whose BoogiePL translation can be
verified, can also be verified in a logic that operates directly on bytecode.

Keywords: Program verification, verification conditions, intermediate language, Java bytecode, BoogiePL

1 Introduction

Many modern program verifiers such as ESC/Java [10], Boogie [2], Krakatoa [12],
and Caduceus [9] verify programs in two steps. First, they translate the program
and the specification into an intermediate representation such as guarded com-
mands, BoogiePL [7], or the Why language [8]. In the second step, they compute
verification conditions for the intermediate representation and pass them to a theo-
rem prover. Using an intermediate language improves the interoperability of tools.
For instance, Krakatoa and Caduceus translate Java and C code to the Why lan-
guage, which allows them to share the Why back end. Moreover, simple intermedi-
ate representations facilitate the generation of small verification conditions through
passification [11].

The translation into an intermediate representation is critical for the soundness
of a program verifier. It has to ensure that the verification conditions for the
intermediate program are strong enough to guarantee the correctness of the original
program; otherwise the intermediate program could be verified although the original

1 hermann.lehner@inf.ethz.ch
2 peter.mueller@inf.ethz.ch

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:hermann.lehner@inf.ethz.ch
mailto:peter.mueller@inf.ethz.ch


program is incorrect. Despite its importance for soundness, the translation into an
intermediate representation has not been formally verified.

In this paper, we formalize the translation of Java bytecode into an untyped
version of the intermediate language BoogiePL and prove soundness of the transla-
tion by showing that the verification conditions for the intermediate program are at
least as strong as the corresponding verification conditions for the original program.
Our formalization and proof [6,14] cover a large subset of Java bytecode. Due to
space limitations, we focus on a small, but interesting subset in this paper.
Outline. This paper is organized as follows. Sec. 2 describes the bytecode subset
and a weakest precondition calculus that directly operates on bytecode. Sec. 3
introduces BoogiePL including a weakest precondition calculus. The translation
from bytecode to BoogiePL is defined in Sec. 4. We illustrate the translation by an
example in Sec. 5 and prove soundness in Sec. 6. We review related work in Sec. 7
and offer conclusions in Sec. 8.

2 Java Bytecode

In this section, we describe the bytecode subset used in the rest of the paper. We
also explain how specifications are formalized and outline a weakest precondition
(wp) calculus for the bytecode language.

2.1 Language Subset

We consider a subset of sequential Java bytecode that contains classes, interfaces,
fields, dynamically-bound methods, and exceptions. For brevity, we consider only
a very small set of instructions. Nevertheless, this subset is representative as it
contains instructions of the major groups: ’iload n’ for manipulations of registers
and the operand stack, ’ifgt Label ’ for control flow instructions, ’invokevirtual
Method ’ and ’ireturn’ for method call and return, as well as ’new TypID ’ and
’getfield FieldID ’ for heap operations. The translation of most of the remain-
ing instructions is analogous to these representatives. Label , TypID , Method , and
FieldID are the sorts for labels, class and interface names, method names, and field
names of a program. For simplicity, we assume that type names, method names,
and field names are unique in a program. We expect the control flow graph of
the bytecode program to be reducible, which means that there is only one single
entry point for each loop in the control flow graph. Java compilers always produce
reducible control flow graphs. For hand-written bytecode, this property can be
achieved by code duplication.

We model the exception table by a function handlers that returns the set of
labels of all possible handlers for an exception of a given type and all of its subtypes.
Including subtypes is necessary because the exception handler that is executed is
determined dynamically based on the runtime-type of the exception object, which
may be a subtype of the statically-known type.

The special label ‘⊥’ is used to indicate that an exception might not be handled
by the current method:

2



handlers : Method × Label × TypID → set of Label

2.2 State Model

The state of an execution of a bytecode program consists of the heap, the operand
stack, and the values in the registers. The sort Value models object references and
values of primitive types such as integers. The instance variables of an object are
modelled by sort InstVar . The function iv : Value × FieldID → InstVar yields the
instance variable for a given object and field identifier.

The heap is modeled as a data type with main sort Heap and the following
operations:

update : Heap × InstVar ×Value → Heap
get : Heap × InstVar → Value alloc : Value ×Heap → bool
add : Heap × TypID → Heap new : Heap × TypID → Value

update(h, i, v) updates instance variable i in heap h with value v. get(h, i) yields the
value of instance variable i in heap h. Object creation is encoded by two functions:
new(h, C) yields a new object of class C in heap h and add(h, C) yields the extended
heap. The axiomatization of the heap model relates these two functions and ensures
that the two functions are used consistently. Finally, alloc(v, h) yields whether value
v is allocated in heap h. We omit the axiomatization of these functions because our
translation and soundness proof do not rely on it. The details are presented in a
paper by Poetzsch-Heffter and Müller [13].

When modeling the state of the JVM, we distinguish the state before, during,
and after the execution of a method. A PreState contains a heap and values for
the method parameters, a LocalState contains a heap, an operand stack, and values
for the method parameters and local variables, and a PostState contains a heap
and a value, which is the result value of the method if it terminates normally or an
exception if it terminates abruptly.

PreState : (Heap ×Arguments)
LocalState : (Heap ×OperandStack × Locals)
PostState : (Heap ×Value)

where Arguments, Locals, and OperandStack are lists of Value.

2.3 Specifications

We formalize the specification of a bytecode program as a specification table, which
is accessed by the following functions:

3



pre : Method → (PreState → bool)
post : Method → (PreState × PostState → bool)
postX : Method → (PreState × PostState → bool)
local : Method × Label → (PreState × LocalState → bool)

pre(m) yields the precondition of a method m, which is a predicate over a PreState.
post(m) and postX(m) yield the normal and exceptional postcondition of m, respec-
tively. Both are predicates over a PreState (to refer to the initial values of the heap
and method arguments) and a PostState. Local annotations at a label l are denoted
by local(m, l). They are predicates over a PreState and a LocalState. Local anno-
tations are used to encode loop invariants. In order to avoid fixpoint computations
in the wp calculus, we require that every entry point to a loop in the control flow
graph has a local annotation in the specification table. local(m, l) is undefined if l

is not the beginning of a loop.

2.4 Direct Verification Condition Generation for Bytecode

Our weakest precondition calculus for bytecode is a simplified version of the calculus
by Grégoire, which is proven sound w.r.t. an operational semantics [6]. In this
subsection, we present those parts of the calculus that are needed in the rest of the
paper. We assume that each bytecode program passes the bytecode verifier before
the wp-calculus is applied. Therefore, we do not prove type correctness and the
absence of stack over- and underflows in the calculus.

We define a function wpvc : Method × Label → (PreState × LocalState → bool).
wpvc(m, l) yields the weakest precondition for the instruction at label l of method m.
If this weakest precondition holds, an execution starting from l will: (1) terminate
normally in a state that satisfies m’s normal postcondition, (2) terminate abruptly
in a state that satisfies m’s exceptional postcondition, (3) abort due to a runtime
error, or (4) run forever.

To handle local annotations, we use a second wp function, which yields the local
precondition. The local precondition is the local annotation from the specification
table if there is any, and otherwise the weakest precondition:

wp l(m, l) =

{
local(m, l) : if local(m, l) is defined
wpvc(m, l) : otherwise

The weakest precondition function wpvc is defined in Fig. 1. For iload n, wpvc

applies the local precondition of the successor instruction to an adapted local state.
For ifgt, wpvc yields the conjunction of the local preconditions of the possible jump
target and the successor label, weakened by the appropriate conditions. The weakest
precondition of ireturn is the normal method postcondition. new is analogous to
iload n. For getfield, the weakest precondition requires the top stack element to
be non-null in order to prevent NullPointerExceptions. For method invocations,
we have to prove that the target is non-null and that the precondition is satisfied.
The treatment of postconditions has to take into account both normal and abrupt
termination. That is, the normal method-postcondition has to imply the local

4



Instruction at l wpvc(m, l)(σ0, (h, top :: os, reg)) =

iload n wp l(m, l + 1 )(σ0, (h, reg [n] :: top :: os, reg))

ifgt l ′ (top > 0 ⇒ wp l(m, l ′)(σ0, (h, os, reg))) ∧
(top ≤ 0 ⇒ wp l(m, l + 1 )(σ0, (h, os, reg)))

ireturn post(m)(σ0, (h, top))

new t wp l(m, l + 1 )(σ0, (add(h, t),new(h, t) :: top :: os, reg))

getfield f top 6= null ∧ wp l(m, l + 1 )(σ0, (h, get(h, iv(top, f)) :: os, reg))

invokevirtual t top 6= null ∧ pre(t)(h, top)∧
∀ h′, rv : (

post(t)((h, par), (h′, rv)) ⇒
wp l(m, l + 1 )(σ0, (h′, rv :: os, reg)

) ∧ (
postX(t)((h, par), (h′, rv)) ⇒∧
li∈handlers(m,l,typeof (rv))

wp l(m, li)(σ0, (h′, rv , reg))

)

where par is a list of stack elements that represent the parameters for t

Fig. 1. Weakest precondition calculus for bytecode. The label l + 1denotes the textual successor of label l .
The function typeof yields the runtime type of a value.

precondition of the successor instruction and the exceptional method-postcondition
has to imply the local preconditions of all possible exception handlers. Note that
the value of handlers includes ⊥ if the exception might be propagated. Therefore,
we define wpvc(m,⊥) = postX(m).

Note that this weakest precondition calculus enforces that instructions do not
throw runtime exceptions. For instance, getfield requires the receiver to be non-
null. This requirement is a source of incompleteness: A method that dereferences
null may catch the NullPointerException and still satisfy its specification, but
cannot be verified in our wp-calculus. However, preventing runtime exceptions
simplifies verification by avoiding case splits for each instruction that potentially
throws a runtime exception.

To verify a method m, one has to prove that (1) the method precondition implies
the local precondition of the first instruction and (2) for each label that has a
local annotation, the local precondition wp l(m, l) implies the weakest precondition
wpvc(m, l). The latter obligation is required to show that loop invariants are actually
maintained.

3 BoogiePL

In this section, we give a brief overview of BoogiePL and present a wp-calculus. For
details, we refer to a report by DeLine and Leino [7]. To focus on the essentials
of the bytecode translation, we use an untyped version of BoogiePL in this paper.

5



Command at pos wpbpl(m, pos) =

assume P P ⇒ wpbpl(m, pos + 1)

assert P P ∧ wpbpl(m, pos + 1)

x := e wpbpl(m, pos + 1)[e/x]

havoc x ∀ x : wpbpl(m, pos + 1)

goto pos1 , . . . , posn
∧

i:=1..n
wpbpl(m, posi)

Fig. 2. Weakest precondition calculus for BoogiePL. Substitution of a term e for a variable x is denoted by
[e/x].

However, our full formalization [6] works with the typed language.

3.1 Overview and State Model

BoogiePL programs consist of a prelude and a list of procedures. The prelude
specifies a background theory in first-order logic using global variables, constants,
axioms, and uninterpreted functions. The procedures contain a specification and
an implementation. In our translation, we do not use the procedure specifications.
The implementation of a procedure starts with the declaration of all local variables,
followed by one or more blocks. A block has a unique ID, a body consisting of
BoogiePL commands, and ends with a non-deterministic goto, which specifies all
possible successor blocks in the control flow graph. A goto with an empty list of
block IDs terminates the execution. BoogiePL provides the following commands:
assignment, call, assume, assert, and havoc. The havoc command assigns an
arbitrary value to a given variable. In the following, we will reuse sort Method for
procedure names.

The state of a BoogiePL program consists of the values of all global and local
variables. The sort Valuebpl contains all possible values of a BoogiePL program:
Statebpl : Var 7→ Valuebpl

3.2 Verification Condition Generation for BoogiePL

Our wp-calculus for BoogiePL is similar to the one by Barnett and Leino [3]. How-
ever, it requires that the control flow graph of the BoogiePL program is acyclic,
whereas the Boogie tool accepts a cyclic control flow graph and transforms it inter-
nally into an acyclic graph. We make this transformation explicit in our translation,
see Sec. 4.3.

We assume that the commands of a BoogiePL method are numbered. We use
the term position rather than label to refer to the number of a BoogiePL command
in order to avoid confusion with the labels of a bytecode instruction.

The weakest precondition function wpbpl : Method × Position → (Statebpl →
bool) for BoogiePL is analogous to the wp-calculus for bytecode. If the weakest
precondition of a position pos in a procedure m holds, an execution starting from
pos will not abort due to an assertion violation. That is, the program will terminate
or run forever. The weakest precondition function wpbpl is defined in Fig. 2.

6



4 Translation from Bytecode to BoogiePL

In this section we describe the translation of our bytecode subset to BoogiePL.

4.1 Information about the Bytecode Program

Our translation uses information that is computed by the bytecode verifier, namely
(1) the height of the operand stack at each label and (2) the control flow graph of
each method. We encode this information by the following functions.

sh : Method × Label → int
isEdge : Method × Label × Label → bool
isEdgeTarget : Method × Label → bool
isBackEdge : Method × Label × Label → bool
isBackEdgeTarget : Method × Label → bool

sh(m, l) yields the index of the top element of the operand stack before execution
of the instruction at label l of method m. isEdge(m, l1, l2) yields true iff there is an
edge from label l1 to label l2 in the control flow graph of method m. If this is the case,
isEdgeTarget(m, l2) yields true. The functions isBackEdge and isBackEdgeTarget
are analogous to isEdge and isEdgeTarget , but consider only backward edges in the
control flow graph.

4.2 Encoding of the Bytecode State in BoogiePL

We encode the state of a bytecode program by a number of BoogiePL variables.
Prestate: The heap model described in Sec. 2 is encoded in the prelude of

the BoogiePL program. We do not show this formalization here because it is not
interesting. We use the variable old heap to refer to the heap of the prestate. The n

parameters of the bytecode method are modeled by the parameters of the BoogiePL
procedure, parami (i = 0, . . . , n− 1).

Local State: We use the global variable heap to model to heap of the current
execution state. The operand stack is modeled by the variables stacki, where i

denotes the height of the stack (starting with 0). The registers (representing the
local variables and parameters) are modeled by variables regi. Since the maximum
height of the operand stack and the number of used registers is given in the class file,
we know statically how many of the stacki and regi variables we have to declare
in the BoogiePL procedure.
We use the following abbreviations: params for list of variables parami, stacks for
all stack elements stacki, and regs for all registers regi.

The state of a bytecode program and its translation are formally related by the
mapping function map : Method × Statebpl × Int → (PreState × LocalState):

map(m, ρ, h) =((
ρ(old heap), ρ(params)

)
,
(
ρ(heap), ρ(stackh), . . . , ρ(stack0), ρ(regs)

))
7



4.3 Back-Edge Elimination

As explained in Sec. 2.4, our translation eliminates backward edges in the control
flow graph in order to avoid a fixpoint calculation in the wp calculus.

It is important to understand that back-edges do not only occur at jump in-
structions. Any transition from an instruction to its textual successor instruction
could be a back-edge. For instance, the transition from label 8 to label 11 in the
bytecode program in Fig. 3 is a back-edge, because label 11 has been visited before
due to processing the jump at label 2.

A transition along a back-edge always closes a loop in the control flow graph.
Therefore, we can assume that the target of the back-edge has a local annotation for
the loop invariant. In the translation, we eliminate the back-edge and instead gen-
erate an assertion that the loop invariant holds. A forward-edge is simply translated
into a goto. This is done by the translation function TrEdge. Which is defined for
a list of possible successor labels ls.

TrEdge[[m : Method , l : Label , ls : list of Label ]] =
#foreach l′ in ls

#if isBackEdgeTarget(m, l′)
assert TrSpec[[local(m, l′), (old heap, params), (heap, stacks, regs)]]

#end if
#end foreach
#let l1 , . . . , ln = all l′ in ls where ¬isBackEdge(m, l, l′)
goto block l1 , . . ., block ln;

In our notation, text in typewriter font is directly printed, whereas text in italics is
interpreted by the translator. Lines beginning with the ’#’ character describe how
the code is generated. TrSpec translates a bytecode specification to the correspond-
ing BoogiePL expression, thereby replacing occurrences of the heap, operand stack,
and registers by the given variables. We use the convention that the BoogiePL block
for a bytecode basic block starting at label l has the ID block l .

4.4 Translation of Bytecode Instructions

The function TrInstr translates a single bytecode instruction. instructionAt(m, l)
denotes the instruction at label l in method m.

TrInstr [[m : Method, l : Label]] =
#let cntr = sh(m, l)
#switch instructionAt(m, l)

We present the individual cases of the switch in the following:
iload: The loading of a value from a register is translated in an assignment to the
stack variable for the top stack element.

#case iload n

stackcntr+1 := regn;

ifgt: A branch instruction is translated into a non-deterministic goto to two suc-
cessor blocks that assume the branch condition to be true or false, respectively.
The true-block then jumps to the target label l′. To eliminate back-edges, we apply

8



TrEdge at this point. The false-block is continued with the translation of the next
instruction.

#case ifgt l′

goto block l True, block l False;

block l True:
assume stackcntr > 0;
TrEdge(m, l, [l′])

block l False:
assume ¬(stackcntr > 0);

ireturn: The return instruction copies the top stack element to the bottom of the
stack and then jumps to the special block post, which asserts the current method’s
normal postcondition.

#case ireturn

stack0 := stackcntr;
goto post;

new: Object creation is translated into applications of the BoogiePL versions of
the heap functions add and new.

#case new t

heap := add(heap, t);
stackcntr+1 := new(heap, t);

getfield: Before reading a field, we assert that the top stack element (the receiver)
is not null. Next, the top stack element is replaced by the value of the field in the
current heap.

#case getfield f

assert stackcntr 6= null;
stackcntr := get(heap, instvar(stackcntr, f));

invokevirtual: We use the variables pre heap and arg0 to save the old values of
the heap and the receiver of the call since they may be used in the postcondition
of the callee method. We save the receiver, but not the other arguments because
the stack location of the receiver will be overwritten by the method result, whereas
the other arguments are preserved. P denotes the number of (implicit and explicit)
parameters of the callee method.

The actual method call is translated as follows: We assert that the receiver is not
null and that the precondition of the callee holds. Possible side effects of the callee
are accounted for by havocing the heap. Since the callee may terminate normally
or abruptly, we continue with a non-deterministic goto.

For abrupt termination, we erase all information about stack0, which now con-
tains the exception object. For simplicity, we do not consider the throws clause of
the callee here, but simply assume that the exception is an allocated object of type
Throwable (typeof yields the runtime type of a value and <: denotes the subtype
relation). We then assume the exceptional postcondition of the callee and jump to

9



all possible handlers of the exception. A more fine-grained handling of exceptions
using throws clauses is straightforward.

For normal termination, we erase all information about the stack location that
contains the receiver, because this location will now contain the method result. We
then assume the normal postcondition of the callee.

In the translation, we use args to refer to the arguments of the call, that is,
args = [arg0, stackcntr−P+2, . . . ,stackcntr ].

#case invokevirtual callee
arg0 := stackcntr−P+1;
pre heap := heap;
assert arg0 6= null;
assert TrSpec[[pre(callee), (pre heap, args)]]
havoc heap;
goto block l Normal, block l Exception;

block l Exception:

havoc stack0;
assume alloc(stack0, heap) ∧ typeof(stack0) <: Throwable;
assume TrSpec[[postX(callee), (pre heap, args), (heap, stack0)]]
TrEdge(m, l, handlers(m, l, Throwable))

block l Normal:
#let res =stackcntr−P+1

havoc res ;
assume TrSpec[[post(callee), (pre heap, args), (heap, res)]]

4.5 Translation of Instruction Sequences

TrInstrSeq [[m, l]] translates the instruction sequence starting at label l until the end
of method m. It uses the control flow graph of m to determine whether l is the
beginning of a basic block. In case l is the target of a back-edge, we know that l

is the entry to a loop. We apply the strategy described by Barnett and Leino [3]
to make the loop body represent a general loop iteration. This is done by havocing
all variables that are potentially modified by the loop(the heap, the operand stack,
and the registers, but not the prestate values of the heap and the parameters) and
by assuming the loop invariant.

We then translate the instruction at label l. If the transition from l to its textual
successor l + 1 is an edge in the control flow graph, we have to end the current block
and possibly apply the back-edge elimination using TrEdge. Finally, we proceed by
translating the rest of the instruction sequence.

TrInstrSeq [[m : Method, l : Label]] =
#if isEdgeTarget(m, l)

block l :
#if isBackEdgeTarget(m, l)

havoc heap , stacks, regs ;
assume TrSpec[[local(m, l), (old heap, params), (heap, stacks, regs)]]

10



#end if
#end if
TrInstr [[m, l]]
#if isEdge(m, l, l + 1 )

TrEdge(m, l, [l + 1 ])
#end if
TrInstrSeq [[m, l + 1 ]]

4.6 Translation of Methods

The translation of a method is done by a function Tr [[m : Method ]]. This function
generates the signature of the BoogiePL procedure, declares the local variables, and
applies the translation function TrBody for the method body, which we describe
next.

The translation of method body starts with creation of a block init, which saves
the heap of the prestate for later use in local annotations and postconditions. In
addition, it copies the values of the parameters to the register variables. P denotes
the number of (implicit and explicit) parameters of the method. Next, we assume
the precondition. In the case that the first instruction of the method body is a
jump target, we assert the local annotation (if there is any) and finish this block
by jumping to the block starting at the first instruction. The instructions of the
method body are translated using TrInstrSeq . TrBody also generates blocks for the
method’s normal and exceptional postconditions.

TrBody [[m : Method]] =
init:

old heap := heap;
#for i := 0 . . . (P − 1) :

regi := parami;
#end for
assume TrSpec[[pre(m), (old heap, params)]];
#if isEdgeTarget(m, 0)

#if isBackEdgeTarget(m, 0)
assert TrSpec[[local(m, 0), (old heap, params), (heap, ∅, regs)]]

#end if
goto block 0;

#end if
TrInstrSeq [[m, 0]]

post:

assert TrSpec[[post(m), (old heap, params), (heap,stack0)]] ;
goto;

post X:

assert TrSpec[[postX(m), (old heap, params), (heap,stack0)]] ;
goto;

11



5 Example

We illustrate our translation using method twice. Fig. 3 shows the source code,
bytecode, and specification table of this method. Fig. 4 shows the result of the
translation. The specifications are included as assume and assert commands.
Note that the back-edge from label 8 to 11 is eliminated during translation. Instead,
block 11 starts with by havocing the state and assuming the loop invariant. We
verified a typed version of this example in Boogie.

6 Soundness

In this section, we present a soundness theorem and sketch the proof of the main
lemma. The full proof is presented in our report [6, Appendix E].

Theorem 6.1 Let m be a method of a specified bytecode program. If the translation
of m into BoogiePL can be verified in the wp-calculus for BoogiePL then m can also
be verified in the calculus that operates directly on bytecode.

This theorem is a consequence of the following lemma.

Lemma 6.2 Let m be a method of a specified bytecode program and l a label in m.
The weakest precondition of the BoogiePL translation of m at the position corre-
sponding to label l implies the weakest precondition of m at label l:

∀m, l, ρ : (wpbpl(Tr(m), instrpos(Tr(m), l))(ρ) =⇒ wpvc(m, l)(map(m, ρ, sh(m, l))))

where instrpos(Tr(m), l) yields the position of the first BoogiePL command of
TrInstr(Tr(m), l).

Proof: The proof runs by induction on the control flow graph of the bytecode
method m, more precisely, on the distance of label l from the end of the method
not considering back-edges. The base case covers all instructions that terminate the
method, in particular, ireturn. All other instructions are covered by the induction
step. In the following, we show one case of the induction step, namely the case
where the instruction at label l is iload n.

According to the definition of TrInstrSeq(m, l), we have to consider three parts
of the translation of the instruction: (1) If there is at least one back-edge pointing
to l, the local state is havoced and the loop invariant assumed. (2) The instruction
iload n itself is translated. (3) Depending on the control flow graph, the BoogiePL
code for the instruction is followed by a suffix.

By definition, instrpos yields the first position of part (2). Part (1) is needed
to show the proof obligations stemming from loop invariants (see last paragraph of
Sec. 2.4), but not relevant for this lemma. Therefore, we consider the output of
TrInstr(Tr(m), l) in the following. We start by expanding the left-hand side of the
implication:

wpbpl(Tr(m), instrpos(Tr(m), l))(ρ) ≡
wpbpl(Tr(m), instrpos(Tr(m), l) + 1)[regn/stackcntr+1](ρ) ≡
wpbpl(Tr(m), instrpos(Tr(m), l) + 1)(ρ[stackcntr+1 7→ ρ(regn)])

12



//@ requires x > 0;
//@ ensures \result == \old(x)+\old(x);
int twice(int x){

int i = x;
//@ loop invariant
//@ x + i == \old(x)+\old(x) ∧ i ≥ 0;
while(i > 0){

x++; i−−;
}
return x;

}

0: iload 0
1: istore 1
2: goto 11
5: iinc 0, 1
8: iinc 1, 1
11: iload 1
12: ifgt 5
15: iload 0
16: ireturn

Specification table:
pre(twice)(h0, [p0]) ≡ p0 > 0
post(twice)(h0, [p0])(h, rv) ≡ rv = p0 + p0

local(twice, 11)(h0, [p0])(h, [s0], [r1 :: r0]) ≡
r0 + r1 = p0 + p0 ∧ r1 ≥ 0

Fig. 3. The annotated Java program and the corresponding bytecode program with specification table

implementation twice(param0) returns (result) {
var stack0, reg0, reg1, old heap;

init:
old heap := heap;
reg0 := param0;

assume param0 > 0; // requires

stack0 := reg0; // 0: iload 0
reg1 := stack0; // 1: istore 1

assert reg0 + reg1 == param0 + param0 ∧ reg1 ≥ 0; // loop invariant

goto block 11; // 2: goto 11

block 5:
reg0 := reg0 + 1; // 5: iinc 0, 1
reg1 := reg1 − 1; // 8: iinc 1, 1

assert reg0 + reg1 == param0 + param0 ∧ reg1 ≥ 0; // loop invariant

return;

block 11:
havoc stack0, reg0, reg1;

assume reg0 + reg1 == param0 + param0 ∧ reg1 ≥ 0; // loop invariant

stack0 := reg1; // 11: iload 1
goto block 12 true, block 12 false ; // 12: ifgt 5

block 12 true:
assume stack0 > 0;
goto block 5;

block 12 false:
assume !(stack0 > 0);
goto block 15;

block 15:
stack0 := reg0; // 15: iload 0
result := stack0; // 16: ireturn
goto post;

post:

assert result == param0 + param0; // ensures

return;
}

Fig. 4. BoogiePL translation of the example with highlighted annotation parts.

13



For part (3), we have to consider four cases: (a) there is a back-edge from l to
l + 1 ; (b) there is a forward-edge from l to l + 1 , and there is at least one back-
edge pointing to l + 1 ; (c) there is a forward-edge from l to l + 1 , but l + 1 is not
the target of a back-edge; (d) the transition from l to l + 1 is not an edge in the
control flow graph, that is, both labels belong to the same basic block. We continue
by case distinction.

Case (a): The translation asserts the loop invariant and returns. In the follow-
ing, we abbreviate ρ[stackcntr+1 7→ ρ(regn)] by ρ′. By the definition of TrEdge, we
get:

wpbpl(Tr(m), instrpos(Tr(m), l) + 1)(ρ′) ≡
local(m, l + 1 )(map(m, ρ′, sh(m, l + 1 ))) ≡
wp l(m, l + 1 )(map(m, ρ′, sh(m, l + 1 ))) ≡
wpvc(m, l)(map(m, ρ, sh(m, l)))

Case (b): The translation asserts the loop invariant and jumps to the next
instruction. So we get:

wpbpl(Tr(m), instrpos(Tr(m), l) + 1)(ρ′) ≡
local(m, l + 1 )(map(m, ρ′, sh(m, l + 1 ))) ∧ wpbpl(Tr(m), pos(Tr(m), l + 1 ))(ρ′)

where pos(Tr(m), l + 1 ) is the position of the first command of TrInstrSeq(m, l + 1 ).
Since wpvc handles case (b) exactly like case (a), the above conjunction implies
wpvc(m, l)(map(m, ρ, sh(m, l))).

Case (c): The translation generates the command goto pos(Tr(m), l + 1 ) at
position instrpos(Tr(m), l) + 1. Therefore, we have:

wpbpl(Tr(m), instrpos(Tr(m), l) + 1)(ρ′) ≡
wpbpl(Tr(m), pos(Tr(m), l + 1 ))(ρ′)

Since l + 1 is not the target of a back-edge, pos(Tr(m), l + 1 ) is the same position
as instrpos(Tr(m), l + 1 ), and we can apply the induction hypothesis:

wpbpl(Tr(m), pos(Tr(m), l + 1 ))(ρ′) =⇒
wpvc(m, l + 1 )(map(m, ρ′, sh(m, l + 1 ))) ≡
wp l(m, l + 1 )(map(m, ρ′, sh(m, l + 1 ))) ≡
wpvc(m, l)(map(m, ρ, sh(m, l)))

Case (d): This case does not generate any suffix after the translation of the
instruction. Thus, we have pos(Tr(m), l + 1 ) = instrpos(Tr(m), l) + 1. The rest of
this case is analogous to case (c). 2

7 Related Work

ESC/Java [10] uses guarded commands as intermediate representation. Both Kraka-
toa [12] and Caduceus [9] translate programs into the Why language. To our knowl-
edge, none of these translations have been formalized and verified. We expect that
our work can adapted to these translations, although the treatment of source pro-
grams instead of bytecode will require changes of the technical details.

14



The Boogie verifier [2] translates annotated CIL code to BoogiePL. Some aspects
of this translation have been proven sound, for instance, the back-edge elimination
and the translation of the statements that manipulate the heap. Our formalization
and proof cover a much larger language subset, in particular, exceptions, which are
not yet handled by Boogie.

Barnett and Leino [3] present a passification for BoogiePL and prove soundness.
In combination with our results, this shows that the translation of bytecode to
passive BoogiePL is sound.

Our wp-calculus for bytecode is inspired by Grégoire [6]. We expect that our
formalization can be adapted easily to other bytecode logics [1,4,5]

8 Conclusions

We have formalized a translation of a small subset of Java bytecode to BoogiePL
and proved soundness of this translation. This work closes a gap in the soundness
argument of several program verifiers. We managed to keep the complexity of the
translation and proof reasonable by using the identical heap model and a very similar
state model for bytecode and the BoogiePL translation. Moreover, our translation
relies on the guarantees and information given by the bytecode verifier.

As future work, we plan to extend the translation to cover the whole set of
Java bytecode instructions. A more long-term goal is to use the translation from
bytecode to BoogiePL as part of a Proof-Carrying Code architecture, which will
make a formal soundness proof even more important.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-2005-015905 MOBIUS project.

15



References

[1] F. Y. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor, Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), volume 141 of ENTCS, pages 255–273.
Elsevier Science, Inc., 2005.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In Formal Methods for Components and Object (FMCO), volume
4111 of Lecture Notes in Computer Science, pages 364–387. Springer-Verlag, 2006.

[3] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs. In Program Analysis
For Software Tools and Engineering (PASTE), pages 82–87. ACM Press, 2005.

[4] N. Benton. A Typed, Compositional Logic for a Stack-Based Abstract Machine. In K. Yi, editor,
Programming Languages and Systems, Third Asian Symposium, APLAS’05, 2005, volume 3780 of
Lecture Notes in Computer Science, pages 364–380. Springer–Verlag, 2005.

[5] L. Beringer, K. MacKenzie, and I. Stark. Grail: a functional form for imperative mobile code. In
Foundations of Global Computing, number 85.1 in ENTCS, pages 1–21. Elsevier Science, Inc., 2003.

[6] Mobius Consortium. Deliverable 3.1: Bytecode specification language and program logic. Available
online from http://mobius.inria.fr, 2006.

[7] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-oriented
programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

[8] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research Report 1366, LRI,
Université Paris Sud, 2003.

[9] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In International Conference
on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in Computer Science, pages
15–29. Springer-Verlag, 2004.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Programming Language Design and Implementation (PLDI), volume 37(5) of
SIGPLAN Notices, pages 234–245. ACM, 2002.

[11] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: generating compact verification conditions.
In Principles of programming languages (POPL), pages 193–205. ACM Press, 2001.

[12] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification of Java/JavaCard
programs annotated in JML. Journal of Logic and Algebraic Programming, 58(1–2):89–106, 2004.

[13] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented languages. In D. Gries
and W. De Roever, editors, Programming Concepts and Methods, 1998.

[14] A. Suzuki. Translating Java bytecode to BoogiePL. Master’s thesis, ETH Zurich, 2006. www.sct.inf.
ethz.ch/projects/student_docs/Alex_Suzuki.

16

http://mobius.inria.fr
www.pm.inf.ethz.ch/projects/student_docs/Alex_Suzuki
www.pm.inf.ethz.ch/projects/student_docs/Alex_Suzuki

	Introduction
	Java Bytecode
	Language Subset
	State Model
	Specifications
	Direct Verification Condition Generation for Bytecode

	BoogiePL
	Overview and State Model
	Verification Condition Generation for BoogiePL

	Translation from Bytecode to BoogiePL
	Information about the Bytecode Program
	Encoding of the Bytecode State in BoogiePL
	Back-Edge Elimination
	Translation of Bytecode Instructions
	Translation of Instruction Sequences
	Translation of Methods

	Example
	Soundness
	Related Work
	Conclusions
	References

