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Abstract. The combination of message passing and locking to protect shared
state is a useful concurrency pattern. However, programs that employ this pattern
are susceptible to deadlock. That is, the execution may reach a state where each
thread in a set waits for another thread in that set to release a lock or send a
message.
This paper proposes a modular verification technique that prevents deadlocks
in programs that use both message passing and locking. The approach prevents
deadlocks by enforcing two rules: (0) a blocking receive is allowed only if an-
other thread holds an obligation to send and (1) each thread must perform acquire
and receive operations in accordance with a global order. The approach is proven
sound and has been implemented in the Chalice program verifier.

0 Introduction

Concurrent threads of execution communicate and synchronize using various paradigms.
One paradigm is to let threads have shared access to certain memory locations, but to in-
sist that each thread accesses the shared memory only when holding a mutual-exclusion
lock. Two familiar programming errors that can occur with this paradigm are forgetting
to acquire a lock when accessing shared state and deadlocks, that is, not preventing sit-
uations where in a set of threads each is waiting to acquire a lock that some other thread
in the set is currently holding. Another paradigm is to let threads synchronize by send-
ing and receiving messages along channels. In a pure setting with channels, there are no
shared memory locations and data is instead included in the messages. Deadlocks are
possible programming errors in this setting, too. Here, a deadlock occurs when a set of
threads each is waiting to receive a message from another thread in the set.

Because each of these two paradigms is especially natural for solving certain kinds
of problems, there are also situations where one wants to use a combination of the
paradigms. For example, consider a concurrently accessed binary tree protected by
mutual-exclusion locks. An iterator of this data structure uses locks to read elements
from the tree, but may choose to provide these elements to clients via channels, which
are more suitable for that task. In the combined setting, a deadlock occurs when a set of
threads each waits for another thread in that set to release a lock or send a message.

In this paper, we consider program verification in the combined setting. In particular,
we present a technique for specifying programs in such a way that they can be verified
to be free of deadlock. Our technique is modular, meaning that the verifier can be run on
each part of a program separately. We consider multiple-writer, multiple-reader, copy-
free channels with infinite slack, that is, with non-blocking sends. The channels are first



class, meaning they can themselves be stored as shared data or passed along channels.
We describe the work in the context of the prototype language and verifier Chalice.

This paper is structured as follows. Sec. 1 describes the existing features of the
Chalice program verifier that are relevant to this paper. In Sec. 2 and 3, we extend
Chalice with channels and show how deadlock can be avoided. The formal details of
the verification technique together with a soundness proof are then given in Sec. 4 and 5.

1 Background on Chalice

Chalice [21, 22] is a programming language and program verifier for concurrent pro-
gramming. The language supports dynamically allocated objects and allows programs
to include contracts (specifications). The verifier detects common bugs such as data
races, null dereferences, violations of assertions and other contracts, and deadlocks. If
a program passes the verifier, it is compiled (via C#) to executable code for the .NET
platform. The executable code is free of contracts and ghost state, which the verifier
confirmed to hold and which were used only to make the verification go through. In
this section, we highlight Chalice’s features that are relevant to this paper: permissions,
locks, and deadlock prevention; see [22] for a full tutorial.

1.0 Permissions

Verification in Chalice centers around permissions and permission transfer. Conceptu-
ally, each activation record holds a set of permissions. A memory location can be read or
written by an activation record only if it has permission to do so. In this paper, we do not
distinguish between read and write permissions, but see [21]. We denote the permission
to access the field f of an object o by acc(o.f). Our implementation provides predi-
cates to abstract over permissions and to express permissions of whole object structures
[22], but we omit them here for simplicity. Permissions are part of the ghost state used
to reason about programs, but they are not represented in executable code.

The set of permissions held by an activation record can change over time. More
specifically, when a new object is created, the creating activation record gains access
to the fields of the new object. For example, when the method Main of Fig. 0 cre-
ates the object a, it gets permission to access a.balance, and thus it is allowed to
set a.balance to 10 on the next line. In a similar fashion, Main receives permission
to access b.balance when creating b. The fourth statement of Main is a method call:
call b.SetBalance(20);. Execution of a method call starts by pushing a new activa-
tion record onto the stack. What permissions does this new activation record initially
have? The answer to this question is determined by looking at the precondition (key-
word requires) of SetBalance, which indicates that the caller must hold the permis-
sion to access this.balance. This permission transfers from the caller to the callee
on entry to the method. In a similar fashion, the postcondition (keyword ensures) in-
dicates what permissions transfer from the callee to the caller when the method re-
turns. In our example, Main gives away its permission to access b.balance when it calls
b.SetBalance(20). The activation record b.SetBalance(20) uses this permission to
justify its update of b.balance, and then passes the permission back to the caller. That



is, SetBalance effectively just borrows the permission from Main; in general, however,
a method need not always return the permissions stipulated by its precondition.

class Account {

var balance: int;

invariant acc(this.balance);

method SetBalance(a: int)
requires acc(balance);
ensures acc(balance) && balance == a;

{ balance := a; }

method Transfer(from: Account, to: Account, amount: int)
requires waitlevel << from.mu && from.mu << to.mu;

{

acquire from;

acquire to;

fork tok := to.SetBalance(to.balance + amount);

call from.SetBalance(from.balance - amount);

join tok;

release to;

release from;

}

method Main()

{

var a := new Account;

a.balance := 10;

var b := new Account;

call b.SetBalance(20);

share a above waitlevel; share b above a;

call Transfer(a, b, 5);

}

}

Fig. 0. A small Chalice program illustrating permissions, permission transfer, locks, and deadlock
prevention.

If an activation record does not return the permissions that it may still hold at the
end of the method, then those permissions are lost forever. In effect, this renders some
fields inaccessible. We say that the method leaks the permissions, which is allowed.0

In addition to calls, Chalice supports fork statements. Just like an ordinary call,
execution of a fork statement leads to the creation of a new activation record. However,

0 The Chalice verifier has a -checkLeaks option that verifies the absence of leaking. An unused
object can then be returned to the system, along with the permissions to its fields.



the new activation record is not pushed onto the current stack, but rather a new thread
with its own stack is created and the callee is executed by the new thread. A fork oper-
ation is non-blocking. That is, the forking thread does not wait for the forkee to run to
completion; instead, the forking and forked threads execute concurrently. Using a join
statement, one thread can wait for another to complete. More specifically, fork returns
a token, and a join on a token causes the joining thread to wait for the completion of
the thread corresponding to the token. A token is allowed to be joined only once. Sim-
ilarly to an ordinary call statement, the activation record that does the fork loses the
permissions entailed by the precondition of the forkee, and the activation record that
completes the corresponding join gains the permissions entailed by the postcondition.
In our example, the forked activation record for SetBalance (in the method Transfer)
obtains access permission to from.balance, and this permission is returned at the join
statement.

Note that each call statement can be considered to be syntactic sugar for a fork
statement immediately followed by a corresponding join.

Chalice enforces that when one thread holds full permission to a memory location,
then no other thread can hold any permission to that memory location. This prevents
race conditions and lets the verifier reason about data invariants in the presence of mul-
tiple threads.

1.1 Locks

The machinery introduced so far allows synchronization and permission transfer be-
tween threads only when threads are forked or joined. However, access to shared data
such as a shared buffer requires various threads to obtain and relinquish permissions
while the threads are running. Access to shared data can be synchronized using mutual-
exclusion locks. In Chalice, a lock can hold access permissions, just like an activation
record can. Therefore, a thread can pass permissions to another thread by first transfer-
ring them to a lock, which allows the other thread to obtain them from the lock.

An object in Chalice can be in one of three states: not-a-lock, available, and held.
The object transitions between these states upon execution of a share, acquire, or
release statement. A newly allocated object starts in the not-a-lock state, where it
cannot be used as a lock. The share statement initializes a not-a-lock object as a lock
and transitions the object to the available state. The acquire operation waits until the
object is in the available state and then transitions it to the held state. The release
operation transitions the object back to available.

A class can declare a lock invariant (keyword invariant), which indicates, for each
lock corresponding to an instance of the class, what permissions are held by the lock
when the lock is in the available state. For example, the invariant declaration in class
Account of Fig. 0 indicates that the lock corresponding to an Account object o holds
permission to the field o.balance. In other words, the lock o protects o.balance. When
an activation record puts an object into the available state (by a share or release
operation), it transfers the permissions entailed by the object’s invariant to the lock.
Conversely, the permissions held by the lock are transferred to an activation record
when it completes an acquire operation on the lock.



So, when a thread wants to access a shared memory location, it uses an acquire op-
eration to compete for the lock that protects the location. Upon successful acquisition of
the lock, the permissions held by the lock are transferred to the acquiring thread. When
the thread is done accessing the location, it uses the release operation to release the
lock and transfer the permissions back into the lock. For example, the method Transfer
in Fig. 0 locks the shared Account objects from and to to gain access to their balance
fields.

Note that it is the mechanism of permissions that prevents data races. Lock acqui-
sition is one way to obtain permissions, but the act of holding a lock does not by itself
imply any rights to access memory.

1.2 Deadlock Prevention

To ensure mutual exclusion, the acquire operation suspends the execution of the ac-
quiring thread until the requested lock can be given to that thread. A well-behaved
program makes sure that other threads will eventually make such a lock available.

Chalice prevents deadlocks by breaking cycles among acquiring threads. This is
done by letting a program associate each lock with a wait level and then checking that
the program acquires the locks in strict ascending order. The wait levels are values
from a set Mu , which is a dense partial order with a bottom element. Chalice uses
<< to denote the strict partial order on Mu . A program specifies the wait level of a
lock using the share statement, which takes an optional between ... and ... clause.
Alternatively, a clause above ... or below ... may be used if only one bound is given.
By default, the share statement uses above waitlevel, where waitlevel denotes the
highest lock currently held by the thread. For example, method Main in Fig. 0 shares a
and b to make them available for locking. Since b is shared above a, a thread that holds
b is not allowed to acquire a.

The wait level of an object is recorded in a ghost field called mu. In this paper, we
assume mu to be immutable, that is, once a lock has been shared with a certain wait level,
that level cannot change. Our previous work [21] permits dynamic lock re-ordering,
which we omit here to focus on the essentials. Since mu is immutable, accesses to mu
do not require any permissions. In Fig. 0, Transfer’s precondition demands (0) that the
current thread only hold locks whose wait level is strictly below from.mu and (1) that
from’s level lie below to’s level.

2 Channels

A channel is an unbounded message buffer with two operations, send and receive. The
former operation adds a message to the buffer, while the latter blocks until a message
becomes available, removes that message from the buffer, and returns it to the receiving
thread. A channel may declare a message invariant (keyword where), which constrains
the messages sent over the channel and also specifies permissions that are transferred
over the channel along with each message.

As an example, consider the program of Fig. 1. The first two lines declare a new
channel type Ch with two parameters p0 and p1. These parameters indicate that each



message for a Ch channel object consists of two Person objects. The where clause states
that each message in a Ch channel carries the permissions for accessing the age field of
the persons passed as parameters. In addition, it specifies that p0 must be at least 18
years old. The method Main creates two persons, cooper and dylan, sends a message
on the channel ch, and finally receives a message on that channel. When an activation
record sends a message, the permissions entailed by the where clause transfer from the
sender to the message. Similarly, when a message is received, the permissions in the
message transfer to the receiving activation record. The mechanism makes the channels
copy-less, because only the object references among the message parameters, not the
data fields accessed from those references, are sent over the channel.

channel Ch(p0: Person, p1: Person)

where acc(p0.age) && acc(p1.age) && 18 <= p0.age;

class Person {

var age: int;

method Main() {

var cooper := new Person; var dylan := new Person; cooper.age := 62;

var ch := new Ch;

send ch(cooper, dylan);

// ...

receive a, b := ch;

}

}

Fig. 1. Declaration of a channel type Ch and a Mainmethod that sends and receives.

Note that, analogous to the semantics of pre- and postconditions and lock invariants,
it is an error if at a send statement the sender lacks the permissions entailed by the
message invariant or if the other constraints in the message invariant are not satisfied.
For instance, if we omitted the update cooper.age := 62;, then the verifier would
report that the last constraint in the where clause does not hold.

A program using channels can deadlock if a thread is blocked on a receive state-
ment, waiting for a message that is never sent. For example, consider the following code
snippet.

ch := new Ch;
receive a, b := ch; // deadlock

This program deadlocks, since the thread is blocked forever at the receive statement.
To avoid such deadlocks, we impose the restriction that a thread may perform a receive
statement only if there are sufficient messages in the channel or other threads hold
obligations to send. We enforce the restriction as follows.



In addition to permissions, each activation record holds a number of credits. We
denote the right to receive n messages (0 ≤ n) on channel ch by credit(ch, n). The
obligation to send n messages on ch is denoted by credit(ch, -n). We sometimes re-
fer to a negative credit as a debt. credit predicates can be used in specifications. Mul-
tiple occurrences of a credit predicate are equivalent to one predicate with the sum of
the credits, that is, credit(ch,i) && credit(ch,j) is the same as credit(ch,i+j).

A receive statement is allowed only if the activation record holds at least one credit
on the corresponding channel. Execution of a receive statement decreases the number
of credits by one. Conversely, a send statement increases the number of credits by one.
However, threads can always send messages without regard to the number of credits.
While positive credits (permissions to receive) can be leaked at the end of method bod-
ies, negative credits (obligations to send) must always be returned to the caller. These
rules enforce the invariant that the total sum of the number of credits for a channel Ch
never exceeds the number of items stored in the channel.

Just like permissions can be transferred between activation records (specified by
requires and ensures), so can credits. For example, in the program in Fig. 2, the
Main method transfers a debt to Producer. That is, Main decreases its balance for ch
by -1, resulting in a positive balance for Main. Consequently, Producer starts with an
obligation to send and Main has obtained permission to receive. Main then transfers a
credit to Consumer, resulting in a 0 credit balance for Main.

Also, just like permissions can be stored in lock invariants and message invariants,
so can positive credits. For example, every message with a non-negative x parameter in
Fig. 2 entails a credit. Thus, in effect, Producer puts into each such message a promise
that it will send yet another message, and this credit sent along the channel allows
Consumer to “pay” for its next receive operation.

Storing negative credits in lock or message invariants is not allowed. Since a pro-
gram need not acquire all available locks or receive all sent messages eventually, al-
lowing negative credits here would be a way to hide debt. We enforce this requirement
by a simple proof obligation for each lock and message invariant. Moreover, a call is
allowed only if transferring the credits entailed by the precondition does not bring the
caller into debt. This requirement is necessary to prevent a thread from creating a credit
by a simple local method call. The callee could use the credit to receive, but the caller,
which has the obligation to send and which executes in the same thread, would never
continue its execution, and the program deadlocks. This restriction does not apply to
fork, because there the forker will continue its execution and, thus, can live up to is
obligation to send.

The credit accounting introduced so far handles channels with blocking receives and
non-blocking sends. We can also support channels with finite slack (that is, blocking
sends) by distinguishing between the receive credits described above and send credits.
We omit a discussion of this extension because it does not reveal anything interesting.

In many languages, channels can be implemented using locks and condition vari-
ables. Channels have the advantage that each send operation earns a credit because it
puts a message in the buffer. In contrast, a signal operation on a condition variable is
lost when no thread is currently waiting on the condition variable. Therefore, one cannot



channel Ch(x: int) where 0 <= x ==> credit(this, 1);

class ProducerConsumer {

method Produce(ch: Ch)

requires credit(ch, -1);

{

var i := 0;

while(i < 10)

invariant 0 <= i && i <= 10 && credit(ch, -1);

{ send ch(i); i := i + 1; }

send ch(-1);

}

method Consume(ch: Ch)

requires credit(ch, 1) && waitlevel << ch.mu;

{

var x: int;
receive x := ch;

while(0 <= x)

invariant waitlevel << ch.mu;

invariant 0 <= x ==> credit(ch, 1);

{ receive x := ch; }

}

method Main() {

var ch := new Ch;

fork Produce(ch);

fork Consume(ch);

}

}

Fig. 2. Producer/Consumer example illustrating the use of channels. Operator ==> denotes short-
circuit boolean implication. The loop invariant (keyword invariant) specifies what is given to
each new iteration and what must be returned by each completed iteration.



decide locally whether a signal operation earned a credit or not. This difference makes
it much harder to prove deadlock freedom for condition variables than for channels.

3 Global Wait Order

The rules described in the previous section enforce the invariant that, for each receiving
thread, either the corresponding channel contains a message or a thread holds the obli-
gation to send. However, this invariant does not suffice to rule out deadlocks. A dead-
lock can still occur if execution reaches a state where a subset of the running threads is
waiting for another thread in that set to send a message.

As an example, consider the program of Fig. 3. Both the main thread and the forkee
block at their respective receive statements and wait forever for the other to send. A
similar situation can occur when combining locks and channels. For example, the main
thread in Fig. 4 waits for a message on channel ch, while the forkee waits for the main
thread to release the lock. Note that both of these programs satisfy the rules described
in the previous section. In particular, at each receive statement, the credits held by
the activation record on the corresponding channel are strictly positive and no debt is
leaked at the end of methods.

In the combined setting with locks and channels, we say a deadlock occurs if each
of a set of threads is waiting for another thread in that set to either send a message or
release a lock (or formally, if the graph corresponding to a configuration as defined in
Definition 2 contains a cycle). We break cycles and prevent deadlocks in the combined
setting by using a global wait order that includes locks and channels. Just as locks,
channels have a wait level that is stored in the ghost field mu. For channels, the ghost
field mu is set (using a between clause) when the channel is created. Receiving on a
channel ch requires ch.mu to be larger than waitlevel. We redefine waitlevel as the
larger of: the largest object whose lock is held by the thread and the largest channel for
which the thread has an obligation to send.

channel Ch() where true;

class Program {

method M(ch0: Ch, ch1: Ch)

requires ch0 != ch1;

requires credit(ch0, 1) && credit(ch1, -1);

{ receive ch0; send ch1(); }

method Main() {

var ch0 := new Ch; var ch1 := new Ch;

fork M(ch0, ch1);

receive ch1; send ch0();

}

}

Fig. 3. A program that deadlocks using just channels.



channel Ch() where true;

class Program {

method M(ch: Ch)

requires credit(ch, -1);

{ acquire this; send ch(); release this; }

method Main() {

var ch := new Ch;

acquire this;
fork M(ch);

receive ch;

release this;
}

}

Fig. 4. A program that deadlocks using channels and locks.

The additional restrictions outlined above cause verification of the programs in
Figs. 3 and 4 to fail. The first program does not verify (and cannot be made to ver-
ify by adding further specifications) because ch0.mu and ch1.mu cannot both be larger
than the other. This means that either the receive statement in the main thread or in the
forkee is disallowed, as the wait level of the corresponding channel does not lie above
waitlevel of the respective thread. The second program does not verify because either
the lock in the acquire statement in M or the channel of the receive statement in the
main thread does not lie above waitlevel of the respective thread.

Besides acquire and receive, join is the third Chalice statement that might cause
a thread to wait and is, thus, relevant for deadlock prevention. For instance, a thread
might wait to receive a message before terminating while another thread joins the first
thread before sending the awaited message. In this paper, we encode join statements
via channels: Each method receives an extra parameter, a channel, and an obligation to
send one message on that channel. Before forking, the forker must create a new channel
above its wait level and pass it to the forkee. The forkee must send a message on that
channel right before it terminates. A thread can then join another thread by receiving
on the designated channel. The obligation to send on the designated channel increases
the wait level of the forkee above the wait level of the forker, which prevents cyclic
waiting. In this encoding, a call statement is encoded by a fork immediately followed
by a join. This encoding simplifies the presentation of the proof rules and the soundness
argument; programs may still contain call and join statements.

4 Verification

In this section, we make the informal rules described in previous sections precise. We
define the proof rules for the most interesting statements by translating them into a
pseudo-code language, whose weakest precondition semantics is obvious. In this trans-



lation, we use assert statements to denote proof obligations and assume statements
to state assumptions that can be used to prove the assertions. We encode the heap as
a two-dimensional array that maps object references and field names to values. The
current heap is denoted by the global variable Heap . To avoid clutter, we omit null ref-
erence checking from the formalization. A program verifier can be built from these rules
by writing the pseudo code in an intermediate verification language like Boogie [2]. In
fact, the pseudo code we use is essentially Boogie 2, and this is how we implemented
the Chalice verifier.

4.0 Encoding of Permissions and Credits

Conceptually, each activation record holds a number of permissions and credits. We
track permissions during verification via a global variable P . P is a two-dimensional
map from object references and field names to permissions. For simplicity, we encode
permissions as boolean values in this paper, but the Chalice verifier supports fractional
permissions [21]. An activation record has access to o.f if and only if P[o, f ] equals
true .

In a similar fashion, we track credits via a global variable C , a map from channel
instances to integers. C[o] denotes the number of credits held by the current activation
record for the channel o .

4.1 Encoding of Locks and Wait Levels

Our encoding introduces a thread-local variable λ , which yields the set of all objects
whose locks are held by the thread of the current activation record.

The Chalice expression waitlevel is then encoded as the maximum of the wait lev-
els of locks held by the current activation record and of channels for which the current
activation record has an obligation to send:

waitlevel ≡ max ({ o.mu | o ∈ λ } ∪ { c.mu | C[c] < 0 })

For convenience, we will use waitlevel in the pseudo code below as an abbreviation
for this encoding.

4.2 Encoding of Permission and Credit Transfer

In Chalice, permissions and credits often transfer from and to activation records. For
each statement, the set of permissions and credits being transferred is described by an
assertion. For example, when a message is sent, the permissions and credits described
by the channel’s where clause transfer from the activation record to the message. Sim-
ilarly, when a lock is acquired, the permissions and credits described by the lock in-
variant transfer from the lock to the acquiring activation record. In our verification, we
model permission and credit transfer via two operations, Inhale and Exhale . The former
operation adds the permissions and credits described by an assertion to the activation
record’s P and C , while the latter removes them.



InhaleJacc(o.f)K ≡
havoc Heap[o, f ];
P[o, f ]:=true;

InhaleJcredit(ch, n)K ≡
C[ch]:=C[ch] + n;

InhaleJP && QK ≡
InhaleJPK;
InhaleJQK;

Otherwise :
InhaleJEK ≡

assume E ;

ExhaleJacc(o.f)K ≡
assert P[o, f ] = true;
P[o, f ]:=false;

ExhaleJcredit(ch, n)K ≡
C[ch]:=C[ch]− n;

ExhaleJP && QK ≡
ExhaleJPK;
ExhaleJQK;

Otherwise :
ExhaleJEK ≡

assert E ;

Fig. 5. Transfer of permissions and credits via Inhale and Exhale .

The definitions for Inhale and Exhale are shown in Fig. 5. When an activation
record obtains permission to access o.f by inhaling the permission, we assign an ar-
bitrary value to Heap[o.f ] (keyword havoc ) since other threads may have updated
the location while it was not accessible to the current thread. Inhaling credit(ch, n)
increases the number of credits for ch by n . Inhaling a conjunction P && Q corre-
sponds to first inhaling P and afterwards inhaling Q . If the inhaled assertion is a pure
boolean expression (that is, contains neither access nor credit predicates), we assume
the expression holds.

Exhaling permission to access o.f corresponds to removing the permission. How-
ever, exhaling permissions is allowed only if the permission is present. Exhaling credits
corresponds to decrementing the credit map. Exhaling a conjunction P && Q corre-
sponds to first exhaling P and afterwards exhaling Q . Finally, exhaling a pure assertion
corresponds to proving that the assertion holds.

4.3 Encoding of Channel Operations

Channels support three operations: creation, sending, and receiving. The translation to
pseudo code for each of these statements is shown in Fig. 6.

A channel creation x := new Ch between l and u; creates a new channel whose
mu field lies between l and u .1 To guarantee a wait level exists that lies between l and
u , we first check that l is strictly smaller than u . Then, we assign an arbitrary channel
identifier to x , such that the current thread has no credits for that channelx and such
that l << x .mu << u .

The statement send ch(x1, ..., xn); adds a new message to the channel ch and
earns a credit, which is reflected in the credit map of the sending activation record.
The permissions and credits described by the where clause transfer from the activation
record to the message (encoded by Exhale).

1 For simplicity, we consider only a single lower and upper bound. However, our implementation
supports an arbitrary number of bounds.



x := new Ch between l and u; ≡
assert l << u;
havoc x ;
assume C[x ] = 0;
assume Heap[x ,mu] << u;
assume l << Heap[x ,mu];

send ch(x1,...,xn); ≡
C [ch] := C [ch] + 1;
ExhaleJW [ch/this, x1/y1, . . . , xn/yn ]K;

receive x1,...,xn := ch; ≡
assert waitlevel << ch.mu;
assert 0 < C [ch];
C [ch] := C [ch]− 1;
InhaleJW [ch/this, x1/y1, . . . , xn/yn ]K;

Fig. 6. Translation to pseudo code for channel operations. For new, we omitted some details that
encode that the new channel is different from all previously existing channels. For send and
receive, ch is assumed to have type channel Ch(y1: t1, ..., yn: tn) where W.

The statement receive x1, ..., xn := ch; removes a message from the chan-
nel ch . Receiving is allowed only if waitlevel is smaller than the wait level of ch
and if the current activation record holds at least one credit for ch. Since receiving re-
moves a message from the channel, the number of credits is decremented by one. The
permissions and credits described by the where clause transfer from the message to the
receiving activation record.

4.4 Encoding of Fork, Join, and Call

As described at the end of Sec. 3, we encode join statements via channels, and call
statements via fork and join. In this encoding, we make the following modifications
for each method m(p: T) returns (r: R) with precondition P and postcondition Q
in a class C: (0) We declare a channel type Chm(t: C, p: T, r: R) where Q’;. Q’
is Q with t substituted for this. (1) We add a parameter j: Chm to m. (2) We add a
precondition credit(j, -1) to m, which expresses that the method has an obligation
to send a message on the join-channel j. (3) We add a precondition j.mu << ui .mu for
each channel expression ui that occurs in a credit expression in m’s precondition P. This
precondition allows m to receive on the channels ui even though it has a debt for channel
j. (4) At the end of m’s body, we place a send statement send j(this, p, r);. This
send lives up to the obligation expressed by the precondition (2). (5) We remove the
postcondition Q from m because all information, permissions, and credits are conveyed
to the caller via the send operation (4).

We encode fork tok := x.m(y) as var tok := new Chm above waitlevel .
below u1, ..., un; fork x.m(y, tok);. That is, a fork passes a new channel in-
stance to the forkee and transfers the permissions and credits described by the forkee’s
precondition P. The wait level of the join-channel lies above waitlevel, but below each
channel ui that occurs in a credit expression in m’s precondition. This allows the forker
to join the forkee and it allows the forkee to perform receive statements on the channels
ui . To allow the forkee to acquire locks, one also has to ensure that the wait level of the
join-channel tok is below each lock that the forkee might want to acquire. Choosing
such a level is possible, but we omit the details for simplicity.



We encode join z := tok; by receiving on the channel we passed to the thread
when it was forked: var t: C; var p: T; receive t,p,z := tok;. This receive in-
hales the message invariant of Chm (that is, the joined thread’s postcondition) and trans-
fers permissions and credits accordingly.

We translate a call call z := x.m(y); into a fork immediately followed by a join:
fork tok := x.m(y); join z := tok;, which are then further encoded as described
above. This encoding automatically satisfies the rule that a call must not create a debt
in the caller (see Sec. 2).

5 Deadlock Freedom

In this section, we prove that the verification technique described in the previous sec-
tions indeed prevents deadlocks. However, we provide only the key definitions and lem-
mas. For the full proof, we refer the reader to [23].

Note that our verification technique proves partial correctness, that is, it considers
non-terminating methods to be correct. As a consequence, we do not prevent situations
where a thread waits forever on another thread to send a message or release a lock,
and that other thread ran into an infinite loop or recursion before executing the awaited
operation. Proving termination of loops and recursion is an orthogonal issue.

5.0 Language

For the proof of deadlock freedom, we use a smaller programming language that omits
all features that are not relevant for the proof such as permissions, classes, and the heap.

We prove soundness with respect to the language of Fig. 7. A program consists of
a number of declarations and a main routine s . A declaration is either a channel or a
procedure. Each channel has a channel name, channel parameters, and a where clause.
Each procedure has a procedure name, procedure parameters, a precondition, and a
body. A statement is an object creation, a send or receive operation, a fork statement, an
acquire statement, or a release statement. Finally, an assertion is either credit (of +1)
or debt (of −1 ). Note that we do not distinguish objects and channels, and we use both
terms interchangeably in the soundness proof.

program ::= decl s
decl ::= channel | procedure

channel ::= channel C (x ) where φ;

procedure ::= procedure m(x ) requires φ; { s }
s ::= x := new C ; | send x (x ); | receive x := x ; |

fork m(x ); | acquire x ; | release x ;
φ ::= credit(x ) | debt(x )

Fig. 7. A small language with lockable channels.

O is the set of object references, Mu the set of wait levels, and X the set of
variables. The set Mu with the binary operator << forms a dense partial order. L is



a function that maps each object reference to its wait level. We consider only channels
whose where clause does not contain debt.

5.1 Execution Semantics

Definition 0 shows that threads can be in one of three states: running, done, and aborted.
The job of the program verifier is to ensure that threads do not perform illegal operations
and hence that no thread ends up in the aborted state. We say that a configuration is
aborting if one or more threads is in the aborted state. A configuration is final if each
thread is in the done state.

Definition 0. A thread state σ is one of the following:

– run(s, Γ ) , indicating the thread is running with remaining statement s and envi-
ronment Γ . Γ is a partial function from variable names to object references.

– done , indicating the thread has completed.
– aborted , indicating the thread has performed an illegal operation.

Definition 1. A configuration ψ is a pair consisting of:

– Ω , a partial function from object references to environment lists. Each environment
in the list represents a message. Thus, Ω(o) denotes the list of messages inside
channel o . We say that an object is allocated if o ∈ dom(Ω) .

– T , a multiset of threads. Each thread is a triple (σ, κ, λ) . σ is a thread state, κ
is a function from object references to integers, and λ is a set of object references.
κ(o) denotes the number of credits held by the thread and λ is the set of objects
locked by the thread.

Execution of programs is defined by the small-step relation → shown in Fig. 8. The
rules of Fig. 8 contain premises marked dark gray and premises marked light gray. A
premise marked dark gray indicates that threads must block and wait for the premise to
become true. For example, a receive statement blocks until the corresponding channel
contains a message (i.e., 0 < length(Ω(o)) ). A premise marked light gray that does
not hold indicates that the thread has performed an illegal operation and that the thread
can transition to the aborted state. For example, a thread trying to execute a receive
statement transfers to the aborted state if the number of credits (κ(o) ) is not strictly
positive.

As explained earlier, the job of the program verifier is to ensure that threads do not
abort. In other words, the verifier must ensure that the premises marked light gray hold.
As a consequence, these premises correspond to the assert statements in the pseudo
code of Sec. 4.

def(C ) denotes the definition of channel C in the program. Each object has a
corresponding type denoted by typeof(o) . credits(φ, Γ ) returns a function from object
references to integers, where an entry for channel o indicates the credit associated with
the assertion φ for o . f [a 7→ b] denotes an update of the function f at a with b . If
typeof(o) = C and def(C ) = channel C (y) where φ; , then Φ(o) denotes φ .



Γ (x ) = o ∀i ∈ {1, . . . ,n} • Γ (xi) = oi

typeof(o) = C def(C ) = channel C (y1, . . . , yn) where φ;
Γ ′ = [this 7→ o, y1 7→ o1, . . . , yn 7→ on ]

κ′ = credits(φ, Γ ′) κ′′ = κ[o 7→ κ[o] + 1]− κ′ Ω′ = Ω[o 7→ Ω(o) + Γ ′]

(Ω, {(run(send x (x1, . . . , xn); s, Γ ), κ, λ)} ∪ T ) →
(Ω′, {(run(s, Γ ), κ′′, λ)} ∪ T )

Γ (x ) = o

typeof(o) = C def(C ) = channel C (y1, . . . , yn) where φ; 0 < κ(o)

∀q ∈ dom(Ω) • (κ(q) < 0 ∨ q ∈ λ) ⇒ L(q) << L(o) 0 < length(Ω(o))

Γ ′ = head(Ω(o)) κ′ = credits(φ, Γ ′) κ′′ = κ[o 7→ κ[o]− 1] + κ′

Ω′ = Ω[o 7→ tail(Ω)] Γ ′′ = Γ [x1 7→ Γ ′(y1), . . . , xn 7→ Γ ′(yn)]

(Ω, {(run(receive x1, . . . , xn := x ; s, Γ ), κ, λ)} ∪ T ) →
(Ω′, {(run(s, Γ ′′), κ′′, λ)} ∪ T )

Fig. 8. Execution semantics for well-formed programs (see [23] for all rules).

5.2 Properties

The key property we want to prove is Theorem 2: programs written in the language
of Fig. 7 do not get stuck. The proof of this theorem relies on two other theorems, 0
and 1. Theorem 0 states that for each allocated channel c , the total number of credits
for c (in activation records and messages) is at most the sum of the amount of debt for
c and the number of messages inside c .

Theorem 0. Suppose (Ω, {(σ1, κ1, λ1), . . . , (σn , κn , λn)) is a configuration reached
by an execution of a well-formed program. Then for each channel o ∈ dom(Ω) , the
following holds:

0 ≤ length(Ω(o))− ((Σi∈{1,...,n}κi(o)) + (Σq∈dom(Ω),Γ∈Ω(q)credits(Φ(q), Γ )(o)))

The proof runs by induction on the length of the execution and by case analysis on the
step taken.

Each configuration ψ has a corresponding graph whose nodes are the threads in ψ .
This graph contains an edge from thread f to t if f is waiting for t to send a message
or to release a lock (see Definition 2). A deadlock occurs if the graph contains a cycle.
Theorem 1 states that an edge in the graph between f and t implies that t ’s wait level
is smaller than f ’s wait level. It follows from Theorem 1 that configurations reached by
executions of well-formed programs are deadlock-free.

Definition 2. Each configuration (Ω, {(σ1, κ1, λ1), . . . , (σn , κn , λn)) has a correspond-
ing graph. The nodes in the graph are threads. The graph has an edge from (σf , κf , λf )
to (σt , κt , λt) if one of the following holds:

– Thread f waits for t to send a message, that is, σf equals run(receive x ; s, Γ ) ,
κt(Γ (x )) < 0 , and σf cannot go to the aborted state.



– Thread f waits for t to release a lock, that is, σf equals run(acquire x ; s, Γ ) ,
Γ (x ) ∈ λt , and σf cannot go to the aborted state.

Theorem 1. Suppose the graph corresponding to a configuration in which no thread is
aborted contains an edge from (σf , κf , λf ) to (σt , κt , λt) . Then the following holds:

max{L(o)|κf (o) < 0 ∨ o ∈ λf } << max{L(o)|κt(o) < 0 ∨ o ∈ λt}

The proof runs by induction on the length of the execution and by case analysis on the
step taken.

Theorem 2. Suppose ψ is a non-final, non-aborting configuration. Then, ψ is not
stuck.

Proof. It follows from Theorem 1 that the graph contains a non-final thread t that has
no outgoing edges. We have to consider three cases. If the first statement of t is not
an acquire or a receive, then t can make progress. If t ’s first statement is a receive
statement for channel o , then no other thread holds debt for o (otherwise t would
have an outgoing edge). If κ(o) 6 0 , then the thread can make progress by aborting;
otherwise, it follows from Theorem 0 that o contains at least one message and therefore
that the thread can make progress. Finally, if the first statement is an acquire for object
o , then no other thread holds o ’s lock (otherwise t would have an outgoing edge).
Therefore, t can acquire o .

6 Related Work

Hoare’s model of Communicating Sequential Processes (CSP) influentially set the style
of languages that communicate over channels [13]. Channels in CSP have no slack, that
is, they have no buffer capacity. This means that send and receive operations are exe-
cuted in a synchronized fashion to form a rendezvous. The channels are named entities,
not dynamically created values that can be stored in variables or passed along channels.

Newsqueak is a language that features channels and shared global variables [26].
Like CSP, Newsqueak uses zero-slack channels, but the channels are first class and
can be passed around like other references to data structures in memory. After the ren-
dezvous of a sender and receiver, the sender gets a chance to compute its message before
it is communicated to the receiver. The language has support for atomic increment and
decrement operations, but does not include built-in locking primitives.

The programming language Alef [35] and its successor Limbo [28] apply ideas of
Newsqueak to larger programming-language designs. Limbo was designed and used
for writing applications for the Inferno operating system. The languages include shared
global variables, and locks are provided (Alef) or can be built from channels.

A language with channels that has had considerable success is Erlang [1], a func-
tional language (hence, locks are irrelevant) used in a variety of applications.

Language support for mutual-exclusion locks is provided in several languages, in-
cluding Modula-3, Java, and C#. Such languages may provide channels in a library, like
ConcurrentLinkedQueue in Java’s java.util.concurrent library.



The idea of using permissions to avoid data races was first formulated by Boy-
land [4] and has been adopted by concurrent separation logic [25]. Several researchers
extended concurrent separation logic to handle dynamic thread creation [10, 15, 12],
rely/guarantee [31, 8], reentrant locking [11], and channels [14, 27]. Our encoding of
permissions in a first-order setting was inspired by implicit dynamic frames [29].

Enforcing the absence of deadlocks by checking that threads acquire locks in ac-
cordance with a global order is a well-known technique from operating systems and
databases, and has been implemented in several verifiers [6, 9, 16, 17] and static analyz-
ers [20, 3]. To the best of our knowledge, the only existing technique that prevents dead-
locks in programs that use channels is Kobayashi’s type system for the π -calculus [19].
A channel type in this type system consists of a message type and a usage. The usage
describes the order of channel operations and associates an obligation and capability
level with each of those operations. The notion of credits in our approach is similar to
usages, while wait levels are similar to obligation and capability levels. Kobayashi’s
type system has two advantages with respect to our approach. First, fewer annotations
are required as types can be inferred. Secondly, his approach can handle some programs
that we cannot, such as encoding locks via channels. However, the type system has only
been applied in the context of the π -calculus, while we integrate deadlock prevention
into a verification system for an object-oriented language (which Kobayashi considers
to be “useful and important” [18]).

Session types [32, 7] are a technique for checking that channels are used in accor-
dance with a predefined protocol. Recently, Villard et al. [34] have integrated the ideas
from session types into separation logic. However, the focus of [32, 7, 34] lies in check-
ing conformance of the code with the channel contract and in ensuring memory safety,
i.e., that a memory location is not accessed after sending the corresponding permission
over a channel. We do not specifically address protocol checking (though protocols can
be encoded via ghost state), but we do check memory safety and in addition show how
to enforce the absence of deadlocks.

Luecke et al. [24] and Vetter et al. [33] propose run-time deadlock detection algo-
rithms for systems that use message passing. These algorithms may miss certain dead-
locks. Moreover, run-time testing cannot guarantee the absence of deadlocks, since not
all paths, thread interleavings, and input values can be considered.

Terauchi and Megacz [30] use ideas similar to those proposed in this paper in a
static inference of channel buffer bounds. Their analysis uses a capability mapping per
thread, a function from channel identifiers to natural numbers similar to our credit map,
to track the number of messages that can be sent for each channel. Just as our credit map,
the capability mapping is updated at send and receive statements. Another idea shared
by both approaches is that capabilities can be transferred via channels. In particular,
each channel type includes a capability mapping (similar to our where annotation) that
describes what capabilities transfer along with messages on channels of that type.

The verification approach presented in this paper prevents non-termination caused
by deadlock. However, infinite recursion and loops can still lead to non-terminating
executions. For example, a thread may fail to acquire a lock because the thread holding
the lock is stuck in an infinite loop. Proving termination of loops and recursion is a
separate issue, which for instance can be solved using techniques like [5] and [0].



This paper builds on and extends our earlier work on the Chalice verifier [21]. In
particular, we extend Chalice with channels, introduce credits, and insert channels into
the wait order to prevent deadlocks involving blocking channel operations.

7 Conclusion

The key contribution of this paper is that it shows how to verify the absence of deadlocks
in programs that combine channels and locking. In particular, deadlocks are prevented
by enforcing two rules: (0) a blocking receive is allowed only if another thread holds
the obligation to send and (1) receive and acquire operations must be done in accor-
dance to a global wait order. The verification technique has been proven sound and was
implemented in the Chalice program verifier. As future work, we plan to apply the pre-
sented methodology to classical concurrency examples and case studies from programs
written in languages that support channels such as Scala and Go. Moreover, we are
interested in combining our methodology with termination checking to guarantee that
every obligation to send will eventually be fulfilled.
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