
Efficient Runtime Assertion Checking
of Assignable Clauses with Datagroups

Hermann Lehner and Peter Müller

ETH Zurich, Switzerland
{hermann.lehner,peter.mueller}@inf.ethz.ch

Abstract. Runtime assertion checking is useful for debugging programs
and specifications. Existing tools check invariants as well as method pre-
and postconditions, but mostly ignore assignable (or modifies) clauses,
which specify the heap locations a method is allowed to assign to. A way
to abstract from implementation details is to specify assignable clauses
using datagroups, which represent sets of concrete memory locations.

Efficient runtime checking of assignable clauses with datagroups is
difficult because the members of a datagroup may change over time and
because datagroups may get very large, especially for recursive data
structures. We present the first algorithm to check assignable clauses in
the presence of datagroups. The key idea is to compute the set of locations
in a datagroup lazily, which requires data structures that reflect when
the contents of a datagroup change during the execution of a method. We
implemented our approach in a prototypical runtime assertion checker
for the Java Modeling Language (Jml); our experiments show that the
runtime overhead is moderately small.

1 Introduction

To verify interesting program properties, it is important to know the side effects of
a method. To this end, frame properties define which heap locations a method may
modify, and, more importantly, that everything else in the heap stays unchanged.
In Jml, a method specification expresses such frame properties by the use of the
assignable clause. This clause declares the heap locations that may be updated
during method execution.

To achieve information hiding, we can mention datagroups in assignable

clauses to abstract away from concrete locations [7,8]. For any field of an object,
we can specify which datagroup(s) it belongs to. A datagroup is static if it only
contains fields of the same object. Otherwise, the datagroup is dynamic.

Dynamic datagroups are crucial to specify frame properties for aggregate or
recursive data structures. In our example in Fig. 1, we introduce a class Store
that manages items. Dynamic datagroups allow us to specify that method add
changes at most the internal data structure of the store.

To check a program against its specification, we can either use a static
verification tool or we equip the code with runtime assertion checks that fail if an

class Item {

JMLDataGroup footprint; // 0

boolean selected; // 1

String name; //@ in footprint; // 2

int price; //@ in footprint; // 3

/*@ assignable this.footprint, other.selected; */

void copy(Item other){

this.name = other.name;

this.price = other.price;

other.selected = false;

}

}

class Node {

JMLDataGroup struct; // 0

Node left; //@ in struct; // 1

/*@ maps left.struct into struct; */

Node right; //@ in struct; // 2

/*@ maps right.struct into struct; */

Item data; // 3

/*@ assignable this.struct; */

void replace(Node old, Node new){ [...] }

}

class Store {

JMLDataGroup struct; // 0

Node root; //@ in struct; // 1

/*@ maps root.struct into struct; */

/*@ assignable this.struct; */

void add(Item i){ [...] }

}

Fig. 1. A store that contains items, using a tree as internal data structure. Store
and Node objects contain a field struct, whose datagroup contains the fields left
and right of the same object, and the struct datagroup of the children. The
struct datagroup allows us to refer to all locations of the data structure without
exposing implementation details. The number behind each field declaration will
be used later when we explain our algorithm.

illegal operation is about to happen. Both approaches have already been taken
to check assignable clauses, however datagroups pose a problem on both sides.

Many static verification tools [1,3,5,9,10,11] support assignable clause to
some extent; some partly support static datagroups, but no static verification
tool currently supports dynamic datagroups. To precisely reason about dynamic
datagroups, a verification environment produces proof obligations that have to
be discharged manually, as checking the containment in a dynamic datagroup
is essentially a reachability problem, which is not handled well by SMT solvers.
Existing static analyses can only provide an over-approximation that is too
imprecise to be useful.

The situation for runtime assertion checkers (RAC) is similar: The RAC for
Jml presented in Cheon’s dissertation [4] does not provide checks for assignable
clauses. Ye [12] adds limited support for static datagroups only. Jml’s semantics
is to determine upon method invocation the set of locations in the datagroups.
The number of locations in a dynamic datagroup is unknown at compile time
and can grow as fast as the heap itself. Therefore, a näıve implementation of the
semantics would lead to a large memory and time overhead.

We present an algorithm to efficiently check assignable clauses at runtime.
The motivation for such checks is twofold: First, we can use a RAC to check a
program’s validity with little effort and small annotation overhead before starting
to prove its correctness in an interactive theorem prover. In this way, we find bugs
early and reduce the risk of getting stuck in an expensive manual proof. Second,
if we use an automatic verification tool, we often get spurious error messages
because of under-specification or deficiencies of the prover. In this case, we can
use RAC to see if the program really violates the specification for the given input
values. In order to achieve our goal we attack the problem from three sides.

(1) We provide efficient implementations of two operations that are heavily
used in our algorithm: checking if an assignable clause mentions a certain
location or datagroup, and collecting all static datagroups that contain a location.
We introduce new data structures for assignable maps and for static datagroups
based on bitset operations to achieve this goal.

(2) We reduce memory consumption by introducing the concept of lazy
unfolding of dynamic datagroups to avoid unnecessary overhead. Instead of
unfolding the datagroups of an assignable clause in the pre-state of the method,
we track the changes to dynamic datagroups during method execution and only
store the difference between the pre-state and the current state. We can decide
at compile time, which operations trigger a change to the dynamic datagroups
and instrument the code at that point to store the changes.

(3) We optimize time complexity by caching the result of checking whether a
location is assignable, as this information can be reused within the same method.

2 Prerequisites

In this section, we introduce the notations and semantics of locations, method
call stacks, assignable clauses, and datagroups.

Locations. At runtime, a field of an object is called a location. For convenience,
we define a function obj (·) that yields the object of a location. For example,
obj (o.f) yields o.

Method Call Stack. We introduce the binary relation m1 ↪→ m2 which states
that method m2 is called by m1 at runtime. We also introduce the reflexive
transitive closure: m1 ↪→∗ m2, meaning, m1 is m2 or m1 is a direct or transitive
caller of m2.

Assignable Clauses. We can specify the frame of a method using the clause
assignable l1,. . .,ln;, where li has the form o.f to refer to a field of an object.
Jml provides several other forms to specify assignable locations, but these are
not relevant for this paper.

The semantics of an assignable clauses is defined as follows. The fields
mentioned in the clause are evaluated to a set of locations. This evaluation is
performed in the pre-state of the method, that is, upon method invocation. The
assignable clause only restricts assignment to locations that already existed in
the pre-state of the method.

Let Am be the set of locations from the assignable clause of method m.
Furthermore, let FC

m be the set of locations that have been freshly allocated
during the execution of m. The little triangle C indicates that this set contains
the locations that have been freshly allocated in m and all methods directly or
transitively called by m.

Let’s assume a method m that is called by m′ (i.e., m′ ↪→ m). According to
the Jml semantics, a location is assignable in m if it is either freshly allocated or
it is in the set of locations evaluated from the assignable clause of m and it
was already assignable in m′. We can write this condition as follows:

Aeff

m = FC
m ∪ (Am ∩ Aeff

m′).

An important consequence of JML’s semantics is that a runtime assertion
checker needs to consider the assignable clauses of all methods on the call stack
to determine whether a location is assignable. An alternative to this expensive
check would be to enforce for each call that the assignable clause of the callee
denotes a subset of the locations that are assignable in the caller. However, such
a requirement would be overly conservative since it rejects certain calls based on
the assignable clause of the callee rather than its actual behavior. Therefore,
our checker actually inspects the call stack when necessary.

Datagroups. Datagroups are sets of locations. Every field of a program defines
its own datagroup that initially contains only the field itself.

If we are not interested in the value of the field but only its datagroup, Jml
provides a special type JMLDataGroup to indicate that the field just serves as a
declaration of the corresponding datagroup.

To add all locations in the datagroup of a location o.f to a datagroup of the
same object o, Jml uses the in clause at the field declaration. In the class Item
in Fig. 1, the two fields name and price are declared to be in the datagroup of
the field footprint. We declare footprint of type JMLDataGroup, since we are
interested in its datagroup, but not its value.

To add all locations in the datagroup of a location o.f to a datagroup of
another object p, Jml uses the maps ... into clause. For instance in class Node in
Fig. 1, we add left.struct to the datagroup of struct. The field left is called
a pivot field, as an update of left changes the contents of datagroup struct.
Since left.struct also has a datagroup itself, we essentially nest datagroups in
our example. Adding locations from other objects makes a datagroup dynamic;
the set of locations in the datagroup now depends on the program state.

Upon evaluation of an assignable clause in method m, the semantics states
that each datagroup mentioned in the assignable clause is evaluated to a set
of locations. We call this process unfolding of the datagroup. Datagroups that
contain nested datagroups do not evaluate to nested sets of locations, but result
in one single set of locations which is added to the set Am.

Fig. 2. A set of Node objects. Shapes depict the struct datagroups. Objects
within the shape contain fields that the datagroup contains. Arrows depict
references. Left: The situation in the pre-state of a call to a.replace(c,b).
Right: The post-state of the call.

Fig. 2 shows the dynamic datagroup of a.struct in light gray. One can see
that a.struct also contains all locations that are mentioned in nested datagroups,
depicted by a darker gray. The left picture shows the initial state where the
pivot field a.left points to node c, the right picture depicts the datagroup
of a.struct after executing the statement a.left = b. White shapes depict
datagroups that are not in a.struct. This example illustrates that dynamic
datagroups may contain different locations in different program states.

3 Checking Assignable Clauses with Static Datagroups

In a first step, we present an algorithm to check assignable clauses in the
presence of static datagroups only. This part of the algorithm serves as a basis
for checking assignable clauses with dynamic datagroups, as presented in the
next section.

3.1 Data Structures

Our goal is to check assignable clauses in the presence of static datagroups in
constant time. The following operations are involved in the check for field updates
and we want them to perform in constant time: (1) lookup of all assignable fields
of a given object without unfolding datagroups, (2) lookup of all datagroups that
contain a location, and (3) the decision if the intersection between two sets of
fields of an object is empty.

Field Identifiers. We assign a number to each field of a class such that at
runtime, in the presence of inheritance, every field of an object has a unique
number. In Fig. 1 we show these numbers in comments behind field declarations.

Assignable Locations. As explained in Sec. 2, the evaluation of assignable
clauses leads to a set of locations. We give this set some structure and represent
it as a map from objects to bitsets, in which the keys of the map are the objects
of the locations, and each bit of the bitset correspond to a field of that object.
Furthermore, as opposed to the semantical description of datagroups in Sec. 2,
we do not unfold the static datagroups mentioned in such sets and instead deal
with unfolding of datagroups on demand.

For method copy of class Item in Fig. 1, we represent the set Acopy by
{this 7→ [X · · ·] , other 7→ [· X · ·]}, where the fields receive their indices
in the bitset in order of presence, as shown in the code, i.e., the first bit in the
bitset of object this represents field footprint and the second bit in the bitset
of object other represents field selected.

To retrieve the bitset of a given object o in a set A, we write A[o]. For
example, Acopy[other] yields [· X · ·]. If the map does not contain o, A[o]
yields an empty bitset. To store object o with bitset bs in A, we write A[o]← bs .

This design allows us to perform the operation (1) in constant time, as we
can use HashMaps as the underlying data structure.

Fresh Locations. If an object is newly created, all locations of that object are
fresh. To represent the set of fresh locations FC, we need to save only the set of
newly allocated objects, which implicitly gives us the set of fresh locations. The
query FC[o] simply yields true if the object o is freshly allocated in the current
method execution, and false otherwise.

Static Datagroups. For each field, we use a bitset to represent the datagroup(s)
the field belongs to. That is, we equip every class with an array of bitsets. For
class Item, we represent the static datagroups by the following array.

footprint
selected
name
price


[X · · ·]
[· X · ·]
[X · X ·]
[X · · X]



To access the datagroups that statically contain field f of class c, we write
D st[c@f]. For instance, D st[Item@name] yields [X · X ·], which means that
name is in the datagroup of footprint (the first bit) and of course in its own
datagroup (the third bit). For simplicity, we may also write D st[o.f] to get the
static datagroups of field f of class c, where o is of type c.

We set up the data structures for static datagroups such that we can perform
the second and third operation described at the beginning of this section in
constant time. Operation (2) involves an array access, and operation (3) involves
computing the intersection of two bitsets, which is possible in constant time.

3.2 Code Instrumentation

An assignable clause restricts assignments throughout a method execution. This
implies that checks of the assignable clause need to be performed throughout
a method execution and not only in pre- and post-states. In the following, we
present the code instrumentation to build up the necessary data structures and
to check the validity of a field update. The relevant statements are: field updates
(as these might violate the assignable clause), object creation (to track fresh
locations), method invocation (to evaluate assignable clauses in the pre-state
of a method and merge assignable sets), and method return (to update the
assignable sets from the caller).

Field Update. Updating a field is the only way to violate an assignable

clause. Before an update of a location o.f in a method m called by m′, we need
to check if o.f (hereafter referred to as loc) is in the set Aeff

m. According to the
semantics defined in Sec. 2, this is the case if either (1) the object of the location
o has been freshly allocated during the execution of m and therefore is a member
of the set FC

m, or (2) loc is assignable in m′ and the assignable clause of m
either mentions the location itself or at least one datagroup that contains loc.
Therefore, we need to check:

loc ∈ FC
m ∨ loc ∈ (Am ∩ Aeff

m′).

As explained in Sec. 3.1, we use maps of bitsets to represent sets of assignable
locations and we do not unfold the datagroups. Checking if loc is in a set
of fresh locations FC

m is performed by FC
m[o]. Checking if loc is in a set of

assignable locations Am is performed by Am[o]∩D st[loc] 6= ∅. That is, we get the
bitset representing the fields of object o in Am and intersect it with the bitset
representing the datagroups that contain loc. If the intersection of the two bitsets
is not empty, either Am contains loc or it contains at least one datagroup that
contains loc. We maintain the set Aeff

m′ explicitly, as we explain below. This gives
us the the following assertion that needs to hold at runtime:

FC
m[o] ∨ (Am ∩ Aeff

m′)[o] ∩ D st[loc] 6= ∅

All of these operations can be performed in constant time, which means that
we can check the assignable clauses for field updates in constant time in the
presence of static datagroups only.

Object Creation. On creation of a new object o in method m, all locations of
o are fresh in m and in every transitive caller mi of m. According to the semantics
of fresh sets, we would have to add all fields of o to FC

m as well as to each FC
mi

.
Since any caller of m can observe newly allocated locations only after m returns,
we add o only to FC

m and update the callers later.
Because of this simplification, the instrumentation of object creation can

be performed in constant time and produces a memory overhead linear in the
number of newly allocated objects.

Method Invocation. On invocation of method m, we evaluate the assignable
clause of m to the set Am. For all location o.f in the assignable clause, we
enable the bit that represents f in the bitset Am[o]. To do this, we perform
the following update: Am[o]← Am[o] ∪ B(f) where B(f) is the bitset in which
only the bit for field f is enabled. Furthermore, we compute the intersection
A = (Am ∩ Aeff

m′) because we need this set at every field update within the
method and because this set does not change during method execution. We call
this computation merging of assignable locations because we merge caller and
callee. Our data structures allow efficient merging as follows: for each object that
is a key in the maps of both Am and Aeff

m′ , we compute the intersection of the
corresponding bitsets, bs = Am[o] ∩ Aeff

m′ [o]. If bs 6= ∅, we add it to the resulting
set A[o]← bs, otherwise we just drop it.

The time and memory overhead at method invocation is linear in the number
of objects that contain assignable fields.

Method Return. Before a method m may return to its caller m′ the set of
fresh locations FC

m needs to be added to FC

m′ .
This operation can be done with time overhead linear in the number of objects

in FC
m and does not increase the memory overhead as FC

m will be consumed by
the garbage collector.

4 Checking Assignable Clauses with Dynamic Datagroups

We extend the algorithm for checking assignable clauses to deal with dynamic
datagroups, that is, datagroups that contain fields from other objects and therefore
depend on the heap. We optimize our algorithm to cope well with situations that
match the following two observations we made.

(1) A dynamic datagroup typically contains many locations through nested
datagroups in recursive or aggregate data structures, whereas a location is
typically only in a few datagroups of other objects. In our example in Fig. 1, the
datagroup struct in class Store contains the field root and the fields struct,

left, and right of all n nodes in the store, that is, 3× n locations. By contrast,
the field struct of a node is dynamically contained in no more than log2(n)
datagroups, namely in the datagroups struct of all ancestors, assuming that the
tree is balanced.

(2) assignable clauses are often quite unspecific, yet useful. This implies that
the set of assignable locations is often very large although only a few locations
actually get assigned to. An example supporting this observation is method add
in class Store. As we do not want to reveal the internal data structure of the
store, we specify that add is only allowed to assign to the datagroup struct
of the store, i.e., the root field of the store and all struct, left, and right
fields of the nodes. In other words, method add cannot change the content of any
existing item, but may for instance balance the tree.

Because of these two observations, we do not unfold datagroups into sets of
locations in the pre-state of a method as described in the semantics, which is
potentially very expensive in both time and space. This decision raises three
issues:

(1) We have to spent more effort to check if a field is assignable, as the
information is not directly available.

(2) We can no longer merge sets of assignable locations of callers and callees
upon method invocations. If we had to merge two sets that contain partially
overlapping dynamic datagroups we would have to unfold the datagroups to
find out which locations are in the intersection. Since we decide not to unfold
datagroups, we cannot merge anymore.

(3) As the content of dynamic datagroups may change over time, we need
to keep track of all changes in dynamic datagroups in order to reconstruct the
assignable locations as of the pre-state of the method.

In the following sections, we explain how we can efficiently cope with these
issues.

4.1 Data Structures

We do not change any of the existing data structures for checking assignable
clauses, but add data structures to represent dynamic datagroups. We design
our data structures such that it is possible to quickly find all datagroups that
dynamically contain a location.

Dynamic Datagroups. To represent dynamic datagroups, we add an array
of sets of locations to each object to store for each field of the object a set of
datagroups that dynamically contain the field. We call these back-links, from the
location back to the datagroup. For the object g of class Node (see Fig. 2), we
therefore represent the dynamic datagroups by the following array, in which only
the entry for field struct contains a back-link.

struct
left
...

{c.struct}{}
...



To access the set of datagroups that dynamically contain location loc in heap
h over one pivot field, we write D dyn

h [loc]. Furthermore, we write D*dyn

h [loc] for the
reflexive transitive closure of D dyn

h [loc]. Implicitly, we also unfold static datagroups
to calculate those sets. Since we evaluate dynamic datagroups in the pre-state of
a method, we introduce the notation h0(m) to refer to the pre-heap of method m.

In our example in Fig. 2, D dyn

h0(replace)
[g.struct] yields the set {c.struct},

whereas D*dyn

h0(replace)
[g.struct] yields the set {g.struct, c.struct, a.struct}.

Assignable Stack. Since we no longer merge assignable clauses, we now have
to check for each field update whether the updated location is assignable in each
method on the call stack. To enable this check, we provide access to the sets of
assignable and fresh locations for all methods on the call stack by passing a stack
of assignable maps to the callee (rather than one merged assignable map).

Using stacks results in a memory footprint for storing assignable locations
that grows linearly in the number of methods on the call stack.

4.2 Code Instrumentation

In order to support dynamic datagroups, we need to change the code instrumen-
tation for field updates and method invocations, whereas object creation and
method return stay unchanged.

Field Update. We reuse the efficient check of field updates for assignable

clauses with static datagroups, but have to do additional work. Again, we need
to check before updating a location o.f (referred to as loc) in method m, if it
is in Aeff

m. Without merging assignable sets of locations, we do the following: for
every method mi that is in the call stack of m, we check that the location loc
is either fresh in mi or contained in the assignable set of locations of mi. More
formally:

∀mi ·mi ↪→∗ m =⇒ loc ∈ FC
mi
∨ loc ∈ Ami .

Since we do not update the set of fresh locations for all transitive callers of m,
we need to add some extra logic to find out if loc is fresh in mi. This is the case
if loc has been freshly allocated during execution of mi, that is, either in mi itself
or some callee of mi. We can express this by ∃mk ·mi ↪→∗ mk ∧ FC

mk
[o]. Although

this looks more complicated, it actually allows us to simplify the implementation
considerably.

Since we do not unfold dynamic datagroups, we need to perform some compu-
tation to check if loc is assignable. loc is in Ami , if we find a datagroup dg that
both dynamically contains the location loc, and is mentioned in the assignable
clause. We write this as ∃dg ·dg ∈ D*dyn

h0(mi)
[loc]∧dg ∈ Ami . We reuse our technique

from the static datagroups to replace dg ∈ Ami by Ami [obj (dg)] ∩ D st[dg] 6= ∅,
see Sec. 3.2.

The time complexity for finding a datagroup that dynamically contains loc
is linear in the size of D*dyn[loc] multiplied by the number of methods on the
call stack. However, we can dramatically speed up this lookup by introducing
caches for finding dynamic datagroups, see Sec. 5. So in summary, we check the
following assertion at runtime:

∀mi ·mi ↪→∗ m =⇒
∃mk ·mi ↪→∗ mk ∧ FC

mk
[o] ∨

∃dg · dg ∈ D*dyn

h0(mi)
[loc] ∧ Ami [obj (dg)] ∩ D st[dg] 6= ∅

Updating a Pivot Field. Whenever we update a pivot field of a datagroup, we
change the content of the datagroup. This is a problem because upon a method
call, we do not unfold the datagroups mentioned in the assignable clause of
the callee, even though the semantics of assignable clauses prescribes that the
set of assignable locations is to be determined in the pre-state of the method.
Consequently, any change to a datagroup mentioned in an assignable clause
needs to be tracked in order to be able to reconstruct the situation in the pre-state
of a method.

We apply a technique that we call lazy unfolding. If we update a pivot field of
a datagroup that is contained in an assignable map, we perform two operations.
(1) We add the old location that was contained in the datagroup via the pivot field
before the update directly to the assignable map. By doing this, the location stays
assignable although it is not in the datagroup anymore. (2) We add additional
information to the assignable map, stating that the back-link of the new location
that is contained in the datagroup via the pivot field after the update should not
be considered when we check whether a location is assignable. By doing this, we
can cut away parts of datagroups in assignable maps.

Note that this information needs to be stored per assignable map and not
per datagroup as every assignable map is evaluated in a different state, and thus
has a different set of assignable locations for the same datagroup.

Fig. 3. The same situation as in Fig. 2. Dashed arrows depict the back-links from
locations to datagroups. The cross depicts the back-link that has been invalidated
in the assignable map of method replace.

Fig. 3 shows how the lazy unfolding works in our running example. On
the left side, we see again the situation in the pre-state, the locations in the

gray shapes are assignable. On the right side, we see the datagroups after the
update a.left = b. To preserve the assignable locations of the pre-state, we
add c.struct explicitly to the assignable map, which preserves the assignability
of the locations of objects c and d. Furthermore, we mark the back-link from
b.struct to a.struct in the assignable map as invalid, which essentially renders
the locations of objects b, e, and f not assignable. Looking at the locations in
the gray shapes, one can see that we effectively preserved the assignability of
locations in the pre-state on the left-hand side although the datagroup changed
in the meantime.

Method Invocation. On invocation of method m, we evaluate the assignable
clause of m to the set Am as described in Sec. 3.2, but we do not merge the
assignable sets of the caller and the callee. Instead, we add the sets of assignable
and fresh locations from method m to the stack of assignable maps.

5 Introducing Caches

As we have shown in the last section, the time overhead to check if a location loc
is assignable depends on the height of the call stack and on the size of the set of
dynamic datagroups D*dyn[loc]. For every update of location loc, we check if loc is
assignable in all assignable maps on the stack. This involves to compute the set
D*dyn[loc] and to check for each datagroup in that set whether it is mentioned in
the assignable map or not. That is, we spend a considerable effort to check if a
location is assignable.

In this process of checking, we gain a lot of additional information. We learn
which datagroups in D*dyn[loc] are mentioned in what assignable map, and we
also learn which datagroups in D*dyn[loc] are not assignable. We can reuse all this
information since the set of locations of an assignable clauses is computed in
the pre-state and does not change during method execution.

We equip each assignable map with a cache that stores all the additional
information from the queries since the method invocation. The information in
the cache is valid for this assignable map as long as the corresponding method
executes. Caches become especially useful if we assign to the same set of locations
several times in a method, for instance when doing a computation in a loop.

6 Evaluation

6.1 Experimental Results

As a proof of concept, we implemented the algorithm described in this paper to
check assignable clauses in Java programs.

To test the efficiency of our algorithm, we chose a doubly-linked list, where
the nesting of datagroups is as deep as the number of nodes in the list: every
node is equipped with a struct datagroup that contains the next and previous
fields and dynamically contains the struct field of the successor node.

We performed experiments with different list operations to measure the
performance of our algorithm1. The most interesting experiment has been to
reverse large doubly-linked list, which involves operations on every node of the
list and changes the structure of the dynamic datagroups completely. In fact,
every pivot field gets assigned to, which leads to a complete unfolding of the
datagroup. This is the worst case scenario for our algorithm, which tries to avoid
unfolding as much as possible.

Surprisingly, we need only a bit more than one seconds to add 10’000 nodes
to a list and reverse it with the runtime assertion checker enabled. We spend
around 80% of the time to add the nodes, and 20% of the time to reverse the
list. The memory footprint is around 20MB before reversing the list and grows
to 25MB during reversing because of the caches that get filled in the process.
If we switch off runtime assertion checking for the same example, the program
terminates within half a second and uses around 2.5MB. When repeating the
experiment with 20’000 nodes, time and memory consumption doubles for both
versions.

For the doubly-linked list, the runtime overhead of our checker is a factor
of 2 and the memory overhead is a factor of 10. For the main applications of
runtime assertion checking (to prepare static verification and to reproduce possibly
spurious verification errors), we consider this overhead acceptable, especially for
recursive data structures such as our doubly-linked list. We expect the overhead
to be significantly smaller for non-recursive aggregate structures, where dynamic
datagroups are not nested as deeply.

6.2 Theoretical Results

Our algorithm depends mainly on the following factors: the size of the set of
dynamic datagroups that contain a location (|D*dyn|), the size of the assignable
sets (|A|), and the size of the call stack (|cs|),

Time Complexity. Field update is the only operation that may generate
a significant time overhead. The check if a location is assignable has a time
complexity of O(|D*dyn| × |cs|) if the result is not cached in any assignable map,
and O(|cs|) if the result is cached in all assignable maps. That is, the caches
have a big impact on the performance if we have a deep nesting of assignable
clauses. We also see that we do not have a good solution for recursive method
calls, where |cs| gets big.

In our running example, |D*dyn| is logarithmic to the number of nodes in the
tree, which leads to a very good performance.

Memory Overhead. The data structures that produce a significant memory
overhead are the ones for storing the sets of assignable locations, including caches.
That is, the memory overhead depends on the number of assignable locations
1 On a desktop computer with a single core 3.4 GHz CPU

mentioned in the assignable clauses, the amount of lazy unfolding and of course
the number of methods on the call stack. We get an overhead of O(|A| × |cs|),
where the size of A depends on how much unfolding happened already.

In our running example, if we have a method with an assignable clause
stating ‘a.struct’ |A| initially contains only the location a.struct and our
memory overhead is very small. For each left or right pointer that we assign to
in a method, we add one more location to that set, and, if we completely reorder
the whole tree, end up in a complete unfolding of the datagroup.

7 Related Work

Cheon’s runtime assertion checker for Jml [4] provides data structures to represent
assignable clauses and datagroups but does not generate checks for it. Ye uses
those data structures in his thesis [12] to implement an assignable clause checker
in the presence of static datagroups only. The checks have a time overhead linear
in the size of the set of locations from the assignable clause, whereas our
algorithm for static datagroups works in constant time.

The Chase tool [3] provides a simple means to discover common specification
mistakes, but is not designed to be sound. It performs a purely syntactic check
on assignable clauses, ignores aliasing, and does not support datagroups.

Spoto and Poll [10] formalized a trace semantics for a sound reasoning on
assignable clauses. Their approach takes aliasing into account, but datagroups
are not supported. They conclude that Jml’s assignable clause may be unsuited
for a precise and correct static analysis.

The Loop tool [11] generates PVS proof obligations for a given Jml annotated
Java program. It is mainly used to prove non-trivial properties of JavaCard
applications. Loop can deal with assignable clauses, but datagroups are not
taken into account.

Krakatoa [9] is a verification tool for Java. The specification language of
Krakatoa is similar to Jml and contains an assigns clause to specify a list of
locations that can be assigned. Again, it is not possible to apply information
hiding by using datagroups.

The KeY system [1] allows one to verify Java programs against Jml specifi-
cations. KeY handles assignable clauses, but not datagroups.

ESC/Java2 supports most Jml annotations, including assignable clauses
and datagroups. However, ESC/Java2 fails to give a precise and correct answer
on assignable clauses that mention datagroups.

Spec#[2] does not provide datagroups, but instead uses a hierarchical heap
model to provide abstraction; if a modifies clause allows modification of an object
o then all (committed) objects that have o as (transitive) owner can be modified
as well. This is similar to declaring a datagroup in each object that contains the
locations of that object and all (transitively) owned objects. Therefore, we expect
that our algorithm, especially the idea of lazy unfolding, can also be applied to
Spec#.

8 Conclusion

We presented an algorithm to check assignable clauses in the presence of static
and dynamic datagroups. Our algorithm performs well, in particular, on recursive
data structures with large and deeply nested dynamic datagroups by introducing
the concept of lazy unfolding of datagroups. We provide the foundation to close
a big gap in the runtime assertion checker of Jml. The algorithm has been tested
against recursive data structures with a prototypical implementation of a runtime
assertion checker.

We plan to prove correctness of our algorithm by adding an operational
semantics to our Jml formalization in Coq [6] that includes the runtime assertion
checks and show that the algorithm enforces the semantics of assignable clauses.
Moreover, we intend to contribute our algorithm to the OpenJML project and to
use that implementation for larger experiments.

Acknowledgments. We are grateful to Alex J. Summers and the anonymous
reviewers for helpful comments.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. SS, 2004.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS 2004, volume 3362 of LNCS, pages 151–171. Springer, 2005.

3. N. Cataño and M. Huisman. Chase: A static checker for JML’s assignable clause.
In VMCAI, volume 2575 of LNCS, pages 26–40. Springer, 2003.

4. Y. Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD
thesis, Iowa State University, 2003.

5. ESC/Java2. http://secure.ucd.ie/products/opensource/ESCJava2.
6. A. Kägi, H. Lehner, and P. Müller. A formalization of JML in the Coq proof system.

Technical report, ETH Zurich, 2009. Available at http://www.pm.inf.ethz.ch/

people/lehnerh/jmlcoq.
7. K. R. M. Leino. Data groups: Specifying the modification of extended state. In

OOPSLA, pages 144–153, 1998.
8. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify

and check side effects. In PLDI, pages 246–257, 2002.
9. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification

of Java/JavaCard programs annotated with JML annotations. JLAP, 58:89–106,
2004.

10. F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In G. Ghelli,
editor, FOOL, 2003.

11. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In TACAS,
pages 299–312. Springer, 2001.

12. C. Ye. Improving JML’s assignable clause analysis. Technical report, Iowa State
University, 2006.

http://secure.ucd.ie/products/opensource/ESCJava2
http://www.pm.inf.ethz.ch/people/lehnerh/jmlcoq
http://www.pm.inf.ethz.ch/people/lehnerh/jmlcoq

	Efficient Runtime Assertion Checkingof Assignable Clauses with Datagroups
	Hermann Lehner and Peter Müller

