
Verification of Equivalent-Results Methods

K. Rustan M. Leino and Peter Müller

Microsoft Research, Redmond, WA, USA
{leino,mueller}@microsoft.com

Abstract. Methods that query the state of a data structure often return identical
or equivalent values as long as the data structure does not change. Program ver-
ification depends on this fact, but it has been difficult to specify and verify such
equivalent-results methods and their callers.
This paper presents an encoding from which one can determine equivalent-results
methods to be deterministic modulo a user-defined equivalence relation. It also
presents a technique for checking that a query method returns equivalent results
and enforcing that the result depends only on a user-defined influence set.
The technique is general, for example it supports user-defined equivalence rela-
tions based on Equals methods and it supports query methods that return newly
allocated objects. The paper also discusses the implementation of the technique
in the context of the Spec# static program verifier.

0 Introduction

Computer programs contain many methods that query the state of a data structure and
return a value based on that state. As long as the data structure remains unchanged, one
expects different invocations of the query method to produce equivalent return values.
For methods returning scalar values, the return values are expected to be the same. For
methods returning object references, the most interesting equivalences are reference
equality and equivalence based on the Equals method.

A simple and common example of a query method is the Count method of a col-
lection class, like List in Fig. 0, where for a given collection the method returns the
number of elements stored in the collection. Obviously, one expects Count to return
identical values when called twice on the same collection. Another example is shown in
the Calendar class in Fig. 2, where invocations of the GetEarliestAppointment will
yield equivalent results as long as the state of the calendar does not change. However,
since GetEarliestAppointment returns a newly allocated object, the results will not
be identical. Due to object-allocation, query methods cannot be expected to be deter-
ministic. Nevertheless, their results are expected to be equivalent. Therefore, we shall
refer to such query methods as equivalent-results methods.

Query methods (also called pure methods) are particularly important in assertion
languages such as JML [15] or Spec# [1] because they allow assertions to be expressed
in an abstract, implementation-independent way. For instance, Count is used in the
precondition of GetItem (Fig. 0) to refer to the number of elements in the list without
revealing any implementation details. However, reasoning about assertions that contain
query methods is difficult. The client program in Fig. 1 illustrates the problem. It uses a



class List 〈T 〉 {
int Count()

ensures 0 6 result;
{ . . . }

T GetItem(int n)
requires 0 6 n < Count();

{ . . . }
...

}

Fig. 0. A List class whose Count method returns the number of elements in a given list and
whose GetItem method returns a requested element of the list. The postcondition of Count
promises the return value to be non-negative, and the precondition of GetItem requires param-
eter n to be less than the value returned by Count .

List 〈T 〉 list ;
...
if (n < list .Count()) {

S // some statement that changes the state, but not the list
t = list .GetItem(n);

}

Fig. 1. A code fragment that uses the List class from Fig. 0. The if statement guards the invoca-
tion of GetItem to ensure that GetItem ’s precondition is met. To verify the correctness of this
code, one needs to be able to determine that the two invocations of Count return the same value.

conditional statement to establish the precondition of GetItem . We assume that state-
ment S does not change the list structure. Therefore, we expect that the condition still
holds when GetItem is called, that is, that the two calls to Count yield the same result.
There are essentially three approaches for a program verifier to conclude this fact.

The first approach is to require that the postcondition of the query method is strong
enough for a caller to determine exactly what value is returned. Typically, this can be
achieved by having a postcondition of the form result = E . In our example, this post-
condition would allow the verifier to compare the state affected by S to the state read
by E to determine whether the two calls to Count return the same result. However,
requiring such strong postconditions may entail a dramatic increase in the complexity
of the specification. For Count , one would have to axiomatize mathematical lists and
use that mathematical abstraction in the specification of the List class. We consider
this burden too high, in particular for the verification of rather simple properties.

The second approach is to define the return value of the method to be a function
of the program state. If the program state has not changed by the time the method is
invoked again, this approach allows one to conclude the return value is the same as
before. But this approach is too brittle, for two reasons. First, it treats state changes too
coarsely. For example, statement S in Fig. 1 may change the program state, but as long
as it does not change the state of the list, we want to be able to conclude that the result



of Count is unchanged. Second, this approach is too precise about the return value.
For example, the object references returned by two calls to GetEarliestAppointment
in Fig. 2 are not identical, yet the data they reference are equivalent. Queries that return
newly allocated objects are very common, especially in JML’s model classes [16].

The third approach is to require that all query methods used in specifications are
equivalent-results methods whose results depend only on certain heap locations. We
call this set of locations the influence set of a query method. With this approach, the
code in Fig. 1 can be verified by showing that the locations modified by S are not
in the influence set of Count . From the equivalent-results property and the fact that
Count returns an integer, we can conclude that the two calls to Count yield the same
results.

Existing program verifiers such as the Spec# static program verifier Boogie [0] and
ESC/Java2 [14] apply the third approach. However, these systems do not enforce that
query methods actually are equivalent-results methods and that their result actually de-
pends only on the declared influence set. Blindly assuming these two properties is un-
sound. Checking the properties is not trivial, even for methods that return scalar values.
For instance, GetHashCode is an equivalent-results method and should be permitted
in assertions, but returning the hash code of a newly allocated object leads to non-
determinism and must be prevented.

In this paper, we present a simple technique to check that a query method is an
equivalent-results method and that its result depends only on its parameters and the de-
clared influence set. This technique supports user-defined equivalence relations based
on, for instance, Equals methods. We use self-composition [2, 20] to simulate two ex-
ecutions of the method body from start states that coincide in the influence set and to
prove that the respective results are indeed equivalent. We also present axioms that en-
able reasoning about equivalent-results methods and argue why they are sound. Our
technique is very general: it supports user-defined equivalence relations, it does not re-
quire a particular way of specifying influence sets, and it uses a relaxed notion of purity.
In particular, implementations of query methods may use non-deterministic language
features and algorithms, and may return newly allocated objects. We plan to implement
our technique for pure methods in Boogie, but our results do not rely on the specifics of
Spec#. Therefore, they can be adopted by other program verifiers.

Outline. Section 1 provides the background on program verification that is needed
in the rest of this paper. Section 2 presents an encoding of equivalent-results methods
that enables the kind of reasoning discussed above. Section 3 explains our technique for
checking the equivalence of results. Section 4 discusses the application of our technique
to Spec#. The remaining sections summarize related work and offer conclusions.

1 Background on Program Verification

In this section, we review details of program verification relevant to our paper. For
a more comprehensive and tutorial account of this material, we refer to some recent
Marktoberdorf lecture notes [19].



class Appointment {
int time;
// . . . more fields here

pure override boolEquals(object o)
ensures GetType() = typeof (Appointment) ⇒

(result ⇐⇒
o 6= null ∧ GetType() = o.GetType() ∧
time = ((Appointment)o).time ∧ . . . more comparisons here);

{ . . . }
}

class Calendar {
pure Appointment GetEarliestAppointment(int day) {

Appointment a;
// find earliest appointment on day day
. . .
return a.Clone();

}

void ScheduleMorningMeeting(int day , List 〈Person〉 invitees)
requires 10 6 GetEarliestAppointment(day).time;

{ . . . }
}

class Person {
voidInvite(Calendar c, . . .) {

if (10 6 c.GetEarliestAppointment(5).time) {
// compute invitees
List 〈Person〉 invitees = new List 〈Person〉();
while (. . .) {

. . .
invitees.Add(p);

}
// schedule those invitees
c.ScheduleMorningMeeting(5, invitees);

}
}

}

Fig. 2. A Calendar program whose GetEarliestAppointment method returns an equivalent
value as long as the calendar does not change. The correctness of the code fragment at the bot-
tom of the figure depends on that the call to GetEarliestAppointment in the precondition of
ScheduleMorningMeeting returns a value that is equivalent to the one returned by the call to
GetEarliestAppointment in the guard of the if statement.



Architecture of Program Verifiers. To verify a program, the program’s proof obliga-
tions (e.g., that preconditions are met) are encoded as logical formulas called verifica-
tion conditions. The verification conditions are valid formulas if and only if the program
is correct with respect to the properties being verified. Each verification condition is fed
to a theorem prover, such as an SMT solver or an interactive proof assistant, which at-
tempts to ascertain the validity of the formula or construct counterexample contexts that
may reveal errors in the source program. As has been noted by several state-of-the-art
verifiers, it is convenient to generate verification conditions in two steps: first encode
the source program in an intermediate verification language, and then generate input for
the theorem prover from the intermediate language [0,11, 4]. Since the second step con-
cerns issues that are orthogonal to our focus in this paper, we look only at the first step.
The notation we will use for the intermediate verification language is BoogiePL [0,10].
A BoogiePL program consists of a first-order logic theory, which in particular specifies
the heap model of the source language, and an encoding of the source program. We
explain these two parts in the following subsections.

Heap Model. We model the heap as a two-dimensional array that maps object iden-
tities and field names to values [23], so a field selection expression o.f is modeled as
$Heap[o, f ] . By making the heap explicit, we correctly handle object aliases, as is well
known [3, 23]. In the encoding, we use a boolean field $alloc in each object to model
whether or not the object has been allocated. The subtype relation is denoted by <: .

For any set S of locations (that is, of object-field pairs), we define a relation ≡S that
relates two heaps if they have the same values for all locations in S . More precisely:

(∀H ,K ,S • (H ≡S K ⇐⇒ ( ∀ o, f • (o, f ) ∈ S ⇒ H [o, f ] = K [o, f ] )) )

Note that ≡S is an equivalence relation: it is reflexive, symmetric, and transitive. If
H ≡S K , we say that H and K are equivalent modulo S .

We assume that pure methods do not modify the state of any object that is allocated
in the pre-state of the method execution. This definition allows a pure method to allocate
and modify new objects such as iterators [24]. More precisely, if H 0 and H 1 denote
the heaps immediately before and after the call to a pure method, and S is a set of
locations of objects that are allocated in H 0 , the following property holds:

H 0 ≡S H 1 (0)

Encoding of Source Programs. Each source-language method is encoded as a proce-
dure in the intermediate verification language. To understand the basic encoding, con-
sider a method M in a class C with a field y , shown in Fig. 3.

The specification of M has a precondition that obligates the callers of M to pass
a non-negative argument value. In turn, the precondition lets the implementation of M
assume x to be non-negative on entry. The specification also has a modifies clause
and a postcondition that obligate the implementation to make sure that its return value,
parameter x , and the y field of the method’s receiver object are related as specified,
and to modify only this.y . A caller can assume these properties upon return of a call.



class C {
int y ;
int M (int x )

requires 0 6 x ;
modifies this.y ;
ensures result + x 6 this.y ;

{ . . . }

Fig. 3. An example class in the source language, showing an instance field y and a method M
with a method specification.

procedure C .M (this, x ) returns (result);
requires this 6= null;
free requires $Heap[this, $alloc] ∧ $typeof (this) <: C ;
ensures result + x 6 $Heap[this,C .y ];
ensures (∀ o, f • o 6= this ∧ old($Heap)[o, $alloc] ⇒

$Heap[o, f ] = old($Heap)[o, f ] ∨ (o = this ∧ f = y) );
free ensures ( ∀ o • old($Heap)[o, $alloc] ⇒ $Heap[o, $alloc] );

Fig. 4. A BoogiePL procedure declaration that encodes the signature and specification of the
example method C .M .

A representative encoding of M as a BoogiePL procedure is shown in Fig. 4.
The procedure declaration makes the implicit receiver parameter this explicit, and the
anonymous return value is encoded as a named out-parameter. The types in BoogiePL
are more coarse-grained than those in the source language, and for the purposes of this
paper, they are only a distraction, so we omit them altogether. Three things are worth
noting about the procedure specification.

First, method M ’s pre- and postconditions have direct analogs in the BoogiePL
procedure, where the implicit dereferencing of the heap in a field selection expression
is made explicit in the BoogiePL encoding.

Second, the method’s modifies clause is encoded as a BoogiePL postcondition that
dictates which locations in the heap are allowed to change. The latter says that for any
non-null object o allocated on entry to the method and for any field f , the heap at
location o.f is unchanged except possibly at location this.y .

Third, to verify a program, one often needs to know some properties that are guar-
anteed by the source language. For example, the static type of the receiver parameter
of method M is C and the source-language type checker thus guarantees that the allo-
cated type of the receiver is some subtype of C . The source language also guarantees
that all object references in use by a program are allocated and (thanks to the fiction
created by the garbage collector) remain allocated forever. To incorporate these guar-
anteed conditions in the encoding, BoogiePL conveniently offers free pre- and post-
conditions as part of a procedure declaration. Free preconditions are assumed on entry
to a procedure implementation, but not checked at call sites, and analogously for free
postconditions.



Proof Obligations and Soundness. Proving the correctness of a BoogiePL program
amounts to statically verifying that the program does not abort due to a violated as-
sertion (such as a precondition or postcondition). To do that, each assertion is turned
into a proof obligation. One can then use an appropriate program logic to show that the
assertions hold. For the proof, one may assume the conditions expressed as free precon-
ditions, free postconditions, and explicit assume statements. The verification is sound
if all of these assumptions actually hold.

2 Encoding of Equivalent-Results Methods

Our idea is to define an equivalence class of return values for each equivalent-results
method. We define the equivalence class via a programmer-defined similarity rela-
tion. Typical choices for the similarity relation are reference equality and the Equals
method. Rather than letting the similarity relation be the equivalence relation, we define
the equivalence class to be those values that are related by the similarity relation to a
particular element, called the anchor element. This has the advantage that the similarity
relation need not be symmetric and transitive, which in practice the Equals method
often is not [25]. Another advantage is that using an anchor element allows us to state
axioms that are handled more efficiently by the theorem prover.

In this section, we explain similarity relations, anchor elements, and the influence
sets that define the dependencies of method results.

Similarity Relations. For a method M , we let RM (H , r ,H ′, r ′) denote M ’s sim-
ilarity relation, relating r whose state is evaluated in heap H and r ′ whose state is
evaluated in heap H ′ . For example, if RM denotes equality of scalar values or refer-
ence equality for object values, we have:

RM (H , r ,H ′, r ′) ⇐⇒ r = r ′ (1)

and if RM uses the Equals method, we have:

RM (H , r ,H ′, r ′) ⇐⇒ @Equals(H , r ,H ′, r ′) (2)

where @Equals is a function automatically generated from the specification of Equals .
Value r is always a return value of the method; r ′ is either a return value, in which case
H = H ′ or the anchor element, in which case H ′ is a special heap AnchorHeapM (p)
where we evaluate anchor elements. The similarity relation defines an equivalence class
of values that are related to the anchor element.

For the Appointment .Equals method in Fig. 2, the following axiom is automati-
cally generated for function @Equals :

(∀H , this,K , o •
this 6= null ∧ $typeof (this) <: Appointment ∧ $typeof (o) <: Object ⇒

(@Equals(H , this,K , o) ⇐⇒
o 6= null ∧ $typeof (this) = $typeof (o) ∧
H [this, time] = K [o, time] ∧ . . . more comparisons here) )

(3)



where, here and throughout, quantifications over H and K range over well-formed
heaps. It is not the subject of our paper to describe how axioms for pure methods are
described, but see our previous work with Ádám Darvas [9, 8]; the difference is that
here we use one heap argument for each of the two parameters to Equals .

Influence Sets. The influence set is a set of locations in the heap. Let FM (H , p) de-
note the influence set of M as computed for parameters p in a heap H . Note that
the computation of the influence set may depend on the heap. For example, consider
a class Schedule with an Appointment field a . Suppose the influence set for some
method applied to a schedule s is given by the set of path expressions {s.a, s.a.time} .
Viewed in the intermediate-language notation, these path expressions denote the follow-
ing object-field pairs: (s, a), ($Heap[s, a], time) .

We require every influence set to be self-protecting [13], which means that any two
heaps equivalent modulo the influence set compute the influence set the same way:

( ∀H ,K , p • H ≡FM (H ,p) K ⇒ FM (H , p) = FM (K , p) ) (4)

Self-protection can be enforced by requiring the set of path expressions that specify the
influence set to be prefix closed: if it contains a path expression E .x .y , then it must
also contain the path expression E .x . Therefore, the expression E .x .y denotes the
same location in heaps H and K .

The influence set specifies which parts of the program state are allowed to influence
the return value. To a first order of approximation, the influence set is the read set or
read effect of the method [5], but, technically, we actually allow methods to read any
part of the state, as long as the values of things outside the influence set have no bearing
on the return value.

Anchor Elements. The encoding of equivalent-results methods has to allow us to prove
that two calls to an equivalent-results method M return equivalent results if the two
heaps before the calls are equivalent modulo the influence set of M . We reach this
conclusion in two steps. First, we encode by an axiom that the anchor element remains
the same as long as the program state indicated by the influence set does not change.
Second, we encode by a free postcondition that the actual return value of M is related
to the anchor element by the similarity relation. Hence, the results of the two calls to
M are in the same equivalence class.

Step A: In our intermediate-language encoding, we introduce a function AnchorM
that yields an anchor element for the equivalence class of the return values of M . We
axiomatize AnchorM as follows:

(∀ p,H ,K • H ≡FM (H ,p) K ⇒ AnchorM (H , p) = AnchorM (K , p) ) (5)

The axiom says that we pick the same anchor element whenever M is invoked with the
same arguments p in two heaps H and K that are equivalent modulo FM (H , p) . In
other words, the anchor element is a function of the program state projected onto the
influence set.



H 0 := $Heap;
call r := GetEarliestAppointment(c, 5);
H 1 := $Heap;
if (10 6 $Heap[r , time]) {

// code to compute invitees . . .
K0 := $Heap;
call r ′ := GetEarliestAppointment(c, 5);
K1 := $Heap;
assert 10 6 $Heap[r ′, time];
. . .

}

Fig. 5. A sketch of the code fragment from the bottom of Fig. 2, giving the names H 0 , H 1 ,
K0 , and K1 to the intermediate values of the heap, and giving the names r and r ′ to the return
values of the two calls to GetEarliestAppointment . The assert statement at the end shows the
condition that we want to prove.

Step B: We add to our encoding the following free postcondition:

free ensuresRM ($Heap, result ,AnchorHeapM (p),AnchorM ($Heap, p)); (6)

To make sure the anchor object always denotes the same equivalence class, we evaluate
its state in a special, constant heap AnchorHeapM . We postpone until Section 3 how
to justify this free postcondition.

Example. To prove the correctness of method Invite in Fig. 2, it suffices to show
that the two invocations of GetEarliestAppointment return equivalent values. Re-
call, the second invocation takes place during the evaluation of the precondition of
ScheduleMorningMeeting . Fig. 5 shows a BoogiePL encoding of that fragment. As
illustrated by the assert statement in Fig. 5, we wish to prove that H 1[r , time] equals
K1[r ′, time] .

The influence set of GetEarliestAppointment contains the fields that make up the
representation of the Calendar object. Let H 0 and H 1 denote the heaps immediately
before and after the first call to GetEarliestAppointment , and let K0 and K1 denote
the heaps immediately before and after the second call.

Since GetEarliestAppointment is pure, it does not change the values of any pre-
viously allocated locations (see condition (0)), so H 0 and H 1 are equivalent modulo
F(H 0, c, 5) , and K0 and K1 are equivalent modulo F(K0, c, 5) (we drop the sub-
script GetEarliestAppointment in this example). Assuming that the code that com-
putes invitees has no effect on the values of the locations in the influence set, we also
have that H 1 and K0 are equivalent modulo F(H 1, c, 5) . By self-protection (4), we
know that the three influence sets are equal. Thus, we can conclude by transitivity:

H 1 ≡F(H1,c,5) K1 (7)

By axiom (5) and equation (7), we conclude that the anchor elements for the two calls
are the same:

Anchor(H 1, c, 5) = Anchor(K1, c, 5) (8)



procedure M (p) returns (result)
requires P($Heap, p);
free requires Q($Heap, p);
ensures S(old($Heap), $Heap, p, result);
free ensures T (old($Heap), $Heap, p, result);
free ensuresRM ($Heap, result ,AnchorHeapM (p),AnchorM ($Heap, p));

{
var locals;
Body

}

Fig. 6. A procedure in the intermediate verification language, illustrating the general form of the
procedure into which the method translates.

Now let r and r ′ denote (as indicated in Fig. 5) the values returned by the two calls
to GetEarliestAppointment . The similarity relation is given by the Equals method.
Thus, we conclude from postcondition (6):

@Equals(H 1, r , AnchorHeap(c, 5),Anchor(H 1, c, 5)) and
@Equals(K1, r ′, AnchorHeap(c, 5),Anchor(K1, c, 5))

By axiom (3) and property (8), we have

H 1[r , time] = AnchorHeap(c, 5)[Anchor(H 1, c, 5), time] ∧
K1[r ′, time] = AnchorHeap(c, 5)[Anchor(H 1, c, 5), time]

from which we conclude H 1[r , time] = K1[r ′, time] , as required to establish the
precondition of the call to ScheduleMorningMeeting .

3 Verifying Equivalence of Results

As we mentioned in Section 1, soundness of a verification system comes down to jus-
tifying every assumption that the proof system allows a proof to make use of. In the
previous section, we introduced three conditions that we used as assumptions in the
proof. The first assumption is the axiom of self-protection (4). It can be justified by a
syntactic check on the path expressions used to define the influence set. The second
assumption is the axiom about AnchorM (5). It is justified on the basis that there ex-
ists a function AnchorM that satisfies the axiom, for example any constant function.
The third assumption is the free postcondition (6). In this section, we present a proof
technique based on self-composition that justifies this assumption.

Ordinarily, a method M gives rise to a verification condition prescribed by a Boo-
giePL procedure implementation like procedure M in Fig. 6, where p denotes the
in-parameters, P and S denote some checked pre- and postconditions, Q and T de-
note some free pre- and postconditions (cf. Fig. 4), locals are local variables, and Body
is the BoogiePL encoding of the implementation of method M .

For every equivalent-results method M , we will now prescribe a second BoogiePL
procedure, whose validity will justify the free postcondition (6). The key idea is to



procedure M ′(p) returns (result) {
var locals;

var $oldHeap := $Heap;
assume P($Heap, p) ∧ Q($Heap, p);
Body ′

assume S($oldHeap, $Heap, p, result) ∧ T ($oldHeap, $Heap, p, result);

assume AnchorM ($Heap, p) = result ∧ AnchorHeapM (p) = $Heap; // L0

havoc $Heap, locals, result ;
assume $Heap ≡FM ($oldHeap,p) $oldHeap;

$oldHeap := $Heap;
assume P($Heap, p) ∧ Q($Heap, p);
Body ′

assume S($oldHeap, $Heap, p, result) ∧ T ($oldHeap, $Heap, p, result);

assertRM ($Heap, result ,AnchorHeapM (p),AnchorM ($Heap, p)); // L1
}

Fig. 7. A procedure that checks by assertion (L1) that M satisfies its free postcondition (6).

execute the method body twice starting in states that agree on the values of the in-
parameters and all objects in the influence set. We then prove that the two executions
yield equivalent results. This second procedure has the form shown by M ′ in Fig. 7 and
is described as follows:

– The body of M ′ starts off with $Heap , locals , and result set to arbitrary values,
saves the value of $Heap in $oldHeap , and assumes the preconditions P and Q .

– It then performs Body ′ , which is Body with occurrences of old($Heap) replaced
by $oldHeap and occurrences of assert statements (i.e., checked conditions) re-
placed by assume statements. These assume statements are justified by the fact that
procedure M already prescribes checks for them, so if the conditions do not hold,
the program verifier will generate appropriate errors when attempting to verify M .

– Upon termination of Body ′ , the postconditions S and T are assumed. Again, S
can be assumed here because it is checked by M .

– We explain the assume statement (L0) below.
– Next, the code prepares for another execution of Body ′ . The second execution of

Body ′ is to start in a state where all locations of the influence set have the same
values as in the first execution. Thus, $Heap , locals , and result are set to arbitrary
values (using a havoc statement) and the value of $Heap is constrained (using an
assume statement) to be equivalent to $oldHeap modulo the influence set.

– The preconditions are assumed, Body ′ is executed a second time, and the postcon-
ditions are assumed.

– We explain the assert statement (L1) below.

The first half of M ′ culminates in assume statement (L0), which has the effect of
defining AnchorM ($Heap, p) and AnchorHeapM (p) to be the result value and result



heap of an arbitrary execution of the method (namely, the first execution of Body ′ ). In
fact, by axiom (5), (L0) defines AnchorM ($Heap, p) for all heaps that are equivalent
to $Heap modulo the influence set. The second half of M ′ checks that (6) is indeed a
postcondition of the method for all those equivalent heaps.

With that, we have justified all the assumptions that our technique introduces, and
thus we have established that our technique is sound.

4 Application to Spec#

In verifying Spec# programs, we have run across scores of examples like the one in
Fig. 0, where in Spec# the Count method tends to be a property getter, which is a form
of parameter-less method. By default, property getters are treated as pure methods that
read only the ownership cone of the receiver object. The ownership cone of an object
is the set of locations that make up the object’s representation [6]. Previously, our best
solution for dealing with this situation in the Spec# program verifier was to introduce an
axiom that says the return value of the method is a function of the ownership cone. But
such an axiom is not sound if a pure method returns newly allocated object or values
that are derived from such objects. Our technique in this paper gives a sound solution
to the problem, and we intend to implement it. In this section, we describe some issues
that pertain to the practical implementation of equivalent-results methods in Spec#.

We intend to restrict the choices for RM in Spec# to support only the two choices
(1) and (2). This will simplify the implementation while supporting the most common
similarity relations. (The only other useful similarity we found puts all non-null refer-
ences in one equivalence class.) To select between the two choices, we will introduce
a default choice and a method annotation (a custom attribute) that can override the
default.

For the influence set, we will only support the union of the ownership cones for
some subset of the parameters. Ownership provides a form of abstraction, allowing one
to specify influence sets without being specific about implementation details. There is
already a notion of confined in Spec# that says that a pure method reads the ownership
cone of a parameter. Moreover, the Spec# program verifier already has an encoding that
lets one deduce, for valid objects, whether or not the ownership cone of the object has
changed. The encoding is simply to inspect the object’s ghost field snapshot [8]. An
object is valid when its object invariant holds [18]. Since this is the precondition of
almost all methods, we will not attempt to prove ownership cones to be the same other
than via the snapshot field. Because of the snapshot encoding, we can write axiom (5)
as:

( ∀ p,H ,K • H [p, valid ] ∧ K [p, valid ] ∧ H [p, snapshot ] = K [p, snapshot ]
⇒ AnchorM (H , p) = AnchorM (K , p) )

(We have abused notation slightly: by H [p, valid ] and H [p, snapshot ] , we really mean
to refer to the valid and snapshot fields of all the parameters in p that contribute to
the influence set, and likewise for K .) In fact, there is an alternative way to encode this
property that is significantly more efficient for the SMT solver because it avoids quan-
tification over pairs of heaps. The alternative encoding [8] introduces an uninterpreted



function AM and uses it to more directly say that AnchorM (H , p) is a function of p
and H [p, snapshot ] :

( ∀ p,H • H [p, valid ] ⇒ AnchorM (H , p) = AM (p,H [p, snapshot ]) )

With the restriction to influence sets based on ownership cones and our focus on rea-
soning about these via snapshots, axiom (4) becomes trivial, so we omit it.

5 Related Work

The Java Modeling Language (JML) requires pure methods to be deterministic [17].
This requirement is not practical since pure methods often need to return newly allo-
cated objects, which is illustrated by many pure methods in JML’s model library [16].
Our notion of equivalent-results methods allows pure methods to return newly allo-
cated objects. Since our axioms are based on a user-defined similarity relation such as
an Equals method, determinism is not required for soundness.

The axiomatization of pure methods consists of two groups of axioms: method-
specific axioms that specify the behavior of each individual method and general axioms
that describe common properties of all pure methods. Previous work by Darvas and
Müller [9] focuses on the method-specific axioms, but does not discuss the general ax-
ioms that we provide in this paper. Their axiomatization is sound, but too weak for many
interesting examples. Darvas and Leino [8] present general axioms that are used in the
Spec# verifier Boogie. Some of their work assumes that a pure method is deterministic
and that its result depends only on a specified influence set, but these assumptions are
not checked. Therefore, their axiomatization is unsound for pure methods that return
newly allocated objects or whose result depends on locations outside the influence set.
Our work eliminates both sources of unsoundness.

Jacobs developed SpecLeuven, a variant of Spec# for multi-threaded programs. In
his work [12], inspector methods are syntactically enforced to be deterministic, which
is sound but overly restrictive. Influence sets are checked by an extension of the Boogie
methodology [18], which requires an object to be unpacked before its state is read.
Our verification technique based on self-composition does not require any particular
methodology.

ESC/Java2 [14, 7] also operates under the unchecked assumption that pure methods
are deterministic, which is unsound if they are not. Moreover, since JML specifications
typically do not declare an influence set, ESC/Java2 has but limited support for reason-
ing about the effect of a heap modification on the result of a pure method.

The influence sets we use in this paper are similar to read effects. However, read
effects constrain the whole execution of a method, whereas our influence sets only
constrain the method result. We allow methods to read arbitrary locations as long as
the result depends only on the declared influence set. Clarke and Drossopoulou [5]
show how to declare and check read effects in an ownership type system. We use self-
composition to verify influence sets, which is in general more fine-grained than type
checking and does not require a particular ownership scheme.

Self-composition has been applied to prove secure information flow [2, 20]. In fact,
proving that a method result depends only on a specified influence set can be seen as an



instance of secure information flow, where the method result, the method parameters,
and the locations in the influence set have a low security level and all other locations
have a high security level. In addition to information flow, we use self-composition to
prove that two executions of a method yield equivalent results.

Separation logic [21] provides a powerful and elegant way to reason about the ef-
fects of heap modifications. The effect of pure methods can be achieved by introducing
abstract predicates [22]. The influence set of a pure method corresponds to the footprint
of the predicate. The frame rule can be used to show that certain heap modifications do
not affect the truth value of the abstract predicate. However, even if pure methods are
not used in contracts, the correctness of some programs relies on the equivalent-results
property. We believe that our verification technique is also applicable to separation logic
in order to verify such programs.

6 Conclusions

In this paper, we introduced the notion of equivalent-results methods and explained
their usefulness for program specification: equivalent-results methods are expressive,
for instance, they may return newly-allocated objects, and they permit an axiomatiza-
tion that is sound and strong enough to verify interesting programs. We showed that the
equivalent-results property can be checked by an automatic program verifier using self-
composition. Our technique is very flexible: it does not require a particular program-
ming methodology, uses a relaxed notion of purity, and even handles non-deterministic
language features and algorithms. As future work, we plan to implement our technique
in the Spec# verifier Boogie.
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lyzing low-level software. In TACAS, volume 4424 of LNCS, pages 19–33. Springer, 2007.

5. D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type
and effect. In OOPSLA, volume 37(11) of SIGPLAN Notices, pages 292–310. ACM, 2002.

6. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA, volume 33(10) of SIGPLAN Notices, pages 48–64. ACM, 1998.



7. D. Cok. Reasoning with specifications containing method calls and model fields. Journal of
Object Technology, 4(8):77–103, 2005.
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