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Abstract. Object immutability is a familiar concept that allows safe sharing
of objects. Existing language support for immutability is based on immutable
classes. However, class-based approaches are restrictive because programmers
can neither make instances of arbitrary classes immutable, nor can they control
when an instance becomes immutable. These restrictions prevent many interest-
ing applications where objects of mutable classes go through a number of modi-
fications before they become immutable.
This paper presents a flexible technique to enforce the immutability of individual
objects by transferring their ownership to a special freezer object, which prevents
further modification. The paper demonstrates how immutability facilitates pro-
gram verification by extending the Boogie methodology for object invariants to
immutable objects. The technique is based on Spec#’s dynamic ownership, but
the concepts also apply to other ownership systems that support transfer.

0 Introduction

Object immutability is a familiar concept that allows safe sharing of objects. For in-
stance, immutable objects can be accessed concurrently without locking, and the ab-
sence of state changes can simplify reasoning about pointer structures.

A simple recipe for implementing immutable objects is the following: (0) Encapsu-
late the state of the immutable object by hiding all mutable fields from clients. (1) Do
not provide any methods in the immutable object that modify the state of their receiver.
(2) Encapsulate the mutable sub-objects of immutable aggregate objects by ensuring
that references to mutable sub-objects do not escape from the aggregate.

This recipe is for instance applied in Java’s String class: Its fields are private or
final, methods that manipulate strings create new instances, but do not modify their re-
ceiver, and methods do not leak references to the (mutable) array that forms the internal
representation of a string. The recipe is also amenable to static checking [12].

Even though this recipe is useful for value objects such as strings, it is too restric-
tive for many advanced applications of immutability. First, the recipe restricts when an
object becomes immutable. Since immutable objects must not have mutating methods
(rule 1), immutable objects must be fully initialized when their constructor terminates.
This requirement prevents common initialization schemes such as multi-phase initial-
ization. Second, the recipe restricts the classes whose instances may be used as im-
mutable objects. Most classes in a program violate rule 1 of the recipe because they
provide mutating methods. Nevertheless, it is often useful to have immutable instances
of such classes, for instance, immutable instances of general collections or, similarly,
immutable arrays. The standard workaround for this limitation of the recipe is to wrap
the supposedly-immutable instance or array in an immutable object that actually does



follow the recipe. However, this workaround requires extra code to delegate calls to the
wrapped object and also requires very careful design to ensure that there are no aliases
to the wrapped object after it has been wrapped.

using Map := Graph〈City〉 ;

class City {
// some state, e.g. population
City(String name)
{ /* code omitted */ }

}

class Graph〈N 〉 {
void AddNode(N n)

modifies this.∗ ;
{ /* code omitted */ }
void AddEdge(N from,N to)

modifies this.∗ ;
{ /* code omitted */ }
bool HasEdge(N from,N to)
{ /* code omitted */ }
List〈N 〉? Path(N from,N to)
{ /* code omitted */ }

}

class Metro {
void AddTrainLines(Map map) ;

modifies map.∗ ;
{ /* code omitted */ }
void AddBusLines(Map map) ;

modifies map.∗ ;
{ /* code omitted */ }

}

class Traveler {
frozen Map map ;
City current ,next ;

invariant map.HasEdge(current ,next) ;

Traveler(frozen Map map,City current)
{

this.map := map ;
this.current := current ;
this.next := current ;

}
void GoForward(City target)

modifies this.∗ ;
{

List〈City〉? route ;
route := map.Path(current , target) ;
expose (this) {

if (route = null) next := current ;
else next := route.ItemAt(1) ;

}
}

}

class Main {
void Setup(Metro metro)
{

Map map := new Map() ;
metro.AddTrainLines(map) ;
metro.AddBusLines(map) ;
freeze map ;
City c0 := new City(”Oslo”) ;
City c1 := new City(”Rome”) ;
Traveler t0 := new Traveler(map, c0) ;
Traveler t1 := new Traveler(map, c1) ;
/* . . . */

}
}

Fig. 0. Running example in a Spec#-like language. We assume that reference types are non-null
types unless indicated otherwise by appending a question mark. The using directive introduces
a synonym for a type. Frame specifications using modifies clauses indicate the potential side
effects of a method. The frozen modifier as well as the freeze and expose statements are
part of our methodology and will be explained later in the text.



Example. We illustrate the limitations of the above recipe as well as our approach
using the running example in Fig. 0. The example models travelers (class Traveler )
who navigate using a map, which is a graph whose nodes are cities (abbreviated by
type name Map ). The map is shared by all travelers. We use an immutable map to
allow Traveler to maintain a non-trivial invariant, namely that the map contains an
edge between the traveler’s current city and the next city on their route.

This example does not follow the above recipe. First, the map undergoes a com-
plex initialization phase. After it is created in method Setup (class Main ), it is passed
as argument to two methods of class Metro , where more edges are added to the map.
Only after these additions does the map become immutable. Such complex initialization
phases occur frequently. For instance, nodes of an abstract syntax tree are mutated dur-
ing resolution and type checking, but are often immutable afterwards. Second, the map
is an instance of class Graph , which provides mutating methods such as AddEdge .
Nevertheless, sharing of a map among travelers should be permitted, because travelers
do not call these mutating methods.

Approach and Contributions. In this paper, we present a programming methodology
that gives programmers the flexibility to decide when an object becomes immutable and
also supports immutable instances of mutable classes.

Our work builds on the Boogie methodology for the verification of object invari-
ants [1, 13]. This methodology arranges objects in an ownership hierarchy and controls
modifications of objects. It imposes the rule that an object must be exposed before its
fields can be modified, and the rule that an object can be exposed only after its owner
has been exposed. These two rules guarantee that modifications of objects are always
initiated from the root of an ownership tree. Using this methodology, we can support
immutable objects using three key ideas:

0. We use ownership to delimit the portion of an object’s state that is immutable. In
other words, the immutable state of an object o comprises the fields of o as well
as the state of all objects (transitively) owned by o .

1. We provide a freeze operation that turns an object into an immutable object. This
operation is an ownership transfer to a designated owner, called freezer, which can-
not be referred to by the program. The freeze operation lets a programmer decide
when an object becomes immutable.

2. We ensure that the freezer and all objects it owns, cannot be exposed. Consequently,
the Boogie methodology prevents all modifications of the frozen objects, which
makes them immutable even if they contain mutating methods or public fields.

In this paper, we present the details of this approach using Spec#’s dynamic owner-
ship [13]. Our methodology also works with static ownership type systems that support
ownership transfer [0,6, 20].

Our work is related to various type systems for immutable objects [4, 12, 22, 24],
which also use ownership to delimit the object state and to control modifications. How-
ever, our methodology builds on verification instead of a type system to provide extra
flexibility that we needed in several verification case studies. We also extend the Boogie
methodology to make use of immutable objects. In summary, the two main contribu-
tions of our work are:



0. A verification methodology that supports immutability on a per-object basis. We
show that immutable types are a special case of our methodology, where each in-
stance is frozen at a particular program point. Our methodology also supports im-
mutable instances of mutable types such as arrays.

1. An extension to the Boogie methodology that (a) guarantees that immutable objects
satisfy their invariants in all states and (b) allows invariants to depend on immutable
shared objects. We present the axioms and specification idioms for this extension.

Outline. The next two sections (1 and 2) explain the details of frozen objects and show
how they subsume immutable types. Sec. 3 presents applications of frozen objects for
the verification of object invariants. Sec. 4 discusses the application of frozen objects in
Spec#. We discuss related work in Sec. 5 and conclude in Sec. 6.

1 Frozen Objects

In this section, we provide the background on the Boogie methodology that is needed
in the rest of the paper. Based on this methodology, we explain how objects can be
frozen and how frozen objects are encoded in the program logic. Since it is orthogonal
to immutability, we defer a discussion of subtyping until Sec. 4.

1.0 Background on Boogie Methodology

The Boogie methodology [13] enables the sound verification of object invariants in the
presence of callbacks by tracking whether an object is valid, that is, its invariant is
known to hold, or whether it is mutable, that is, its invariant is allowed to be broken.
Whether an object is valid or not is stored in a boolean field inv . The Boogie method-
ology maintains the following program invariant in all execution states:

PI0: (∀ o • o.inv ⇒ Inv(o) )

Here and throughout, the quantifier reaches over all allocated, non-null objects, and
Inv(o) denotes the object invariant of object o .

New objects start off as mutable because their invariants have not yet been estab-
lished. The program invariant is maintained by two fundamental rules: First, we enforce
through a proof obligation that only fields of mutable objects can be assigned to; there-
fore, the assignments trivially maintain PI0. Second, the invariant Inv(o) is checked
before an object o becomes valid, that is, when o.inv is changed to true.

Objects become valid at the end of their constructor. Moreover, programs can change
the inv field through a designated expose block statement. expose (o){S} sets
o.inv to false, thereby enabling modifications of o ’s fields. Then it executes statement
S , checks o ’s invariant, and finally sets o.inv back to true.

Aggregate objects are handled using ownership [7]. The invariant of an aggregate
object o may depend on fields of another object x if x is owned by o 0. The Boogie
methodology enforces that the objects owned by a valid object o are also valid:

0 The Boogie methodology supports several other kinds of multi-object invariants. We discuss
invariants over peers [13] in Sec. 4. An extension of our methodology to history invariants [15]
is straightforward.



PI1: (∀ o, x • x .owner = o ∧ o.inv ⇒ x .inv )

This program invariant is enforced by checking that the owner o of an object x is mu-
table when x is being exposed. It makes sure that program invariant PI 0 is preserved
even though modifications of x potentially break the invariant of o .

The Boogie methodology uses a dynamic encoding of ownership as opposed to a
static type system. Each object has a field owner that holds a reference to the (single)
owner object, or null if the object has no owner. The ownership relation is expressed
by putting rep annotations on field declarations. For a field f , such an annotation gives
rise to the implicit invariant this.f 6= null ⇒ this.f .owner = this . However, the
owner field must not be used in explicit object invariants.

The owner field of an object x can be set to an object o by the special statement
transfer x to o . Since the transfer might break the implicit ownership invariant of
the previous owner, the transfer statement requires x ’s previous owner, if any, to be
mutable. This requirement ensures that PI 0 is maintained. To maintain PI 1 , transfer
requires that x be valid or that the new owner o be null or mutable.

x .f := e ≡
assert x 6= null ∧ ¬x .inv ;
x .f := e ;

expose (o) { S } ≡
assert o 6= null ∧ o.inv ;
assert o.owner 6= null ⇒ ¬o.owner .inv ;
o.inv := false ;

S ;

assert ( ∀ x • x .owner = o ⇒ x .inv ) ;
assert Inv(o) ;
o.inv := true ;

transfer x to o ≡
assert x 6= null ;
assert x .owner 6= null ⇒

¬x .owner .inv ;
assert x .inv ∨ o = null ∨ ¬o.inv ;
x .owner := o ;

freeze x ≡
assert x 6= null ;
assert x .owner 6= null ⇒

¬x .owner .inv ;
assert x .inv ;
x .owner := freezer ;

Fig. 1. Pseudo code for field update, expose , transfer , and freeze . The new freeze state-
ment is a variation of ownership transfer and will be explained in Sec. 1.1.

We define the semantics of the expose and transfer statements by translating
them into the pseudo code shown in Fig. 1. Proving the correctness of a program
amounts to statically verifying that the program does not abort due to a violated as-
sertion. One can use an appropriate program logic to show that the assertions hold.

A typical method reads the state of its receiver and parameters—either by inspecting
the state or by calling methods that do—and expects the invariants of these objects to
hold. Therefore, we define a default precondition for all methods that requires their
receiver and parameters to be valid. A common way to satisfy this default precondition
is to use ownership—objects owned by a valid object are also known to be valid (PI 1).

If a method modifies the state of an object, it needs to declare that modification in
the method’s modifies clause. We then say that the method mutates the object and
that the method is mutating. We say that a method with an empty modifies clause is



pure. To perform the actual mutation of an object, a method needs to first expose the
object, which requires the object’s owner to be mutable. Therefore, for every object that
a mutating method mutates (that is, that it lists in its modifies clause), we define an
additional default precondition that requires that object’s owner to be mutable.

In method Main.Setup , the call to the mutating method AddTrainLines satisfies
its default precondition because Setup ’s default precondition guarantees metro to be
valid, and the new allocation constructs map to be valid and without an owner.

1.1 The Freeze Statement

In the Boogie methodology, an object can be modified only if the object and all its
transitive owners are mutable. This offers a simple way of enforcing immutability. We
introduce an object freezer , which is valid in all program states. The freezer object
cannot be referred to in the program. In particular, it cannot be exposed. Consequently,
objects owned by the freezer , called frozen objects, also cannot be exposed (by the
second assertion of expose , see Fig. 1) and, thus, cannot be modified (by the assertion
for field updates, see Fig. 1).

We provide a statement freeze x , which takes a valid object x and sets x .owner
to the freezer . Since the freezer is always valid, the pseudo code for freeze is a bit
simpler than for transfer , see Fig. 1. Freezing an object x affects only one field,
namely x .owner . The operation maintains program invariant PI 0 , because the only
object invariants that can depend on x .owner are the (implicit) object invariants of x ’s
owner, and the precondition checks that any such owner is mutable. It also maintains
PI 1 , because x .inv is asserted before x is assigned a new owner.

The freeze statement allows programmers to choose when an object becomes im-
mutable. For simple value objects such as strings, this will be at the end of the con-
structor. But the freeze statement may also occur later, for instance, after a complex
initialization phase as illustrated by method Main.Setup . The freeze map operation
succeeds because map is valid and has no owner. Any subsequent attempt to expose
map would fail because the second precondition of expose map does not hold: map
does have an owner, namely the freezer, and the owner is valid. For the same reason,
the object cannot be un-frozen by transferring it to another owner because the second
assertion in the pseudo code for transfer would fail. In other words, the immutability
of an object also applies to its owner field, and ownership transfer is just an update of
owner . Consequently, map is permanently immutable once it has been frozen.

It is illustrative to discuss how frozen objects replace the recipe for immutable ob-
jects presented in the introduction. Rule 0 becomes dispensable because a frozen object
cannot be exposed and, thus, its fields cannot be updated. For the same reason, the
default precondition of mutating methods cannot be established, which makes rule 1
dispensable. This allows programs to create immutable instances of any class, even
those that provide mutating methods such as Graph . Finally, rule 2 becomes dispens-
able because the immutability of a frozen object also applies transitively to the objects
it owns. Assume for instance that a Graph is represented by a set of Node objects,
which are owned by the Graph object. The nodes of a frozen Graph object are transi-
tively owned by the freezer. Consequently, they cannot be exposed, which makes them
immutable, even if they are leaked outside the graph structure.



1.2 Writing Specifications about Frozen Objects

To exploit properties of frozen objects during verification, specifications need to ex-
press which objects are frozen. For this purpose, we introduce a boolean function
frozen(o, h) that yields whether an object o is (transitively) owned by the freezer in
heap h . We omit the heap parameter whenever it is clear from the context.

Instead of using frozen directly in specifications, we allow fields, method param-
eters, and method results to be declared with the modifier frozen . For a field f ,
this modifier gives rise to the implicit invariant this.f 6= null ⇒ frozen(this.f ) .
This invariant, like all other object invariants, is checked at the end of constructors and
expose blocks. For method parameters and results, we introduce analogous pre- and
postconditions. For instance, class Traveler uses the frozen modifier in the declara-
tion of field map and the constructor’s first parameter.

For the soundness of the Boogie methodology, it is essential that each object invari-
ant is admissible, that is, that it does not compromise program invariant PI 0 . Since the
owner field of a frozen object x is immutable, frozen(x ) can never change from true
to false. Thus, the implicit invariant for a frozen field f in an object o can be broken
only by updating o.f . This update requires o to be mutable and, thus, preserves PI 0 .

1.3 Formal Encoding

The encoding of frozen objects in a program logic formalizes which objects are frozen
and that frozen objects are immutable.

Frozen Objects. To capture the first aspect, one could define frozen(o, h) to hold if
and only if o is transitively owned by the freezer in heap h . However, automatic the-
orem provers such as Simplify and Z3 perform poorly on transitive closure. Therefore,
we provide a weaker axiomatization of frozen , which is sufficient for practical exam-
ples: (a) The freezer itself is frozen. (b) Objects directly owned by a frozen object are
also frozen:

(∀ h • frozen(freezer , h) ) (0)

(∀ o, h • o.owner 6= null ∧ frozen(h[o, owner ], h) ⇒ frozen(o, h) ) (1)

h[o, owner ] denotes the value held by field owner of object o in heap h . We abbre-
viate this notation by o.owner when the heap is clear from the context.

Axioms (0) and (1), in combination with the pseudo code for the freeze statement
and the frozen modifier explained in the previous subsection, allow one to prove that
certain objects are frozen in a given heap. For instance, one can prove that frozen(map)
holds in the heap after the execution of freeze map in method Setup .

We have argued above that an object that is frozen in a heap h remains frozen in
all successor heaps h ′ of h . We encode this property using a relation HeapSucc(h ′, h)
that expresses that heap h ′ is a successor of heap h . For every object allocation and
field update, we add an assumption that the resulting heap is a successor of the initial
heap. Moreover, we add a postcondition to each method and constructor stating that the
poststate heap is a successor of the prestate heap. This postcondition may be assumed



by callers, but need not be proven for method or constructor implementations. Using
HeapSucc , we can now state that frozen objects remain frozen by the following axiom:

(∀ o, h, h ′ • HeapSucc(h ′, h) ∧ frozen(o, h) ⇒ frozen(o, h ′) ) (2)

In our example, this axiom allows us to prove that the allocation and initialization of
City and Traveler objects in method Setup do not invalidate frozen(map) .

Immutability of Frozen Objects. We encode immutability of frozen objects by an
axiom that says that the value of a field of a frozen object is a function of the object
reference and the field name alone, and in particular does not depend on the heap:

(∀ o, f , h • frozen(o, h) ⇒ h[o, f ] = #UltimateValue(o, f ) ) (3)

where #UltimateValue is an uninterpreted function symbol.
To illustrate the use of this axiom, we prove that the value of some field map.nodes

is the same before and after allocating and initializing the City objects in method
Setup . Let h and h ′ denote the heaps in these states. We show this property by instan-
tiating axiom (3) twice, once with map , nodes , and h , and once with map , nodes ,
and h ′ . As argued above, we can show frozen(map, h) as well as frozen(map, h ′) .
So we derive:

h[map,nodes] = #UltimateValue(map,nodes) and
h ′[map,nodes] = #UltimateValue(map,nodes)

which trivially implies the desired h[map,nodes] = h ′[map,nodes] .

2 Immutable Types

With frozen objects, we can designate individual objects as being immutable from a par-
ticular time onward. Therefore, frozen objects are strictly more general than immutable
types, where the immutability of an object is determined by its type and always occurs
from the end of the constructor on. In this section, we show how frozen objects can be
used to encode immutable types and explain the benefits of such an encoding.

2.0 Encoding Immutable Types

Let’s assume that immutable classes are marked with a modifier immutable . We
define the meaning of an immutable class C in terms of what we introduced in
the previous section. An allocation c := new C (. . .) is immediately followed by an
implicit statement freeze c . Therefore, every instance of class C is immutable once
its constructor has terminated.

To make use of the immutability, for instance, for verification, we augment specifi-
cations as follows: Every parameter, receiver, and return value p of static type C , ex-
cept the receiver of constructors (and other delayed arguments, if applicable [11]), gives
rise to an implicit precondition (or postcondition, in the case of results) p 6= null ⇒
frozen(p) , as if p had been declared with the frozen modifier. Similarly, every field



f of static type C gives rise to the implicit object invariant f 6= null ⇒ frozen(f ) ,
as if the field had been declared with the frozen modifier. Finally, every local variable
x of static type C gives rise to an implicit loop invariant x 6= null ⇒ frozen(x ) on
every loop that modifies x . These implicit pre- and postconditions and invariants are
checked in the same way that explicit ones are. These checks, for instance, prevent a
program from passing an instance of C as a (frozen) parameter before the instance has
been fully initialized and frozen.

We also allow the immutable modifier to be applied to interface types, with
the same meaning as just described for immutable classes. A class or interface
that extends or implements an immutable class or interface must itself be declared
immutable ; therefore the object stored in a variable of an immutable type is actu-
ally an instance of an immutable class.

2.1 Benefits

The current implementation of immutable types in Spec# is not yet based on frozen
objects and, although our motivation had been different from theirs, shares most virtues
of the immutable-type design by Haack et al. [12]. In this subsection, we explain that
our new design is not only more flexible, but has two additional major virtues compared
to alternative designs.

A first virtue is that, rather than introducing the pre- and postconditions and in-
variants, as described in the previous subsection, it is tempting simply to encode an
immutable type C by the following Tantalizing Axiom:

(∀ o, h • o ∈ C ⇒ frozen(o, h) )

However, one has to be careful about the reach of o in this quantification, because
an object of type C is allowed to undergo mutations (and in particular initialization)
until the end of its construction. Various ways exist to exclude from the reach of the
Tantalizing Axiom all objects currently being constructed. For example, one can design
the programming language in such a way that the object being constructed does not
come into being until values for all its fields have been computed (see, e.g., Theta [17]).
In languages like Spec# and Java, a constructor can assign to a field multiple times and
can access the object while it is being constructed. To use the Tantalizing Axiom for
such languages, one needs a stronger antecedent as well as some escape analysis in
constructors. Defining this antecedent turned out to be complicated; we found that it
was difficult to prevent the Tantalizing Axiom from kicking in too soon and interacting
with other axioms in undesired ways. In contrast, the encoding of immutable types
on top of frozen objects systematically introduces checks that objects of immutable
types have reached their frozen state.

Another virtue of our encoding pertains to the knowledge that certain objects are not
immutable. In a system where immutability is found only at the granularity of types,
a checker must decide based on the static type of a target object o whether or not to
allow an assignment to a field o.f , which in general depends on the dynamic type of
o . For example, suppose the static type B of o were a mutable class and the program
contained an immutable subclass C of B ; then, a type-based analysis cannot deter-
mine precisely whether o.f is allowed to be modified because at runtime, o might



reference an (immutable) C object. A sensible solution is to impose a One-Down Rule
that says that each immediate subclass T of Object —the root of the class hierarchy—
must either decide to make T and all its subclasses mutable or to make them all im-
mutable [12]. In our new encoding of immutable types, checking if an assignment to
o.f is legal depends on the dynamic state of object o , and in particular on the validity
of o . Therefore, we do not need such a One-Down Rule and instead allow mutable
classes to have immutable subclasses (but not vice versa).

3 Frozen Objects and Object Invariants

Frozen objects have many benefits for writing and reasoning about code. For instance,
they simplify the development of correct multi-threaded code and the verification of
contracts containing pure method calls. In this section, we illustrate how frozen objects
extend the benefits of owned objects—guaranteed validity and support for multi-object
invariants—to shared objects.

3.0 Proving Validity

As explained in Sec. 1.0, the Boogie methodology makes explicit whether an object
invariant may be assumed to hold. While making this information explicit enables the
sound verification of object invariants in the presence of callbacks, it also complicates
verification. Methods have default preconditions that require the validity of their argu-
ments, and callers have to live up to these preconditions.

For instance, the call to map.Path in method Traveler .GoForward leads to a
proof obligation that map is valid. In the Boogie methodology, validity of an object
typically follows from ownership. If the Traveler instance this owned this.map
(that is, if map were a rep field), then the validity of this.map would follow from
the validity of this by program invariant PI 1 . However, arranging for Traveler ob-
jects to own their maps prevents them from sharing one map, which requires cloning of
Map objects. For immutable objects, this cloning is unnecessary and unnatural because
sharing is actually safe.

We solve this problem by encoding in our program logic that a frozen object is
always valid. That is, we add the following axiom:

(∀ o, h • frozen(o, h) ⇒ h[o, inv ] ) (4)

This axiom is justified because the freeze o statement requires o to be valid, and o
cannot be exposed afterwards. Thus, o forever remains valid.

Axiom (4) allows one to show the validity of a frozen object without restricting
sharing. For instance, from the implicit invariant for the frozen field map , we con-
clude that this.map is frozen in the prestate of method GoForward , and by axiom (4),
we get map.inv . That is, we can share the Map instance among Traveler objects and
nevertheless live up to the default preconditions of methods operating on the map.



3.1 Invariants over Frozen Objects

Object invariants in the Boogie methodology are constrained by admissibility require-
ments. For the basic methodology (ownership-based invariants [1, 13]), an admissible
invariant of an object o may depend on the state of o and of the objects (transitively)
owned by o . This requirement ensures that all objects whose invariant is potentially
broken by an update of x .f are mutable such that program invariant PI 0 is maintained.

While these ownership-based invariants enable modular verification of aggregate
objects, they do not support sharing of objects. In our example, the invariant of class
Traveler depends on the state of a Traveler ’s Map instance and would, therefore,
be admissible only if map was a rep field. As we have explained in the previous
subsection, this would prevent Traveler objects from sharing a Map instance.

There are extensions to the basic Boogie methodology that support invariants over
shared objects. However, these extensions restrict the classes of shared objects (visibility-
based invariants [13]), restrict the invariants that one can write about shared objects
[15], or complicate verification [2].

All variations of the Boogie methodology have in common that they restrict pro-
grams or invariants such that one can determine modularly all objects whose object
invariant is potentially broken by an update of x .f ; this allows one to impose proof
obligations on the update that maintain program invariant PI 0 . Since frozen objects
are immutable, their fields cannot be updated and, thus, maintaining object invariants
over frozen objects is trivial.

To support such invariants, we relax the definition of admissible invariants of the
basic Boogie methodology. In addition to the state of o and of the objects (transitively)
owned by o , the invariant of an object o may now also depend on the state of frozen
objects. This admissibility requirement can be checked syntactically by enforcing that
only fields with the rep or frozen modifier can be dereferenced in an object invariant;
such a syntactic check requires pure methods that are used in invariants to have read
effect specifications [14].

In our example, the invariant of Traveler is admissible under the assumption that
the method HasEdge reads only the state of its receiver and the objects owned by the
receiver. Since field map is declared with the frozen modifier, we can conclude that
the invariant depends only on the state of this and of frozen objects, namely the map
referenced from this.map .

The discussion above illustrates why it is not easily possible to permit frozen ob-
jects to be un-frozen. Un-freezing an object x would require one to find all objects
whose invariants depend on the state of x because these invariants might be broken by
modifications of x . Finding these objects in a modular way is at best complicated [2].

We have not yet implemented frozen objects in Spec#, but we manually changed
the Spec#’s encoding of the program in Fig. 0 to resemble the encoding in this paper.
The Boogie tool verified the resulting program successfully.

4 Application to Spec#

The form of the Boogie methodology implemented in Spec# is more advanced than the
basic form we have presented here. In this section, we discuss how we have extended



our methodology to handle the three differences most relevant to this paper: updates
without expose, subclasses, and peers.

Updates without Expose. One difference between the methodology we have presented
here and what is implemented in Spec# is that Spec# is more lenient about when ex-
pose statements are needed. Instead of insisting that an object be mutable when one of
its fields is updated, Spec# still allows the update if it maintains the object invariant.
However, since object invariants of the owner may depend on the field being updated,
and such object invariants might not be known in the current verification scope, Spec#
will nevertheless check that the owner of the target object is mutable. Formally, for a
field update of o.f , instead of the precondition ¬o.inv , Spec# actually checks:

¬o.inv ∨ ((o.owner 6= null ⇒ ¬o.owner .inv) ∧ Inv ′(o))

where Inv ′(o) denotes the invariant of o in the heap after the update of o.f .
Since the freezer is always valid, this more lenient field-update precondition always

fails for a frozen object o . Consequently, fields of frozen objects do not change.

Subclasses. A second difference is that we have ignored subtyping so far whereas
Spec# handles it. Instead of using just one inv field per object and letting the expose
statement take an object argument, Spec# essentially uses one inv field per object-type
pair and refines the expose statement to operate on object-type pairs as well [16]. More-
over, an owner in Spec# is not just an object but an object-type pair [13]. The effect of
this support on the present paper is that the freezer becomes a pair (freezer ,Freezer) ,
where Freezer denotes some fixed but arbitrary type. Also, the condition x .inv ap-
pearing in the preconditions of transfer and freeze (Fig. 1) is replaced by:

(∀T • (x ,T ).inv )

Peers. The third difference is that Spec# many times considers not just single objects
but groups of peer objects. Two objects are peers if they have the same owner [13].
More precisely, in Spec#, the owner field partitions objects into peer groups; the value
of the owner field is either the object-type owner (ow ,T ) that owns the objects in the
peer group or, if the objects in the peer group have no owner, takes on the value (r ,⊥)
where r is a representative element (object) of the peer group. Having an owner value
of the second kind corresponds to the condition that we have written owner = null
elsewhere in this paper. Peer groups are similar to clusters [20] and allow the notion of
peers even when objects are unowned.

In the presence of peer groups, a newly allocated object o starts off being unowned
and belonging to a new peer group: o.owner = (o,⊥) . We redefine the statements
transfer x to o and freeze x to transfer not just x but the entire peer group of x ; so
the assignment to x .owner in the pseudo code for these statements (Fig. 1) is replaced
by the same assignment for all peers of x . If the new owner in the transfer statement
is specified as null , the right-hand side of the assignment is (x ,⊥) . Also, the condition
x .inv appearing in the preconditions of these statements is replaced by:



(∀ p • p.owner = x .owner ⇒ (∀T • (p,T ).inv ))

which says that x is peer valid, meaning that x and all its peers are valid. (Note,
though, that the precondition o.inv of the expose statement remains what it is in
Fig. 1, because the expose statement operates on a single object-type pair.)

In a similar way, Spec# does not use validity as the default method pre- and post-
conditions we described it in Sec. 1.0, but uses peer validity. This makes no difference
for frozen objects, since frozen objects are always peer valid.

5 Related Work

Immutability is a fundamental concept with many applications. In this section, we dis-
cuss work related to the two main contributions of this paper, how to enforce object
immutability in imperative object-oriented languages and how to use immutable ob-
jects for verification.

Like our methodology, several type systems for immutability use ownership to de-
limit the state of an object. Boyapati [4] as well as Östlund et al. [22] present type
systems that support immutable instances of mutable types and that let programmers
decide when an object becomes immutable. Objects that will become immutable can
only be referenced by unique references to make the transition to immutability type-
safe. Since our methodology builds on verification rather than a type system, we do not
need this restriction.

IGJ [24] uses Java’s generic types to check immutability of classes, objects, and
references. IGJ requires immutable objects to be fully initialized at the end of the con-
structor, which prevents complex initialization schemes. Oval [18] achieves per-object
immutability by setting the owner to bottom. This is done when the object is created
and, thus, not as flexible as frozen objects.

Haack et al. [12] present a type system for immutable types. As we have explained
in detail in Sec. 2, our methodology is more flexible and, in fact, subsumes immutable
types. A major virtue of Haack et al.’s type system is that it guarantees immutability
even if some portions of the code (such as libraries) are not checked with the system. In
contrast, we require all code to follow our methodology.

We presented our methodology in terms of Spec#’s dynamic ownership [13], but it
can also be used with ownership type systems that support transfer such as Universes
[20], External Uniqueness [6], or AliasJava [0] (even though AliasJava requires addi-
tional restrictions to prevent the modification of frozen objects through lent references).

Reference immutability like in Javari [23] or Universes [19] guarantees that certain
read-only references are not used to modify an object. They allow safe sharing of ob-
jects. However, an object referenced through a read-only reference is still mutable and
may be modified through other references. Thus, reference immutability does not have
the same benefits for verification as immutable objects: objects referenced read-only
cannot be assumed to be always valid, and object invariants must not depend on these
objects [19]. In some of the examples we have encountered, we found use for an idiom
similar to read-only references. We declared method parameters and fields as “peer or
frozen”. Like read-only references, such references cannot be used to modify the ref-
erenced object (because it might be frozen). However, unlike read-only references in



Universes, the object can still be assumed to be valid (the validity of peers follows from
a method’s peer-validity default precondition).

Boyland has used fractional permissions to differentiate read capabilities from write
capabilities [5]. By squandering a part of an object’s permissions, by giving a fractional
permission to the freezer, or by weakening a full permission to an existentially quanti-
fied permission (cf. [3]), one can effectively freeze an object.

Visible state invariants may be assumed to hold in the pre- and poststates of all
method executions; callers do not have to show the validity of method parameters ex-
plicitly. Thus, verification techniques for visible state invariants [10, 19] do not benefit
from the fact that frozen objects are always valid. However, like the Boogie methodol-
ogy, these techniques can be extended to support invariants over shared, frozen objects.

Our notion of immutability forbids all mutations of a frozen object, even benevolent
mutations that are not observable by clients, such as lazy initialization. Naumann’s work
on observational purity [21] shows how to check that mutations are benevolent; it can
be combined with our methodology to make it applicable to more programs.

6 Conclusions

The concept of immutable objects is useful and widely used in programming. Advanced
support of immutability in a programming language or system requires a fine level of
granularity, in order to accommodate the variety of ways that a program selects which
objects are to be immutable and just when each object becomes immutable. In this
paper, we have presented frozen objects as a technique for specifying and verifying
programs that use such immutability properties. Our technique guarantees that the fields
of frozen objects do not change. It is based on object ownership, where a special freezer
object is used as the (transitive) owner of all frozen objects. Though we have presented
our solution in the context of dynamic ownership, frozen objects also work with any
ownership type system with ownership transfer.

Frozen objects subsume immutable types; encoding immutable types on top of
frozen objects leads to a better axiomatization in a verification logic than a direct en-
coding and is also less restrictive.

Our technique guarantees that frozen objects are valid, meaning that their object
invariants hold. In fact, this ever-validity had been our original motivation for this work.
Because their fields do not change, frozen objects can be shared in a carefree way, and
we allow any object invariant to depend on the fields of frozen objects.

There are other intriguing applications of immutability. One is in support of pure
methods (e.g., [9, 8, 14]), which for frozen objects return values that are insensitive to
the heap. Another is in conjunction with concurrency (e.g., [12]), which can benefit
from the carefree sharing that frozen objects offer.

In future work, we intend to implement frozen objects in Spec#. We would also like
to explore how to relax immutability to permit certain modifications of otherwise frozen
objects, for instance, by using monotonicity.
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8. Á. Darvas and K. R. M. Leino. Practical reasoning about invocations and implementations

of pure methods. In FASE, volume 4422 of LNCS, pages 336–351. Springer, 2007.
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