
Using the Spec# Language, Methodology, and Tools
to Write Bug-Free Programs

K. Rustan M. Leino0 and Peter Müller1

0 Microsoft Research, Redmond, WA, USA, leino@microsoft.com
1 ETH Zurich, Switzerland, peter.mueller@inf.ethz.ch

Manuscript KRML 189, 17 September 2009.

Abstract. Spec# is a programming system for the development of correct pro-
grams. It consists of a programming language, a verification methodology, and
tools. The Spec# language extends C# with contracts, which allow programmers
to document their design decisions in the code. The verification methodology
provides rules and guidelines for how to use the Spec# features to express and
check properties of interesting implementations. Finally, the tool support consists
of a compiler that emits run-time checks for many contracts and a static program
verifier that attempts to prove automatically that an implementation satisfies its
specification. These lecture notes teach the use of the Spec# system, focusing on
specification and static verification.

0 Introduction: What is Spec#

The Spec# programming system was built as a research effort to gain experience in
programming with specifications, focusing on how one can specify object-oriented pro-
grams and how the specifications can be enforced dynamically and statically [2]. These
lecture notes give a tutorial account of how to write and specify programs in Spec#. The
aim here is for the specifications to be detailed enough that programs can be verified
statically, using the Spec# static program verifier. The verifier checks that programs sat-
isfy their specifications and that they do not lead to run-time errors. It assumes sequen-
tial execution; that is, it does not check for concurrency errors such as data races and
deadlocks, and it might miss errors caused by insufficient synchronization of threads.

The verifier is run like the compiler—in fact, it can be turned on to run at “de-
sign time”, in the background as the programmer types in the program [0]. Akin to the
way a compiler performs separate compilation, the Spec# program verifier performs
modular verification, which means that it can be applied to pieces of a program sep-
arately. A programmer interacts with the program verifier only by supplying program
text and specifications and by receiving error messages, analogously to how a program-
mer interacts with the compiler. The goal of this tutorial is to provide the user with an
understanding of the concepts that underlie the Spec# specifications, which will also
help in deciphering the error messages.

The specifications of a program must describe the steady state of data structures
and must account for the changes that such data structures undergo. This can be done
in various ways. The way Spec# does this is to impose a programming discipline, a

2

methodology, that guides how specifications and programs are written. This methodol-
ogy is closely tied to the specification constructs provided by the language, for example
the invariant declaration. Through our experience, we have found that programming
problems that fit the methodology can be specified and verified with ease; however, we
have also found that it is too easy to fall outside the boundaries of what the methodology
permits. For this reason, it is much easier to verify programs when they are designed
with specification in mind from the start.

In the literature, the methodology used by Spec# has been called the Boogie method-
ology, since the Spec# programs are verified using a tool called Boogie. In retrospect,
this is a bit confusing, because the Boogie language and tool are also used in applica-
tions that are unrelated to Spec#. To reduce confusion in this tutorial, we will use the
words Spec# methodology and program verifier.

It is specifically not a goal of this tutorial to justify the Spec# methodology, only
to explain how it is used. Also, this tutorial is not a reference manual; it is more of
a cookbook for how to handle common situations. We conclude many sections in this
tutorial with notes on advanced features that we cannot describe in detail here and with
suggestions for further reading. These notes are marked with a “steep ascent” sign. We
focus on static verification of programs, but occasionally add remarks that pertain to
the dynamic checks that the Spec# compiler emits. Finally, we have done our best to
explain what Spec# is today, which in many small ways differs from what is described
in research papers that we and our colleagues have written; for example, the research
papers use many variations of syntax, describe solutions to specification problems that
have not been implemented in the Spec# programming system, spend many words and
theorems justifying the soundness of the approach, sometimes show specifications in
full detail whereas Spec# uses a host of defaults, and do not mention additional features
and automation that is available in Spec#.

Installing and Using Spec#. The Spec# binaries (and sources) and installation in-
structions are available from http://specsharp.codeplex.com/. We recommend using Z3
[5] as the theorem prover for the Spec# program verifier; it can be installed from
http://research.microsoft.com/projects/z3/. The Spec# installation requires Visual Stu-
dio. Once installed, Spec# can be used within Visual Studio or from the command line.

All examples presented in this tutorial are available online [11]. They compile and
verify with the latest Spec# version (v1.0.21125), which requires Visual Studio .NET
2008. To try an example File.ssc from the command line, first compile the program
to a library:

ssc /t:library /debug /nn File.ssc

and then run the program verifier

SscBoogie File.dll

The compiler option /debug produces a file File.pdb with debug information, which
is needed by the program verifier. The /nn switch makes non-null types the default (see
Section 1.0) and is used for all examples in this tutorial. Rather than running the verifier

3

separately, it is also possible to invoke it from the compiler by adding the /verify
switch (which in some cases has the side effect of giving more detailed source locations
in error messages). The /help option of the compiler and the verifier displays a list of
all available options.

To run the examples inside Visual Studio, create a new Spec# project (from File
→ New → Project) and edit its project properties (by right-clicking on the name
of the project in the Solution Explorer and then choosing Properties) as follows. In
the section “Configuration Properties”, set “ReferenceTypesAreNonNullByDefault”,
“RunProgramVerifier”, and “RunProgramVerifierWhileEditing” to true. The compiler’s
parser and type checker and the program verifier will now run automatically in the back-
ground while you are editing your code. The compiler and verifier show any errors they
detect using red or green squigglies at the location of each error. Hoving with the mouse
over such a squiggly displays the error message. All error messages are also shown in
the Error List (whose pane is made visible by View → Error List). To compile your
program into executable code, build the project (using Build → Build Solution).

1 Basics

In this section, we go through a number of small examples that illustrate the syntax
of some familiar specification constructs, as well as the use of some less familiar con-
structs. It also serves as an incomplete summary of features that Spec# adds to its basis,
C#. We assume a basic familiarity with C-like syntax, like that found in Spec#, C#, Java,
or C++. We also assume a basic familiarity with object-oriented concepts (for example,
classes, instances, fields) and how these are represented in Java-like languages.

1.0 Non-null Types

One of the most frequent errors in object-oriented programs is to dereference the null
reference. To eradicate this error, Spec#’s type system distinguishes between non-null
types and possibly-null types. In this tutorial, we assume non-null types to be the default.
In this mode, the type string is the type of all proper string objects, whereas the type
string? includes the string objects plus null.

The class NonNull in Fig. 0 declares three string fields, two with a non-null type
and one with a possibly-null type. On entry to a constructor, fields have zero-equivalent
values, in particular, fields of reference type initially hold the null reference. Each con-
structor of a class is responsible for initializing non-null fields with non-null values.0

If the class does not explicitly declare a constructor, a default constructor is implicitly
added by the compiler. In that case, non-null fields have to be initialized using a field
initializer in the declaration of the field. The constructor of class NonNull initializes
aString through a field initializer and anotherString through an assignment inside
the constructor body. It leaves maybeAString un-initialized.

0 There are actually two kinds of constructors in the language, those that, explicitly or implicitly,
call a constructor of the superclass and those that instead call another constructor of the same
class (using this(...)). Here and throughout, we only discuss the first kind of constructor; in
several ways, the other kind operates more like a method than a constructor.

4

class NonNull {

string aString = "Hello";

string anotherString;

string? maybeAString;

public NonNull() {

anotherString = "World";

}

public int GetCharCount() {

return aString.Length + maybeAString.Length; // type error

}

}

Fig. 0. An example using non-null and possibly-null types. The body of GetCharCount does not
type check because it dereferences a possibly-null reference, maybeAString.

The Spec# type checker does not allow possibly-null references to be dereferenced.
For instance, without further information, it flags the call maybeAString.Length in
Fig. 0 as a type error. There are several ways to make this code type check. First, we
could guard the call by a conditional statement (if) or expression. For instance, we
could write the second summand as

(maybeAString != null ? maybeAString.Length : 0)

Second, we could add a specification (for instance, an inline assertion, see below) that
expresses that maybeAString holds a non-null value. Third, we could convey the infor-
mation to the type checker through a type cast. For example, we could have written

((string)maybeAString).Length

which casts maybeAString from the possibly-null type string? to the non-null type
string. Here, since the type of the target is string, the dereference is permitted. The
correctness of the cast is checked by the program verifier.1

A synonym for the non-null type string is string!.2 The type cast can therefore
also be expressed as (string!). In cases where the programmer only intends to cast
the nullity aspect of the type, Spec# allows the cast to be written simply as (!). Thus,
the call could also have been written as ((!)maybeAString).Length.

1 As for other type casts, the compiler emits a run-time check for the cast. For this type cast, the
run-time check will include a comparison with null.

2 If the compiler is run in the mode where class names by default stand for the corresponding
possibly-null type, then one routinely uses string! to denote the non-null type. Also, regard-
less of the compiler mode used, both inflections ? and ! are useful in the implementations of
generic classes: if T is a type parameter constrained to be a reference type, then the naked name
T stands for the actual type parameter (which might be a possibly-null type or a non-null type),
T? stands for the possibly-null version of the type, and T! stands for the non-null version of
the type.

5

1.1 Method Contracts

One of the basic units of specification in Spec# is the method. Each method can include
a precondition, which describes the circumstances under which the method is allowed
to be invoked, and a postcondition, which describes the circumstances under which
the method is allowed to return. Consequently, an implementation of the method can
assume the precondition to hold on entry, and a caller of the method can assume the
postcondition to hold upon return. This agreement between callers and implementations
is often known as a method contract [16].

Consider the method ISqrt in Fig. 1, which computes the integer square root of
a given integer x. It is possible to implement the method only if x is non-negative, so

int ISqrt(int x)

requires 0 <= x;

ensures result*result <= x && x < (result+1)*(result+1);
{

int r = 0;

while ((r+1)*(r+1) <= x)

invariant r*r <= x;

{

r++;

}

return r;

}

Fig. 1. A Spec# program that computes the positive integer square root of a given number. To try
this example in Spec#, include this method in a class declaration like “class Example { ... }”.

the method uses a requires clause to declare an appropriate precondition. The method
also uses an ensures clause to declare a postcondition. This postcondition uses the
keyword result, which refers to the value returned by the method.3 The program ver-
ifier enforces preconditions at call sites and postconditions at all normal (that is, non-
exceptional) exit points.4 Note that a non-terminating method execution does not reach
an exit point and, therefore, trivially satisfies its postcondition. The Spec# verifier does
not check for termination.

Syntactically, a method can use any number of requires and ensures clauses, in
any order. The effective precondition is the conjunction of the requires clauses and the

3 Like value in C# (and Spec#), result is a context-sensitive keyword. In particular, result is
reserved only in postconditions; elsewhere, result is just an ordinary identifier.

4 Pre- and postconditions are also enforced dynamically by compiler-emitted checks. Through
these dynamic checks, a Spec# programmer benefits from contracts even if the program verifier
is never applied. If an entire program is successfully verified by the program verifier, then the
dynamic checks are guaranteed never to fail and could therefore, in principle, be removed.
With one exception—the assume statement, which we explain in Section 1.2—the dynamic
checks form a subset of the checks performed by the program verifier.

6

effective postcondition is the conjunction of the ensures clauses. Other specification
constructs in Spec# can be used cumulatively in a similar way. As Fig. 1 suggests,
method contracts are declared between the method type signature and the method body;
if the method has no body, as for abstract methods and interface methods, the contract
follows the semicolon that for such methods ends the method type signature.

A postcondition is a two-state predicate: it relates the method’s pre-state (the state
on entry to the method) and the method’s post-state (the state on exit from the method).
To refer to the pre-state, one uses the old construct: old(E) refers to the value of ex-
pression E on entry to the method.5 For example, consider the Counter class in Fig. 2.
The postcondition of method Inc uses old to say that the final value of x is to be strictly

class Counter {

int x;

public void Inc()

ensures old(x) < x;

{

x = 2*x; // error

}

}

Fig. 2. A simple class with an instance field that is modified by a method. The method implemen-
tation fails to establish the postcondition in the case that x was initially less than or equal to zero;
thus, the program verifier reports a “possible postcondition violation” error.

greater than its initial value.6 Regardless of old, an in-parameter mentioned in a method
contract always refers to the value of the parameter on entry (in other words, the fact that
the language allows in-parameters to be used as local variables inside the method body
has no effect on the meaning of the contract), and an out parameter always refers to the
value of the parameter on exit; ref parameters, which are treated as copy-in copy-out,
are sensitive to the use of old.

The Counter example in Fig. 2 also shows that contracts operate at a level of ab-
straction that is not available directly in the code: the contract promises that x will be

5 The old construct can be mentioned only in postconditions, not in, for example, inline asser-
tions or loop invariants, see below. When those specifications need to refer to the pre-state
value of an expression, one has to save it in an auxiliary local variable and use that variable in
the specification.

6 As a matter of consistent style, we prefer the operators < and <= over > and >=. This lets in-
equalities be read (by a human) from left to right, as if they were placed in order along a
number line. For example, 0 <= x && x < N “shows” x to lie between 0 and less than N; com-
pare this to the form x >= 0 && x < N, which does not give the same visual queue. A common
mistake is to write the negation of this condition as 0 < x || x >= N. If all inequalities are
turned the same way, the correct negation, x < 0 || N <= x, shows x as lying “left” of 0 or
“right” of N. Though we use and advocate this style, it has no effect on the operation of the
program verifier.

7

incremented, but does not let callers know by how much; the method body is thus free to
make the amount of increment a private implementation decision. Note that the imple-
mentation in Fig. 2 does not live up to the postcondition; this could be fixed by adding
a precondition such as 0 < x.

With one major exception, expressions that are given as part of contracts (like the
condition given in a requires clause) are like any other expressions of the language.
For example, they must type check and be of an appropriate type (bool in the case
of requires). The major exception is that expressions in contracts are restricted to
be side-effect free (pure). For example, the declaration requires x++ is not allowed.
The reason for this restriction is that contracts are supposed to describe the behavior
of the program, not to change it. In particular, whether run-time contract checking is
enabled (during testing) or disabled (in production code to increase performance) must
not influence the behavior of the program.

1.2 Inline Assertions

While method contracts indicate conditions that are expected to hold on method bound-
aries, the assert statement can be used in code to indicate a condition that is expected
to hold at that program point. Unlike a method contract, which spells out a contract
between a caller and an implementation, the assert statement only provides a form
of redundancy in the code—after all, the asserted condition is supposed to be a log-
ical consequence of the surrounding code. This redundancy can be useful, because it
gives a programmer a way to check his understanding of the code. In particular, the
program verifier will attempt to prove that the assert does indeed always hold. We shall
see several uses for this familiar statement throughout this tutorial.

For example, adding the statement

assert r <= x;

anywhere between the declaration of r and the return statement in Fig. 1 will cause
the program verifier to check that r is bounded by x.

Sometimes a programmer expects a condition to hold somewhere in the code, but
the condition cannot be proved as a logical consequence of the surrounding code and
specifications. For example, it may be that the condition follows from a pattern of calls
to methods that have not been given strong enough formal specifications. In such cases,
using an assert would cause the program verifier to issue a complaint. More appropri-
ate in such a case is to use an assume statement, which (like the assert) generates a
run-time check but (unlike the assert) is taken on faith by the program verifier. There
are good uses of assume, but one needs to be aware that it trades static checking for
dynamic checking. Hence, by writing down a condition that does not hold—an ex-
treme example would be assume false—the program verifier will be satisfied and the
incorrect assumption will not be revealed until the condition fails at run-time. Good
engineering will pay special attention to assume statements during testing and manual
code inspections.

The compiler and type checker also pay some attention to assert and assume state-
ments. For example, the type checker considers inline assertions for its non-null analy-

8

sis. For instance, the type error in method GetCharCount (Fig. 0) can be prevented by
adding assume maybeAString != null before the return statement.

1.3 Loop Invariants

A loop may prescribe an infinite number of different iteration sequences. Clearly, it is
not feasible to reason about every one of these individually. Instead, the loop’s iterations
are reasoned about collectively via a loop invariant. The loop invariant describes the set
of states that the program may be in at the beginning of any loop iteration.

The program verifier treats loops as if the only thing known at the beginning of
an iteration is that the loop invariant holds. This means that loop invariants must be
sufficiently strong to rule out unreachable states that otherwise would cause the program
verifier to generate an error message. For example, the condition r <= x holds on every
loop iteration in Fig. 1, but this loop invariant by itself would not be strong enough to
prove that the method establishes its postcondition. The program verifier enforces the
loop invariant by checking that it holds on entry to the loop (that is, before the first
iteration) and that it holds at every back edge of the loop, that is, at every program point
where control flow branches back to the beginning of a new iteration.

The loop in method ISqrt in Fig. 1 is a bit of a special case and coincides with
the form of the simple loops usually employed in teaching material. What’s special
is that the loop has only one exit point, namely the one controlled by the loop guard,
which is checked at the beginning of each loop iteration. In this special case, one can
conclude that the loop invariant and the negation of the loop guard hold immediately
after the loop. (In the case of ISqrt, this condition is exactly what is needed to prove the
method postcondition. In many other cases, this condition is stronger than needed for
the proof obligations that follow the loop, in the same way that an inductive hypothesis
in mathematics is usually stronger than the theorem proved.) In the general case of a
loop with multiple exits, one cannot conclude that the loop invariant holds immediately
following the loop, but it is still true that the loop invariant holds at the beginning of
every iteration, including at the beginning of the last iteration, the (partial) iteration in
which control flow exits the loop.

For example, consider the method in Fig. 3, which performs a linear search, back-
wards. Note that the loop invariant 0 <= n holds at the beginning of every loop iteration,
but it does not always hold after the loop, and ditto for the loop invariant with a quanti-
fier. The program verifier explores all possible ways through the loop body to determine
what may be assumed to hold after the loop.

Speaking of quantifiers, the example shows both an existential quantifier (exists)
and a universal quantifier (forall). Each bound variable in a quantifier must be given a
range with an in clause. Here, the range is a half-open integer range; for example, the
range (0: a.Length) designates the integers from 0 to, but not including, a.Length.
The program verifier currently supports only integer ranges in quantifiers, as well as
ranges over array elements that can be converted into quantifiers over integer ranges.
For example, the postcondition can equivalently be written as

ensures result == exists{int x in a; x == key};

9

bool LinearSearch(int[] a, int key)

ensures result == exists{int i in (0: a.Length); a[i] == key};

{

int n = a.Length;

do
invariant 0 <= n && n <= a.Length;

invariant forall{int i in (n: a.Length); a[i] != key};

{

n--;

if (n < 0) {

break;
}

} while (a[n] != key);

return 0 <= n;

}

Fig. 3. A linear search that goes through the given array backwards. The example illustrates a
loop with multiple exit points. In addition, the example illustrates the use of several invariant
declarations, which are equivalent to conjoining the conditions into just one invariant decla-
ration, and the use of quantifier expressions. Note that the interval (x: y) is half open, that is,
i in (x: y) says that i satisfies x <= i && i < y.

Quantified expressions are not confined to use in contracts, but can also be used in code.
For example, one could implement the linear-search method with a single line:

return exists{int x in a; x == key};

However, the program verifier currently does not understand quantifiers in code, so it
complains that it cannot prove the postcondition for this single-line implementation.7

Not all loop invariants need to be supplied explicitly. The program verifier con-
tributes to the loop invariant in two ways beyond what is declared. First, it performs a
simple interval analysis, which amounts to that inequality relations between a variable
and a constant often do not need to be supplied explicitly. For example, for a basic loop
like

s = 0;
for (int i = 0; i < a.Length; i++) {
s += a[i];

}

the program verifier infers the loop invariant 0 <= i; together with the loop guard
i < a.Length, the program verifier thus automatically verifies that this loop body al-

7 As an implementation detail, the program verifier does not work directly on the source code,
but on the bytecode emitted by the compiler. For contracts, the compiler also spills out some
meta-data that helps the program verifier. But to the program verifier, a quantifier in code just
looks like the loop that the compiler emits for it, and that loop does not have a loop invariant
that would permit verification.

10

ways accesses the array within its bounds. As another example, the program verifier
infers the loop invariant 0 <= r for ISqrt in Fig. 1, though that condition is not needed
to verify the method. The simple interval analysis does not understand values derived
from the heap, for example, so it is not able to infer the loop invariant 0 <= n in Fig. 3.8

Second, the program verifier infers and limits what the loop modifies. For instance, it
performs a simple syntactic analysis to infer that ISqrt does not modify x. We will have
more to say about modifications in Section 1.4.

Recall that the program verifier does not check that programs terminate. If a pro-
grammer wants help in checking that a loop terminates, it is possible to manually insert
such checks. For example, the program in Fig. 4 computes the value of a variant func-
tion (see, e.g., [15]) at the beginning of the loop body and then checks, just before the
end of the body, that the variant function is bounded and that the iteration has strictly
decreased the variant function. The responsibility for that the manually inserted code
actually does imply termination (for example, that all paths to the next loop iteration
are considered) lies with the user.

The current version of the Spec# program verifier does not check for arithmetic
overflow. Hence, for example, the error of computing mid in Fig. 4 as:

int mid = (low + high) / 2; // potential overflow

is not checked. Similarly, any overflow in the multiplication in Fig. 2 is not detected.

1.4 Accounting for Modifications

It is important that a caller can tell which variables a method may modify. For illustra-
tion, consider class Rectangle in Fig. 5.

To inform its callers that only X and Y are modified, method MoveToOrigin uses a
postcondition that specifies the values of Dx and Dy to be unchanged. Another way of ac-
complishing this is to use a modifies clause, like in the contract of method Transpose.
If a method’s modifies clause does not explicitly list some field of this, then the
modifies clause implicitly includes this.*, which means that the method is allowed
to modify any field of this. More precisely, unless the method has a modifies clause
that designates a field of this or explicitly lists this.*, this.** (explained in Sec-
tion 3.1), or this.0 (explained below), then the method contracts gets an implicit
modifies this.*. The default this.* is why the previous examples we have shown
do not complain about illegal modifications.

There are subtle differences between using a postcondition to exclude some mod-
ifications (from the default this.*), like MoveToOrigin does, and using a modifies
clause to allow certain modifications, like method Transpose does. The former allows
temporary modifications inside the method body, whereas the latter does not. For in-
stance, the code f++; f-- is considered a side effect that needs to be accounted for in
the modifies clause. Moreover, the former allows fields in superclasses and subclasses

8 The program verifier also implements some more powerful domains for its abstract-
interpretation inference [3], including the polyhedra abstract domain [4]. These can be selected
with the program verifier’s /infer option.

11

int BinarySearch(int[] a, int key)

requires forall{int i in (0:a.Length), int j in (i:a.Length); a[i]<=a[j]};

ensures -1 <= result && result < a.Length;

ensures 0 <= result ==> a[result] == key;

ensures result == -1 ==> forall{int i in (0: a.Length); a[i] != key};

{

int low = 0;

int high = a.Length;

while (low < high)

invariant 0 <= low && high <= a.Length;

invariant forall{int i in (0: low); a[i] < key};

invariant forall{int i in (high: a.Length); key < a[i]};

{

int variant = high - low; // record value of variant function

int mid = low + (high - low) / 2;

int midVal = a[mid];

if (midVal < key) {

low = mid + 1;

} else if (key < midVal) {

high = mid;

} else {

return mid; // key found

}

assert 0 <= variant; // check boundedness of variant function

assert high - low < variant; // check that variant has decreased

}

return -1; // key not present

}

Fig. 4. A method that performs a binary search in array a. The precondition says the array is
sorted, and the postconditions say that a negative result value indicates the key is not present and
that any other result value is an index into the array where the key can be found. The example
also illustrates a hand-coded termination check, which uses a variant function. Finally, the ex-
ample uses the short-circuit implication operator ==>, which is often useful in specifications, but
may also be used in code. As is suggested by the textual width of the operator, ==> has lower
precedence than && and ||, and the if-and-only-if operator <==> has even lower precedence.

12

public class Rectangle {

public int X, Y;

public int Dx, Dy;

public void MoveToOrigin()

ensures X == 0 && Y == 0;

ensures Dx == old(Dx) && Dy == old(Dy);
{

X = 0; Y = 0;

}

public void Transpose()

modifies Dx, Dy;

ensures Dx == old(Dy) && Dy == old(Dx);
{

int tmp = Dx; Dx = Dy; Dy = tmp;

}

public void Disturb(Rectangle r)

modifies r.*;

{

X = r.Y; r.X = Y;

Dx = min{Dx, r.Dx};

r.Dy = max{X, Dy + r.Dy, 100};

}

public void CopyPositionTo(Rectangle r)

modifies this.0, r.X, r.Y;

{

r.X = X; r.Y = Y;

}

public Rectangle Clone()

{

Rectangle res = new Rectangle();

res.X = X;

res.Y = Y;

res.Dx = Dx;

res.Dy = Dy;

return res;

}

}

Fig. 5. An example that shows several ways of specifying modifications. Method Disturb, which
performs some arbitrary changes to the rectangles this and r, includes uses of Spec#’s built-in
min and max, here applied to lists of 2 and 3 elements, respectively.

13

to be modified, whereas the latter does not. We defer further discussion of subclass and
virtual-method issues until Section 1.5.

Method Disturb in Fig. 5 obtains the license to modify fields of parameter r by
including r.* in the modifies clause. In addition, it is allowed modifications of this.*
by default, as usual.

Method CopyPositionTo modifies two fields of its parameter r, but does not modify
any field of this (unless this and r happen to be the same). To specify that behavior,
the method explicitly lists in its modifies clause the special form this.0. By itself,
this.0 does not refer to any field, but has the effect that the default this.* is not
added. So if this and r happen to be the same object, CopyPositionTo may modify
fields of this because it may modify fields of r. If this and r are different, the method
may modify r.*, but not fields of this.

Method Clone illustrates that new objects may be modified without declaring these
modifications in the modifies clause. In other words, a modifies clause constrains
the modification only of those objects that were allocated in the pre-state of the method.
Besides newly allocated objects, there are other objects whose modification is implicitly
permitted. We discuss those in Section 2.0.

Spec# does not feature conditional modifies clauses (like in JML [8]), which would
allow a method to include a modification term only in certain situations. Instead, the
method must include all possible modifications in the modifies clause and then use
ensures clauses to say when certain fields are not modified.

Array elements can also be listed in modifies clauses. In Fig. 6, method Swap af-
fects only elements i and j of the given array. Method Reverse can change any and
all elements of b, but must leave array a unchanged. The figure also shows a method
Caller, which calls the other two methods and demonstrates some of the properties that
the specifications of those methods allow the caller to conclude. Note how the assert
statements let us confirm our understanding of what the program verifier does with the
specifications.

To reason about the behavior of a loop, it is also important to have modifies infor-
mation. In Spec#, loops do not have explicit modifies clauses; instead, they inherit the
modifies clause of the enclosing method. For example, consider the following method:

void ContrivedModifications()
requires 8 <= Dx;
modifies X, Y;

{
Y = 125;
while (X < 27) {
X += Dx;

}
assert 8 <= Dx;
assert Y == 125; // error reported here

}

The method’s modifies clause grants the loop license to modify X and Y, but not
Dx. Therefore, the program verifier knows that 8 <= Dx remains true throughout the

14

public void Swap(int[] a, int i, int j)

requires 0 <= i && i < a.Length;

requires 0 <= j && j < a.Length;

modifies a[i], a[j];

ensures a[i] == old(a[j]) && a[j] == old(a[i]);
{

int tmp = a[i]; a[i] = a[j]; a[j] = tmp;

}

public void Reverse(int[] a, int[] b)

requires a.Length == b.Length && a != b;

modifies b[*];

ensures forall{int i in (0: a.Length); b[i] == a[a.Length-1-i]};

{

int low = 0;

int high = a.Length;

while (low < high)

invariant high + low == a.Length;

invariant forall{int i in (0: a.Length), i < low || high <= i;

b[i] == a[a.Length-1-i]};

{

high--;

b[low] = a[high];

b[high] = a[low];

low++;

}

}

public void Caller(int[] a)

requires 100 <= a.Length;

{

int[] b = new int[a.Length];
int x = a[57];

int last = a.Length - 1;

Reverse(a, b);

assert x == a[57]; // Reverse leaves a unchanged

assert b[last - 57] == x; // this is where a[57] ends up

Swap(b, 20, 33);

assert b[20] == a[last - 33]; // b[20] and b[33] were swapped

assert b[last - 57] == x; // Swap leaves b[last-57] unchanged

}

Fig. 6. Examples that show the modifies clause syntax for array elements. The quantifier in the
loop invariant of Reverse uses a filter expression, i < low || high <= i. Alternatively, for this
universal quantifier, the filter could have been written as an antecedent of an implication ==> in
the quantifier’s body.

15

method. Note, however, that no analysis is done to determine that this loop does not
make use of its license to modify Y; hence, the program verifier assumes nothing about
the value of Y after the loop, and an explicit loop invariant about Y is required in order
to prove the last assertion in the example.

1.5 Virtual Methods

Calls to virtual methods are dynamically bound. That is, the method implementation
to be executed is selected at run time based on the type of the receiver object. Which
implementation will be selected is in general not known at compile (verification) time.
Therefore, Spec# verifies a call to a virtual method M against the specification of M in
the static type of the receiver and enforces that all overrides of M in subclasses live up
to that specification [16, 14]. This is achieved through specification inheritance [6]: an
overriding method inherits the precondition, postcondition, and modifies clause from
the methods it overrides. It may declare additional postconditions, but not additional
preconditions or modifies clauses because a stronger precondition or a more permissive
modifies clause would come as a surprise to a caller of the superclass method.

Class Cell in Fig. 7 declares a virtual setter method for the val field. The override
in subclass BackupCell is allowed to declare an additional postcondition. It also has
to satisfy the inherited specification. In particular, method BackupCell.Set has to live
up to the implicit modifies clause of Cell.Set. This example shows that for virtual
methods, the default this.* is preferable over a more specific modifies clause such
as this.val because the former allows subclass methods to modify additional fields
declared in subclasses. Class GrowingCell attempts to implement a cell whose value
can never decrease. Since callers of Cell.Set cannot anticipate the extra precondition,
it is rejected by the Spec# compiler.

1.6 Object Invariants

The data associated with an object usually takes on many fewer values than the types of
the fields would allow. For example, the implementation Rectangle in Fig. 5 may keep
the width and height fields Dx and Dy as non-negative integers, even though their types
would also admit negative values. Furthermore, the designer of the class may decide to
set both Dx and Dy to 0 whenever the area of a rectangle is 0. Such properties can be
captured as object invariants. For example, class Rectangle may declare

invariant 0 <= Dx && 0 <= Dy;
invariant Dx == 0 || Dy == 0 ==> Dx == 0 && Dy == 0;

The object invariant is checked to hold at the end of each constructor of the class.
The program verifier also checks that every update to a field maintains the object invari-
ant. For example, with the invariants above, the program verifier checks that any value
assigned to Dx is non-negative. However, it is not always possible to maintain object
invariants with every assignment. For example, if Dx is changed from a positive value
to 0 (or vice versa), then the second invariant above requires Dy to undergo a similar
change; this means that there will be some point in the program when one of Dx and Dy

16

using Microsoft.Contracts;

public class Cell {

[SpecPublic] protected int val;

public virtual void Set(int v)

ensures val == v;

{ val = v; }

}

public class BackupCell : Cell {

[SpecPublic] protected int backup;

public override void Set(int v)

ensures backup == old(val);
{

backup = val;

val = v;

}

}

public class GrowingCell: Cell {

public override void Set(int v)

requires val <= v; // error

{ base.Set(v); }

}

Fig. 7. An example illustrating specification inheritance. The precondition in GrowingCell.Set

is rejected by the compiler. The custom attribute [SpecPublic] (declared in the
Microsoft.Contracts namespace, which is conveniently included with a using declaration)
allows a non-public field to be mentioned in public specifications. We discuss better ways to
support information hiding in Section 7.

has been updated but the other has not yet been updated accordingly. To allow object
invariants to be broken temporarily, Spec# includes a block statement expose. While an
object is exposed, its invariants need not hold; instead, they are checked at the end of
the expose block.

For example, if a Rectangle method wants to increase both the width and height by
10, it would do the following:

expose (this) {
Dx += 10;
Dy += 10;

}

Without the expose statement, the program verifier would complain with the somewhat
cryptic message “Assignment to field Rectangle.Dx of non-exposed target object may
break invariant: . . . ”. The expose statement is not always needed, however. For exam-
ple, if instead of adding 10 to Dx and Dy, the method were to double each of the fields:

17

Dx *= 2;
Dy *= 2;

then no expose is needed, since each statement maintains the class invariants.
To explain what is going on, we say that an object is in one of two states: mutable

or valid. When an object is in the mutable state, its object invariants need not hold and
its fields can freely be updated. When an object is in the valid state, its object invariant
is known to hold. Fields of a valid object are allowed to be updated only if the update
maintains all invariants. An object starts off as mutable and remains mutable until the
end of the constructor. After its construction, expose statements are used to temporarily
change an object from valid to mutable.

We will have much more to say about object invariants in the rest of the tutorial.
While things will get more complicated, the following basic intuitions will remain the
same: object invariants describe the steady state of the data of an object and there are
times when object invariants may be temporarily violated. An additional issue that we
will encounter is that an object invariant can be enforced only if it is known to the
program verifier, so in the modular setting where only some of the program’s classes
are visible, not all expressions are admissible as object invariants and more machinery
is needed to check those object invariants that are admissible.

2 Working with Object Invariants

In this section, we take a deeper look at working with objects and their invariants.

2.0 Aggregate Objects and Ownership

Abstractly, objects provide certain state and functionality, but the implementation is
rarely limited to the fields and methods of a single object. Instead, the fields of the
object reference other objects, often of different classes, and those objects reference
further objects, and so on. In other words, the implementation of a class usually builds
on other classes. We say that the joint functionality provided by these objects combine
into providing one aggregate object, and we say that the sub-objects or sub aggregate
objects are components of the larger aggregate object.

In Spec#, fields that reference a component of the aggregate are declared with the
[Rep] attribute, where “rep” stands for “representation”. This makes it possible for the
program text to distinguish between component references and other object references
that a class may have.

To keep track of which objects are components of which aggregates, Spec# uses
the notion of object ownership. We say that an aggregate object owns its component
objects. For example, for an object b of type Band in Fig. 8, b is the owner of b.gt, as
indicated by the [Rep] attribute.9

9 Ownership describes the structure of objects and is used by the program verifier. However,
no ownership information is kept at run time, so there are no dynamic checks that correspond
to the static checks performed by the program verifier. Consequently, the only way to detect
ownership-related errors is to apply the program verifier; at run time, such errors go undetected.

18

using Microsoft.Contracts;

class Band {

int gigs;

[Rep] Guitar gt;

Accountant accnt;

public void Play() {

expose (this) {

gigs++;

gt.Strum();

}

}

public Band() {

gt = new Guitar(10); // ...

}

// ...

}

Fig. 8. A simple example that shows a representation field gt, that is, a field that references a
component of the enclosing aggregate object. Notice that the using declaration is needed in order
to use Microsoft.Contracts.Rep unqualified. The example also shows another field, accnt,
which references an object that is not a component of the aggregate. Finally, the example shows
a typical method that operates on the aggregate object by calling methods on its components.

We explained before that an object is either in the mutable state (where its invariants
need not hold) or in the valid state (where its invariants are known to hold), and that
the expose statement is used to temporarily bring a valid object into the mutable state.
To take ownership into account, we subdivide the valid state. If a valid object has no
owner object or its owner is mutable, then we say that the object is consistent. This is
the typical state in which one applies methods to the object, for there is no owner that
currently places any constraints on the object. If the valid object does have an owner
and that owner is in the valid state, then we say the object is committed. Intuitively,
this means that any operation on the object must first consult with the owner. Figure 9
illustrates a typical heap configuration.

An implicit precondition of a method is that the target be consistent. This implies
that all components of the target are committed. Thus, to operate on a component, the
method body must first change the target into the mutable state, which implies that all
of its component change from committed to consistent.

For example, method Play in Fig. 8 wants to invoke the Strum method on this.gt.
Doing so without the expose statement would result in an error:10

10 The line and column numbers in the error messages refer to the files on the tutorial web page
[11], but we abbreviate the file names here.

19

mutable

consistent

committed

Fig. 9. A typical heap configuration. Objects are denoted by boxes; arrows point to an object’s
owner. Every heap has a thin layer of consistent objects that separate the mutable objects from the
committed. The expose statement temporarily shifts this layer downward by making a consistent
object mutable (and the objects it owns consistent).

Fig8.ssc(14,7): The call to Guitar.Strum() requires target object to be peer

consistent (owner must not be valid)

Most often when the program verifier produces this error, the program is either missing
an expose statement or is trying to operate on an object whose owner is unknown.
Sometimes, the latter is due to a missing [Rep] declaration.

Components of aggregate objects are implementation details that are not relevant to
clients of the aggregate. Therefore, whenever a method may modify the state of an ag-
gregate object, it is also allowed to modify its components, without mentioning those
components in the modifies clause. For instance, since method Play may modify the
state of its receiver (by its default modifies clause this.*), it may implicitly also modify
the state of the Guitar object gt, which is a component of the Band aggregate. So, in
summary, there are three cases in which a method has the permission to modify a field
o.f: when o.f is listed (implicitly or explicitly) in the modifies clause, when o has been
allocated during the execution of the method, and when o is a committed component of an
object that may be modified by the method. To make use of the second option, postcon-
ditions sometimes contain o.IsNew, which expresses that an object o has been allocated
by the method.

2.1 Ownership-based Invariants

An object invariant of an aggregate is allowed to constrain the state of its components.
For example, the Band class in Fig. 8 may expect its guitarist to be reasonably good:

invariant 7 <= gt.Level;

Or perhaps it wants to relate the guitarist’s participation with the band’s number of gigs:

20

invariant gigs <= gt.PerformanceCount;

Not all expressions are admissible as object invariants. For example, there are restric-
tions on which subexpressions can be dereferenced. Spec# permits an object invariant
if the program verifier has a way of checking that the invariant holds whenever the ob-
ject is valid. One such way is to use ownership: An ownership-based invariant of an
object may depend on the state of that object and its components. The program verifier
can check ownership-based invariants by enforcing that the components of an aggre-
gate object are changed only while the aggregate is mutable. So, “consulting with the
owner” is done by exposing the aggregate.

The invariants above are admissible ownership-based invariants, because the field
they dereference (gt) is a [Rep] field. If gt were not declared as [Rep], then trying to
include the invariants above in class Band would result in the following error, pointing
to the dereference of gt:

Fig8.ssc(8,18): Expression is not admissible: it is not visibility-based11,

and first access ’gt’ is non-rep thus further field access is not admitted.

Suppose Band includes the invariant about gt.PerformanceCount above, and sup-
pose the Strum method is specified to increment PerformanceCount by 1. Then the
expose statement in Fig. 8 correctly maintains the invariant, even though the update
gigs++ by itself may cause the invariant to be temporarily violated. On the other hand,
if gigs were incremented before the expose statement, then the program verifier would
flag an error, because invariants of valid objects must be maintained with every assign-
ment.

We have explained that mutable objects are not subject to invariant checking, whereas
each field update of a valid object must maintain the object’s invariants. But because
of the principle that updates of component objects must first consult the owner, field
updates are disallowed on committed objects. For example, if the body of method Play
started with the update

gt.Level++;

then the program verifier would complain:

Fig8.ssc(12,5): Target object of assignment is not allowed to be committed

We mentioned that an implicit precondition of a method is that its target be consistent.
This is important for modular verification: Knowing that the target’s owner is already
exposed allows the body of Guitar.Strum to update PerformanceCount even if it is
not aware of the Band invariant about gt.PerformanceCount. Moreover, it means that
method Play can make any change to the fields of the Band, as long as it maintains the
Band invariant, and it does not need to be concerned about the invariants declared in
classes that may (directly or transitively) own the Band object.

From what we have seen so far, public methods might as well wrap their entire body
inside an expose (this) statement. While that might be a good rule of thumb, it is not

11 We discuss visibility-based invariants at the end of this subsection.

21

always appropriate. First, one might argue that trying to make expose blocks as small
as possible is a good idea, because that makes it more clear where invariants might be
temporarily violated. Second, changing this to mutable disables certain operations, in
particular those that require this to be consistent. An example of that situation arises if
a public method calls another public method on this.

Spec# also supports so-called visibility-based invariants, which allow the invariant ex-
pression to dereference fields that are not declared with [Rep]. However, there is another
admissibility condition: A visibility-based invariant may dereference a field only if the
declaration of the invariant is visible where the field is declared. This allows the static
verifier to check for every field update that all objects whose visibility-based invariants
depend on that field are exposed. Visibility-based invariants are useful to specify invari-
ants of object structures that are not aggregates. The web site for this tutorial [11] contains
an example of visibility-based invariants. Further details can be found in our research pa-
per on object invariants [9].
In addition to ownership-based and visibility-based invariants, a dereference of a field
f in an invariant is admissible on the grounds that the value of f does not change. For
example, if f is a readonly field or is declared in an [Immutable] class, then any invariant
can depend on f. More generally, the invariant is admissible if the f field belongs to a
frozen object, one whose fields will never change again. Spec# already has a notion of
immutable types, but we omit details here, because we are working on replacing it with
an implementation of the more flexible notion of frozen objects [12].

2.2 Subclasses

A central facility provided by a subclass mechanism is the ability to extend a class with
more state. This has an effect on invariants and ownership, so we now refine the notions
we have introduced earlier.

A class frame is that portion of an object that is declared in one particular class, not
its superclasses or subclasses. For example, an object of type ResettingController,
see Fig. 10, has three class frames: one for ResettingController, one for Controller,
and one for the root of the class hierarchy, object.

Each class frame can contain its own object invariants, which constrain the fields
in that class frame. For example, class Controller declares an invariant that constrains
rate, but the subclass ResettingController does not mention the superclass fields.

We refine the notions of mutable and valid to apply individually to each class frame
of an object. For example, an object of type ResettingController can be in a state that
is valid for class frames ResettingController and object and mutable for class frame
Controller. We say an object is consistent or committed only when all its class frames
are valid. In other words, our terms “consistent” and “committed” apply to the object
as a whole, whereas “mutable” and “valid” apply to each class frame individually.

The expose statement changes one class frame of an object from valid to mutable.
The class frame to be changed is indicated by the static type of the (expression denoting
the) object. For example, in class ResettingController, expose ((Controller)this)
exposes the Controller class frame of the target, whereas the statement expose (this)
exposes the ResettingController class frame of the same object. Omitting the first of
these expose statements leads to the following complaint:

22

using Microsoft.Contracts;

using System;

public class Controller {

[Rep] protected Sensor s0;

[Rep] protected Sensor s1;

protected bool alarm;

protected int rate;

invariant s0.measurement != s1.measurement ==> alarm;

invariant rate == (alarm ? 10: 2);

public Controller() {

s0 = new Sensor();

s1 = new Sensor();

rate = 2;

}

// ...

}

public class ResettingController : Controller {

DateTime alarmTriggered;

int clearedAlarms;

invariant 0 <= clearedAlarms;

public void CheckAlarm() // call periodically

{

if (alarmTriggered.AddSeconds(5) <= DateTime.UtcNow &&

s0.measurement == s1.measurement) {

expose ((Controller)this) {

alarm = false;
rate = 2;

}

expose (this) { // optional

clearedAlarms++;

}

}

}

}

Fig. 10. An example that shows a superclass and a subclass (we omitted the declaration of class
Sensor). The invariant declared in each class is treated independently of the other. The invariants
of Controller express that an alarm is triggered when the measurements from the two duplicate
sensors are different. When an alarm has been signaled, the sampling rate of the sensor goes up.
Class ResettingController clears an alarm in case the last divergence between the measure-
ments was at least five seconds ago.

23

Fig10.ssc(32,9): Error: Assignment to field Controller.alarm of non-exposed

target object may break invariant: rate == (alarm ? 10: 2)

Fields of valid class frames can be updated (without an expose statement) provided the
update maintains the invariant; for example, the second expose statement in Fig. 10 is
not needed. As before, however, field updates are not allowed on committed objects.

Once an object has been fully constructed, only one class frame of an object is
allowed to be mutable at a time. For example, if one tried to nest the two expose state-
ments in Fig. 10, the program verifier would issue an error:

Fig10.ssc(34,17): Object might not be locally exposable

As a final adjustment to working with subclasses, we refine the notion of ownership:
an owner is an (object, class) pair. As with expose statements, static types and enclosing
contexts are used to indicate the class-component of this pair. For example, for an object
o with a [Rep] field f, the owner of o.f is (o,C), where C is the class that declares f.

In the discussion above, an object invariant constrains the fields declared in the same
class. Sometimes it is necessary to specify object invariants that relate fields from dif-
ferent class frames. For instance, class ResettingController might contain an invariant
that requires alarmTriggered to have some default value whenever alarm is false. An
invariant is allowed to mention a field from a superclass if that field is declared with at-
tribute [Additive]. To update an additive field, one has to expose the object for the class
declaring that field and all of its subclasses, which is done one class at a time with a spe-
cial additive expose statement. This ensures that the class frame with the invariant is
mutable when the field is updated. The tutorial web site contains an example with a addi-
tive fields. Additive fields are the default in many of our papers [1, 9, 10]. The difference
between additive and non-additive fields is discussed in another publication [13].

2.3 Establishing Object Invariants

Each constructor of a class is responsible for initializing the fields of the class in ac-
cordance with the object invariant. A constructor starts off mutable for the object being
constructed and the enclosing class. Therefore, fields of this declared in that class can
be assigned to without exposing the receiver, as illustrated by the assignments in the
constructor of Controller (Fig. 10). The class frame is changed to valid at the end of
the constructor, which is therefore where the invariant is checked.12

[Rep] attributes on fields can be seen as special object invariants that constrain the
owner of the object stored in the field. Any assignment to a [Rep] field must preserve
that special invariant, even when the class frame containing the field is mutable. In
the Controller example, the [Rep] fields s0 and s1 do not admit the value null, so
the constructor must assign to them. In Spec#, typical constructors produce objects
that are un-owned, so the right-hand sides of the assignments to s0 and s1 are un-
owned Sensor objects. So how is the ownership relation instituted? Any assignment
to a [Rep] field also has the effect of setting the owner of the right-hand side of the

12 If the program verifier has occasion to report an error for the default constructor, the source
location it uses is that of the name of the class.

24

assignment. Thus, Spec# automatically institutes the ownership relation when a [Rep]
field is being assigned to. Such an assignment requires the right-hand side to have no
owner or to already have the desired owner. That is, the assignment might set an owner
of a previously un-owned object, but it won’t automatically change an existing owner.

Until an object has been initialized for all of its class frames, it is not consistent (it
has mutable class frames) and, thus, cannot be used as receiver or argument to meth-
ods that expect consistent arguments. We discuss how to work with partially-initialized
objects in the following advanced remark.

Non-null types express a special kind of invariant that needs to be established by each
constructor. The virtual machine initially sets all fields of a new object to zero-equivalent
values, in particular, fields of reference types to null. So before the new object has been
fully initialized, it would be unjustified to assume that non-null fields actually contain
non-null values.
Until the initialization of an object is completed, we say that the object is delayed, mean-
ing that it is in a raw state where we can rely neither on the non-nullness of its fields nor
on its object invariants. Moreover, field values of delayed objects are themselves allowed
to be delayed. By default, the this object is delayed inside constructors.
A delayed object is in general not allowed to escape from its constructor. However, some-
times it is useful to call methods on delayed objects or to pass a delayed object as an
argument to a method call. This is permitted if the callee method or its parameter is
marked with the attribute [Delayed]. The consequence of this choice is that the method
is then not allowed to assume fields of non-null types to have non-null values, let alone
assume the object invariant to hold.a

An alternative is to mark the constructor with the attribute [NotDelayed]. This requires
that all non-null fields of the class be initialized before an explicit call of the superclass
(aka base class) constructor, base. A constructor can make a base call to a [NotDelayed]
superclass constructor only if it itself is marked as [NotDelayed]. A consequence of this
design is that after the base call, the this object is fully initialized and no longer delayed.
Therefore, it can be passed to methods without the [Delayed] attribute.
Fähndrich and Xia [7] describe the details of delayed objects. Examples for delayed ob-
jects and explicit base calls can be found on the tutorial web page.

a Any reference-valued parameter of a method, not just the receiver, can be marked with
[Delayed]. However, there is a bug in the current version of the program verifier that
makes the verification of methods with more than one [Delayed] parameter unsound.

3 Owners and Peer Groups

In this section, we explore more dimensions of ownership, especially sets of objects
with the same owner, so-called peers.

3.0 Peers

The ownership model introduced so far allows aggregate objects to maintain invariants
and to assume consistency of their components, for instance, when calling a method
of a component. However, not all interacting objects are in an aggregate-component
relationship. For example, a linked-list node n interacts with its successor node n.next,

25

but n.next is usually not thought of as a component of n. Rather, n and n.next have a
more equal relationship, and both nodes may be part of the same enclosing aggregate
object. Therefore, both nodes are more appropriately declared as peers, that is, objects
with the same owner. This is accomplished by the attribute [Peer].

A general guideline is to use [Rep] wherever possible, because it strengthens en-
capsulation and simplifies verification. [Peer] is appropriate when two objects are part
of the same aggregate (that is, the aggregate object has direct access to both objects)
or when the objects are part of a recursive data structure (such as the nodes of a linked
list).

Another guideline is to use [Rep] when the field references an object whose type
or mere existence is an implementation detail of the enclosing class, and to use [Peer]
when the field references an object that can also be accessed by clients of the enclosing
class. For example, in a typical collection-iterator pattern, the iterator has a field that
references the collection. This field is best marked as [Peer], because the collection is
not an implementation detail of the iterator and clients of the iterator may also access
the collection directly.

As another example illustrating the use of peer objects, consider the two classes in
Fig. 11. The Dictionary class makes use of some unspecified number of Node objects,
which by the [Peer] declaration on the next field are all peers. The Dictionary class
maintains a reference to the first and last of the Node objects, and declares the head
and tail fields as [Rep]. Note that, in general, a Dictionary object owns many more
objects than the two that are referenced directly by its fields.

Let us consider how the peer relation is instituted. The situation is analogous to
[Rep] attributes: if pr is a [Peer] field, then assignment o.pr = x automatically insti-
tutes a peer relation between o and x. Essentially, the assignment sets the owner of x to
be the same as the owner of o. But, as for [Rep] fields, Spec# won’t change an owner,
so the operation requires the right-hand side to start off having no owner or already
having the desired owner. Moreover, an assignment to a [Peer] field requires that the
target object not be committed—one is allowed to add peers to an object o only at times
when the invariant of o’s owner need not be maintained. We will illustrate these rules
with the two versions of an Insert method shown in Fig. 11.

The body of method InsertA first records the value of head in local variable h,
and then sets head to a newly allocated Node. Since head is declared with [Rep], the
assignment to this.head also sets the owner of the new Node to this. Then, since next
is a [Peer] field, the assignment head.next = h sets the owner of h to be the same as
the owner of head, which is this; in this case, the owner of h was already this, so the
assignment to the [Peer] field is allowed and has no net effect on the ownership of h.

The expose statement in InsertA is required. First, the class invariant in Dictionary
would be broken by the assignment to head if head were initially null. By using the
expose statement, the code is allowed to temporarily violate the invariant; the assign-
ment to tail restores the invariant. Second, the assignment of a [Peer] field requires
the target object not to be committed; without the expose statement in InsertA, the
program verifier would issue a complaint:

Fig11.ssc(23,7): Target object of assignment is not allowed to be committed

26

public class Dictionary {

[Rep] Node? head = null;
[Rep] Node? tail = null;
invariant head == null <==> tail == null;

public bool Find(string key, out int val) {

for (Node? n = head; n != null; n = n.next) {

if (n.key == key) { val = n.val; return true; }

}

val = 0; return false;
}

public void InsertA(string key, int val) {

expose (this) {

Node? h = head;

head = new Node(key, val); // new.owner = this;

head.next = h; // h.owner = head.owner;

if (tail == null) {

tail = head; // head.owner = this;

}

}

}

public void InsertB(string key, int val) {

expose (this) {

Node n = new Node(key, val);

if (head != null) {

Owner.AssignSame(n, head); // n.owner = head.owner;

n.next = head; // head.owner = n.owner;

}

head = n; // n.owner = this;

if (tail == null) {

tail = head; // head.owner = this;

}

}

}

}

class Node {

public string key;

public int val;

[Peer] public Node? next;

public Node(string key, int val) { this.key = key; this.val = val; }

}

Fig. 11. An example showing a linked list of key-value pairs. A Dictionary object owns all the
Node objects it reaches from head. The two variations of an Insert method illustrate two different
ways to accomplish the same result. The comments in the code show the automatic and manual
ownership assignments.

27

Method InsertA first updates head and then sets the next field of the new object.
An alternative would be to first set the next field and then update head, as in:

Node n = new Node(key, val);
n.next = head;
head = n;

But this code fragment poses a problem: when the [Peer] field n.next is assigned to,
Spec# will want to change the owner of the right-hand side, head, to the owner of n,
but since head already has an owner (and it is not the owner of n, for n has no owner at
this point), Spec# would have to do an ownership change, which it won’t do. In cases
like this, when one wants to change the owner of the target object, not of the right-
hand side, one has to resort to a manual ownership assignment. This is illustrated in
method InsertB, which uses the method Microsoft.Contracts.Owner.AssignSame.
While the automatic ownership assignments take care of the case when the right-hand
side is null, the manual ownership assignments do not; hence, the if statement in
InsertB. The remaining automatic ownership assignments in InsertB, see the com-
ments in the figure, have no net effect.

It is worth noting the direction of ownership assignments. Automatic ownership
assignments always affect the right-hand side of the field assignment. In contrast, the
Owner methods that can be used to manually change ownership change the owner of the
first parameter. For illustration, see the first two comments in method InsertB.

3.1 Peer Consistency

In the Dictionary example above, the peer objects, of type Node, are designed together
with the owner class, Dictionary. This need not always be the case. Sometimes, objects
may naturally occur as related abstractions, but without a specific client context in mind.
For example, a collection object may have a number of iterator objects. The collection
and its iterators are programmed together, but they can be used in any client context,
just like a collection by itself could be.

We show a simple collection and iterator example in Fig. 12. Each iterator holds a
reference to the collection it is iterating over. The iterator does not own the collection—
clients that use collections need the ability to acquire ownership; besides, a collection
may have several iterators, and they cannot all own the collection. Instead, the field
c is declared as [Peer]. Let us first explore why the field is declared [Peer] at all (as
opposed to having no ownership attribute) and then, in the next subsection, explore how
the peers are instituted.

Consider the GetCurrent method of the iterator. To determine if it has gone through
all the elements in the collection, it compares its index, i, with the number of elements
in the collection, Count. Then, it accesses the collection’s array, which requires the
index to be less than the length of that array. The correctness of this operation relies on
the invariant Count <= a.Length, which holds of valid collection objects. But how do
we know the collection to be valid?

One could add a precondition to GetCurrent, using the property IsConsistent,
which is available in all objects and which yields whether an object is consistent:

28

public class Collection {

[Rep] internal int[] a;

public int Count;

invariant 0 <= Count && Count <= a.Length;

public int Get(int i)

requires 0 <= i && i < Count;

modifies this.0;
{ return a[i]; }

public Iterator GetIterator() {

Iterator iter = new Iterator();

Owner.AssignSame(iter, this);
iter.c = this;
return iter;

}

// ...

}

public class Iterator {

[Peer] internal Collection? c;

int i = 0;

invariant 0 <= i;

public bool MoveNext() {

i++;

return c != null && i < c.Count;

}

public int GetCurrent() {

if (c != null && i < c.Count) return c.a[i];

else return 0;

}

public void RemoveCurrent()

modifies this.**;
{

if (c != null && i < c.Count) {

for (int j = i+1; j < c.Count; j++)

invariant 0 < j && c != null && 0 < c.Count;

{

expose (c) { c.a[j-1] = c.a[j]; }

}

expose (c) { c.Count--; }

}

}

}

Fig. 12. A rudimentary collection and iterator example, illustrating the use of peer objects inde-
pendent of any owning context. The example leaves out many common features of collections
and iterators that are not the focus here. The access mode internal indicates that the field can
be accessed by other classes in the same assembly (which is .NET speak for “module”).

29

public int GetCurrent()
requires c != null && c.IsConsistent;

However, such a precondition reveals implementation details (one would have to declare
field c as [SpecPublic], change its access level, or use abstraction mechanisms).

Since it is quite common for objects to rely on the consistency of some of their
peers, Spec# uses another approach. It adds an implicit precondition to every method
that requires all in-bound parameters, including the target parameter, and all their peers
to be consistent. When an object and all its peers are consistent, we say the object (and
each of its peers) is peer consistent. Peer consistency is also an implicit postcondition
of all out-bound parameters and return values.

Requiring peer consistency as the precondition of GetCurrent is more than we need
for the example, but it has the advantage that GetCurrent does not explicitly need to
name the associated collection in its precondition.

To summarize, because of the implicit precondition of peer consistency, all we need
to do to verify method GetCurrent is to declare the field c as [Peer]. The peer consis-
tency of this then implies the (peer) consistency of c, and thus the invariant of c can
be assumed to hold and the array access c.a[i] can be verified to be within bounds.

The peer-consistency precondition makes it very easy to call methods of peer ob-
jects. Suppose the direct array access c.a[i] in method GetCurrent were replaced by
a call c.Get(i). The implicit precondition of Get is that the receiver, c, be peer con-
sistent. Since the iterator this and its collection c are peers, the peer consistency of
this (which is the implicit precondition of GetCurrent) implies the peer consistency
of c. Note that it is not necessary (nor possible) to enclose a call to c.Get(i) in an
expose (this) statement, whereas if c had been declared a [Rep], it would have been
necessary (and possible) to do so.

The peer-consistency precondition also allows a method to expose peer objects. For
instance, method RemoveCurrent exposes the collection c to remove an element. Its
modifies clause uses the wild-card this.**, which denotes all fields of all peers of
this. A more usable example would add a postcondition to recover information about
the state of the collection and the iterator.

Any time a method invokes a method on some object, say x, it needs to live up to the
precondition of the callee, which includes establishing the peer consistency of x. If x is a
parameter of the enclosing method or has been obtained from a new call or as the return
value of some other method, then x is typically already known to be peer consistent.
When x is obtained from a field of an object, say o.f, then peer consistency typically
follows from the [Rep] or [Peer] attribute on the declaration of field f. Omitting such
an attribute often causes the program verifier to issue a complaint like:

Sec3.1.ssc(12,5): The call to Demo.M() requires target object to be peer

consistent

because it cannot prove x and its peers to be valid. Peer consistency also includes not
being committed. Therefore, if f is a [Rep] field, one needs to expose o before calling
a method on o.f. Otherwise, the verifier reports an error such as:

Sec3.1.ssc(13,5): The call to Demo.M() requires target object to be peer

consistent (owner must not be valid)

30

Occasionally, it is useful to call methods on a receiver or with arguments that are not peer
consistent. For instance, a method might want to expose its receiver and then, from inside
an expose statement, call an auxiliary method on the receiver (see the tutorial web site
for an example). Spec# provides two ways of avoiding the implicit precondition of peer
consistency.
All implicit specifications can be turned off by marking a method with
[NoDefaultContract]. However, often one would like to turn off implicit specifi-
cations more selectively.
Methods parameters can also be declared with the attribute [Inside]. The implicit pre-
condition for an [Inside] parameter p of static type C says that p is exposed for C, and it
says nothing about the peers of this. To mark this as [Inside], place the attribute on
the method.
A consequence of using [Inside] is that the method cannot assume the object invariant
of the [Inside] receiver or parameter, and the caller of the method cannot assume the
object invariant to hold upon return. Instead, an [Inside] method must write explicit pre-
and postconditions that explain which conditions are to hold on entry and exit.

3.2 Peer Groups

In the previous subsection, we motivated the notion of peer consistency and the use of
that condition as an implicit method precondition. Let us now explore what peers and
peer consistency mean when an object has no owner.

An object always has some (possibly empty) set of peers, regardless of whether or
not the object has an owner. We say that an object always belongs to a peer group.
When an owner is assigned, the entire peer group is assigned that owner, so the peer
relation among the objects of the peer group is preserved. For example, for a [Rep]
field rp, an assignment o.rp = x transfers the entire peer group of x into ownership
by o. For a [Peer] field pr, an assignment a.pr = x merges the entire peer group of
x into the peer group of a. (As we mentioned before, both of these kinds of ownership
assignments require x to be un-owned or to already have the desired owner.) The use of
peer groups and the implicit precondition of peer consistency mean that an object does
not need to reveal to its clients what its peers are, which provides information hiding.

Peer groups may be enlarged and may be merged, but Spec# does not currently
provide any way to break up a peer group.

The treatment of peer groups and ownership in Spec# also means that the order in
which objects are made peers or assigned owners does not matter. For example, if one
wants to establish a situation where o owns both a and b, one can first merge the peer
groups of a and b and then set object o as the owner of the resulting peer group, or one
can first set o as the owner of a and then merge the peer group of b into that of a. As an
analogy, consider the process of going to dinner with some friends. One can either first
gather a group of friends (analogy: peers) and then decide which restaurant (analogy:
owner) to go to, or one can first decide which restaurant to go to and then find friends
to come along.

31

4 Arrays

In this section, we explain how Spec# handles arrays, especially how non-null types
and ownership work for array elements.

4.0 Covariant Array Types

C#, and therefore also Spec#, has covariant array types. That means that a variable of
static type T[] can hold an array whose allocated type is U[], where U is any subtype
of T. The property that the elements of an array are indeed of the array’s element type
cannot be ensured by the static type system. Instead, it is enforced dynamically by the
.NET virtual machine and also checked statically by the program verifier.13

For example, without further information, the method

void SetArrayElement(Controller[] a, int i)
requires 0 <= i && i < a.Length;
modifies a[i];

{
a[i] = new Controller(); // possible error

}

will cause the program verifier to complain:

Sec4.0.ssc(6,5): RHS might not be a subtype of the element type of the array

being assigned

This warns about the possibility that a has allocated type, say, ResettingController[],
in which case it is not allowed to assign a Controller object into a.

To prevent this complaint, one has to convince the program verifier that array-
element updates are correct, which usually boils down to showing that the allocated
type of the array equals its static type, say T[]. In some cases, this can be determined
without additional specifications, in particular if T is a sealed class or if T is a class
that is internal to the assembly (e.g., non-public) and the assembly does not define any
subclasses of T. In other cases, one needs to write a specification that constrains the
allocated type of the array.

For instance, in the example above, the following precondition takes care of the
problem:

requires a.GetType() == typeof(Controller[]);

The GetType method (which is defined for all references) returns an object (of type
System.Type) that represents the allocated type of a, and the expression typeof(T),
where T denotes a type, returns a System.Type object that represents the type T. GetType
may also be used in object invariants, which is useful when arrays are stored in fields.

13 However, Spec# currently ignores co-variance errors that occur when an array with non-null
element type is cast to an array of possibly-null elements. The compiler does not emit the
necessary run-time check, and the verifier also ignores this issue.

32

4.1 Arrays of Non-Null Elements

Array types typically have the form T?[]!, meaning that the array itself is non-null,
whereas the array elements are possibly-null instances of T. Either the ? or the ! can be
omitted, depending on the defaults used by the compiler. Besides this common form,
Spec# supports all other combinations of non-null and possibly-null, in particular, non-
null element types as in T![]!.

Unlike fields of non-null types, whose initialization in the constructors of the class
can be assured by syntactic definite-assignment rules, arrays of non-null elements are
initialized by arbitrary code that follows the new allocation of the arrays. Until that
initialization is completed, one cannot rely on the type of the array to accurately reflect
the non-nullness of the array elements. For this reason, the Spec# type checker provides
a special marker, in the form of a method NonNullType.AssertInitialized, which is
used to indicate a program point where the initialization code has completed. The type
checker will not give the array its declared non-null type until that point.

public void ExampleArrays() {

string[] food = { "black-eyed peas", "red hot chili peppers", "cream" };

WriteAll(food);

string[] series = new string[3];
series[0] = "The prime numbers start with 2, 3, 5, 7, 11, 13, 17";

series[1] = "The Fibonacci numbers start with 0, 1, 1, 2, 3, 5, 8";

series[2] = "The perfect numbers start with 6, 28, 496, 8128";

NonNullType.AssertInitialized(series);

WriteAll(series);

string[] facts = new string[10];
for (int n = 0; n < facts.Length; n++)

invariant n <= facts.Length;

invariant forall{int i in (0: n); facts[i] != null};
{

facts[n] = (n+1) + " ants is more than " + n + " elephants";

}

NonNullType.AssertInitialized(facts);

WriteAll(facts);

}

public void WriteAll(string[] ss)

{

foreach (string s in ss) {

Console.WriteLine(s);

}

}

Fig. 13. The WriteAll method takes a non-null array of non-null strings. Method
ExampleArrays shows several ways of initializing arrays with non-null elements. Method
NonNullType.AssertInitialized is declared in Microsoft.Contracts.

33

For illustration, Fig. 13 shows the initialization of three arrays. Array food is ini-
tialized in the same statement that allocates it, so the type checker can treat it as hav-
ing type string[] immediately. Arrays series and facts are initialized by code se-
quences. Thus, before these arrays can be used as having type string[], the code must
call AssertInitialized. At that call site, the program verifier checks that every array
element is non-null.14

If a program tries to use the array element before the array has been given its de-
clared type, the compiler will complain. For example, if the assignment to series[2]
in Fig. 13 is replaced by series[2] = series[1], the following type error results:

Fig13.ssc(13,17): Cannot store delayed value into non(or incompatibly)-

delayed location

despite the fact that the right-hand side of the assignment actually does have a non-null
value at that time.

Also, if the code does not include a call to AssertInitialized for an array of
non-null elements, the type checker complains:

Fig13.ssc(10,14): Variable ’series’, a non-null element array, may not have

been initialized. Did you forget to call NonNullType.AssertInitialized()?

Perhaps confusingly, the source location mentioned in the error message points to where
the array is declared, but this does not mean that AssertInitialized has to be called
there.

4.2 Ownership of Arrays and Array Elements

Just like nullness, Spec# allows one to specify ownership independently for an array
and its elements.

In Fig. 14, we show a class that uses an array of (possibly-null) Step objects.
Method AddStep of the class queues up drawing steps and method Apply performs
the work associated with these steps.

Ownership of Arrays. The last object invariant dereferences the array: steps[i]. To
make this invariant admissible, the class declares the field steps to be [Rep]. Without
the [Rep] attribute, the compiler’s admissibility checker would report an error:

Fig14.ssc(11,39): Expression is not admissible: first access on array or

binding member must be rep.

Note that this invariant constrains the state of the array object, but not of the array
elements. Therefore, this invariant does not require the array elements to be owned by
the DrawingEngine object.

Arrays do not have object invariants. Therefore, they need not be exposed before
an array element is updated. However, since an owning object might have an invariant
14 At run time, AssertInitialized performs a dynamic check that the array elements are not

null. The time needed to do so is proportional to the length of the array, but that is no worse
than the time required to initialize the array in the first place.

34

using System;

using Microsoft.Contracts;

public class DrawingEngine {

[Rep] [ElementsRep] Step?[] steps = new Step?[100];

invariant 1 <= steps.Length;

int cnt;

invariant 0 <= cnt && cnt <= steps.Length;

invariant forall{int i in (0: cnt); steps[i] != null};

public void AddStep(byte op, int argX, int argY) {

if (cnt == steps.Length) { EnlargeArray(); }

expose (this) {

Step s = new Step(op, argX, argY);

steps[cnt] = s;

cnt++;

}

}

void EnlargeArray()

ensures cnt < steps.Length;

{

expose (this) {

Step?[] more = new Step?[2*steps.Length];

Array.Copy(steps, 0, more, 0, steps.Length);

steps = more;

}

}

public void Apply() {

for (int i = 0; i < cnt; i++) {

Step? s = steps[i];

assert s != null;
expose (this) { s.DoWork(); }

}

cnt = 0;

}

}

class Step {

public byte op;

public int argX, argY;

public Step(byte op, int x, int y) {

this.op = op; argX = x; argY = y;

}

public void DoWork() { /* ... */ }

}

Fig. 14. This example class uses an array of owned Step objects. The call to DoWork in method
Apply requires s to be peer consistent. This information follows from the [ElementsRep] at-
tribute on steps, which says that the array elements are owned by the DrawingEngine object.
Note that we use an assert statement in method Apply to convince the type checker that s is
non-null. The verifier can prove this assertion using the third object invariant, but the type checker
does not consider object invariants.

35

that constrains the state of the array, array-element updates, like steps[cnt] = s in
AddStep, require the array not to be committed (that is, require the owner to be mutable).
The enclosing expose statement temporarily changes this from valid to mutable and
thus, since steps is a [Rep] field, changes the array steps from committed to peer
consistent. Without the expose statement, the program verifier would complain:

Fig14.ssc(17,7): Target array of assignment is not allowed to be committed

The expose statement could be wrapped around just the array-element update, but wrap-
ping it as shown in Fig. 14 also works.

Similarly, by its implicit precondition, the call to Array.Copy in EnlargeArray re-
quires its parameters to be peer consistent. The expose statement puts steps into the re-
quired state. As in AddStep, this particular expose statement is shown wrapped around
several statements, not just the call statement that needs it.

Ownership of Array Elements. The call s.DoWork() in method Apply requires the
Step object s to be peer consistent. As we have discussed in Section 3.1, for objects
stored in fields, peer consistency typically follows from ownership attributes on the
fields. Here, s is stored in an array, and we use the [ElementsRep] attribute on the field
steps to express that every non-null element of the array is owned by the enclosing
DrawingEngine object.

Without [ElementsRep] on steps, the program verifier would produce several error
messages for method Apply, complaining about the effects of DoWork and about the lack
of peer consistency at the call to DoWork:

Fig14.ssc(34,23): method invocation may violate the modifies clause of the

enclosing method

Fig14.ssc(34,23): The call to Step.DoWork() requires target object to be

peer consistent

Fig14.ssc(34,23): The call to Step.DoWork() requires target object to be

peer consistent (owner must not be valid)

With the [ElementsRep] attribute, the code exposes this, which makes steps[i] peer
consistent. Moreover, Apply is then allowed to modify the elements of steps because
they are components of the DrawingEngine aggregate.

Spec# also provides an attribute [ElementsPeer], which expresses that the array
elements are peers of the object containing the [ElementsPeer] field.

36

Spec# requires all elements of an array to have the same owner, even if that owner
is not specified by an [ElementsRep] or [ElementsPeer] attribute. For an array arr,
the call Owner.ElementProxy(arr) yields an artificial object that is a peer of the el-
ements of arr. This artificial object exists even if arr contains all null elements.
The element proxy of a new array is initially un-owned. It is set when the array is
assigned to an [ElementsRep] or [ElementsPeer] field. The element proxy can be
used to query and modify ownership information for arr’s elements. For instance, the
call Owner.AssignSame(Owner.ElementProxy(arr), this) makes the element proxy
of arr—and thus all current and future elements of arr—a peer of this. Like all owner-
ship assignments, this call requires the element proxy to be un-owned or to already have
the desired owner. Analogously to updates of [Rep] or [Peer] fields, assignments to array
elements, like steps[cnt] = s in AddStep, make the right-hand side of the assignment a
peer of the array’s element proxy.

5 Generics Classes

Instead of using arrays, it is often more convenient to use generic collection classes.
In this section, we illustrate how to write clients of generic classes. We do not discuss
how to implement generic classes, because the implementation of generic classes in the
Spec# compiler and verifier still needs improvement.

Figure 15 shows another version of class DrawingEngine from Fig. 14, this time
using the generic class List. The implementation based on List is significantly simpler.
One reason for this is that we can use a list of non-null Step objects, which simplifies
the specifications. The details of dealing with a partially-filled array are hidden inside
the List class.

Ownership for generics is very similar to arrays, with two differences. First, for
instances of generics, one can specify the owner individually for each generic type
argument. This is done by passing the number of the type argument to the attributes
[ElementsRep] and [ElementsPeer] (starting with 0, of course). For instance, declar-
ing a field

[ElementsPeer(0)] Dictionary<K,V> dict;

adds implicit checks and assumptions to all operations on dict that values of type K are
peers of this. When the number is omitted, like in the declaration of steps in Fig. 15,
the attribute refers to all type arguments.

Second, there are no automatic owner assignment when objects are passed to oper-
ations of generic classes. For instance, method AddStep has to assign an owner to the
new object s before passing it to List’s Add method. Omitting this assignment leads to
the following complaint from the verifier:

Fig15.ssc(13,7): Error: The call to System. · · ·.List<Step!>.Add(Step! item)

requires item to be a peer of the expected elements of the generic object

6 Capturing Parameters

A standard way to construct an aggregate object is to construct the components inside
the constructor of the aggregate. For example, the constructor of the Band class in Fig. 8

37

using System.Collections.Generic;

using Microsoft.Contracts;

public class DrawingEngine {

[Rep] [ElementsRep] List<Step> steps = new List<Step>();

public void AddStep(byte op, int argX, int argY) {

expose (this) {

Step s = new Step(op, argX, argY);

Owner.AssignSame(s, steps);

steps.Add(s);

}

}

public void Apply() {

foreach (Step s in steps) {

expose (this) { s.DoWork(); }

}

steps = new List<Step>();

}

}

Fig. 15. The DrawingEngine from Fig. 14, this time using the generic class List. The Step class
is unchanged. Like for arrays, attribute [ElementsRep] indicates ownership for the elements of
the collection. However, the owner has to be set explicitly before an object is stored in the list.

initializes its gt field to a Guitar object that it allocates. Sometimes, a component
is provided by a client of the aggregate, either during construction or via a method.
This is useful, because it allows the client to customize the component, for example by
allocating it to be of a particular subclass.

6.0 Customizing Rep Fields

Consider again the Band class, this time with a constructor and a method that accept a
Guitar that is to become a component of the Band, see Fig. 16. Since gt is declared as
[Rep], the assignment gt = g will set the owner of g to this, and the operation requires
g to be un-owned. This precondition and license to modify an owner are obtained by
declaring the parameter with [Captured]. Intuitively, the [Captured] attribute says that
the parameter is passed in but does not “come back out”. More precisely, [Captured]
says that the callee has the right to take ownership of the object referenced by the
parameter, and that a caller should not expect to be able to directly use the object after
the call.15

15 Spec# currently does not support an [ElementsCaptured] attribute that would allow a method
to capture the elements of an array or a generic collection.

38

class Band {

[Rep] Guitar gt;

public Band([Captured] Guitar g)

{

gt = g;

}

public void ReplaceGuitar([Captured] Guitar g)

requires Owner.Different(this, g);

ensures Owner.Is(g, this, typeof(Band));
{

gt = g;

}

// ...

}

Fig. 16. An example that shows how clients can, via either a constructor or a method, supply an
object that is to become a component of the Band aggregate. This allows a client to supply an
appropriate Guitar object. The [Captured] attribute allows the callee to assign ownership to a
parameter. The method Owner.Is yields whether its first argument is owned by the class frame
specified by its second and third argument—here, (this,Band).

The [Captured] attribute affects a method’s (or constructor’s) precondition and
modifies clause16, but it has no effect on the postcondition. So, without further specifi-
cation, the caller does not get to find out how the parameter is captured. This is usually
satisfactory when captured into a [Rep] field, since the [Rep] field is usually an imple-
mentation detail of the class. Nevertheless, it is possible to write an explicit postcondi-
tion. For example, a postcondition gt == g will do. Another way to do it is to use the
Owner.Is predicate as shown for method ReplaceGuitar in Fig. 16.17

Here is a possible client of the Band:

Guitar g = new BumperGuitar();
Band r = new Band(g);
r.Play();
g.Strum(); // error

This client decides to use a particular Guitar subclass, BumperGuitar, for the Band it
constructs. Note that after calling the Band constructor, the caller still has a reference to

16 In fact, there is no explicit way of listing an owner “field” in a modifies clause. Even the
modifies clause term p.* does not give the right to modify the owner of p. So, the only way to
obtain the license to modify the owner of a parameter object is to use the [Captured] attribute.

17 Using Owner.Is in the postcondition of the constructor is more involved because of its actual
parameter this, which may not have been fully constructed yet—a Band subclass constructor
may have more work to do and, thus, the object is delayed (see Section 2.3).

39

the captured object g. However, the caller is not able to invoke a method on g, because
the caller cannot be sure that g is peer consistent (in fact, it will be committed).

Here is another client, somewhat contrived:

Band r = new Band();
Guitar g = new BumperGuitar();
r.ReplaceGuitar(g);
r.Play();
expose (r) {
g.Strum();

}

From the information in ReplaceGuitar’s postcondition, one can conclude that the
expose statement makes g peer consistent. Therefore, this client’s call to g.Strum()
verifies.18

One more thing remains to be explained about the example in Fig. 16, namely the
reason for the precondition of method ReplaceGuitar. Without this precondition, the
program verifier would complain about the assignment in the method:

Fig16.ssc(21,5): when target object is valid, it is not allowed to have the

same owner as RHS, because that would cause a cycle in the ownership relation

Or, if the assignment to gt occurred inside an expose statement, the program verifier
would issue a complaint at the end of that expose statement:

Fig16.ssc(23,5): All of the object’s owned components must be fully valid

The reason for these errors is the following scenario: The [Captured] attribute on pa-
rameter g entails the precondition of g having no owner. But this precondition still
allows g to have peers. Suppose that, on entry to the method, g and this were peers.
Then, the implicit ownership assignment that takes place when assigning to the [Rep]
field this.gt would create the incestuous situation that this owns g and yet this and
g are peers! This is disallowed and is the reason for these errors.

The predicate Owner.Different says that its two arguments are not peers. By using
it in the precondition of ReplaceGuitar, one avoids the errors above.

18 One can draw the same conclusion had the method’s postcondition been gt == g. However, it
is not possible to prove, after the call to r.Play(), that r.gt == g. This is because the implicit
modifies clause of r.Play() is r.*, which allows r.gt to be modified. But the modifies clause
does not permit modifying an owner, which is why one can conclude that g is still owned by r

at the time of the expose.

40

In addition to Different, the Owner class has a method Same. For static program verifi-
cation, these two predicates are each other’s negation. However, there is an important and
subtle difference in their run-time behavior. In principle, all contracts could be checked
at run time, but to keep the overhead reasonable, Spec# omits certain run-time informa-
tion and run-time checks, for example, ownership information. Consequently, predicates
like Owner.Same, Owner.Different, and Owner.Is cannot be computed at run time. In-
stead, these predicates all return true at run time. As long as these predicates are used
in positive positions (that is, not negated) in contracts, the program verifier will enforce
stronger conditions than are enforced at run time. So, to make a choice between Same and
Different, use the one that you can use in a positive position. It would be good if Spec#
enforced this “positive position rule” for the predicates concerned, but the current version
of Spec# does not implement any such check.

6.1 Customizing Peer Fields

It is also possible to capture parameters into [Peer] fields. Consider the example in
Fig. 17, which shows two constructors that establish a peer relationship between the
object being constructed and the object given as a parameter.

public class Iterator {

[Peer] public Collection Coll;

public Iterator([Captured] Collection c) // captures ’c’

ensures Owner.Same(this, c);

{

Coll = c; // c.owner = this.owner;

}

[Captured]

public Iterator(Collection c, int x) // captures ’this’

ensures Owner.Same(this, c);

{

Owner.AssignSame(this, c); // this.owner = c.owner;

Coll = c; // c.owner = this.owner;

}

// ...

}

Fig. 17. An example that shows two ways of setting up a peer relationship in a constructor. The
first constructor captures the parameter into the peer group of the Iterator being constructed;
the second constructs an Iterator in the same peer group as the parameter. Alternatively, either
postcondition could have been written as (the stronger) ensures Coll == c.

Both constructors take a parameter c and ensure that, upon return, this and c are in
the same peer group. A newly allocated object—that is, this on entry to a constructor—

41

starts off in a new, un-owned peer group. Like any other method, unless its specification
says otherwise, the constructor is not allowed to change this ownership information for
this, or for any other parameter. Therefore, a new expression typically returns a new
object in a new, un-owned (but not necessarily singleton) peer group.

The first constructor in Fig. 17 declares that it will capture the parameter, c. The
ownership relation (or, rather, the peer-group relation) is instituted automatically when
the [Peer] field Coll is assigned, as we have described in Section 3.0 and as suggested
by the comments in Fig. 17. This solution is not always the best, because it requires
the caller to pass in an un-owned collection c. A caller may be in a situation where the
collection already has an owner and the caller wants to create a new iterator for that
collection.

For these reasons, the second constructor in Fig. 17 shows the more common way
to set up a peer relationship in a constructor. The [Captured] attribute on the construc-
tor, which is to be construed as applying to the implicit this parameter, says that the
instigating new expression may return with the new object being placed in a previously
existing peer group (with or without an assigned owner). Thus “capturing” this instead
of c is usually a good idea, since ownership relations previously known to the caller are
unaffected. Moreover, since the object being constructed starts off with no owner, the
body of the constructor can easily live up to the precondition of the ownership assign-
ment it will effect. However, the automatic ownership assignment that is performed
with peer-field updates goes the wrong direction, so the body needs to use a manual
ownership assignment as shown in Fig. 17.

In the example, each of the two constructors declares a postcondition that tells
callers about the ownership of the new object, namely that it will be a peer of the param-
eter c. This kind of postcondition is common when a peer relationship is established,
but uncommon when a parameter is captured into a [Rep] field. The reason is the same
as the reason for choosing between [Rep] and [Peer]: [Rep] denotes something of
an implementation detail, promoting information hiding and letting the class write in-
variants that dereference the [Rep] field, whereas [Peer] is used when clients have an
interest in the object referenced.

7 Abstraction

When specifying the methods of a class, it is desirable to write the method contract
in terms of entities (fields, methods, or properties) that can be understood by clients
without violating good principles of information hiding. The compiler enforces the fol-
lowing rules: Entities mentioned in the precondition of a method must be accessible
to all callers; this means that they must be at least as accessible as the method itself.
Entities mentioned in the postcondition of a method must be accessible to all imple-
mentations of the method; this means that contracts of virtual methods (which can be
overridden in subclasses) cannot mention private entities and can mention internal en-
tities only if the method or its enclosing class is internal. These rules ensure that callers

42

public class Counter {

int inc;

int dec;

[Pure][Delayed]

public int GetX()

{ return inc - dec; }

public Counter()

ensures GetX() == 0;

{}

public void Inc()

ensures GetX() == old(GetX()) + 1;

{ inc++; }

public void Dec()

ensures GetX() == old(GetX()) - 1;

{ dec++; }

}

Fig. 18. A simple example that uses pure methods as a form of abstraction. Abstractly, a Counter

is a value that can be retrieved by GetX(). Concretely, the value is represented as the difference
between the number of increment and decrement operations performed. All method contracts are
written in terms of the pure method GetX(), not the private fields inc and dec.

understand the preconditions they are to establish and implementations understand the
postconditions they are to establish.19

But then, what can be used in contracts when most fields of the class are private
implementation details? The solution lies in abstracting over those details. For that
purpose, Spec# provides pure methods, property getters, and model fields, which we
explain in this section.

7.0 Pure Methods

A method that returns a value without changing the program state can provide a form
of abstraction. Such methods are called pure and are declared as such by the attribute
[Pure]. Pure methods are not allowed to have side effects.

The program in Fig. 18 represents a counter that can be incremented and decre-
mented. The current value of the counter is retrieved by the method GetX(), which is
declared as [Pure]. The specifications of the constructor and methods are given in terms

19 Spec# does not enforce similar restrictions on object invariants. So when a client exposes an
object, it might not understand the condition that has to hold at the end of the expose block.
However, since clients typically do not modify inaccessible fields, the program verifier can
nevertheless often prove that the invariant is preserved.

43

of GetX(), which means that clients are separated from the implementation decision of
storing the counter as the difference between the private fields inc and dec.

The way that the program verifier reasons about a pure method is via the specifi-
cation of the method: if the (implicit and explicit) precondition holds, then the result
will be a value that satisfies the postcondition.20 In the common special case that the
implementation of a pure method consists of a single statement return E, the compiler
implicitly adds a postcondition ensures result == E to the pure method if that would
make a legal postcondition, there is no explicit postcondition, and the method is not vir-
tual.21 In the example, it is this implicit postcondition of GetX() that lets the Counter
constructor and the Inc and Dec methods be verified. Experience shows that this “post-
condition inference” is usually desired. If one does not want the postcondition inference,
the workaround is simply to provide an explicit postcondition, like ensures true, or
to introduce a second statement in the body of the pure method, like:

[Pure] T MyPureMethod() { T t = E; return t; }

The implicit precondition for pure methods is different from the peer-consistency
precondition of ordinary methods. To see why, consider the following possible method
of the Band class (cf. Fig. 8):

[Pure]
public int MagicNumber() {
return 3 + gt.StringCount();

}

where gt is a [Rep] field and StringCount is a pure method of the Guitar class. To
compute its result, the implementation of this pure method makes use of values com-
puted by components of the aggregate—here, the number of guitar strings. Such pure
methods are common and of good form. However, if pure methods required peer consis-
tency, then MagicNumber would have to expose this before calling gt.StringCount().
For side-effect-free methods, which can never break any invariants, exposing objects is
unnecessary overhead. So, instead of requiring the receiver and its peers to be consistent
(which implies that the owner is mutable), pure methods only require the receiver and
its peers to be valid (saying nothing about the state of the owner). We call this condition
peer validity. Note that if an object, like a Band object, is peer valid, then so are all its
components, like the object gt.

20 If a contract calls a pure method, then the contract itself must make sure that the pure method
is called only when its precondition holds. In other words, a contract must always be well
defined. However, the current version of the program verifier does not check all contracts to be
defined. It does so for object invariants, but not for pre- and postconditions, for example. This
current omission in the program verifier can sometimes lead to some confusion. In particular,
if a pure method’s precondition is violated in a contract, then the effect will be that the program
verifier does not know anything about the result of the pure method.

21 Since Spec# encourages the use of specifications, it would be natural if the compiler did the
reverse: add an implicit implementation whenever the postcondition of a pure method has the
simple form ensures result == E. However, this is currently not supported by the compiler.

44

The example in Fig. 18 uses the pure method GetX in the postcondition of the
Counter constructor. Such usage is common but regrettably tricky. We explain it in
the following advanced remark.

Since the constructor is by default delayed (see advanced remark in Section 2.3), the type
checker enforces that any method it calls (on this) is also delayed, including any call
that occurs in the postcondition. Therefore, the example declares GetX to be [Delayed].
A consequence of that declaration is that method GetX cannot rely on the non-null prop-
erties of the receiver or the object invariant, but that does not present any problem in the
example.
If the pure method GetX had to rely on the object invariant, things would get more
complicated. Consider a variation of class Counter that represents a non-negative in-
teger and includes a precondition 0 < GetX() for method Dec. Then, the class could
be proved to maintain the invariant dec <= inc, and one may want to add the post-
condition 0 <= result to the pure method GetX(). To prove such a postcondition,
the method would require the invariant to hold, which is at odds with GetX() being
[Delayed]. Note that it is not an option to require the invariant through a precondition
requires dec <= inc, because this precondition would reveal hidden implementation
details.
To specify this variation of class Counter, it is necessary for the constructor and GetX

both to be non-delayed, which is achieved by removing [Delayed] from GetX and adding
[NotDelayed] to the constructor. Furthermore, the constructor must live up to the implicit
precondition of GetX, which is peer validity. This is a problem, because at the end of the
Counter constructor, this is valid only for Counter and its superclasses—any subclass
constructors have not yet finished, so the object is not yet valid for those class frames. A
simple, but sometimes untenable, way to address that problem is to declare Counter as a
sealed class, which forbids it from having subclasses. The resulting variation of Fig. 18
is available on the tutorial web page.
An alternative to making Counter sealed is to use the [Additive] mechanism mentioned
in an advanced remark in Section 2.2. This mechanism allows us to express that the re-
ceiver of GetX is valid for the class frames Counter and object, but mutable for all other
class frames (if any). This is exactly the case after the body of Counter’s constructor, at
the time the call to GetX in the postcondition is evaluated. See the tutorial web page for
an example.

7.1 Property Getters

In .NET, the usual way to write a GetX() method is to write a property X and to provide
for it a getter. Similarly, a SetX(x) method is usually written as the setter for a prop-
erty X. Properties are a facility that hides the underlying representation—X looks like
a stored value, but its value may be computed in some way rather than being directly
represented. Figure 19 shows the Counter class written in this more common way of
using a property getter.

In common usage patterns, property getters tend to present abstractions to clients,
and the implementations of property getters tend to have no side effects. Therefore,
Spec# makes property getters [Pure] by default. What we said in Section 7.0, for ex-
ample about inferred postconditions and about delayed type correctness and object in-
variants, also applies to property getters. Note in Fig. 19 that, syntactically, the attribute
[Delayed] is placed on the getter itself, not on the enclosing property declaration.

45

public class Counter {

int inc;

int dec;

public int X {

[Delayed]

get { return inc - dec; }

}

public Counter()

ensures X == 0;

{}

public void Inc()

ensures X == old(X) + 1;

{ inc++; }

public void Dec()

ensures X == old(X) - 1;

{ dec++; }

}

Fig. 19. The Counter class of Fig. 18 written with a property getter X instead of method GetX().

7.2 Purity: the Fine Print

Pure methods (including pure property getters) need to be side-effect free. Conse-
quently, a pure method’s implicit modifies clause is empty and the method must not
use any explicit modifies clause. But the handling of pure methods is more subtle than
simple side-effect freedom. Pure methods must also satisfy the following three require-
ments:

– Mathematical Consistency: We reason about pure methods in terms of their speci-
fications. For this reasoning to be sound, the specifications must be mathematically
consistent. In particular, if pure methods are specified recursively, the recursion
must be well founded. Spec# ensures well-foundedness by assigning a recursion
termination level (a natural number) to each pure method. The specification of a
pure method M may call a pure method p.N only if p is a [Rep] field (or a sequence
of [Rep] and [Peer] fields, starting with a [Rep] field) or if p is this and N’s recur-
sion termination level is strictly less than M’s. Consequently, for each such call, the
height of the receiver in the ownership hierarchy decreases or the height remains
constant, but the level decreases, which ensures well-foundedness. For most pure
methods, Spec# infers a recursion termination level automatically; it can also be
specified using the [RecursionTermination(r)] attribute.

– Determinism: Pure methods are usually used as if they had all the properties of
mathematical functions. In particular, pure methods are generally expected to be
deterministic. However, this is not the case when a pure method returns a newly

46

allocated object. The compiler performs some conservative, syntactic checks to en-
sure that this non-determinism is benevolent. These checks may instruct the user to
apply the attribute [ResultNotNewlyAllocated] to the pure method (in which case
the program verifier checks that the result value is not newly allocated) or apply the
attribute [NoReferenceComparison] to a pure method that may potentially get two
newly allocated references as parameters.

– Dependencies: It is important to know what state changes may interfere with the
value returned by a pure method. This is achieved by specifying the read effect of
each pure method using the [Reads] attribute. Typical values for this attribute are:

• [Reads(ReadsAttribute.Reads.Owned)] (the default for pure instance meth-
ods), which allows the contract and body of the pure method to read the fields
of this and any object that is transitively owned by this

• [Reads(ReadsAttribute.Reads.Nothing)] (the default for static pure meth-
ods), which allows a pure method to depend only on readonly fields.

• [Reads(ReadsAttribute.Reads.Everything)], which allows a pure method
to depend on all objects.

The compiler uses various syntactic rules to enforce that the contracts of pure meth-
ods stay within their allowed read effects. However, neither the compiler nor the
program verifier in the current version of Spec# checks the body of a pure method
against its specified read effects. Hence, any violation of the read effects in the body
goes undetected.

Further details and examples of all three requirements are available online.

7.3 Model Fields

Besides pure methods and property getters, Spec# provides yet another abstraction
mechanism. In contrast to regular fields, a model field cannot be assigned to; the model
fields of an object o get updated automatically at the end of each expose (o) block [10].
The automatic update assigns a value that satisfies a constraint specified for the model
field.

Figure 20 shows another version of the Counter class. The model field X is declared
with a satisfies clause whose constraint holds whenever the object is valid.

A model field is simpler to reason about than a pure method. First, its value changes
only at the end of expose blocks, whereas the value of a pure method may change
whenever a location in the read effect of the pure method is modified. Second, a model
field can be read even for mutable objects, whereas a pure method typically requires its
receiver to be valid. This makes it much easier to use model fields in constructors (note
that the code in Fig. 20 does not require a [Delayed] attribute) and object invariants.

However, model fields are more restrictive than pure methods. First, they have
no parameters. Second, a satisfies clause may depend only on the fields of this
and objects transitively owned by this (like a pure method marked with the attribute
[Reads(ReadsAttribute.Reads.Owned)]). So, a general guideline is to use pure meth-
ods or property getters when model fields are too restrictive; otherwise, model fields are
the better choice.

47

public class Counter {

protected int inc;

protected int dec;

model int X {

satisfies X == inc - dec;

}

public Counter()

ensures X == 0;

{}

public void Inc()

ensures X == old(X) + 1;

{

expose (this) { inc++; }

}

public void Dec()

ensures X == old(X) - 1;

{

expose (this) { dec++; }

}

}

Fig. 20. Class Counter of Fig. 18 with a model field X instead of method GetX(). The updates of
inc and dec must be done inside an expose block to ensure that X is being updated accordingly.

A satisfies clause does not have to specify a single value for the model field.
Especially in abstract classes, it is often useful to give a weak satisfies clause and
then declare additional satisfies clauses in subclasses. The value of a model field
o.f satisfies the satisfies clauses of those classes for which o is valid. The program
verifier checks that the satisfies clauses are feasible, that is, that there is a value that
satisfies them. This check fails for the following model field, because there is no odd
number that can be divided by 6:

model int Y {
satisfies Y % 2 == 1 && Y % 6 == 0;

}

Like for pure methods, the verifier applies heuristics to find an appropriate value. When
the heuristics are too weak, it is also possible to convince the verifier of the feasibility
by providing a suitable value using a witness clause in the declaration of a model field:

model int Z {
satisfies Z % 2 == 1 && Z % 5 == 0;
witness 5;

}

48

8 Conclusions

Learning to use a program verifier requires a different kind of thinking than is applied
in some other programming contexts today. It is harder than making sure that the pro-
gram sometimes works—it forces the programmer to think about all possible inputs,
data-structure configurations, and paths. The programmer does not need to imagine all
cases up front, because the program verifier will do this exhaustively. But the program-
mer constantly needs to face the question “How am I going to convince the program
verifier that this part of my program design is correct?”. This process, by itself, has
side benefits. For example, it can encourage simpler designs and better use of informa-
tion hiding. Also, the specifications that are written while interacting with the verifier
record design decisions that programmers otherwise have to reconstruct manually from
the code. Knowing what is involved in program verification can also improve one’s pro-
gramming practices in other languages, since it raises one’s awareness of correctness
issues and teaches the use of contracts at module interfaces.

Spec# is a state-of-the-art programming system for programming with specifica-
tions and applying program verification. Nevertheless, the system is not nearly as sim-
ple to use as we wish it were. For example, it is impossible to go very far without
understanding what it means for an object to be “consistent”. Therefore, learning how
to use the system takes patience, and experience will show how best to handle certain
situations.

We hope this Spec# tutorial provides a basis for understanding the many features
of the system and understanding the error messages that the verifier produces. We also
hope that the tutorial and the Spec# system itself will inspire others to improve the state
of the art, in the open-source distribution of Spec# as well as in other programming
systems yet to be designed.

Acknowledgments

We are grateful to Rosemary Monahan for the extensive feedback on drafts of this
tutorial.

References

0. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods
for Components and Objects: 4th International Symposium, FMCO 2005, volume 4111 of
LNCS, pages 364–387. Springer, September 2006.

1. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

2. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, CASSIS 2004, Construction and Analysis of Safe, Secure and Interoperable
Smart devices, volume 3362 of LNCS, pages 49–69. Springer, 2005.

49

3. Patrick Cousot and Rhadia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth Annual ACM Symposium on Principles of Programming Languages, pages
238–252. ACM, January 1977.

4. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, pages 84–96, January 1978.

5. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 4963 of LNCS, pages 337–340. Springer-Verlag, 2008.

6. Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specifi-
cation inheritance. In 18th International Conference on Software Engineering, pages 258–
267. IEEE Computer Society Press, 1996.

7. Manuel Fähndrich and Songtao Xia. Establishing object invariants with delayed types. SIG-
PLAN Not., 42(10):337–350, 2007.

8. Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David R. Cok, Peter
Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmerman. JML Reference Manual.
Available from http://www.jmlspecs.org, May 2008.

9. K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In Martin
Odersky, editor, European Conference on Object-Oriented Programming (ECOOP), volume
3086 of LNCS, pages 491–516. Springer-Verlag, June 2004.

10. K. Rustan M. Leino and Peter Müller. A verification methodology for model fields. In
Peter Sestoft, editor, Programming Languages and Systems, 15th European Symposium on
Programming, ESOP 2006, volume 3924 of LNCS, pages 115–130. Springer, March 2006.

11. K. Rustan M. Leino and Peter Müller. Spec# tutorial web page, 2009.
http://specsharp.codeplex.com/Wiki/View.aspx?title=Tutorial.

12. K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. Flexible immutability with frozen
objects. In Natarajan Shankar and Jim Woodcock, editors, Verified Software: Theories, Tools,
and Experiments (VSTTE), volume 5295 of LNCS, pages 192–208. Springer, 2008.

13. K. Rustan M. Leino and Angela Wallenburg. Class-local object invariants. In First India
Software Engineering Conference (ISEC 2008). ACM, February 2008.

14. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

15. Zohar Manna and Amir Pnueli. Axiomatic approach to total correctness of programs. Acta
Informatica, 3(3):243–263, 1974.

16. Bertrand Meyer. Object-oriented Software Construction. Series in Computer Science.
Prentice-Hall International, New York, 1988.

