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Abstract. Model fields are specification-only fields that encode abstractions of
the concrete state of a data structure. They allow specifications to describe the
behavior of object-oriented programs without exposing implementation details.
This paper presents a sound verification methodology for model fields that han-
dles object-oriented features, supports data abstraction, and can be applied to a
variety of realistic programs. The key innovation of the methodology is a novel
encoding of model fields, where updates of the concrete state do not automati-
cally change the values of model fields. Model fields are updated only by a special
pack statement. The methodology guarantees that the specified relation between a
model field and the concrete state of an object holds whenever the object is valid,
that is, is known to satisfy its invariant.
The methodology also improves on previous work in three significant ways:
First, the formalization of model fields prevents unsoundness, even if an inter-
face specification is inconsistent. Second, the methodology fully supports inheri-
tance. Third, the methodology enables modular reasoning about frame properties
without using explicit dependencies, which are not handled well by automatic
theorem provers.

1 Introduction

The development of object-oriented programs makes use of mutable objects, aliasing,
subtyping, and modularity. We are interested in verifying such programs. To do that,
we need specifications with data abstraction and a systematic way (a methodology) of
reasoning. Existing methodologies either do not address these characteristics of object-
oriented programming or do not support data abstraction in a satisfactory way. In this
paper, we present a methodology that addresses these problems and that can be applied
to a wide variety of realistic programs.

Specifications that are visible to client code must be expressed in an implementation-
independent way to support information hiding. This can be achieved by using data ab-
straction [11], that is, by mapping the concrete state of a data structure to an abstract
value. A standard example is to map the state of a singly-linked list to a mathemati-
cal sequence. The behavior of the list class can be expressed in terms of the abstract
value of list objects, that is, in terms of the sequence. A convenient way to support data
abstraction in specification languages for object-oriented programs is by model fields
[5, 14, 15, 19]. In contrast to ordinary (concrete) fields, a program cannot directly as-
sign to model fields. Instead, model fields are specification-only fields whose values are
determined by mappings from an object’s concrete state.

Class Rectangle in Fig. 1 illustrates how model fields are used in specifications. A
Rectangle object stores the coordinates of two opposite corners, as expressed by the



invariant. The model field width is used to refer to the width of the rectangle in specifi-
cations. The value of width is the difference between the x-coordinates of the corners,
x2 and x1 . This relation between the model field width and the concrete fields x1 and
x2—the so-called constraint for width —is expressed by the constrained by part
of the model field declaration. The declaration of the model field height is analogous.

Method ScaleH scales the rectangle horizontally by a given percentage. The en-
sures clause uses the model field width to express the functionality of ScaleH without
referring to the concrete implementation. The modifies clause allows method ScaleH

to change the values of the fields width and x2 . The second requires clause as well as
the unpack and pack statements are required by the methodology for object invariants
we build on and will be explained in Sec. 4.

class Rectangle {
int x1, y1, x2, y2 ; // lower left and upper right corner
invariant x1 ≤ x2 ∧ y1 ≤ y2 ;

model int width constrained by width = x2 − x1 ;
model int height constrained by height = y2 − y1 ;
Rectangle() {

x1 := 0 ; y1 := 0 ;
x2 := 1 ; y2 := 1 ;
pack this as Rectangle ;

}

voidScaleH (int factor)
requires 0 ≤ factor ;
requires inv = Rectangle ∧ ¬committed ;
modifies width, x2 ;
ensures width = old(width) ∗ factor/100 ;

{
unpack this from Rectangle ;
x2 := (x2 − x1) ∗ factor/100 + x1 ;
pack this as Rectangle ;

}
}

Fig. 1. A specification with model fields.

The basic concept of data abstraction is well-understood. However, existing ver-
ification techniques for model fields (including our own previous work) suffer from
soundness, modularity, expressiveness, or practicality problems. Our contribution in
this paper is a verification methodology that solves these problems. The key innovation
is to treat model fields as if they were stored in the heap and updated automatically
in a systematic way. This treatment reduces reasoning about model fields to simpler
concepts.

We illustrate the problems any verification methodology for model fields has to
address in the next section and explain our approach to their solution in Sec. 3. Our
approach is based on the Boogie methodology for object invariants [1, 17], which we
summarize in Sec. 4. We present the details of our methodology for model fields in
Sec. 5. The rest of the paper discusses related work and offers some conclusions.



2 Problems

A verification methodology for model fields has to address two major issues: (a) the
meaning of model fields and their constraints, and (b) the meaning of frame properties
in the presence of model fields. We discuss these issues in the following.

2.1 Meaning of model fields

In existing methodologies [4, 15, 18–20], the meaning of a model field is defined by an
abstraction function that maps a receiver object and a heap to the model field’s value.
This abstraction function is specified by a programmer-provided constraint. The prob-
lem with this meaning is that if a programmer specifies inconsistent constraints, then
the abstraction functions are not well-defined, which lends itself to unsound reasoning.
Inconsistent constraints occur in two situations.

First, constraints can be unsatisfiable. For instance, consider the abstraction func-
tion abslen of an integer model field len of a class List . If the model field len is con-
strained by len = len + 1 , then abslen has to satisfy the unsatisfiable abslen (l ,H ) =
abslen (l ,H ) + 1 for any List object l and heap H . In practice, such ill-formed speci-
fications are far less obvious than this example, because they typically involve strength-
ening of inherited constraints or cyclic dependencies among several model fields.

Second, abstraction functions of model fields are typically well-defined only for
objects that satisfy their invariants. Applying an abstraction function to an object whose
invariant is temporarily violated can lead to inconsistencies. For instance, consider a
linked list implementation, where the invariant requires the list to be acyclic. In such an
implementation, the model field len for the length of the list could be constrained by a
conditional expression such as len = (next = null) ? 1 : next .len + 1 , where next

is the field that stores the next node of the list. This, too, is inconsistent if applied to a
cyclic list. For instance, if l = l .next for a list l , then abslen again has to satisfy the
unsatisfiable abslen (l ,H ) = abslen (l ,H ) + 1 .

Both kinds of inconsistent constraints can be avoided in carefully written specifica-
tions. However, specifications found in practice contain flaws. A verification method-
ology has to ensure that these flaws are detected during verification and do not lead to
unsound reasoning.

2.2 Meaning of frame properties

The frame properties of a method limit the effects the method may have on the program
state. This is crucial when reasoning about calls. Frame properties are typically speci-
fied using modifies clauses. Roughly speaking, a modifies clause lists the concrete and
model locations a method is allowed to modify.

Any update of a field x .f potentially affects each model field that depends on x .f .
A model field o.m depends on a field x .f if the value of x .f constrains the value
of o.m . For instance, for a Rectangle object o , o.width depends on o.x1 and o.x2
because these fields are mentioned in the constraint for width .

When the meaning of a model field is given by an abstraction function, any mod-
ification of the heap, for instance, by an update of a field x .f , will have an instant



effect on all dependent model fields. That is, the value of these model fields is changed
simultaneously with the update of x .f .

Instant effects lead to a modularity problem, which is illustrated by class Legend in
Fig. 2. Legend objects display some text within a bounding box. The box is represented
by a Rectangle object. The rep modifier in the declaration of the field box is used to
express ownership and will be explained in Sec. 4. The model field maxChars yields
the maximum number of characters that fit into one line in the box at a given font size.

The value of maxChars depends on the width of the Rectangle object box . There-
fore, if method ScaleH is executed on a Rectangle object r , it potentially modifies
maxChars for any Legend object that uses r . However, we cannot require ScaleH

to declare this potential modification in its modifies clause, since the implementor of
ScaleH need not be aware of class Legend (in fact, Legend might have been imple-
mented long after Rectangle ).

class Legend {
rep Rectangle box ;
int fontSize ;

invariant box 6= null ∧ fontSize > 0 ;

model int maxChars constrained by maxChars = box .width/fontSize ;

voidReset()
requires inv = Legend ∧ ¬committed ;
modifies maxChars ;

{
unpack this from Legend ;
box .ScaleH (0) ;
pack this as Legend ;

}

// constructors and other methods omitted.
}

Fig. 2. A client of class Rectangle .

An analogous modularity problem occurs when model field constraints refer to in-
herited fields. For instance, if a subclass MyRectangle of class Rectangle declares a
model field area that depends on the inherited field x2 , method ScaleH potentially
modifies area without listing the field in its modifies clause.

A useful verification methodology for model fields must address the modularity
problem of frame properties for aggregate objects (such as Legend objects) and sub-
classes (such as MyRectangle ).

3 Approach

In this section, we explain the general ideas that allow us to solve the problems de-
scribed in the previous section. To focus on the essentials, we ignore subtyping in this
overview, but we will include it in Sec. 5 when we explain our methodology in detail.

Our methodology for model fields builds on the Boogie methodology for object
invariants [1, 17]. In the Boogie methodology, an object is either in a valid or a mutable



state. Only when in a valid state, an object is guaranteed to satisfy its invariant, and only
fields of objects in a mutable state can be assigned. The transition from valid to mutable
and back is performed by two special statements, unpack and pack .

Principles. Our methodology is based on the following three principles:

1. Validity principle: The declared constraint for a model field m constrains the value
of o.m only if the object o is valid, that is, if o ’s invariant is known to hold.

2. Decoupling principle: The change of the value of a model field is decoupled from
the updates of the fields it depends on. Instead of applying an abstraction function
to obtain the value of a model field o.m , a stored value is used. The stored value
of o.m is not updated instantly when a dependee field is modified, but only at the
point when o is being packed.

3. Mutable dependent principle: If a model field o.m depends on a field x .f , then
the dependent object o must be mutable whenever x is mutable.

The validity principle defines the meaning of model fields and avoids inconsis-
tencies due to temporarily broken invariants. Inconsistencies due to unsatisfiable con-
straints (e.g., len = len + 1) are avoided by assertions, as we explain in Sec. 5.2.

The decoupling principle solves the modularity problems of frame properties. Con-
sider a method M that updates a field x .f . Because of decoupling, this update does
not have an instant effect on a dependent model field o.m . That is, o.m remains un-
changed and, therefore, need not be mentioned in M ’s modifies clause (as long as M

does not pack o ).
The mutable dependent principle and the validity principle are prerequisites for de-

coupling to be sound. Consider a model field o.m that depends on a field x .f . Updating
x .f potentially causes o.m not to satisfy its constraint any more. However, the Boogie
methodology requires that x be mutable when x .f is updated. Therefore, the mutable
dependent principle implies that o is also mutable, and the validity principle allows
o.m not to satisfy its constraint.

There are several ways to enforce the mutable dependent principle. The one we use
in this paper is to organize objects in an ownership hierarchy [17]. A model field o.m

is allowed to depend on fields of an object x only if x is (transitively) owned by o . The
Boogie methodology guarantees that the (transitive) owner objects of a mutable object
are themselves mutable.

Example. To illustrate how these principles work, we revisit the Legend example
(Fig. 2). Let l be a Legend object and let r be the Rectangle object stored in l .box .
The modifier rep in the declaration of box indicates that l owns r . Thus, the Boogie
methodology guarantees that l is mutable whenever r is mutable. Since the model field
l .maxChars depends on r .width , this ownership relation is required by the mutable
dependent principle.

Consider the execution of method ScaleH invoked from Legend ’s method Reset .
The first statement of ScaleH unpacks the receiver object (that is, r ) to permit updates
of its fields. By the decoupling principle, the subsequent update of x2 does not change
the value of the model field r .width , even though width depends on x2 . In the state



after the update, the value of r .width in general does not satisfy the specified constraint
because the concrete state has changed, but the value of the model field has not (yet)
been adapted. This discrepancy is permitted by the validity principle since r is mutable.

The value of r .width is brought up to date when r is packed. Again, by the decou-
pling principle, this update does not instantly affect the value of l .maxChars . Conse-
quently, this model field does not have to be mentioned in ScaleH ’s modifies clause,
which shows the modularity of the approach.

Updating r .width potentially causes l .maxChars not to satisfy its constraint. How-
ever, since l is mutable, this discrepancy is permitted by the validity principle. It will
be resolved when l is packed in method Reset .

4 Background: the Boogie methodology for object invariants

In this section, we summarize those parts of the Boogie methodology for object invari-
ants [1] that are needed in the rest of this paper. The motivation for the design and the
technical details are presented in our earlier paper [17].

Explicit representation of when invariants have to hold. To handle temporary vio-
lations of object invariants and reentrant method calls, the Boogie methodology repre-
sents explicitly in every object’s state whether the object invariant is required to hold
or allowed to be violated. For this purpose, it introduces for every object a concrete
field inv that ranges over class names. If o.inv <: T for a T object o (where <: de-
notes the subtype relation), then o ’s invariants declared in class T and its superclasses
must hold and we say o is valid for T . If o is not valid for T then the invariant of o

declared in T are allowed to be temporarily violated and we say o is mutable for T .
The inv field can be used in method specifications, but cannot be assigned directly

by the program. Instead, the Boogie methodology provides two special statements:
unpack o from T and pack o as T change o.inv from T to T ’s direct super-
class and back, respectively. Before setting inv to T , the pack statement checks that
the object invariant declared in class T holds for o .

Since the update of a field o.f potentially breaks the invariant of o , o.f is allowed
to be assigned only at times when o is mutable for the class F that declares f . To
enforce this policy, each update of o.f is guarded by an assertion F �: o.inv . This
assertion is crucial for the soundness of our methodology, see Sec. 5.4.

Ownership. The Boogie methodology handles aggregate objects by guaranteeing that
the validity of an object implies the validity of its component objects. Providing this
guarantee requires some form of aliasing control, a discipline on the use of object ref-
erences. The Boogie methodology uses the notion of ownership for aliasing control,
associating with every object a unique owner object. That is, an aggregate object is the
owner of its component objects. Objects outside the aggregate are allowed to reference
component objects, but these references are only of limited use.

To encode ownership, the Boogie methodology introduces two additional concrete
fields for every object: a field owner that ranges over pairs 〈o,T 〉 , where o is the
owner object and T is a superclass of the dynamic type of o at which the ownership



is established, and a boolean field committed . Like inv , these fields can be used in
method specifications, but cannot directly be assigned by the program. The owner of an
object is set when the object is created. Because it would be a distraction in this paper,
we omit a program statement for changing the owner field (but see [17]).

Let p be an object that is owned by 〈o,T 〉 . The fact that p is committed (that is,
p.committed = true ) expresses that p is valid for its dynamic type, and o is valid for
T . The committed field is used to implement a protocol that enforces that an owner
object is unpacked before the owned object is unpacked. Packing is done in the reverse
order. More precisely, this protocol ensures that the owner object o is mutable for the
owner type T whenever p is mutable.

In connection with the fact that field updates are allowed only for mutable objects,
this protocol guarantees that the following two program invariants hold in each reach-
able execution state of a program: If an object o is valid for a class T , then the object
invariants declared in T hold for o and all objects owned by 〈o,T 〉 are committed (see
J1 below). Committed objects are valid for their dynamic type (see J2 below). (Here and
throughout the paper, quantifications over object references range over non-null refer-
ences to allocated objects.)

J1: ( ∀ o,T • o.inv <: T ⇒ InvT (o) ∧
( ∀object p • p.owner = 〈o,T 〉 ⇒ p.committed ))

J2: ( ∀ o • o.committed ⇒ o.inv = typeof(o) )

The protocol is implemented by the unpack and pack statements. The act of packing
an object o for a class T also commits the objects owned by 〈o,T 〉 by setting their
committed fields to true . This operation requires these owned objects to be previously
uncommitted and valid for their dynamic types. Unpacking an object o from a class T

requires o to be uncommitted and sets the committed field of the objects owned by
〈o,T 〉 to false . We formalize these statements by the pseudo code shown in Fig. 3.
InvT (o) denotes the expression that says that o satisfies the object invariant declared
in class T , typeof(o) is the dynamic type of object o , and Super(T ) denotes the
direct superclass of T .

unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ ¬o.committed ;
o.inv := Super(T ) ;
#foreach object p such that p.owner = 〈o,T 〉 { p.committed := false }

pack o as T ≡
assert o 6= null ∧ o.inv = Super(T ) ;
assert (∀object p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p) ∧ ¬p.committed ) ;
assert InvT (o) ;
#foreach object p such that p.owner = 〈o,T 〉 { p.committed := true }
o.inv := T

Fig. 3. Pseudo code for unpack and pack .

To simplify the specification of aggregate objects, we allow the use of the modifier
rep . Applied to the declaration of a field f in class T , it gives rise to the implicit
object invariant f 6= null ⇒ f .owner = 〈this,T 〉 . This keyword also allows us to
prescribe syntactic checking of admissible model fields, as we shall see in Sec. 5.1.



Static verification. The proof rules of the Boogie methodology are formulated in terms
of assertions, which cause the program execution to abort if evaluated to false . Asser-
tions appear in the following places: (a) before method calls for the requires clauses
of the called method, (b) at the end of a method body for the method’s ensures and
modifies clauses, (c) in the pseudo code for unpack and pack , and (d) before field
updates. Proving the correctness of a program amounts to statically verifying that the
program does not abort due to a violated assertion. To do that, each assertion is turned
into a proof obligation. One can then use an appropriate program logic to show that
the assertions hold. All of the proof obligations can be generated and shown modularly.
That is, a class C can be verified based on the specifications of the classes used by C ,
but without knowing the complete program in which C will be used.

For the proof, one may assume that the program invariants J1 and J2 hold. This
assumption is justified by a soundness theorem for the Boogie methodology presented
in earlier work [17, 21].

5 Model fields

In this section, we present the technical details of our methodology. We define which
model field declarations are admissible, present a novel encoding of model fields that
builds on the validity principle and enables decoupling, discuss how frame properties
are specified and proved in our methodology, and prove soundness. In the following,
we assume a programming language similar to the sequential subset of Java.

5.1 Declaration of model fields

The declaration of a model field m has the following form:

model T m constrained by E ;

where T is the type of the model field. The expression E specifies a constraint for
this.m . It is a boolean expression of the programming language, which is also allowed
to mention model fields. For simplicity, we disallow method calls in model field con-
straints, but an extension is possible.

A model field constraint may specify a unique value for the model field, as for
instance shown in Fig. 1. It is also allowed to underspecify the value of a model field,
which is useful to express abstraction relations and to constrain model fields in abstract
classes and interfaces. For instance, an abstract superclass Shape of Rectangle might
constrain width by 0 6 width .

A subclass can strengthen the constraint for an inherited model field by giving a dec-
laration of the above form that repeats the name of the model field and supplies a further
constraint. The effective constraint of a model field m in type T is the conjunction of
the constraints for m in T and T ’s supertypes.

The mutable dependent principle (see Sec. 3) limits what fields can be mentioned
in the constraint for a model field. The admissible model fields are summarized by the
following definition.



Definition 1. A model field m declared in type T is admissible if the constraint given
in m ’s declaration typechecks according to the rules of the programming language and
if each of the field access expressions in the constraint has one of the following forms:

1. this.m

2. this.f , where f is a concrete field
3. this.p.f , where p is a concrete rep field and f is a model or concrete field

The fields f and p must not be one of the predefined fields inv and committed (but
we allow f to be owner ).

Field accesses of Form 2 occur when the constraint for a model field refers to con-
crete fields of the same object, for instance, in the constraint for width (Fig. 1). The
standard type rules require f to be declared in T or a superclass of T . That is, the
constraint is allowed to refer to inherited fields. The requirement that f be concrete is
not strictly necessary, but simplifies the formalization; dependencies between different
model fields of the same object could be permitted as long as they are not cyclic.

Field accesses of Form 3 are used for aggregate objects, for instance, in the con-
straint for maxChars (Fig. 2). The requirement that p be a rep field together with the
implicit object invariant for rep fields guarantees that the object referenced by this.p is
owned by 〈this,T 〉 when this is valid for T . It is imposed to adhere to the mutable
dependent principle. The field p is allowed to be an inherited field.

5.2 Encoding and automatic updates of model fields

Following the validity principle explained in Sec. 3, our methodology guarantees that a
model field o.m satisfies the effective constraint for m in a class T if o is valid for
T . That is, the following property is a program invariant:

J3: ( ∀ o,T ,m • o.inv <: T ⇒ RT
m(o, o.m) )

RT
m(o, r) denotes the effective constraint for m in T , where this.m is replaced by

r and this is then replaced by o . For instance, R
Rectangle
width (o, r) denotes r = o.x2 −

o.x1 .
To achieve decoupling, we store the value of a model field in the heap as if it were

an extra field of the class. Whenever a model field is read, that is, whenever a specifi-
cation refers to a model field, the stored value is used. With the value of a model field
being stored in the heap, any update of the values of a model field’s dependees may
cause the stored value to become out-of-date. We arrange for the stored value to be
updated automatically, but we do so only at select times—eagerly updating the stored
value whenever a dependee is changed would not just be inefficient and clumsy, but it
would also retain the instant effect problems of using abstraction functions, that is the
modularity problems of frame properties.

Specifically, we include an automatic update of a model field in the pack operation
by inserting the following statements between the second and third assert statement of
the pseudo code for pack o as T (see Fig. 3):



#foreach m such that m is declared in or inherited by T {
if ¬RT

m(o, o.m) then

assert ( ∃ r • RT
m(o, r) ) ;

o.m := choose r such that RT
m(o, r)

end

}

The automatic updates nondeterministically assign to o.m any value of m ’s de-
clared type that satisfies the effective constraint for m in T . If no such value exists,
the assert statement will cause program execution to abort. This assertion allows us to
detect unsatifiable constraints such as the len = len + 1 example from Sec. 2. The
guard ¬RT

m(o, o.m) simply avoids updates that are not necessary.

5.3 Frame properties

As explained in Sec. 2.2, methodologies for model fields based on abstraction functions
lead to difficult problems for the verification of frame properties. In our methodology,
a model field behaves essentially like a concrete field that is updated automatically by
pack statements. Therefore, model fields do not introduce additional complexity for the
verification of frame properties. In particular, the semantics of modifies clauses used in
the Boogie methodology [1] works also in the presence of model fields.

The modifies clause of a method M lists access expressions that, evaluated in the
method’s pre-state, give a set of locations that the method is allowed to modify. We
denote this set by mod(M ) . In addition to the locations in mod(M ) , method M is al-
lowed to modify fields of objects allocated during the execution of M as well as fields
of objects that are committed in M ’s pre-state. The latter policy lets the method mod-
ify the internal representation of valid aggregate objects without explicitly mentioning
these fields in the modifies clause, which enables information hiding. Clients of an ag-
gregate object should not access the internal representation directly. Therefore, they do
not have to know whether or not these fields are modified by the method. In summary,
M is allowed to modify a field o.f if at least one of the following conditions applies:

1. o.f is contained in mod(M )
2. o is not allocated in the pre-state of M

3. o is committed in the pre-state of M

Note that this interpretation of modifies clauses sometimes requires hidden fields to
be mentioned in modifies clauses. For instance, the modifies clause of method ScaleH

of class Rectangle (Fig. 1) has to mention the concrete field x2 because this is allo-
cated and uncommitted in the pre-state of the method. We do not address this informa-
tion hiding problem in this paper, because existing solutions such as static data groups
[16] or more coarse-grained wildcards [1] can be combined with our methodology.

In our example, method ScaleH potentially modifies x2 and width . Both modifi-
cations are permitted by Case 1 because x2 and width are mentioned in the modifies
clause. We show that height is not modified as follows. By program invariant J3, we
have height = y2 − y1 in the pre-state of the method. Since ScaleH does not assign



to y1 and y2 , this property still holds before the pack statement. Therefore, height is
not updated when this is being packed.

Method Reset of class Legend (Fig. 2) potentially modifies fields of the Rectangle

object box by the call box .ScaleH (0) as well as maxChars by packing this . Since
box is a rep field and this is valid for Legend in the pre-state of Reset , program
invariant J1 and the implicit object invariant for rep fields imply that the object ref-
erenced by this.box is owned by 〈this,Legend〉 and committed in the pre-state of
Reset . Therefore, modification of its fields is permitted by Case 3. The modification of
maxChars is permitted by Case 1.

5.4 Soundness

As explained in Sec. 4, soundness of our methodology means that it is justified to as-
sume certain program invariants when proving the assertions introduced by the method-
ology. Program invariants J1 and J2 are guaranteed by the Boogie methodology. To en-
sure that the proofs of these program invariants remain valid, we disallow model fields
in object invariants. Our methodology is sound without this restriction, but we do not
have the space to present the required soundness proof here, nor does the proof give
additional insights. We now proceed with the proof of program invariant J3.

The proof runs by induction over the sequence of states of an execution of a program
P. The induction base is trivial since there are no allocated objects in the initial program
state.

For the induction step, we assume that the program invariant holds before the next
statement s to be executed, and show that s preserves it by proving that the following
property holds after the execution of s for any object o , type T , and model field m .

o.inv <: T ⇒ RT
m(o, o.m) (1)

We continue by case distinction on s . Only the statements that manipulate fields of
objects are interesting; we omit all other cases for brevity.

Concrete field update. Let f be a concrete field declared in a class F and consider
the effect of an update x .f := e . We show that if RT

m(o, o.m) contains an access
expression that denotes x .f , then o is sufficiently unpacked: T �: o.inv (that is, the
left-hand side of implication 1 is false ). We follow the cases of Def. 1.

Form 1: Since f is a concrete field, RT
m(o, o.m) does not refer to x .f by access

expressions of this form.
Form 2: RT

m(o, o.m) refers to o.f and x = o . The precondition of the field update
requires F �: o.inv . Since T is a subclass of F (otherwise the expression o.f would
not typecheck), we get T �: o.inv .

Form 3: RT
m(o, o.m) refers to o.p.f , where p is a rep field declared in a (not nec-

essarily proper) superclass S of T , and o.p = x . From the precondition of the update
of x .f and from J2, we know that x is not committed. If o were valid for S , then
J1, and the fact that p is a rep field, which translates into an implicit object invariant,
gives us o.p.owner = 〈o,S 〉 , and therefore o.p.committed —a contradiction, so we
conclude that o is mutable for S : S �: o.inv . Since T is a subclass of S , we have
T <: S �: o.inv .



Unpack. Consider the statement unpack x from S . This statement changes the inv

field of x as well as the committed fields of objects directly owned by x , but nothing
else. Since model fields must not refer to inv or committed fields (see Def. 1), the
value of RT

m(o, o.m) cannot be changed by the unpack statement.
If x = o , the value of o.inv after the statement is the direct superclass of S . Thus,

the value of o.inv <: T might only be changed from true to false . That is, Property 1
still holds after the unpack statement.

Pack. Consider the statement pack x as S . The only concrete fields that are changed
by a pack statement are inv and committed . Since model fields must not refer to these
fields, these updates do not have an effect on RT

m(o, o.m) .
One way the program can abort is if the implicit object invariants for rep mod-

ifiers (see Sec. 4) do not hold in the pre-state of a pack statement. This behavior is
independent of the automatic updates and the checking of the model field constraints.
Therefore, we may assume in the rest of the proof that these invariants hold.

For x 6= o , we can prove, analogously to the case for Form 3 of concrete field
updates, that the update of a model field x .f preserves RT

m(o, o.m) . Also, o.inv is not
changed by the pack statement. Consequently, the pack statement preserves Property 1.

For x = o , Property 1 holds trivially if T �: S because the pack statement sets
o.inv to S . For S <: T , we have to consider two cases:

1. RS
m(o, o.m) holds before the pack statement. In this case, o.m is not updated.

Since effective constraints include the constraints of supertypes, the implication
RS

m(o, o.m) ⇒ RT
m(o, o.m) holds.

2. RS
m(o, o.m) does not hold before the pack statement. By the assert statement, we

know that RS
m(o, o.m) is satisfiable, that is, there is a value to choose for the up-

date of o.m . Consequently, the update establishes RS
m(o, o.m) . Again, since ef-

fective constraints include the constraints of supertypes, we have RS
m(o, o.m) ⇒

RT
m(o, o.m) .

The automatic update of a model field o.m establishes RT
m(o, o.m) . It remains

to show that the subsequent update of any other model field o.n does not invali-
date RT

m(o, o.m) . This property follows from the fact that during the automatic up-
dates, RT

m(o, o.m) does not depend on o.n . By the definition of admissible model
fields (Def. 1), RT

m(o, o.m) can only mention three forms of field access expressions.
Forms 1 and 2 cannot refer to o.n , since n is a model field distinct from m .

Form 3 could refer to o.n if there was a rep field p declared in T and o.p = o .
However, for any such p , we show that o.p 6= o :

(i) By the implicit invariant for rep fields, we have o.p.owner = 〈o,T 〉 ;
(ii) By (i) and the second assert statement of pack , we have o.p.inv = typeof (o.p) ;

(iii) By the first assert statement of pack , we have o.inv = S , where S is a proper
superclass of T ;

(iv) By type safety, we have typeof(o) <: T (otherwise, pack o as T would not
type check);

(v) By (iii) and (iv), we have o.inv 6= typeof(o) ;
(vi) By (ii) and (v), we have o.p 6= o . �



6 Related Work

JML [5, 14] requires model fields to satisfy their constraints even for objects whose
invariants are temporarily violated. Therefore, programmers are supposed to provide
constraints that are satisfiable in all execution states. In our methodology, constraints
express properties of valid objects, which makes specifications more concise. JML and
ESC/Java2 [6] allow strengthening of constraints for inherited model fields, but do not
enforce consistency. This can lead to unsoundness.

Breunesse and Poll [4] address the soundness problem due to unsatisfiable con-
straints. They propose two solutions. Like ours, their first solution requires verifiers to
provide a witness to ensure that the constraint for a model field is satisfiable. How-
ever, their desugaring of model fields does not support recursive constraints, which are
often useful to handle recursive data structures. Our methodology supports recursive
constraints, provided that the pivot field in the recursive model field access is a rep
field. Breunesse and Poll’s second solution transforms model fields into parameterless
pure methods (that is, methods without side effects). However, they do not show how
to specify and prove frame properties in this solution.

The work closest to ours is the earlier work by Müller et al. [19, 20]. Like the
methodology presented here, that work uses ownership to solve the modularity prob-
lem of frame properties for aggregate objects. Ownership is expressed and enforced by
the Universe type system [9], which is more restrictive than the ownership encoding
of the Boogie methodology. Müller et al.’s work encodes model fields as abstraction
functions, which leads to the instant effect problem described earlier. Our methodology
avoids this problem by the decoupling principle.

Leino and Nelson [15, 18] require programmers to declare explicitly which fields a
model field constraint is allowed to depend on. They use these explicit dependencies for
three purposes: (a) to permit methods to modify certain model fields of aggregate ob-
jects without mentioning these model fields explicitly in the modifies clause. A method
is allowed to modify model fields that depend on a field listed in the modifies clause.
This solves the modularity problem of frame properties for aggregate objects. (b) as
an abstraction mechanism to permit methods to modify the components of aggregate
objects without declaring these modifications explicitly. A method is allowed to mod-
ify all dependee fields of a model field listed in the modifies clause. (c) to determine
whether the modification of a field potentially affects a model field.

Explicit dependencies are not well suited for automatic program verifiers such as
ESC/Java [6, 10] and Boogie [2] because automatic theorem provers such as Simplify
[7] cannot easily determine how often the recursive predicate for the (transitive) de-
pends relation should be unfolded [8]. Our methodology avoids explicit dependencies
as follows: (a) Due to the decoupling principle, model fields of aggregate objects do not
change instantly when their dependees are modified. Avoiding these instant changes
solves the modularity problem of frame properties. (b) We allow methods to modify
fields of committed objects without mentioning these fields in the modifies clause. If an
aggregate object is valid, its components are committed. (c) Again due to the decoupling
principle, the modification of a field never changes the value of a model field. Whether
a dependent model field o.m will be updated by the next pack o as T statement can
be determined using the constraint for m in T .



Both Müller et al.’s and Leino and Nelson’s work [15, 18] need a strong authenticity
requirement for soundness. This requirement prevents model fields from depending on
inherited fields (such as MyRectangle in Sec. 2.2) and, therefore, limits the support for
inheritance. Moreover, they do not allow classes to strengthen inherited constraints. By
freeing model fields of mutable objects from the obligation to satisfy their constraints
(validity principle) and by (un-)packing objects for each superclass of their dynamic
type individually, these restrictions are not necessary in our methodology.

Other recent work use abstraction functions for model fields by exploring different
encodings of the programming logic [13, 12].

In this paper, we have used ownership to adhere to the mutable dependent principle.
There are extensions of the Boogie methodology that use alternatives to ownership. For
example, our visibility-based approach [17] adheres to the mutable dependent principle.
The update guards of Barnett and Naumann [3] adhere to a slightly weaker mutable
dependent principle, which we could have used here instead. These extensions allow
model fields to depend on non-owned state, which is useful in some implementations.

Separation logic uses new logical connectives to express that a predicate depends
only on certain objects in the heap. It has been used successfully to modularly verify
an invariant of a single class with a single instance [22]. Parkinson and Bierman [23]
extend separation logic to an object-oriented language, introducing abstract predicate
families to encapsulate an object’s state. They do not show, however, how to express
abstractions of aggregate objects such as the maxChars field in Fig. 2. Our method-
ology treats model fields like ordinary fields with automatic updates, which are both
handled by separation logic. Therefore, we hope that this contribution will help to im-
prove the support for data abstraction in separation logic.

7 Conclusions

We have presented a sound and modular verification methodology for reasoning about
model fields. Since our methodology supports subtyping, aggregate objects, and recur-
sive object structures, it can be applied to realistic programs. Our methodology is sig-
nificantly simpler and more expressive than previous approaches. These improvements
are achieved by not making any guarantees about model fields of mutable objects (va-
lidity principle), by inserting automatic updates of model fields (decoupling principle),
and by imposing an ownership structure (mutable dependent principle).

Model fields are used to express abstractions of the concrete states of objects. How-
ever, in our encoding, we have fully reduced the concept of a model field to other con-
cepts that are well-understood and well-behaved, namely fields with (automatic) up-
dates. Therefore, our treatment of model fields can be readily adopted by a variety of
programming logics.

As future work, we plan to implement our methodology as part of the .NET program
checker Boogie, which is part of the Spec# programming system [2].
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