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Abstract. Deductive program verifiers attempt to construct a proof that
a given program satisfies a given specification. Their implementations
reflect the semantics of the programming language and the specification
language, and often include elaborate proof search strategies to auto-
mate verification. Each of these components is intricate, which makes
building a verifier from scratch complex and costly.

In these lecture notes, we will present an approach to build program
verifiers as a sequence of translations from the source language and spec-
ification via intermediate languages down to a logic for which automatic
solvers exist. This architecture reduces the overall complexity by divid-
ing the verification process into simpler, well-defined tasks, and enables
the reuse of essential elements of a program verifier such as parts of
the proof search, specification inference, and counterexample generation.
We will use the intermediate verification language Viper to demonstrate
how to encode interesting verification problems.
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1. Introduction

Ensuring the correctness and security of software systems is becoming increas-
ingly challenging. Testing has always been limited to checking just a small sub-
set of the possible program executions. In the omnipresence of concurrency (for
instance, in software that runs on multicore processors or in data centers) and
event-based systems (such as applications running on mobile devices), testing is
largely insufficient. It is, thus, useful to complement or replace testing with static
verification techniques such as static program analysis [9], model checking [7], or
deductive verification [19]. These techniques can formally prove correctness and
security properties for all executions of a program, that is, for all possible inputs,
thread schedules, event interactions, attacker behaviors, etc.

Static program analysis, model checking, and deductive verification strike dif-
ferent trade-offs between automation, expressiveness, and modularity. In these
lecture notes, we focus on deductive verification, which requires more user input
than the other techniques, but allows one to prove complex properties and enables
modular verification [28]. Modularity is important for scalability, to reduce the
re-verification effort during software maintenance, and to give guarantees for indi-
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vidual program components such as libraries. Deductive program verification em-
ploys a program logic such as Hoare logic [19] or separation logic [33] to construct
a mathematical proof that a given program satisfies its specification.

Program verifiers are tools that automate (parts of) the proof search, typically
by reducing verification to a set of verification conditions, logical formulas whose
validity implies the correctness of the program and which can be checked by
automatic or interactive theorem provers. This reduction is often performed by
encoding a program, its specification, and the program logic into an intermediate
verification language. Programs in the intermediate language are typically not
(efficiently) executable. Their correctness implies the correctness of the original
program. Implementing a verifier via an intermediate verification language has two
major advantages over a monolithic architecture. First, it allows one to reuse large
parts of the tool infrastructure; all components that operate on the intermediate
language or further downstream can be reused across multiple program verifiers
just like an optimizer and a code generator for an compiler intermediate language
can be reused across multiple compilers. Second, human-readable intermediate
verification languages greatly simplify the prototyping of verification techniques
and tools, as well as debugging.

There are several mature intermediate verification languages and correspond-
ing tool infrastructures. Boogie [22] offers a simple procedural language and tool
support for verification condition generation, bounded verification [20], and de-
bugging of verification failures [21]. Why’s language [16] has a functional fla-
vor; its verifier targets a wide range of automatic provers. Viper [30] facilitates
the verification of proofs in logics similar to separation logic, targeting especially
heap-manipulating and concurrent programs. All three intermediate languages
are widely used. For instance, Boogie is at the core of verifiers such as Chal-
ice [26], Corral [20], Dafny [23], Spec# [25,2], and VCC [8]. Why powers for in-
stance Frama-C and Krakatoa [15], and Viper is used by Nagini [11], Prusti [1],
and VerCors [5].

In these lecture notes, we will use Viper. However, especially the concepts
introduced in the earlier sections apply similarly to other intermediate verifica-
tion languages. Fig. 1 shows the architecture of the Viper verification infrastruc-
ture. We will introduce the Viper intermediate language together with examples
later, but refer to an overview of its design [30] and the tutorial [13] for details.
Viper provides two backend verifiers. The symbolic execution verifier [35] reasons
about heap manipulations internally and uses the SMT solver Z3 [27] for other
aspects of verification, such as arithmetic. The verification condition generator is
itself implemented via a translation to the intermediate language Boogie, which
ultimately also targets Z3. Both tools can be tried online at viper.ethz.ch; the
entire infrastructure is available as open-source implementation.

Outline. Sec. 2 introduces the foundations of verification condition generation.
Sec. 3 shows how to verify hyperproperties (properties the relate two or more
program executions) via an encoding onto an intermediate language. In Sec. 4,
we explain how to encode the verification of heap-manipulating programs using a
flavor of separation logic. Sec. 5 extends this encoding to recursive data structures.
We briefly discuss the development of frontend verifiers in Sec. 6, and conclude
in Sec. 7.
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Figure 1. Architecture of the Viper verification infrastructure. The blue boxes depict the main
components of the architecture: the Viper intermediate language, two verification backends
(based on symbolic execution and verification condition generation, resp.), and an abstract
interpreter to infer auxiliary specifications. Gray boxes are external components, and orange
boxes show the languages for which existing verifiers are implemented via a translation into
Viper. The verifiers in the upper row (Chalice, C11, Go, Scala) are prototypes, whereas the
others (Rust, Python, Java, OpenCL) are fairly mature tools.

2. Verification Condition Generation

Throughout these lecture notes, we will encode more and more complex programs
and properties into simpler intermediate representations. As foundation for this
chain of translations, we employ Dijkstra’s guarded-commands language [10]. In
this section, we introduce the necessary background of guarded commands, ex-
plain how to encode statements into this language, and illustrate the resulting
verification approach on an example.

2.1. Guarded Commands

We use a guarded-commands language with the following syntax:

S =x=e

| havoc x
| assert P
| assume P
| S;8
| S[S
where x ranges over variables, e denotes a side-effect free expression, and P de-
notes an assertion (a first-order formula over program variables). Guarded com-
mands include assignments, assignments of non-deterministic values to variables,
assertions, assumptions, sequential composition, and non-deterministic choice.
The execution of a guarded command from an initial state fails if the condition
of an assertion evaluates to false, it is infeasible if the condition of an assumption
evaluates to false, and otherwise succeeds. We say that a guarded command is
correct if all feasible executions succeed, that is, no execution fails.
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Correctness of a guarded command S can be verified by proving the valid-
ity of the verification condition wp(S, true), where wp(S,Q) denotes the weakest
precondition of guarded command S w.r.t. assertion ) and is defined as follows
(Q[e/z] denotes @ with e substituted for z):

wp(ei=e,Q) = Qle/x]
wp(havoc x,Q)=Vz-Q
wp(assert P,Q)=PAQ
wp(assume P,Q) =P = Q
wp(S1;52,Q) = wp(S1, wp(S2,Q))
wp(S1 [ 52,Q) = wp(S1,Q) A wp(S2,Q)

Many verification problems require mathematical theories such as arithmetic
and set theory. For those theories that are not natively supported by the underly-
ing theorem prover, intermediate verification languages allow programmers to de-
fine them via sorts, uninterpreted function symbols, and axioms. The conjunction
of these axioms forms a so-called background predicate, which may be assumed
for any given verification task. So for a background predicate BP, the verification
of a guarded command S means proving the validity of:

BP = wp(S, true)
2.2. Encoding of Statements

Guarded commands offer a simple core language, for which verification condition
generation is straightforward. Other statements can be encoded conveniently into
guarded commands, as we show next.

Conditional statements. A conditional statement
if e then S; else S5 end

is encoded as
(assume e; [S1]) [ (assume —e; [S2])

where [S] denotes the encoding of statement S (we omit the encoding of expres-
sions for simplicity). Intuitively, the resulting guarded command is correct if Sp
is correct if e holds (otherwise the left-hand side of the non-deterministic choice
is infeasible) and if Ss is correct if e does not hold (otherwise the right-hand side
is infeasible). This is exactly the verification condition required for a conditional
statement, and formalized by the verification condition:

(e = wp([51], @) A (me = wp([52], Q)

Loops. The verification of loops requires a suitable loop invariant, that is, an
assertion that holds before the loop and after each loop iteration. A loop invariant
represents the inductive argument needed to reason about an unknown number
of loop iterations. We require programmers to provide loop invariants manually
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through suitable annotations in the code. However, techniques for the automatic
inference of invariants, typically via fixpoint iteration, exist [9].
A loop of the form

while(e) invariant P begin S end

is encoded as

assert P;
havoc z;; assume P;
(assume e; [S]; assert P; assume false)

[

assume —e

This encoding first asserts the loop invariant before the loop. Instead of perform-
ing an iteration (which would require a fixpoint computation in the wp com-
putation), it simulates an arbitrary loop execution. For this purpose, we assign
non-deterministic values to all variables x; that are assigned in the loop body
S (the so-called loop targets) and assume the loop invariant. This step removes
all previous knowledge about these variables, except that they satisfy the loop
invariant. The subsequent non-deterministic choice models the two possible be-
haviors of the loop. If the loop condition holds, we execute the loop body S and
prove that it preserves the invariant P. The subsequent assume false ensures
that any subsequent code verifies trivially; this is needed because we encode the
termination of the loop separately, in the second branch of the non-deterministic
choice. Here, we assume that the loop condition e does not hold.

Verifying the encoding of a loop ensures that the loop is correct if it termi-
nates. Proof obligations that enforce termination need to be encoded explicitly,
as we discuss later.

Procedures. Modular verification techniques require specifications for procedures
and verify calls using the specification of the callee instead of its implementation.
This approach is compatible with information hiding, allows one to verify calls
where the callee implementation is unknown (for instance, abstract methods,
dynamically-bound methods, or library methods), and avoids re-verification of
callers when the implementation of a callee changes.

Procedures are typically specified using pre- and postconditions. Callers need
to establish the precondition and may assume the postcondition after the call.
In turn, procedure bodies may assume that their precondition holds upon entry
and must establish the postcondition upon termination. Consider a procedure
declaration

procedure p(z) returns r
requires P
ensures @

begin S end

where z is the (only) formal parameter, r is the result variable, P is the precondi-
tion, and @ is the postcondition. In languages without global state such as global
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variables or a heap memory, correctness of this procedure can be encoded into
guarded commands as follows:

assume P

[5]

assert @
A acall y 1= p(e) is encoded as (where z is a fresh variable):

zZ =€
assert P[z/x]
havoc y

assume Q[z/x,y/r]

The substitutions replace the parameter and result variable in the pre- and post-
condition by the actual argument and right-hand side variable, resp. The tempo-
rary variable z is needed since e may refer to y. The havoc operation reflects that
the call updates variable y and, thus, all prior information about its value is no
longer valid. Properties of the new value of y are conveyed via p’s postcondition.
We will discuss in Sec. 4 how to encode procedures and calls in the presence of a
heap memory, where we need to reflect the potential side effects of a call on heap
locations.

2.3. Example

The example in Fig. 2 illustrates the concepts used so far. This Viper pro-
cedure (called method in Viper) implements the first challenge of the Ver-
ifyThis 2011 verification competition (see www.pm.inf.ethz.ch/research/
verifythis/Archive/2011.html). Method maxSeq computes the index of the
maximum of a non-empty sequence of integers. The postcondition states that the
result x is a valid index and that the value at position x is at least as large as all
other values in the sequence. The loop invariant states that values to the left of
x and to the right of y are less than or equal to the value at position x. Conse-
quently, when the loop terminates, we have x==y and, thus, x is the index of the
maximum.

Seq is a built-in generic datatype. It is encoded via uninterpreted function
symbols and axioms, which are part of the background predicate used to verify
any Viper method.

Viper does not require termination of methods and loops. However, it is
possible to encode termination arguments explicitly via additional assertions in
the code. In this example, we use y - x as ranking function. To ensure that its
value ranges over a well-founded set, we prove in line 18 that it is non-negative.
Termination is then guaranteed by the fact that each loop iteration decreases the
value of the ranking function, which we assert in line 25.

3. Verification of Hyperproperties

With the technique introduced so far, we can prove properties for individual ex-
ecutions of a program such as functional correctness and termination. Other im-
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method maxSeq(s: Seq[Int]) returns (x: Int)

requires 0 < |s|

ensures 0 <= x && x < |s]

ensures forall i: Int :: 0 <= 1 && i < |s| ==> s[i] <= s[x]
{

x :=0

var y: Int := |s| - 1

while(x !=vy)

invariant 0 <= x

invariant 0 <=y & vy < |[s]|

invariant x <=y

invariant forall i: Int ::
(0<=1&&i<x||lyv<i&ic«<]|sl|)
==> (s[i] <= s[x] || s[i] <= s[yD)

{
var measure: Int :=vy - x // termination
assert 0 <= measure // termination
if(s[x] <= s[yD)
{
X :=x+1
} else {
yi=y-1
}
assert y - x < measure // termination
}
}

Figure 2. A Viper method that computes the index of the maximum of a non-empty sequence of
integers. The pre- and postcondition express the functional behavior of the method; termination
is encoded manually through local assertions.

portant properties relate multiple executions. For instance, determinism requires
that two executions starting from the same initial state terminate in the same final
state. Properties of multiple program executions are called hyperproperties and
include for instance monotonicity, non-interference [17] (which is used to prove
secure information flow [34]), or read effects [24].

Hyperproperties can be verified via relational program logics [4,39]. However,
these logics are difficult to automate and require dedicated tool support. An
alternative is to construct a so-called product program [3,12] that encodes two or
more executions of the original program into a single execution of the product.
This product program can be expressed in an intermediate verification language
and verified using the approach introduced above.

We consider modular product programs [12] here, which enable the modular
verification of hyperproperties, and focus on the encoding of two executions. A
generalization to arbitrary numbers is trivial. The basic construction is simple. To
encode the state space of two program executions, we introduce two variables x1
and xo for each variable x of the original program. Since the control flow of the two
executions of the original program may differ, we introduce two boolean activation
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variables p1 and po that reflect whether each of the executions is currently active.
Both variables are initially true.

An assignment x:=e in the original program is then encoded as two condi-
tional assignments, which update the variables of the product program if the
corresponding execution is active:

if(p1) {z1:=e1}
if(p2) {z2:=e2 }

where e; is the expression e with all occurrences of a variable y replaced by ;.
A conditional statement if(e) { S; } else { Sy } is encoded by introducing
fresh activation variables that reflect which execution enters the then- and the
else-branch, resp.:

true

var py =piAep

var ptme 1= paAes
alse

var p; 1= p1A—ep
alse

var = po A eg

[[51]]( true true>
[S2]( pfase pgalse>

where [S](p1,p2) denotes the product construction for statement S with activa-
tion variables p; and po.

A key feature of modular product programs is that their construction does
not duplicate loops and method calls. This feature allows us to use loop invariants
and method specifications that relate both executions of the original program
and, thereby, enables modular verification. A loop while(e) invariant P { S}
is encoded as follows:

while(pi Aei Vpa Aez)
invariant [P](p1,p2)
{
var pj I=pi1Ae;
var p; 1= paeg
[[S]]( true true)

true
true

The product loop iterates as long as one of the two executions is active and its
loop condition is satisfied. However, the loop body is executed only for active
executions.

Modular product programs support both classical and relational assertions.
A classical assertion P is encoded as (p1 = P1) A (p2 = P2), that is, it must hold
for each active execution. Relational specifications may relate both executions of
the program. A relational assertion R is encoded as p1 Aps = R, that is, it must
hold if both executions are active (the variables of an inactive execution do not
have meaningful values).

Methods are encoded by duplicating parameters and results, and adding two
extra parameters for the activation variables. A call then passes the values of the
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method maxDet(sl: Seq[Int], s2: Seq[Int], pl: Bool, p2: Bool)
returns (x1: Int, x2: Int)
requires pl ==> 0 < |sl]
requires p2 ==> 0 < |s2|
ensures pl && p2 ==> (sl == s2 ==> x1 == x2)

var yl: Int

var y2: Int

if(pl) { x1 := 0 }

if(p2) { x2 :=0}

if(pl) { vl := [s1l] -1}
if(p2) { = |s2] - 1%

<
N
.I.

while(pl && x1 != yl || p2 && x2 != y2)
invariant pl ==> 0 <= x1 && 0 <= vyl && vyl < [|sl] && x1 <=yl
invariant p2 ==> 0 <= x2 && 0 <= y2 && vy2 < |s2]| && x2 <= y2
invariant pl && p2 ==> (sl == 82 ==> x1 == x2 && yl == y2)

var pwl: Bool :
var pw2: Bool :

pl && x1 =yl
p2 && x2 != y2

var ptl: Bool := pwl && s1[x1] <= sl[yl]
var pt2: Bool := pw2 && s2[x2] <= s2[y2]
var pfl: Bool := pwl && !(sl[x1] <= sl[vyl])
var pf2: Bool := pw2 && !(s2[x2] <= s2[y2])

if(ptl) { x1 :=x1 + 1}
if(pt2) { x2 :=x2 + 1}
if(pfl) { vl :=vyl -1}
if(pf2) { v2 :=vy2 -1}

Figure 3. Modular product program for the method from Fig. 2. The classical preconditions
ensure that sequence accesses are within bounds. The relational postcondition expresses deter-
minism: for equal parameter values, we will get equal results. We omit the termination checks
for simplicity.

caller’s activation variables to the callee to ensure that the body of the callee
method is executed only if the corresponding execution is active.

Fig. 3 shows the product program for the example in Fig. 2. The classical
preconditions (and the corresponding loop invariants) ensure that sequence ac-
cesses are within bounds. The relational postcondition and loop invariant express
determinism: for equal parameter values, we will get equal results in both method
executions.

Modular product programs allow one to use off-the-shelf verifiers to verify
hyperproperties. They can be used to verify even advanced non-interference prop-
erties including declassification and the absence of termination leaks [12].
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4. Verification of Heap-Manipulating Programs

In this section, we present a verification technique for heap-manipulating pro-
grams and show how it can be encoded into the language introduced so far.

4.1. Access Permissions

The main verification challenge for heap-manipulating programs is framing: how
to preserve information about heap data structures across heap changes, in par-
ticular, across method calls. For this purpose, we introduce the notion of an access
permission (or permission for short), which facilitates static verification, but is
not present during program execution. We associate an access permission with
each heap location. This permission is created when the heap location is allocated.
Permissions are held by method executions; a method execution may access a
heap location only if it holds the corresponding permission. Permissions may be
transferred between method executions, but cannot be duplicated or forged. Con-
sequently, there is at most one permission available for each location. While one
method holds the permission, no other method can have it to modify the location,
which enables framing.

To distinguish read and write accesses, it is useful to support fractional per-
missions [6], where a permission can be split into several fractions, and the frac-
tions can be re-combined to obtain a full permission. Writing to a memory location
requires full permission, whereas any non-zero fraction permits reading.

Let us assume a heap that consists of objects with fields. We can encode heaps
and permissions as two mathematical maps (defined as part of the background
predicate) that map reference-field pairs to values and rational numbers in [0;1],
resp. We call the permission map a mask. Using this encoding, a field read y :=x.f
is encoded as:

assert x # null
assert Mask[x, f] >0

y = Heap[z, f]
Analogously, we can encode a field update z.f := e as:

assert x # null
assert Mask[z, f]=1
Heap := Heaplx, f — €]

Permissions are transferred between methods upon calls and when a call
returns. Which permissions to transfer is specified in the method specification via
accessibility predicates of the form acc(z.f, p), where p is the required fraction.
The transfer is encoded via two auxiliary operations on assertions. Fzhaling an
assertion P is done in three steps: (1) It asserts that all permissions required by
P are available in the current mask and that all logical constraints in P hold; if
not, verification fails. (2) It removes the transferred permissions from the mask.
(3) It havocs all memory locations to which no permission is held, to reflect that
other methods may use the permission to update those locations and, thereby,
invalidate any knowledge about them. Conversely, inhaling an assertion P requires
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field val: Int
define read(a,i)
slot(a,i).val

domain TArray {
function slot(a: IArray, i: Int): Ref
function len(a: IArray): Int
function first(r: Ref): IArray
function second(r: Ref): Int

axiom all_diff {
forall a: IArray, i: Int :: { slot(a,i) }
first(slot(a,i)) == a && second(slot(a,i)) == i
}

axiom len_nonneg {
forall a: IArray :: { len(a) }
len(a) >= 0

Figure 4. A Viper field, macro, and background predicate to encode mutable integer arrays. The
term { slot(a,i) } is a matching pattern used by the SMT solver to instantiate the universal
quantifier.

two steps: (1) It adds the transferred permissions to the mask. (2) It assumes that
all logical constraints in P hold. Both operations are defined inductively over the
syntax of assertions; we omit a formal encoding here for simplicity.

With these auxiliary operations, we can adapt the encoding of procedure
declarations and calls presented earlier. Instead of asserting and assuming pre-
and postconditions, they are exhaled and inhaled, resp. For instance, upon a call,
the caller exhales the precondition (to transfer permissions to the callee) and then
inhales the postcondition (to transfer permissions back). The havoc that happens
in step 3 of the exhale reflects the potential side effects of the callee method.

Permissions are the basis behind modern program logics such as separation
logic [33] and implicit dynamic frames [36]. They are applicable to a wide range of
verification problems. In a concurrent setting, they ensure data race freedom [31].
If one thread holds full permission to write to a memory location, other threads
hold no permission and can, thus, neither read nor write. Nevertheless, fractional
permissions enable concurrent reading. Permissions have also been used to verify
fine-grained concurrency, even on weak memory models [38,37].

4.2. Example

To illustrate the use of permissions, we discuss a variation of the example from

Fig. 2 that operates on a mutable array instead of a mathematical sequence.
Viper does not support arrays natively, but they can be encoded easily as part

of the background predicate, as shown in Fig. 4. We model each array location as
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method maxArray(a: IArray) returns (x: Int)
requires 0 < len(a)
requires forall i: Int :: O<=i && i<len(a) ==> acc(read(a,i), 1/2)
ensures 0 <= x && x < len(a)
ensures forall i: Int :: O<=i && i<len(a) ==> acc(read(a,i), 1/2)
ensures forall i: Int :: O<=1 && i<len(a)
==> read(a,i) <= read(a,x)
{
X :=0

var y: Int := len(a) - 1

while(x !=vy)
invariant 0 <= X && x <=y && v < len(a)

invariant forall i: Int :: O<=i && i<len(a)
==> acc(read(a,i), 1/2)
invariant forall i: Int :: (O<=1 && i<x || y<i && i<len(a))
==> (read(a,i) <= read(a,x) || read(a,i) <= read(a,vy))
{
var measure: Int =y - x // termination
assert 0 <= measure // termination
if(read(a,x) <= read(a,vy))
{
X =X+ 1
} else {
y =y -1
}
assert y - x < measure // termination
}
}

Figure 5. A variation of the example from Fig. 2 that operates on a mutable array instead
of a mathematical sequence. The fractional permissions in the method specification and loop
invariant allow the method to read the array elements, but prevent modifications. They allow
callers to conclude that the array is not changed by the method.

a separate reference, which is yielded by function slot. The value of this location
can then be accessed via a predefined val field of that reference. To simplify the
notation, we define a macro read that is parametric in the array and index, and
expands into the access expression. The first axiom states that slot is injective.
It is expressed via two inverse functions, which yield better performance in the
SMT solver than a naive formulation of injectivity.

Fig. 5 shows the Viper encoding of the example. The fractional permissions
in the method specification and loop invariant allow the method to read the ar-
ray elements, but prevent modifications. Therefore, they enable framing: callers
may conclude that the array is not changed by the method. The assertions use
universal quantification over permissions, a feature called iterated separating con-
Junction [33], which is supported by Viper [29].
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field left: Ref
field right: Ref
field val: Int

predicate tree(this: Ref) {
acc(this.left) && acc(this.right) && acc(this.val) &&
(this.left != null ==> tree(this.left)) &&
(this.right != null ==> tree(this.right))

}

function elems(this: Ref): Multiset[Int]
requires tree(this)
{
unfolding tree(this) in
Multiset(this.val) union
(this.left != null ? elems(this.left) : Multiset[Int]()) union
(this.right != null ? elems(this.right) : Multiset[Int]())

Figure 6. A recursive tree predicate and a heap-dependent function to obtain the multiset of
integers stored in a tree.

5. Verification of Recursive Data Structures

Iterated separating conjunction lets us specify permissions to a statically-unknown
number of memory locations. It is especially useful for random-access data struc-
tures such as arrays and maps. For other data structures, in particular recursive
ones, we can specify permissions using (possibly recursive) predicates [32,18].

The predicate tree in Fig. 6 provides permission to the fields of the argument
reference. If either of the two subtrees is non-null, it includes a recursive predicate
instance for this tree. Consequently, the predicate represents the permissions to
all locations in the entire tree. A predicate may also constrain the values of heap
locations whose permissions it contains, for instance, to express invariants of data
structures.

Just like permissions, predicate instances are held by method executions and
transferred through exhale and inhale operations. Predicates with one parameter
such as the tree predicate can be stored in the mask. For instance, Mask[z, P] =1
expresses that the current state contains the predicate P(x). Predicates with more
arguments require higher-dimensional masks.

Recursive definitions are generally tricky for automatic provers because
provers need to be prevented from unfolding them indefinitely, leading to non-
termination in the proof search. To avoid this problem, many tools require pro-
grammers to unfold and fold predicates manually through annotations in the
code. For this purpose, Viper provides a statement unfold P(z), which exhales
the predicate instance P(z) and inhales the body of the predicate. Conversely,
fold P(z) exhales the body and inhales the predicate instance. an expression
unfolding P(z) in e temporarily unfolds P(x), evaluates expression e, and then
re-folds P(x).
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method maxTree(t: Ref) returns (m: Int)
requires tree(t)
ensures tree(t)
ensures 0 < (m in elems(t))
ensures forall e: Int :: 0 < (e in elems(t)) ==> e <=m
ensures elems(t) == old(elems(t))
{
var tmp: Int
var measure: Int := |elems(t)] // termination
unfold tree(t)
m := t.val

if(t.left != null) {
assert |elems(t.left)| < measure // termination
tmp := maxTree(t.left)
if(m < tmp) { m := tmp }
}
if(t.right != null) {
tmp := maxTree(t.right)
if(m < tmp) { m := tmp }
}
fold tree(t)

Figure 7. A Viper method to compute the maximum in a tree of integers. Permissions to the
fields of the tree nodes are represented via the recursive predicate tree. The functional behavior
is specified in terms of the heap-dependent function elems. Both are defined in Fig. 6.

The example in Fig. 7 illustrates these features. It solves the second challenge
of the VerifyThis 2011 verification competition. Method maxTree computes the
maximum in a tree of integers. It takes an instance of the tree predicate from its
caller and returns it after the call. In order to get access to the fields of the tree
node, the method unfolds the predicate in line 10. Before terminating, it re-folds
the predicate in line 21.

The functional behavior of maxTree is specified in terms of the heap-dependent
function elems, which is defined in Fig. 6. Heap-dependent functions have a pre-
condition that requires permission to the heap locations accessed by the function.
They automatically return all permissions to their caller; a postcondition that
provides permissions is neither necessary nor allowed.

Heap-dependent functions are encoded via an uninterpreted function symbol
and two axioms. A definitional axiom relates the uninterpreted function sym-
bol to the definition of the heap-dependent function. A framing axiom expresses
that changing heap locations whose permission is not mentioned in the function
precondition cannot affect the function value.

The elems function traverses the tree recursively and yields the multiset of
values stored in the tree nodes. The postcondition of method maxTree uses this
function to say that (1) the returned value is in the multiset of values stored in
the tree, (2) it is no smaller than all other tree elements, and (3) the method
does not affect the values stored in the tree. The latter could also be achieved by
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taking only a fraction of the predicate instance tree(t), allowing callers to hold
on to another fraction. The size of the multiset of values is also used as ranking
function to prove termination of the recursive method.

6. Building Frontend Verifiers

In the previous sections, we have introduced various features of the Viper language
and explained how to encode them via translations into simpler intermediate
languages down to guarded commands and then to an SMT solver. Since Viper
is itself an intermediate verification language, frontend tools use it to encode
complex verification problems. In this section, we will discuss a Python version
of the tree example form the previous section and its verification in Nagini [11].
The code and specification are shown in Fig. 8.

Nagini requires programs to be statically typed using the mypy type system.
It encodes predicate and function definitions as Python methods with annotations
@Predicate and @Pure, resp. Pure methods must be side-effect free. Specifications
are expressed as calls to predefined Python methods, which do nothing at run
time, but are interpreted by Nagini. This design is adopted from .NET Code
Contracts [14] and allows programmers to add annotations without extending the
Python syntax.

One such annotation is the MustTerminate precondition, which expresses that
the method must terminate, and which provides a ranking function that is then
encoded via assertions on the Viper level as shown in Fig. 7. Tanslating the Python
example from Fig. 8 results in essentially the Viper program from Fig. 7. However,
the actual encoding produced by the Nagini verifier is much more complex and
includes, for instance, a comprehensive formalization of Python’s type system.

7. Conclusion

Many modern program verifiers are implemented as a sequence of translations
into simpler intermediate verification languages. In these lecture notes, we showed
how to encode a range of verification techniques into a simpler guarded-commands
language, for which verification condition generation is straightforward. In par-
ticular, we showed how to encode access permissions, which allow one to verify
heap-manipulating and concurrent programs.

A downside of building verifiers through translations is that error messages for
verification failures need to be translated back from the lowest abstraction level
to the frontend tool to provide meaningful feedback to programmers. Another
drawback is that all translations are part of the trusted codebase, that is, errors
in those translations may compromise soundness of the verification. Extracting
foundational proofs from translation-based verifiers is an interesting direction for
future work.

Acknowledgement. We thank Marco Eilers for his help with the Nagini example.
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1 from nagini_contracts.contracts import =

2 from nagini_contracts.obligations import MustTerminate

3 from typing import Optional, List

4

5 class Tree:

6 def __init_ (self, left: Optional[’Tree’], right: Optional[’Tree’],
7 val: int) -> None:

8 self.left = left

9 self.right = right

10 self.val = val

11

12 @Predicate

13 def tree(self: Tree) -> bool:

14 return (Acc(self.left) and Acc(self.right) and Acc(self.val) and
15 Implies(self.left is not None, tree(self.left)) and
16 Implies(self.right is not None, tree(self.right)))
17

18 @Pure

19 def elems(self: Tree) -> MSet[int]:
20 Requires(tree(self))
21 Ensures(len(Result()) > 0)
22 empty = MSet() # type: MSet[int]
23 return Unfolding(tree(self), MSet(self.val) +
24 (elems(self.left) if self.left is not None else empty) +
25 (elems(self.right) if self.right is not None else empty))
26

27 def maxTree(t: Tree) -> int:

28 Requires(tree(t))

29 Requires(MustTerminate(len(elems(t))))
30 Ensures(tree(t))
31 Ensures(0 < elems(t).num(Result()))
32 Ensures(Forall(int, lambda e: Implies(0 < elems(t).num(e),
33 e <= Result())))
34 Ensures(elems(t) == Old(elems(t)))
35 Unfold(tree(t))
36 res = t.val
37 if t.left is not None:
38 tmp = maxTree(t.left)
39 if res < tmp:
40 res = tmp
41
42 if t.right is not None:
43 tmp = maxTree(t.right)
44 if res < tmp:
45 res = tmp
46 Fold(tree(t))
47 return res

Figure 8. A Nagini version of the tree example from Figs. 6 and 7. Predicate and function defi-
nitions are encoded as Python methods with annotations @Predicate and @Pure, resp. Method
specifications and loop invariants are expressed using calls to designated Python methods.
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