
Programming and Interface Speci�cation Language of Jive |

Speci�cation and Design Rationale

Peter M�uller, J�org Meyer, Arnd Poetzsch-He�ter
Email: [Peter.Mueller, Joerg.Meyer, poetzsch]@Fernuni-Hagen.de

Fachbereich Informatik
Fernuniversit�at Hagen

D-58084 Hagen

Abstract

This report describes the programming and interface speci�cation language of the Java

Interactive Veri�cation Environment Jive. The Jive system is a prototype implementation

of a logic-based programming-environment for an object-oriented programming language.

Logic-based programming-environments are language-dependent software development tools

that support formal speci�cation and veri�cation.

We summarize the properties of an ideal programming language for the prototype and

argue that Java is a good candidate. The design of the supported Java subset is discussed

and a formal de�nition of the abstract syntax is presented.

Program speci�cations are denoted in an interface speci�cation language. This report

discusses the design of the Jive interface speci�cation language and presents its abstract

syntax. An example program illustrates the application of the programming and the interface

speci�cation language.

Contents

1 Introduction 4

2 Programming Language 6

2.1 Design Concerns . 6

2.2 Rationale for the Selection of Java . 7

2.3 Speci�cation of a Java Subset . 8

2.3.1 Lexical Structure . 9

2.3.2 Types, Values, Variables . 10

2.3.3 Names . 11

2.3.4 Packages . 11

2.3.5 Classes . 12

2.3.6 Interfaces . 17

2.3.7 Arrays . 18

2.3.8 Blocks and Statements . 18

2.3.9 Expressions . 23

3 Interface Speci�cation Language 25

3.1 Design Decisions . 25

3.1.1 Speci�cation Technique . 25

3.1.2 Speci�cation Primitives . 25

3.1.3 Using TPC Formulas vs. Providing Own Syntax 26

3.1.4 Choosing a Theorem Prover . 27

3.2 Speci�cation . 27

3.2.1 Names . 28

3.2.2 Sorts . 29

3.2.3 Sort-Checking . 29

3.2.4 Formulas . 29

3.2.5 Class and Interface Speci�cations . 30

3.2.6 Method Speci�cations . 31

4 Example 32

5 Conclusion and Further Work 35

A Keywords 39

A.1 Svenja Keywords: . 39

A.2 Anja Keywords: . 40

2

B De�nition of Prede�ned Types and Methods 41

B.1 Prede�ned Types . 41

B.2 Prede�ned Methods . 43

3

Chapter 1

Introduction

The Java Interactive Veri�cation Environment Jive is a logic-based programming environ-

ment developed in the Lopex research project1 at Fernuniversit�at Hagen and Technische Uni-

versit�at M�unchen2. Lopex stands for logic-based programming environments constructed

from formal language speci�cations. Logic-based programming environments are software

development tools which support formal speci�cation and veri�cation of programs. We aim

at generating such programming environments from formal speci�cations of typical procedu-

ral or object-oriented programming languages. In the �rst phase of the project, we build a

prototype (called Jive) for a subset of Java. This report gives a rationale for the selection of

Java and de�nes the subset used in Jive. Furthermore, the interface speci�cation language

is presented.

General Approach Our approach to speci�cation and veri�cation builds as much as pos-

sible on well-known techniques. The speci�cation technique used in Lopex is based upon the

two-tiered Larch approach (cf. [GH93]). Program speci�cations consist of two major parts:

(a) A program-independent speci�cation which provides the mathematical vocabulary (e.g.,

de�nitions of abstract data types) and (b) a program dependent part that relates the imple-

mentation to universal speci�cations. An interface speci�cation of a class C consists of (a) a

speci�cation for each public method of C, and (b) a class invariant. Method speci�cations

are given by pre- and postconditions. Class invariants describe properties that have to hold

for each object of a class in any state where the object is accessible from outside.

For veri�cation, we use a Hoare-style programming logic (cf. [Hoa69]) as presented in

[PH97]. This logic is a formalization of the axiomatic semantics of the underlying program-

ming language. Thus, correctness of a program is showed by translating its speci�cation into

Hoare triples and proving these triples in the logic.

System Architecture Some of the design decisions described in this report are motivated

by the tools used in our prototype. Thus, we have to take a quick look at the system

architecture of a logic-based programming environment. The architecture of Jive consists of

three major components: (1) the program veri�cation component PVC, (2) the veri�cation

management component VMC, and (3) the theorem prover component TPC.

1
www.informatik.fernuni-hagen.de/pi5/forschung/lopex en.html

2
The Lopex project is sponsored by Deutsche Forschungsgemeinschaft (DFG).

4

Speci�cations and proofs can be split into program dependent and program independent

parts. In general, all program dependent parts are carried out in the PVC. I.e., the PVC

provides support for editing programs and interface speci�cations and for proving triples in

the programming logic. To build the PVC, we use the Synthesizer Generator, a tool for

generating language-based editing environments (cf. [RT89]).

Program independent proof obligations (i.e., �rst order formulas) that result from certain

rule applications of the programming logic are proved in the TPC. Thus, we use one of

the elaborated theorem provers/proof checkers like PVS ([COR+95]) or Isabelle ([Pau94]) for

that purpose. The speci�cation language of the TPC is as well used to formalize the program

independent parts of speci�cations (see above).

The VMC manages the proofs for a program component and keeps track of the remaining

proof obligations. In particular, the VMC decides whether a program is completely veri�ed.

Overview The rest of this report is structured as follows: Chapter 2 provides a rationale

for the selection of Java for the Lopex prototype and de�nes the language subset supported

by Jive. Interface speci�cations are given as so-called annotations which are denoted in an

interface speci�cation language. The interface speci�cation language of Jive is presented in

chapter 3. Chapter 4 discusses the programming and interface speci�cation language by an

example program. Our conclusions and a summary of further work are contained in chapter 5.

5

Chapter 2

Programming Language

In this chapter, we describe the demands a programming language for the Lopex prototype

has to meet. We argue why Java is a good choice for a starting point. The main part of this

chapter de�nes a subset of Java, which is suitable for the purpose of veri�cation, and speci�es

its abstract syntax.

2.1 Design Concerns

The Lopex project aims at the generation of logic-based programming environments for proce-

dural and object-oriented programs. This implies requirements for the programming language

used in the prototype:

1. The programming language should be object-oriented. This has essentially three rea-

sons: (a) Most procedural languages are subsets of the common object-oriented lan-

guages. Thus, programming environments for object-oriented languages are more gen-

eral in a sense that they allow the treatment of procedural programming languages as

well. (b) The most interesting problems for speci�cation and veri�cation are caused by

object-oriented language features, namely subtyping, inheritance, and dynamic binding.

(c) Object-oriented languages provide encapsulation. Encapsulation eases veri�cation

as it guarantees the absence of certain side-e�ects.

2. The language of the prototype should be representative for a large class of object-

oriented and procedural languages (containing C++, Java, Ei�el, Sather, Oberon,

Modula-3, Simula, BETA, and Ada95). I.e., it has to provide all language features

that can be found in common object-oriented languages, e.g. a class concept, strong

typing, encapsulation, subtyping, dynamic binding, inheritance, and exception han-

dling. Furthermore, this features should be provided in a way that is typical for the

whole language class.

3. To enable a stepwise extension of the prototype, the features of the programming lan-

guage should be orthogonal. This allows to start with a subset of a language and

to enhance the prototype by adding further language features during progress of the

project.

4. Veri�cation heavily relies on an elaborated module concept. Modules provide an ad-

ditional level of encapsulation which eases the veri�cation of invariants (cf. [MPH97a]

6

for the notion of module concepts supporting semantically private types). Thus, the

language of the prototype should provide a module concept we can build on.

In the next subsection, we summarize the reasons for the selection of Java. We compare Java

to other object-oriented language w.r.t. the above criteria.

2.2 Rationale for the Selection of Java

The Lopex prototype Jive uses Java as programming language. Java ful�lls the requirements

described above:

1. Java is a modern object-oriented language.

2. Java provides all important object-oriented language features: a class concept, strong

typing, encapsulation, multiple subtyping, dynamic binding, and single inheritance.

These features are supported in a way that is typical for the language class mentioned

above.

3. Most of the Java language features are orthogonal. E.g., exception handling, threads and

monitors, the package concept, and arrays can be omitted in the subset without need

for semantical changes to the rest of the language. However, subtyping and inheritance

are closely connected as classes can only inherit from direct supertypes. In this context,

this is not regarded as a disadvantage because (a) connecting subtyping and inheritance

is typical for the relevant language class and (b) both features are supported by the

subset used in Jive anyway.

4. Java provides a package concept which enables encapsulation of types and a kind of

friend mechanism for classes of one package. This is a good basis to build on with more

elaborated module concepts.

Beside these requirements, Java has several advantages that inuenced our decision:

1. Java is a very modern language. Although the Java-fever seems quite exaggerated, it

causes some positive e�ects for our project: (a) Research projects from all over the

world deal with Java. In particular, Nipkow and von Oheimb formally proved a Java

subset type correct (cf. [NvO98]). (b) Java is used in commercial software development

more and more often. Thus, cooperations with industrial partners become more likely.

(c) The immense interest of students in Java eases sourcing out parts of the project as

diploma theses.

2. Java comes with a small class library our system can be applied to. More extensive

evaluation can be done by verifying larger class libraries (e.g., the Java Algorithm

Library, cf. [AS96]) or by proving the correctness of program components based on

JavaBeans (cf. [Ham97]).

3. Java allows the development of concurrent and distributed programs, e.g. by providing

threads, monitors, and remote method invocation. Thus, extending Jive to concur-

rent and distributed programs is possible without switching to another programming

language.

7

Of course, Java is not the only programming language that would be suitable for the Lopex

prototype. In the following, we discuss the advantages and disadvantages of some other

candidates.

Sather and Ei�el provide interesting concepts for inheritance and genericity. Both lan-

guages ful�ll most of the requirements presented in section 2.1 (except module concepts). In

the end, we ruled out Ei�el and Sather because their approach to inheritance is very unusual

and not typical for the language class we aim at.

C++ has several important disadvantages compared to Java: (1) Pointer arithmetics

enables the violation of data encapsulation. (2) C++ is weakly typed as it allows a very

liberal use of casts. (3) C++ has a very complex and in many cases unclear semantics. Thus,

a correct programming logic can hardly be found. Of course, most of this drawbacks can be

overcome be de�ning an appropriate subset of the language. But this subset would essentially

look like Java.

Ada95 can be regarded as an object-oriented extension to Ada. I.e., object-oriented fea-

tures are added by combining, modifying, or generalizing the constructs of Ada (e.g., the class

concept is realized by a combination of types, procedures, and packages). As a consequence,

it is nearly impossible to de�ne a small subset of Ada95 which can be regarded as the core of

object-oriented languages.

Smalltalk programs are purely structured due to the syntax of statements. This com-

plicates veri�cation. Furthermore, Smalltalk is an untyped language. Type correctness of

programs is a prerequisite for veri�cation. Thus, typing properties of Smalltalk programs

would have to be proved separately which causes additional e�ort.

BETA was not chosen for the Lopex prototype because of its unusual program structure.

BETA generalizes classes and methods to a universal pattern construct. Although our tech-

nique could be applied to patterns as well, the results would not carry over to other languages

naturally.

To sum up, among the practical important object-oriented languages, Java is our favorite

because it ful�lls all requirements of section 2.1 and provides some additional bene�ts as

pointed out above. Due to limited time and money of the Lopex project, we can not handle

full Java. Thus, we de�ne a subset of Java which provides all important features of object-

oriented languages and can thus be regarded as a kernel of this language class. The de�nition

of this subset is presented in the next subsection.

2.3 Speci�cation of a Java Subset

The Java subset used by Jive is called Svenja (small veri�cation enabled Java). Is is based

on Java version 1.0 (cf. [GJS96]).

Design Concerns The design of Svenja was inuenced by �ve goals:

1. Svenja has to be a subset of Java in a sense that Svenja programs can easily be

transformed into semantically equivalent Java programs. All features of Svenja should

have the same semantics as the corresponding Java features. Furthermore, the syntax

of Svenja should be as close to the Java syntax as possible.

2. Svenja has to provide all important object-oriented language features such as a class

concept, strong typing, encapsulation, subtyping, dynamic binding, and inheritance.

8

3. Svenja has to provide the main features of imperative programming languages (e.g.,

recursion, iteration, basic data types, etc.)

4. Svenja should be as small as possible (w.r.t. goals 2 and 3) to focus on the central

problems.

5. Wherever it is reasonable, Svenja should be as close as possible to Bali (cf. [NvO98]).

This eases our cooperation with Nipkow and von Oheimb.

Notation The syntax of Svenja is presented in the Synthesizer Generator notation (see

introduction). The form of a production declaration is

phylum : operator-name1 (phylum11 phylum21 ... phylum
k1
1)

| operator-name2 (phylum12 phylum22 ... phylum
k2
2)

. . .

| operator-namei (phylum1i phylum2i ... phylum
ki

i)

;

In the context of this report, a phylum can be regarded as a terminal or non-terminal of the

grammar. (The left-hand-side phylum of each production has to be a non-terminal.) Each line

of a declaration de�nes a possible right-hand-side for the left-hand-side phylum. Furthermore,

it speci�es the name of a constructor (called operator) that builds terms of the left-hand-side

phylum from terms of the right-hand-side phyla.

For Svenja, we assume three terminal symbols IDENTIFIER, INTLITERAL, and

BOOLLITERAL which are de�ned in the scanner speci�cation. To enable editing of in-

complete programs, there exists a placeholder for each left-hand-side phylum. A placeholder

consists of an operator without parameters.

Conventions All right-hand-sides for a phylum are grouped together as shown above. The

operator names are pre�xed by \op ". Each declaration starts with the placeholder produc-

tion. The operators of placeholders are denoted by op phylumNil where phylum is the name

of the left-hand-side phylum. Wherever it is possible, we use the non-terminal symbols of the

Java LALR(1) grammar (cf. [GJS96], chap. 19) as phylum names.

Structure The presentation of the syntax follows the structure of the Java Language Spec-

i�cation ([GJS96]). I.e., we use the same non-terminal names and the same arrangement of

productions wherever it is reasonable. In some cases, this results in a grammar that is slightly

more complex that it would be if we developed a completely new grammar. But sticking to

the structure of the Java grammar allows extending the subset without major changes of the

existing parts.

In the following, subsections of this report correspond to chapters of [GJS96] and subsub-

sections of this report correspond to sections of [GJS96] wherever this is reasonable. Further-

more, we adopt the segment headings of [GJS96].

2.3.1 Lexical Structure

Most parts of the lexical structure of a programming language belong to the scanner spec-

i�cations rather than to the syntax. The scanner speci�cation of Svenja is not presented

9

here. It is very similar to Java, i.e., Svenja uses the same keywords and the same lexical

structure of literals and identi�ers. In contrast to Java, Svenja identi�ers may not contain

the $ character to avoid ambiguities with the interface speci�cation language (see chapter 3).

2.3.1.1 Identi�ers

The structure of identi�ers is described in the scanner speci�cation. The production below is

needed to introduce the terminal IDENTIFIER into the syntax.

Identifier : op_IdentifierNil()

| op_IDENTIFIER(IDENTIFIER)

;

2.3.1.2 Literals

Svenja provides three kinds of literals: integer literals, boolean literals, and the null lit-

eral. There are no literals for oats, characters, and strings as these primitive types are not

supported in Svenja (see section 2.3.2).

Literal : op_LiteralNil()

| op_IntegerLiteral(INTLITERAL)

| op_BooleanLiteral(BOOLLITERAL)

| op_NullLiteral()

;

2.3.2 Types, Values, Variables

Svenja provides reference types and a restricted set of primitive types, namely int and

boolean.

Type : op_TypeNil()

| op_PrimitiveType(PrimitiveType)

| op_ReferenceType(ReferenceType)

;

PrimitiveType : op_PrimitiveTypeNil()

| op_NumericType(NumericType)

| op_boolean()

;

NumericType : op_NumericTypeNil()

| op_IntegralType(IntegralType)

;

IntegralType : op_IntegralTypeNil()

| op_int()

;

A reference type is a class or interface type. In contrast to Java, Svenja does not support

array types. This simpli�es the data model of the language.

10

ReferenceType : op_ReferenceTypeNil()

| op_ClassOrInterfaceType(ClassOrInterfaceType)

;

ClassOrInterfaceType : op_ClassOrInterfaceTypeNil()

| op_Name(Name)

;

ClassType : op_ClassTypeNil()

| op_ClassOrInterfaceType1(ClassOrInterfaceType)

;

InterfaceType : op_InterfaceTypeNil()

| op_ClassOrInterfaceType2(ClassOrInterfaceType)

;

To ease the mapping of concrete syntax into abstract syntax, the grammar of abstract Svenja

syntax is very similar to the grammar of concrete Java syntax. Thus, we have to use the

complicated productions above to avoid the ambiguities pointed out in chapter 19.1.1 of

[GJS96].

2.3.3 Names

Java uses two kinds of names: simple names and quali�ed names. Quali�ed names are used

in four cases: (1) to denote package names, (2) to address names in other packages, (3) to

address �elds, and (4) to call static methods. Cases (1) and (2) cannot occur in Svenja as

packages are not provided (see section 2.3.4). Cases (3) and (4) are avoided in Svenja by

changing the syntax of �eld access (see sections 2.3.8.9 and 2.3.8.10) and method invocation

(see section 2.3.8.11). Thus, Svenja provides only simple names.

Name : op_NameNil()

| op_SimpleName(SimpleName)

;

SimpleName : op_SimpleNameNil()

| op_Identifier(Identifier)

;

Again, the above productions reect certain grammar problems described in chapter 19.1.1

of [GJS96].

2.3.4 Packages

In its �rst version, Jive does not support modular veri�cation. Thus, Svenja does not

provide packages. The design of a module concept which supports modular veri�cation by

semantical encapsulation is one of our current research topics (see [MPH97a] for an introduc-

tion). As packages are not supported, a non-terminal CompilationUnit (cf. [GJS96], chap. 7.4)

is dispensable. Thus, phylum TypeDeclarations is the root of the grammar1.

1
Technically, CompilationUnit can be used to de�ne a transformation which introduces the prede�ned types

of each Svenja program (see section 2.3.5.1).

11

TypeDeclarations : op_TypeDeclarationsNil()

| op_TypeDeclarationsPair(TypeDeclaration TypeDeclarations)

;

TypeDeclaration : op_TypeDeclarationNil()

| op_ClassDeclaration(ClassDeclaration)

| op_InterfaceDeclaration(InterfaceDeclaration)

;

The Synthesizer Generator enforces list productions to be right-recursive. As a naming con-

vention, we denote the operator of the tuple production of a list List by op ListPair.

Transforming Svenja Files into Java Files In Java, packages are important to deter-

mine whether a �eld or method of a class is accessible from another class or not. Java provides

four access modes: public, protected, private, and default access. Private class members are

accessible only from inside the class they are declared in. In addition to that, default access

provides access for all classes of the same package. Protected access allows default access plus

access from all subclasses of the class2. Public members can be accessed from all other classes

of a program. In particular, there is no access mode that allows access only from inside the

class and its subclasses (like the protected mode in C++).

Veri�cation heavily relies on data encapsulation. Therefore, Svenja has to enforce en-

capsulation of all �elds of a class. I.e., �elds should be accessible from inside the class and its

subclasses only. Unfortunately, this mode is not provided by Java. There are two possibilities

to circumvent the absence of packages:

1. All classes of a Svenja program are considered to be part of one package. Thus, the

public, protected, and default access of Java are equivalent. In particular, �elds are

either private (and thus not accessible from subclasses) or completely public. This

solution makes veri�cation very complicated.

2. A separate package is assumed for each class of a Svenja program, where each package

imports all other packages of that program. This solution allows to transform each

Svenja program into a semantically equivalent Java program.

To ease veri�cation, we chose the latter way for Svenja. So protected access provides the

desired access mode for �elds.

2.3.5 Classes

In this section, we present the syntax of class declarations and declarations of class members

(�elds, methods, constructors, and static initializers).

2.3.5.1 Modi�ers

To receive a LALR(1) grammar, modi�ers have to be covered in a separate production (cf.

[GJS96], chap. 19.1.2). Java has ten di�erent access modi�ers (public, protected, private,

static, abstract, final, native, synchronized, transient, and volatile). Svenja

provides �ve of them: protected for �elds and methods, public, static, and native for

2
I.e., packages provide a kind of friend mechanism for class members with protected or default access mode.

12

methods, and abstract to denote abstract classes and methods. private is not supported

to keep the number of rules in the programming logic small. Furthermore, this simpli�es the

context conditions for inheritance. final is used in Java to state that a class must not have

any subtypes. This is an important aspect for modular veri�cation and will thus be added

together with a module concept. As threads are not supported in Svenja, synchronized

and volatile can be omitted. transient declares �elds not to be part of the persistent state

of an object. This is only important when objects are saved to persistent storage. Therefore,

it is not supported in Svenja.

Prede�ned Reference Types Svenja assumes the existence of three prede�ned reference

types: the classes Object and Operator and the interface Interface. Object is used as root

of the subtyping hierarchy. Operator provides methods for unary and binary operations (see

section 2.3.9.3). Interface is used as a default if a class does not implement any other

interface (see section 2.3.5.2). The de�nitions of these types are given in appendix B.1.

As Svenja does not provide packages or import-clauses, all reference types of a program

have to be present, in particular the three prede�ned types. To perform e.g. type-checking,

the signatures of all �elds and methods of the prede�ned types have to be accessible. But the

method implementations of Object and Operator cannot be expressed in Svenja syntax as

some methods of Object in Java are native and the methods of Operator require Java code

to evaluate unary and binary expressions (see section 2.3.9.3).

For those cases, Java provides the modi�er native to denote that the body of a method

is implemented in another language. In Svenja, native indicates that the body of the

method will be replaced by a Java method when the Svenja program is transformed into

Java. native may only be used for prede�ned methods.

Modifiers : op_ModifiersNil()

| op_ModifiersPair(Modifier Modifiers)

;

Modifier : op_ModifierNil()

| op_public()

| op_protected()

| op_static()

| op_abstract()

| op_native()

;

2.3.5.2 Class Declaration

In Svenja, we use a simpli�ed version of class declarations. As Svenja does not support

packages, only the modi�er abstract is permitted for classes. Recall that a Svenja program

can be regarded as a set of Java packages each containing exactly one class. This requires

each class to be public. To improve readability, the modi�er public is omitted in Svenja

programs. It is inserted when the program is transformed into a Java program. Furthermore,

we enforce each class declaration to have an extends clause (extends Object can be used as

default). To simplify context conditions, each class has to implement exactly one interface

(similar to Bali, where each class implements at most one interface, cf. [NvO98]). If a class

C needs to implement more than one interface (say, I1 : : : In), a new interface I extending

13

I1 : : : In has to be introduced and C implements I. We assume an empty default interface

Interface for classes which do not implement any other interface.

ClassDeclaration : op_ClassDeclarationNil()

| op_ClassDecl(Modifiers Identifier Super Interfaces ClassBody)

;

Super : op_SuperNil()

| op_ClassType(ClassType)

;

Interfaces : op_InterfacesNil()

| op_InterfaceType(InterfaceType)

;

ClassBody : op_ClassBodyNil()

| op_ClassBodyDeclarations(ClassBodyDeclarations)

;

ClassBodyDeclarations : op_ClassBodyDeclarationsNil()

| op_ClBodyDeclPair(ClassBodyDeclaration ClassBodyDeclarations)

;

ClassBodyDeclaration : op_ClassBodyDeclarationNil()

| op_ClassMemberDeclaration(ClassMemberDeclaration)

;

ClassMemberDeclaration : op_ClassMemberDeclarationNil()

| op_FieldDeclaration(FieldDeclaration)

| op_MethodDeclaration(MethodDeclaration)

;

2.3.5.3 Field Declarations

Svenja �eld declarations di�er from Java �eld declarations in four aspects:

1. In Svenja, each �eld declaration declares exactly one �eld. Multiple �eld declarations

have to be split into separate declarations.

2. Svenja does not provide arrays.

3. Static �elds are not supported to keep the number of logical rules small.

4. Fields in Svenja have to be protected (cf. section 2.3.4). Final, transient, and volatile

�elds are not supported (see section 2.3.5.1).

5. Variable initializers are not included in Svenja as arrays and static �elds are not

supported. Instance variables have to be initialized by usual methods (see below).

14

FieldDeclaration : op_FieldDeclarationNil()

| op_FieldDecl(Modifier Type VariableDeclarator)

;

VariableDeclarator : op_VariableDeclaratorNil()

| op_VariableDeclaratorId(VariableDeclaratorId)

;

VariableDeclaratorId : op_VariableDeclaratorIdNil()

| op_Identifier2(Identifier)

;

2.3.5.4 Method Declarations

Declarations of methods in Svenja are slightly di�erent from Java: Svenja does not support

arrays and exception handling which makes some productions simpler. As explained above,

only the access modi�ers abstract, public, protected, static, and native are allowed.

Static Methods are required to create objects of a class as Svenja does not provide explicit

constructors (see section 2.3.5.6).

Svenja requires each method to return a result. Methods that do not produce any results

have to return a dummy value. Thus, the void type can be omitted. As in Bali, each method

body in Svenja ends with a return statement (see section 2.3.8.8). The result expression is

denoted explicitly in the syntax of method bodies.

MethodDeclaration : op_MethodDeclarationNil()

| op_MethodDecl(MethodHeader MethodBody)

;

MethodHeader : op_MethodHeaderNil()

| op_MethodHead(Modifiers Type MethodDeclarator)

;

MethodDeclarator : op_MethodDeclaratorNil()

| op_MethodSig(Identifier FormalParameterList)

;

FormPars : op_ForParsNil()

| op_FormParsPair(FormalParameter, ForPars)

;

FormalParameter : op_FormalParameterNil()

| op_FormalParameter(Type VariableDeclaratorId)

;

MethodBody : op_MethodBodyNil()

| op_EmptyBlock()

| op_Block(Block Expression)

;
The above production forMethodHeader di�ers from the syntax given in chapter 8.4 of [GJS96]

15

according to the problems described in chapter 19.1.1 of the Java Language Speci�cation.

2.3.5.5 Static Initializers

Static initializers can be used to initialize static �elds of a class. As static �elds are not

supported by now, static initializers can be omitted.

2.3.5.6 Constructor Declarations

In Java, constructors are used to create and initialize new objects of concrete classes. They

are invoked by the new expression. To simplify the syntax and logic of Svenja, it does neither

provide constructors nor a new expression. Therefore, alternative ways for object creation and

initialization have to be used.

Object Creation Instead of constructors, each concrete class C has a prede�ned method

newC which creates a new C object. This method must have the following properties:

1. It has to be native. As Svenja does not provide a new expression, object creation

cannot be expressed in Svenja.

2. It has to be static. Otherwise, it would not be possible to create an initial object of C.

3. It cannot perform initialization of �elds as it has a �xed body which looks the same for

all classes. Thus, initialization has to be done by usual methods (see below).

4. It has to be protected. This is due to the semantics of class invariants (see section 3.2.5)

which states that the conjunction of the invariants for all living object of the program

has to hold after termination of any public method m if it held before execution of m (cf.

[MPH97b] for more details). In particular, the invariant of the new object would have

to hold if the newC method was public. As this is in general not true, newC must not

be declared public. (Object creation from outside the class can be handled by static

methods; see below.)

The points above lead to the following de�nition of the creation method for class C:

protected static native C newC();. Confer appendix B.2 for the speci�cation of newC

and the transformation into Java.

Object Initialization Initialization of objects can be done in two ways:

1. by protected instance methods. As protected methods are not a�ected by the semantics

of class invariants (see above), it is possible to call protected methods of the uninitialized

object. This solution allows to emulate the call of the super constructor which is used

in Java to initialize inherited �elds: One simply has to call the protected initialization

method of the superclass.

2. by public static methods. It is necessary to allow creation and initialization of objects

of a class C from outside C and its subclasses. Therefore, a public static method is

required. To avoid the problems caused by the semantics of invariants (see above),

object creation and initialization have to be performed in one single method. This can

be done by calling the newC method and initializing the �elds of the result as shown in

the following example:

16

class C {

protected FieldType f;

protected static native C newC();

public static C createC(FieldType p) {

C v;

v = C.newC();

v.f = p;

return v;

}

...

}

The above solutions allow to create and initialize objects in a way that is as expressive

and exible as in Java. As usage of constructors and the new expression is circumvented,

Svenja avoids the treatment of special constructor methods and new expressions which vitally

simpli�es the programming logic.

2.3.6 Interfaces

Svenja interfaces di�er from Java interfaces in two aspects: (1) Constant declarations are

not supported in Svenja. This avoids ambiguities due to multiple inheritance of interfaces.

Furthermore, as Svenja does not provide variable initializers (see section 2.3.5.3), constants

could not be initialized. (2) Svenja does not allow access modi�ers for interfaces and abstract

method declarations as use of these modi�ers is discouraged in Java. Both items are implicitly

public and abstract.

InterfaceDeclaration : op_InterfaceDeclarationNil()

| op_InterDecl(Identifier ExtendsInterfaces InterfaceBody)

;

ExtendsInterfaces : op_ExtendsInterfacesNil()

| op_ExtendsInterfacesPair(InterfaceType ExtendsInterfaces)

;

InterfaceBody : op_InterfaceBodyNil()

| op_InterfaceMemberDecls(InterMemberDecls)

;

InterMemberDecls : op_InterMemberDeclsNil()

| op_InterMemberDeclsPair(AbstractMethDecl InterMemberDecls)

;

AbstractMethDecl : op_AbstractMethDeclNil()

| op_MethodHeader(MethodHeader)

;

17

2.3.7 Arrays

In its current version, Svenja does not provide arrays for several reasons:

1. Arrays are not a typical feature of object-oriented languages. The only interesting

aspect of arrays in the context of veri�cation is the detection of boundary violations. It

is obvious how this can be done by certain logical rules for array access.

2. As described above, dealing with arrays requires additional rules in the programming

logic.

3. Arrays require a more complex data model of the programming language as additional

types, objects, and access functions have to be incorporated.

4. Arrays can be emulated by prede�ned classes (one would need one prede�ned class

for each primitive types and one for all reference types). These classes would provide

methods to create one-dimensional arrays and to set and get the value at a speci�ed

index. The transformation of multi-dimensional into one-dimensional arrays is trivial.

Omitting arrays allows to focus on the central aspects of object-orientation.

2.3.8 Blocks and Statements

In this section, we present the syntax of Svenja statements.

2.3.8.1 Normal and Abrupt Completion of Statements

Java statements either complete normally or abruptly (cf. chapter 14.1 of [GJS96]). Abrupt

completion is always initiated by one of the following statements: break, continue, return,

and throw (including exceptions thrown by the virtual machine). The programming logic

gets much simpler if the programming language does not allow abrupt completion. Thus, the

above statements are not supported in Svenja (see section 2.3.8.8 for the treatment of return

statements).

Therefore, abrupt completion of statements in Svenja can only be caused by exceptions

thrown by the virtual machine. We discern between memory errors and other exceptions.

All situations in which exceptions of the second kind would occur will be detected during

veri�cation (cf. [PH97]). Thus, such exceptions will never be thrown in correct Svenja

programs.

Memory errors cannot be detected during veri�cation in our framework as this would

require a formalization of the system a program in running on. As Svenja does not provide

any means to catch exceptions (see section 2.3.8.14), exceptions thrown by the virtual machine

lead to abnormal program termination. To handle such situations, our programming logic has

a re�ned partial correctness semantics which does not make any statements about programs

that abort due to memory errors (cf. [PHM97] for more details). Thus, memory errors do not

a�ect our notion of partial correctness.

2.3.8.2 Blocks

Blocks are used to structure lists of statements. In particular, they are used to de�ne the

scope of local variables. Although blocks lead to a more complex binding analysis, Svenja

18

provides blocks to stay compatible to Java in a sense that the syntax of Svenja can be

extended towards Java without larger modi�cations.

Block : op_BlockNil()

| op_BlockStatements(BlockStatements)

;

BlockStatements : op_BlockStatementsNil()

| op_BlockStatementsPair(BlockStatement BlockStatements)

;

BlockStatement : op_BlockStatementNil()

| op_LocalVarDeclStmt(LocalVarDeclStmt)

| op_Statement(Statement)

;

2.3.8.3 Local Variable Declaration Statements

Local variable declarations in Svenja have been modi�ed in a similar way like �eld declara-

tions (see section 2.3.5.3): Only one variable may be declared in one declaration statement

and variable initializers are not supported.

In Svenja, each local variable is assumed to be initialized. Variables of boolean, integer, or

reference types are initialized with false, 0, or null, respectively. This assumption simpli�es

the data and state model of Svenja as it guarantees the absence of references to non-living

objects. When Svenja programs are transformed into Java, this assumption does not cause

any problems as Java checks whether a local variable is initialized before its �rst use. Thus,

the assumed initialization of Svenja is overridden anyway.

LocalVarDeclStmt : op_LocalVarDeclStmtNil()

| op_LocalVarDecl(LocalVarDecl)

;

LocalVarDecl : op_LocalVarDeclNil()

| op_VariableDeclarator(Type VariableDeclarator)

;

2.3.8.4 Statements

Svenja supports only a small subset of Java statements to reduce the number of logical rules.

In particular, all secondary statements (e.g., for and do statements), statements for abrupt

completion (see section 2.3.8.1), and statements for exception handling are omitted.

The syntax of Java statements is quite complex. This is due to the so-called \dangling

else" problem. As the else-branch of if statements is optional in Java, an else-branch

can be bound to several if statements in certain situations (cf. section 14.4 of [GJS96] for an

example). Svenja requires each if statement to have an else-branch which makes statement

syntax much easier (if statements without an else-branch can use the empty statement as

default).

Svenja does not support any expression statements whereas Java provides four kinds of

expression statements:

19

Assignment: Svenja only supports the simple assignment operator \=" as the other

assignment operators are just abbreviations for binary expressions. To keep the rule for

assignments simple, multiple assignments are not allowed. If assignments are treated

as expressions (like in Java), evaluation of expressions might change the values of local

variables and parameters which leads to complex logical rules. Thus, assignments are

treated as statements in Svenja.

Method invocation: As described above, every Svenja method returns a result (cf.

section 2.3.5.4). Therefore it is not necessary to provide an expression statement

which allows to drop the result of a method. Furthermore, veri�cation gets easier

if only atomic expressions are allowed (see section 2.3.9). Thus, method invocations

can not occur as part of compound expressions. As a consequence, Svenja treats

method invocations as statements and requires every method invocation to have the

form v = exp.meth(...);.

Object creation: As described in section 2.3.5.6, object creation is performed by invoca-

tion of a prede�ned method. Thus, the class instance creation expression is dispensable.

In/decrement expressions: These statements are only syntactical abbreviations and can

thus be omitted.

Besides the assignment and method invocation statements, we introduced two further state-

ments for �eld read and write operations. These operations cannot be treated as method

invocations because �eld access is statically bound in Java. As �eld access requires other

logical rules than assignments, separate statements have to be used.

Casts allow to narrow the static type of an expression. As compound expressions are not

supported in Svenja, casts always have the form v = (T)exp. Therefore they are treated

as statements. Furthermore, the logical rules for assignment and casts are very similar if

both features are treated as statements. Assignments can even be regarded as a special form

of cast statements (cf. [PHM97]). The above considerations are reected by the following

productions:

Statement : op_StatementNil()

| op_IfThenElseStatement(IfThenElseStatement)

| op_WhileStatement(WhileStatement)

| op_Block2(Block)

| op_EmptyStatement()

| op_FieldRead(FieldReadStatement)

| op_FieldWrite(FieldWriteStatement)

| op_MethodInvocationStmt(MethodInvocationStmt)

| op_AssignStatement(AssignStatement)

| op_CastStatement(CastStatement)

;

2.3.8.5 Conditional Statements

Java provides two kinds of conditional statements: if statements and switch statements.

As described above, Svenja requires each if statement to have an else-branch to avoid the

dangling-else-problem. This leads to a simple syntax.

20

IfThenElseStatement : op_IfThenElseStatementNil()

| op_IfThenElse(Expression Statement Statement)

;

switch statements are not provided in Svenja as they can be transformed into semantically

equivalent nested if statements.

2.3.8.6 Iteration Statements

The syntax of the while statement is identical to Java.

WhileStatement : op_WhileStatementNil()

| op_While(Expression Statement)

;

do statements and for statements can be transformed into semantically equivalent while

statements. Therefore, these statements are not provided in Svenja.

2.3.8.7 Statements for Abrupt Completion

To support abrupt completion of statements (see section 2.3.8.1), Java provides labeled state-

ments, break statements, and continue statements. They are not supported by Svenja.

The return statement is discussed in the next section.

2.3.8.8 The return Statement

To avoid the problem of abrupt statement completion, return statements are not permitted

inside method bodies. To allow methods to return a result, we follow the idea of Bali (cf.

[NvO98]). In Bali, each method has exactly one return statement at the end of the method

body. This is modeled in the Svenja syntax by adding a result expression to the method

body (see section 2.3.5.4). Thus, an explicit return statement is dispensable.

2.3.8.9 Field Read Statements

In Java, a �eld is either denoted by a primary expression and an identi�er or by super and an

identi�er. As �eld access is statically bound, the latter syntax is an abbreviation for casting

this to one of its superclasses and accessing the �eld of the superclass (cf. chapter 15.10 of

[GJS96]). Therefore, this syntax is not supported in Svenja.

FieldReadStatement : op_FieldReadStatementNil()

| op_FieldRead(LeftHandSide Primary Identifier)

;

2.3.8.10 Field Write Statements

The arguments of the above paragraph carry over to writing �eld access.

FieldWriteStatement : op_FieldWriteStatementNil()

| op_FieldWrite(Primary Identifier Expression)

;

21

2.3.8.11 Method Invocation Statements

As described in section 2.3.8.4, method invocation statements consist of a method invocation

expression and a left-hand-side expression the result is assigned to.

MethodInvocationStmt : op_MethodInvocationStmtNil()

| op_MethodInvocation(LeftHandSide MethodInvocation)

;

MethodInvocation : op_MethodInvocationNil()

| op_StaticInvocation(ClassType Identifier ArgumentList)

| op_NormalInvocation(Primary Identifier ArgumentList)

| op_SuperInvocation (Identifier ArgumentList)

;

ArgumentList : op_ArgumentListNil()

| op_ArgumentListPair(Expression ArgumentList)

;

2.3.8.12 Cast Statements

In Java, cast expressions are used for three purposes: (1) to convert a value of a numeric type

to a similar value of another numeric type, (2) to con�rm, at compile time, that a type of an

expression is boolean, and (3) to check at run time, that a reference value refers to an object

whose class is compatible with a speci�ed reference type (cf. [GJS96], chap. 15.15). The �rst

case is not needed in Svenja as Svenja provides only one numeric primitive type and no

arrays. Case (2) has not to be supported by Svenja as the compile time type of expressions

can be determined without using casts.

Casts of the third kind are truly needed in Svenja to narrow the static type of

an expression. Consider the following example: We assume a class List with method

List insert(...) and a subclass SortedList of List which overrides method insert. Java

(and Svenja) type rules require the result type of the overridden and the overriding method

to be identical (cf. chapters 8.4.2 and 8.4.6 of [GJS96]). Thus, the result type of insert of

class SortedList has to be List although the method might only return SortedList objects.

To overcome this problem, the result of method insert has to be casted to SortedList.

The above example shows that casts of the third kind (see above) are indispensable in

Svenja. As the Svenja syntax does not su�er from the ambiguity problems described in

chapter 19.1.5 of [GJS96] (because parenthesized expressions are not provided in Svenja, see

section 2.3.9.1), we can simplify the production for cast statements. (See section 2.3.8.4 for

the reason why casts are treated as statements.)

CastStatement : op_CastStatementNil()

| op_Cast(LeftHandSide ClassOrInterfaceType Expression)

;

2.3.8.13 Assignment Statements

For the reasons pointed out in section 2.3.8.4, assignments are treated as statements in

Svenja. As �eld access is handled by separate statements (see sections 2.3.8.9 and 2.3.8.10),

assignments are only used for local variables and parameters. Thus, the left-hand-side of

22

assignment statements (as well as of �eld read, method invocation, and cast statements) is a

local variable or a parameter.

AssignStatement : op_AssignStatementNil()

| op_Assign(LeftHandSide Expression)

;

LeftHandSide : op_LeftHandSideNil()

| op_LeftHandVar(Name)

;

2.3.8.14 Statements for Exception Handling

As Svenja does not support exception handling, the throw statement and the try statement

are omitted.

2.3.8.15 The synchronized Statement

Threads are not provided in Svenja. Thus, the synchronized statement is not supported.

2.3.9 Expressions

Svenja provides only a very restricted set of expressions. This has three major reasons:

(1) Svenja provides only atomic (or primary) expressions. This eases veri�cation as it

simpli�es design and application of the logical rules. This restriction may be inconvenient

for programmers, but as Java guarantees the evaluation order of expressions (cf. [GJS96],

chap. 15.6), every Java expression can automatically be split into atomic expressions (cf.

[PH97]). (2) Some Java expressions are treated as statements in Svenja (e.g., assignment

and method invocation; see section 2.3.8.4). (3) Unary and binary operations are mapped to

method invocations (see section 2.3.9.3).

2.3.9.1 Primary Expressions

Besides array creation expressions, Java provides seven kinds of primary expressions: literals,

the this expression, parenthesized expressions, class instance creation, �eld access, method

invocation, and array access. Svenja supports only two of them: literals and the this expres-

sion. class instance creation, �eld access and method invocation are handled by statements

(see section 2.3.8.4). Array access is omitted as arrays are not provided in Svenja. The

absence of non-atomic expressions makes parenthesized expressions dispensable.

In Java, Names or not primary expressions. This is due to ambiguities between casts

to array types and parenthesized expressions. Both cases cannot occur in Svenja. Thus,

Svenja can use a simpli�ed grammar where Names are primary expressions.

Primary : op_PrimaryNil()

| op_Literal(Literal)

| op_this()

| op_LocalVar(Name)

;

23

As the Svenja expression syntax does not have to cope with operator precedence and parse

ambiguities, it contains only primary expressions. Thus, an expression is simply a primary

expression.

Expression : op_ExpressionNil()

| op_Primary(Primary)

;

2.3.9.2 Expressions Treated as Statements

In Svenja, class instance creation, �eld access, method invocation, casts, and assignment

is handled by statements, not by expressions (see section 2.3.8.4). Thus, the corresponding

expressions are omitted.

2.3.9.3 Unary and Binary Operators

In this section, we describe the handling of the following operators: unary minus/plus, nega-

tion, multiplicative operators, additive operators, shift operators, relational operators (except

instanceof, see below), equality operators, bitwise and logical operators, and conditional

and/or operators. All these operators are handled in Svenja via method invocations. I.e.,

we assume a class Operator which provides static methods that perform the above opera-

tions on their parameters. E.g., the expression v = a + b would be written in Svenja as

v = Operator.plus(a, b). See appendix B.1 for the de�nition of class Operator.

This technique has two major advantages: (1) The expression syntax is very small. (2) A

speci�cation can be assigned to every operator by specifying its corresponding method. This

eases veri�cation and allows a simple treatment of errors occurring during expression evalu-

ation (e.g., arithmetic overow). See [PH97] for more details.

The instanceof operator of Java cannot be treated as described above because its second

argument has to be a reference type which is an element of the syntax, not a value that could

be passed to a method. Many aspects of the behavior of instanceof can be modeled by

de�ning a public method for every class that returns a constant representing the class name.

Thus, the type of an object can be determined at run time. Except to check whether an

object's type is a subtype of a given type, instanceof can be replaced by comparing these

constants3. Consequently, Svenja does not provide an instanceof expression or statement.

2.3.9.4 Remaining Expressions

Array creation and access expressions are not supported as Svenja does not provide arrays.

In�x and post�x in/decrement expressions are abbreviations for binary expressions and can

be omitted. The conditional operator ? : can be seen as an abbreviation for an if statement.

Thus, it is dispensable. Constant expressions are expressions that can be evaluated at compile

time. They are only used in switch statements and thus not needed in Svenja.

This completes the speci�cation of Svenja. An example program can be found in chapter 4.

3
This technique does not work for interfaces as interfaces have no concrete methods. In later versions of

Svenja, a public static �eld could be used instead.

24

Chapter 3

Interface Speci�cation Language

In this chapter, we present the interface speci�cation language of Jive, which is called Anja

(Annotation language for Java). The next section describes the design decisions made for

Anja. The syntax of Anja and the embedding of the interface speci�cations in Svenja

programs is speci�ed in section 3.2.

3.1 Design Decisions

The design of Anja was inuenced by two major aspects: (1) The objective of verifying

Svenja programs and (2) the usage of theorem provers in Jive. In the following section, we

discuss the design decisions made for Anja in this context.

3.1.1 Speci�cation Technique

We want to use well-known speci�cation techniques wherever it is possible. Thus, we basically

adopt the two-tiered Larch technique which was described in chapter 1. To keep things simple,

we only use the most important speci�cation primitives, namely pre- and postconditions and

class invariants (see section 3.1.2).

Veri�cation requires interface speci�cations to be declarative. To ease the usage of a

Hoare-style programming logic for veri�cation, the mapping of speci�cation primitives to

Hoare triples must be clear. Confer [PH97] and [MPH97b] for a detailed description of our

speci�cation technique, in particular for the formal meaning of the speci�cation primitives.

3.1.2 Speci�cation Primitives

In Jive, interface speci�cations can be formalized by two speci�cation primitives: (1) Pre-

and postconditions for methods and (2) class invariants.

Usually, method speci�cations capture di�erent aspects of method behavior such as func-

tional behavior, side-e�ects, and sharing properties. To enable structured method speci�ca-

tions, Anja allows to denote multiple pre-post-pairs for each method. To improve readabil-

ity, common requirements of all preconditions of one method can be speci�ed in a so-called

requires-clause. Furthermore, the requires-clause is necessary to formalize the meaning of

class invariants. Confer [PH97] for more details on this topic.

25

In summary, the interface speci�cation of a class (or interface) consists of the class in-

variant and a speci�cation for each method of the class. Method speci�cations consists of a

requires-clause and a set of pre-post-pairs.

Comparison to Larch/C++ As our interface speci�cation language is similar to

the Larch interface speci�cation languages, it might be interesting to compare Anja to

Larch/C++, the Larch language for C++ (cf. [Lea96]).

All of the speci�cation primitives ofAnja are provided by Larch/C++ as well. In addition

to that, Larch/C++ contains three features not supported by Anja (cf. [LB97]):

1. Larch/C++ uses so-called modi�es-clauses to express which objects might have changed

their values under execution of a method. Similar to that, a trashes-clause lists all

objects that might be destroyed by the method. Modi�es- and trashes-clauses have two

particular drawbacks: (1) They do not �t naturally into the Hoare-logic. (2) They can

hardly express sharing properties. Thus, in our framework, invariance properties are

expressed by relating the pre- and poststate of a method (cf. [MPH97b] for details).

2. In Larch/C++, history constraints can be used to specify properties that have to hold for

any ordered pair of visible states in program execution. E.g., a history constraint could

be used to specify that the value of the age �eld of a class Person may not be decreased

during program execution. Such properties cannot be expressed in Anja. From a

theoretical point of view, history constraints behave very similar to class invariants.

Thus, our techniques could be applied to history constraints as well. But we want to

focus on the central aspects in the �rst version of Jive.

3. Larch/C++ allows to specify redundant method speci�cations which are used for addi-

tional checking and documentation. In Anja, each method speci�cation has the same

meaning: It is transformed into a Hoare triple that has to be proved. Thus, there is no

need to discern between di�erent kinds of pre-post-pairs.

3.1.3 Using TPC Formulas vs. Providing Own Syntax

Recall from chapter 1 that the universal (i.e., program-independent) parts of a speci�cation

are formalized in the language of the theorem prover component TPC. In Jive, we use either

Isabelle or PVS as TPC. Both systems provide a multi-sorted higher-order speci�cation

language which is strongly typed1 (cf. [Pau94] and [OSR93]).

Basically, there are two alternatives how formulas in Anja can be denoted:

1. We can adopt the syntax of the TPC language. This allows to pass formulas to the

TPC without any syntactical transformations.

2. A special Anja syntax can be used. This requires each formula or declaration to be

transformed into the syntax of the TPC.

As the user has to switch between the PVC and the TPC quite often, both solutions require

to use a formula syntax that looks very similar to the TPC syntax. Thus, solution 2 does not

1
From now on, we follow the convention of Larch and denote types of the programming language by types

whereas the types of the TPC language are called sorts.

26

allow to exchange the TPC system in an easier way as the syntax would have to be adapted

anyway.

The most important di�erence between the alternatives above is the treatment of sort

declarations. Choosing alternative 2 requires to provide sort declarations in the PVC which

can be transformed into declarations of the TPC. Alternative 1 allows to move all sort

declarations to the TPC. In this case, the PVC would use the sort names without any

knowledge of the sorts themselves. In the following, we discuss the pros and cons of these

solutions:

1. Declaring sorts in the PVC allows full control of all sort information. In particular,

the PVC controls whether �rst-order or higher-order formulas are used. This decision

cannot be made in alternative 1.

2. Declaring sorts in the PVC enables full sort-checking inside the PVC. On the other

hand, sort-checking can get quite complex if subsorting is used. Alternative 1 requires

each formula to be passed to the TPC to be parsed and sort-checked.

3. Alternative 1 is much easier to implement as neither sort declarations nor sort-checking

has to be provided. This argument is in particular true if elaborated higher-order type

systems and subsorting shall be supported.

In the long term, full control of the sort system is certainly desirable, but in Jive, we favorite

alternative 1 as it is easier to implement. As a consequence, our prototype might have to deal

with higher-order formulas. This does not cause any problems to the programming logic.

3.1.4 Choosing a Theorem Prover

Basically, we are planning to support PVS and Isabelle as theorem prover components. Both

systems are very sophisticated and have proved their power in several research projects and

practical applications. In the context of our work, both systems have particular advantages:

The type system of Bali was proved correct in Isabelle (cf. [NvO98]). We can build on the

formalization of Bali for further work, e.g. for a soundness proof of the Svenja programming

logic. The PVS system is used by the PAMELA veri�cation tool (cf. [But97]) for a purpose

that is very similar to ours. In particular, PVS was enhanced by functions to prove and

type-check single formulas. This feature will be needed in Jive as well (see section 3.1.3).

As a starting point, Jive uses the PVS system because the Lopex group has more ex-

perience with this system. This decision allows to adopt parts of the PAMELA system to

implement the communication between the PVC and TPC. Isabelle will be supported as soon

as we have time to implement the interface.

3.2 Speci�cation

This section speci�es the syntax of Anja. The syntax is based on the syntax of the PVS

Speci�cation Language (cf. [OSR93] and extension to PVS 2). In its �rst version, Anja

supports only a very small subset of PVS expressions as it will provide a speci�cation syntax

of its own later (see section 3.1.3). We discuss the particular restrictions along with the

de�nition of the supported features.

27

3.2.0.1 Lexical Structure

All keywords of the PVS language are reserved in Anja as well. Otherwise, ambiguities

would occur when formulas are passed to PVS. To ease lexical analysis, Anja requires all

PVS keywords to be written in upper-case characters. Furthermore, req, pre, post, inv, and

decl are keywords of Anja (see appendix A for a list of all keywords and special symbols).

Anja identi�ers are identical to Svenja identi�ers. To denote the symbols of unary and

binary operators, we assume a terminal symbol PVSOPERATOR.

To keep the syntax speci�cation modular, we introduce separate productions for all Anja

features. Each phylum which depends on the syntax of the PVS language is pre�xed by PVS.

PVSIdOp : op_PVSIdOpNil()

| op_PVSIdentifier(PVSIdentifier)

| op_PVSOpSym(PVSOpSym)

;

PVSIdentifier : op_PVSIdentifierNil()

| op_PVSIDENTIFIER(IDENTIFIER)

;

PVSOpSym : op_PVSOpSymNil()

| op_PVSUnaryOp(PVSOPERATOR)

| op_PVSBinaryOp(PVSOPERATOR)

;

3.2.1 Names

PVS names are identi�ers or operator symbols. To denote names of di�erent theories, a

quali�ed name can be used. The formal parameters of a theory can be instantiated by

providing a list of actual parameters in square brackets.

PVSName : op_PVSNameNil()

| op_PVSSimpleName(PVSIdOp PVSModuleParList)

| op_PVSQualifiedName(PVSIdOp PVSModuleParList PVSIdOp)

;

PVSModuleParList : op_PVSModuleParListNil()

| op_PVSModuleParListEmpty()

| op_PVSModuleActuals(PVSModuleActuals)

;

PVSModuleActuals : op_PVSModuleActualsNil()

| op_PVSModuleActualsPair(PVSModuleActual PVSModuleActuals)

;

PVSModuleActual : op_PVSModuleActualNil()

| op_PVSExpr(PVSExpr)

| op_PVSSortExpr(PVSSortExpr)

;

28

3.2.2 Sorts

PVS speci�cations are strongly typed. Thus, Anja must provide means to denote PVS sorts,

e.g. in the context of quanti�ed formulas. To keep the syntax simple, only sort names are

used. As PVS allows to introduce names for any type expression (e.g., subsorts, function

sorts, or enumeration sorts), this does not restrict expressiveness.

PVSSortExpr : op_PVSSortExprNil()

| op_PVSSortName(PVSName)

;

3.2.3 Sort-Checking

As pointed out in section 3.1.3, sort-checking cannot be performed within the PVC. Thus,

all formulas are passed to PVS to be parsed and sort-checked. This is done as follows:

Assume a formula P that occurs as invariant or part of a method speci�cation. P may

contain program variables, free logical variables, and names of PVS sorts, functions, variables,

etc. As Anja has no access to PVS theories, we cannot decide within the PVC whether a

name denotes a free variable or an item of a PVS theory. Therefore, we pass the formula P to

PVS along with all sort information that can be provided. I.e., we transform P into a closed

form FORALL (vi : sorti): P = TRUE. The vi are those variables for which the PVC has sort

information: all program variables (including this) of the current scope, all logical variables

declared in the decl-clause of the current type (see section 3.2.5), result which denotes the

result of the current method, and $ which denotes the current object environment.

The closed form is then sort-checked by PVS. If no errors occur, P is correctly sorted

and of sort bool. Otherwise, P may be ill-sorted or some free logical variables have not been

declared. Errors can be passed back to the PVC and displayed.

3.2.4 Formulas

Anja supports only a restricted set of PVS expressions. In particular, it does not provide

tuple expressions, record expressions, set expressions, coercion expressions, let and where

expressions, and cases expressions. Almost every omitted feature can be replace by an ap-

plication of an appropriate function. Anja supports numbers, names, binary expressions,

unary expressions, if-then-else expressions, function applications, and binding expressions.

Furthermore, result and $ are used to denote the result of a method and the current object

environment, respectively. result may only occur in postconditions of methods (see sec-

tion 3.2.6). Whereas result can be treated as PVS name, $ has to be a seperate expression

as it is not a valid PVS identi�er.

PVSExpr : op_PVSExprNil()

| op_PVSNumber(INTLITERAL)

| op_PVSName(PVSName)

| op_PVSBinaryExpr(PVSExpr PVSBinaryOp PVSExpr)

| op_PVSUnaryExpr(PVSUnaryOp PVSExpr)

| op_PVSIfExpr(PVSExpr PVSExpr PVSExpr)

| op_PVSApplicationExpr(PVSName PVSArguments)

| op_PVSBindExpr(PVSBindOp PVSFormals PVSExpr)

| op_PVSDollar()

;

29

Unary and Binary Operators To provide a exible notation, Anja supports most of the

PVS operator symbols. A list of all operator symbols can be found in appendix A.

PVSBinaryOp : op_PVSBinaryOpNil()

| op_PVSBinary(PVSOPERATOR)

;

PVSUnaryOp : op_PVSUnaryOpNil()

| op_PVSUnary(PVSOPERATOR)

;

If Expressions Anja if expressions consist of a boolean expression and two expressions

of the same sort, one in the then branch and one in the else branch. elsif is not supported

as it is only an abbreviation for nested if expressions.

Applications In contrast to PVS, Anja does not directly support higher-order applica-

tions, i.e., the function is determined by a name, not by an expression. Thus, function

applications consist of a name and an argument list.

PVSArguments : op_PVSArgumentsNil()

| op_PVSArgumentsPair(PVSExpr PVSArguments)

;

Binding Expressions Binding expressions are used to denote quanti�ed formulas. Anja

provides universal and existential quanti�cation. In contrast to PVS, lambda abstraction is

not supported. As higher-order is not directly supported, Anja does not allow to quantify

over operator symbols.

PVSBindOp : op_PVSBindOpNil()

| op_PVSExists()

| op_PVSForAll()

;

PVSFormals : op_PVSFormalsNil()

| op_PVSFormalsPair(PVSFormal PVSFormals)

;

PVSFormal : op_PVSFormalNil()

| op_PVSFormal(PVSIdentifier PVSSortExpr)

;

3.2.5 Class and Interface Speci�cations

Properties of data representations can be speci�ed by invariants. To describe properties that

have to hold for a set of classes, invariants may also be used in abstract classes and interfaces.

In the following, we use the term type to denote classes, abstract classes, and interfaces.

According to [PH97], an invariant is a formula with only one free variable ranging over

the type the invariant belongs to2. Thus, an invariant is given by an Identi�er and a formula.

2
This can be enforced by omitting the declarations of free logical variables when the invariant is sort-checked

in PVS (see section 3.2.3).

30

All free logical variables (i.e., not program variables) occurring in speci�cations have to

be declared to provide their sorts. To enforce that logical variables with the same name are

used for the same purpose within a type speci�cation, variables are declared on type level.

Therefore, each type declaration contains a (possibly empty) list of PVS variable declarations.

The productions for class and interface declarations given in sections 2.3.5.2 and 2.3.6,

respectively, have to be modi�ed to incorporate the invariant and variable declarations.

ANJAInvariant : op_ANJAInvariantNil

| op_ANJAInvDecl(PVSIdentifier PVSExpr)

;

ClassDeclaration : op_ClassDeclarationNil()

| op_ClassDecl(Modifiers Identifier Super Interfaces

ANJAInvariant PVSFormals ClassBody)

;

InterfaceDeclaration : op_InterfaceDeclarationNil()

| op_InterDecl(Identifier ExtendsInterfaces

ANJAInvariant PVSFormals InterfaceBody)

;

3.2.6 Method Speci�cations

Method speci�cations may occur in all kinds of method declarations, in particular in abstract

or native methods. As described in section 3.1.2, method speci�cations consist of a (possibly

empty) set of pre-post pairs and a requires-clause. Requires-clauses, pre-, and postcondi-

tions are simply PVS formulas. To provide interface speci�cations, the syntax of method

declarations (see section 2.3.5.4) has to be modi�ed as follows.

ANJAPrePostList : op_ANJAPrePostListNil()

| op_ANJAPrePostListPair(ANJAPrePost ANJAPrePostList)

;

ANJAPrePost : op_ANJAPrePostNil()

| op_ANJAPrePostPair(PVSExpr PVSExpr)

;

MethodHeader : op_MethodHeaderNil()

| op_MethodHead(Modifiers Type MethodDeclarator

PVSExpr ANJAPrePostList)

;

This completes the speci�cation of Anja. An example for annotated Svenja programs can

be found in the next chapter.

31

Chapter 4

Example

In this chapter, we present a small example program to demonstrate the usage of Svenja and

Anja. The program consists of an Interface IList, an abstract class AList, and a concrete

class List. IList describes the interface of a list data structure. AList implements IList but

does not provide implementations for the abstract methods declared in IList. Based on these

methods, AList de�nes a method length which returns the length of the list. Class List

inherits from AList and implements IList by providing implementations for the abstract

methods. For brevity, we omitted methods isempty and rest in all types as they do not

reveal any interesting aspects.

Abstract Data Type The types and methods are speci�ed in terms of an abstract data
type ADTList. aIList, aAList, and aList are abstraction functions that map objects of IList,
AList, and List to values of ADTList. aB and aI are used to map boolean and int values of
Svenja to the corresponding PVS values. The PVS de�nition of ADTList looks as follows:

ADTList : DATATYPE

BEGIN

empty : isempty?

app(l: ADTList, i: int) : isapp?

END ADTList

first : [ADTList -> int]

rest : [ADTList -> ADTList]

length : [ADTList -> nat]

In the next paragraphs, we discuss the implementations and speci�cations of the types men-

tioned above. This is not the place to describe the Lopex speci�cation technique in detail.

Therefore, we assume the reader to be familiar with [PH97] or [MPH97b].

Interface IList To keep things simple, we assume a function wf that expresses well-

formedness for list representations (e.g., the list has to be acyclic). This keeps the invariant

of the discussed types very simple: wf has to hold for each list representation. The variable

declaration clause of IList introduces the variables L and I which are used to denote values

of types ADTList and int, respectively.
Each abstract method is speci�ed by a requires clause and one pre-post-pair. E.g., the

requires clause of first states that the abstraction of the implicit parameter this in the
current state (denoted by $) is called L and must not be empty. Whenever this condition is
met, first will return a value the abstraction of which equals the �rst element of L.

32

interface IList

inv X: wf(X, $);

decl L: ADTList, I: int

{

IList append(int s)

req TRUE;

pre aIList(this, $) = L AND aI(s) = I;

post aIList(result, $) = app(L, I); ;

int first()

req aIList(this, $) = L AND NOT isempty(L);

pre TRUE;

post aI(result) = first(L); ;

}

Abstract Class AList The abstract methods of IList are inherited in AList and have
thus not to be repeated. The implementation of method length shows two interesting aspects
of Svenja code: (1) Svenja is capable to deal with the subtyping rules of Java which enforce
the result types of corresponding methods in the super- and in the subtype to be identical
(in other languages, method rest would have result type AList instead of IList). This is
achieved by using casts. (2) The absence of complex expressions leads to longer and less
readable code. This price has to be payed to ease veri�cation.

abstract class AList extends Object implements IList

inv X: wf(X, $);

decl L: ADTList

{

public int length()

req TRUE;

pre aAList(this, $) = L;

post aI(result) = length(L); {

int res;

boolean b; b = this.isempty();

if (b) res = 0;

else {

IList ir; ir = this.rest();

AList r; r = (AList)ir;

int l; l = r.length();

res = Operator.plus(1, l);

}

return res;

}

}

Class List List implements IList via singly linked lists. The length of the list is stored

explicitly in �eld len. The empty list is represented by a List object with length 0. For

brevity, we omitted method first as it simply returns the content of �eld elem.

The implementation of List demonstrates how object creation is handled in Svenja.

Static method empty calls the implicit static method newList. After that, the len �eld is

initialized to 0 which makes the new object represent an empty list.

Using requires-clauses and preconditions makes defensive programming and exception

handling dispensable in many cases. E.g., in method first, the requires-clause asserts that

the list is non-empty. Thus, additional tests and exceptions are not necessary.

33

Method length overrides the inherited method of AList. The speci�cation of length
shows how several pre-post-pairs can be used to express di�erent aspects of method behavior:
The �rst pair speci�es the functional behavior (length will return the length of the list)
whereas the second pair states that execution of length does not produce any side-e�ects.
The is expressed by stating that the object environments of the method's pre- and poststate
are equal.

class List extends AList implements IList

inv X: wf(X, $);

decl L: ADTList, I: int, E: ObjEnv

{

protected int elem;

protected List next;

protected int len;

public static List empty()

req TRUE;

pre TRUE;

post aList(result, $) = empty; {

List l; l = List.newList();

l.len = 0; return l;

}

public IList append(int s)

req TRUE;

pre aList(this, $) = L AND aI(s) = I;

post aList(result, $) = app(L, I); {

List res; res = List.newList();

res.elem = s; res.next = this;

int ll; ll = this.len;

int sum; sum = Operator.plus(1, ll);

res.len = sum; return res;

}

public int length()

req TRUE;

pre aList(this, $) = L;

post aI(result) = length(L);

pre $ = E;

post $ = E; {

int l; l = this.len;

return l;

}

}

Summary The above example demonstrates that Svenja can be used to develop usual

object-oriented programs. Svenja programs can easily be transformed into Java and tested

by using the Java compiler. Inconvenience is caused by the restricted expression syntax. In

the next chapter, we describe an idea to overcome this drawback.

As Anja provides almost full PVS expression syntax, interface speci�cations can be for-

malized in a very exible and convenient way. Sets of pre-post-pairs allow to structure method

speci�cations.

34

Chapter 5

Conclusion and Further Work

In this report, we de�ned the programming language and the interface speci�cation language

of the Jive system. We introduced Svenja, a subset of Java, as programming language.

Svenja provides all typical object-oriented language features such as a class concept, strong

typing, encapsulation, subtyping, dynamic binding, and inheritance.

The interface speci�cation language Anja is based on the speci�cation language of the

PVS system. It provides means for convenient and exible state-of-the-art interface speci�-

cations.

We presented a formalization of the abstract syntax of both languages in Sythesizer Gen-

erator notation. An example program demonstrated the usage of Svenja and Anja. It has

shown that the languages allow to implement and specify realistic object-oriented programs.

In progress of the Lopex project, we will re�ne, extend, and improve the presented in

work in three aspects:

1. Svenja and Anja will be extended in several aspects:

(a) Program development in Svenja will be more convenient if complex expressions

and secondary statements (e.g., for and switch statements) are supported. As a larger

abstract syntax makes veri�cation more complex, Jive should provide two syntactic

levels. The user edits programs on a high level (i.e., in a complex syntax). For veri-

�cation, the high-level program is transformed into a semantically equivalent program

using only the features described in this report. Thus, the language can be convenient

for programming and easy to handle for veri�cation.

(b) Anja will provide means for speci�cation of sorts. This will allow to perform sort-

checking within the program veri�cation component. Furthermore, transformations

have to be implemented that map Anja speci�cations to PVS or Isabelle theories. In

the medium-term, both of these theorem provers will be supported.

2. Svenja and Anja will be enhanced by means for compositional programming and

speci�cation. A semantic-based module concept will be added to Svenja that will

allow syntacical and semantical encapsulation of types (cf. [MPH97a] for a discussion).

Anja will be enriched by features for module speci�cations such as module invariants.

These extensions will allow to compose veri�ed program components and deduce the

correctness of the resulting program from the correctness of the components.

35

3. Svenja and Anja have to be evaluated to �nd out whether certain language features

are missing and to detect further possibilities for simpli�cation. The evaluation requires

two actions:

(a) The transformation from Svenja into semantically equivalent Java programs has

to be implemented to enable compiling and running Svenja programs.

(b) Larger programs have to be implemented in Svenja and speci�ed with Anja. To

do that, we have recently begun to translate parts of the LEDA library (cf. [NU95])

into Svenja and specify their behavior with Anja. To evaluate the Lopex speci�cation

technique outside the world of basic data structures, it will as well be applied to user

interface libraries such as the Java AWT.

The presented programming language and interface speci�cation language build a strong basis

for the Lopex prototype Jive. They allow to implement and specify realistic object-oriented

programs. The above improvements will make the languages (and the Jive system) even

more convenient.

36

Bibliography

[AS96] M. Austern and A. Stepanov. The Java Algorithm Library. SiliconGraphics, 1996.

Available from http://reality.sgi.com/austern/java

[But97] B. Buth. An interface between pamela and pvs. Technical report, Universit�at

Bremen, 1997. Available from

http://www.informatik.uni-bremen.de/~bb/bb.html

[COR+95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction

to PVS, April 1995.

[GH93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci�-

cation. Springer-Verlag, 1993.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-

Wesley, Reading, MA, 1996.

[Ham97] G. Hamilton. JavaBeans. Sun Microsystems, 1997. Available from

http://java.sun.com/beans/docs/spec.html

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576{580, 583, 1969.

[LB97] G. T. Leavens and A. L. Baker. Enhancing the pre- and postcondition technique

for more expressive speci�cations. (submitted), 1997.

[Lea96] G. T. Leavens. An overview of Larch/C++: Behavioral speci�cations for C++

modules. In Hiam Kilov and William Harvey, editors, Speci�cation of Behavioral

Semantics in Object-Oriented Information Modeling, chapter 8, pages 121{142.

Kluwer Academic Publishers, Boston, 1996.

[MPH97a] P. M�uller and A. Poetzsch-He�ter. Developing provably correct programs

from object-oriented components. In Gary T. Leavens and Murali Sitara-

man, editors, Foundations of Component-Based Systems, 1997. Available from

http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html

[MPH97b] P. M�uller and A. Poetzsch-He�ter. Formal speci�cation techniques for object-

oriented programs. In M. Jarke, K. Pasedach, and K. Pohl, editors, Informatik 97:

Informatik als Innovationsmotor, Informatik Aktuell. Springer-Verlag, 1997.

[NU95] Stefan N�aher and Christian Uhrig. Leda user manual (version r 3.2). Technical

Report MPI-I-95-1-002, Max-Planck-Institut f�ur Informatik, June 1995.

37

[NvO98] T. Nipkow and D. von Oheimb. Java`ight is type-safe | de�nitely. In Proc. 25th

ACM Symp. Principles of Programming Languages. ACM Press, 1998. To appear.

[OSR93] S. Owre, N. Shankar, and J. M. Rushby. The PVS speci�cation language (beta

release). Technical report, Computer Science Laboratory SRI International, April

1993.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS.

Springer-Verlag, 1994.

[PH97] A. Poetzsch-He�ter. Speci�cation and Veri�cation of Object-Oriented Programs.

PhD thesis, Technische Universit�at M�unchen, 1997. (Habilitationsschrift).

[PHM97] A. Poetzsch-He�ter and P. M�uller. Logical foundations for typed object-oriented

languages. (submitted), 1997.

[RT89] T. W. Reps and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag,

1989.

38

Appendix A

Keywords

This chapter summarizes the reserved keywords and operator symbols of Svenja and Anja.

All Java and PVS keywords and operator symbols are reserved in Jive as well for two reasons:

(1) The languages may be extended towards full Java and full PVS without changing the list

of keywords. (2) Transforming Svenja programs into Java and passing Anja formulas to

the PVS system require that Java and PVS keywords are not used as identi�ers in Svenja

or Anja.

A.1 Svenja Keywords:

Svenja Keywords:

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

catch �nal interface static volatile

char �nally long super while

class oat native switch

const for new synchronized

continue goto package this

Svenja Seperators:

() { } [] ; , .

Svenja Operators:

= > < ! ~ ? :

== <= >= != && || ++ --

+ - * / & | ^ % << >> >>>

+= -= *= /= &= |= ^= %= <<= >>= >>>=

39

A.2 Anja Keywords:

Anja keywords consist of PVS keywords and a few reserved words to denote interface speci-

�cations.

Anja Keywords:

decl inv post pre req

Anja Special Symbols:

$

PVS Keywords:

AND CONTAINING FALSE LEMMA SUBTYPE OF

ANDTHEN CONVERSION FORALL LET TABLE

ARRAY COROLLARY FORMULA LIBRARY THEN

ASSUMING DATATYPE FROM MEASURE THEOREM

ASSUMPTION ELSE FUNCTION NONEMPTY TYPE THEORY

AXIOM ELSIF HAS TYPE NOT TRUE

BEGIN END IF O TYPE

BUT ENDASSUMING IFF OBLIGATION TYPE+

BY ENDCASES IMPLIES OF VAR

CASES ENDCOND IMPORTING OR WHEN

CHALLENGE ENDIF IN ORELSE WHERE

CLAIM ENDTABLE INDUCTIVE POSTULATE WITH

CLOSURE EXISTS JUDGEMENT PROPOSITION XOR

COND EXPORTING LAMBDA RECURSIVE

CONJECTURE FACT LAW SUBLEMMA

PVS Special Symbols:

$ @ := -> ; % . : [||] |-> || <- , |

() (# #) (| |) (: :) [] [# #] [| |] |[]| { }

PVS In�x Operators:

|- |= IFF <=> IMPLIES => WHEN

OR \/ XOR ORELSE AND & /\ && ANDTHEN

= /= == < <= > >=

<< >> <<= >>= <| |>

@@ ## + - ++ ~

* / ** // o ^ ^^

PVS Unary Operators:

NOT ~ - [] <>

40

Appendix B

De�nition of Prede�ned Types and

Methods

This chapter presents the de�nition of the prede�ned Svenja types (see section 2.3.5.1) and

describes their transformations into Java types. We omitted the interface speci�cations of

prede�ned types as they might change during progress of our work. Furthermore, we give a

de�nition for the object creation method which is prede�ned for every concrete class.

B.1 Prede�ned Types

Interface: The interface Interface is used as a default superinterface.

interface Interface {}

Besides the transformation into packages, Interface stays unchanged when the Svenja

program is transformed into Java.

Object: Class Object is the root of the subtype hierarchy. As Svenja requires each class to

have a superclass, we allow Object to be its own superclass. This is not allowed for all other

classes. In Svenja, Object provides signatures for some of the methods of Java Object. As

threads, dynamic class loading, and �nalizers are not supported in Svenja, we omitted the

corresponding methods.

class Object extends Object implements Interface {

public native int hashCode();

public native boolean equals(Object obj);

protected native Object clone();

public native String toString();

}

When Svenja programs are transformed into Java, Object is simply dropped.

Operator: The Svenja class Operator provides static methods to perform unary and binary

operations (see section 2.3.9.3). To keep things simple, shift operators and bitwise operators

are omitted.

41

class Operator extends Object implements Interface {

public static native int times (int a, int b);

public static native int div (int a, int b);

public static native int mod (int a, int b);

public static native int plus (int a, int b);

public static native int minus (int a, int b);

public static native boolean less (int a, int b);

public static native boolean greater (int a, int b);

public static native boolean lesseq (int a, int b);

public static native boolean greatereq(int a, int b);

public static native boolean equal (int a, int b);

public static native boolean equal (boolean a, boolean b);

public static native boolean equal (Object a, Object b);

public static native boolean notequal (int a, int b);

public static native boolean notequal (boolean a, boolean b);

public static native boolean notequal (Object a, Object b);

public static native boolean condand (boolean a, boolean b);

public static native boolean condor (boolean a, boolean b);

public static native int minus(int a);

public static native boolean not(boolean a);

}

On transformation of Svenja programs into Java, Operator is replaced by the following class

declaration which assigns implementations to the native methods of Svenja.

public class Operator implements Interface {

public static int times (int a, int b) { return a*b; }

public static int div (int a, int b) { return a/b; }

public static int mod (int a, int b) { return a%b; }

public static int plus (int a, int b) { return a+b; }

public static int minus (int a, int b) { return a-b; }

public static boolean less (int a, int b) { return a<b; }

public static boolean greater (int a, int b) { return a>b; }

public static boolean lesseq (int a, int b) { return a<=b; }

public static boolean greatereq(int a, int b) { return a>=b; }

public static boolean equal (int a, int b) { return a==b; }

public static boolean equal (boolean a, boolean b) { return a==b; }

public static boolean equal (Object a, Object b) { return a==b; }

public static boolean notequal (int a, int b) { return a!=b; }

public static boolean notequal (boolean a, boolean b) { return a!=b; }

public static boolean notequal (Object a, Object b) { return a!=b; }

public static boolean condand (boolean a, boolean b) { return a&&b; }

public static boolean condor (boolean a, boolean b) { return a||b; }

public static int minus (int a) { return -a; }

public static boolean not (boolean a) { return !a; }

}

42

B.2 Prede�ned Methods

As described in section 2.3.5.6, each concrete Svenja class C contains a prede�ned method

newC which returns a new object of type C. This method is de�ned as follows (E++C denotes

object environment E after allocating a new object of type C; new(E, C) yields a new object

of type C in environment E):

protected static native C newC()

req TRUE;

pre $ = E;

post $ = E++C AND result = new(E, C);

;

The translation into Java calls the default constructor and returns its result:

protected static C newC() { return new C(); }

43

