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Abstract Binomial heaps have interesting invariants that constrain the shape of and
the values stored in the data structure. A challenge of the VSComp 2014 verification
competition was to find a fault in a given Java implementation of binomial heaps that
leads to a violation of the invariants, to fix the error, and to verify the corrected
version. In this paper, we present the first solution to this challenge. Using an
encoding of the verification problem into Viper, we identified and fixed the known
and a previously-unknown fault in the Java code and then successfully verified the
implementation. Our case study illustrates the degree of automation that modern
program verifiers achieve for complex invariants; it also demonstrates how modular
verification techniques can be used to iteratively strengthen the verified properties,
allowing the developer to focus on one concern at a time.

1 Introduction

The program verification community regularly engages in verification competitions
such as SV-COMP, VerifyThis, and VSComp. The participants attempt to solve a
set of challenges using verification tools of their choice. These competitions allow
tool developers to assess the strengths and weaknesses of their tools and identify
techniques and tool features that are useful to handle challenging verification
problems. It is common for participants to work on their solutions even beyond
the end of the official competition, and to publish their results [11].

In this paper, we present our solution to one of the challenges of the VSComp
2014 competition. The challenge is to detect a fault in the Java implementation of a
binomial heap data structure [4], to fix the error, and to verify that the corrected code
maintains the invariants of binomial heaps. VSComp 2014 was organized by Ernie
Cohen, Marcelo Frias, Natarajan Shankar, and the author of this paper. The binomial
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heap challenge was proposed by Marcelo Frias. Out of 14 teams that had registered
for the competition, 8 submitted solutions to some of the challenges. None of them
solved the binomial heaps problem; to the best of our knowledge, it has also not
been solved in the aftermath of the competition.

We solved this challenge using our verification infrastructure Viper [16]. We
translated the Java program into the Viper intermediate verification language,
annotated the Viper program with suitable specifications, and verified it using
Viper’s symbolic-execution-based verification back-end. The solution uses access
permissions and recursive predicates in the style of separation logic to describe the
shape of the binomial heap data structure, and heap-dependent abstraction functions
to specify value invariants such as sortedness of lists. The method specifications and
loop invariants necessary for the verification include a mix of complex shape and
value properties. Our case study illustrates the degree of automation that modern
program verifiers achieve for such properties; it also demonstrates how modular
verification techniques can be used to iteratively strengthen the verified properties,
thereby allowing the developer to focus on one concern at a time.

A noteworthy outcome of our verification effort is that we did not only find
and fix the defect that was detected earlier by Marcelo Frias using bounded model
checking. We also identified a second (very similar) fault that was previously
undetected. Both faults are present in Java implementations of binomial heaps that
are available online, for instance, at https://www.sanfoundry.com/java-program-
implement-binomial-heap.

Outline We provide the necessary background on binomial heaps in Sect.2. We
reproduce the challenge in Sect.3 and explain the intended behavior of the faulty
method in Sect. 4. We summarize our formalization of the main invariants in Sect. 5
and explain in Sect.6 how we found the fault, fixed it, and verified the corrected
code. Section 7 provides a quantitative and qualitative evaluation of our solutions
and Sect. 8 concludes. The challenge statement including the given Java source code
as well as our solution are available online [14].

2 Binomial Heaps

A binomial heap stores a multiset of keys, here, integers. Important operations are
very efficient: finding a minimum value, deleting a minimum value, decreasing
a key, and merging two binomial heaps all work in logarithmic amortized time;
insertion has constant amortized time.

Binomial heaps are sets of binomial trees. A binomial tree is defined as follows: a
binomial tree of degree O is a single node. A binomial tree of degree k has k children,
which are the roots of binomial trees of degrees k — 1,k — 2, ..., 1, 0. The list of
children is ordered in descending order. Consequently, a binomial tree of degree k
has 2% nodes. Figure 1 shows binomial trees.


https://www.sanfoundry.com/java-program-implement-binomial-heap. 
https://www.sanfoundry.com/java-program-implement-binomial-heap. 
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Fig. 1 Binomial trees of degrees 0O, 1, 2, and 3. The children of a node are stored in a singly-linked
list. Horizontal arrows depict the sibling-references between the children of a node. Vertical
arrows depict child-references from a parent to its first child. We omit parent-references in
the diagrams for simplicity. The dashed boxes visualize the structure. For instance, the children of
a tree of degree 3 are three trees of degrees 2, 1, and 0

A binomial heap contains at most one binomial tree of each degree. Each tree
must satisfy the minimum-heap property, that is, the key of each node is less or
equal to the keys of each of their children. Consequently, the minimum key of each
tree is stored in its root. Figure 4a shows a binomial heap with trees of degrees 0, 2,
and 3.

3 Verification Challenge

The verification challenge addressed in this paper was presented at VSComp 2014
as follows.

‘We present a compilable excerpt from classes BinomialHeap and BinomialHeapNode
modeling binomial heaps [4]. Method extractMin has a fault that allows for the class
invariant to be violated. Your goals towards solving this problem are:

1. Find and describe the above-mentioned fault.

2. Provide an input binomial heap that exercises this fault, and describe the technique used

to find the input (automated techniques are preferred to human inspection).

Provide a correct version of method extractMin.

Provide a suitable class invariant.

5. Verify that method extractMin indeed preserves the provided class invariant or at
least a meaningful subset of properties from the class invariant.

B w

Hints can be obtained from the organizers in exchange for penalties in the final score.

The given Java implementation of tree nodes, class BinomialHeapNode,
is presented in Fig.2. For binomial heaps, Fig.3 presents an outline of class
BinomialHeap including the method extractMin, which is mentioned in the
challenge. We provide the complete source code from the competition problem
online [14].
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1 public class BinomialHeapNode {

2 public int key;

3 public int degree;

4 public BinomialHeapNode parent;
5 public BinomialHeapNode sibling;
6 public BinomialHeapNode child;

7
8
9

public BinomialHeapNode () {}

10 public BinomialHeapNode reverse(BinomialHeapNode sibl) {
1 BinomialHeapNode ret;

12 if (sibling != null)

13 ret = sibling.reverse(this);

14 else

15 ret = this;

16 sibling = sibl;

17 return ret;

18 }

19}

Fig. 2 The provided Java implementation of class BinomialHeapNode

4 Algorithm

The challenge states that method extractMin has a fault. In this section, we explain
the intended behavior of the method on a concrete example. The method is supposed
to find a minimum key in a given binomial heap and remove it. It achieves that in
five main steps, which we explain in the following and illustrate in Fig. 4.

Figure 4a shows the input heap; we assume that node 6 contains the minimum
key to be removed. Note that the implementation used in the challenge requires the
trees in a binomial heap to be sorted by degree in ascending order.

Step 1: Removing the Minimum Node Method extractMin traverses the list of
binomial trees and identifies the tree with the minimum key (via the call to
findMinNode in line 9 of Fig. 3). Due to the minimum-heap property, this method
needs to compare only the keys at the roots. Lines 10-16 of extractMin remove
the tree with the minimum from the binomial heap. The remaining elements of the
original binomial heap are then split between the remainder of the heap and the
children of the removed minimum node, as illustrated in Fig. 4b.

Step 2: Reversing the Children List The children list of the removed minimum node
is itself a binomial heap, but sorted in descending rather than ascending order. The
next step of extractMin (lines 30 and 36 in Fig. 3) is to reverse this list, resulting
in the state shown in Fig. 4c.

Step 3: Merging the Heaps The next step (call to unionNodes in line 36) merges
both binomial heaps into one sorted list of trees as shown in Fig.4d. This merge
operation is implemented by a method merge, which is called at the beginning of
method unionNodes. Note that the resulting list is not a binomial heap since it may
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public class BinomialHeap {
public BinomialHeapNode Nodes;
public int size;

public BinomialHeapNode extractMin() {

if (Nodes == null) return null;

BinomialHeapNode temp = Nodes, prevTemp = null;
BinomialHeapNode minNode = findMinNode (Nodes);

while (temp.key != minNode.key) {
previemp = temp;
temp = temp.sibling;
}
if (prevTemp == null) { Nodes = temp.sibling; 3}
else { prevTemp.sibling = temp.sibling;

temp = temp.child;
BinomialHeapNode fakeNode = temp;

// remove the parent-pointers pointing to the minimum
while (temp != null) {

temp.parent = null;

temp = temp.sibling;
3

if ((Nodes == null) && (fakeNode == null)) {
size = 0;

} else {
if ((Nodes == null) && (fakeNode != null)) {
Nodes = fakeNode.reverse(null);
size--;
} else {
if ((Nodes != null) && (fakeNode == null)) {
size--;
} else {
unionNodes (fakeNode.reverse(null));
size--;
¥
}
3
return minNode;
¥
void merge(BinomialHeapNode binHeap) { ... }
void unionNodes(BinomialHeapNode binHeap) { ... }

static BinomialHeapNode findMinNode(BinomialHeapNode arg) {

3

}
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}

Fig. 3 Excerpt from the provided Java implementation of class BinomialHeap. The complete
version is available online [14]

contain up to two trees for each degree. In our example, it includes two trees of
degree 0 and two of degree 2.

Step 4: Combining the Trees To re-establish the invariant of a binomial heap,
method unionNodes traverses the list resulting from merge and iteratively combines
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Fig. 4 Example execution of
method extractMin. For
illustration purposes, each
node has a unique number;
for some binomial trees, we
indicate their degree in red.
We assume that the minimum
value to be extracted is stored
in node 6. We show the states
before and after each of the
four steps of the algorithm.
The diagram shows the result
of a correct implementation,
not the code provided in the
challenge. (a) The initial
binomial heap. (b) State after
removing the minimum

node 6. (c) State after
reversing the children list of
the removed minimum node.
(d) State after merging the
two lists. (d) Final binomial
heap
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two consecutive trees of degree k into one tree of degree k + 1. This traversal relies
on the fact that the trees of a binomial heap (and consequently the list produced by
merging two heaps) are sorted in ascending order. If that is the case, it produces a
well-formed binomial heap as shown in Fig. 4e. Here, the two trees of degree O were
merged into a tree of degree 1, which is then merged with the other tree of degree 1
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into a tree of degree 2, resulting in a list with three trees of degree 2. The two trees
at the back of the list are then merged into one tree of degree 3.

5 Formalization of Invariants

We solved the verification challenge by manually encoding the given Java
implementation and its specification into the intermediate verification language
Viper [16]. Viper uses a program logic based on implicit dynamic frames [22],
a permission logic akin to separation logic [17, 21]. Viper associates an access
permission with each heap location. A method may read or write the location
only if it holds the corresponding permission. Permissions may be passed
between method executions, but cannot be duplicated or forged. Permissions
to an unbounded number of memory locations can be represented by recursive
predicates [18]. Viper’s permission logic offers various advanced features such as
fractional permissions [2, 9], magic wands [21], and quantified permissions (iterated
separating conjunction) [15], but these features were not needed for the binomial
heap challenge.

In contrast to separation logic, implicit dynamic frames separate permission
specifications from value properties. For instance, separation logic’s points-to
predicate x.f +— y is expressed in Viper as the conjunction of two assertions
acc(x.f) && x.f ==y, where the former conjunct denotes the access permission
to location x.f and the latter constrains the value stored in the location. This
separation carries over to other specification constructs. In particular, Viper uses
recursive predicates to abstract over the permissions to a data structure and
supports heap-dependent abstraction functions to abstract over its values [8]. Viper’s
conjunction && behaves like separating conjunction when applied to assertions that
denote permissions. In particular, acc (x. f) && acc(y.f) implies x # y.

We formalize the invariants of binomial trees using two mutually recursive
predicates tree and heapseg, which are presented in Fig.5. The tree predicate
takes as argument a reference to a tree node; it provides access permission to the
four fields of this node. The subsequent conjuncts express that a tree’s degree is non-
negative (line 4), that the chi1d field points to a null-terminated list (line 5), and that
the degree is the length of this list (line 6). Here, lists are represented as so-called
list segments, encoded via the heapseg predicate described below. segLength is
a function that yields the length of a list segment; the definition is straightforward
and, therefore, omitted. The remaining conjuncts express properties of the children
list: the first child’s degree is one less than the current node’s (lines 7 and 8); the
boolean function validchildren (line 9) encodes that each child’s degree is one
larger than its sibling’s. Finally, the first child’s parent is the current node (line 10).

The heapseg predicate represents the empty list segment when its arguments
are equal. Otherwise, it provides a tree predicate for each node in the list segment
and access permission to its sibling field (line 15), and requires all nodes in the
segment to have the same parent (lines 17 and 18).
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1 predicate tree(this: Ref) {

2 acc(this.key) &% acc(this.degree) &&
3 acc(this.child) && acc(this.parent) &&
4 @ <= this.degree &&

5 heapseg(this.child, null) &&
6 this.degree == seglength(this.child, null) &&

7 (0 < this.degree ==>

8 segDegree(this.child, null, @) == this.degree - 1) &&
9 validChildren(this.child, null) &&

10 (this.child != null ==> segParent(this.child, null) == this)
o}

13 predicate heapseg(this: Ref, last: Ref) {
14 this != last ==>

15 tree(this) && acc(this.sibling) &&

16 heapseg(this.sibling, last) &&

17 (this.sibling != last ==>

18 treeParent(this) == segParent(this.sibling, last))
19}

Fig. 5 Mutually recursive predicates describing binomial trees

predicate heap(this: Ref) {

1

2 acc(this.Nodes) &&

3 heapseg(this.Nodes, null) && sorted(this.Nodes, null) &&

4 (this.Nodes != null ==> segParent(this.Nodes, null) == null) &&
5 acc(this.size) && this.size == segSize(this.Nodes, null)

6 }

Fig. 6 Predicate describing binomial heaps

Together, these predicates encode the invariant of binomial trees explained
in Sect.2: The access permissions ensure that the data structure is a tree since
they prevent aliasing. Moreover, since the first child of a tree with degree k has
degree k — 1 (lines 7 and 8), and since there are k children (line 6), which are
binomial trees (line 15) whose degrees decrease by one from child to child (function
validChildren in line 9), we express that the children are the roots of binomial
trees of degrees k — 1,k — 2, ..., 1,0, as required.

The heap predicate in Fig.6 describes the invariant of a binomial heap. It
provides access permission to the Nodes field, which points to the root of the first
binomial tree (line 2). The trees in a binomial heap form a null-terminated list;
function sorted expresses that the trees in this list are sorted by degrees in strictly
increasing order (line 3). The trees in this list have no parent (line 4). Finally, the
code provided in the verification challenge has a size field that is supposed to store
the number of elements in a binomial heap. This field is not read in the provided Java
implementation. We included it, nevertheless, together with an invariant that size
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contains the actual number of elements as determined by the recursive function
segSize (line 5).

6 Verification

The verification challenge (see Sect. 3) states that method extractMin violates the
invariant of a binomial heap. We can check this property by verifying the following
method specification in Viper: If the receiver object this is a well-formed binomial
heap in the pre-state of the method (that is, satisfies the heap predicate), it will also
be a well-formed heap in the post-state:

method extractMin (this: Ref) returns (res: Ref)
requires heap (this)
ensures heap(this)

Verifying the method implementation against this specification requires suitable
specifications for all methods (transitively) called by extractMin. These specifi-
cations are available online [14]. Here, we focus on method merge, which is the
method that contains the fault. As part of Step 3 of the extractMin algorithm
(see Sect.4), merge merges two sorted lists of binomial trees as illustrated by the
transition from Fig. 4c, d.

The Viper specification of method merge is shown in Fig. 7. The first two precon-
ditions require the receiver to be a non-empty binomial heap (lines 2 and 3). Viper
distinguishes between a predicate and its body [23]. In order to prevent automatic
provers from unrolling recursive definitions indefinitely, exchanging a predicate for
its body and vice versa is done manually via unfold and fold statements. The first
two preconditions include the unfolded version of the heap (this) predicate. The
third precondition requires parameters binHeap to point to a null-terminated list of

1 method merge(this: Ref, binHeap: Ref)
2 requires acc(this.Nodes) && this.Nodes != null

3 requires heapseg(this.Nodes, null) && sorted(this.Nodes, null)
4 requires heapseg(binHeap, null) && sorted(binHeap, null)

5 requires binHeap != null ==>

6 segParent(this.Nodes, null) == segParent(binHeap, null)
7
8
9

ensures acc(this.Nodes) && this.Nodes != null
ensures heapseg(this.Nodes, null) && presorted(this.Nodes, null)
10 ensures segSize(this.Nodes, null) ==
11 old(segSize(this.Nodes, null))+old(segSize(binHeap, null))
12 ensures segParent(this.Nodes, null)==old(segParent(this.Nodes, null))

Fig. 7 Viper specification of method merge
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binomial heaps (line 4), and the last precondition requires the trees in both lists to
have the same parent (line 5).

Similarly, the first two postconditions ensure that after the method execution, the
Nodes field of the receiver will point to a non-empty, null-terminated list of binomial
trees. Note, however, that this list will in general not satisfy the sorted property.
As we explained in Sect. 4 and illustrated in Fig. 4d, the resulting list is sorted, but,
in contrast to a binomial heap, may contain up to two trees of each degree. We
express these properties using the presorted function (lines 8 and 9). The third
postcondition expresses that the size of the merged list is the sum of the sizes of the
input lists (lines 10 and 11), and the last postcondition ensures that the parent of the
trees in the lists is not modified by the method (line 12).

This specification illustrates one of the main benefits of implicit dynamic frames
over traditional separation logic. By separating access permissions from value
properties, one can conveniently describe different constraints over the same data
structure. Our heapseg predicate describes the permissions to the trees in a list
segment, whereas different sorting criteria can be specified separately using func-
tions. In the specification of method merge, we use sorted to express sortedness
without duplicates and presorted to allow degrees to occur at most twice. During
the combination of binomial trees (Step 4 in Sect. 4), there may even be states where
a list can contain up to one element up to three times. For instance, after combining
the first two trees in Fig. 4d and then combining the result with the third tree, the list
includes three trees of degree 2. Viper allows one to use the same heapseg predicate
in all three situations and to combine it with different value constraints. In contrast,
separation logic would require either a complex parameterization of the predicate or
a mapping from list segments to a mathematical sequence of degrees that can then
be constrained appropriately; however, reasoning about sequences in SMT solvers
is often flaky.

The Java implementation of method merge is presented in Fig.8; its Viper
encoding is available online [14]. Verifying this method requires a complex loop
invariant consisting of 26 lines of Viper code. Besides various access permissions
and sortedness criteria, which we discussed above, it requires that the degree of the
last tree in the list starting at temp1 is at most the degree of the tree pointed to by
temp2, unless templ points to the first tree, this.Nodes. This constraint is violated
by the implementation given in the verification challenge.

Figure 9 shows the execution of the given faulty implementation of method
merge for the example from Fig.4. As shown by Fig.9b, already the first loop
iteration does not preserve this invariant: Here, the last tree in the listed starting
at templ has degree 2, which is larger than the degree of temp2, which is 1. A
careful inspection of the executed branch of the loop (lines 5-9) reveals that the
assignment templ = tmp.sibling in line 9 is wrong. The correct assignment is
templ = tmp, which would let temp1 point to node 9 in Fig. 9b and, thus, preserve
the loop invariant. The smallest counterexample that reveals this error has 13 nodes
in the initial binomial heap, as in Fig. 4a. We confirmed the detected fault also by
running the Java implementation on that example.
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private void merge(BinomialHeapNode binHeap) {

BinomialHeapNode templ =
while ((templ

Nodes ,
= null) && (temp2

temp2 = binHeap;
= null)) {

if (templ.degree == temp2.degree) {

1
2
3
4
5 BinomialHeapNode tmp =
6 temp2 = temp2.sibling;
7 tmp.sibling =
8
9

templ.sibling = tmp;

templ = tmp.sibling;
10 } else {
1 if (templ.degree < temp2.degree) {
12 if ((templ.sibling == null)
13 || (templ.sibling.degree > temp2.degree)) {
14 BinomialHeapNode tmp = temp2;
15 temp2 = temp2.sibling;
16 tmp.sibling = templ.sibling;
17 templ.sibling = tmp;
18 templ = tmp.sibling;
19 } else {
20 templ = templ.sibling;
21 }
2 } else {
23 BinomialHeapNode tmp = templ;
2% templ = temp2;
25 temp2 = temp2.sibling;
26 templ.sibling = tmp;
27 if (tmp == Nodes) {
28 Nodes = templ;
29 }
30 }
31 }
32 }
33
34 if (templ == null) {
35 templ = Nodes;
36 while (templ.sibling != null) {
37 templ = templ.sibling;
38 }
39 templ.sibling = temp2;
40 }
41 }

temp2;

templ.sibling;

213

Fig. 8 Provided implementation of the auxiliary method merge, which is called from
unionNodes, which is in turn called from extractMin

Re-verifying the code after fixing this fault reveals a second one: the assignment
in line 18 has the same fault and can be fixed in the same way. The smallest
counterexample we found is a binomial input heap with 25 nodes: trees of degrees
0, 3, and 4, where the minimum is extracted from the tree of degree 3; we also
confirmed this fault in the given Java implementation. After applying the second

fix, the example verifies.
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Fig. 9 States before and after
each loop iteration in the
faulty implementation of
method merge. The initial
state is the same as in Fig. 4d.
Fig. 4e shows the final state of
the corrected implementation.
The faulty implementation
incorrectly removes nodes 8
and 13 from the list. (a) State
at the beginning of method
merge. (b) State after the
first loop iteration (executing
lines 5-9). (c) State after the
second loop iteration
(executing lines 23-29). (d)
State after the third loop
iteration (executing line 20).
(e) State after the last loop
iteration (executing lines 5-9)
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It is interesting to observe that the loop invariant implies that the last else-block
(lines 23-29) is reachable only when templ == this.Nodes, a property that we
verified. So the condition in line 27 is always true and the if-statement could be

omitted.
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7 Discussion

We solved all five tasks given in the verification challenge (see Sect. 3). The input
required for Task 2 was found manually when trying to understand why the loop
invariant in method merge is not preserved. Note that our solution goes beyond the
challenge in two major ways. First, Viper’s permission logic ensures the absence of
run-time errors and data races. That is, our solution is correct even in a concurrent
setting. Second, before he proposed the verification challenge, Marcelo Frias used
bounded model checking and detected the first of the two errors. However, the
second error, which is triggered by a larger input (25 instead of 13 nodes) remained
undetected. We found both errors and verified the fixed version of the code for
unbounded inputs.

Quantitative Evaluation Table 1 provides an overview of our encoding. The 141
lines of Java code were encoded into 170 lines of Viper code; the slight increase
is caused by the fact that Viper is an intermediate language. The translation from
Java to Viper could be performed completely automatically using a suitable front-
end such as VerCors [1]. The specification of the program consists of 117 lines,
80 lines for the definition of recursive predicates and heap-dependent abstraction
functions, and 37 lines for the preconditions and postconditions of the five methods.
In addition, our solution required 128 lines of ghost code for the unfolding and
folding of recursive predicates, 112 lines of loop invariants, and 13 local assertions
to help the SMT solver, for instance, to unroll function definitions.

In total, the ratio of annotations to code is 370/170 = 2.2, which is significantly
lower than the numbers reported for other SMT-based verification efforts, which
report an overhead factor around 5 [6, 7], and much lower than verification efforts
in interactive theorem provers, which often have overhead factors between 10
and 20 [5, 10, 12, 25]. Note, however, that these are very rough comparisons
since the complexity of programs and verified properties differ between these
case studies; moreover, verification in interactive provers such as Coq can provide
foundational guarantees, whereas soundness of our approach depends on the correct
implementation of Viper.

Table 1 Summary of

: . Content Lines

solution. “Lines” excludes

- Program code 170
empty lines and comments

Predicate and function declarations 80

Method specifications for 5 methods 37

Ghost code including specification of ghost method 128

Loop invariants 112

Local assertions 13

Total overall 540

Total annotations 370
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We measured the verification time on an Intel Core i7-4770 CPU (3.40 GHz,
16 Gb RAM) running Windows 10 Pro using a warmed-up JVM. Averaged over ten
runs, Viper’s verification back-end based on symbolic execution requires slightly
under 23 s for the verification.

Qualitative Evaluation Viper’s modular verification technique allowed us to
verify the example incrementally. We started with the verification of memory
safety, using recursive predicates that mostly specified access permission. We then
iteratively strengthened the invariants, first by including more properties of binomial
heaps and trees, and then by including the parent and size fields. Due to Viper’s
support for heap-dependent abstraction functions, we were able to strengthen the
verified properties without substantial changes to the recursive predicates. This
iterative process greatly reduced the complexity of the verification tasks.

During the verification, we simplified the code in three minor ways. First, we
moved line 16 in method reverse (Fig.2) into the conditional statement, which
allowed us to fold the heapseg predicate before the recursive call in line 13. Second,
we simplified the condition of the loop in lines 10-13 of method extractMin
(Fig.3) to temp = minNode!, which is equivalent because £indMinNode yields a
node with a minimal key. This change simplifies the specification of £findMinNode.
Third, we execute this loop only if minNode is not the first node of the list and
otherwise set this.Nodes to temp.sibling. This change simplifies the loop
invariant significantly. Besides these changes, the code we verified is a direct
translation of the Java implementation. Note that we consider the second and third
change to improve the clarity of the code, whereas the first change merely simplifies
verification.

The manipulation of predicates via manual folding and unfolding gives a lot of
control over the proof search, but introduces a very high overhead. Most of this
overhead is needed to manipulate list segments during iterative traversals. Possible
remedies are support for loops that are specified with pre- and postconditions
instead of loop invariants [24], support for automatic folding and unfolding [3, 19],
or a specification based on iterated separating conjunction rather than recursive
predicates [15]. We plan to explore these options as future work.

Our solution requires 13 local assertions to make the SMT solver succeed.
These local assertions provide expressions that trigger quantifier instantiations or
temporarily unfold predicates to extract information from their bodies. Both usages
should be automated.

Finally, the case study demonstrated the importance of a good development
environment that parallelizes verification and caches verification results [13]. We
have implemented both features since we completed the case study.



The Binomial Heap Verification Challenge in Viper 217
8 Conclusion

We presented the first solution to the Binomial Heap verification challenge from the
VSComp 2014 competition. Our solution uses Viper’s permission logic and makes
heavy use of recursive predicates and heap-dependent abstraction functions.

The solution suggests several directions for future work. First, it requires a
significant amount of annotations, especially loop invariants and ghost code to
manipulate recursive predicates. It will be interesting to explore whether at least
some of these annotations can be inferred. Second, our solution required 13 local
assertions to help the SMT solver prove certain obligations; we will explore
strategies to eliminate those. Third, we plan to encode the example using magic
wands or iterated separating conjunction instead of list-segment predicates in order
to reduce the overhead of manipulating these predicates.

This paper is a contribution to a book in honor of Arnd Poetzsch-Heffter’s
60th birthday. One of my first scientific discussions with Arnd was about the role
of object invariants in specifying object-oriented programs, especially, about the
difference between invariants and well-formedness predicates as part of method
specifications [20]. This discussion was the starting point of my PhD work and
many more years of research on various forms of invariants. I hope Arnd will enjoy
reading this case study about the verification of object invariants. I would like to
take this opportunity to thank him for the tremendous support he has given me as
my PhD advisor and beyond.
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