
Object Invariants in Dynamic Contexts

K. Rustan M. Leino1 and Peter Müller2

1 Microsoft Research, Redmond, WA, USA, leino@microsoft.com
2 ETH Zurich, Switzerland, peter.mueller@inf.ethz.ch

Abstract. Object invariants describe the consistency of object-oriented data struc-
tures and are central to reasoning about the correctness of object-oriented soft-
ware. Yet, reasoning about object invariants in the presence of object references,
methods, and subclassing is difficult. This paper describes a methodology for
specifying and verifying object-oriented programs, using object invariants to spec-
ify the consistency of data and using ownership to organize objects into contexts.
The novelty is that contexts can be dynamic: there is no bound on the number of
objects in a context and objects can be transferred between contexts. The invari-
ant of an object is allowed to depend on the fields of the object, on the fields of
all objects in transitively-owned contexts, and on fields of objects reachable via
given sequences of fields. With these invariants, one can describe a large variety
of properties, including properties of cyclic data structures. Object invariants can
be declared in or near the classes whose fields they depend on, not necessarily
in the class of an owning object. The methodology is designed to allow modular
reasoning, even in the presence of subclasses, and is proved sound.

1 Introduction

The design and correctness of computer programs rely on invariants, consistency con-
ditions on the program’s data that are to be maintained throughout the execution of the
program. In object-oriented programs, which permit a flexible and extensible organiza-
tion of data and control, the invariants are dominated by object invariants, which relate
the data fields of objects. Fig. 1 illustrates the use of an object invariant in a simple class,
whose correctness relies on the object invariant to hold on entry to the method m . In
this paper, we consider the specification and verification of object-oriented programs
with object invariants.

The dynamic nature of object-oriented programs makes it difficult to construct a
systematic technique for reasoning modularly about object invariants. Such a technique
would allow one to verify the correctness of a class, or a set of classes, independently
of possible subclasses and other parts of the program. A central problem is that an
object invariant may temporarily be violated during the update of an object’s data, and
any method call performed by the update code during this time may potentially cause
control to re-enter the object’s public interface where the object invariant is expected
to hold. For example, in Fig. 1, a = b may hold at the time P is called, a temporary
violation of the object invariant which results in a division-by-zero error if P calls back
into m . Recently, some progress has been made in tackling this problem (e.g., [2, 30]),
but more progress is required to handle more programs.

To make reasoning easier, various restrictions on the dynamism of programs have
been considered, including alias confinement techniques which impose restrictions on

2

class T {
int a, b ;
invariant 0

�
a < b ;

public T () { a := 0 ; b := 3 ; }

public void m(. . .) {
int k := 100/(b − a) ;
a := a + 3 ; P(. . .) ; b := (k + 4) ∗ b ;

}
}

Fig. 1. A simple class illustrating the use of an object invariant. The invariant is to be established
by the constructor and maintained by the method m . Upon entry to m , the invariant implies the
absence of a division-by-zero error. The fact that the invariant may not hold at the time m calls
procedure P is a central problem in reasoning: if P calls back into m , then m may erroneously
divide by 0.

a program’s object references. A promising alias confinement approach is based on
ownership (e.g., [9, 4, 31, 5]), where an object is considered to own the objects that form
parts of its data representation, its constituent objects. The methodology we present in
this paper uses ownership to organize objects into a hierarchy of contexts, where the
objects in each context have a common owner. In our methodology, an owner is a pair
consisting of an object reference and a class name. Other than ownership, we do not
restrict object references; an object may have non-owning references to other objects.
Our methodology allows ownership transfer, whereby the owner of an object is changed
during program execution, that is, whereby an object changes contexts.

An important consideration in a methodology for object invariants is what object
fields an invariant is allowed to depend on. We allow object invariants to depend on three
sorts of object fields. First, the invariant declared for an object X in a class T is allowed
to depend on the fields of X declared in any superclass of T (here and throughout, we
use “superclass” and “subclass”, unless further qualified, to include the class itself).
Second, the invariant is allowed to depend on the fields of any object transitively owned
by [X ,S] for any superclass S of T . We allow an invariant to quantify over these
owned objects, which means that the invariant can depend on the fields of an unbounded
number of objects. Moreover, because we allow such quantifications, X ’s invariant can
depend on the fields of owned objects even for owned objects that are not reachable
from X in the heap. Third, our methodology allows the invariant of X to depend on the
fields of any specified object X .f1. · · · .fn (n > 1)—that is, an object reachable from
X by a fixed sequence of field dereferences—provided certain visibility requirements
are met. Altogether, this set of permissible object invariants is larger than those allowed
by previous work. The invariants can, for example, describe properties of cyclic data
structures and they can be declared in or near the classes whose fields they depend on.

In the next section, we summarize the previous work that forms a basis for our
approach. In Section 3, we describe our ownership model and show how object invari-
ants are checked. Section 4 describes visibility-based invariants and shows how these
can be declared and checked within local portions of a context. In Section 5, we give
the technical encoding of our methodology and prove a soundness theorem. Section 6
discusses usability aspects of our methodology, and the paper ends with related work,
conclusions, and future work.

3

class C extends B { int w ; invariant w < 100 ; . . . } C :
class B extends A { int z ; invariant y < z ; . . . } B :
class A extends object { int x , y ; invariant x < y ; . . . } A:

object:

w = 43

z = 6

x = 5 y = 7

inv = A . . .

Fig. 2. Given the declarations of classes A , B , and C , which include field and invariant decla-
rations, the object of allocated type C depicted to the right is in a possible state. In particular,
since inv = A , the invariant declared in class A is known to hold, whereas the other invariants
may or may not hold.

2 Approach

Our approach combines two previous techniques, summarized in this section, to pro-
duce a methodology for specifying and verifying object invariants that is more flexible
than any previous sound, modular technique. In this paper, we consider a Java-like
object-oriented language, but omit treatment of static fields (global variables) and con-
currency.

2.1 Explicit representation of which parts of object invariants are known to hold

One of the previous methodologies on which we build ours is that of Barnett et al. [2].
In that methodology, whether or not an object invariant is known to hold is explicitly
represented in the program’s state and an ownership model is enforced through a set of
constrained assignments to two special object fields (inv and committed , described
next). Here, we summarize this previous methodology; for a full description of its ra-
tionale, see the other paper [2].

Declarations of object invariants can appear in every class. The invariants that per-
tain to an object o are those declared in the classes between object—the root of
the single-inheritance hierarchy—and type(o)—the allocated type of o . Each object
o has a special field inv , whose value names a class in the range from object to
type(o) , and which represents the most refined subclass whose invariant can be relied
upon for this object. More precisely, for any object o and class T and in any execution
state of the program, if o.inv is a subclass of T , which we denote by o.inv 6 T , then
all object invariants declared in class T are known to hold for o . The object invariants
declared in other classes may or may not hold for o , so they cannot be relied upon. For
example, Fig. 2 shows a possible state of an object of allocated type C . If o.inv equals
type(o) , then we say the object is consistent. Thus, all invariants hold of consistent
objects. For example, the object depicted in Fig. 2 is not consistent.

As part of the ownership model of the methodology, each object also has a special
boolean field committed , representing whether or not the object is owned. Moreover,
the program’s field declarations can be tagged with the modifier rep . An object o is
the owning object of p , that is, object p is owned by o , if and only if p is committed
and there is a rep field f declared in a class T such that o.inv 6 T and o.f = p . Only
consistent objects can be committed (that is, p.committed implies p.inv = type(p)),
and a committed object has exactly one owning object.

4

The special fields inv and committed can be mentioned in routine specifications,
but cannot be mentioned in object invariants and cannot directly be read or updated by
the code of the program. Instead, two program statements, pack and unpack , are
introduced for the purpose of changing the values of the two special fields. For any
class T with immediate superclass S and any object expression o of type T , these
statements are defined as

pack o as T ≡
assert o 6= null ∧ o.inv = S ;
assert InvT (o) ;
foreach p ∈ ConstitT (o) { assert p.inv = type(p) ∧ ¬p.committed }
foreach p ∈ ConstitT (o) { p.committed := true }
o.inv := T

unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ ¬o.committed ;
o.inv := S ;
foreach p ∈ ConstitT (o) { p.committed := false }

where the assert statements give the conditions under which the pack and unpack

statements are legal, the assignment statements describe the effects of the pack and
unpack statements, InvT (X) is the condition that says an object X satisfies the
object invariant declared in class T , ConstitT (X) is the set of expressions X .f for
all rep fields f declared in T , and the foreach statements, like all quantifications
over object references in this paper, range over allocated non-null objects. In words,
the pack statement checks that o ’s T -invariant holds, that the objects referenced by
o ’s rep fields in T are consistent and uncommitted, marks o ’s T -constituent object as
being committed, and records the fact that now o ’s T -invariant is known to hold. The
unpack statement records the fact that o is now in a state where its T -invariant may
be violated and decommits o ’s T -constituent objects.

The methodology ensures that the following two conditions are program invari-
ants—that is, they hold in every reachable program state—for every class T :

(∀ o • o.inv 6 T ⇒ InvT (o) ∧ (∀ p ∈ ConstitT (o) • p.committed))
(∀ p • p.committed ⇒ p.inv = type(p))

Three more things are needed to guarantee that these conditions are program invariants.
First, the methodology prescribes the object constructor to have the postcondition
inv = object ∧ ¬committed . Second, for any field f declared in a class T , a field
update statement o.f := e is legal only if T < o.inv . If the class T is understood
from context, then we may refer to the condition “T < o.inv ” as “o is sufficiently
unpacked”. That is, a precondition for updating o.f is that o is sufficiently unpacked.
Third, an invariant is admissible only if all of the field-access expressions it mentions
have the form this.g1. · · · .gn .f , where this denotes the object whose invariant is
being described, n > 0 , and the fields g1, . . . , gn are all rep fields. (And, of course,
all statements and expressions are subject to ordinary typechecking.) Like in Java, the
prefix “this.” can be omitted.

Note that this methodology permits an object invariant to depend on fields declared
in superclasses and on fields of transitively-owned objects. However, because an object

5

is an owned object only if it is referenced by a rep field, there is a static limit on the
number of owned objects an owning object can have. In particular, the number of objects
with owner [X ,T] is bounded by the number of rep fields declared in class T . Our
methodology in this paper removes this limitation.

Note also that the encoding of the methodology records only which objects are
committed, not the owning objects to which they are committed. In this paper, we extend
the encoding also to record the owner.

Finally, note that this methodology allows ownership transfer. For example, the fol-
lowing code sequence, where f is a rep field declared in a class T and r and o are
distinct non-null objects of type T , transfers from o to r the ownership of the object
initially referenced by o.f :

unpack o from T ; unpack r from T ;
r .f := o.f ; pack r as T ;
o.f := null ; pack o as T

2.2 Universe types

The other of the previous methodologies on which we build ours is that in Müller’s
thesis [30, 32, 31]. In that methodology, an ownership type system organizes objects
into contexts, called universes, and object invariants are specified as the representation
of special boolean abstract fields, which are often-underspecified functions of actual
object fields. The state of a universe is encapsulated, that is, the fields of the universe’s
objects can be modified only when control is in a method applied to an object within
the universe.

A universe can have several owner objects, all of which belong to the enclosing
universe. The invariant of an object o is allowed to depend on the fields of all objects
in o ’s universe and in all nested universes. In particular, the invariant may depend on
fields of objects that are not transitively owned by o . Such invariants are enabled by
imposing a visibility requirement [24, 30] that essentially requires that an invariant be
visible in every method that might violate the invariant of an object in the universe in
which the method executes. This requirement allows one to use the declaration of the
invariant to show that invariants are preserved.

In this paper, we too allow invariants to depend on non-owned fields (unlike the
methodology by Barnett et al.), provided an appropriate visibility requirement is met.
Because we don’t have (or need) the encapsulation provided by universes, we force
certain declarations to be mutually visible by making sure they refer to each other (using
a dependent clause, as we shall see later).

A limitation with this previous methodology is that objects cannot be partially un-
packed, to use the parlance of the previous subsection. That is, an object is either in a
state where all its invariants (which may be declared in several subclasses) are known
to hold or in a state where all of these invariants are allowed to be violated, but never
anything in between. Therefore, it is not possible to reason separately about the object
invariants declared in different subclasses. In this paper, we overcome this limitation by
following the methodology by Barnett et al.

6

Another limitation with this previous methodology is that call-backs from a nested
universe to an enclosing universe are disallowed, except for calling so-called pure meth-
ods, which are not allowed to rely on the object invariant and are not allowed to modify
the program’s state. This limitation comes about because a nested universe has no way
of knowing whether or not the invariants in an enclosing universe hold. In this paper,
we overcome this limitation by explicitly representing when an object’s invariants hold.

A third limitation with this previous methodology is that the type system that tracks
ownership does not allow ownership transfer. As we shall see in this paper, visibility-
based invariants also complicate the situation with ownership transfer, but we are able
to overcome the limitation.

3 Ownership

In this section, we explain the basics of our methodology.
Following Barnett et al., our methodology uses an explicit representation, namely

the special fields inv and committed , of when object invariants are known to hold.
In addition, we explicitly encode the ownership relation itself, using a special field
owner . The value of owner is a pair [object obj , type typ] , representing by obj the
owning object and by typ the class of the owning object that induces the ownership.
If p.owner = [o,T] for a non-null o , then committing p means committing it to o

at class T . More precisely, if p.owner = [o,T] , then p.committed if and only if
o.inv 6 T . We also allow p.owner .obj to be null , in which case p has no owning
object and the value of p.owner .typ is not used.

The owner field can be mentioned in routine specifications and object invariants,
but it cannot directly be read or updated by the code of the program. The owner field
is initialized by the object constructor, which takes an owner as a parameter:

class object {
object(pair[object, type] ow)

requires ow .obj 6= null ⇒ type(ow .obj) 6 ow .typ < ow .obj .inv ;
ensures owner = ow ∧ inv = object ∧ ¬committed ;

We use requires clauses to declare preconditions and ensures clauses to declare
postconditions. Note that the owning object is required to be sufficiently unpacked,
that is, the invariants declared in the owning class must not be assumed to hold for
the owning object. The owner field can be updated only by the ownership transfer
statement, described below.

Since our methodology includes the field owner , we replace the definitions of
pack and unpack from Section 2.1 as follows. In our methodology, the statement
pack o as T commits every object that claims [o,T] as its owner, that is, every object
whose owner field equals [o,T] . Formally, for any class T with immediate super-
class S and any object expression o of type T , our methodology defines the pack

and unpack statements as follows (note that we don’t need the somewhat awkward
ConstitT construction from Section 2.1):

7

pack o as T ≡
assert o 6= null ∧ o.inv = S ;
assert InvT (o) ;
assert (∀object p | p.owner = [o,T] • p.inv = type(p)) ;
foreach object p | p.owner = [o,T] { p.committed := true }
o.inv := T

unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ ¬o.committed ;
o.inv := S ;
foreach object p | p.owner = [o,T] { p.committed := false }

The owner of an object o can be changed to [p,T] by the ownership transfer state-
ment, defined as follows:

transfer o to [p,T] ≡
assert o 6= null ∧ o.inv = object ;
assert o.owner .obj 6= null ⇒ o.owner .typ < o.owner .obj .inv ;
assert p 6= null ⇒ T < p.inv ;
o.owner := [p,T]

Note that both the old and new owning objects are required to be sufficiently unpacked.
We define the transfer statement to typecheck only if T is a superclass of the type
of the expression p . Moreover, we require that the type of the expression o be a class
tagged with the modifier transferable . For now, one can think of this modifier as giv-
ing programmers more control, in a way similar to Java’s Cloneable and Serializable

interfaces; later, we shall find a more prominent use of the transferable modifier.
The transferable modifier is inherited, that is, subclasses of a transferable class are
transferable as well. The predefined class object is not transferable.

The invariant of an object o in a class T is allowed to depend on the fields of o

declared in any superclass of T and on the fields of any objects transitively owned by
[o,S] for any superclass S of T .

We allow fields to be tagged with the rep modifier. The declaration of a rep field f

in a class T gives rise to an implicit object invariant in class T :

invariant this.f 6= null ⇒ this.f .owner = [this,T] ;

Later in the paper, we will also use the rep modifiers to formulate a syntactic restriction
for policing admissible invariants.

3.1 Example: Invariants of a doubly-linked list

Let us give an example that exhibits the expressiveness of the invariants allowed by
our methodology. Fig. 3 shows a class List that represents lists of integers. Each list is
represented by a doubly-linked set of Node objects. To simplify the implementation,
the head field of a list references a dummy node, where head .next is the first actual
element of the list and head .prev is null .

All of the Node objects that are part of the representation of a List object are
owned by the List object. This is specified by the rep modifier on the field head and

8

class List {
rep Node head ;
invariant head 6= null ∧ head .prev = null ;
invariant (∀Node n | n.owner = [this,List] • wf (n)) ;

void Insert(int x)
requires ¬committed ∧ inv = List ;
ensures (∀object x | ¬old(x .alloc) • x .inv = type(x)) ;
{

unpack this from List ;
head .Insert(x) ;
pack this as List ;

}

/* Constructors and other methods are omitted */
}

final class Node {
int val ;
Node prev ;
Node next ;
invariant next 6= this ∧ prev 6= this ;

void Insert(int x)
requires ¬committed ;
requires (∀Node n | n.owner = this.owner • wf (n) ∧ n.inv = Node) ;
modifies {X .prev , X .next | X .owner = this.owner} ;
ensures (∀Node n | n.owner = this.owner • wf (n) ∧ n.inv = Node) ;
ensures (∀Node n | n.owner = this.owner •

old(n.alloc) ∧ old(n.prev) = null ⇒ n.prev = null) ;
ensures (∀object x | ¬old(x .alloc) • x .inv = type(x)) ;
{. . .}

Node(int x , Node n, pair[object, type] ow)
requires n 6= null ⇒

¬n.committed ∧ n.inv = Node ∧ n.next 6= n ∧ n.owner = ow ;
requires ow .typ < ow .obj .inv ;
modifies n.prev ;
ensures prev = null ∧ next = n ∧ ¬committed ∧ owner = ow ∧ wf (this) ;
ensures n 6= null ⇒ n.prev = this ∧ wf (n) ;
ensures (∀object x | ¬old(x .alloc) • x .inv = type(x)) ;
{. . .}

}

Fig. 3. An example of ownership-based invariants. List objects are represented by doubly-linked
Node objects. The object invariant in List specifies which Node objects the list owns and
specifies properties about those Node objects. Class Node illustrates that, without visibility-
based invariants, Node methods need very strong specifications to enable one to verify that the
calling List methods preserve the List invariant.

9

by (part of) the quantification in the List invariant, where we have used the following
abbreviation:

wf (n) ≡ (n.next 6= null ⇒ n.next .owner = n.owner ∧ n.next .prev = n) ∧
(n.prev 6= null ⇒ n.prev .owner = n.owner ∧ n.prev .next = n)

The invariant also specifies that the next and prev fields of adjacent nodes corre-
spond.

The implementation of List .Insert simply unpacks the list and then calls
Node.Insert on the dummy node. When List .Insert then re-packs the list, it needs
to know that the List invariant holds, a fact that follows from the rather complicated
postcondition of Node.Insert .

The postcondition of List .Insert says that all objects allocated from the time the
method is entered are, upon exit, consistent. We use the special field alloc to indicate
whether or not an object has been allocated. This is useful in postconditions, where
old(E) gives the value of expression E in the method’s pre-state. Recall that quantifi-
cations over object references range over allocated non-null objects.

In addition to requires and ensures clauses, a routine specification can include
modifies clauses. The set of given modifies clauses contributes to the postcondition
of the routine, constraining what can be modified. We follow Barnett et al. to say that
a routine is allowed to modify those object fields explicitly indicated by a modifies

clause, the fields of newly allocated objects, and the fields of objects that are committed
in the routine’s pre-state (see [2] for the rationale behind this design). That’s why, for
example, List .Insert has an empty set of modifies clauses. The modifies clause of
Node.Insert uses a set comprehension where X is the bound variable.

Summarizing the example, our methodology allows an object’s invariant to depend
on the fields of all objects that it owns. Since a list’s context is dynamic, this example is
not handled by the encoding of Barnett et al. where owners are not explicated. However,
in what we’ve presented so far, a problem is that the specifications of routines that are
executed while the owning object is unpacked can be rather complicated. Another prob-
lem is that there are subtle issues in formally determining whether or not the invariant in
List is admissible (to define which Node objects are owned by a list, the List invari-
ant has to depend on the owner field of the object it says it owns). The visibility-based
invariants that we introduce in the next section overcome the first of these problems
by allowing specifications to be stated more locally. To overcome the second problem,
we later introduce a modifier peer , which, analogously to the modifier rep , gives an
indirect way of specifying the ownership part of List ’s invariant (in fact, our syntactic
rules for admissible invariants will then disallow the explicit definition of ownership in
the Fig. 3 List invariant).

3.2 Example: Ownership transfer

Fig. 4 shows a method that transfers the ownership of a Possession object. Type check-
ing requires the Possession class to be declared as transferable . To be able to
unpack possn by a single unpack operation, we require it to be an instance of class
Possession . To allow arbitrary subclass objects, one would have to unpack possn by a

10

transferable class Possession {. . .}

class Person {
rep Possession possn ;

void donateTo(Person p)
requires ¬committed ∧ inv = Person ;
requires possn 6= null ∧ ∧ type(possn) = Possession ;
requires p 6= null ∧ p 6= this ∧ ¬p.committed ∧ p.inv = Person ;
modifies possn, p.possn ;
{

unpack this from Person ; unpack p from Person ;
unpack possn from Possession ;
transfer possn to [p,Person] ;
pack possn as Possession ;
p.possn := possn ; pack p as Person ;
possn := null ; pack this as Person ;

}
. . .

}

Fig. 4. The donateTo method shows that objects can be transferred from one owner to another,
provided the old and new owners are sufficiently unpacked. The class Possession is tagged with
the modifier transferable , indicating that its objects may undergo ownership transfers.

dynamically-bound method that is overridden for each subclass of Possession and un-
packs the object step by step. (For more information about such issues with subclasses
and specification support thereof, see [2].)

The transfer statement requires both the old owner and the new owner to be suf-
ficiently unpacked. The possn field of this is set to null to re-establish the im-
plicit invariant (induced by the rep modifier on possn) that the object referenced by
this.possn is owned by this , which is not the case immediately following the transfer.

Note that our methodology deems the code at the end of Section 2.1 to be incorrect,
because without using a transfer statement, r .f .owner would still be [o,T] , not the
required [r ,T] , before the packing of r .

4 Visibility-based invariants

In this section, we generalize the ownership-based methodology of the previous sec-
tion to allow object invariants to express properties of the state of objects in arbitrary
contexts, including peer objects—objects with the same owner. Soundness is achieved
by imposing a syntactic visibility requirement as well as stronger proof obligations for
field updates and ownership transfers.

4.1 Limitations of ownership-based invariants

The ownership-based invariants of the previous section allow object invariants to ex-
press properties of owned objects, such as the nodes in the doubly-linked list example.
Such specifications are typical if the class of the owned objects (e.g., Node) comes

11

from a library and does not provide invariants that are strong enough for the context in
which the class is reused. Additional invariants can then only be specified in the next
abstraction layer, that is, in the class of the owner object (List).

However, insisting that all invariants about the owned objects be expressed in the
owner has several shortcomings. We illustrate them by comparing the ownership-based
solution for the doubly-linked list (Fig. 3) with an alternative implementation where
invariants are specified locally in class Node (Fig. 5).

The peer modifier in the declarations of the next and prev fields expresses that
the Node objects X , X .next , and X .prev are peers, that is, they have the the same
owner. Analogously to rep modifiers, peer declarations lead to implicit invariants
like the following for class Node :

invariant this.next 6= null ⇒ this.owner = this.next .owner ;
invariant this.prev 6= null ⇒ this.owner = this.prev .owner ;

Such invariants cannot be handled by the methodology described so far (note that the
invariant depends on fields of this.next but this.next is not owned by [this,Node]),
but are handled by the generalization presented in this section.

With ownership-based invariants, verification of List methods involves reasoning
about properties of the underlying node structure. That is, the modifications of Node

objects are not reasoned about locally in the Node class. This lack of locality blurs the
interface between different layers of abstraction, which leads to two problems:

1. Complicated method specifications: Method specifications of class Node must be
strong enough to enable one to show that the calling List methods preserve the
invariant. As illustrated by method Node.Insert in Fig. 3, one essentially has to
repeat the well-formedness property of Node objects in every pre- and postcondi-
tion, which is not necessary in the alternative implementation.

2. Bulky reasoning: In order to verify that List methods preserve the ownership-based
invariant, one has to consider all nodes owned by the list. With the local invariant
of the alternative Node implementation, modification of one node can affect only
the invariants of its predecessor and successor nodes. That is, showing that invari-
ants are preserved does not involve universal quantifications but only properties of
directly referenced objects, which can simplify reasoning.

In the rest of this section, we explain how we extend the methodology of the previ-
ous section to support invariants like in the alternative Node implementation.

4.2 Example: Invariants over peer objects

A field update may cause an invariant to be violated. In the presence of just ownership-
based invariants, we ensure that no invariant is violated at an inappropriate time by
making sure the updated object is sufficiently unpacked, which implies that all transi-
tive owner objects are unpacked. However, to allow invariants to refer to objects in ar-
bitrary contexts, not just transitively owned contexts, we need additional requirements
to ensure that all objects whose invariants might be affected by the modification are
sufficiently unpacked, not only the updated object and its owner objects.

12

class List {
rep Node head ;
invariant head 6= null ∧ head .prev = null ;

. . .
}

final class Node {
int val ;
peer Node prev dependent Node ;
peer Node next dependent Node ;
invariant (next 6= null ⇒ next .prev = this) ∧ next 6= this ;
invariant (prev 6= null ⇒ prev .next = this) ∧ prev 6= this ;

void Insert(int x)
requires ¬committed ;
requires (∀Node n | n.owner = this.owner • n.inv = Node) ;
modifies {X .prev , X .next | X .owner = this.owner} ;
ensures (∀Node n | n.owner = this.owner •

old(n.alloc) ∧ old(n.prev) = null ⇒ n.prev = null) ;
ensures (∀object x | ¬old(x .alloc) • x .inv = type(x)) ;

{
if (next 6= null ∧ . . .) { next .Insert(x) ; }
else {

unpack this from Node ;
next := new Node(x , next , this.owner) ;
unpack next from Node ; next .prev := this ; pack next as Node ;
pack this as Node ;

}
}

Node(int x , Node n, pair[object, type] ow)
requires n 6= null ⇒

¬n.committed ∧ n.inv = Node ∧ n.prev .inv = object ∧ n.owner = ow ;
requires ow .typ < ow .obj .inv ;
modifies n.prev ;
ensures prev = null ∧ next = n ∧ (n 6= null ⇒ n.prev = this) ;
ensures ¬committed ∧ inv = Node ∧ owner = ow ;
ensures (∀object x | ¬old(x .alloc) • x .inv = type(x)) ;

{
super(ow) ; val := x ; prev := null ; next := n ;
if (n 6= null)
{ unpack n from Node ; n.prev := this ; pack n as Node ; }

pack this as Node ;
}

}

Fig. 5. The alternative specification of class List has a simpler invariant, since the well-
formedness of the list nodes is specified locally in class Node . The alternative implementation
of class Node uses peer declarations to express that predecessor and successor nodes belong
to the same owner as this . The dependent declarations are necessary to allow invariants of
peer objects to depend on fields of this .

13

To illustrate these requirements, we revisit the Person example and add a spouse

field as well as a marry method (see Fig. 6). The invariant states that the spouse of a
Person object’s spouse is the object itself. This invariant is very similar to the well-
formedness of nodes, but is easier to verify.

class Person {
rep Possession possn ;
peer Person spouse dependent Person ;
owner-dependent Person ;
invariant this.spouse 6= null ⇒ this.spouse.spouse = this ;
. . .

void marry(Person p)
requires p 6= this ∧ ¬committed ∧ inv = Person ∧ spouse = null ;
requires p 6= null ∧ ¬p.committed ∧ p.inv = Person ∧ p.spouse = null ;
modifies spouse, p.spouse ;
{

unpack this from Person ; unpack p from Person ;
this.spouse := p ; p.spouse := this ;
pack p as Person ; pack this as Person ;

}
}

Fig. 6. Method Person.marry requires that neither person already has a spouse, which guaran-
tees that the assignments to the spouse fields do not break invariants of other Person objects.

Field updates Person contains an invariant that refers to this.spouse.spouse , which
is a field of a peer object of this . The assignment this.spouse := p in method marry

might violate the invariant of this and of all Person objects t where t .spouse =
this . Therefore, we impose the following precondition for the field update:

assert (∀Person t | t .spouse = this • Person < t .inv) ;

This condition ensures that all potentially affected object invariants are allowed to be
violated. Meeting this quantified precondition is easy for a class like Person : For any t

for which the Person invariants are known to hold, we have t .spouse.spouse = t , and
so if t .spouse = this , then this.spouse = t . From this observation and the fact that
t ranges of non-null references, the marry precondition this.spouse = null suffices
to establish the quantified precondition for the field update.

Transfer As explained in Section 3, a transfer is essentially an assignment to the
owner field of the transferred object. Therefore, the generalized invariants also lead to
stronger proof obligations for transfer statements, as illustrated by the following class:

class Thief { peer Possession haul ; . . . }

Since haul is declared as peer, the class has the implicit invariant

invariant haul 6= null ⇒ haul .owner = owner ;

which is violated if the object referenced by haul is transferred to another owner. Con-
sequently, such a transfer statement needs an additional precondition that ensures that

14

possibly affected Thief objects are sufficiently unpacked before a Possession object
is transferred.

4.3 Visibility

The above example shows that in the presence of invariants over objects in arbitrary
contexts, field updates and transfers have to be guarded by preconditions that assert that
all objects that might be affected by the update are sufficiently unpacked. However, such
preconditions can be imposed only if the invariants that depend on the updated field are
visible in the method that performs the update or transfer. In this subsection, we present
the visibility requirements that are necessary to generate the appropriate assertions.

Visibility requirement for declared fields An invariant is called a visibility-based
invariant if it refers to a field f of an object that is different from this and that might
not be transitively owned by this . Throughout the next few paragraphs, we assume
that f is not the owner field; the treatment of owner is discussed below. To guarantee
that a visibility-based invariant is visible in every method that might assign to f , we
introduce dependent clauses for field declarations.

If the invariant of a class T contains a field-access expression of the form
this.g1. · · · .gn .f (n > 1) , where the object this.g1. · · · .gn might not be (transitively)
owned by this , then T must be declared a dependent of f . In our example, Person

is declared a dependent of spouse , because its invariant refers to this.spouse.spouse ,
and spouse is not a rep field:

peer Person spouse dependent Person ;

The dependent-clause allows us to impose the precondition for updates of the spouse

field that was presented in the example above.
By the visibility requirement, we can allow more invariants than before. An invari-

ant declared in class T is admissible if for each of its field-access expressions of the
form this.g1. · · · .gn .f (n > 1) , either g1 is a rep field and each of the other gi is
a rep or peer field, or T is a dependent of f . Whether an invariant is admissible can
be checked syntactically by referring to the rep and peer modifiers as well as the
dependent clauses of the involved fields.

As illustrated by the invariants of Person and Node (Fig. 5), visibility-based in-
variants allow us, for instance, to specify properties of recursive data structures as long
as the class that contains the invariant is visible in the classes that declare the fields
the invariant depends on. This visibility requirement can easily be met if all involved
classes are developed together (in our examples, only one class is involved). However,
if a class T comes from a class library, for instance, then the visibility requirement is in
general not met; moreover, assuming the library cannot be modified, dependent classes
cannot be added to the dependent clauses of the field declarations in T . In such
cases, ownership-based invariants have to be used. That is, if a class S declares a field
f of type T and declares an invariant that mentions the fields of f , then f has to be
declared with rep . Having to use ownership in this situation does not seem needlessly
limiting, but realistic: S implements a new layer on top of class T . Forcing clients

15

to access (especially modify) the state of lower layers by invoking methods of higher
layers is a common design practice.

Visibility requirement for the owner field Ownership transfer is essentially an as-
signment to the owner field of the transferred object. However, the visibility require-
ment for ordinary fields is too strong to be useful for owner : since owner is a pre-
defined field of class object , the implementor of a class T cannot mention T in
the dependent-clause of owner . Nevertheless, visibility-based invariants that refer to
owner fields are often useful, for instance as implicit invariants for peer fields.

To be able to determine all classes that contain invariants that might be violated by
a transfer, we use the transferable modifier introduced in Section 3 and ensure that
all dependent classes are visible in the transferable class. Consequently, the dependent
classes are visible in any method that contains a transfer statement, which allows us
to impose an appropriate precondition. We describe this solution in the following.

If the invariant of a class T contains a field-access expression of the form
this.g1. · · · .gn .owner (n > 1) , where the object this.g1. · · · .gn might not be owned
by this , then T must be declared an owner-dependent of the static type of gn . That
is, we use the same concept as for dependent-clauses, but instead of listing a dependent
class in the field declaration, we specify it in the class of the static type of the field on
which owner is accessed. For instance, the implicit invariant for the peer field spouse

in class Person refers to this.spouse.owner . Consequently, we have to mention the
class that declares the invariant, Person , in the owner-dependent declaration of the
static type of this.spouse , which also is Person . Thus, Person has to contain the
declaration owner-dependent Person; .

Owner-dependent declarations may be specified only for non-transferable classes
(e.g., Person) and for transferable classes with non-transferable direct superclasses
(e.g., Possession). That is, transferable classes with transferable superclasses never
have any owner-dependent declarations. This restriction allows us to determine all in-
variants that might be affected by a transfer of the form transfer x to [q ,U] . The
classes that declare such invariants are declared owner-dependents of the static type of
x , say T , or T ’s superclasses. Like T and T ’s superclasses, these owner-dependents
are visible in the method that contains the transfer statement. Proper subclasses of T ,
which might not be visible in this method, are transferable and have a transferable su-
perclass. Therefore, they must not contain owner-dependent declarations and invariants
of clients may, in general, not refer to g .owner if the static type of g is a proper sub-
class of T .

4.4 Proof obligations

The visibility requirement allows us to generalize the proof obligations for field updates
and transfers to support both ownership-based and visibility-based invariants.

Precondition for field updates Besides the invariants of x and the invariants of x ’s
transitive owner objects, an update of the field x .f may affect invariants of objects of

16

the classes in the dependent-clause of f . Therefore, we have to impose the following
proof obligation in addition to the assertions described in Section 2.1:

If a class T is mentioned in the dependent clause of field f and an invariant
of T refers to f such that a T object t depends on x .f , then t must be
sufficiently unpacked (T < t .inv).

This requirement guarantees that visibility-based invariants of an object can be vio-
lated only when the object is in a state in which it is known that the invariants may not
hold. We formalize this proof obligation in Section 5.

For example, we determine the precondition of the field update this.spouse := p

in method marry (Fig. 6) as follows. The field spouse mentions class Person in its
dependent-clause, so we look at the object invariants of Person to determine which
invariants may be affected by the spouse assignment. Among the Person invariants,
there is one access expression of the form E .spouse where E might not be owned,
namely for E being this.spouse . In other words, any Person object t satisfying
t .spouse = this may be affected by the assignment to this.spouse in marry . Thus,
our methodology prescribes the following precondition for the field update:

assert (∀Person t | t .spouse = this • Person < t .inv) ;

Precondition of transfer The rules for transferable modifiers and owner-dependent
declarations guarantee that, besides the old and new owning objects of x , a transfer
of the form transfer x to [q ,U] can only affect invariants of classes that are men-
tioned in the owner-dependent declarations of x ’s static type or of their superclasses.
Therefore, we impose a proof obligation that objects of these classes are sufficiently un-
packed before the transfer. That is, the following condition has to hold in the pre-state
of a transfer of the above form in addition to the requirements presented in Section 3:

If a class T is mentioned in the owner-dependent declaration in any superclass
of x ’s static type, and the (implicit or explicit) invariant of T refers to owner

such that a T object t depends on x .owner , then t must be sufficiently un-
packed (T < t .inv).

* * *
This completes the informal presentation of our methodology. By the visibility re-

quirement, we can allow the invariant of X to refer to objects that are not owned by
X without sacrificing modular reasoning. Visibility-based invariants allow one to ex-
press properties of data structures locally in a representation class such as Node , which
simplifies specification and verification of both representation classes and owners. In
particular, one can express invariants of object structures even if the owner of the ob-
jects is not known. This flexibility is necessary for data structures such as singly-linked
lists, where designated owner objects are rather artificial.

5 Technical treatment

In this section, we present the technical treatment of our methodology. That is, we de-
fine precisely which invariants are admissible, formalize the assertions for the relevant
statements, and prove a soundness theorem.

17

5.1 Admissible invariants

The invariant of a class C may depend on fields of this and of objects transitively
owned by this , on fields that contain C in their dependent-clause, and on owner

fields if C is mentioned in owner-dependent declarations of the static type of the field
on which owner is accessed:

Definition 1 (Admissible invariant). An invariant declaration in class C is admissi-
ble if its subexpressions typecheck according to the rules of the programming language
and if each of its field-access expressions has one of the following forms:

1. this.g1. · · · .gn .f , where either n = 0 , or g1 is a rep field and each of the fields
g2, . . . , gn is either a rep or a peer field.

2. this.g1. · · · .gn .f , where n > 1 , f is different from owner , and C is mentioned
in the dependent-clause of f .

3. this.g1. · · · .gn .owner , where n > 1 and C is mentioned in an owner-dependent
declaration of the type of gn .

4. x .f , where x is bound by a universal quantification of the form

(∀T x | x .owner = [this,B] • P(x))

and B is a superclass of C . P(x) may refer to the identity and the state of x , but
not to the states of objects referenced by x .

The field f must not be one of the predefined fields inv and committed .

The access expression this.f is a special case of kind 1. Access expressions of
kinds 1 and 4 are, for instance, used in the List class shown in Fig. 3. Field-access
expressions of kinds 2 and 3 enable visibility-based invariants.

5.2 Proof rules

The methodology presented in this paper does not assume a particular programming
logic to reason about programs and specifications. Special rules are required only for
those statements that deal with the fields inv and committed (pack , unpack , and
field update) as well as owner (object creation and transfer). The rules for pack and
unpack statements as well as the specification of object ’s constructor are presented in
Section 3. We describe the rules for the remaining statements in the following.

Field updates The rule for field updates was explained in Section 4.4. More formally,
a field update of the form x .f := e is guarded by the following preconditions:

1. assert x 6= null ∧ F < x .inv ;
where F is the class in which f is declared.

2. For each class T mentioned in the dependent-clause of f , and for each access
expression this.g1. · · · .gn .f of kind 2 (and not of kind 1) in an invariant declared
in T : assert (∀T t | t .g1. · · · .gn = x • T < t .inv); .

The first precondition is identical to the methodology with ownership-based invari-
ants only. It guarantees that x ’s transitive owner objects are sufficiently unpacked.
Preconditions of the second kind are necessary to handle invariants with field-access
expressions of kind 2 in Def. 1.

18

Transfer The rule for ownership transfer is analogous to field updates, but refers to
owner-dependent declarations instead of dependent-clauses: A transfer statement of the
form transfer x to [q ,U] is guarded by the following preconditions:

1. assert x 6= null ∧ x .inv = object ;
2. assert x .owner .obj 6= null ⇒ x .owner .typ < x .owner .obj .inv ;
3. assert q 6= null ⇒ U < q .inv ;
4. For each class T mentioned in an owner-dependent declaration in any superclass

of x ’s static type, and for each access expression this.g1. · · · .gn .owner of kind 3
(and not of kind 1) in an invariant declared in T :

assert (∀T t | t .g1. · · · .gn = x • T < t .inv) ;

The first three preconditions were also part of the methodology with ownership-
based invariants only. They ensure that both x ’s old and new owner objects are suffi-
ciently unpacked. Preconditions of the last kind are necessary to handle invariants with
field-access expressions of kind 3 (Def. 1), which occur for instance in the implicit
invariants for peer fields.

5.3 Soundness

For our methodology, soundness means that the inv field of an object x correctly
reflects which invariants of x can be assumed to hold. In this subsection, we formalize
and prove this property for well-formed programs. A program P is well-formed if P is
syntactically correct, type correct, and P’s invariants are admissible (see Def. 1).

Theorem 1 (Soundness theorem). In each reachable execution state of a well-formed
program, the following program invariant holds:

(∀ x ,T • x .inv 6 T ⇒ InvT (x))

where InvT (x) expresses that x satisfies all (explicit and implicit) invariants declared
in class T .

Soundness proof Because of limited space, we present the proof of a simplified theo-
rem here that assumes that all field-access expressions of admissible invariants (Def. 1)
refer to fields of this or a bound variable, or to fields of objects directly referenced by
this . That is, for field-access expressions of kinds 1 to 3, we assume n 6 1 . A gen-
eralization of the proof is straightforward, but requires several auxiliary lemmas about
transitive ownership we cannot present here.

The proof runs by induction over the sequence of states of a program P. The in-
duction base is trivial. For the induction step, only the statements that create objects or
manipulate fields of objects are interesting. We omit all trivial cases for brevity.

Object creation Creation of a new object x does not change the values of fields of
existing objects. Since a precondition of the operation is that any given owning object
of x is sufficiently unpacked, we only have to show that the property holds for x itself,
which is a direct consequence of the fact that x .inv = object and class object does
not have invariants.

19

Pack A pack statement changes the inv field of the packed object as well as the
committed fields of objects directly owned by that object, but nothing else. Since in-
variants must not refer to inv or committed fields (see Def. 1), the value of InvT (x)
cannot be changed by a pack statement. The value of x .inv 6 T is only changed by the
statement pack x as T . However, the precondition of the pack statement checks that
InvT (x) holds. Therefore both sides of the implication yield true after the statement.

Unpack Like pack statements, unpack statements only change inv and committed

fields, which implies that InvT (x) is not affected by any unpack statement. The value
of x .inv after the statement is a direct superclass of the value before the statement.
Thus, the value of x .inv 6 T might only be changed from true to false . That is, the
implication still holds after the unpack statement.

Field update Let f be a field declared in a class F and consider the effect of an update
y .f := e on InvT (x) for some x and T . In particular, we show that if InvT (x)
contains an access expression that denotes y .f , then x is sufficiently unpacked: T <

x .inv (that is, the left side of the implication is false). For this proof, we only only need
to consider access expressions in the invariants that end with dereferencing f . Access
expressions that mention f somewhere in the middle contain as a subexpression an
access expression that ends with f . Following (the simplified) Def. 1, we consider the
following cases:

1a. An invariant of T refers to this.f and x = y : The precondition of the field
update requires F < x .inv . Since T is a subclass of F (otherwise the expression
x .f would not typecheck), we get T < x .inv .

1b. An invariant of T refers to this.g .f , where g is a rep field declared in a superclass
S of T , and x .g = y : From the precondition of the update of y .f , we know that
y is not consistent. Since x .g = y and g is a rep field, x must be unpacked
beyond S : S < x .inv . (The definition of the unpack operation guarantees that an
owner object x is unpacked beyond the owner type S before an object owned by
[x ,S] can be unpacked. The pack operation guarantees that objects are packed in
the reverse order.) Since T is a subclass of S , we have T 6 S < x .inv .

2. An invariant of T refers to this.g .f , x .g = y , and T is mentioned in f ’s
dependent-clause: The field update has the precondition

assert (∀T t | t .g = y • T < t .inv) ;

Instantiating t with x , we have T < x .inv .
3. An invariant of T refers to this.f .owner and x = y : Since we only have to

consider access expressions that end with dereferencing f , there is nothing to be
shown for this case. this.f .owner has this.f as a subexpression, which is handled
in Case 1a.

4. An invariant of T refers to o.f , where o is a variable bound by quantification, o =
y , o.owner = [x ,S] , and T 6 S : Analogously to Case 1b, y is not consistent,
and y ’s owner object, x , must be unpacked beyond the owner type, S : S < x .inv .
Since T is a subclass of S , we have T 6 S < x .inv .

20

Transfer Consider the statement transfer y to [q ,U] . This transfer is essentially an
update of y .owner . Therefore, the proof for a transfer is similar to the proof for field
updates: Cases 1a, 1b, and 4 are analogous. Case 2 for transfers is analogous to Case 3
of field updates and vice versa. However, Case 3 for transfers has to refer to the owner-
dependent declaration of the static type of this.g instead of the dependent-clause of
f . Moreover, all cases have to consider both the old and the new owner of y . However,
since both owner objects are sufficiently unpacked before the transfer, the arguments
of the cases for field updates apply as well to the new owner object of the transferred
object. �

6 Usability

In this section, we discuss the expressiveness and practicability of our methodology.

Expressiveness The methodology presented here can express properties of many in-
teresting implementations. Ownership-based invariants allow us to specify properties of
the internal representation of an object structure in a modular way. By supporting quan-
tifications over all objects owned by an object, we can handle complex object structures
such as the union-find data structure, where not all constituent objects are reachable
from the owning object. Visibility-based invariants enable one to declare invariants lo-
cally in classes of constituent objects, which simplifies specifications and proofs and,
in particular, allow us to handle data structures that do not have an explicit owner.

Although we do not restrict aliasing, our methodology requires that modifications
of objects always be initiated by their owner objects since the owner object has to be
unpacked before the modification. Therefore, data structures like collections with it-
erators are difficult to handle with ownership-based invariants; essentially, an iterator
needs to arrange to unpack the collection before it can modify the collection’s state. In
our List example, we could use visibility-based invariants for a class Iterator if Node

and Iterator are mutually visible. But either the list or its owner would have to know
all iterators of the list to be able to unpack them all before the list is modified. To pro-
vide better support for such patterns, one might consider generalizing our methodology
to allow multiple owners for each object and adding support for packing and unpacking
all owners of an object simultaneously.

In this paper, we omitted arrays for brevity. The treatment of arrays is analogous to
other objects. In particular, arrays can have (implicit) invariants specifying the owner of
their elements. So far, our methodology does not support static fields. However, static
fields can be treated as fields of class objects, which allows visibility-based invariants
to express properties of global state.

Specification support Due to the semantics of modifies clauses, methods can allo-
cate and modify new objects without explicitly specifying these modifications. How-
ever, if the caller has no knowledge about new objects and their consistency, it is in
general not possible to reason about invariants that quantify over all objects owned by a
certain owner. To deal with this problem, the specifications in our List example contain

21

ensures clauses that state that all newly allocated objects are consistent upon termi-
nation of a routine (see Fig. 5). Instead of writing such ensures clauses, it would be
helpful to provide a designated expands clause that specifies the owners of objects
allocated by a routine. Analogous with the rule for modifies clauses, if the owning
object is newly allocated or on entry is committed, then the expands clause would
not need to mention the owner. For instance, the clause expands ow for Node ’s con-
structor would say that the constructor does not create objects for owners other than
ow , which would simplify the corresponding ensures clause.

In this paper, we use dependent-clauses to check the visibility requirement. Such
clauses make potential dependencies explicit, but lead to additional specification over-
head. For languages that provide modules with acyclic import, dependent-clauses are
not necessary. A tool could infer the dependent-clauses within one module. Inter-
module dependencies violate the visibility requirement and are, thus, forbidden. This
approach is, for instance, taken in Müller’s thesis [30].

Many of the specification constructs we’ve discussed are often used in certain styl-
ized forms. For example, methods often require their parameters to be consistent and
uncommitted, pack and unpack statements tend to occur in pairs in the bodies of public
methods, and the owner parameter passed to constructors often mention this and the
enclosing class. We’d like to experiment with useful defaults that reduce the number of
explicit specifications are needed in a program.

Tool support Although we consider our work a significant improvement in the treat-
ment of object invariants, reasoning is still tedious and appropriate tool support is in-
dispensable. One of the key considerations for the design of our methodology was to
avoid reachability predicates in proof obligations since existing theorem provers can
have trouble handling such recursive predicates automatically (cf. [19]). Specifications
such as all nodes reachable from this.head are owned by [this,List] can be avoided
by quantification in ownership-based invariants (see Fig. 3) or by visibility-based in-
variants (see Fig. 5).

We plan to implement our methodology as part of the .NET program checker Boogie
at Microsoft Research and use this implementation for non-trivial case studies. Apply-
ing the Extended Static Checker for Java [16] to a special encoding of the examples used
in this paper lead to promising results: all proof obligations except those for modifies

clauses, which are not checked by ESC/Java, were proved automatically.

7 Related work

In this section, we discuss papers from the large literature on invariants that are directly
related to invariants for object structures. A more detailed discussion of related work
is found in Müller’s thesis [30], and we gave a more detailed comparison with two
previous methodologies in Section 2.

Classical proof systems for invariants such as Meyer’s work [29, 28] or the approach
of Liskov, Wing, and Guttag [27, 26] are not sound if invariants express properties of
more than one object. They require exported methods to preserve the invariant only of
the current object or of all objects of the enclosing class, neither of which is sufficient

22

for general object structures with aliasing [32]. Especially, behavioral subtyping [22,
13] is necessary but not sufficient to guarantee modular soundness for invariants over
object structures. Other specification languages such as JML [21, 20] or several Larch
languages [17] permit invariants over object structures but do not provide a sound mod-
ular proof system.

Huizing and Kuiper [18] present a proof system that supports invariants for ob-
ject structures. Invariants are analyzed syntactically to determine which methods of a
program might violate which invariants. However, without appropriate restrictions, this
analysis is not modular.

Banerjee and Naumann [1] consider what it means, formally, for the exported in-
terface of a class to be independent of the implementation of the class, which may rely
on object invariants. They use ideas from separation logic and permit the heap to be
partitioned in a flexible way (for example, constituent objects need not be reached from
the owner). Their semantic results are sound even in the presence of call-backs, but
just how one goes about establishing the antecedents of their theorems is mostly left
unaddressed.

The approach presented in our paper is based on recent work by Barnett et al. [2].
We replaced the static declaration of components by a dynamic encoding of ownership,
which enables invariants over dynamically growing and shrinking object structures such
as linked lists. In addition, our approach supports visibility-based invariants, which can
simplify specifications and proofs, and which allow us to handle object structures that
do not have explicit owner objects.

The treatment of visibility-based invariants was influenced by Müller’s thesis [30].
Müller uses a visible state semantics for invariants that requires invariants of relevant
objects to hold in pre- and postconditions of all exported methods, whereas our method-
ology allows invariants to be violated as long as such violations are made explicit by
the inv field. This type-valued inv field especially provides a better handling of inher-
itance [2]. Müller’s thesis supports invariants over so-called abstract fields in a sound
way, which we consider future work for the methodology presented here. Müller’s
approach has been applied to more restricted invariants [32] and to the treatment of
modifies clauses [33].

The programming model supported by Müller’s universe type system corresponds
to the restrictions used in this paper: Objects can be freely aliased, but modifications
of objects have to be initiated by owners. Besides universes, several other type systems
have been proposed to express ownership statically [4–9]. Some ownership type sys-
tems use ownership parameters to express ownership relations like the ones we specify
with rep and peer tags. In contrast to our work, these type systems restrict aliasing of
objects and do not support ownership transfer. Ownership type systems guarantee the
ownership relation in all execution states, whereas the ownership relations specified by
our object invariants (including the implicit object invariants for rep and peer fields)
are conditions that need not always hold. This dynamic encoding simplifies transfer, but
makes the soundness proof more difficult. Clarke and Wrigstad [10] combine ownership
types with externally unique references to permit transfer. Fähndrich and DeLine [15]
present a type system with linearity for checking interface protocols of objects. Their
adoption and focus statements provide a controlled way of creating aliases and access-

23

ing aliased objects, loosening the rigid uniqueness requirements imposed by linear type
systems.

Barnett and Naumann [3] extend the work presented in our paper. In their encoding,
each object X maintains a (possibly abstract) set of objects whose visibility-based
invariants depend on fields of X . This set can be used to establish the preconditions for
updating X ’s fields more easily than in our approach. Another novelty of Barnett and
Naumann’s paper is update guards. An update guard abstracts the weakest precondition
for a field update, to enable the update without unpacking potentially affected objects
or exposing internal state in that precondition.

Like our methodology, the work by Leino et al. [23, 24, 11] imposes visibility re-
quirements to enable a modular sound treatment of abstract fields. However, their work
is not based on the notion of ownership, which leads to more complicated requirements
for specifying properties over object structures and makes the soundness proof diffi-
cult. The Extended Static Checker for Modula-3 [12] uses the technique of Leino and
Nelson [24] to reason about validity of object structures by defining a boolean abstract
field valid to represent validity. Usage of this field in specifications is similar to our
inv field.

The Extended Static Checker for Java [16] uses heuristics to determine which object
invariants to check for method invocations. Described in detail in the ESC/Java User’s
Manual [25], these heuristics are a compromise between flexibility and likelihood of
errors and do not guarantee soundness.

Our technique requires programmers to specify invariants as well as rep and peer
annotations explicitly. Tools such as Daikon [14] could be used to guess possible object
invariants automatically and then check them by our methodology.

8 Conclusions

We presented a methodology for specifying and reasoning about object invariants. Our
solution allows one to express properties of object structures without restricting alias-
ing. A combination of ownership- and visibility-based invariants provides enough ex-
pressiveness to handle non-trivial implementations such as (mutually) recursive data
structures and re-entrant method calls. Inheritance is fully supported. The methodology
is modular and proven to be sound.

As future work, we plan to generalize our methodology to allow objects to have
multiple owners, which is, for instance, necessary for certain implementations of col-
lections with iterators. Invariants over abstract fields are useful to describe properties of
data structures without referring to their concrete implementation. We plan to adapt our
previous work on abstract fields [30, 23] to the methodology presented here.

Acknowledgments We are grateful to Mike Barnett, John Boyland, Rob DeLine, Manuel
Fähndrich, Bertrand Meyer, Dave Naumann, and Wolfram Schulte for helpful discus-
sions on invariants and ownership. We especially thank Dave Naumann, who suggested
we separate the concepts of peer fields and visibility-based invariants, which in a pre-
vious version had been entangled. We also thank the referees for helping improve the
presentation.

24

References

1. Anindya Banerjee and David A. Naumann. Ownership confinement ensures rep-
resentation independence for object-oriented programs. Manuscript available on
http://guinness.cs.stevens-tech.edu/˜naumann/publications/, De-
cember 2002.

2. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology, 2004.
To appear.

3. Mike Barnett and David Naumann. Friends need a bit more: Maintaining invariants over
shared state. In Mathematics of Program Construction, Lecture Notes in Computer Science.
Springer-Verlag, 2004. To appear.

4. Boris Bokowski and Jan Vitek. Confined types. In Proceedings of the 1999 ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’99), volume 34, number 10 in SIGPLAN Notices, pages 82–96. ACM, October
1999.

5. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications, OOP-
SLA 2002, volume 37, number 11 in SIGPLAN Notices, pages 211–230. ACM, November
2002.

6. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object en-
capsulation. In Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, volume 38, number 1 in SIGPLAN Notices, pages
213–223. ACM, January 2003.

7. Dave Clarke. Object Ownership and Containment. PhD thesis, University of New South
Wales, 2001.

8. Dave G. Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2002, volume 37, number 11
in SIGPLAN Notices, pages 292–310. ACM, November 2002.

9. Dave G. Clarke, John. M. Potter, and James Noble. Ownership types for flexible alias pro-
tection. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’98), volume 33, number 10 in
SIGPLAN Notices, pages 48–64. ACM, October 1998.

10. Dave G. Clarke and Tobias Wrigstad. External uniqueness is unique enough. In Luca
Cardelli, editor, ECOOP 2003—Object-Oriented Programming, 17th European Conference,
volume 2743 of Lecture Notes in Computer Science, pages 176–200. Springer, 2003.

11. David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep exposure.
Research Report 156, Digital Equipment Corporation Systems Research Center, July 1998.

12. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Research Report 159, Compaq Systems Research Center, December 1998.

13. Krishna Kishore Dhara. Behavioral subtyping in object-oriented languages. Technical Re-
port 97-09, Iowa State University, May 1997.

14. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions on
Software Engineering, 27(2):1–25, 2001.

15. Manuel Fähndrich and Robert DeLine. Adoption and focus: practical linear types for impera-
tive programming. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), volume 37, number 5 in SIGPLAN Notices,
pages 13–24. ACM, May 2002.

25

16. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe,
and Raymie Stata. Extended static checking for Java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), vol-
ume 37, number 5 in SIGPLAN Notices, pages 234–245. ACM, May 2002.

17. John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag, 1993. With
Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M. Wing.

18. Kees Huizing and Ruurd Kuiper. Verification of object-oriented programs using class invari-
ants. In Tom Maibaum, editor, Fundamental Approaches to Software Engineering, volume
1783 of Lecture Notes in Computer Science, pages 208–221. Springer-Verlag, 2000.

19. Rajeev Joshi. Extended static checking of programs with cyclic dependencies. In James Ma-
son, editor, 1997 SRC Summer Intern Projects, Technical Note 1997-028. Digital Equipment
Corporation Systems Research Center, 1997.

20. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999.

21. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06v, Iowa State University,
Department of Computer Science, May 2003. See www.jmlspecs.org.

22. Gary T. Leavens and Krishna Kishore Dhara. Concepts of behavioral subtyping and a sketch
of their extension to component-based systems. In Gary T. Leavens and Murali Sitaraman,
editors, Foundations of Component-Based Systems. Cambridge University Press, 2000.

23. K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute
of Technology, 1995.

24. K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. ACM Trans-
actions on Programming Languages and Systems, 24(5):491–553, September 2002.

25. K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user’s manual. Technical
Note 2000-002, Compaq Systems Research Center, October 2000.

26. Barbara Liskov and John Guttag. Abstraction and Specification in Program Development.
MIT Electrical Engineering and Computer Science Series. MIT Press, 1986.

27. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6), 1994.

28. Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.
29. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second edition edi-

tion, 1997.
30. Peter Müller. Modular Specification and Verification of Object-Oriented Programs, volume

2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002. PhD thesis, FernUni-
versität Hagen.

31. Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for alias and dependency
control. Technical Report 279, FernUniversität Hagen, 2001.

32. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Technical Report 424, Department of Computer Science, ETH Zurich,
2003.

33. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular specification of frame
properties in JML. Concurrency and Computation: Practice and Experience, 15:117–154,
2003.

